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ABSTRACT

As modern networks grow in size and complexity, they also become increasingly prone

to human errors. This trend has driven both industry and academia to try to automate

management and control tasks, aiming to reduce human interaction with the network and

human-made mistakes. Ideally, researchers envision a network design that is not only au-

tomatic (i.e., dependent of human instructions) but autonomous (i.e., capable of making

its own decisions). Autonomous networking has been a goal sought for years, with many

different concepts, designs and implementations, but it was never fully realized, mainly

due to technological limitations. Recent advances in Artificial Intelligence (AI) and Ma-

chine Learning (ML) introduced a breath of fresh air into this concept, reemerging as the

re-branded concept of self-driving networks, in view of its autonomous car counterparts.

In broad terms, a self-driving network is an autonomous network capable of acting ac-

cording to high-level intents from an operator and automatically adapting to changes in

traffic and user behavior. To achieve that vision, a network would need to fulfill four ma-

jor requirements: (i) understand high-level intents from an operator to dictate its behavior,

(ii) monitor itself based on input intents, (iii) predict and identify patterns from monitored

data and (iv) adapt itself to new behaviors without the intervention of an operator.

As fulfilling the requirements of a self-driving network requires heavily relying on ML

models to make decisions and classifications that directly impact the network, one partic-

ular issue becomes prominent with this design: trust. Applying ML to solve networking

management tasks, such as the ones described above, has been a popular trend among

researchers recently. However, despite the topic receiving much attention, industry op-

erators have been reluctant to take advantage of such solutions, mainly because of the

black-box nature of ML models which produce decisions without any explanation or rea-

son as to which those decisions were made. Given the high-stakes nature of production

networks, it becomes impossible to trust a ML model that may take system-breaking ac-

tions automatically, and most important to the scope of this thesis, a prohibitive challenge

that must be addressed if a self-driving network design is ever to be achieved.

The present thesis aims to enable self-driving networks by tackling the problem of the

inherent lack of trust in ML models that empower it. To that end, we assess and scruti-

nize the decision-making process of ML-based classifiers used to compose a self-driving

network. First, we investigate and evaluate the accuracy and credibility of classifications

made by ML models used to process high-level intents from the operator. For that eval-



uation, we propose a novel conversational interface called LUMI that allows operators to

use natural language to describe how the network should behave. Second, we analyze

and assess the accuracy and credibility of ML models’ decisions to self-configure the net-

work according to monitored data. In that analysis, we uncover the need to reinvent how

researchers apply AI/ML to networking problems, so we propose a new AI/ML pipeline

that introduces steps to scrutinize ML models using techniques from the emerging field of

eXplainable AI (XAI). Finally, we investigate if there is a viable method to improve the

trust of operators in the decision made by ML models that enable self-driving networks.

Our investigation led us to propose a new XAI method to extract explanations from any

given black-box ML model in the form of decision trees while maintaining a manageable

size, which we called TRUSTEE. Our results show that ML models widely applied to

solve networking problems have not been put under proper scrutiny and can easily break

when put under real-world traffic. Such models, therefore, need to be corrected to fulfill

their given tasks properly.

Keywords: Self-Driving Networks. Machine Learning. Explainability. Intent-Based

Networking. Operator Feedback. Network Security.



Aprendizado de Máquina para Redes Autodirigidas

RESUMO

Conforme as redes modernas crescem em tamanho e complexidade, elas também se tor-

nam cada vez mais sujeitas a erros humanos. Essa tendência tem levado a indústria e

o meio acadêmico a tentar automatizar as tarefas de gestão e controle, visando reduzir

a interação humana com a rede e os erros de origem humana. Idealmente, pesquisado-

res imaginam um projeto de rede que não seja apenas automático (i.e., , dependente de

instruções humanas), mas autônomo (i.e., , capaz de tomar suas próprias decisões). A

rede autônoma tem sido uma meta buscada há anos, com diversos conceitos, projetos

e implementações, mas nunca foi totalmente realizada, principalmente devido às limi-

tações tecnológicas. Avanços recentes em Inteligência Artificial (IA) e Aprendizado de

Máquina (Machine Learning — ML) introduziram ar fresco neste conceito, ressurgindo

como o conceito renomeado de em redes autodirigidas, em vista de suas contrapartes de

automóveis autodirigidos. Em termos gerais, uma rede autodirigida é uma rede autônoma

capaz de agir de acordo com as intenções de alto nível de um operador e se adaptar au-

tomaticamente às mudanças no tráfego e no comportamento dos usuários. Para alcançar

essa visão, uma rede precisaria cumprir quatro requisitos principais: (i) compreender as

intenções de alto nível de um operador para ditar seu comportamento, (ii) monitorar-se

com base nas intenções de entrada, (iii) prevêr e identificar padrões em dados monitorados

e (iv) adaptar-se a novos comportamentos sem a intervenção de um operador.

Como o cumprimento dos requisitos de uma rede autônoma exige uma grande depen-

dência de modelos de ML para tomar decisões e classificações que afetam diretamente a

rede, um problema específico se torna proeminente com esse design: confiança. Aplicar

ML para resolver tarefas de gerenciamento de rede, como as descritas acima, tem sido

uma tendência popular entre os pesquisadores recentemente. No entanto, apesar do tó-

pico receber muita atenção, os operadores da indústria têm relutado em tirar proveito de

tais soluções, principalmente por causa da natureza de caixa preta dos modelos de ML,

que produzem decisões sem qualquer explicação ou razão para as quais essas decisões

foram tomadas. Dada a natureza de alto risco das redes de produção, torna-se impossível

confiar em um modelo de ML que pode tomar ações inadequadas automaticamente e, o

mais importante para o escopo desta tese, um desafio proibitivo que deve ser abordado

para que uma rede autodirigidas seja alcançada.



A presente tese visa habilitar redes autônomas, abordando o problema da falta de confi-

ança inerente nos modelos de ML que a capacitam. Para tanto, avaliamos e escrutinamos

o processo de tomada de decisão de classificadores baseados em ML usados para compor

uma rede autônoma. Primeiro, investigamos e avaliamos a precisão e credibilidade das

classificações feitas por modelos de ML usados para processar intenções de alto nível

do operador. Para essa avaliação, propomos uma nova interface conversacional chamada

LUMI que permite aos operadores usar linguagem natural para descrever como a rede deve

se comportar. Segundo, analisamos e avaliamos a precisão e a credibilidade das decisões

tomadas pelos modelos de ML usados para autoconfigurar a rede de acordo com os dados

monitorados. Nessa análise, descobrimos a necessidade de reinventar como os pesquisa-

dores aplicam IA/ML a problemas de rede, então propomos um novo pipeline de IA/ML

que apresenta etapas para examinar modelos de ML usando técnicas do campo emergente

de IA eXplicável (IAX). Por fim, investigamos se existe um método viável para melhorar

a confiança dos operadores nas decisões dos modelos de ML usados no gerenciamento de

redes autodirigidas. Nossa investigação nos levou a propor um novo método XAI para ex-

trair explicações de qualquer modelo de ML caixa-preta na forma de árvores de decisão,

mantendo um tamanho gerenciável, que chamamos de TRUSTEE. Nossos resultados mos-

tram que os modelos de ML que foram amplamente aplicados para resolver problemas de

rede não foram submetidos ao escrutínio adequado e podem quebrar facilmente quando

colocados sob estresse. Esses modelos são, portanto, inúteis do ponto de vista prático e

precisam ser corrigidos para cumprir adequadamente as tarefas que lhes são atribuídas.

Palavras-chave: Redes Autodirigidas. Aprendizado de Máquina. Explicabilidade. Redes

Baseadas em Intenções. Conhecimento de Operadores. Segurança Cibernética.



“If we knew what it was we were doing,

it would not be called research, would it?”

— ALBERT EINSTEIN
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1 INTRODUCTION

As modern networks grow in size and complexity, they also become increasingly

prone to human errors (BECKETT et al., 2017; FEAMSTER; REXFORD, 2018). This

trend has driven both industry and academia to try to automate management and con-

trol tasks, aiming to reduce human interaction with the network and human-made mis-

takes (BECKETT et al., 2016; APOSTOLOPOULOS, 2020; NETWORKS, ; VMWARE,

2021). Ideally, researchers envision a network design that is not only automatic (i.e.,

dependent on human instructions) but autonomous (i.e., capable of making its own deci-

sions). Autonomous networking has been a goal sought for years, with many different

concepts, designs, and implementations, but it was never been fully realized, mainly due

to technological limitations (FEAMSTER; REXFORD, 2018). Recent advances in Arti-

ficial Intelligence (AI) and Machine Learning (ML) introduced a breath of fresh air into

this concept, reemerging as the re-branded concept of self-driving networks, in view of its

autonomous car counterparts.

1.1 Self-Driving Networks

While the concept of a self-driving network has no standardized definition, with

each company and researcher having its own vision and architecture (MOGUL, 2018;

FEAMSTER; REXFORD, 2018; JUNIPER, 2017; NETWORKS, 2018; HUAWEI, 2019;

WATTS, 2020; FOSTER et al., 2020), a few design elements are common in all instances.

As no standard definition has been adopted as standard by the community, we rely on the

following definition of a self-driving network, summarizing the main aspects found in the

literature, which is thoroughly described in Chapter 2.

Definition 1.1.1. A self-driving network is an autonomous network capable of acting ac-

cording to high-level intents from an operator and automatically adapting to changes in

traffic and user behavior. To achieve that vision, a network would need to fulfill four ma-

jor requirements: (i) understand high-level intents from an operator to dictate its behavior,

(ii) monitor itself based on input intents, (iii) predict and identify changing patterns from

monitored data, and (iv) adapt itself to new behaviors without the intervention of an oper-

ator.

In Figure 1.1, we present a high-level design of a self-driving network that sum-
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marizes the features and requirements found in the literature.

Network Substrate
Monitor

...
...

...
...

...

...

Operator LearnInterpret & Compile

(1) Intent
(6) Decisions

(2) Validation

(3 & 7) Configs (5) Data(4) Behavior

Figure 1.1 – Self-driving network design.

This self-driving network design is composed of two management loops1. On the

left side of Figure 1.1, we see the first management loop (1, 2, 3, and 4), which starts with

an operator (1) specifying high-level intents that dictate how the network should behave—

e.g., defining goals related to quality of service, security, and performance–without wor-

rying about the low-level details that are necessary to program the network to achieve

these goals (a.k.a. Intent-based Networking — IBN) (CLEMM et al., 2019). Ideally,

specifying such intents should be as easy as describing them in natural language. How-

ever, enabling operators to freely use natural language to describe network intents requires

the network to employ state-of-the-art ML techniques from Natural Language Processing

(NLP) (JURAFSKY; MARTIN, 2019), which are always prone to generate errors and

misclassifications. Hence, after extracting relevant information from input intents, a self-

driving network would then (2) validate the extracted data with the operator before (3)

compiling them into actual configurations and deploying them to the network substrate.

To close the first management loop, the network would then monitor itself according to

the described intents and collect the behavior of traffic to (4) present it for operators to

verify if the implemented behavior corresponds to the initial goals.

1One may question our use of the term ’management loop’ in favor of ’control loop’. While there are
good arguments for both terminologies, we rely on the definitions provided by IRTF RFC 7426 (HALEP-
LIDIS et al., 2015) as a guide.
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On the right side of Figure 1.1, the second management loop (5, 6, and 7) be-

gins after intents are deployed into the network substrate, where devices are instrumented

with monitoring capabilities to collect usage and traffic data. Such data is then (5) an-

alyzed and processed to (6) produce (autonomous) decisions using trained ML models,

which would ideally adapt and re-train themselves constantly as new data is collected.

Decisions made by such ML models would then be (7) processed and compiled into con-

figurations to fine-tune the network behavior (akin to 3), closing the second management

loop. Most notably, two networking areas would benefit the most from such a manage-

ment loop: network security and network performance. For instance, decisions from ML

models may include the identification of attack traffic that needs to be blocked or miti-

gated or even resource usage optimizations based on traffic load. Notice that, despite also

relying heavily on error-prone ML techniques, given the time frame and frequency such

decisions and configuration deployment would occur to keep up with incoming traffic,

it would be impossible to include human validation on this second management loop, in

contrast with the first one. In addition, another key aspect to keep in mind is that self-

configurations made based on decisions from ML models in the second management loop

can undermine and contradict the configurations made through network intents in the first

management loop. The possibility of such conflicts arising, coupled with the inability

to include human-in-the-loop validations, raises the stakes for any decision made by ML

models in the second management loop.

1.2 Problems Statement and Research Questions

As both management loops in the self-driving network presented in Figure 1.1

rely heavily on ML models to make decisions and classifications that directly impact the

network, one particular issue becomes prominent with this design: trust. Applying ML to

solve networking management tasks, such as the ones described above, has been a popular

trend among researchers recently (BOUTABA et al., 2018). However, despite the topic

receiving much attention, industry operators have been reluctant to take advantage of such

solutions, mainly because of the black-box nature of ML models which produce decisions

without any explanation or reason as to which those decisions were made. Given the high-

stakes nature of production networks, it becomes impossible to trust an ML model that

may take system-breaking actions automatically, and most important to the scope of this

thesis, a prohibitive challenge that must be addressed if a self-driving network design is
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ever to be achieved.

Problem Statement: The present thesis aims to enable self-driving networks with

ML, tackling the problem of the inherent lack of trust in ML models that empower it by

assessing their decision-making process.

To address the described problem statement, we must first investigate and eval-

uate the accuracy and credibility of classifications made by ML models used to process

high-level intents from the operator. Then, we must analyze and assess the accuracy and

credibility of decisions made by ML models used to self-configure the network according

to monitored data. Lastly, we must investigate if there is a viable method to improve the

trust of operators in the decision made by ML models in both management loops. To pave

the road towards solving the problem above, we formulate three research questions that

guide the development of this thesis. The first research question this thesis poses con-

cerns the use of ML techniques to parse relevant information from input network intents

and compile them into a network configuration that fulfills the given intents.

RQ-1: In a self-driving network, can operators trust decisions and classifications

made by current Machine Learning models used to configure the network based on high-

level intents?

We address the first research question in Chapter 3. To that end, we need to assess

the reliability and usability of an IBN-enabled system that allows network operators to

describe network intents using natural language and compiles them into network config-

uration accordingly, as shown in the first management loop of the self-driving network

presented if Figure 1.1. However, while reviewing the existing literature, we found that

no end-to-end system had been proposed to allow that. Hence, our first step to answering

RQ-1 is to propose LUMI, a conversational assistant (i.e., chatbot) that lets operators use

natural language to describe high-level network intents. LUMI relies on highly accurate

ML techniques from NLP to extract information from input intents and uses its conver-

sational interface to confirm with operators if the parsed information is correct. To get

confirmation from operators, we propose a high-level Network Intent LanguagE (Nile)

that resembles structured English, using it as an abstraction layer between natural lan-

guage intents and network configuration commands. More importantly, LUMI is capable

of collecting feedback from operators on the Nile intents built with information extracted

from natural language and uses that feedback to retrain and improve the underlying ML

model accuracy over time. Our evaluation shows that LUMI can accurately extract infor-

mation from both synthetic and real-world input intents. We also assess LUMI’s usability
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by conducting a user study with network practitioners from different backgrounds and

levels of expertise. The results from this chapter indicate that, with minimal safeguard-

ing, operators can, in fact, trust classifications made by current ML models used to parse

information from high-level intents.

The second research question this thesis poses concerns the use of ML models to

make decisions based on data collected from the network substrate devices and automati-

cally configure the network to adjust and optimize resource usage and security.

RQ-2: In a self-driving network, can operators trust decisions and classifications

made by current Machine Learning models used to self-configure the network based on

monitored data analysis?

We address the second research question in Chapter 4. To that end, we focus our

efforts on analyzing the application of ML techniques in the network security problem

space as a use-case representing the second management loop of the self-driving net-

work presented in Figure 1.1. As mentioned before, many works that apply ML-based

classifiers have been proposed in the network security domain. Hence, to answer RQ-

2, we survey the existing literature to select a few key reproducible ML-based works to

put under scrutiny and reproduce their results. While most works in the literature report

outstanding classification accuracy in their evaluation scenarios, we are concerned with

the credibility of the classifications made. In particular, since we cannot rely on opera-

tors to review every decision made by classification models in a fast-paced management

loop if a model trained with synthetic or unrealistic datasets fails when presented with

unforeseen real-world traffic, it can lead to disastrous outcomes. To scrutinize the results

of the selected works, we rely on the growing field of eXplainable Artificial Intelligence

(XAI) techniques, which allow us to extract white-box explanations from black-box mod-

els. The particular XAI method used to scrutinize models is described later in Chapter

5. Our results show that, when scrutinized, the analyzed ML models fail to fulfill their

tasks, indicating that operators are, in fact, correct not to trust ML models to automatically

configure the network based solely on monitored data.

