
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

HENRIQUE CHAVES PACHECO

A Web-Based Image Annotation Tool
Supporting Multiple Users and Formal

Ontologies

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Eduardo Simões Lopes Gastal

Porto Alegre
October 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

This work describes the implementation and design process of an image-annotation web

application. The main goal of the proposed system is to generate annotated data to support

the training of Machine-Learning classification algorithms. For the purpose of maximizing

quantity and quality of the annotated data output and minimizing end-user effort, the pro-

posed system supports multiple remote users interacting simultaneously. The system also

includes two types of image annotation interfaces, in addition to integrating with formal

category ontologies through OWL files. The development process took into consideration:

the nature of the task of establishing relations between images and categories, existing

technologies (both for web development and image annotation), as well as requirements

elicitation through end-user feedback from incremental releases. Ultimately, user experi-

ments with the proposed Labelweb system (using the single-image annotation interface)

generated more than 30,000 annotations and 10,000 labeled images in 9 weeks.

Keywords: Image annotation. Web-based tool with concurrent access.

Uma Ferramenta Web de Anotação de Imagens com Suporte para Múltiplos

Usuários e Ontologias Formais

RESUMO

Este trabalho descreve o processo de implementação e design de uma aplicação web de

anotação de imagem. O principal objetivo do sistema proposto é gerar dados anotados para

auxiliar o treinamento de algoritmos de classificação de Aprendizado de Máquina. Com

o objetivo de maximizar a quantidade e a qualidade dos dados anotados e minimizar o

esforço do usuário final, o sistema proposto suporta múltiplos usuários remotos interagindo

simultaneamente. O sistema, também, inclui dois tipos de interfaces de anotação de

imagem, além de integração com ontologias de categorias formais por meio de arquivos

OWL. O processo de desenvolvimento levou em consideração: a natureza da tarefa

de estabelecer relações entre imagens e categorias, tecnologias existentes (tanto para

desenvolvimento web quanto para anotação de imagens), bem como o levantamento

de requisitos através do feedback de usuário das entregas incrementais. Por fim, os

experimentos com usuários no sistema proposto, chamado de Labelweb, utilizando a

interface de anotação de imagem-única, geraram mais de 30.000 anotações e 10.000

imagens rotuladas em 9 semanas.

Palavras-chave: Anotação de imagens. Ferramenta Web com acessos simultâneos.

LIST OF FIGURES

Figure 1.1 Single-image interface of Labelweb for annotating one image at a time,
possibly assigning several categories to the image. ...11

Figure 1.2 Multi-image interface of Labelweb for annotating several images at a
time, assigning a single pre-defined category (selected by the user or the system). 11

Figure 2.1 OpenLabeler system interface. ..16

Figure 2.2 Sloth system interface..16

Figure 2.3 LabelImg system interface...17

Figure 2.4 RectLabel Tool Interface. ..17

Figure 2.5 RectLabel high precision annotation. ..18

Figure 2.6 LabelMe Tool...18

Figure 2.7 Labelbox annotation system interface. ..19

Figure 3.1 Model-View-Controller Architectural Framework separates the concerns
of the application between the components responsible for handling data, user
interface and client-side logic. This framework is commonly applied to web
application design as a means to easily separate business and view logic, while
keeping the code maintainable and extendable. ..20

Figure 3.2 Labelweb System Macro Layered Architecture. The following archi-
tecture separates front-end (gray layer), back-end (blue and purple layer) and
database (orange) technologies and system modules. ...21

Figure 4.1 User login and Registration Interface. ...29

Figure 4.2 Navigation Bar at the top of the Labelweb Single-image annotation interface.30

Figure 4.3 Left Block of the Labelweb Single-image annotation interface displaying
a new image for annotation, selected categories, user progress bar and image
transformation buttons. ...31

Figure 4.4 Right Block of the Labelweb Single-image annotation interface contains
a help bar, three categories lists (recommended, full expandable hierarchy and
most used categories) and comment input box. ..32

Figure 4.5 Help bar of the Labelweb Single-image annotation interface contains
many operations to facilitate the annotation, including interface language and
color palette switching and image traversal buttons. ..32

Figure 4.6 Columns of the Labelweb Single-image annotation interface contains
three categories lists: recommended categories for the current image, full
expandable hierarchy and most used categories. ..33

Figure 4.7 My Labels Interface for navigating between images annotated by the user. .33

Figure 4.8 System Overview Interface..34

Figure 5.1 Database models for single-image Annotation..35

Figure 5.2 Database Models for multi-image annotation. ..36

Figure 5.3 State machine defining the user state control. ...37

Figure 5.4 State machine defining the image state control. An image can assume
the states: active - it can be randomly drawn for the user annotation interface,
ready - it can be included in the active state, labeled - it was already annotated
by n users as defined by the administrator in the config.js file (labelsPerImage
variable defined in Section 5.3), and inactive - it cannot be included in the active
state. This subsystem state machine is also defined by the transitions: zombie -
an existing image in the database that cannot be found in the data folder served
by the back-end (imagesDirectory variable defined in Section 5.3), gold - an
existing image in the database that was previously annotated by a specialist for
user validation, and comparison of n - constant minimum number of times that
an image must be annotated - and labeled - number of times the image was
annotated by an user (labels array size attribute defined in Figure 5.1).38

Figure 5.5 Evolution of the number of labeled images with and without the use
of an active images list. Graphs obtained through random simulations of the
annotation process...39

LIST OF TABLES

Table 2.1 Characterization of existing image annotation tools and comparison of
their features..14

CONTENTS

1 INTRODUCTION...9
1.1 Important Definitions ...10
1.2 Work Proposal...10
2 RELATED WORKS ...13
2.1 OpenLabeler..14
2.2 Sloth..14
2.3 LabelImg..15
2.4 RectLabel ...15
2.5 LabelMe ...17
2.6 Labelbox ..18
3 ARCHITECTURE OF THE LABELWEB SYSTEM...20
3.1 Features Set ...21
3.2 Annotation System Development Methodology ...23
4 FRONT-END LAYER...24
4.1 System Access Routes ...24
4.2 Annotation: Modes of Interaction...26
4.2.1 Single-Image Interaction..26
4.2.2 Multi-Image Interaction ...27
4.2.2.1 Based on visual similarity...27
4.2.2.2 Based on pre-trained classifier confidence..28
4.3 Interface ...29
4.3.1 Login and Registration...29
4.3.2 Single-image Annotation Page ..30
4.3.3 My Labels Page..31
4.3.4 Overview Page ...33
4.3.5 Multi-image Annotation Page..34
5 BACK-END LAYER...35
5.1 Database Models ...35
5.2 Labelweb Back-end Management Subsystem for Single-image Annotation.....36
5.2.1 User State Control..36
5.2.2 Image State Control ...37
5.3 Administrator Settings ...40
5.4 Ontology Parsing...41
5.5 Importing Similarities for Multi-image Annotation..42
5.6 Flask Server for Category Suggestion...43
6 EXPERIMENTS ...44
6.1 Experiments with students ...44
6.2 Experiments with specialists ..44
6.3 Multi-Image Interface Evaluation...45
7 CONCLUSION ...46
REFERENCES...48

9

1 INTRODUCTION

Data annotation is the process of associating metadata with the elements of a

dataset. For example, each image (the element) in an image collection (the dataset) may

be associated with a list of textual labels (the metadata) describing the contents of the

image. This is a well known necessary step to build an Artificial-Intelligence (AI) system

based on Machine Learning (ML), capable of, for example, automatically classifying

images (DENG et al., 2009a). The annotated dataset used for training an ML system is

often called a training dataset.

