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Abstract
The spectral and localization properties of heterogeneous random graphs are determined by the
resolvent distributional equations, which have so far resisted an analytic treatment. We solve
analytically the resolvent equations of random graphs with an arbitrary degree distribution in the
high-connectivity limit, from which we perform a thorough analysis of the impact of degree
fluctuations on the spectral density, the inverse participation ratio, and the distribution of the local
density of states (LDOSs). For random graphs with a negative binomial degree distribution, we
show that all eigenvectors are extended and that the spectral density exhibits a logarithmic or a
power-law divergence when the variance of the degree distribution is large enough. We elucidate
this singular behaviour by showing that the distribution of the LDOSs at the centre of the spectrum
displays a power-law tail controlled by the variance of the degree distribution. In the regime of
weak degree fluctuations the spectral density has a finite support, which promotes the stability of
large complex systems on random graphs.

1. Introduction

The adjacency matrix of random graphs stores the interactions between the constituents of large complex
systems [1] ranging from physical and biological to social and technological systems. The empirical spectral
density of the adjacency matrix and the localization of its eigenvectors are important to understand
algorithms for node centrality [2, 3] and community detection [4, 5], as well as the interplay between the
structure of networks and dynamical processes on them. In fact, the leading eigenpair of the adjacency
matrix governs the spreading of diseases [6, 7], the synchronization transition [8, 9], and the linear stability
of large complex systems [10–13]. In condensed matter physics, models defined on random graphs represent
mean-field versions of finite-dimensional lattices which mimic the effects of finite coordination number. The
spin-glass transition and Anderson localization have been intensively investigated on random graph
structures over the past years [14, 15], and they continue to attract a lot of interest [16–20].

The spectral and localization properties of the random adjacency matrix are determined by the resolvent
matrix G. The average of its diagonal elements Gii yields the empirical spectral density, while the average of
|Gii|2 gives the inverse participation ratio (IPR) [21–23], which characterizes the volume of the eigenvectors.
The full probability density of Gii fulfils a system of distributional equations, derived in a series of
fundamental works [24–26] using the cavity and the replica methods of spin-glass theory (see [27] for a
review of these techniques). The resolvent distributional equations are exact on locally tree-like random
graphs [28] and they provide a solid framework to investigate the spectral properties of sparse and
heterogeneous random graphs. Heterogeneity broadly refers to local fluctuations in the graph structure, such
as randomness in the degrees or in the interaction strengths between the nodes, while sparseness means that
the average degree is finite (the degree counts the number of edges attached to a node). The numerical
solutions of the resolvent equations have led to a profusion of results for the spectral and localization
properties of random graphs [22, 29, 30] with different topological features, including short loops [31],
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modularity [32], and degree-degree correlations [33]. Analogous resolvent equations describe the spectral
properties of stochastic matrices on random graphs [23, 34].

Despite the resolvent distributional equations have led to a tremendous progress in the field, they admit
analytic solutions only for sparse regular graphs [28, 31], whose local structure is homogeneous, and for
high-connectivity random graphs [25], where the mean degree is infinitely large and the graph becomes
homogeneous on account of the law of large numbers. In each case, the distribution of Gii is a Dirac-δ and
the spectral density follows from a simple algebraic equation for the average resolvent. In a recent paper [35],
the resolvent equations for the configuration model of random graphs with a geometric degree distribution
have been studied in the high-connectivity limit [1, 36, 37]. In this case, the average resolvent fulfils a
transcendental equation and the spectral density diverges at centre of the spectrum [35]. These analytic
findings are interesting for at least two reasons. First, they imply that the spectral density of
high-connectivity random graphs is not generally given by the Wigner law of randommatrix theory [38], but
it explicitly depends on the degree distribution. Indeed, as rigorously proven in the Wigner universality only
holds for degree distributions that become sharply peaked in the high-connectivity limit. Second, these
findings hint the existence of a rich and nontrivial family of analytic solutions of the resolvent equations,
sandwiched between the sparse and the dense regime, in which the average degree is large but the network
heterogeneities are still relevant for the spectral properties. The analytic results in [35] are limited, however,
to a geometric degree distribution.

In this paper we generalize the results of [35] and we extract the analytic solution of the resolvent
equations for random graphs with arbitrary degree distributions in the high-connectivity limit. To our
knowledge, this is the first example of a full analytic solution for the probability density of Gii for undirected
random graphs with an heterogeneous structure. We show that the spectral density, the IPR, and the
distribution of the local density of states (LDOSs) are fully determined by the choice of the degree
distribution. We present explicit results for a negative binomial degree distribution, in which the variance of
the degrees is controlled by a single parameter 0< α <∞ that enables to interpolate between homogeneous
(α→∞) and strongly heterogeneous graphs (α→ 0). In this way, we are able to thoroughly investigate the
impact of degree fluctuations on the spectral and localization properties. We show that the spectral density
undergoes a transition as the degree fluctuations become stronger. For α> 1, the spectral density is a regular
function, whereas it displays either a power-law or a logarithmic divergence at the zero eigenvalue provided
α ∈ (0,1) or α= 1, respectively. In the regime of weak degree fluctuations (1≪ α <∞), the spectral density
has a finite support and large complex systems interacting through the underlying adjacency matrix can be
found in a (linearly) stable state. From the analytic results for the IPR and the distribution of the LDOSs, we
show that all eigenvectors of the adjacency matrix are extended for any α. In particular, the distribution of
the LDOSs at the zero eigenvalue exhibits a power-law tail with exponent α+ 1, which emphasizes the
prominent role of the degree fluctuations and clarifies the singular behaviour of the spectral density. We
support our theoretical findings by comparing them with numerical diagonalizations of large adjacency
matrices and, as a byproduct, we show that the adjacency matrix of a single graph instance can be
decomposed for large average degree as a product between a Gaussian random matrix [38] and the square
root of the degree matrix. Such decomposition provides a straightforward way to sample the adjacency
matrix of the configuration model of networks in the high-connectivity limit.