Finally, the third and last research question this thesis poses concerns the general

lack of trust from operators in ML models that self-driving networks rely on, and how

that trust can be increased.

RQ-3: Is there a feasible way to increase operator trust in the decision-making

process of Machine Learning models that configure a self-driving network?

The third and last research question is answered in Chapter 5. To answer RQ-3,
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we first equate “an operator having trust in an AI/ML model” with “an operator being

comfortable with relinquishing control to the AI/ML model” (LIPTON, 2018). Given this

specific definition of what it means for an AI/ML model to engender trust, we surveyed

the state-of-the-art to find XAI methods to scrutinize ML models and identified a gap in

existing XAI methods to produce faithful explanations for any given black-box model.

Such methods would potentially increase the trust operators have in the decision-making

process of ML models, provided that the produced explanations were faithful, of a man-

ageable size, and, most of all, sound. In trying to fill that gap and answer RQ-3, in this

chapter, we propose TRUSTEE, a novel model-agnostic XAI method to produce high-

fidelity explanations in the form of decision trees that approximate the decision-making

process from black-box models. In addition, we also implement a series of analyses

based on the generated decision tree explanation and underlying data, condensed into a

trust report. Our results show that the explanations produced by TRUSTEE, alongside

the generated trust reports, allow operators and domain experts to carefully scrutinize

ML models and decide whether they are trustworthy or suffer from any inductive biases.

The results we obtained through answering RQ-2 and RQ-3 confirm our intuition that

ML models widely applied to solve networking problems have not been put under proper

scrutiny and can easily break if applied to real-world scenarios. Such models must then

be corrected to fulfill their given tasks properly in practice if the self-driving network is

ever to be achieved.

1.3 Main Contributions

In the process of answering the three research questions posed in this thesis, we

make the following contributions:

• We propose an end-to-end intent-based network management system with a con-

versational interface that allows operators to use natural language to describe their

desired intents for the network behavior. We rely on that system to evaluate the ac-

curacy of current ML techniques in extracting relevant information from high-level

intents, which can be manually verified by operators through the conversational

interface.

• We survey the existing literature on the use of ML techniques for network security

and scrutinize several use-cases from the literature to analyze the credibility of deci-
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sions made by highly-accurate ML models that enable a self-driving network. The

results we obtained uncover systematical issues with how researchers have been

employing ML-based classifiers to solve network security problems.

• To increase trust and reliability of the current approach to ML models, we propose a

new methodological pipeline for how researchers and operators should employ and

evaluate ML techniques to solve networking problems. To implement our proposed

pipeline, we introduce a novel model-agnostic XAI method to produce explanations

from any given black-box ML model in the form of decision trees. We also intro-

duce a novel pruning method to ensure extracted explanations are concise while

maintaining a good fidelity, and a trust report that condenses and analyzes the most

relevant aspects of the extracted explanation to aid domain experts in spotting issues

with the black-box model.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 we present

a description and background on a topic important to this thesis. First, we provide an

overview of existing efforts to implement IBN and NLP in networking. Then, we rec-

ognize and describe past efforts to achieve autonomous networks and highlight the key

aspects from which they differ from modern self-driving network architectures. We then

describe the background and challenges of employing ML for networking problems in

general. Lastly, we classify and detail existing XAI approaches and methods to interpret

black-box ML models and conclude the chapter.

In Chapter 3 we address the first research question. We start by describing the

overall design of LUMI with an illustrative example. LUMI is composed of a pipeline of

4 modules, each responsible for one aspect of interpreting intents in natural language and

compiling and deploying them as network configurations: (i) information extraction; (ii)

intent assembly, (iii) intent confirmation, and (iv) intent deployment. Then, we describe in

detail how each module is designed and implemented and the reasoning behind our design

choices. To assess how accurate LUMI is in extracting information from input intents, we

evaluate it against two datasets of synthetic and real-world intents. Then we proceed to

describe the results of a small-scale user study conducted with network practitioners to

assess how LUMI would fare when presented with unforeseen and unpredictable test cases
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and conclude the chapter.

In Chapter 4 we address the second research question. First, we perform a lim-

ited survey to establish the current state of ML employment in network security-related

problems, grouping the results according to their ability to be reproducible into three cate-

gories: (i) ML model is published, and training data is publicly available; (ii) ML model is

published, and training data is not publicly available, and (iii) ML model is not published,

and training data is not available. This limited survey helps us highlight the precarious

state-of-the-art in ML-based network security research, where reported results cannot be

taken at face value. We also present a comparative use case of an ML application to a

network performance problem that guides our efforts on how ML models should be scru-

tinized. This comparative use case helps us establish the need to rethink how AI/ML is

applied to network security problems, motivating our proposal of a new AI/ML pipeline.

Following this new proposed pipeline, we reproduce and evaluate three outstanding re-

search efforts of failed use of ML to solve network security-related problems. Finally, we

discuss the outcomes and consequences of our evaluation and conclude the chapter.

In Chapter 5 we address the third and last research question. First, we discuss the

insights obtained from answering previous research questions to establish when improv-

ing trust is made more necessary. We then provide a clear problem statement on why we

need a new XAI method to produce explanations in the form of decision trees and how

they can be used to improve the trust of operators and domain experts in black-box ML

models. We also describe existing XAI approaches and why they fail to achieve our pur-

pose. We then present TRUSTEE, a novel model-agnostic method to produce explanations

for ML models in the form of decision trees that are both high-fidelity and manageable in

size, as well as the accompanying trust reports that aid domain experts in spotting prob-

lems with the model or the underlying training data. We evaluate and compare TRUSTEE

to existing XAI methods to show that it can produce explanations with higher fidelity

and lower complexity than competing methods and briefly describe our findings on other

use cases explored while developing TRUSTEE. Finally, we discuss the outcomes of the

insights obtained in the evaluation and conclude the chapter.

In Chapter 6 we discuss the final remarks of this thesis and present the research di-

rections for future works. The research questions are revisited given our presented results,

and we discuss the remaining gaps in our research that are left for future investigations.
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2 BACKGROUND AND STATE-OF-THE-ART

Aiming to provide a clear understanding of the challenges inherent to designing

and implementing a self-driving network, we review base concepts in this chapter and

discuss the state-of-the-art. To that end, we present the background knowledge and re-

lated work regarding the IBN concept, review and recognize past autonomous networking

efforts, the challenges of applying ML to networking, and summarize the emerging field

of XAI.

2.1 Intent-based Networking

Although IBN is a fundamental stepping stone in achieving self-driving networks,

the concept exists on its merits and predates the resurgence of autonomous networks.

However, akin to self-driving networks, IBN arose as a natural evolution of Policy-Based

Management Systems (PBMN), much due to the recent advances in ML and NLP. Hence,

this section describes related work on IBN, NLP, and network management research ef-

forts.

2.1.1 IBN-enabled network management.

INSpIRE (SCHEID et al., 2017) focuses on intents related to security middleboxes

and uses a refinement process to determine which middleboxes should compose a service

chain to fulfill an intent. Cheminod et al. (CHEMINOD et al., 2019) propose an automatic

method for refining, deploying, and enforcing ACL policies that use set notation for pol-

icy specification. PGA (PRAKASH et al., 2015) applies a graph-based abstraction to

compose high-level policies and deploy them in SDN networks. PGA supports ACL and

service-chaining policies, leveraging a graph structure to resolve conflicts. Janus (AB-

HASHKUMAR et al., 2017) extends PGA to support policies with QoS requirements,

mobility, and temporal dynamics. However, these proposals are not concerned with using

natural language or obtaining feedback from the network operator.
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2.1.2 Natural language in networking.

Very few prior works use natural language to interact with the network. In

(BIRKNER et al., 2018), the authors present Net2Text, a system that allows network oper-

ators to query network-wide forwarding behaviors using natural language, but it does not

allow operators to configure the network. Alsudais et al. (ALSUDAIS; KELLER, 2017)

proposes using natural language to deploy network intents. It uses the Stanford CoreNLP

Parts-of-Speech (POS) Tagger (TOUTANOVA et al., 2003) to parse and structure the

input text and look for specific keywords to match “entities” using a brute-force pattern-

matching, which does not generalize easily. While this is a step in the right direction, their

approach limits the inherent flexibility of using natural language. Also, the paper does not

cover NLP aspects relevant to IBN and self-driving networks, such as intent confirmation

for user feedback and learning over time.

2.1.3 Network programming languages.

Recent works on IBN feature several intent languages, frameworks, and compilers

to efficiently deploy intents in network devices and middleboxes (PRAKASH et al., 2015;

ABHASHKUMAR et al., 2017; SUNG et al., 2016; FOSTER et al., 2011; ANDERSON

et al., 2014; KIM et al., 2015; SOULÉ et al., 2018; RYZHYK et al., 2017). At the same

time, Cocoon (RYZHYK et al., 2017) introduces a framework to guarantee the correctness

of SDN programs that resembles our approach, but it uses first-order logic. Despite not

examining the use of machine learning to convert natural language intents into lower-

level configurations, network programming languages can be viable candidates to serve

as abstraction levels for configuring a heterogeneous network substrate.

2.1.4 Natural language processing.

Information extraction has been addressed with different methods and techniques,

including (i) only Conditional Random Fields (CRFs) models (FINKEL; GRENAGER;

MANNING, 2005); (ii) character-level embeddings instead of whole words (LAMPLE

et al., 2016), and (iii) rule-based approaches (CHITICARIU et al., 2018). Yet, recent

studies (YADAV; BETHAR, 2018) show the benefits of ML-based approaches such as

recurrent neural networks. To our knowledge, the problem of using natural language for

management tasks has not received much attention in the networking domain.
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2.2 Autonomous Networks

This section provides an overview of previous attempts and proposals that lead

to the current notion of self-driving networks. To that end, in Figure 2.1, we present

a (non-exhaustive) timeline of the evolution of critical autonomous network proposals,

from autonomic computing until today. For a more in-depth survey and description of

past autonomous networks and autonomic computing, please check (MARQUEZAN;

Z.GRANVILLE, 2010) and references therein.

2001

2006

2017

 (HORN) (JACOB et al.)

(STRASSNER et al.)
(BOUABENE et al.) 

(JUNIPER)
(ETSI)

(NARCISI)

(HUAWEI)

(FEAMSTER et al.)

Autonomic Computing Autonomous Networks Self-driving Networks

Figure 2.1 – Evolution of self-driving network proposals over time.

The concept of autonomic computing was introduced in 2001 by IBM (HORN,

2001), where the authors first proposed the notion of systems that “run themselves”, re-

ducing the need for human intervention. In their proposal, the authors describe a set

of characteristic autonomous systems must-have, which later came to be known in the

community as the self-* (i.e., “self-star”) properties: self-awareness, self-protecting, self-

optimizing, self-healing, and self-configuring. Later, in 2004, IBM incorporated the self-*

autonomic computing properties into an Autonomic Management Engine, responsible for

executing the MAPE-K loop (JACOB et al., 2004), shown in Figure 2.2, an intelligent

control loop that enables Monitoring, Analyzing, Planning, and Executing tasks in an au-

tonomous system, using a shared Knowledge base. In any autonomic system, such as

an autonomous network, the Autonomic Management Engine would provide a hosting

environment for the decision algorithms, regardless of the technologies used.1

The efforts and advances made in autonomic computing did not go unnoticed by

the networking community, which saw an opportunity to take advantage of these concepts

to create a self-managing network. One of the proponents of this idea was introduced in

2006 as the FOCALE autonomic networking architecture (STRASSNER; AGOULMINE;

1While not completely relevant to the remainder of this thesis, the autonomic computing field continued
to see research in later years.
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Figure 2.2 – Autonomic Management Engine control loop.

LEHTIHET, 2006). FOCALE incorporated many aspects of IBM’s autonomic comput-

ing properties, including the presence of an Autonomic Manager and a shared knowledge

base. One noticeable difference, though, was the inclusion of a Policy Manager responsi-

ble for translating business rules written in a restricted natural language into actual con-

figuration commands for managed devices, for being executed by the Autonomic Man-

ager. In addition, the FOCALE architecture focused a lot of effort on specifying viable

communication mechanisms between the Autonomic Manager and managed resources,

relying heavily on SNMP and XML.

Similarly, in 2010, the Autonomic Networking Architecture (ANA) (BOUABENE

et al., 2010) was proposed as an evolution of previous autonomous networking efforts by

introducing an abstraction level for managing and manipulating elements at a system level

rather than at a device or resource level. Still, instead of introducing novel aspects and

requirements to autonomic networking on a conceptual level, the ANA is more concerned

with providing tools to communicate and implement existing autonomic computing prop-

erties in a network. The ANA was one of the last significant efforts to consolidate an

autonomous network architecture, after which the area saw a decline in publications and

research, arguably due to the technological limitation of the time.

After years of research and development in the networking and ML communi-

ties, in 2017/2018, both industry (JUNIPER, 2017) and academia (FEAMSTER; REX-

FORD, 2018) saw an opportunity to materialize the concept of a network that runs itself,
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re-branding the idea as a self-driving network. On paper, all of the properties and re-

quirements inherent to autonomic computing and early autonomous networking efforts

are also present in our definition of a self-driving network and its requirements. However,

two differences are key: (i) the requirement for easily specifying the desired behavior

for the network through intents, given the advent of IBN, and (ii) the ML technologies

that empower a self-driving network. From 2001 to the early 2010s, AI and ML were

still far from being mature to be widely applied as they are today, and because of that,

they were not a fundamental part of autonomous systems designs. Although efforts like

the MAPE-K loop and FOCALE had “learning” components, they were based on rudi-

mentary forms of acquiring and storing knowledge of past events rather than the power-

ful pattern recognition capabilities and statistical analysis of modern ML. Although not

crucial to its design, a self-driving network may also take advantage of technological ad-

vances in SDN-related areas, such as P4 (BOSSHART et al., 2014) and Network Function

Virtualization (NFV) (JACOBS et al., 2017; JACOBS et al., 2018).

The concept of a self-driving network quickly gained traction, prompting mul-

tiple companies to start autonomous networking initiatives, which continue to this day,

such as Huawei in 2019 (HUAWEI, 2019) and Juniper Networks in 2020 (NARCISI,

2020). In an attempt to consolidate these efforts and reconcile new concepts with exist-

ing autonomous networking approaches, members of the European Telecommunications

Standards Institute (ETSI) published a white paper (ETSI, 2020), in 2021, with key chal-

lenges, capabilities, and use cases of modern autonomous networks. This white paper

is particularly keen on describing the pivotal role self-driving networks will have, in the

near future, in helping operators manage fast-growing large-scale network environments

while supporting the arrival of new business partners and solution providers.

2.3 Challenges in ML for Networking

Beyond the already-mentioned trust issue, there are several other reasons why

the area of networking is a particularly challenging application domain for AI/ML. For

one, by their very nature, networking-related datasets in general, and security-specific

datasets in particular, typically contain information about what is being communicated

over a network (e.g., packet-level traffic traces) or provide insight into how networks

enable such information exchanges. As such, the datasets often raise severe end-user-

specific privacy concerns or reveal provider-specific details that many companies consider
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proprietary and are therefore unwilling to share. The result is a general lack of publicly

available datasets. Moreover, the datasets that are publicly available generally lack the

complexity of real-world settings, either because they have been synthetically generated,

have been obtained from small-scale testbed environments, or have been anonymized to

the point where their general utility has been severely curtailed.

Moreover, even if data was abundant, the scarcity of carefully labeled data poses

an even bigger problem. Networking or cybersecurity datasets do not come in the form

of images that humans can recognize. In turn, they typically consist of semantically

rich content, and unpacking that content and properly labeling it requires substantial do-

main knowledge (e.g., network architecture, protocols, standards). This need for do-

main knowledge rules out labeling approaches that have been used successfully in other

domains and include crowdsourcing (e.g., for labeling images that are part of open-

source databases such as ImageNet (DENG et al., 2009)) or outsourcing (e.g., for labeling

datasets that have been curated and open-sourced by commercial self-driving car compa-

nies for the benefit of researchers in the autonomous car technology area (CAESAR et

al., 2019; CHANG et al., 2019)).

Computer vision researchers have ImageNet (DENG et al., 2009), and researchers

working on autonomous driving technology have increasing access to datasets provided

by the various commercial driverless technology companies (e.g., NuScenes (CAESAR et

al., 2019), ArgoVerse (CHANG et al., 2019), Waymo Open Dataset (SUN et al., 2020)).