The quality of the training dataset, i.e. how close the labels correspond to the

real-world semantic concepts of the content represented by the data, will determine the

quality of the resulting solution. Further, quantity is also a key factor and a concern,

since this dataset must sample the semantic categories well enough in order to generate

knowledge – the capacity of identifying an artifact by a neural network. However, a major

challenge of the annotation task is scalability (DENG et al., 2009b). The number of images

needed for state-of-the-art computer vision algorithms is up to thousands or millions for

training and evaluation, making it, potentially, a very costly step (DENG et al., 2014).

A web-based annotation system is a common approach to tackle the data annotation

step, allowing a large set of users to simultaneously hand-annotate data in favor of building

a labeled dataset. The simple yet time-consuming task of iteratively and manually creating

labels can be challenging due to the repetitive nature of the task. This can negatively

impact both quantity and quality of the system’s output (ie, the labeled dataset) and

the subsequent computation results of the ML algorithm trained on the labeled dataset.

Therefore, when designing such a system, one must take into consideration features that

improve the overall user experience, such as helping the user with category suggestions

and providing an annotation editor (eg, for correcting a previously-made annotation). It

is also important to consider how the users’ annotation efforts will be distributed across

the dataset, providing a “smart” data selection strategy (ie, efficiently defining which data

elements will be annotated by which users to maximize the system’s throughput, but still

guaranteeing some level of redundancy for error correction). Furthermore, considering

the diversity of annotation scenarios, it is critical to evaluate the impact of customization

features that attend the needs of the end-user considering the specific annotators group

context, tools and domain familiarity, input and output data types, and interaction.

Existing annotation tools (presented in Chapter 2) offer good solutions for specific

10

situations, but do not always fit a particular annotation context with other requirements,

such as loading a predefined list of categories from a formal ontology or connecting to a

back-end category suggester service.

1.1 Important Definitions

The following concepts will be used throughout this text:

• a category is a unique named tag within a semantic hierarchy;

• a label is an association between an image and one or multiple categories;

• an interaction is an association between one or multiple images and one category.

1.2 Work Proposal

This work proposes the implementation of a new system for image annotation on

the web, named Labelweb (Figure 1.1). This tool was developed using Node.js, Express,

MongoDB, HTML, CSS, JavaScript, JQuery and other common modules used for web

development. The main features of Labelweb are:

• Support for multiple simultaneous users. In this way, the dataset can be annotated

more efficiently by dividing the necessary annotation work among several users;

• Support for two types of image annotation interfaces. In particular:

• Interface for assigning multiple categories to one image at a time, referred to

as single-label annotation (Figure 1.1);

• Interface for assigning one category to a group of several images at a time,

known as multi-label annotation (Figure 1.2);

• Support for loading and displaying categories from a formal ontology. The

categories used for labeling are defined through the OWL ontology format, and are

displayed hierarchically in the system’s interface;

• Support for assigning labels to whole images. Users are not required to select

objects inside the images using bounding boxes or polygonal shapes. This makes

the annotation process faster and easier for the user;

• Support for secure self hosting. Labelweb can be hosted in a closed Local Area

11

Figure 1.1: Single-image interface of Labelweb for annotating one image at a time, possibly
assigning several categories to the image.

Source: The author

Figure 1.2: Multi-image interface of Labelweb for annotating several images at a time,
assigning a single pre-defined category (selected by the user or the system).

Source: The author

12

Network (LAN), thus guaranteeing secure annotation of a private database of images.

At the system core, Labelweb provides two annotation methods as mentioned:

single and multi-image. The default annotation mode is single-image annotation. In

this interface, the user assigns system categories, which are stored in the system database

(using an ontology as input in OWL format (W3C, 2012)), to each random image picked

by the back-end, iteratively, one at a time. This allows for precise per-image annotation

(depending on the user expertise in the data domain). Alternatively, the multi-image

interface allows the user to, iteratively, associate a subset of images to a single specific

category, suggested by the system, from the same original ontology. In this way the

multi-image approach can be perceived as a faster annotation method, generating multiple

labels at a time, but also generating possibly less precise information, depending on how

the suggested category was generated and how granular the resulting labels are.

Following, we will explore these concepts further through Labelweb’s related works

(Chapter 2), architecture, features and development methodology (Chapter 3), as well as

details on the system interface and front-end modules (Chapter 4), back-end modules,

control state machines, business logic and settings (Chapter 5). Finally, we will explore

some of the experiments results achieved with this system (Chapter 6).

13

2 RELATED WORKS

An annotation tool aims to build a collection of images with ground-truth labels to

be used for training classification algorithms (for use in object detection and recognition

research (DENG et al., 2009a)). However, this resource can be scarse, considering how

costly the manual task of annotation can be. Thus, an annotation tool must take into

account many interaction challenges and should provide enough features that minimize the

cost of picking categories for images and keep the user motivated towards a goal. Many

strategies can be used to design this type of tool: specific domain-focused features for a

single type of user, data analysis of user behaviour in social media or gamified collaborative

efforts. Nevertheless, the objective is to maximize quality and quantity of data.

Regarding Labelweb and the challenge of the annotations, Deng et al. (2014)

propose three properties that can be explored to design a more efficient tool:

• Correlation: since sets of correlated categories tend to be presented in an image

related to a context. This is a property explored in the Labelweb Multi-image

annotation mode by providing to the user multiple images correlated by visual

similarity in a single query;

• Hierarchy: since humans tend to categorize groups of higher semantic abstraction

more efficiently. Labelweb provides categories in a semantic hierarchy extracted

from the system ontology crafted by specialists. This enables an easier and faster

navigation through the categories list and encourages the end-user to be as specific

as possible, but also sustaining value to higher level and more general annotations;

• Sparsity: since the cost of classifying multiple categories in an image is logarithmic

in relation to the total number of possible categories (DENG et al., 2014). Labelweb

ensures that every image has at least one category. To ensure this, Single-Image and

Multi-image annotation modes provide exception categories that allow the end-user

to signal an image that cannot be identified, thus not being able to annotate. In those

minority cases, post-processing might be needed to identify the best way to treat the

data.

In the following sections we present existing image annotation tools, which are

compared in Table 2.1.

14

Table 2.1: Characterization of existing image annotation tools and comparison of their
features. The following features are compared: (i) Support for multiple simultaneous users
working together to generate a labeled dataset; (ii) Support for assigning labels to whole
images, without requiring the user to draw a Bounding Box (BBOX); (iii) Support for
loading categories from a formal ontology in the OWL format; (iv) Support for self-hosting
in a closed and secure LAN; (v) Free to use.

Tool Multiple
Simultaneous Users

Non-BBOX
Categories Ontology OWL Self Hosting Free to use

Labelweb (Ours) Yes Yes Yes Yes Yes
OpenLabeler No No No Yes Yes

Sloth No Yes No Yes Yes
LabelImg No No No Yes Yes
RectLabel No No No Yes No
LabelMe Yes No No No Yes
Labelbox Yes Yes No No No

2.1 OpenLabeler

OpenLabeler (WONG, 2022) is an open source application for image annotation

written in OpenJDK (Figure 2.1). This application cannot be used on the Web and it works

using a bounding box segmentation during its annotation process. It generates a PASCAL

Visual Object Classes (VOC) format XML annotation file (EVERINGHAM et al., 2010),

supported in artificial intelligence and deep learning training. A key feature of this tool is

that it uses an inference method implemented with TensorFlow to improve accuracy and

assist in the annotation process. Since the user must select the bounding box manually,

this feature helps speeding up the annotation process. This suggestion feature also allows

the user to train an intermediary model at any point during the annotation process using

the dataset provided by the labels created so far, which optimizes the labeling suggestions.