The paper is organized as follows. In the next section we introduce the random graph model and the
resolvent equations for its adjacency matrix. In section 3 we derive the distributional equations and the
analytic expression for the probability density of the resolvent in the high-connectivity limit using the law of
large numbers. In section 4 we discuss explicit results for the spectral density, the IPR, and the distribution of
the LDOSs in the case of a negative binomial degree distribution. We present a summary and a discussion of
our results in section 5, and we provide a more rigorous derivation of the analytic solution of the resolvent
distributional equations in the appendix.

2. The general setting

We consider a simple and undirected random graph with N nodes. The graph structure is specified by the set
of binary random variables {ci j} (i, j = 1, . . . ,N), in which ci j = c ji = 1 if there is an undirected edge
between nodes i and j (i ̸= j), and ci j = 0 otherwise. In addition, we associate a symmetric coupling strength

Ji j = J ji ∈ R to each edge i↔ j. The degree ki =
∑N

j=1 ci j of a node i gives the number of nodes attached to i,
and the degree distribution

pk = lim
N→∞

1

N

N∑
i=1

δk,ki (1)

2
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gives the fraction of nodes with degree k. The average degree stands as

c=
∞∑
k=0

kpk. (2)

We study the spectral properties of the N ×N adjacency random matrix A, with elements

Ai j = ci jJi j, (3)

where the coupling strengths J ij are, apart from the symmetry constraint Ji j = J ji, independently and
identically distributed random variables drawn from a distribution pJ with mean zero and standard
deviation J/

√
c. The nonzero values of {ci j} are randomly assigned following the configuration model of

networks [36, 37, 39], in which a single graph instance is uniformly chosen at random from the set of all
random graphs with a given degree sequence k1, . . . ,kN sampled from pk. The configuration model allows us
to fix the degree distribution from the outset and study its impact on the spectral properties.

The adjacency matrix A has a complete set {vµ}µ=1,...,N of orthonormal eigenvectors that fulfil

Avµ = λµvµ, (4)

with {λµ}µ=1,...,N the set of eigenvalues. The empirical spectral density of A reads

ρ(λ) = lim
N→∞

1

N

N∑
µ=1

δ(λ−λµ). (5)

The IPR of an eigenvector vµ is defined as

Yµ =
N∑
i=1

(vµ,i)
4, (6)

where vµ,i is the ith component of vµ. The IPR distinguishes between localized and extended eigenvectors in
the large N limit. The components of a localized eigenvector are nonzero on a finite number of nodes and the
corresponding IPR is of orderO(N0), whereas an extended eigenvector is spread over a finite fraction of
nodes and the IPR vanishes asO(1/N) in the large N limit. Since the extent of the eigenvectors typically
depends on the corresponding eigenvalue, it is sensible to introduce the eigenvalue-dependent IPR
[21–23, 40]

I(λ) = lim
N→∞

∑N
µ=1 δ(λ−λµ)Yµ∑N
µ=1 δ(λ−λµ)

, (7)

which is the average of Yµ over all eigenvectors in an infinitesimal spectral window around λ.
The spectral properties of A follow from the resolvent matrix

G(z) = (Iz−A)−1, (8)

where I is the N ×N identity matrix and z= λ− iϵ lies in the lower complex half-plane. The diagonal
elements of G determine the spectral density and the eigenvalue-dependent IPR for a finite regularizer ϵ> 0
according to [40]

ρϵ(λ) =
1

π
lim

N→∞

1

N

N∑
i=1

ImGii(z), (9)

Iϵ(λ) =
ϵ

πρϵ(λ)
lim

N→∞

1

N

N∑
i=1

|Gii(z)|2. (10)

Working with finite ϵ amounts to replace the Dirac-δ distributions appearing in equations (5) and (7) by
Cauchy distributions with a scale parameter ϵ [25, 26]. The spectral observables ρ(λ) and I(λ) are
reconstructed by taking the limit ϵ→ 0+ in equations (9) and (10).

By introducing the joint probability density of the real and imaginary parts of Gii(z),

Pz(g) = lim
N→∞

1

N

N∑
i=1

δ [g−Gii(z)] , (11)

3
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the spectral density and the IPR can be written as

ρϵ(λ) =
1

π
Im

[ˆ
H+

dgPz(g)g

]
, (12)

Iϵ(λ) =
ϵ

πρϵ(λ)

ˆ
H+

dgPz(g)|g|2. (13)

The symbolH+ represents the complex upper half-plane and we have introduced the shorthand notation
dg= dRegdImg.

We see that ρϵ(λ) and Iϵ(λ) are determined by the moments of Pz(g). In the limit N→∞, the local
structure around a randomly chosen node of a graph drawn from the configuration model converges to a
tree [28], and the probability of finding a short loop in a finite neighbourhood of the node in question goes
to zero. This property implies that the resolvent diagonal elements for a single graph instance fulfil the
equations [33]

Gii(z) =
1

z−
∑

j∈∂i
J2i jG

(i)
j j (z)

(i= 1, . . . ,N), (14)

where ∂i is the set of nodes adjacent to i. The complex variable G(i)
j j is the jth-diagonal element of the

resolvent on a graph in which node i ∈ ∂ j and all its incident edges have been deleted [41]. The variables

{G(i)
j j } are determined from the fixed-point solutions of the so-called cavity equations