Access to these open-source datasets is widely credited with invigorating reproducible

AI/ML-related research in these areas. In stark contrast, fledgling reproducibility efforts

in the network security area quickly reduce demands for data sharing in an application

domain of AI/ML where data is hard to come by in the first place. Such data sharing re-

quirements have severely hamstrung reproducible AI/ML research in the network security

domain.

2.4 Interpretable ML and Explainable AI

As the scientific community continues to develop sophisticated AI/ML-based tools

for high-stakes decision-making throughout society, there has been a growing awareness

about their actual or potential misuses and negative implications. As a result, calls for

starting to study “trustworthy AI”, “responsible AI”, “ethical AI”, and related topics have

intensified in recent years and have identified model interpretability/explainability as a

critically important but also highly elusive concept for facilitating these studies (LIPTON,
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2018). In summarizing past and ongoing efforts concerning this concept, our objectives

are clarifying existing misconceptions, agreeing on a standard set of notational conven-

tions, and refining the current discourse on the topic.

2.4.1 Interpretable ML: Ex-ante Interpretability

The application of modern AI/ML has resulted in a myriad of different learning

models that are “black-box” in nature; that is, they provide no insight into or understand-

ing of why the black-box model makes certain decisions (and not some other decisions)

or what decision-making process gives rise to these decisions. However, in an increas-

ing number of application domains of AI/ML and especially in those domains where the

resulting learning models are used for high-stakes decision-making, domain experts have

become more vocal about requiring precisely that insight and gaining exactly that un-

derstanding before deploying these models in practice. This development has resulted

in a recent explosion of work on “Explainable AI,” where a second (post-hoc) model is

created to explain the initially obtained black-box model (TUREK, 2016). This pursuit

of explainable AI has been criticized in the recent AI/ML literature and called “prob-

lematic” (see, for example (RUDIN, 2019)), mainly because such post-hoc explanations

are often not reliable and can be misleading (LAKKARAJU; BASTANI, 2020; GHOR-

BANI; ABID; ZOU, 2019). An alternative approach advocated in (RUDIN, 2019) argues

for using learning models such as linear models or decision trees that are inherently (i.e.,

ex-ante) interpretable.

Unfortunately, in many modern-day application domains of AI/ML, the complex-

ity of the tasks for which the use of AI/ML models is being envisioned and the rich

semantic content of the data that is leveraged for training these models pose significant

challenges for the exclusive application of inherently interpretable learning models. In

the network security domain, for example, even the most knowledgeable experts readily

admit to being at a loss when it comes to deciding under which conditions which aspects

of the available data matter the most (and why) for, say, developing a well-performing

AI/ML model for detecting particular types of cyber events, such as ransomware attacks.

As a result, providing the means for effectively accounting for the data’s rich

semantic content and efficiently uncovering the patterns in the data that matter for the

problem at hand have increasingly become the responsibility of trained “black-box” mod-

els rather than purposefully chosen “white-box” models. However, instead of consider-
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ing this development as “problematic”, we view it as a unique opportunity to ultimately

achieve the vision of interpretable ML – ensuring that AI/ML models used for high-stakes

decision-making are entirely understandable by their end-users and interested third par-

ties.

2.4.2 Explainable AI: Post-hoc Interpretability

A commonly-made argument in favor of using black-box models such as deep

neural networks or random forests is that they typically achieve higher accuracy than

their interpretable counterparts (e.g., decision trees) and are therefore often more de-

sirable when used in practice. Although this argument is not universally shared (e.g.,

see (RUDIN, 2019)), it nevertheless has been a driving force behind the recent efforts

on the topic of “explainable AI.” Occasionally referred to XAI (TUREK, 2016), explain-

able AI describes steps where the development of a trained black-box model is followed

up with additional activities intended to help “explain” the originally obtained black-box

model. These efforts can be divided into two disjoint categories, depending on the nature

of the additional activities.

2.4.2.1 Local Explainability.

One approach to “explaining” black-box models post-hoc is to provide local ex-

planations for individual predictions of the black box. Methods for providing such local

explanations aim at illuminating how a black-box model makes individual decisions (or

decisions in a local region near a particular data point) and include well-known tech-

niques such as LIME (RIBEIRO; SINGH; GUESTRIN, 2016), SHAP (LUNDBERG;

LEE, 2017), and LEMNA (GUO et al., 2018).

In general, despite their popularity as readily available tools for cracking open

black-box models, local explainability methods can only provide, by their very nature,

limited information about the black-box model in question. For example, one can use

them to examine which features the black-box models deemed most relevant for making a

particular decision. However, these methods typically reveal no information about which

values these features must take. They also provide no insights into how the different fea-

tures interact with each other to produce a particular decision. Importantly, because they

limit their attention to only a subset of individual choices, these methods are prone to
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providing misleading explanations (LIPTON, 2018; MOLNAR et al., 2020; ZHANG et

al., 2020), depending on the subset of samples analyzed. Related methods such as Par-

tial Dependence Plots (PDP) (FRIEDMAN, 2001) and Accumulated Local Effect (ALE)

plots (APLEY; ZHU, 2020) suffer from similar shortcomings.

In general, while local explanations play an important role in shedding light on

how black-box models “work” in a narrow sense (i.e., at the level of individual decisions),

they are unable to reveal how these models work in a broader sense (i.e., explain the “inner

workings” of a given black-box model holistically). As such, they are of limited use when

we seek explanations that we can trust in that they are faithful to how the original black-

box model makes decisions.

2.4.2.2 Global Explainability.

An alternate approach to obtaining post-hoc explanations of black-box models is

to provide global explanations that describe a given black-box model as a whole. Such

explanations typically take the form of an inherently interpretable model, such rule sets

or a decision tree (BASTANI; KIM; BASTANI, 2017; LAKKARAJU et al., 2017). As-

suming that the approximation quality, or “fidelity”, of such an extracted “white-box”

model, is sufficiently good compared to the original black-box model, then the extracted

interpretable model becomes the main vehicle for studying the decision-making process

of the underlying black-box model and examining its properties.

Despite the intuitive appeal that such global explanations have for examining the

“inner workings” of black-box models, their practical applications pose several chal-

lenges. For one, there is the problem that these post-hoc explanations may not be reli-

able or can be misleading (LAKKARAJU; BASTANI, 2020; GHORBANI; ABID; ZOU,

2019). Moreover, existing approaches for extracting such post-hoc explanations either

produce too low fidelity to be helpful in practice (BASTANI; KIM; BASTANI, 2017),

target only a particular set of black-box models (BASTANI; PU; SOLAR-LEZAMA,

2018), or are difficult to reproduce (LAKKARAJU et al., 2017; LAKKARAJU; BAS-

TANI, 2020). To achieve the level of explainability required in high-stakes application

domains such as network security and self-driving networks, we seek to generate high-

fidelity global explanations capable of accurately describing most decisions made by any

given black-box model.
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2.5 Chapter Summary and Remarks

In this chapter, we presented an overview of the state-of-the-art and background

knowledge on technologies that empower self-driving networks. We start by describing

the current state of IBN research and related areas and follow with a timely recap of previ-

ous efforts on autonomous networking and autonomic computing. This literature review

highlights how critical ML is to achieve the vision of a self-driving network, from pars-

ing natural language network intents to automatically identifying patterns in the network

traffic, and how it will shape the network management industry landscape in the coming

future. From that perspective, we proceeded to present the main challenges to applying

ML to networking and security problems, most of them stemming from the lack of high-

quality data available, which emphasizes the crucial role the emerging field of XAI will

have in scrutinizing network-related ML models. Finally, we presented a much-needed

notational agreement and background on existing XAI techniques. Most importantly, by

analyzing the state-of-the-art on IBN and XAI, we can perceive apparent gaps in the lit-

erature on both methods to translate natural language intents to network configuration

and model-agnostic techniques to explain the decisions of black-box models globally. In

the coming chapters, we address these gaps in the literature while answering the research

questions posed by this thesis.
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3 MACHINE LEARNING FOR INTENT-BASED NETWORKING

Deploying policies in modern enterprise networks poses significant challenges for

today’s network operators. Since policies typically describe high-level goals or business

intents, the operators must perform the complex and error-prone job of breaking each

policy down into low-level tasks and deploying them in the physical or virtual devices of

interest across the entire network. Recently, IBN has been proposed to solve this problem

by allowing operators to specify high-level policies that express how the network should

behave (e.g., defining goals for quality of service, security, and performance) without hav-

ing to worry about how the network is programmed to achieve the desired goals (CLEMM

et al., 2019). Ideally, IBN should enable an operator to simply tell the network to, for ex-

ample, “Inspect traffic for the dorm”, with the network instantly and correctly breaking

down such an intent into configurations and deploying them in the network. Supporting

IBN is one of the core principles of a self-driving network and a crucial component of the

first management loop shown in Figure 3.1, as it reduces human intervention to a neces-

sary minimum, which also reduces the number of errors introduced by human mistake.

Network Substrate
Monitor

...
...

...
...

...

...

Operator LearnInterpret & Compile

(1) Intent
(6) Decisions

(2) Validation

(3 & 7) Configs (5) Data(4) Behavior

Management Loop #1

Figure 3.1 – First management loop of a self-driving network.

In its current form, IBN has not yet delivered on its promise of fast, automated,

and reliable policy deployment. One of the main reasons for this shortcoming is that,

while network policies are generally documented in natural language, we cannot cur-
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rently use them as input to intent-based management systems. Despite growing interest

from some of the largest tech companies (APOSTOLOPOULOS, 2020; NETWORKS, ;

VMWARE, 2021) and service providers (LIU, 2021; KOLEY, 2016; RESEARCH, 2018),

only a few research efforts (BIRKNER et al., 2018; ALSUDAIS; KELLER, 2017) have

exploited the use of natural language to interact with the network, but they lack support

for IBN or other crucial features (e.g., operator confirmation and feedback). However,

expressing intents directly in natural language has numerous benefits when it comes to

network policy deployment. For one, it avoids the many pitfalls of traditional policy de-

ployment approaches, such as being forced to learn new network programming languages

and vendor-specific Command-Line Interfaces (CLI), or introducing human errors while

manually breaking down policies into configuration commands. At the same time, its

appeal also derives from the fact that it allows operators to express the same intent using

different phrasings. However, the flexibility makes it challenging to generate configu-

rations, which must capture operator intent in an unambiguous and accurate manner, a

feat not easily achieved when relying on ML models to extract information from natural

language.

In our efforts of addressing the first research question, concerning trust in ML

models used in NLP, we must first bridge the existing gap in IBN literature between

natural language and network configurations. In this chapter, we contribute to the ongo-

ing IBN efforts by describing the design and implementation of LUMI (JACOBS et al.,

2021), a new system that enables an operator “to talk to the network", focusing on cam-

pus networks as a use case. That is, LUMI takes as input an operator’s intent expressed in

natural language, correctly translates these natural language utterances into configuration

commands, and deploys the latter in the network to carry out the operator’s intent. We

designed LUMI in a modular fashion, with the different modules performing, in order:

information extraction, intent assembly, intent confirmation, and intent compilation and

deployment. Our modular design allows for easy plug-and-play, where existing modules

can be replaced with alternative solutions, or new modules can be included. As a re-

sult, LUMI’s architecture is extensible and evolvable and can easily accommodate further

improvements or enhancements.

In addressing the various challenges above, we make the following contributions:

Information extraction and confirmation. We build on existing ML algorithms

for Named Entity Recognition (NER) (JURAFSKY; MARTIN, 2019) to extract and label

entities from the operator’s natural language utterances. In particular, we implement NER
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using a chatbot-like interface with multi-platform support (§3.2) and augment the existing

algorithm so that LUMI can learn from operator-provided feedback (§3.4).

Intent assembly and compilation. We introduce the Network Intent Language

(Nile), use it as an abstraction layer between natural language intents and network con-

figuration commands for LUMI, and illustrate its ability to account for features critical

to network management such as rate-limiting or usage quotas (§3.3). We also show how

LUMI enables compilations of Nile intents to existing network programming languages

(§3.5), such as Merlin (SOULÉ et al., 2018) .

Evaluation. We evaluate (§3.6) LUMI’s accuracy in information extraction, in-

vestigate LUMI’s ability to learn from operator-provided feedback and measure both the

compilation and deployment times in a standard campus topology (AMOKRANE et al.,

2015). Using our own datasets consisting of synthesized intents as well as real-world

intents derived from network policies published by 50 different campus networks in the

US, we show that LUMI can extract entities with high precision, learn from the feedback

provided by the operator, and compile and deploy intents in less than a second.

User study. In addition to an in-depth evaluation of LUMI, we also report our

main findings of a small-scale user study, with 26 subjects (§3.7). The study was per-

formed to get feedback from subjects on the perceived value of using natural language for

network management with LUMI and soliciting user feedback during the intent confirma-

tion stage.

Prototype. We implemented our prototype of LUMI using a combination of tools

and libraries (e.g., Google Dialogflow (INC., 2018), Scikit-learn library (PEDREGOSA

et al., 2011)). The full implementation as well as all datasets used in our evaluation are

available on the project’s website (LUMI, 2020).

Together, the results of our evaluation and user study show that LUMI is a promis-

ing step towards realizing the vision of IBN of achieving fast, automated, and reliable

policy deployment. By allowing operators to express intents in natural language, LUMI

makes it possible for operators to simply talk to their network and tell it what to do, thus

simplifying the jobs of network operators (i.e., deploying policies) and also saving them

time. While promising, developing LUMI into a full-fledged production-ready system

poses new and interesting challenges on the interface of networking and NLP, which we

detail in §6.2.
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3.1 Lumi in a Nutshell

Client

[ x : 
 (ipDst =10.1.2.0/24)
-> .* dpi .*
]

Merlin program:
define intent id:

add middlebox(’dpi’)
for endpoint(’dorm’)

“Is this right?”
define intent id:

add middlebox(’dpi’)
for endpoint(’dorm’)

Nile intent:
{

}

middlebox: [’dpi’],
target: [’dorm’]

Tagged Entities:

Information
Extraction

(Section 2.2)

Intent
Assembly

(Section 2.3)

Intent
Deployment
(Section 2.5)

Intent
Confirmation
(Section 2.4)

“Hey, Lumi! Inspect 
traffic for the dorm.”

Internet

GatewayDPI

(10.1.2.0/24)

Dorm
Config

Servers

Figure 3.2 – The four modules of LUMI.

Figure 3.2 illustrates the high-level goal of LUMI with the intent example “Hey,

Lumi! Inspect traffic for the dorm" and shows the breakdown of the workflow by which

LUMI accomplishes the stated objective. Below, we provide a brief overview of the four

key components that define this workflow (i.e., the LUMI pipeline) and refer to the subse-

quent sections for an in-depth description and design choices of each of these modules.

First, for the Information Extraction module (described in Section 3.2), we rely on

machine learning to extract and label entities from the operator utterances and implement

them using a chatbot-like conversational interface. The extracted entities form the input of

the Intent Assembly module (described in Section 3.3), where they are used to compose a

Nile network intent. Nile closely resembles natural language, acts as an abstraction layer,

and reduces the need for operators to learn new policy languages for different types of

networks. Then, as part of the Intent Confirmation module (described in Section 3.4), the

output of the Intent Assembly module (i.e., a syntactically-correct Nile intent) is presented

to the network operator, and their feedback is solicited. If the feedback is negative, the

system and the operator iterate until confirmation, with the system continuously learning

from the operator’s feedback to improve the accuracy of information labeling over time.

Finally, once the system receives confirmation from the operator, the confirmed Nile intent

is forwarded to the Intent Deployment module. Described in Section 3.5, this module’s

main task is to compile Nile intents into network configuration commands expressed in

Merlin and deploy them in the network. In Section 3.5, we also explain why we picked

Merlin as a target language over other alternatives.
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3.2 Information Extraction

The main building blocks for LUMI’s Information Extraction module are a chat-

bot interface as the entry point into our system and the use of Named Entity Recognition

(NER) (JURAFSKY; MARTIN, 2019) to extract and label entities from the operators’

natural language intents. Given the popularity of personal assistants, such as Google As-

sistant, Amazon’s Alexa or Apple’s Siri, our goal in providing a natural language interface

for LUMI goes beyond facilitating the lives of traditional network operators and seeks to

also empower users with little-to-no knowledge of how to control their networks (e.g.,

home users).

Even in the case of the traditional user base of network operators, providing a

natural language interface to interact with the system benefits teams composed of opera-

tors with different levels of expertise or experience. This type of interface is particularly

relevant in campus or enterprise networks with small groups and in developing countries

where network teams are often understaffed and lack technical expertise. In short, while

deploying a policy as simple as redirecting specific traffic for inspection can be a daunt-

ing task for an inexperienced operator, nothing is intimidating about expressing that same

policy in natural language and letting the system worry about its deployment, possibly

across multiple devices in the network.