However, since this tool must run locally, it does not support multiple simultaneous users

and could be problematic for the annotators group management.

2.2 Sloth

Sloth (HCI Lab, Karlsruhe Institute of Technology, 2014) is a versatile bounding

box labeling tool (Figure 2.2) which provides a framework and a set of configurable settings

to attend specific user needs running the application in a local machine. An advantage

of the sloth annotation system is precisely how configurable the system is. For instance,

15

the tool allows the user to define the type of geometric class of the annotation bounding

box (point, rectangle or polygon), which is essential since it will balance output data

quality and complexity of the annotation task. Other than that, the settings describe how

one annotation type is visualized, inserted and modified on the interface. Also, in order

to facilitate the annotation process, the system has a configurable set of hotkeys usable

from the user interface. Nevertheless, besides not supporting multiple simultaneous users,

The Sloth tool interface must be configured in order to be support a Non-Bounding Box

annotation.

2.3 LabelImg

Similar to the Openlabeler and Sloth tools, LabelImg (TZUTALIN, 2018) is a

graphical image annotation tool (Figure 2.3) that uses bounding boxes and exports to

XML files in PASCAL VOC format used by ImageNet (DENG et al., 2009a). The

system also provides many hotkeys for ease of usage of many commonly used functions

such as rectangular box creation, skipping current image, saving annotation, returning

to previous image, etc. Beyond annotating classes, the user can also provide feedback

on how clearly identifiable is the element, this helps a customization of the deep neural

network implementation which can later exclude elements that are hardly identifiable

during training. Still, this tool does not support online annotation and generates the

annotated dataset based exclusively on bounding boxes images annotations.

2.4 RectLabel

RectLabel (KAWAMURA, 2022) is an annotation tool to label images or video

frames for bounding box object detection and segmentation (Figures 2.4 and 2.5). It

supports YOLO text format (REDMON; FARHADI, 2018) for the rectangular annotation,

but it also supports high-precision annotation through image segmentation using complex

shapes such as polygons and cubic bezier curves (Figure 2.5a) and keypoints with skeleton

for human body annotation (Figure 2.5b). It also provides automatic image annotation

using Core ML models pre-trained for more than 5000 objects (Figure 2.4b). The system

also embeds a variety of image transformation features, which may enhance the quality of

the output data. However, similarly to the tools described previously, RectLabel must run

16

Figure 2.1: OpenLabeler system interface.

Source: Wong (2022)

Figure 2.2: Sloth system interface.

Source: HCI Lab, Karlsruhe Institute of Technology (2014)

17

Figure 2.3: LabelImg system interface.
(a) LabelImg system annotation (b) LabelImg label creation

Source: Deng et al. (2009a)

Figure 2.4: RectLabel Tool Interface.
(a) RectLabel system interface (b) RectLabel recommendation feature

Source: Kawamura (2022)

locally and is available exclusively on Mac OS for a subscription fee.

2.5 LabelMe

The LabelMe (HEARTEX, 2018; RUSSELL et al., 2008) annotation tool provides

a web based image annotation tool supporting multiple remote annotations simultaneously

(Figure 2.6). This system allows the user to host a server for annotating with complex

cropped shapes, such as: bounding boxes, polygons or segmentation masks. Each shape

can be associated with classes and the annotations can be visualized in an image folder

(Figure 2.6b). The tool is designed to provide a drawing interface that is easy to use and

allows instant sharing of the collected data. After completion, the label created by an user

is immediately available for download and is viewable by subsequent users who visit the

same image. The resulting labels are stored in the XML file format, which makes the

18

Figure 2.5: RectLabel high precision annotation.
(a) Cubic bezier curves annotation (b) Skeleton keypoints annotation

Source: Kawamura (2022)

Figure 2.6: LabelMe Tool.
(a) LabelMe Interface (b) LabelMe Annotated Images

Source: Heartex (2018), Russell et al. (2008)

annotations portable and easy to extend. Even though this tool speeds up the annotation

process by supporting multiple simultaneous users, it does not support Non-Bounding

Box annotations, users may provide complex polygon boundaries and this can lead to a

cumbersome annotation process.

2.6 Labelbox

Labelbox (Labelbox, Inc., 2022) is a data engine for Artificial Intelligence that

provides many advanced features to support Machine Learning solutions in general (Fig-

ure 2.7). This tool addresses three general tasks for AI development, which are: cataloging,

annotating and modeling. The online annotation tool product in this engine offers many

highly customizable features for different types of data (image, video, text, document,

audio, medical, geospatial and custom). In order to speed up the annotation process without

19

Figure 2.7: Labelbox annotation system interface.

Source: Labelbox, Inc. (2022)

compromising data quality, Labelbox’s annotation interface combines automation tools

with bounding boxes to assist the user when using the tool for image segmentation. Other

features that are worth mentioning are the performance dashboard, which includes dynamic

statistics and relevant information for data analysis and quality-control of the annotations,

and communication tools that encourage issue resolution and collaboration. Currently,

Labelbox offers a free trial limited by number of users, annotations and data rows, as well

as the paid Labelbox Pro and Enterprise versions.

20

Figure 3.1: Model-View-Controller Architectural Framework separates the concerns of
the application between the components responsible for handling data, user interface and
client-side logic. This framework is commonly applied to web application design as a
means to easily separate business and view logic, while keeping the code maintainable and
extendable.

Source: Madeyski and Sochmialek (2005)

3 ARCHITECTURE OF THE LABELWEB SYSTEM

The Labelweb system architecture is based on the Model-View-Controller architec-

tural framework (Figure 3.1), which separates the system concerns into three modules:

• Model – contains business logic and is responsible for the application data and

behavior;

• View – specifies the graphical presentation of the model;

• Controller – reacts to user actions and controls the system state (MADEYSKI;

SOCHMIALEK, 2005).

This is a common pattern used in web applications. It is important for the Labelweb system

in order to achieve asynchronous communication on the back-end to generate potentially

many simultaneous data annotations, while keeping it consistent with business logic on the

server-side It is also focused on optimizing the performance and user interaction of less

demanding tasks, such as generating dynamic dashboards and image transformations, on

the user-side. Figure 3.2 presents the general layered system architecture.

21

Figure 3.2: Labelweb System Macro Layered Architecture. The following architecture
separates front-end (gray layer), back-end (blue and purple layer) and database (orange)
technologies and system modules.

Source: The author

3.1 Features Set

The key features integrated in the system are the single-image online annotation, the

multi-image online annotation, automatic loading of categories in a hierarchical semantic

web language from a OWL file format, category suggestion from a Neural Network

model designed and trained for image prediction and hosted in parallel in a Flask server

(Section 5.6), and annotation data extraction in CSV and ZIP file formats, which then can

be used as input for retraining Machine Learning algorithms.

The following list displays the system features’ subsets according to each user

authorization level. That is,

• authorization level 1 – common users;

• authorization level 2 – authorized users;

• authorization level 3 – superusers;

22

• authorization level 4 – system administrators.