G(i)
j j (z) =

1

z−
∑

ℓ∈∂ j\i J
2
jℓG

( j)
ℓℓ (z)

i ∈ ∂ j, (15)

where ∂ j\i is the set of nodes connected to j excluding i. The total number of cavity variables {G(i)
j j }, defined

on the edges of the graph, is
∑N

i=1 ki. The solutions of equation (15) lead to approximations for the resolvent
diagonal elements of single graph instances when N is large. In the limit N→∞, equations (14) and (15)

become exact and it is more convenient to work with the distributions of Gii(z) and G(i)
j j (z). Given that both

sides of equation (14) are equal in distribution, the probability density Pz(g) is determined from

Pz(g) =
∞∑
k=0

pk

ˆ
H+

[ k∏
ℓ=1

dgℓQz(gℓ)

]ˆ
R

[ k∏
ℓ=1

dJℓ pJ(Jℓ)

]
δ

(
g− 1

z−
∑k

ℓ=1 J
2
ℓgℓ

)
, (16)

whereQz(g) is the probability density of the cavity variables G
(i)
j j (z), defined as

Qz(g) = lim
N→∞

∑N
i, j=1 ci jδ

[
g−G( j)

ii (z)
]

∑N
i, j=1 ci j

, (17)

which solves the self-consistent equation

Qz(g) =
∞∑
k=1

k

c
pk

ˆ
H+

[ k−1∏
ℓ=1

dgℓQz(gℓ)

]ˆ
R

[ k−1∏
ℓ=1

dJℓ pJ(Jℓ)

]
δ

(
g− 1

z−
∑k−1

ℓ=1 J
2
ℓgℓ

)
. (18)

Equations (16) and (18) are the distributional version of the resolvent equations. Once we solve
equation (18) and find a fixed-point solution forQz(g), the probability density Pz(g) of the diagonal
elements of the resolvent follows from equation (16). As we will consider the high-connectivity limit c→∞,
it is interesting to introduce the joint probability densityWz(s) of the complex variable

S(z)
d
=

k∑
ℓ=1

J2ℓgℓ, (19)

which consists of a sum of independent and identically distributed random variables. The distribution Pz(g)
is written in terms ofWz(s) as

Pz(g) =

ˆ
H+

dsWz(s)δ

(
g− 1

z− s

)
. (20)

4
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In the context of tight-binding models for the diffusion of an electron on a graph [14, 42], S(z) is known as
the self-energy and its distributionWz(s) plays an important role in the study of the Anderson localization
transition. We note from equation (20) that the moments of the resolvent diagonal elements Gii(z) are
determined by the distributionWz(s) of the self-energy. For instance, equations (12) and (13) become

ρϵ(λ) =
1

π
Im

[ˆ
H+

ds
Wz(s)

z− s

]
, (21)

Iϵ(λ) =
ϵ

πρϵ(λ)

ˆ
H+

ds
Wz(s)

|z− s|2
. (22)

The exact equations (16) and (18), albeit having a complicated structure, represent a major step in our
understanding of the spectral properties of random graphs, since they can be solved numerically using a
Monte-Carlo iterative method called population dynamics [25–27]. Below we present an analytic solution of
these equations for c→∞ and arbitrary degree distributions.

3. The high-connectivity limit of the resolvent equations

In this section we present a straightforward approach, based on the law of large numbers, to solve the
resolvent equations and determine the spectral and localization properties of random graphs in the
high-connectivity limit c→∞. In the appendix, we discuss a more rigorous derivation based on the
characteristic functions of the probability densities Pz(g) andQz(g).

Our starting point are the cavity equations (14) and (15) for a single graph instance, expressed in terms
of the self-energy

Si(z) =
∑
j∈∂i

J2i jG
(i)
j j (z) (23)

as follows

Gii(z) =
1

z− Si(z)
, G(i)

j j (z) =
1

z− S j(z)+ J2i jG
( j)
ii (z)

. (24)

In the high-connectivity limit c→∞, Si(z) is a sum of a large and random number ki of independent and
identically distributed random variables. By the law of large numbers, Si(z) is asymptotically given by

Si(z)
c→∞−→ κi J

2⟨G⟩, (25)

where κi = ki/c is the rescaled degree of node i and the expectation value of G( j)
ii (z) is defined as

⟨G⟩=
ˆ
H+

dgQz(g)g. (26)

Therefore, the spatial fluctuations of Si(z) are solely governed by κi in the limit c→∞. By assuming that the
empirical distribution of κ1, . . . ,κN converges to ν(κ) as c→∞,

ν(κ) = lim
c→∞

∞∑
k=0

pkδ
(
κ− k

c

)
, (27)

the probability densityWz(s) of Si(z) is obtained by the change of variables set by equation (25), namely

Wz(s) =
1

J2Im⟨G⟩
ν

(
Ims

J2Im⟨G⟩

)
δ

[
Res− Re⟨G⟩

Im⟨G⟩
Ims

]
. (28)

We note thatWz(s) depends itself on the first moment ⟨G⟩ of G( j)
ii (z). This is computed by substituting the

large c behaviour of G( j)
ii (z),

G( j)
ii (z)

c→∞−→ 1

z−κi J 2⟨G⟩
, (29)

5
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in the definition of the probability densityQz(g) of G
( j)
ii (z), equation (17), leading to the self-consistent

equation

Qz(g) =

ˆ ∞

0
dκν(κ)κδ

(
g− 1

z−κJ2⟨G⟩

)
. (30)

The fixed-point equation for the first moment ⟨G⟩ readily follows from the above expression

⟨G⟩=
ˆ ∞

0
dκ

ν(κ)κ

z−κJ2⟨G⟩
. (31)