Solving the NER problem typically involves applying machine learning (for ex-

tracting named entities in unstructured text) in conjunction with using a probabilistic

graphical model (for labeling the identified entities with their types). Even though, in

theory, NER is largely believed to be a solved problem (MARRERO et al., 2013), in

practice, to ensure that NER achieves its purpose with acceptable accuracy, some chal-

lenges remain, including careful “entity engineering” (i.e., selecting entities appropriate

for the problem at hand) and a general lack of tagged or labeled training data.

Below, we first discuss the entity engineering problem and propose a practical

solution in the form of a hierarchically-structured set of entities. Next, we describe in

more detail the different steps that the NER process performs to extract named entities

from a natural language intent such as “Inspect traffic for the dorm" and label them with

their types. Finally, to deal with the problem caused by a lack of labeled training data,

we describe our approach that improves upon commonly-used NER implementations by

incorporating user feedback to enable LUMI to learn over time.
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Table 3.1 – Hierarchical set of entities defined in LUMI.

Type Entity Class

Common

@middlebox, @location, @group, @traffic,
@protocol, @service, @qos_constraint,
@qos_metric, @qos_unit, @qos_value,
@date, @datetime, @hour

Composite
@origin, @destination, @target
@start, @end

Immutable @operation, @entity

3.2.1 Entity Selection

To ensure that NER performs well in practice, a critical aspect of specifying the

underlying model is entity engineering; that is, defining which and how many entities to

label in domain application-specific but otherwise unstructured text. On the one hand,

since our goal with LUMI is to allow operators to change network configurations and

manipulate the network’s traffic, the set of selected entities will affect which operations

are supported by LUMI. As discussed in more detail in Section 3.3, LUMI-supported ac-

tions are dictated almost entirely by what intent constructions Nile supports. At the same

time, we would like to consider a generic enough set of entities to enable users to express

their intents freely, independent of Nile. Moreover, the selected set of entities should

also allow for easy expansion (e.g., through user feedback; see Section 3.4 below) while

ensuring that newly added entities neither introduce ambiguities nor result in unforeseen

entries that might break the training model.

On the other hand, the selected set of entities directly influences the trained model’s

accuracy, especially if the entities have been chosen poorly. Therefore, it is crucial to pick

a set of entities that is at the same time rich enough to solve the task at hand and concise

enough to avoid ambiguities that might hamper the learning process. For instance, one

common source of uncertainty in network intents is highlighted with the two examples

“Block traffic from YouTube” and “Block traffic from the dorms”. Here, the word ‘from’

appears in both intents but is used for two different purposes. While in the first example,

it specifies a service, in the second example, it defines a location. If we choose to tag

both entities (i.e., “YouTube" and “dorms") with the same entity type (e.g., “location") to

avoid ambiguities, we lose information on what is being tagged (i.e., service vs. location).

However, if we simply use different entities for both cases (e.g., “service" and “location"),
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Figure 3.3 – The NER architecture with Bi-LSTM (see Section 3.2.2) and CRF (see
Section 3.2.3). The entity tags are abbreviated as MB for middlebox and TGT for target.

we generate an ambiguity (e.g., very similar phrasings produce entirely different results)

that causes the accuracy of the NER model to decrease as similar example intents are

encountered (e.g., “Block traffic from Twitter").

With these design requirements in mind, we defined the set of LUMI entities hi-

erarchically and organized them into three different categories: common, composite, and

immutable entities (see Table 3.1). Here, common entities form the bottom of the hierar-

chy, comprise raw textual values, and largely determine what LUMI can understand. For

instance, the textual values in the common entity class @middlebox are network functions

such as firewalls, packet inspection, and traffic shaping. The hierarchy’s intermediate level

consists of composite entities. The entities in this class do not have any inherent nouns,

verbs, or even synonyms associated with them; they only establish a relationship between

common entities through the aggregation of prepositions. For instance, the composite

entity class @origin consists of composite values such as “from @location” and “from

@service”. Composite entities help avoid the ambiguity problem mentioned earlier. Fi-

nally, immutable entities make up the top of the hierarchy and form the core of LUMI. In

particular, while the entity class @operation expresses the operations that Nile supports,

the entity class @entity consists of a list of LUMI-supported common entities.
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3.2.2 Entity Encoding: Bi-LSTMs

Figure 3.3 shows the overall NER architecture that we use in LUMI and illustrates

the critical intuition behind NER; that is, finding named entities in unstructured text (e.g.,

“Inspect traffic for the dorm" in Step 1 in Figure 3.3) and labeling them with their types

(e.g., Step 6 in Figure 3.3). With respect to the machine learning part of the NER problem,

standard approaches leverage Recurrent Neural Networks (RNN) (LAMPLE et al., 2016);

i.e., a family of neural networks that processes arrays of data sequentially, where the out-

put of one element is carried over as input to the next element in the sequence. However,

RNNs typically require numerical inputs and not words. Therefore, when applied in the

context of our text processing problem, each word of an intent that the operator expresses

in natural language has to be first encoded into a numerical vector before an RNN can

process it. Rather than using one-hot encoding (JURAFSKY; MARTIN, 2019), a simple

encoding scheme that represents each encoded word as a vector of 0’s and 1’s, we rely in

Step 2 (see Figure 3.3) on a more powerful approach that uses one-hot encoded vectors

of words as input to a word embedding algorithm known as word2vec (MIKOLOV et

al., 2013). The word2vec algorithm uses a pre-trained mini-neural network that learns

the vocabulary of a given language (English, in our case) and outputs a vector of decimal

numbers for each word. As a neural network, word2vec can provide similar vector rep-

resentations for synonyms, so that words with similar meanings (e.g., ‘dormitories’ and

‘housing’) have similar embedded vectors, allowing an RNN to process them similarly.

Before processing the output of word2vec, we need to specify the type of RNN

model in our architecture. The Long Short-Term Memory (LSTM) model has been a

popular choice for text processing (HOCHREITER; SCHMIDHUBER, 1997) as it can

capture and carry over dependencies between words in a phrase or intent (e.g., to identify

multi-word expressions). It also creates a context-full representation of each processed

word as an encoded array of numerical values. However, to further enhance each word’s

context, in our LUMI design of the information extraction stage, we rely in Step 3 on

an enhanced version of LSTM, the so-called Bi-LSTM model (CHIU; NICHOLS, 2016;

LIMSOPATHAM; COLLIER, 2016). The Bi-LSTM approach yields the best results for

the English language in a majority of evaluated cases (YADAV; BETHAR, 2018). In a

Bi-LSTM, a phrase is evaluated by two LSTMs simultaneously, from left-to-right and

from right-to-left, and the outputs of the two LSTMs are then concatenated to produce a

single output layer at a given position, as shown in Step 4.



44

3.2.3 Entity Labeling: CRFs

The labeling part of the NER problem consists of using the context-full encoded

vectors of words to represent the “observed” variables for a type of probabilistic graphi-

cal models known as Conditional Random Fields (CRFs) (LAFFERTY.; MCCALLUM;

PEREIRA, 2001), as shown in Step 5. CRFs are a widely-used technique for label-

ing data, especially sequential data arising in natural language processing. Their aim

is to determine the conditional distribution P (Y |X), where X = {x1, x2, ..., xn} rep-

resents a sequence of observations (i.e., encoded vectors of words in a sentence) and

Y = {y1, y2, ..., ym} represents the “hidden” or unknown variable (i.e., NER tags or la-

bels) that needs to be inferred given the observations. CRFs admit efficient algorithms for

learning the conditional distributions from some corpus of training data (i.e., model train-

ing), computing the probability of a given label sequence Y given observations X (i.e.,

decoding), and determining the most likely label sequence Y given X (i.e., inference).

The technical aspects of the specific CRF model we use in this work are described

in detail in LUMI’s website (LUMI, 2020) and show the flexibility afforded by CRF mod-

els to account for domain-specific aspects of labeling sequential data (e.g., accounting for

the likelihood of one entity label being succeeded by another). However, irrespective of

the specific CRF model used, the method outputs as the most likely tag for a given word

the one with the highest probability among all tags. Specifically, at the end of Step 5,

the result of the NER algorithm is provided in the form of named entities with IOB tag-

ging (JURAFSKY; MARTIN, 2019). In IOB tagging, each named entity tag is marked

with an indicator that specifies if the word is the beginning (B) of an entity type or inside

(I) of an entity type. If a word does not match any entity, then the algorithm outputs an

(O) indicator (for “outside”). Note that by using IOB tagging, it is possible to distinguish

if two side-by-side words represent a single entity or two completely different entities.

For instance, without IOB-tagging, it would be impossible to tag an operation like “rate

limiting" as one single named entity. Finally, we parse the IOB-tagged words resulting

from the NER model, build a dictionary with the identified entities, and output it in Step

6 as the final result of LUMI’s Information Extraction module.
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3.2.4 NER and Learning

The described NER process is an instance of a supervised learning algorithm. It

uses a corpus of training data in the form of input-output examples where input is an intent

(i.e., phrase with named entities defined in LUMI and other words or non-entities), and

an output is the list of named entities with IOB tagging (i.e., correct entity tags or labels).

The primary training step consists of both adapting the weights of the Bi-LSTM model

to extract the desired X vector and re-calculating the conditional distribution P (X|Y ) to

infer the correct NER tags Y and may have to be repeated until convergence (i.e., Steps

3-5).

Note that retraining can be done each time the existing corpus of training data is

augmented with new key-value pairs or with existing entities used in a novel context (i.e.,

requiring a new tag). A basic mechanism for obtaining such new key-value pairs or for

benefiting from the use of existing entities in a novel context is to engage users of LUMI

and entice their feedback in real-time, especially if this feedback is negative and points to

missing or incorrect pieces of information in the existing training data. By enticing and

incorporating such user-provided feedback as part of the Intent Confirmation stage (see

Section 5 for more details), LUMI’s design leverages readily available user expertise as

a critical resource for constantly augmenting and updating its existing training data set

with new and correctly-labeled training examples that are otherwise difficult to generate

or obtain. After each new set of key-value pairs is obtained through user feedback, LUMI

immediately augments the training corpus and retrains the NER model from scratch.

In light of the hierarchical structure of our LUMI-specific entities set, with user-

provided feedback, we aim to discover and learn any newly-encountered common entities.

Moreover, as the data set of common entities is augmented with new training instances,

the accuracy of identifying composite entities also improves. With respect to the im-

mutable entities, since the entity class @operation dictates what operations LUMI sup-

ports and understands, these operations cannot be learned from user-provided feedback.

However, given the limited set of LUMI-supported operations, a relatively small training

dataset should suffice to cover most natural language utterances that express these op-

erations. As for the entity class @entity, being composed of a list of LUMI-supported

common entities, it ensures that user-provided feedback can be correctly labeled.
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3.3 Intent Assembly

Using a chatbot interface with NER capabilities as the front end of LUMI solves

only part of the network intent refinement and deployment problem. For example, if a

network operator asks a chatbot “Please add a firewall for the backend.”, the extraction

result could be the following entities: {middleboxes: ‘firewall’}, {target: ‘backend’}.

Clearly, these two key-value pairs do not translate immediately to network configuration

commands. Assembling the extracted entities into a structured and well-defined intent

that can be interpreted and checked for correctness by the operator before being deployed

in the network calls for introducing an abstraction layer between natural language intents

and network configuration demands.

To achieve its intended purpose as part of LUMI, this abstraction layer has to sat-

isfy three key requirements. First, the operations supported by the abstraction layer’s

grammar have to specify what entities to extract from natural language intents. Instead of

trying to parse and piece together every possible network configuration from user utter-

ances, we require that a predefined set of operations supported by the abstraction layer’s

grammar guide the information extraction process. As a result, when processing the input

text corresponding to a network intent expressed by the operator in natural language, we

only have to look for entities that have a matching operation in the abstraction layer’s

grammar, as those are the only ones that the system can translate into network configura-

tions and subsequently act upon.

A second requirement for this abstraction layer is to allow for easy confirmation

of the extracted intents by the operators by having a high level of legibility. We note that

requiring confirmation does not burden the operators in the same manner that requiring

them to express their network intents directly in the abstraction layer’s language would.

For instance, it is well-known that a person who can understand a written sentence cannot

necessarily create it from scratch (i.e., lacking knowledge of the necessary grammar).

Finally, the abstraction layer is also required to allow different network back-ends

as targets given that a wide range of candidate network programming languages (FOSTER

et al., 2011; MONSANTO et al., 2013; ANDERSON et al., 2014; KIM et al., 2015;

BECKETT et al., 2016; RYZHYK et al., 2017; SOULÉ et al., 2018) exist, and none of

them seem to have been favored more by operators or industry yet. Using an abstraction

layer on top of any existing languages allows us to decouple LUMI from the underlying

technology, so we can easily change it if a better option arises in the future.
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3.3.1 Nile: Network Intent Language

To satisfy the above requirements, in our design of the Intent Assembly module

(i.e., stage two of the LUMI pipeline), we rely on the Network Intent Language (Nile)

to serve as our abstraction layer language. In a previous work (JACOBS et al., 2018),

we proposed an initial version of Nile that provided minimal operation support for intent

definition and focused primarily on service-chaining capabilities. Here, we extend this

original version to cover crucial features for network management in real-world environ-

ments (e.g., usage quotas and rate-limiting). Closely resembling natural language, the

extended version of Nile has a high level of legibility, reduces the need for operators to

learn new policy languages for different types of networks, and supports different config-

uration commands in heterogeneous network environments. Operationally, we designed

this module to ingest as input the output of the information extraction module (i.e., entities

extracted from the operator’s utterances), assemble this unstructured extracted informa-

tion into syntactically-correct Nile intents, and then output them.

Table 3.2 – Overview of Nile-supported operations.

Operation Function Required Policy Type

from/to endpoint Yes All
for group/endpoint/service/traffic Yes All

allow/block traffic/service/protocol No ACL
set/unset quota/bandwidth No QoS

add/remove middlebox No Service Chaining
start/end hour/date/datetime No Temporal

Table 3.2 shows the main operations supported by our extended version of Nile,

and the full grammar of Nile is made available in LUMI’s website (LUMI, 2020). Some of

the operations have opposites (e.g., allow/block) to undo previously deployed intents and

enable capturing incremental behaviors stated by the operators. Some operations in a Nile

intent are mandatory, such as from/to or for. More specifically, an operator cannot write

an intent in Nile without stating a clear target (using for) or an origin and a destination

(using from/to) when the direction of the specified traffic flow matters.

To enforce the correct syntax of the assembled intent, we leverage the Nile gram-

mar to guarantee that the intent contains the required information for correct deployment.

If the grammar enforcement fails due to the lack of information, the system prompts the

operator via the chatbot interface to provide the missing information. Assume, for exam-

ple, that the operator’s original intent stated “Please add a firewall.“, without providing
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the target of the intent. Since specifying a target is required according to the Nile gram-

mar, the module will not attempt to construct a Nile program but will instead interact with

the operator to obtain the missing information.

3.3.2 Nile Intents: An Example

With Nile, we can express complex intents intuitively. For example, an input like

“Add firewall and intrusion detection from the gateway to the backend for client B with

at least 100mbps of bandwidth, and allow HTTPS only” is translated to the Nile intent

shown in Listing 3.1. The group function is used as a high-level abstraction for clients,

groups of IP addresses, VLANs, or any other aggregating capacity in low-level network

configurations. Note that the IDs provided by the operator must be resolved during the

compilation process, as they represent information specific to each network. This feature

of the language enhances its flexibility for designing intents and serving as an abstraction

layer. The example illustrates how Nile provides a high-level abstraction for structured

intents and suggests that the grammar for Nile is expressive enough to represent many

real-world network intents.

d e f i n e i n t e n t q o s I n t e n t :

from e n d p o i n t ( ’ ga teway ’ )

t o e n d p o i n t ( ’ d a t a b a s e ’ )

f o r group ( ’B ’ )

add middlebox ( ’ f i r e w a l l ’ ) , middlebox ( ’ i d s ’ )

s e t bandwid th ( ’ min ’ , ’ 100 ’ , ’ mbps ’ )

a l l o w t r a f f i c ( ’ h t t p s ’ )

Listing 3.1 – Nile intent example.