The authorization level of a particular user determines the subset of features available for

the user, where higher authorization levels include all features from lower levels. The

features are as follows:

Common Users (Level 1)

• Creating an account

• Checking basic user guide

• Annotating images using single and/or multi-label annotation method

• Visualizing self-created single and multi-label annotations

• Editing account information

• Changing labels’ hierarchy visualization/color palette

• Switching interface language between pt-br (Brazilian Portuguese) and en-us (US

English)

• Commenting annotation

Authorized users (Level 2)

• Creating new categories in the ontology hierarchy

• Editing created categories

Superusers (Level 3)

• Visualizing single and multi-label annotations from all users

• Checking system’s statistics

• Editing categories’ interface visibility

• Exporting annotation data in CSV or ZIP format

Administrators with access to the config.js file (Level 4)

• Configuring user annotation goal

• Configuring number of simultaneously active images (Section 5.2.2)

• Configuring minimum number of required labels per image

• Configuring system route keys for user registration (Section 5.3) and administrator

password

• Allowing multilabel annotation and category editing

23

3.2 Annotation System Development Methodology

After analyzing existing toolsand technologies, and validating a solution idea

prototype, the development process of the annotation system was carried out through

incremental iterations, each iteration lasting one week and composed of these sequential

steps: validation of the current system state, gathering of new requirements, code

development followed by unitary and integration tests.

The use of Node.js as a tool for building the backend of the annotation system

allowed the development to be realized mostly in the Javascript language. In addition

to being a popular tool with extensive documentation and online support, Node.js is an

asynchronous event-driven runtime server model and has many advantages over other

concurrent blocking thread based models (DAYLEY, 2014). The framework allowed the

system to be designed and written in Javascript end-to-end, which led to easier refactoring,

and, since it has a large development community, the system leverages many available

modules and resources for the development of Labelweb’s funcionalities. Therefore,

the resulting Labelweb system uses a popular stack architecture for web applications,

consisting of open-source tools such as MongoDB, Express and Node.js.

24

4 FRONT-END LAYER

This section describes the front-end layer of the Labelweb system, with a user

interface that is accessible through any modern Web browser software.

4.1 System Access Routes

We start by listing the routes (URLs) in the system’s address space, used to access

the different pages of the system’s interface. The following list of routes are accessible by

different levels of users, obeying the respective restrictions. Each route’s page is available

at the address defined by appending the route to the hostname or IP address where the

system is hosted. For example, if the system is hosted locally at 127.0.0.1, the /index

route can be accessed by pointing the Web browser to https://127.0.0.1/index.

Furthermore, some routes are “dynamic” and allow for parameters in the URL, indicated

by keywords starting with a colon, “:”. For example, the route /survey/:title is

accessible by substituting the :title keyword with the name of an image in the system’s

database, eg, /survey/image-1.jpg.

Routes available to users without an active Session (ie, logged-off):
• /index: Route to login.

• /:key/register: Route to perform the registration of a new user. Registration is only

allowed if the user sets the :key parameter to the same value of the registration key

determined by the configuration option routeKey, defined in the system configuration

file config.js.

• /image/:state: Route for textual listing of image titles (filenames) in the system’s

database that are in a particular state, determined by the :state parameter (one of:

inactive, active, ready, or labeled).

• /csv: Support route for extracting system data in CSV format.

• /zip: Support route for extracting system data in ZIP format.

• /stats: Support route for textual visualization of basic system statistics, in a JSON

format.

Routes available to users with an active Session (ie, logged-in):
• /about: Route to access the page containing useful information about using the

system.

25

• /logout: Route to perform session log-out operation.

• /survey: Route for selecting a new image to be annotated by the user, if the current

selected image in the user’s session has already been annotated.

• /survey/:title: Route for annotating the image determined by the :title parameter.

• /survey/:title/predictor: Communication route with the Flask server (Section 5.6)

to obtain suggested categories for the image determined by the :title parameter.

• /survey/:title/comment: Support route for getting user comment for the image

determined by the :title parameter.

• /survey/:title/back: Support route for obtaining the annotated image that appeared

before the current image, determined by the :title parameter.

• /survey/:title/forward: Support route for obtaining the annotated image that ap-

peared after the current image, determined by the :title parameter.

• /MultiImage-survey/type: Route for for the user to choose the type of multi-image

annotation to be performed (Section 4.2.2). between category annotation and random

image actions or only random image. This determines the :action parameter in

the multi-image search route (below).

• /MultiImage-survey/next-action/:action/category/:owlid/image/:imagetitle: Multi-

image annotation route, determined by the :action parameter, a system category

:owlid and a pre-selected search image :imagetitle, used as input query for

selecting other images.

• /popular: Support route to obtain the list of most used categories by all system

users.

• /empty: Support route for warning in case of exception, where the user has cycled

through all the images in the database.

• /unavailable: Support route for warning in case of exception, where the user tried

to access an image that does not exist in the database.

• /user: Route to access user data edit page.

• /labels: Route to visualize all images annotated by the user using the single-image

annotation interface. The corresponding page has a search box for searching through

all images annotated by the user.

Route available to authenticated Superusers
• /all: Route to access the search and overview page showing all images annotated

by all users and all annotations types. addThis page also allows for configuring the

26

visibility of categories in the annotation interface and data extraction.

• /all/visibility: Route to access the system category visibility edit page.

• /all/getbatch: Support system route for obtaining a set of 10 system images coupled

with all their annotations.

• /usercomments: Support system route for getting all system feedback by the users.

4.2 Annotation: Modes of Interaction

The Labelweb annotation system allows the user, through a user registration or

login, to use the resources of the system interface to annotate one image at a time, in

the single-image annotation mode (1), or multiple images at a time, in the multi-image

mode (2). The design of the annotation system’s graphical interface takes into account the

minimization of effort for a user to select categories for each image.

Each mode can be described in the following manner:

1. The process of assigning multiple categories to one image at a time in the system’s

database, known as single-image annotation;

2. the process of associating a single category to a group of images at the same time,

known as multi-image annotation.

4.2.1 Single-Image Interaction

To annotate one image at a time, the user proceeds as follows:

• The user requests a new image to annotate by accessing the /survey route. This is

the default system route: the user is redirected to /survey after logging-in to the

system;

• The system randomly selects an image that does not have enough annotations from

the list of active images (Section 5.2.2);

• The selected image is shown to the user alongside the entire categories hierarchy

(Figure 1.1). The system also provides a list of (i) most commonly used categories

in the system and (ii) the categories predicted for the current image based on the

Flask server (Section 5.6).

• The user can interact with the image, rotating, mirroring or zooming-in, in order to

27

properly analyze it;

• The user selects the desired categories from the hierarchy, which is displayed as a

tree with expandable nodes (Figure 1.1). The user can also filter the list of categories

by entering a search term in the search box. Furthermore, when the user positions the

mouse cursor over any of the categories, a tooltip shows the ontological definition of

the category.

• The user can optionally enter a comment about the particular image being shown;

• Finally, the user saves the annotations by clicking on the button titled “Salvar e

Sortear Nova Imagem” (Save and Select New Image). The user will then be redi-

rected to the first step, where a new image will be randomly selected for annotation.

4.2.2 Multi-Image Interaction

To annotate multiple images at a time, there are two approaches for selecting the

images that are shown to the user: (1) based on visual image similarity; and (2) based on

the confidence of a pre-trained classifier.

4.2.2.1 Based on visual similarity

Image selection based on visual similarity works as follows:

• The user selects a category among all available, or asks the system to randomly

select one of the categories from the ontology hierarchy. The category selected by

the user must have at least one image already annotated as belonging to this category;

• The system randomly selects an image that belongs to the selected category, accord-

ing to the annotations that already exist in the system;

• According to a pre-computed visual similarity table in the database of Labelweb, the

system selects other images that are visually similar to the selected image;

• The selected image and its similar images are shown to the user in a quick annotation

interface (Figure 1.2);

• If the user for any reason does not like the selection of images, the user can “skip”

these images and ask for a new selection;

• The user then clicks to select all images that belong to the selected category (which

become highlighted with a blue border). Images which do not belong to the category

28

are not selected by the user, and images for which the user is uncertain can be marked

as such (which become highlighted with a purple border);

• Finally, the user clicks the “Save and Advance” button to save the annotations. The

user will then be redirected to a new page with a new selection of images. If the user

initially asked the system for a random category, a new random category will also be

selected (otherwise, the same category initially selected by the user will be used).