Equation (28) is one of our main analytic results, since the distributionWz(s) of the self-energies determines
all moments of the diagonal elements of the resolvent. Despite the fact we have considered the
high-connectivity limit c→∞, the distributionWz(s) retains information about the degree fluctuations
through ν(κ). When the tail of the degree distribution pk decays fast enough, such as in the case of regular
and Erdös–Rényi random graphs [39], the rescaled degree distribution is given by ν(κ) = δ(κ− 1), and
Wz(s) reduces to

Wz(s) = δ
(
Ims− J2Im⟨G⟩

)
δ
(
Res− J2Re⟨G⟩

)
. (32)

The above class of solutions describes homogeneous random graphs [35], in which the the self-energy Si(z)
is equal to its mean value J2⟨G⟩ and the spectral density is given by the Wigner law

ρw(λ) =

√
4J2 −λ2

2π J2
1(−2J,2J)(λ), (33)

where 1A(x) denotes the indicator function, i.e. 1A(x) = 1 if x ∈ A, and 1A(x) = 0 otherwise.
Let us derive some consequences of equation (28). By inserting equation (28) in equations (21) and (22),

we obtain

ρϵ(λ) =
1

π
Im

[ˆ ∞

0
dκ

ν(κ)

z−κJ2⟨G⟩

]
(34)

and

Iϵ(λ) =
ϵ

πρϵ(λ)

ˆ ∞

0
dκ

ν(κ)

|z−κJ2⟨G⟩|2
. (35)

We can also derive the analytic expression for the joint distribution Pz(g) of the diagonal elements of the
resolvent. Let G(z) and S(z) be independent complex random variables distributed according to Pz(g) and
Wz(s), respectively, then equation (24) entails

G(z)
d
=

1

z− S(z)
. (36)

By making a two-dimensional change of variables and using equation (28), we find

Pz(g) =
1

J2|g|4Im⟨G⟩
ν

(
Im
(
z− g−1

)
J2Im⟨G⟩

)
δ

[
Re
(
z− g−1

)
− Re⟨G⟩

Im⟨G⟩
Im
(
z− g−1

)]
. (37)

The above equation determines how the distribution of the diagonal part of the resolvent depends on the
distribution ν(κ) of rescaled degrees. The object Pz(g) contains much information about the spectral and
localization properties of the adjacency matrix [20, 23, 43]. For instance, by marginalizing Pz(g) with respect
to Reg, we can calculate the empirical distribution of {ImGii}i=1,...,N, which is essentially the (regularized)
LDOSs [20, 40, 43]

ρi(z) =
1

π
ImGii(z) =

1

π

N∑
µ=1

ϵ|vµ,i|2

(λ−λµ)
2
+ ϵ2

(i= 1, . . . ,N). (38)

In the limit ϵ→ 0+, the empirical distribution of yi = ImGii(z) (i = 1, . . . ,N) characterizes the spatial
fluctuations of the eigenvector amplitudes |vµ,i|2 corresponding to the eigenvalues around λ. By integrating
equation (37) over Reg, we find the expression for |λ|> 0

6
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Pz(y) =

{
ω+(y)ν

(
y
[
x2+(y)+ y2

]−1 − ϵ

J2 Im⟨G⟩

)

+ω−(y)ν

(
y
[
x2−(y)+ y2

]−1 − ϵ

J2 Im⟨G⟩

)}
1(0,ye)(y), (39)

where the support of Pz(y) is determined by

ye =
|Re⟨G⟩|+

√
(Re⟨G⟩)2 +(Im⟨G⟩)2

2(|λ|Im⟨G⟩+ ϵ |Re⟨G⟩|)
. (40)

The functions ω±(y) and x±(y) are defined as

ω±(y) =
1

J2 Im⟨G⟩
∣∣∣x2±(y)− y2 + 2 Re⟨G⟩

Im⟨G⟩ yx±(y)
∣∣∣ (41)

and

x±(y) =
1±

√
1− 4

(
λ+ Re⟨G⟩

Im⟨G⟩ϵ
)[(

λ+ Re⟨G⟩
Im⟨G⟩ϵ

)
y2 − Re⟨G⟩

Im⟨G⟩y
]

2
(
λ+ Re⟨G⟩

Im⟨G⟩ϵ
) . (42)

Equation (39) shows that Pz(y) has a finite support for |λ|> 0 regardless of the shape of the distribution ν.
By setting λ= 0 in equation (37) and then integrating over Reg, we obtain

Pz(y) =
1

J2Im⟨G⟩y2
ν

(
−ϵ+ y−1

J2Im⟨G⟩

)
(λ= 0). (43)

In contrast to equation (39), the distribution Pz(y) at λ= 0 can have an infinite support depending on the
choice of the rescaled degree distribution ν.

4. Results for the negative binomial degree distribution

The analytic expressions of the previous section are valid for any distribution of rescaled degrees ki/c that
converges to ν(κ) as c→∞. Here we discuss results for random graphs with the negative binomial degree
distribution [44]

p(b)k =
Γ(α+ k)

Γ(α)

1

k!