For comparison purposes, the same intent expressed in Merlin, an existing policy

abstraction language with similarities to Nile (SOULÉ et al., 2018), can be found in List-

ing 3.2. Clearly, compared to Merlin, the more verbose nature of Nile’s design makes it

easier to read and understand, especially for users with a lower technical level. Also note

that Nile’s abstraction level allows operators to reference specific endpoints without man-

ually mapping IP addresses, and to reference many different VLANs as a single group.

Finally, the condition to allow HTTPS cannot be directly expressed in Merlin and must

be configured indirectly via a firewall middlebox.
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[ x : ( i p S r c = 1 0 . 1 . 2 . 1 and

i p D s t = 1 0 . 1 . 2 . 1 0 and

( v l a n = 2 or v l a n = 3 or

v l a n = 4) ) . * f i r e w a l l . * i d s . *
] , min ( x , 100MB/ s )

Listing 3.2 – Nile intent example written as Merlin program.

3.4 Intent Confirmation (Feedback)

The major challenge with using natural language to operate networks (e.g., as part

of IBN) is that the method is inherently ambiguous. There are many different forms in

which an operator can express the same intent in different network environments in natu-

ral language. Despite recent advances, natural language processing is prone to producing

false positives or false negatives, resulting in incorrect entity tagging, leading to deploying

incorrect network configuration commands. However, to be of practical use, network con-

figurations are required to be unquestionably unambiguous and correct-by-construction.

One approach to address this challenge is to create an extensive dataset with train-

ing phrases and entities. However, it is unrealistic to expect that such a dataset will cover

every possible English language (or any other language for that matter) example of phrase

construction with domain-specific entities. Operators are free to use terms or expressions

that the system has never encountered in the past. However, without proper safeguards,

any such new phrase will likely result in misconfigurations of the network. An alterna-

tive approach to implementing a reliable intent deployment process is through “learning

from the operator.” Here, the basic idea is to leverage the operators’ existing knowledge

by requesting their feedback on the information extracted from natural language intents.

Then, in the case of negative feedback, it is critical to engage with the operators to iden-

tify missing or incorrect pieces, include this such acquired new knowledge as additional

phrases or entities in the original training dataset, and retrain the original learning model.

Our solution to deal with the ambiguity inherent in using natural language to ex-

press network intents follows the learning approach and leverages the chatbot interface

implemented as part of our first module. In particular, in designing the intent confirma-

tion module for realizing stage three of the four-stage LUMI pipeline, we require the out-

put of the intent assembly module (i.e., syntactically-correct Nile intents) to be confirmed

by the operator. When presented with assembled intents that result in false positives or
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negatives, the operator is asked to provide feedback that we subsequently use to augment

the original training dataset with new labeled data; that is, LUMI is capable of learning

new constructs over time, gradually reducing the chances of making mistakes. While this

interaction may slow down initial intent deployments until LUMI adapts to the operator’s

usage domain, it is essential to guarantee reliable intent refinement and deployment.

Extracting pertinent information from user feedback also requires identifying spe-

cific entities in the user text, similarly to extracting entities from an input network intent.

To this end, LUMI uses the same NER model for both tasks, relying primarily on the im-

mutable @entity for extracting which entity class is being augmented and what value is

being added. Relying on the same NER model also requires us to train the model to iden-

tify and extract entities in the received user feedback. However, since we limit LUMI’s

interactions with the user to answering simple questions, processing user feedback does

not require a large set of training samples.

To reduce an operator’s need for technical knowledge during this intent confir-

mation stage, we opted for supporting feedback interactions that induce the operator to

provide the information that LUMI needs (i.e., offering suggestions and asking comple-

mentary questions). Also, to provide operators with more flexibility and not insist that

they have to use specific keywords, this module compares the entities and values pro-

vided by the operators with synonyms already in the training dataset. Figure 3.4 illustrates

a case where, due to a lack of training, LUMI misses an entity in the input text, and the

confirmation mechanism lets operators easily catch this mistake and provide the neces-

sary feedback for LUMI to learn. Also, note that our design of this module is conservative

in the sense that operator feedback is requested for each assembled intent, irrespective of

the level of confidence that LUMI has concerning its accuracy.

3.5 Intent Deployment

The fourth and last stage of LUMI compiles the operator-confirmed Nile intents

into code that can be deployed on the appropriate network devices and executes the origi-

nal network intent expressed by the operator in natural language. Fortunately, the abstrac-

tion layer provided by Nile enables compilations to a number of different existing network

configurations, including other policy abstractions languages such as Merlin (SOULÉ et

al., 2018), OpenConfig (OPENCONFIG, 2016), Janus (ABHASHKUMAR et al., 2017),

PGA (PRAKASH et al., 2015), and Kinetic (KIM et al., 2015).
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"Hmm, not really, no."

"Is this what you want?"
add middlebox('dpi')

for group('students')

"Sorry. What words did I miss?"

"Well, you missed ‘dorms’."

"Okay. What type of entity is ‘dorms’. 

 Is it a location or a service?"

"It`s definetely a location."

"Okay. Is there anything else?"

"No."

Thank you!

"Hey, Lumi! 
 Inspect traffic for students in the dorms."

Figure 3.4 – LUMI’s feedback mechanism in action.

For our design of LUMI’s Intent Deployment module, we chose to compile struc-

tured Nile intents into Merlin programs. We picked Merlin over other alternative frame-

works because of its good fit with Nile, the network features it supports, its performance,

and the availability of source code. Also, given that none of the existing network pro-

gramming languages natively supports all features proposed in Nile, we opted for the one

that had the largest intersection of supported operations. In the process, we mapped each

Nile feature to a corresponding Merlin feature.

Resolving logical handles. Logical handles in Nile intents are decoupled from

low-level IP addresses, VLAN IDs and IP prefixes, which LUMI now resolves (e.g., dorm

→10.1.2.0/24) using information provided during the bootstrap process. ACLs rules

are resolved similarly. Once LUMI produces Merlin programs with resolved identifiers

(i.e., VLAN IDs, IPs and prefixes), compilation to corresponding OpenFlow rules is han-

dled by Merlin.

Temporal constraints and QoS. As Merlin does not support temporal policies,

LUMI stores every confirmed Nile intent so that it can install or remove device configura-

tions according to times and dates defined by the operator. We achieve quota restrictions

(not natively supported by Merlin) by relaying all traffic marked with a quota require-

ment to a traffic-shaping middlebox, taking advantage of Merlin’s support for middlebox

chaining. Other QoS policies, such as rate-limiting, are already supported in Merlin

Middlebox chaining. LUMI focuses on middlebox chaining, i.e., correctly relay-
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ing traffic specified in the intents through a specified middlebox. Since the actual config-

uration of each middlebox is currently done outside of LUMI, LUMI can handle chaining

policies associated with any middlebox type, virtual or physical, compilation for which is

straightforward since Merlin natively supports middlebox chaining.

3.6 Evaluation

In this section, we first evaluate the accuracy of our Information Extraction module

to show that LUMI extracts entities with high precision and learns from operator-provided

feedback. We then show that LUMI can quickly compile Nile intents into Merlin programs

and deploy them. To assess the accuracy of the Information Extraction module, we use

the standard metrics Precision, Recall, and F1-score. For the evaluation of the Intent De-

ployment stage, we measure the compilation time for translating Nile intents into Merlin

statements and their deployment time.

3.6.1 Information Extraction

Evaluating systems like LUMI is challenging because of (i) a general lack of pub-

licly available datasets that are suitable for this problem space (several operators we con-

tacted in industry and academia gave proprietary reasons for not sharing such data), and

(ii) difficulties in generating synthetic datasets that reflect the inherent ambiguities of

real-world Natural Language Intents (NLIs).

To deal with this problem, we created two hand-annotated datasets for informa-

tion extraction. The dataset alpha is “semi-realistic” in the sense that it is hand-crafted,

consisting of 150 examples of network intents that we generated by emulating an actual

operator giving commands to LUMI. In contrast, the campi dataset consists of real-world

intents we obtained by crawling the websites of 50 US universities, manually parsing the

publicly available documents that contained policies for operating their campus networks,

and finally extracting one-phrase intents from the encountered public policies. From those

50 universities, we were able to extract a total of 50 different network intents. While some

universities did not yield any intents, most universities published network policies related

to usage quotas, rate-limiting, and ACL, and we were able to express all of them as Nile

intents. We manually tagged the entities in each of these 200 intents to train and validate

our information extraction model.
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We used both datasets, separately and combined, to evaluate our NER model,

with a 75%-25% training-testing random split. The small size of each dataset precludes

us from performing conventional cross-validation. Table 3.3 shows the results for the

alpha dataset, for the campi dataset, and for a combination of the two and illustrates the

high accuracy of LUMI’s information extraction module. Given the way we created the

training examples for the alpha dataset, the excellent performance in terms of Precision,

Recall, and F1-score is reassuring but not surprising. In creating the intent examples, we

paid special attention to extracting all the entities defined in LUMI (see Section 3.2.1) and

also creating multiple intents for each entity class.

Table 3.3 – Information extraction evaluation using the alpha and campi dataset.

Dataset # of Entries Precision Recall F1

alpha 150 0.996 0.987 0.991
campi 50 1 0.979 0.989

alpha + campi 200 0.992 0.969 0.980

At the same time, despite the largely unstructured nature and smaller number of

intent examples in the campi dataset, the results for that dataset confirm the above ob-

servation. Even though the example intents in this case were not designed with the NER

model in mind, LUMI’s performance remains excellent and is essentially insensitive to the

differences in how the intent examples were generated. We attribute this success of LUMI

at the information extraction stage to both continued advances in using machine learning

for natural language processing and the fact that the complete set of LUMI-defined entities

is relatively small and at the same time sufficiently expressive.

3.6.2 Intent Confirmation and Feedback

To evaluate the impact of operator-provided feedback on LUMI’s ability to learn,

we first trained our NER model using 75% of the combined alpha and campi datasets

(i.e., a total of 150 training examples) and then used the remaining 25% of examples

(i.e., a total of 50 test entries) as new intents that we presented LUMI in random order.

We fed each of the 50 test intents into the NER model for information extraction and

evaluated the Precision and Recall on a case-by-case basis. If a new intent generated

False Positives or False Negatives, we inserted the intent into NER’s existing training

dataset, alongside the pre-tagged entities, mimicking the operator’s feedback given during

the Intent Confirmation stage.
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The results for this experiment (Precision, Recall and F1-score) are shown in Fig-

ures 3.5a and 3.5b. Since each point in the plots represents the Precision/Recall for one

specific test sample rather than for the global model, the depicted values fluctuate as test

samples are checked one after another. As can be seen, while Precision quickly reaches

and then stays at 1.0, the Recall metric dips each time the model encounters an entity

or construct it has not yet seen (i.e., resulting in a False Negative). However, as more of

these examples become part of NER’s training data through the feedback mechanism (and

because of re-training of the model after each new example is added), these dips become

less frequent. Out of the 50 test intents, only eight resulted in a dip in Recall; that is,

were used as feedback. Note, however, that the cases where the model does not identify

an entity are precisely the situations where feedback is most informative and enables the

model to learn for the benefit of the users.
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To assess how often a user has to rely on the feedback mechanism, we repeated

our experiment 30 times, each time with a different 75-25 traininig-testing split. The re-

sulting mean values for Precision and Recall are shown in Figures 3.5c and 3.5d, with

corresponding 95% confidence intervals. As expected, over the 30 repetitions, both Pre-
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cision and Recall remain close to 0.99, with very small fluctuations. And just as in the

previous experiment, whenever there is a significant variation in Precision or Recall (i.e.,

large confidence intervals), we added that particular intent example to NER’s latest train-

ing dataset and retrained the model. We attribute the fact that about 20% of the test

examples were used as feedback to the small size of our training dataset, but argue that

having only this many feedbacks is a positive outcome.

3.6.3 Intent Deployment

To evaluate the deployment capabilities of LUMI, we compile and deploy five cat-

egories of Nile intents, with an increasing level of complexity: middlebox chaining, ACL,

QoS, temporal, and intents with mixed operations. The last category of intents mixes Nile

operations with distinct goals, which we use to evaluate the deployment of more complex

intents. We generated a dataset with 30 intents per category, totaling 150 different intents,

and measured the mean compilation and deployment time of each category. We ran this

experiment on a generic campus network, with approximately 180 network elements. We

relied on the Mininet (LANTZ; HELLER; MCKEOWN, 2010) emulator to perform the

experiments. The results are given in Table 3.4. While deployment time necessarily de-

pends on the network environment, in our setting, we consistently measured sub-second

combined compilation and deployment times.

Table 3.4 – Compilation and deployment time for five categories of Nile intents.

Intent Type Compilation Time (ms) Deployment Time (ms)

Middlebox chaining 4.402 110
ACL 3.115 112
QoS 3.113 136

Temporal 4.504 111
Mixed 4.621 1030

3.7 User Study

To evaluate LUMI’s ability to work in a real-world environment rather than with

curated datasets of intents, we designed and carried out a small-scale user study. Specif-

ically, we wanted to assess three critical aspects of our system: (i) How well does the

information extraction process work with actual humans describing their intents in differ-
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ent forms and phrasings? (ii) How often is it necessary for operators to provide feedback

for LUMI while using the system? and (iii) Compared to existing alternative methods,

what is the perceived value of a system like LUMI that leverages natural language for

real-time network management?

In this section, we describe the experiments we conducted, the participants’ pro-

files, and the obtained results. We set up the user study as an online experiment that users

could access and participate in anonymously. To select participants for the user study

from different technical backgrounds and still keep their anonymity, we distributed a link

to the online user study in mailing lists of both networking research groups and campus

network operators. According to the guidelines of our affiliated institution, due to the

fully anonymous nature of the experiment, no IRB approval was required to conduct this

study, so this work does not raise any ethical issues.

3.7.1 Methodology

Participating users were asked to fill out a pre-questionnaire (e.g., level of ex-

pertise, degree of familiarity with policy deployment, and use of chatbot-like interfaces)

and then take on the role of a campus network operator by performing five specific net-

work management tasks using LUMI. Based on the information these users provided in

their pre-questionnaire, we had participants from three different continents: the Americas

(88.5%), Europe (7.7%), and Asia (3.8%).

Each of the tasks required the user to enforce a specific type of network policy:

(i) reroute traffic from the internet to an inspection middlebox; (ii) limit the bandwidth of

guest users using torrent applications; (iii) establish a data usage quota for students in the

university dorms; (iv) block a specific website for students in the labs, and (v) add a daily

temporal bandwidth throttle to the server racks from 4pm to 7pm. Every interaction users

had with LUMI was logged to a database for post-analysis.

After finishing the tasks, users were asked to complete a post-questionnaire (e.g.,

number of completed tasks, the perceived value of LUMI, and comments on its usabil-

ity). The complete set of management tasks presented to the users and all the results are

available on the LUMI’s website. Out of the 30 participants, four did not complete the

online questionnaires and were excluded from the study, leaving a total of 26 subjects.

Figure 3.6 shows a breakdown of the user profiles by type of job, level of experience with

network management, and familiarity with chatbot-like interfaces.
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Figure 3.6 – Subjects profiles.

3.7.2 Information Extraction and Feedback

To assess the accuracy of our Information Extraction module, we use the number

of tasks each participant concluded. For completing any given task, a specific set of

labeled entities was required to build the correct Nile intent. Hence, each user’s number

of completed tasks reflects how accurately LUMI identified the entities in the input texts.

The results in the left part of Figure 3.7 show that most users completed either 5/5 or

4/5 tasks. Some examples of successful intents for each task can be found on LUMI’s

website (LUMI, 2020). An analysis of the users’ interactions with the system revealed

that LUMI had trouble understanding temporal behavior (e.g., “from 4pm to 7pm”), likely

due to a lack of such training examples. This issue prevented some users from completing

all five tasks. One user could not complete any task, reportedly because of an outage in

the cloud provider infrastructure used to host LUMI.
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(b) User Intents by status.
Figure 3.7 – LUMI information extraction and feedback.

To evaluate the value of LUMI’s feedback mechanism as part of the Intent Con-

firmation module, we considered all intents that the 26 users generated and checked how

many were confirmed and how many were rejected. If an intent was rejected, the user

could provide feedback to correct it, thus improving LUMI. Such a corrected intent could

then once again be accepted or rejected by the user. The right-hand side of Figure 3.7
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gives the breakdown of the intents and shows that, most of the time, LUMI correctly inter-

preted the users’ intents; in the few times feedback was needed, LUMI was able to correct

and learn more often than not. This result is encouraging given the somewhat limited

amount of data with which LUMI was trained.

On further analysis of the interactions that users had with LUMI, we observed

that the feedback mechanism worked as expected in cases where the participants used a

different or unusual phrasing of their intents. For instance, one user expressed the intent

for task 3 in an unstructured manner, as “student quota dorms 10GB week”, in which

LUMI was not able to recognize the word “dorms” as a @location entity. However, the

user then provided feedback that was successful in correcting the original Nile intent.