4.2.2.2 Based on pre-trained classifier confidence

Image selection based on the confidence of a pre-trained classifier works as follows:

• The user selects a version of one of the pre-trained classifiers;

• The user selects a category among the categories known by the selected classifier, or

asks the system to randomly select on of the categories;

• The system checks, among all the images in the image database that have not yet

been annotated, which ones have the highest probability (according to the selected

classifier) of belonging to the selected category;

• The most likely images are shown to the user in the multi-image annotation interface,

along with some medium and low probability images (this is done to ensure classifier

consistency in both true-positives and true-negatives);

• If the user for any reason does not like the selection of images, the user can “skip”

these images and ask for a new selection;

• The user then clicks to select all images that belong to the selected category (which

become highlighted with a blue border). Images which do not belong to the category

are not selected by the user, and images for which the user is uncertain can be marked

as such (which become highlighted with a purple border);

• Finally, the user clicks the “Save and Advance” button to save the annotations. The

user will then be redirected to a new page with a new selection of images. If the user

initially asked the system for a random category, a new random category will also be

selected (otherwise, the same category initially selected by the user will be used).

29

Figure 4.1: User login and Registration Interface.

Source: The author

4.3 Interface

This section discusses in detail the main user interface elements of the proposed

Labelweb system.

4.3.1 Login and Registration

Figure 4.1 demonstrates the interface for login and registration functionalities.

These pages allow a registered user to access the system through valid credentials. If

enabled, it is also possible to click on the “Criar nova conta” (Create New Account) button

to register a new user by filling out a basic information form. It is also possible to hide the

Create New Account button, in which case only someone that has access to the routeKey

mentioned previously will be able to create an account. This is done by directly accessing

the user registration page by through the route /:key/register with the parameter

:key set to the same value as the routeKey configuration option.

30

Figure 4.2: Navigation Bar at the top of the Labelweb Single-image annotation interface.

Source: The author

4.3.2 Single-image Annotation Page

After logging in, the user has access to the system’s single-image annotation page.

On this page, shown in Figure 1.1, the user can perform actions related to navigation

between system pages, visualizing category data and annotating images.

At the top of this annotation page, the navigation bar (Figure 4.2) allows the user

to browse pages for editing registration information, editing created categories, visualizing

user-saved labels, editing and visualizing management information and performing the log

out operation.

Data blocks containing dynamically generated information are displayed just below

the main navigation bar.

The block on the left (Figure 4.3) contains, at the top, a user progress bar, which

counts the number of images that have been annotated by the user. Below, the currently

selected image is shown in a reduced scale, being possible to enlarge it with just one

click. It is also possible to use the buttons to the left of the image to perform geometric

transformations on the current image (rotating 90º in both directions, horizontal and vertical

mirroring and undo operations). These transformations are only used to help the user in

better analyzing the image, and the image content is not changed in the database. Finally,

below the image, an area is reserved for highlighting the categories selected by the user so

far for the current image.

The block to the right of the page (Figure 4.4) has, at its top, an annotation help bar

containing several functionalities and, just below, information from the semantic hierarchy

loaded from the OWL document (ontology).

The annotation help bar (Figure 4.5) allows the user to configure the visualization

of the information presented to him. This control can be done by (i) selecting a preferred

color palette to highlight the hierarchical level of each category, (ii) searching for a category

using the search bar by name in English or Portuguese or by synonym, (iii) changing the

language (Portuguese or English) used in system name display and category definition,

and (iv) clicking the advance and return buttons to flip through the images in the order that

they have been annotated by the user.

Also on the block to the right of the page (Figure 4.4), below the annotation

31

Figure 4.3: Left Block of the Labelweb Single-image annotation interface displaying a
new image for annotation, selected categories, user progress bar and image transformation
buttons.

Source: The author

help bar, there are three columns (Figure 4.6) containing non-disjoint lists of selectable

categories. On the left are the categories suggested by the Flask category prediction server

(Section 5.6), sorted from top to bottom in descending order of probability. In the center

is the complete semantic hierarchy of visible categories organized in levels (separated by

colors from the color palette chosen by the user). Categories which contain sub-categories

in the hierarchy are expandable/maximizable by clicking on the plus “+” signs to the left

of the category names. On the right there is a list of the categories most used globally by

all users, ordered from top to bottom in descending frequency of usage.

The annotation page has a responsive design which adapts to different window

sizes, considering the ease of use in browsers for mobile devices. This is done through

the use of breakpoints in CSS language, so that the image and the semantic hierarchy of

categories are viewed as vertically-distributed blocks (instead of horizontal).

4.3.3 My Labels Page

The My Labels page (Figure 4.7) provides an interface for browsing through the

annotations made by the user so far. In this interface, the user scrolls through a vertical

list of annotations, that is, images associated with the categories saved in the annotation

process, which is ordered by the modification date. In addition to the categories selected for

32

Figure 4.4: Right Block of the Labelweb Single-image annotation interface contains a
help bar, three categories lists (recommended, full expandable hierarchy and most used
categories) and comment input box.

Source: The author

Figure 4.5: Help bar of the Labelweb Single-image annotation interface contains many
operations to facilitate the annotation, including interface language and color palette
switching and image traversal buttons.

Source: The author

each image, modification date information and annotation comment, if any, are displayed.

The interface also allows the user to redo an annotation saved in the system.

Annotations of images with the special category “I prefer not to comment on this image”

are highlighted in red on this page to encourage the user to return to them and redo their

annotation.

33

Figure 4.6: Columns of the Labelweb Single-image annotation interface contains three
categories lists: recommended categories for the current image, full expandable hierarchy
and most used categories.

Source: The author

Figure 4.7: My Labels Interface for navigating between images annotated by the user.

Source: The author

4.3.4 Overview Page

The Overview page is accessed only by superusers and system administrators

via the “Visão Geral” (Overview) button available in the navigation bar, by validating a

34

Figure 4.8: System Overview Interface.

Source: The author

password known to this subgroup of users. The interface of the overview page, as can be

seen in Figure 4.8, presents the annotation results of all users of the system, also allowing

the extraction of this information in CSV and ZIP format. The superuser can also select

the “Configurar categorias” (Configure categories) button to change the categories visible

to all users, in addition to searching for specific images by categories.

4.3.5 Multi-image Annotation Page

The multi-image annotation page is composed of three layers of interface elements.

As can be seen in Figure 1.2, the first layer of the multi-image annotation page, at the top,

is the navigation bar (Figure 4.2). The second layer, just below, permits the modification

of the multi-image query type selected by the user, the visualization of the category of

the current interaction, a button to skip the current interaction and a single button to save

and advance the annotation. Finally, the third and last layer displays a grid of images

dynamically selected and created by the system, whose size is set by the administrator.

35

Figure 5.1: Database models for single-image Annotation.

Source: The author

5 BACK-END LAYER

5.1 Database Models

The annotation system uses a non-relational document database, MongoDB. Mon-

goDB is an open-source tool, which provides support for JSON storage and is very

commonly used in Node.js back-ends. Hence, the database modeling for single-image

annotation utilizes the Mongoose tool, and the database model shown in the Figure 5.1.