( c

α

)k 1

(1+ c
α )

α+k
, (44)

where Γ(x) is the Gamma function and 0< α <∞ is a continuous parameter. The variance σ2
b of p

(b)
k is

related to α as follows

σ2
b = c+

c2

α
. (45)

In a previous work [35], we have shown that spectral density of the configuration model does not converge
to the Wigner law if the relative variance of the degree distribution does not vanish as c→∞. The negative
binomial degree distribution provides a controllable way to investigate the effect of degree fluctuations on
the spectral and localization properties of random graphs by varying a single parameter. In fact, given that

lim
c→∞

σ2
b

c2
=

1

α
, (46)

by changing α we are able to explore the entire range of degree fluctuations for c→∞. The limit α→∞
corresponds to homogeneous random graphs, whose spectral properties are governed by random matrix
theory [38], whereas the limit α→ 0 characterizes random graphs with strongly heterogeneous degrees. The
geometric degree distribution is recovered for α= 1 [35]. Inserting equation (44) in equation (27), we obtain
the analytic form of ν(κ)

νb(κ) =
αακα−1e−ακ

Γ(α)
. (47)

The above expression is the only input to the general formulae of the previous section, from which we can
derive several analytic results as a function of α.
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4.1. Spectral density
In the high-connectivity limit, the empirical distribution ν(κ) of rescaled degrees determines the spectral
density ρ(λ), as the latter is given by the free multiplicative convolution of ν(κ) with the Wigner law ρw(λ).
This rigorous result, proven in [45], essentially means that the adjacency matrix can be decomposed in the
limit c→∞ as a product of X and D, where D is the degree matrix with elements Di j = κi δi j, and X is a
randommatrix in which the diagonal entries are zero and the off-diagonal elements are independent random
variables drawn from a Gaussian distribution with mean zero and variance J2/N. The product XD, however,
is non-Hermitian and its eigenvalues could be complex numbers. Fortunately, D is a positive operator and
D1/2XD1/2 is Hermitian, with the same moments as XD, which allows us to rewrite the adjacency matrix as

A= D1/2XD1/2. (48)

This interesting decomposition, which follows as a natural interpretation of the main theorem in [45], can be
used to study the spectral properties of random graphs with a prescribed degree distribution and large c
without having to run sophisticated algorithms to sample graphs from the configuration model. This is
precisely the strategy we adopt below, i.e. we compare our theoretical findings with numerical results
obtained from diagonalizing equation (48).

Let us determine the spectral density of random graphs with a negative binomial degree distribution.
Substituting equation (47) in equations (31) and (34), and evaluating the integrals over κ, we obtain

ρϵ(λ) =
1

π
Im

[
z2 + γ2J2

zγ2J2

]
, (49)

where the dimensionless variable γ ∈ C, defined in terms of ⟨G⟩ as

γ =
z

J2⟨G⟩
, (50)

solves the transcendental equation

γ2J2 =
z2

(−αγe−γ)
α
Γ(1−α,−αγ)− 1

, (51)

with Γ(a, ξ) (a ∈ R and ξ ∈ C) denoting the incomplete Gamma function. The solution of the fixed-point
equation (51) yields the regularized spectral density (49) for any 0< α <∞. We recall that the strength of
the degree fluctuations is controlled only by α (see equations (45) and (46)). By setting α= 1 in
equation (51), we recover the equations for the spectral density of random graphs with a geometric degree
distribution [35].

Figure 1 compares the regularized spectral density ρϵ(λ) computed from the solutions of equation (51)
with numerical results for the eigenvalues obtained from diagonalizing the adjacency matrix of
equation (48). The agreement between our theoretical findings and numerical diagonalization results is
excellent. In particular, we note from figure 1 that degree fluctuations modify the tails of the spectral density
as well as its behaviour around λ= 0.

We have shown in a previous work [35] that ρ(λ) has a logarithmic divergence at λ= 0 for α= 1. In
order to understand how this singular behaviour depends on α, we need to extract the functional form of
γ = γ(z) as |z| → 0. We follow [35] and make the assumption

γ(z) =
β1
J
z+

β2(α,z)

J2
z2, (52)

where the coefficient β1 is independent of z and β2(α,z) satisfies lim|z|→0 z
2β2(α,z) = 0. Inserting the above

ansatz in equation (51) and expanding the result up toO(z2), one finds that β1 and β2(α,z) are given by

β1 =−i (53)

and

β2(α,z) =−1

2

[
i2ααα

(
β1
J
z

)α−1

Γ(1−α)+
α

1−α

]
(54)

in the regime α ∈ (0,1).
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Figure 1. The spectral density of random graphs with a negative binomial degree distribution in the high-connectivity limit. The
parameter 1/α controls the relative variance of the degree distribution (see equation (46)). The solid lines are the theoretical
results derived from solving equations (49) and (51) for ϵ= 10−3 and J= 1. The red circles are numerical diagonalization results
obtained from an ensemble of 104 × 104 adjacency randommatrices generated according to equation (48). The dashed blue curve
in the lower right panel represents the Wigner law (see equation (33)).

The last step is to substitute equation (52) in equation (49) and compute the limit ϵ→ 0+, which leads to
the power-law divergence

ρ(λ) =
1

π J

[
αα sin

(
π

2
α

)
Γ(1−α)

(
|λ|
J

)α−1

− α

(1−α)

]
(0< α < 1) (55)

for |λ| → 0. By taking the limit α→ 1 in equation (55), we recover the logarithmic divergence obtained in
[35]

ρ(λ) =− 1

π J

[
E+ log

(
|λ|
J

)]
(α= 1), (56)

with E representing the Euler–Mascheroni constant. Figure 2 compares equation (55) with numerical
solutions of equations (49) and (51) for |λ| ≪ 1. The numerical results deviate from the analytic expression
for values of λ below a certain threshold |λ∗|. As ϵ decreases, |λ∗| shifts towards smaller values, confirming
that the discrepancy between the numerical data and equation (55) is due to the finite values of ϵ used in the
numerical solutions.