One concrete example where the feedback was unsuccessful happened in task 3,

with a user that typed the intent “Lumi, limit students to 10GB maximum download per

week in dorms”. Lumi was only trained to recognize phrases of the form “10GB per

week”, and the additional text in between resulted in Lumi being unable to recognize the

user’s phrase. When asked what information LUMI had missed, the user provided feed-

back indicating that “10gb/wk” was an entity class and “Gb per week” was the value,

instead of labeling “Gb per week” as a @qos_unit entity. We note that Lumi is an ini-

tial prototype, and such cases can be avoided in the future by improving the clarity of

suggestions LUMI makes to the user, and by including sanity checks on user inputs.

3.7.3 Users Reactions and Usability

In the post-questionnaire, we asked the users to comment on LUMI’s usability

and overall merit by answering three questions: (i) How easy was it to use LUMI to

configure the network? (ii) Compared to traditional policy configuration, how much better

or worse was using LUMI instead? and (iii) Would they rather use LUMI to enforce

policies or conventional network configuration commands. Figures 3.8, 3.9 and 3.10

summarize the users’ responses, broken down by expertise in network management. The

results show that the participants’ overall reaction to LUMI was very positive, with most

of them stating that they would either use LUMI exclusively or, depending on the tasks,

in conjunction with configuration commands. Note that the expert users who identified

themselves as campus network operators all had a positive reaction to LUMI. Overall,

among all different levels of expertise, 88.5% of participants stated they would rather use

LUMI exclusively or in conjunction with configuration commands.
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We also asked participants to provide insights they had that could help us improve

the implementation and design of LUMI. One important feedback we received was the

lack of support for querying the network state. For example, one participant stated:

“Many network management tasks are about monitoring something or figuring

out what’s happening, not just installing a new policy. I didn’t see any such tasks

when using Lumi in this experiment. (e.g., ‘Can these two endpoints communicate

right now?’, ‘are there any packet drops between these two endpoints?’).”

While LUMI was not designed with this goal in mind, we do not foresee any ma-

jor NLP challenge to incorporate such features into it, as the entity set could be extended

to cover this use case. Acquiring the state information from the network requires fur-

ther investigation, but Lumi’s modular design makes it simpler to plug in a new module

or an existing one (BIRKNER et al., 2018) to query the network devices. This would

enable LUMI to “understand” changes made through other tools, as LUMI will likely co-

exist with different management applications in real deployments. Overall, the feedback

received from participants was positive and highlighted the promise and value of LUMI.

EasyVery Easy Neutral

(a) Novice or Beginner (c) Proficient and Expert(b) Competent

55.6%
22.2%

22.2%

50% 50%

50%

33.3%
16.7%

Figure 3.8 – User reaction to LUMI’s usability, by expertise on network management.
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Figure 3.9 – User reaction to LUMI’s when compared to traditional network configuration, by
expertise on network management.
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Figure 3.10 – User reaction to LUMI’s when compared to traditional network configuration, by
expertise on networking.

3.8 Chapter Summary and Remarks

In this chapter, we focus on answering the first research question, which concerns

the level of trust operators can deposit in the ML models used in self-driving networks

to break down high-level intents into network configurations automatically. To that end,

we propose LUMI, a novel end-to-end intent refinement and deployment system that al-

lows operators to express their intents in natural language and then check and confirm

the intents before deploying them in the network. By demonstrating that LUMI can suc-

cessfully deal with a wide range of network policies, this chapter represents a promising

step towards realizing the vision of intent-based networking with natural language. Still,

much work remains. For example, while our design choices for LUMI’s different modules

resulted in a working prototype, other features might be necessary for a production-ready

system version. However, LUMI’s modular design can readily accommodate such im-

provements. Also, since LUMI in its current form is mainly intended for use in campus

networks, supporting other environments (e.g., home or enterprise networks) will most

likely require that the set of Nile operations and functions (and in turn the group of LUMI

entities) be judiciously expanded.
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4 MACHINE LEARNING FOR NETWORK SECURITY

Compared to computer vision or autonomous car technology, where AI and ML

have been adopted early on and with enormous success, the networking area has been

relatively late in joining the AI/ML fray. Network operators and security experts have

remained doubtful about adopting AI/ML-based solutions and deploying them in their

production networks, be it to help with network performance-related issues or address

network security-specific problems. In particular, achieving the vision of a self-driving

network, where the network itself is capable of learning and adapting according to usage

patterns from traffic, makes AI/ML-based solutions a critical stepping stone and an inte-

gral part of the second management loop highlighted in Figure 4.1. It is crucial, then, for

us to verify if the skepticism from operators and experts is unwarranted or not, which is

the subject of the second research question.

Network Substrate
Monitor

...
...

...
...

...

...

Operator LearnInterpret & Compile

(1) Intent
(6) Decisions

(2) Validation

(3 & 7) Configs (5) Data(4) Behavior

Management Loop #2

Figure 4.1 – Second management loop of a self-driving network.

In this chapter, we focus on the application of AI/ML to network security and the

challenges that this application domain poses. For one, there exists an obvious mismatch

between the black-box nature of some of the most commonly considered AI/ML models

and what network practitioners expect from or look for in a new technology like AI/ML.

While black-box learning models are inherently incapable of providing insights into their

“inner workings” or underlying decision-making process, network operators and network
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security experts are particularly keen on gaining a basic understanding of how these pro-

posed models work in practice so they can be trusted in real-world production settings.

At the same time, AI/ML research has, in general, paid little to no attention to

reproducibility (i.e., the ability of third parties to independently assess and validate rele-

vant research artifacts), contributing to and accelerating an arguable reproducibility crisis

in science (GHOSH, 2019; MACHINERY, 2020; BAJPAI et al., 2019). This lack of

reproducibility has also played an essential role in the general distrust that network prac-

titioners have on using AI/ML-based solutions in practice. Importantly, it prevents the

basic evaluation and assessment of whether or not newly-developed AI/ML research ar-

tifacts generalize across different network environments or are only valid for the specific

setting from which the underlying training data was obtained in the first place. At the

same time, many reproducibility efforts suffer from a fundamental and widely-lamented

lack of relevant data in general and labeled data in particular. This is especially true for an

application domain like network security, where suitable training datasets often contain

highly sensitive information that generally prevents third-party sharing of the raw data.

While certain anonymized versions of the data may be suitable for sharing, most data

anonymization efforts result in a loss of potentially valuable information, which often

impedes subsequent reproducibility efforts.

We argue in this chapter that for AI/ML to be embraced by network practitioners,

have an impact in practice, and realize the vision of a self-driving network, new research

efforts are needed to re-invent how AI/ML should be used in an application domain like

network security. In particular, we propose a two-pronged approach that focuses squarely

on addressing the trust issue and comprises the following two critical efforts: (i) leverag-

ing explainable or interpretable AI/ML models that can take the form of simple deci-

sion trees purposefully extracted from commonly-considered black-box models (ADADI;

BERRADA, 2018); and (ii) requiring the reproducibility of developed AI/ML research

artifacts to ensure safe third-party sharing of newly-designed learning models/algorithms

and avoid the problem-ridden third-party sharing of sensitive data altogether (GUPTA;

MAC-STOKER; WILLINGER, 2019).

To implement the first item of this proposed two-pronged approach in practice, we

leverage techniques from the emerging XAI research field to scrutinize ML models. This

approach answers the commonly-expressed need for gaining insight into the operations

of newly-proposed black-box learning models intended to be used in practice as part of

critical decision-making processes. We build on the standard AI/ML research pipeline
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currently in use (i.e., define model, train with a dataset, evaluate with train-test split) but

extend it in significant ways by elevating extracted white-box learning models to the role

of first-class citizens. Such a role is not only justified by the ability of explainable learning

models to instill in network practitioners the required level of trust but also by the critical

capacity that these types of models have for studying the well-documented problem of

underspecification of developed black-box learning models (D’AMOUR et al., 2020).

For a given black-box learning model, underspecification refers to the problem of

determining whether the learning model’s excellent performance (e.g., high prediction ac-

curacy) is indeed due to its ability to encode essential structure of the underlying system or

simply the result of some inductive bias encoded by the trained model. We illustrate with

examples of published black-box learning models developed for network security-related

problems how extracted white-box learning models become potent tools for revealing

the presence of such inductive biases in the underlying black-box model. In particular,

we focus on biases that are the results of unintended learning strategies such as shortcut

learning (also known as the “Clever Hans” effect (LAPUSCHKIN et al., 2019; KAUFF-

MANN et al., 2020)), spurious correlations, or overfitting (GEIRHOS et al., 2020). In the

process, we also demonstrate how suitably extracted white-box learning models can be

used to determine whether the corresponding original black-box learning model is credi-

ble; that is, generalizes as expected in deployment scenarios and can hence be trusted to

not only work in theory (i.e., test set is independent and identically distributed – i.i.d. –

with respect to the training set) but also in practice (i.e., test set is out-of-distribution with

regards to the training set).

Finally, while we are not the first to impress upon networking researchers the

critical need to ensure that their published AI/ML research artifacts be reproducible by

third parties (e.g., see (GUPTA; MAC-STOKER; WILLINGER, 2019) and references

therein), we are also not the first to comment on the unique challenges that the network

security area poses as an application domain for AI/ML. In fact, not only do we fully

agree with much of previously-expressed skepticism about the use of AI/ML for network

security-related problems (e.g., see (SOMMER; PAXSON, 2010; APRUZZESE et al.,

2018)), but we argue in this chapter more forcefully that when it comes to the application

of AI/ML in its current form for network security, “the emperor has no clothes.” More

constructively, the purpose of this chapter is to “provide the emperor with at least some

clothes,” ordinary or unimpressive as they may be.
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4.1 What AI/ML for Network Security?

In this section, we motivate our skepticism over existing works on AI/ML for

network security and present a network performance use case that guides and motivates

our efforts to scrutinize ML models for self-driving networks in general and network

security in particular.

4.1.1 On the “Old” AI/ML for Network Security

To get a sense of the lay of the land, we performed a limited survey of the existing

literature on applications of AI/ML to network security-related problems. We grouped

the encountered efforts according to their ability to be reproducible and identified three

different categories:

Learning model is published, and training data is publicly available. Only

a minimal number of studies reported in the existing literature fall in this category, in-

cluding (WANG et al., 2016; SHARAFALDIN.; H. Lashkari.; GHORBANI., 2018) to

mention a few. We commend these studies because third-party researchers can carefully

scrutinize the research artifacts that make up these efforts. At the same time, we encoun-

tered hardly any studies that used the afforded reproducibility opportunities and carefully

examined the published research artifacts (see Section 4).

Learning model is published, and training data is not publicly available. This

category makes up the vast majority of studies reported in the existing literature. Unfor-

tunately, for competitive, legal, or other reasons, the use of these efforts’ training datasets

is typically confined to the very researchers who developed the published learning mod-

els in the first place, which makes reproducibility of the described research artifacts by

third-party researchers impossible (e.g., see (FINAMORE et al., 2010; SCHATZMANN

et al., 2010; JING et al., 2011; ZHANGA et al., 2013; SUN et al., 2016)).

Learning model is not published, and training data is not publicly available.

This category consists primarily of commercial solutions. These solutions are marketed

by an ever-growing number of network security companies that claim to leverage AI/ML-

based technologies in their products. The proprietary nature of these products rules out

any scientifically rigorous evaluation by third parties and prevents even the most basic

attempts at reproducibility (e.g., see (DARKTRACE, 2021; MOLONY, 2020)).

The two main takeaways from this limited survey of the existing literature on the
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application of AI/ML for network security are (i) reproducibility efforts are the exception

rather than the rule, and (ii) the literature on AI/ML for network security is still short

of efforts that apply explainable AI/ML, at least at a level comparable to the use case

we describe in detail in Section 4.1.2 below. Notably, the general lack of reproducibility

efforts makes it impossible to carefully scrutinize most published learning models devel-

oped with network security-specific tasks in mind. This observation highlights the current

precarious state-of-the-art in AI/ML-based network security research, where the reported

(typically superb) performance of learning models across all three categories cannot be

taken at face value and where their ability to generalize as expected in deployment sce-

narios remains at best unknown and is at worse more than questionable.

4.1.2 An Illustrative Use Case

In the absence of a compelling published study that concerns an application of

modern AI/ML to a network security problem and allows us to illustrate the issues we

raise in this chapter, we find inspiration in a recent effort that concerns the use of modern

AI/ML for a network performance problem.

The effort in question deals with a recently proposed AI/ML-based system for

adaptive bitrate (ABR) video streaming and comprises three different published papers

(MAO; NETRAVALI; ALIZADEH, 2017; AL., 2019; MENG et al., 2020). The origi-

nal paper (MAO; NETRAVALI; ALIZADEH, 2017) presents Pensieve, a new black-box

learning model that combines (deep) neural network models with reinforcement learning

(RL) to learn an optimized control policy for bitrate adaption in a data-driven and auto-

matic manner. From our perspective, a relevant aspect of this work is that the authors

of (MAO; NETRAVALI; ALIZADEH, 2017) open-sourced all Pensieve-related research

artifacts, including data, learning model, and code, to encourage full reproducibility of

their work. The second paper (AL., 2019) describes an initial attempt at “cracking open”

Pensieve’s black-box learning model and relies critically on the ability to reproduce the

artifacts developed in (MAO; NETRAVALI; ALIZADEH, 2017). By applying a set of

previously developed techniques that are commonly referred to as local interpretability/-

explainability tools (e.g., see (RIBEIRO; SINGH; GUESTRIN, 2016; MOLNAR et al.,

2020)), the authors of (AL., 2019) illustrate several findings that show the potential that

local explainability tools have in increasing the network operators’ trust in AI/ML-based

systems like Pensieve.
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Unfortunately, local explainability tools like the ones employed in (AL., 2019) are

limited in their capabilities and fall short in explaining the behavior of a given black-box

learning model as a whole (i.e., global explainability). The main contribution of the third

paper (MENG et al., 2020) is exploring the use of such global explainability tools to ex-

amine Pensieve’s black-box learning models. To this end, the authors of (MENG et al.,

2020) build on recent advances in the area of explainable AI/ML (e.g., see (BASTANI;

KIM; BASTANI, 2017; LAKKARAJU et al., 2017)) and extract a “white-box” learning

model in the form of a decision tree from the black-box learning model used by Pensieve.

A basic examination of the resulting highly structured and eminently interpretable deci-

sion tree demonstrates its ability to explain Pensieve’s black-box learning model and the

learned policies extracted by this method. Their examinations corroborate the findings of

the second paper’s local explainability analysis that Pensieve favors three out of the six

different adaptive bitrates most of the time, relying mostly on the last selected bitrate and

buffer size to choose.

In summary, the Pensieve example (MAO; NETRAVALI; ALIZADEH, 2017)

convincingly demonstrates the merits of reproducible AI/ML-based networking research.

The subsequent efforts, which first used local explainability tools to “look under the

hood” of Pensieve’s black-box learning model (AL., 2019), culminated in applying a

global explainability method capable of distilling Pensieve’s incomprehensible but high-

performing learned policies into simple and highly interpretable decision tree policies

(MENG et al., 2020). These efforts could only succeed thanks to the open-source nature

of the research artifacts that the authors of (MAO; NETRAVALI; ALIZADEH, 2017) re-

leased as part of their work. However, we show in the rest of the chapter that there is more

to explainability than these Pensieve-specific efforts indicate when applying them to the

network security problem domain.

4.2 A New AI/ML Pipeline

Motivated and inspired by the Pensieve’s illustrative use case, we propose a new

workflow for how modern AI/ML can be used in the application domain of network secu-

rity. We describe the proposed workflow in terms of a new AI/ML pipeline that elevates

suitably extracted white-box learning models to the role of first-class citizens, presented

in Figure 4.2.
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Figure 4.2 – New AI/ML pipeline.

• Step 1: Defining a specific training task and its description in terms of a chosen model

specification or algorithm, and data collection and preparation to build a training dataset;

• Step 2: Using a provided training dataset and the selected algorithm to train a black-box

learning model;

• Step 3: Evaluating the obtained learning model by traditional procedures that measure

the model’s performance using a dataset )i.e., typically using a train-test split) that has

the same distribution as the given training dataset;

• Step 4: Extracting a high-fidelity, post-hoc white-box learning model (e.g., decision

tree) from the black-box learning model obtained in Step 2 and evaluated in Step 3; and

• Step 5: Examining the white-box learning model obtained in Step 4 to determine

whether or not the black-box learning model obtained in Step 2 and evaluated in Step 3

is credible and can be trusted.