Each annotation is stored as a Label document in the database. The Label identifies

a list of Categories which are associated with a particular Image. It also includes informa-

tion o the Author of the annotation. An optional Comment document can be used to store

a user-defined comment about a particular Image.

Additionally, in order to develop the multi-image annotation mode, the multi-image

36

Figure 5.2: Database Models for multi-image annotation.

Source: The author

collections are represented in the models displayed in the Figure 5.2. The Similarity

collection allows the importation of precomputed image similarity information into the

database and the Interaction collection stores all the Multi-image annotation information.

The similarities collection (right-hand-side of Figure 5.2) stores the pre-computed

information that represents the degree of similarity between images served through the

multi-image interface. For each image acessible through the multi-image interface, the

database stores a similarity vector which contains similar images sorted by the similarity

degree in a descending order. Furthermore, the interactions collection (left-hand-side of

Figure 5.2) stores the result of the multi-image annotations. So, each user interaction with

the multi-image annotation process may contain: an input image (when selecting images

based on visual similarity, as discussed in Section 4.2.2), a set of images shown to the user,

a category, and the images selected by the user.

5.2 Labelweb Back-end Management Subsystem for Single-image Annotation

In order to guarantee an efficient and dynamic image selection procedure for the

annotation of a varied dataset, the system’s back-end provides image and user management

subsystems. These are modeled through the use of state machines, presented below.

5.2.1 User State Control

The user state control happens through the following states: warm-up, validating,

and valid (Figure 5.3). From the starting point of creating a new user, every user goes

through every state, sequentially, starting at the warm-up state. This control is performed

with the objective of determining the subset of images that will be used to select the

37

Figure 5.3: State machine defining the user state control.

Source: The author

next image that a user will annotate. Every single-image annotation-page request to the

back-end selects a new image, drawn with an uniform probability, from a particular subset

of images defined by the user state.

The warm-up state is used to make the user familiar with basic annotation features

and the system’s layout. During this state, the user annotates a finite and small subset of

images from the database. The size of this subset is defined by the system administrator in

the system settings file, using the key numberOfImagesBeforeValidation. After annotating

the required number of images, the user is considered “warmed up” and moves on to the

validating state.

During the validating state, the user annotates a hand-selected subset of images,

called “special images,” that has also been already annotated by a domain specialist.

Thus, it is possible to estimate the level of familiarity of the user with the image content

and ontology classes in the specific dataset begin annotated, by comparing the user’s

annotations with the specialist’s annotations. As such, the quality of the annotations by a

specific user can be estimated, comparing the semantic distance between the annotations.

Finally, after annotating all images in the “special images” subset, the user enters

the final valid state. At this state, any image marked as “active” in the system can be

randomly selected for the user to annotate. Hence, they can annotate any image in the

database as long as there are non-annotated (active) images available.

5.2.2 Image State Control

The state of each image in the system’s database is controlled by the state machine

shown in Figure 5.4, containing the following states: inactive, ready, labeled, and active.

The subset of images at a particular state is used to control the selection of images provided

to the user dynamically, for annotation.

The single-image annotation process allow the user to annotate a single image

at a time. Furthermore, each image in the dataset is annotated by potentially more than

one user, as controlled by the labelsPerImage configuration option (Section 5.3). This

38

Figure 5.4: State machine defining the image state control. An image can assume the
states: active - it can be randomly drawn for the user annotation interface, ready - it can
be included in the active state, labeled - it was already annotated by n users as defined by
the administrator in the config.js file (labelsPerImage variable defined in Section 5.3), and
inactive - it cannot be included in the active state. This subsystem state machine is also
defined by the transitions: zombie - an existing image in the database that cannot be found
in the data folder served by the back-end (imagesDirectory variable defined in Section 5.3),
gold - an existing image in the database that was previously annotated by a specialist for
user validation, and comparison of n - constant minimum number of times that an image
must be annotated - and labeled - number of times the image was annotated by an user
(labels array size attribute defined in Figure 5.1).

Source: The author

redundancy in the annotations may be used to improve the quality and robustness of the

annotated dataset, for example, by discarding images where different users have significant

disagreement on the annotated classes. An image is only considered as correctly labeled

when it has received the required number of annotations (from different users) as defined

by the value of labelsPerImage.

Note that, if the system randomly selected images for users to annotate from all

available images, it would take a large number of annotations before reaching a particular

target goal of labeled images. For example, in a configuration with 1000 images in

the database, being annotated by 5 users simultaneously, and with a requirement of

labelsPerImage = 3, on average it would take over 161 annotations per user before

reaching a target goal of 50 labeled images (each annotated by 3 users).

Therefore, in order to speed up the rate at which labeled images are obtained, the

annotation system back-end uses a “sliding window” of images that are active, such that

only images in the active set are considered in the random image selection that occurs

39

Figure 5.5: Evolution of the number of labeled images with and without the use of an
active images list. Graphs obtained through random simulations of the annotation process.

Source: The author

when a user makes an image annotation page request. The size of the active image list is

controlled by the numberOfActiveImages configuration option.

When the system randomly selects images for users to annotate only from the

active images list, a particular target goal of labeled images is reached significantly faster.

For the same example as before, in a configuration with 1000 images in the database,

being annotated by 5 users simultaneously, with a requirement of labelsPerImage = 3

and with numberOfActiveImages = 70, on average it takes only 44 annotations per user

before reaching a target goal of 50 labeled images (each annotated by 3 users). Figure 5.5

illustrates the performance gain in using the active image list.

In order to store the current annotation, the image management subsystem verifies

if the corresponding image holds the number of annotations above labelsPerImage, so that

the image becomes a labeled image. When this happens, the image management subsystem

removes the current image from the sliding window of selectable (active) images and adds

a new ready image to the set.

As well as the control of the active images sliding window, it is necessary to control

the images deleted from the images folder, which are kept in the database in the inactive

state, in order to guarantee that they will not be selected for display. Furthermore, control

of the “special images” (Section 5.2.1), also called gold images, is necessary during the

validating user state. During this state, images annotated by specialists are selected aiming

to “validate” an user (Section 5.2.1). Meanwhile, during any other user state, the special

images set is considered as inactive, disabling the system to insert these images in the

sliding window.

Another exception scenario controlled by this subsystem is the “zombie” transition.

40

In this exception, during the lifespan of an active or a ready image from the database,

that cannot be found in the image folder and has not achieved the minimum number of

annotations required, becomes inactive. In this way, the image along with its metadata is

still present in the database and subject to be annotated once the image content is available

in the directory again.

5.3 Administrator Settings

The following list represents the configuration settings, which are available to

the administrator user for customization in the configuration file config.js. This

customization defines the system behaviour on the back and front-end levels, realized

during the software loading time, so any change to the config file must be done before

initializing the system.

Config.js File Attributes:

• imagesDirectory: Address of the local directory where the images for single-image

annotation are located.

• flaskAddress: Remote address for communication with Flask server (Section 5.6)

for automatic category suggestion.

• dbname: MongoDB managed database name.

• port: Port number used to serve the annotation system on the server machine.

• excludeFromPopularList: Set of OWL identifiers of the categories that should not

be included in the popular categories list in the interface.

• defaultInvisibleCategories: Set of OWL identifiers of the categories that will be

made invisible in the interface by default (the visibility of each category can be

changed individually in the Visibility configuration page with restricted super users

access (Section 4.3.4)).

• usersToIgnore: Set of users ignored during the process of exporting labels in ZIP

format (used to ignore “test” users).

• saveTreeState: Permission for the system to make the categories hierarchy list

state persistent between each Single-image annotation page request during the user

session, the categories hierarchy list state defines which dynamic elements are

expanded and collapsed.