In the homogeneous limit α→∞, the variance of the rescaled degree distribution ν(κ) vanishes and we
expect to recover the Wigner law. By using the functional relation [46]

Γ(1−α,−αγ) =−αΓ(−α,−αγ)+ (−αγ)
−α eαγ (57)

and the asymptotic formula [47]

−α(−αγ)
α e−αγΓ(−α,−αγ) =

1

(γ− 1)
+

γ

α(γ− 1)3
+O(α−2) (α≫ 1), (58)

9
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Figure 2. The power-law divergence of the spectral density around λ= 0 for α= 0.9 and J= 1. The solid line is the analytic result
of equation (55), while the symbols are numerical results obtained from the solutions of equations (49) and (51) for different
values of ϵ. The data is presented in logarithmic scale.

Figure 3. The discriminant∆(λ) of the cubic equation (59) for J= 1 and ϵ= 0. The edge of the spectral density is determined by
the value of λb at which∆(λb) = 0. The red circle identifies the spectral edge λb = 2J of the Wigner law (see equation (33)).

we derive from equation (51) an approximate equation for γ

γ2J2 = z2(γ− 1)− z2γ

α(γ− 1)
. (59)

In the limit α→∞, the above expression reduces to a quadratic equation, whose solution yields the Wigner
law (see equation (33)).

Here we do not derive the analytic expression for the spectral density ρ(λ) that arises from solving the
cubic equation (59), but we characterize the support of ρ(λ), which plays a pivotal role for the stability of
complex systems [13]. In general, when the largest eigenvalue of the adjacency matrix A is finite, there exists
a regime of model parameters where the stationary states of a large complex system coupled through A are
linearly stable. Thus, complex systems interacting through the symmetric random matrix of equation (48)
can be in a stable state in the limit α→∞, in view of the finite support of the Wigner law. An interesting
question here is whether the support of ρ(λ) remains finite when a small amount of heterogeneity is
introduced (1≪ α <∞). In order to resolve this issue, we study the discriminant∆(λ) of the cubic
equation (59) in the limit ϵ→ 0+. If∆(λ)> 0, then equation (59) has only real roots and ρ(λ) = 0, whereas
if∆(λ)< 0, then equation (59) admits a pair of complex-conjugate solutions, yielding ρ(λ)> 0. As shown
in figure 3, the discriminant is zero at a certain value λ= λb, which implies that ρ(λ) has a finite support.
The spectral edge λb of ρ(λ) consistently approaches the value λb = 2J of the Wigner law as α increases.

4.2. Eigenvector localization and the distribution of the LDOSs
In this section we analyse the effect of degree fluctuations on the IPR and on the LDOSs for a negative
binomial degree distribution. Substituting equation (47) in equation (35) and calculating the integral over κ,
we obtain the regularized IPR around an eigenvalue λ

10
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Figure 4. The regularized spectral density ρϵ(λ) and the inverse participation ratio Iϵ(λ) as a function of the regularization
parameter ϵ for α= 0.75 and different values of λ. The numerical results are obtained from equations (49) and (60).

Figure 5. The empirical distribution of the imaginary part of the resolvent at (λ,ϵ) = (1,10−3) for random graphs with J= 1
and a negative binomial degree distribution (see equation (47)). (a) Results for α= 1. The dashed line is the analytic expression
of equation (39), valid in the high-connectivity limit c→∞, while the solid lines are obtained from the numerical solutions of
equations (16) and (18) for different values of the mean degree c. The support of the distribution is limited by ye (see
equation (40)). (b) The analytic result of equation (39) for different values of α.

Iϵ(λ) =
ϵ

πρϵ(λ)
Im

{
ααγ

z [Im(z/γ)]α−1
[ϵ+ γ Im(z/γ)]

×

[
ϵα−1 exp

(
ϵα

Im(z/γ)

)
Γ

(
1−α,

ϵα

Im(z/γ)

)
− [−γIm(z/γ)]α−1 e−αγΓ(1−α,−αγ)

]}
,

(60)

where γ fulfils equation (51) and the regularized spectral density ρϵ(λ) is given by equation (49).
It is well-established that the eigenvectors of random graphs with finite c become localized in the tails of

the spectral density due to the existence of hubs in the graph structure [6, 22, 30]. It is natural to ask whether
such localized states survive for c→∞ in the presence of degree fluctuations. Figure 4 shows the spectral
density and the IPR derived from equations (49) and (60) as a function of ϵ for large values of |λ|. In the
regime ϵ→ 0+, the spectral density ρϵ(λ) converges to a finite limit and the IPR vanishes as Iϵ(λ)∝ ϵ. The
same picture holds for other values of α, which demonstrates that all eigenvectors corresponding to nonzero
eigenvalues are extended.

The distribution Pz(y) of the LDOS probes the spatial fluctuations of the eigenvectors and it gives
important information about localization phenomena. In the limit ϵ→ 0+, the distribution Pz(y) within the
localized phase typically exhibits a singularity at y≃ ϵ, due to the extensive number of sites at which
ImGii ≃ ϵ [14]. Differently from that, our results show that Pz(y) converges to a regular, ϵ-independent
function in the limit ϵ→ 0+, highlighting the extended nature of the eigenvectors. Figure 5(a) compares
equation (39) with numerical results obtained from the solutions of equations (16) and (18) using the
population dynamics algorithm [32] for α= 1 and large values of c. The agreement between theoretical and
numerical results is excellent over the central portion of the distribution. The discrepancy close to y= ye in
figure 5(a) is due to strong finite-connectivity effects, since the convergence of the numerical results to the
asymptotic behaviour for c→∞ is extremely slow.
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Figure 6. The empirical distribution of the imaginary part of the resolvent at z= 0 for random graphs with J= 1 and a negative
binomial degree distribution (see equation (47)). (a) Results for α= 1. The solid line is the analytic result of equation (61), while
the red circles are obtained from the numerical solutions of equations (16) and (18) for (λ,ϵ) = (0,10−3) and c= 400. The inset
shows the tail of the distribution in logarithmic scale. (b) The distribution of y rescaled by its mean value y for different α (see
equations (61) and (62)). The dashed line is a Gaussian distribution with unity mean and variance 1/α (α= 32).