The first three steps of this new AI/ML pipeline comprise the standard AI/ML

pipeline currently in use, mainly consisting of traditional procedures such as model se-

lection, data understanding and preparation, and model evaluation. In turn, the newly

added Steps 4-5 capture the requirement of a growing number of AI/ML applications

for real-world problems (e.g., network security). This requirement demands to move be-

yond the single-issue objective of creating high-performing black-box learning models

and strive instead for a more holistic assessment of them that focuses on aspects com-

monly associated with “trust”, including interpretability, credibility, and effectiveness. To

this end, Step 4 is intended to produce an appropriate post-hoc white-box learning model

that, for all practical purposes, serves as a high-quality substitute for the underlying high-

performing but incomprehensible black-box learning model. This explainable learning

model is then used in Step 5 to examine important properties (e.g., fairness, safety, ro-

bustness) of the obtained black-box learning model, its learned policies, or the underlying
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training data. In effect, our newly proposed pipeline functions as a loop, as the problems

uncovered by the added Steps 4-5 will likely trigger correcting actions in previous steps,

most notably in data preparation and model design. In particular, we view this modified

AI/ML pipeline as a means to provide transparency of and establish trust in black-box

models to the point where it can become a primary vehicle for answering questions con-

cerning the ethical quality of black-box based decision making (PIANO, 2020).

Notably, the steps in our proposed AI/ML pipeline share similarities with the steps

in the Knowledge Discovery in Databases (KDD) (FAYYAD; PIATETSKY-SHAPIRO;

SMYTH, 1996), a typical data mining process to identify patterns in data. While KDD

can rely on AI/ML techniques to identify such patterns (e.g., clustering and regression),

the goal of KDD is usually to recognize trends and correlations in business-related ven-

tures, such as sales and usage, and not classify or predict labels such as in networking

applications. Still, given that KDD can use AI/ML to identify patterns, it could also ben-

efit from the added interpretability and explainability introduced by the new steps in the

AI/ML pipeline.

The proposed modification begs the question of why not train a white-box learn-

ing model in the first place (e.g., see (RUDIN, 2019)). Some of the reasons discussed in

the existing literature include: (i) an inherent tradeoff between accuracy and explainabil-

ity (i.e., complex black-box models are necessary to achieve top predictive performance)

and (ii) important differences between problems with structured data and meaningful fea-

tures vs. unstructured data and non-intuitive features (i.e., designing ex-ante interpretable

models for unstructured data and non-intuitive features with good performance is chal-

lenging). We add to this list our own reasoning; that is, in the network security area,

even the top domain experts admit that their domain knowledge is bounded and that fully

comprehending the ever-growing complexity of today’s networks is no longer within their

grasp. In particular, we argue that the network security domain is a prime example where

domain knowledge has ballooned to a point where developing ex-ante white-box learning

models with high performance is, in general, beyond the grasp of domain experts.

In designing our newly proposed AI/ML pipeline and having reviewed the existing

literature and techniques in the XAI field in Section 2.4, we realized there was no method

available that would allow us to fulfill the new Steps 4 and 5. This realization prompted us

to design a novel method to extract global explanations from any given black-box model

in the form of decision trees, which we called TRUSTEE. Alongside TRUSTEE, we also

introduce a novel domain-targeted pruning method, which we call Top-k pruning, to keep
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extracted decision tree explanations to a concise and manageable size while maintaining

a good fidelity tradeoff, and a trust report that condenses and analyzes the most relevant

aspects of the TRUSTEE’s explanation to aid domain experts in spotting issues with the

black-box model. These novel methods allowed us to accomplish our new AI/ML pipeline

and continue to answer this thesis’s second research question in the remainder of this

chapter. We describe TRUSTEE and Top-k pruning in detail, alongside the answer to the

third research question this thesis poses, in Chapter 5.

4.3 Use Cases

In this section, we apply TRUSTEE to scrutinize a few recently published black-

box models that have been developed for network security-related problems and are ac-

companied by publicly available artifacts that are required for assessing whether the mod-

els are credible. By scrutinizing these few key works, we aim to provide an answer to

answer to our second research question and determine whether operators are right to be

skeptical of ML-based solutions in networking. All datasets, models, and results pre-

sented in this section are available at (JACOBS et al., 2022b).

4.3.1 Summary

Table 4.1 summarizes the use cases we analyze. The first use case (§4.3.2) illus-

trates how an apparently high-performant neural network learns simple shortcuts to dis-

tinguish between two types of traffic (VPN vs. Non-VPN). It highlights the importance of

having an in-depth understanding of the data used to train a model. The second use case

(§4.3.3) analyzes a black-box model (i.e., random forest) trained using the popular syn-

thetic dataset CIC-IDS-2017 (SHARAFALDIN.; H. Lashkari.; GHORBANI., 2018) and

shows that the developed model is vulnerable to o.o.d. samples. This use case cautions

against an over-reliance on synthetic datasets that often include measurement artifacts

that commonly-considered black-box models exploit to achieve high accuracy. The third

use case (§4.3.4) analyzes a recent approach that advocates using bit-level feature repre-

sentations of the input data instead of carefully engineered and semantically meaningful

features (HOLLAND et al., 2021). This use case warns against the indiscriminate use

of the high-dimensional feature spaces that result from such representations because they
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Table 4.1 – Case Studies.
Analyzed in Problem Dataset(s) Model(s) Trustee Fidelity Type of inferred inductive bias

Section 4.3.2 Detect VPN traffic ISCX VPN-nonVPN
dataset (DRAPER-GIL. et al.,
2016)

1-D CNN (WANG et al., 2017) 1.00 Shortcut learning

Section 4.3.3 Detect Heartbleed traffic CIC-IDS-2017 (SHARAFALDIN.;
H. Lashkari.; GHORBANI., 2018)

RF Classifier (SHARAFALDIN.;
H. Lashkari.; GHORBANI., 2018)

0.99 Out-of-distribution samples

Section 4.3.4 Detect Malicious traffic (IDS) CIC-IDS-2017 (SHARAFALDIN.;
H. Lashkari.; GHORBANI., 2018),
Campus dataset

nPrintML (HOLLAND et al., 2021) 0.99 Spurious correlations

Section 4.3.5 Anomaly Detection Mirai dataset (MIRSKY et al.,
2018)

Kitsune (MIRSKY et al., 2018) 0.99 Out-of-distribution samples

Section 4.4 OS Fingerprinting CIC-IDS-2017 (SHARAFALDIN.;
H. Lashkari.; GHORBANI., 2018)

nPrintML (HOLLAND et al., 2021) 0.99 Potential out-of-distribution sam-
ples

Section 4.4 IoT Device Fingerprinting UNSW-IoT (SIVANATHAN et al.,
2019)

Iisy (XIONG; ZILBERMAN,
2019)

0.99 Likely shortcut learning

Section 4.4 Adaptive Bit-rate HSDPA Norway (RIISER et al.,
2013)

Pensieve (MAO; NETRAVALI;
ALIZADEH, 2017)

0.99 Potential out-of-distribution sam-
ples

allow black-box models to identify and exploit spurious correlations between features to

achieve high accuracy. The fourth use case (§4.3.5) concerns the application of a complex

ensemble of neural networks (MIRSKY et al., 2018) to perform traffic anomaly detection

(e.g., Mirai attack). By showing that this model is also vulnerable to o.o.d. samples, we

corroborate previously-reported criticism of this model (ARP et al., 2022) and support it

with further evidence. Finally, we briefly describe our results from applying TRUSTEE to

a few other networking and network security use cases (§4.4).

4.3.2 Detecting VPN Traffic

Problem setup. We consider the paper (WANG et al., 2017), which presents an

AI/ML-based framework for encrypted traffic classification that integrates feature design,

features extraction, and selection. It uses one-dimensional convolutional neural networks

(1D-CNN) to automatically learn the relationships between raw packets and the output

labels. For classifying VPN vs. Non-VPN traffic, the authors train a 1D-CNN learning

model with the PCAPs of the ISCX VPN-nonVPN dataset (DRAPER-GIL. et al., 2016),

treating the packets of each session as a 2D image of size 28x28. As a result, the pro-

posed model views the input traffic samples as discrete byte streams of fixed length (i.e.,

784 bytes) and treats each byte as a “feature”. (WANG et al., 2017) reports outstanding

performance (i.e., 100% (99.9%) precision and 99.9% (100%) recall for Non-VPN (VPN)

traffic). All AI/ML research artifacts (WANG et al., 2017) and datasets (DRAPER-GIL.

et al., 2016) are available online, allowing full reproducibility of the described models

and reported findings.

Explanation. We first reproduced the black-box model (i.e., 1D-CNN), and the

results presented in (WANG et al., 2017, Table VI) for classifying VPN vs. Non-VPN
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traffic. Next, we used TRUSTEE to extract a decision tree from the black-box 1D-CNN

model (Figure 4.3). Note that due to the small tree sizes, there was no need for TRUSTEE

to apply the Top-k pruning method. To assess how well the extracted decision tree re-

produces the black-box model, we used it to classify the test cases from (WANG et al.,

2017) and compared the results with the classification from the black-box, measuring pre-

cision, recall, and F1. To our surprise, this simple and small white-box model accurately

reproduced all black-box decisions, achieving a perfect F1 score.

FalseTrue B49 ≤ 17

VPNNon VPN Non VPN VPN

B47 ≤ 251B43 ≤ 1
33% 67%

66% 1%32%1%

Figure 4.3 – Decision tree for black-box 1D-CNN model. The percentage of samples that follow
each branch is presented above each node. Line widths are proportional to the percentage of

samples.

Correctly interpreting this extracted decision tree requires understanding the struc-

ture of the input data. Because the decision tree makes a decision based only on three

bytes in the initial segment of each input sample (i.e., bytes B49, B43, and B47), we

analyzed samples of VPN and Non-VPN test cases to uncover the “meaning” of those

bytes. Figure 4.4 shows a schematic view of the first 80 bytes of actual input data used

in (WANG et al., 2017). We notice that each input sample consists of an initial set of

bytes representing PCAP metadata, Ethernet header, and IP header. Importantly, none of

these initial bytes say anything about actual VPN or Non-VPN traffic.
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Figure 4.4 – First 80 bytes from the training dataset.



72

Upon further scrutiny of the public dataset (DRAPER-GIL. et al., 2016), we no-

ticed that Non-VPN traffic samples always contain Ethernet headers while roughly 90%

of the VPN traffic samples do not

The left branch of the decision tree classifies most samples as VPNs. However,

to weed out a few remaining samples of Non-VPN traffic, the decision tree uses feature

B43. In this case, B43 corresponds to the Total Length IP field in most VPN samples or

the fourth byte of the Ethernet destination address in Non-VPN samples. Once again,

the black-box model takes a shortcut to distinguish between the two classes. A similar

analysis applies to the right branch, which classifies most samples as Non-VPN and uses

B47 (Fragment Offset in Non-VPN vs. the second byte of Ethernet source address in

VPN) to weed out the few VPN samples.

Validation. Even though the extracted decision tree is a high-fidelity proxy for

the 1D-CNN black-box model, it is unreasonable to expect that a simple 3-node structure

encompasses the model’s entire decision-making process. We verify this intuition by gen-

erating a tampered validation dataset for the black-box model. In particular, we changed

bytes 43, 47, and 49 in the VPN samples to mimic random Non-VPN samples. By fol-

lowing the logic of the decision tree branches, the black-box model would misclassify

all VPN samples. The first two rows of Table 4.2 give the average precision, recall, and

F1 score for both classes (VPN vs. Non-VPN) for original and tampered datasets. The

results show that tampering with only these three features out of 748 had no significant

impact on the classification accuracy of the black-box model. However, by performing

detective work similar to the one described above, we observed that the black-box model

succeeds in finding alternative “shortcuts” that are as easy to identify and explain as the

one we described earlier.

Table 4.2 – Accuracy of black-box classifier.

Validation dataset Avg. Precision Avg. Recall Avg. F1

Untampered 0.959 0.956 0.955
Tampered-43-47-49 0.959 0.956 0.955

Tampered-32-to-63 0.889 0.861 0.856
Tampered-0-to-63 0.831 0.757 0.734
Tampered-0-to-127 0.753 0.555 0.398

To further demonstrate that the black-box model described in (WANG et al., 2017)

and claimed to be highly successful in learning to classify encrypted VPN and Non-VPN

traffic is not a credible predictor, we tampered with entire ranges of bytes instead of indi-
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vidual bytes. As Table 4.2 shows, tampering with byte ranges of 32-64, 0-64, and 0-128

makes it increasingly more difficult for the black-box model to identify alternative short-

cut predictors, and not surprisingly, the model’s performance (i.e., accuracy) gets worse

and quickly reaches the point where, without being able to resort to shortcut learning (i.e.,

randomly altering the first 128 bytes, which is less than 18% of the features), the model’s

performance becomes comparable to that of flipping a fair coin.

4.3.3 Detecting Heartbleed Traffic

Problem Setup. We consider the paper (SHARAFALDIN.; H. Lashkari.; GHOR-

BANI., 2018), which presents the public dataset CIC-IDS-2017 with labeled attack traces

and lists publications that rely on this dataset to propose ML-based intrusion detection

systems. The dataset contains traces of benign background traffic and 13 different at-

tacks, such as Heartbleed, DDoS, and PortScans. The dataset also includes 78 pre-

computed flow features, such as flow duration and mean Inter Arrival Time (IAT). Several

research efforts report excellent classification results (e.g., average precision and recall

above 99% for all classes) of learning models trained on the pre-computed features of this

dataset (DORIGUZZI-CORIN et al., 2020; BUSSE-GRAWITZ et al., 2019; DWIVEDI;

VARDHAN; TRIPATHI, 2020; SHARAFALDIN.; H. Lashkari.; GHORBANI., 2018;

ZHANG et al., 2020).

Explanation. We again started by reproducing the reported classification results

using the pre-computed features from the dataset to train a multi-class Random Forest

Classifier to identify the 13 attacks and benign traffic, with a 75%-25% train-test split of

the data. We could reproduce the excellent results reported by several publications, but, in

doing so, we noticed that the dataset in question is highly imbalanced, having as few as 3

Heartbleed samples and as many as 680,000 DDoS samples in the 25% test split. Hence,

we used a Random Over Sampler (LEMAîTRE; NOGUEIRA; ARIDAS, 2017; KAUR;

PANNU; MALHI, 2019) to produce a balanced training dataset to retrain the Random

Forest Classifier and then used TRUSTEE to extract a decision tree explanation. Without

applying our Top-k pruning method, the high-fidelity decision tree extracted by TRUSTEE

from the classifier contained 899 nodes, making it unfeasible to understand the decision-

making process of the black-box model. However, when running the full-fledged version

of TRUSTEE (i.e., with the Top-k Pruning method with k = 3), we obtain the small-sized

and therefore inherently manageable decision tree shown in Figure 4.5.



74

FalseTrue

Heartbleed

Bwd Packet
Length Max ≤ 12k

Dest.
Port ≤ 21.5

FTP-Patator

SSH-Patator

Dest.
Port ≤ 22.5

...

7%93%

7%

7% 86%

79%

Figure 4.5 – Decision tree for Random Forest Classifier. The percentage of samples that follow
each branch is presented above each node. Line widths are proportional to the percentage of

samples.

Despite the likely shortcut the model takes by using TCP ports to classify SSH, and

FTP-Patator attacks, the root node of Figure 4.5 shows that the black-box model correctly

classifies all samples of Heartbleed attacks based only on the maximum packet size of the

victim server responses (i.e., “Bwd Packet Length Max”). In Heartbleed, an attacker sends

a TLS heartbeat message with a value in the size field that is bigger than the message. A

vulnerable server responds with a message with a size equal to the value specified in the

size field and reviews information stored locally in its memory (DURUMERIC et al.,

2014). Prompted by this observation, we further inspect the decision tree to identify other

most dominant features after removing the “Bwd Packet Length Max” feature from the

dataset. The results showed that the total backward inter-arrival time (i.e., “Bwd IAT

Total”) also almost perfectly splits all Heartbleed samples. The distributions displayed in

the trust report for both features (Figure 4.6) reveal a very telling pattern. To understand

this behavior, we inspected the PCAP files and noticed that the TCP connections of the

Heartbleed attacks were never closed between heartbeat messages, resulting in high values

for the features “Bwd IAT Total” and “Bwd Packet Length Max”.