• userGoal: Total number of image annotations requested from each user.

41

• numberOfActiveImages: Number of images in sliding window for dynamic next

image selection for user annotation.

• labelsPerImage: Number of annotations required for an image to transition from

the active state to the labeled state.

• specialImages: Set of filenames of “special images” that are used in user validation.

• numberOfImagesBeforeValidation: Number of images selected for a user to

annotate before transitioning from warm-up to validating state.

• numberOfImagesToValidate: Number of images annotations for a user to transition

from validating to valid state.

• adminPassword: Password used on the frontend to grant restricted superuser access

to the System Overview page.

• allowCategoryEdition: Permission to allow creating, editing and removing cate-

gories (for authorized users only).

• routeKey: Key used to restrict access to the new user registration page.

5.4 Ontology Parsing

According to Smith (2012), a Basic Formal Ontology (BFO) is an artifact designed

for purposes of ontological engineering. In Knowledge Organization Systems (STUDER;

BENJAMINS; FENSEL, 1998), an ontology is a formal and explicit specification of a

shared conceptualization. It must be explicit, in order to support the application of com-

putational methods to extract new information through reasoning. The conceptualization

must be shared because it should represent the community consensus, thus raising the

chance of reuse and the capacity of distinct models integration.

The formal ontology in OWL file format used during the Labelweb development

integrates data of the specific scientific domain of Geology (Chapter 6), and it defines the

categories hierarchy loaded automatically to the front page of the single-image annotation

page.

In addition to the Labelweb system images directory, the file parsed.txt is also

required as input for the system startup. This file is the result of the ontology parsing

process, carried out through a script in Python language with the support of the owlready2

module (for reading the ontology document in OWL format) and hashlib (to store a version

attribute determined through the MD5 checksum of the ontology OWL file).

42

The OWL file parsing script, owlpy.py, receives as input a file in OWL format

and a set of root node identifiers, which determine the extracted branches of the formal

ontology hierarchy in the resulting parsed.txt file.

Each ontology category extracted in the output file contains the following informa-

tion, line by line:

Category representation in parsed.txt:

• 1st line: Root or Non-root: Indicates whether or not the category is a forest root.

• 2nd line: identifier: a unique identifier of the OWL document of the parent category

of the current category – when it is a root category, the string "None" appears by

default.

• 3rd line: identifier: a unique identifier of the OWL document of the current

category.

• 4th line: [’string’]: a string enclosed in square brackets and single quotes that

represents the English label of the current category.

• 5th line: [’string’]: a string between square brackets and single quotes that repre-

sents the Portuguese label of the current category.

• 6th line: [’string’]: a string representing the definition of the category in English.

• 7th line: [’string’]: a string that represents the definition of the category in Por-

tuguese.

• 8th line: string: an English synonym of the current category (can be empty).

• 9th line: string: a synonym in Portuguese of the current category (can be empty).

• 10th line: identifier1$identifier2$...identifierN$: a sequence of identifiers separated

by the dollar sign that represents the set of children of the current category – when it

is a leaf category, this line appears empty.

5.5 Importing Similarities for Multi-image Annotation

The Multi-Image annotation system relies on visual similarity data between images,

imported by the script from the parser-images directory. This information can be imported

using the import-json-similarities-to-mongo script, from a json file containing, line by line,

the following object format:

1 {

43

2 "< i m a g e _ t i t l e >" :

3 {

4 " m o s t _ s i m i l a r s " :

5 { [

6 { " p a t h " : "< image_ 1 _path >" } ,

7 { " p a t h " : "< image_ 2 _path >" } ,

8 . . .

9] }

10 }

11 }

In this object, an image title indexes an array of its most similar images, in decreas-

ing order of similarity, under the key most_similars. The sorted images are ordered in a

list containing objects indexed by the keyword path and containing the respective image

path of the similar image.

From the JSON file containing similarity data, the data is imported into the database

through the parser-images/import-json-similarities.to-mongo.js script. This procedure can

perform, through the use of the command-line flags -overwrite or -incremental, a forced

import, erasing and rewriting the similarity collection of the database, or incrementally,

storing only data of similarities that do not yet exist in the corresponding collection.

5.6 Flask Server for Category Suggestion

In parallel with the Labelweb server, a category prediction module, developed in

Python/Flask, is responsible for receiving a remote address from an image and returning a

set of suggested ontology category identifiers. After performing the asynchronous request

to the prediction module during the loading of the single-image annotation page, the set of

categories returned to the system is displayed in the interface as an annotation suggestion

for the respective image (Figure 4.6).

For this purpose, the prediction module must be properly deployed and its correct

address defined, in the config.js configuration file, in the flaskAddress settings attribute.

This communication uses a standard JSON API and any third-party category-suggestion

service could be used. Details of the Flask server used during the development of Labelweb

is outside the scope of this work.

44

6 EXPERIMENTS

The Labelweb system was developed in the context of a Cooperation Agreement

and Research Project between Petrobras and the Federal University of Rio Grande do Sul

(UFRGS). Development started in April 2019, and the system was continuously improved

through the inclusion of new features during the course of the project. This was done

based on user feedback and experiments realized by the Institutes of Geosciences (IGeo)

and Informatics (INF) of UFRGS, and Petrobras (EXP and CENPES). The development

of this tool had a very large intersection with the activity of building the ontology in the

domain of the project, considering the images available in the proposed database. Hence,

the version of the system deployed for experiments with students and specialists extracted

the categories’ semantic hierarchy from the GeoImageOntology1 project.

6.1 Experiments with students

The first large-scale use of the Labelweb system took place during December

2019 and January 2020, when IGeo/UFRGS volunteers annotated 2637 images from the

database. A total of 64 registered users generated 5877 annotations for these images (an

image can be annotated in more than one category), which served as the basis for the

first automatic classification experiments in the project (training Convolutional Neural

Networks).

6.2 Experiments with specialists

From July 9th 2020 until September 8th 2020 (approximately 9 weeks), a team of

ten Petrobras specialists used the Labelweb tool hosted at UFRGS to annotate 8,717 images

from our database. All annotations made by the Petrobras team used the single-image

annotation mode. Furthermore, each image was annotated by at least three users, for

redundancy, generating 31,075 annotations. More than 4,000 comments were attached to

the annotations by the users. Since these were considered higher quality annotations, the

specialists’ annotations replaced the initial annotations, made by IGeo/UFRGS volunteers,

in the project classification experiments. Finally, the Labelweb tool was installed on

1<https://github.com/BDI-UFRGS/GeoImageOntology>

https://github.com/BDI-UFRGS/GeoImageOntology

45

CENPES servers in December 2020, with support given by the INF/UFRGS team, for use

in Petrobras’ confidential image databases.

6.3 Multi-Image Interface Evaluation

The multi-image annotation functionality, where users can categorize many images

at the same time (Section 4.2.2), was developed in the last few months of the project. This

annotation process, however, is less detailed, as the user only assigns a single pre-defined

category to the images. On the other hand, in this way it is possible to annotate a larger

number of images in a shorter period of time when compared to the single-image interface.

For example, in one of our experiments, a specialist went through 1,720 images in an

interval of 1.5 hours using the multi-image interface, categorizing each of these images

as belonging or not belonging to the “seismic cube” category. In particular, before this

experiment, the dataset had only 36 images annotated as a seismic cube, as this is a category

where it is difficult to find publicly available images. After the 1.5 hour experiment, the

number of images increased by 50%, to 54 images annotated as a seismic cube. This

experiment used the image-selection procedure based on the probabilities of a pre-trained

classifier (Section 4.2.2.2).