Figure 5(b) shows that Pz(y) diverges at the edge y= ye for any value of α. Moreover, the distribution
Pz(y) develops an additional power-law singularity at y= 0 when α< 1, which is a genuine effect of strong
degree fluctuations and a direct consequence of the shape of ν (see equation (47)). In the limit α→∞, the
graph becomes homogeneous and Pz(y) converges to a Dirac-δ distribution centered at ye = πρw(λ)
(ϵ→ 0+), where ρw(λ) is given by equation (33).

With the aim of clarifying the singular behaviour of the spectral density (see figure 2), we turn our
attention to the statistics of the LDOS at λ= 0. Substituting equation (47) in equation (43), setting ϵ= 0, and
then noting that Im⟨G⟩= 1/J for z→ 0 (see equations (50) and (52)), we obtain the simple analytic result

P0(y) =
αα

Γ(α)Jα

exp
(
−α

Jy

)
yα+1

, (61)

which reveals the unbounded character of the LDOS fluctuations at λ= 0. Figure (6)(a) confirms the
exactness of expression (61) by comparing this equation with results obtained by numerically solving
equations (16) and (18) for α= 1 and c= 400. It is interesting to contrast P0(y) with the distribution of the
LDOS in the extended phase of regular random graphs with on-site random potentials [20, 48, 49]. While for
regular random graphs with on-site disorder the distribution of the LDOS decays exponentially fast beyond a
certain scale [48, 49], the power-law tail of equation (61) implies that the qth moment yq =

´∞
0 dyyqP0(y)

diverges for α⩽ q, whereas

yq =
αqΓ(α− q)

JqΓ(α)
(62)

for α > q. Figure 6(b) shows that y does not coincide with the most probable value of the distribution P0(y)
due to its skewed shape. As α increases and the graph becomes more homogeneous, the distribution P0(y/y)
gradually becomes more symmetric and concentrated around its mean value. For 1≪ α <∞, P0(y/y) is a
Gaussian distribution with varianceO(1/α), and it ultimately converges to P0(y/y) = δ(y/y− 1) in the
homogeneous limit α→∞. We remark that the distribution of the LDOS characterizing the master operator
of the sparse Barrat–Mézard trap model also exhibits a power-law tail at specific eigenvalues [23].

5. Summary and discussion

The resolvent distributional equations for the spectral properties of heterogeneous random graphs do not
have analytic solutions for finite mean degree c. In the limit c→∞, such equations admit a trivial solution,
typical of random graphs with a homogeneous structure, in which the resolvent elements are all equal to
their mean value. Here we have shown how to distill a nontrivial analytic solution of the resolvent
distributional equations, valid in the high-connectivity limit, which explicitly depends on the shape of the
degree distribution. This solution enables to perform a thorough analysis of the impact of degree
heterogeneities on the spectral and localization properties of the adjacency matrix.

We have presented several results for the spectral and localization properties of random graphs with a
negative binomial degree distribution, in which the network heterogeneity, measured by the relative variance
of the degree distribution (see equation (46)), is governed by a single parameter α ∈ (0,∞). When the
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degree fluctuations are sufficiently strong (0< α⩽ 1), the spectral density ρ(λ) diverges at the zero
eigenvalue λ= 0. More specifically, the function ρ(λ) exhibits either a logarithmic or a power-law singularity
if α= 1 or α ∈ (0,1), respectively. In addition, we have shown that ρ(λ) has a finite support in the regime of
weak degree fluctuations (1≪ α <∞), which implies that large complex systems coupled through highly
connected random graphs can be found in a linearly stable state [13], at least when the variance of the degree
distribution is small enough. An interesting open question is whether ρ(λ) becomes unbounded below a
critical value of α, or if the support of ρ(λ) remains always finite.

We have shown that the IPR vanishes for nonzero eigenvalues and the corresponding eigenvectors are
extended for any amount of degree fluctuations. We point out that this picture is not in conflict with recent
results [18, 50] that show the existence of localized eigenvectors in the tails of the spectral density of critical
random graph models. In fact, our results for the absence of localization hold for c=O(Na) (a< 1) [17],
while in critical random graphs the mean degree scales as c=O(lnN).

In order to further examine the nature of the eigenvectors and the singular behaviour of the spectral
density, we have computed analytically the distribution of the LDOS, which quantifies the spatial
fluctuations of the eigenvector amplitudes throughout the graph (see equation (38)). The distribution of the
LDOS attains a nonsingular, ϵ-independent limit as ϵ→ 0+, confirming the absence of localized eigenvectors
in the high-connectivity limit [14]. The importance of degree fluctuations is more evident at the zero
eigenvalue λ= 0, where the distribution of the LDOS exhibits a power-law tail with exponent α+ 1 (see
equation (61)). In particular, the divergence of the mean value of the LDOS at λ= 0 explains the singular
behaviour of ρ(λ) for α⩽ 1.

It is interesting to compare our analytic expression for the distribution of the LDOS at λ= 0 with the
analogous result for the extended phase of sparse regular random graphs with on-site disorder [48, 49]. In
the latter class of models, the distribution of the LDOS decays exponentially fast and all its moments are
finite, whereas in the present model the qth moment diverges for α⩽ q. In particular, the second moment of
the LDOS for regular random graphs only diverges as the critical point for the Anderson transition is
approached from the delocalized phase by increasing the strength of the diagonal disorder [43, 51, 52]. In an
analogous way, the second moment of the LDOS in the present model is finite for α> 2 and it diverges for
α⩽ 2, which seems to suggest that highly-connected random graphs with strongly fluctuating degrees lie in
a critical regime [40, 51]. Besides constituting an interesting benchmark to study how degree heterogeneities
affect the spectral properties of networks, our analytic findings open the possibility to investigate how the
interplay between on-site disorder and fluctuations in the network topology modify the Anderson
localization transition.

Overall, our results uncover an interesting high-connectivity regime in which the resolvent equations
admit exact and nontrivial solutions that incorporate heterogeneous features of the network topology. Thus,
it would be interesting to generalize the techniques developed in this work to solve the resolvent equations
for the adjacency matrix of directed random graphs [41, 53] and networks with loops [31], as well as the
analogous equations for the Laplacian matrix on graphs [54]. We also expect that the resolvent equations of
heavy-tailed random matrices [55, 56] can be studied with our approach, since such ensembles can be
mapped on a sparse random-matrix ensemble through the introduction of a cutoff that distinguishes
between strong and weak matrix elements [22]. Finally, it would be interesting to solve the resolvent
equations for the master operator of the sparse Barrat–Mézard model [23] in the high-connectivity limit,
which could lead to analytic results for the low-temperature localization properties. Work along these lines is
under way.
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Appendix. Calculation based on characteristic functions

In this appendix we present a more formal derivation of equations (28) for the probability densityWz(s),
from which all subsequent results for the spectral and localization properties follow. By inspecting
equations (16) and (19), we note thatWz(s) can be written as
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Wz(s) =
∞∑
k=0

pk

ˆ
H+

[
k∏

ℓ=1

dgℓQz(gℓ)

]ˆ
R

[
k∏

ℓ=1

dJℓ pJ(Jℓ)

]
δ

(
s−

k∑
ℓ=1

J2ℓgℓ

)
, (A1)

with dg= dRegdImg. In a similar fashion, one can introduce the distribution Wz(s) associated toQz(g). The
average of an arbitrary function f (G) of the cavity resolvent G distributed according toQz(g),

⟨ f(G)⟩=
ˆ
H+

dgQz(g) f(g), (A2)

is recast in the form

⟨ f(G)⟩=
ˆ
H+

dsWz(s) f

(
1

z− s

)
ds= dResdIms, (A3)

where the expression for Wz(s) is inferred from equation (18)

Wz(s) =
∞∑
k=1

k

c
pk

ˆ
H+

[
k−1∏
ℓ=1

dgℓQz(gℓ)

]ˆ
R

[
k−1∏
ℓ=1

dJℓ pJ(Jℓ)

]
δ

(
s−

k−1∑
ℓ=1

J2ℓgℓ

)
. (A4)

The quantity Wz(s) is the probability density of the random variable defined in equation (19) with the
replacement k→ k− 1. In particular, it follows from equation (A2) that the average resolvent ⟨G⟩ on the
cavity graph is given by

⟨G⟩=
ˆ
H+

ds
Wz(s)

z− s
. (A5)

The distributionsWz(s) and Wz(s) fully determine the spectral properties of the adjacency matrix.
Our aim is to calculate the joint distributionsWz(s) and Wz(s) for c→∞. Given thatWz(s) and Wz(s)

are distributions of sums of independent and identically distributed random variables, it is natural to work
with the characteristic functions of such distributions. Let V(u,v) and V(u,v) be the characteristic functions
of, respectively,Wz(s) and Wz(s), defined as

V(u,v) =
ˆ
H+

dsWz(s)exp(−iuRes− i vIms), (A6)

V(u,v) =

ˆ
H+

dsWz(s)exp(−iuRes− i vIms). (A7)

Inserting equations (A1) and (A4) in the above expressions, we obtain

V(u,v) =
∞∑
k=0

pk exp
[
kSc(u,v)

]
, (A8)

V(u,v) =
∞∑
k=1

k

c
pk exp

[
(k− 1)Sc(u,v)

]
, (A9)

with

Sc(u,v) = ln

[ˆ
H+

dgQz(g)

ˆ +∞

−∞
dJpJ(J)exp

(
− iuJ2Reg− i vJ2Img

)]
. (A10)

Since the second moment of the coupling strengths is ofO(1/c), the leading term of the above equation for
c≫ 1 is given by

Sc(u,v) =−iu
J2

c
Re⟨G⟩− i v

J2

c
Im⟨G⟩, (A11)

where we assumed that ⟨G⟩ attains a well-defined limit for c→∞. The substitution of the above expression
for Sc(u,v) in equations (A8) and (A9) leads to the following equations for c→∞

V(u,v) =
ˆ ∞

0
dκν(κ)exp

(
−iuκJ2Re⟨G⟩− i vκJ2Im⟨G⟩

)
, (A12)
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V(u,v) =

ˆ ∞

0
dκκν(κ)exp

(
−iuκJ2Re⟨G⟩− i vκJ2Im⟨G⟩

)
, (A13)

where the probability distribution ν(κ) of the rescaled degrees is defined in equation (27). Performing the
inverse Fourier transform of V(u,v) and V(u,v), we get

Wz(s) =

ˆ ∞

0
dκν(κ)δ(s−κJ2⟨G⟩), (A14)

Wz(s) =

ˆ ∞

0
dκκν(κ)δ(s−κJ2⟨G⟩). (A15)

Equation (A14) means that the complex random variable S, distributed according toWz(s), is equal in
distribution to the random variable κJ2⟨G⟩. Thus, given ν(κ), equation (28) follows by making a change of
variables. The self-consistent equation for ⟨G⟩, equation (31), is readily obtained by inserting equation (A15)
in equation (A5). This completes the calculation ofWz(s).
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