The multi-image annotation mode based on image similarity (Section 4.2.2.1) was

evaluated in an experiment in February 2021, where the definition of visual similarity

between images was given by the cosine distance between feature vectors generated by a

Neural Network. According to the results of the experiment, the images selected in this way

are indeed quite visually similar, however this similarity does not have a good correlation

with the image categories. On average, only 2 out of every 8 similar images actually

belonged to the same category. Thus, the multi-image annotation mode based on the

confidence of a pre-trained classifier proved to be more adequate, as it uses the knowledge

of a pre-trained classifier to differentiate between existing categories. The disadvantage

of this interface, however, is that the user is limited in choosing only categories that are

known to the classifier.

46

7 CONCLUSION

This work described Labelweb, a customizable web-based image annotation tool

developed in the context of a Cooperation Agreement and Research Project between

Petrobras and UFRGS, in order to facilitate the generation of the labeled dataset used by

the image classification algorithms developed in the same project.

The resulting tool supports many important features gathered through the feedback

from multiple deliveries. Many features aim to minimize the cost of manually selecting

categories that correspond to the visual content in a randomly picked image , and better

attend the users’ needs. Furthermore, the entire system design and features took full

advantage of other steps of the project. For instance, the categories hierarchy provided

by the system is loaded automatically through the ontology crafted by researchers in this

domain, and the category recommendation feature leverages the neural network model

provided by the team. This set of specialized customized functionalities was necessary to

accelerate the annotation process and generate better quality data. During an experiment of

nine weeks, a group of ten Petrobras specialists created 31075 annotations and more than

4 thousand comments with those annotations, which were later used to create and polish

machine learning models.

Still, looking into speeding up the annotation process and optimizing the user

interaction, the multi-image annotation mode was developed. Instead of providing an

image and asking for the user to pick a detailed selection of many categories (traditional

single-image annotation mode), in the multi-image annotation mode the system asks the

user to associate multiple images to a pre-selected category. During an experiment, this

annotation mode proved to be much faster than the previous one. However, image selection

in this mode relies on the quality of a pre-trained classifier, and this could lead to worse

quality data in an extreme case.

Through the design, development and experiment process of the Labelweb system,

the goal of generating a labeled dataset also meant streamlining a simple task such as

annotating an image, which proved to be much more challenging than expected. In order

to optimize quality and quantity of annotations, this process took into account the support

of multiple simultaneous remote users while attending a variety of quality of life and

customization features, and different modes of interaction. We believe the resulting system

met all expectations and represented an essential component in the success of the research

project where it was inserted.

47

Acknowledgements

We would like to thank everyone that made the development of the Labelweb

system possible at UFRGS: Prof. Viviane P. Moreira, Prof. Mara Abel, Prof. Cassiana

Michelin, Prof. Bruno Castro da Silva, and the students Luiza Maggi, Luan Fonseca Garcia,

Felix Eduardo Huaroto Pachas, Francisco Bento, and Bruno Firnkes. We also thank all the

collaborators at Petrobras EXP and CENPES, who provided invaluable feedback during

the development process.

48

REFERENCES

DAYLEY, B. Node. js, MongoDB, and AngularJS web development. [S.l.]:
Addison-Wesley Professional, 2014.

DENG, J. et al. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. [s.n.], 2009. p. 248–255.
Available from Internet: <https://doi.org/10.1109/CVPR.2009.5206848>.

DENG, J. et al. Imagenet: A large-scale hierarchical image database. In: IEEE. 2009
IEEE conference on computer vision and pattern recognition. [S.l.], 2009. p. 248–255.

DENG, J. et al. Scalable multi-label annotation. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. [S.l.: s.n.], 2014. p. 3099–3102.

EVERINGHAM, M. et al. The pascal visual object classes (voc) challenge. International
journal of computer vision, Springer, v. 88, n. 2, p. 303–338, 2010.

HCI Lab, Karlsruhe Institute of Technology. sloth 1.0 documentation. 2014.
<https://sloth.readthedocs.io/>. Accessed: 2022-09-16.

HEARTEX, I. LabelMe, the open annotation tool. 2018. <http://labelme.csail.mit.edu/>.
Accessed: 2022-09-16.

KAWAMURA, R. RectLabel - An image annotation tool to label images for bounding
box object detection and segmentation. 2022. <https://rectlabel.com/>. Accessed:
2022-09-16.

Labelbox, Inc. Labelbox - The data engine for AI. 2022. <https://labelbox.com/>.
Accessed: 2022-09-16.

MADEYSKI, L.; SOCHMIALEK, M. Architectural design of modern web applications.
Foundations of Computing and Decision Sciences, Poznan, Poland: Institute of
Computing Science, Technical University of . . . , v. 30, n. 1, p. 49–60, 2005.

REDMON, J.; FARHADI, A. Yolov3: An incremental improvement. arXiv, 2018.

RUSSELL, B. C. et al. Labelme: a database and web-based tool for image annotation.
International journal of computer vision, Springer, v. 77, n. 1, p. 157–173, 2008.

SMITH, B. On classifying material entities in basic formal ontology. In: Interdisciplinary
Ontology: Proceedings of the Third Interdisciplinary Ontology Meeting. [S.l.]: Keio
University Press, 2012. p. 1–13.

STUDER, R.; BENJAMINS, V. R.; FENSEL, D. Knowledge engineering: principles and
methods. Data & knowledge engineering, Elsevier, v. 25, n. 1-2, p. 161–197, 1998.

TZUTALIN. LabelImg. 2018. <https://github.com/heartexlabs/labelImg>. Accessed:
2022-09-16.

W3C, O. W. G. OWL 2 Web Ontology Language Document Overview (Second
Edition). 2012. <https://www.w3.org/TR/owl2-overview/>. Accessed: 2022-09-13.

WONG, K. H. OpenLabeler. 2022. <https://github.com/kinhong/OpenLabeler>.
Accessed: 2022-09-16.

https://doi.org/10.1109/CVPR.2009.5206848
https://sloth.readthedocs.io/
http://labelme.csail.mit.edu/
https://rectlabel.com/
https://labelbox.com/
https://github.com/heartexlabs/labelImg
https://www.w3.org/TR/owl2-overview/
https://github.com/kinhong/OpenLabeler

	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Important Definitions
	1.2 Work Proposal

	2 Related Works
	2.1 OpenLabeler
	2.2 Sloth
	2.3 LabelImg
	2.4 RectLabel
	2.5 LabelMe
	2.6 Labelbox

	3 Architecture of the Labelweb System
	3.1 Features Set
	3.2 Annotation System Development Methodology

	4 Front-end Layer
	4.1 System Access Routes
	4.2 Annotation: Modes of Interaction
	4.2.1 Single-Image Interaction
	4.2.2 Multi-Image Interaction
	4.2.2.1 Based on visual similarity
	4.2.2.2 Based on pre-trained classifier confidence

	4.3 Interface
	4.3.1 Login and Registration
	4.3.2 Single-image Annotation Page
	4.3.3 My Labels Page
	4.3.4 Overview Page
	4.3.5 Multi-image Annotation Page

	5 Back-end Layer
	5.1 Database Models
	5.2 Labelweb Back-end Management Subsystem for Single-image Annotation
	5.2.1 User State Control
	5.2.2 Image State Control

	5.3 Administrator Settings
	5.4 Ontology Parsing
	5.5 Importing Similarities for Multi-image Annotation
	5.6 Flask Server for Category Suggestion

	6 Experiments
	6.1 Experiments with students
	6.2 Experiments with specialists
	6.3 Multi-Image Interface Evaluation

	7 Conclusion
	References