Validation. Considering that the dataset contained just one obvious pattern for

the Heartbleed attack, it is not surprising that classifiers trained on this dataset have high

accuracy when tested with i.i.d. samples. However, to demonstrate that a model is cred-

ible and generalizes as expected in deployment scenarios, we need to validate it with

alternate but realistic test cases, i.e., o.o.d. samples. We generated 1,000 new test cases

of Heartbleed attacks using the same tool described in (SHARAFALDIN.; H. Lashkari.;

GHORBANI., 2018), but we closed the connection after the heartbeat request triggered

a response with compromised data. This change resulted in Heartbleed flows with much

smaller backward total IAT but with similar backward maximum packet length, as we use
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Figure 4.6 – Data distribution of feature “Bwd Packet Length Max” (top) and “Bwd IAT Total”
(bottom) comparing values in the Heartbleed class to all Others.

the exact packet sizes for the original trace. We then evaluated the Random Forest Classi-

fier using the newly generated Heartbleed flows as test data. Table 4.3 shows that with just

a simple change in the attack pattern, the classifier could not correctly classify a single

one of the 1,000 new Heartbleed attacks, resulting in an F1 score of 0. This experiment

demonstrates that the considered black-box learning model overfits on the i.i.d. cases, is

not a credible predictor of realistic o.o.d. cases, and does not learn anything that reflects

what readily available domain knowledge tells us about Heartbleed attacks.

Table 4.3 – Black-box classifier’s accuracy.

Class Precision Recall F1

Heartbleed (i.i.d.) 1.000 1.000 1.000
Heartbleed (o.o.d.) 0 0 0

4.3.4 Inferring Malicious Traffic for IDS

Problem setup. We consider the paper (HOLLAND et al., 2021), which proposes

nPrint and the stable bit-level representation of network packets for automatically training

learning models using AutoML (ERICKSON et al., 2020). The idea is to use a sequence
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of ordered features with values -1, 0, or 1, where each feature represents a bit of a set of

pre-established protocol headers and payloads. The value -1 represents bits not present in

a packet, while the values 1 and 0 are the actual values of present bits. The paper shows

excellent results for an AutoML IDS model (called nPrintML) with 4,480 features trained

using raw PCAP files from the CIC-IDS-2017 dataset (SHARAFALDIN.; H. Lashkari.;

GHORBANI., 2018)

Explanation. We successfully reproduced the reported results using the same con-

figurations as those used in (HOLLAND et al., 2021), obtaining a model with a 0.999 F1

score. To investigate this high-performance model, we generated a high-fidelity (0.999)

decision tree with TRUSTEE (including running the Top-k pruning method with k = 4)

and show the top-4 branches in Figure 4.7. We can see that the top nodes rely on bits of

the IP TTL field of the packets to separate the Benign class from the others. The descrip-

tion of the setup used to generate the CIC-IDS-2017 dataset reveals why. All attacks were

generated using hosts outside of the network in which the dataset was collected, while the

benign traffic was from hosts inside the network, creating a strong correlation between

the TTL value and a traffic type. Also, most attacks were generated by a host with Kali

Linux, which sets the initial value for TTL to 64 (i.e., 00100000), while the DDoS at-

tack was generated using a host with Windows 8.1, which sets the initial TTL value to

128 (i.e., 01000000). This setup where the traffic was generated makes it easier for the

model to separate all DDoS attacks using only the second and third most significant bits

of the TTL field.

FalseTrue pkt_0_
ipv4_ttl_2 ≤ 0.5

DDoS

Port Scan

...

Benign pkt_1_
ipv4_ttl_1 ≤ 0.5

pkt_1_tcp
_opt_9  ≤ -0.5

pkt_1_tcp
_opt_52  ≤ 0.5

Infiltration

16% 84%

69% 15%

14% 55%

14% 41%

Figure 4.7 – Decision tree for nPrintML IDS model. The percentage of samples that follow each
branch is presented above each node. Line widths are proportional to the percentage of samples.

We used the extracted decision tree to investigate the model’s behavior further.

We iteratively removed (assigned -1 to) the bits of the TTL field and other prominent
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features from the nPrint representation and retrained the model on the same dataset until

the single tcp_opt field remained, representing bits of options of the TCP header. Given

only these bits, the black-box nPrintML model still almost perfectly separates the attacks

in the CIC-IDS-2017 dataset, reaching a 0.990 F1 score. The decision tree explanations

produced by TRUSTEE showed that the model still used single bits or packets to divide

the traffic perfectly. That indicates that the model overfits to spurious correlations of the

dataset, finding shortcuts due to the vast feature vector where each bit is a feature. This

issue is also known as the “curse of dimensionality” (RUSSELL; NORVIG, 2020), which

happens when a model faces a high-dimensional feature space (such as the 4,480 features

per sample in the nPrintML IDS) and not a diverse enough data distribution to account

for the multiple shortcuts.

Validation. To examine the ability of the nPrintML IDS model to generalize to

other networks, we deployed the Suricata Intrusion Detection System (FOUNDATION.,

2018) in the campus network of the University of California - Santa Barbara (UCSB)

and mirrored all the traffic before the firewall to produce a real-world dataset of network

attacks. We captured about 12 hours of user traffic and the associated Suricata IDS alerts

(see Appendix A for details). We found 1,344 flows of DoS attempts. Also, we randomly

sampled 1,366 port scan flows (out of 9 million) and 1,337 flows that did not trigger any

alert, which we labeled benign traffic. Finally, we used nPrint to create a test dataset from

that traffic and validate the trained model of (HOLLAND et al., 2021). Table 4.4 shows

the classification results of the model for the trace of our campus network.

Table 4.4 – Accuracy for black-box model trained in (HOLLAND et al., 2021) and tested with
traffic captured in our campus network.

Class Precision Recall F1

Benign 0.653 0.806 0.722
DoS 0.000 0.000 0.000
Port Scan 0.120 0.143 0.130

Average 0.256 0.315 0.282

We noticed that the model classified most of the traffic as benign, a few samples

as port-scan attacks, and none as DoS attacks. While we did not expect the model to

generalize to real-world attacks, we were intrigued that it correctly classified some port

scans. Inspecting the decision presented in Figure 4.7, we can see that the ancestor of

the Port Scan node splits most port scan attacks by checking pkt_1_ipv4_opt_9 ≤ −0.5.

Since the nPrintML model builds its feature vector using the first five packets of a flow
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(896 features for each packet and 4,480 in total), when a flow has fewer than five pack-

ets, it fills the remaining features with -1 values. Hence, to identify port scan attacks,

the nPrintML model simply recognizes the absence of the second packet of the flow. To

confirm this hypothesis, we carefully investigated the dataset published by the authors of

nPrint (HOLLAND et al., 2021) and noticed that most of the port scans in their dataset

have only 1 SYN packet from the attacker to the target (differently from the original

PCAPs in (SHARAFALDIN.; H. Lashkari.; GHORBANI., 2018)). Thus the simple rule

that the second packet of a flow is missing would be enough to find all port scans. How-

ever, in the trace of our campus network, most port-scan attacks also contain a second

packet, which prevented the black-box model from classifying this type of traffic. This

second packet is a TCP RST packet that attackers send to prevent the target from trigger-

ing the TCP SYN Cookie protection used to deal with TCP SYN flooding attacks.

4.3.5 Anomaly Detection for Mirai Attacks

Problem setup. We analyzed the paper (MIRSKY et al., 2018), where the authors

present Kitsune, an unsupervised ML classifier for anomaly detection. Kitsune comprises

an ensemble of auto-encoders and neural networks and solves a regression problem in

practice. It receives a set of 115 statistical features (e.g., mean and standard deviation),

calculated incrementally for a stream of packets for different levels of aggregation (e.g.,

by source MAC and IP addresses). It outputs the Root Mean Squared Error (RMSE) as an

anomaly score by reconstructing the input features from the ensemble output. Kitsune is

trained for some time under normal traffic conditions before moving to an execution phase

to detect anomalies. The larger the RMSE, the bigger the anomaly detected by Kitsune.

Hence, the authors propose that operators use a threshold-based approach calculated on

the training data to detect an anomaly.

Kitsune relies on dampened incremental statistics over time windows, where all

features are calculated based on weights. The weight feature corresponds to the current

packet count multiplied by a decay factor so that the weight of older features decreases

over time, akin to a sliding window. Kitsune uses a set with five different time windows

(100ms, 500ms, 1.5sec, 10sec, and 1min, represented by a variable λ = 5, 3, 1, 0.1,

0.01, respectively) for which the same 23 features are calculated for each time window,

resulting in 115 features. While the work described in (MIRSKY et al., 2018) applies

Kitsune to several anomaly detection use cases, a recent study (ARP et al., 2022) pointed
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out potential problems with one of these use cases (i.e., the Mirai attack) and prompted

us to use TRUSTEE to scrutinize Kitsune’s proposed ML model for the Mirai attack.

Explanation. We first executed the Mirai attack-specific experiments described

in (MIRSKY et al., 2018) and were able to reproduce the results reported (MIRSKY et

al., 2018). The Mirai trace that Kitsune uses for training and evaluation consists of 120

minutes (≈760k packets) of a synthetically generated attack in a network with nine IoT

devices, in which the first 70 minutes (≈120k packets) consist of benign traffic and the

remaining 50 minutes (≈640k packets) have anomalous traffic. Kitsune is trained on

the first 50 minutes of the trace and evaluated on the remainder of traffic. For benign

traffic, the largest RMSE computed by Kitsune was approximately 6.9, but for anomalous

traffic, this value went up to 14 RMSE. We generated a balanced subset of 300k packets,

split between benign and anomalous packets, and used TRUSTEE to extract a high-fidelity

(0.99) DT from Kitsune. As Kitsune works as a regression problem, we measure fidelity

for this use case as the R-squared value between Kitsune’s predictions and those obtained

by the DT explanation. Using TRUSTEE with its built-in Top-k Pruning method and

setting k = 3 results in the small DT explanation that is shown in Figure 4.8 and achieves

0.94 fidelity compared to Kitsune.

FalseTrue

RMSE: 12.49

Mac-IP
0.01-Weight ≤ 2.7k

RMSE: 0.018

51%49%

45% 4%

Mac-IP
1-Weight  ≤ 139

RMSE: 5.338
Figure 4.8 – Decision tree for Kitsune Mirai model.

The resulting DT explanation shows that the most prominent features Kitsune uses

to determine an anomaly are the weights, aggregated by source MAC and IP addresses and

associated with two different time windows: 0.01 (1min) and 1 (1.5sec). That is, Kitsune

relies mainly on the volume of packets per time frame to determine if an attack is under-

way. An infected device suffering from a Mirai attack (GALLOPENI et al., 2020) exhibits

three main traffic behaviors: (i) scanning the network for other vulnerable IoT devices;

(ii) communicating with the Command and Control (C&C) server, and (iii) launching a

volumetric DDoS attack from the IoT devices to a target server (usually outside of the

infected network). However, the Mirai attack in the synthetic trace used in Kitsune mixes
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two of these behaviors: a volumetric scan of the infected IoT network with a flood of ARP

requests (about 6x times the amount of packets per second compared to the benign traffic,

as shown by top-left plot in Figure 4.9) and a DDoS attack to the target server. This pro-

nounced difference in volume between benign and attack traffic makes it easy for Kitsune

to detect anomalous behavior based on traffic volume alone and corroborates the findings

in (ARP et al., 2022) where a simple Boxplot method is shown to achieve a performance

very similar to that of the complex Kitsune. However, as pointed out (ARP et al., 2022),

this difference between malicious and benign traffic for this portion of the Mirai attack is

unlikely to be this pronounced in traces collected from real-world networks.

Figure 4.9 – Packets per second for original Mirai trace from Kitsune and tampered trace. Blue
segments represent benign traffic and red segments represent traffic with malicious activities (i.e.,

benign plus attack).

Validation. To validate the DT explanation that TRUSTEE generated, we tampered

with the original Mirai trace used in (MIRSKY et al., 2018). We modified the attack

portion of the original trace by spacing out ARP requests from the Mirai-infected devices

so that the number of packets per second (pps) would not cross a random threshold from

a given range of specified limits. In particular, by considering the ranges (i) from 10 to

50 pps; (ii) from 30 to 70 pps and (iii) from 50 to 90 pps, we obtained three distinct

tampered traces with different volumes of attack traffic (Figure 4.9 shows the original

and one tampered trace). We changed neither the order in which the packets appeared

nor the timestamps of ARP responses to avoid interfering with established RTTs. We ran

Kitsune for each of these traces, using the same amount of training samples. Figure 4.10

(left) shows the results for each of the traces’ first 200k packets in the execution phase of

Kitsune. On the right side of Figure 4.10, we also compare the expected RMSE (produced

by Kitsune in the original trace) and the predicted RMSE for each tampered trace. The

diagonal line (in red) represents the optimal outcome between expected and predicted
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RMSE. Hence, the more dots are closer to the line, the less impact our tampering had on

the predicted outcome.

Figure 4.10 – Kitsune execution-phase predicted RMSE results for first 200k packets from
original and tampered traces.

The results clearly show that the RMSE values produced by Kitsune depend highly

on the volume of the attack traffic encountered, diminishing as the volume decreases, all

the way within the values generated for the benign traffic. However, we did notice that our

tampering with the original traces made Kitsune produce outliers of RMSE for otherwise

benign traffic. While we cannot be sure of the reason for these outliers, since all features

calculated by Kitsune depend on the weight for each time window, we believe that the

changes we made to the attack traffic affected the feature values for the underlying benign

traffic. This experiment demonstrates that the Mirai use case from Kitsune is vulnerable to

o.o.d. samples, similar to the Heartbleed use case (Section 4.3.3). A simple but realistic

change to the Mirai attack pattern made it impossible for Kitsune to accurately detect

anomalous behavior. Finally, while our observations point to problems with Kitsune’s

ability to detect Mirai attacks, they do not imply that Kitsune is unable or unfit to detect

other attacks and problems if it uses training data of representative real-world scenarios.

4.4 Other Use Cases

We also used TRUSTEE to analyze several other ML-based models for networking

and network security related problems in the literature. For brevity, we describe general

outcomes of each of them below. These use cases are also available in our supplemental

material (JACOBS et al., 2022b).

OS Fingerprinting Use Case. Aside from the IDS use case presented in the

nPrint paper (HOLLAND et al., 2021), we also applied TRUSTEE to scrutinize their OS
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fingerprinting application of nPrintML. The authors of (HOLLAND et al., 2021) relied

on the same CIC-IDS-2017 published PCAPs and associated OSes from each host in the

dataset to build an OS fingerprinting dataset to train nPrintML. The outcome explanation

TRUSTEE provided, in general, corroborates the results and claims presented by nPrintML

that the model relies on TTL and window size header values to distinguish between Win-

dows, Linux and MacOS OSes. However, we also noted that the black-box model relied

on the second most important bit of the TTL header to distinguish Kali Linux OS host

machines from regular Linux 3.11 machines. While both OSes have the initial TTL value

set to 64, the Kali Linux hosts were positioned outside the network as attackers, and there-

fore had their TTL value decreased by 2. In the original paper, the authors discard Kali

Linux samples as they are an underrepresented class.

IoT Use Case. We considered the paper (XIONG; ZILBERMAN, 2019), where

the authors present a method to deploy in-network ML models using P4. In particular,

the authors train a Random Forest Classifier to distinguish between different classes of

Internet-of-Things devices (i.e., video, audio, etc), using the UNSW-IoT dataset

(SIVANATHAN et al., 2019). From the dataset PCAPs, the authors extract 11 features

to train the black-box model, including source and destination TCP and UDP ports but

no other identifying headers such as IP and MAC addresses. Applying TRUSTEE to the

presented black-box model showed that port numbers were the most prominent features

to distinguish between all classes, which obviously makes the model very susceptible to

mistakes as port numbers change regularly from device to device, and from manufacturer

to manufacturer. Iteratively removing TCP and UDP ports from the data showed a de-

crease in F1 score from 0.99 to 0.63, with frame length taking place as the most relevant

feature then. We do note, however, that the author’s goal was not to design the best model

possible, but to enable its deployment in-network with P4.

Pensieve Use Case. While other works (AL., 2019; MENG et al., 2020) have

thoroughly inspected and scrutinized the behavior from the popular Pensive (MAO; NE-

TRAVALI; ALIZADEH, 2017) model to predict adaptive bit-rate, for comparative pur-

poses, we also applied TRUSTEE to produce an explanation decision tree for Pensieve.

Our finding mostly corroborate what previous works (AL., 2019; MENG et al., 2020)

have noted: (i) Pensieve relies heavily on the previous bit-rate choice and the previous

buffer size to choose the best adaptive bit-rate; and (ii) Pensive rarely picks the 1200kbps

or goes higher than 1850kbps bit rates. However, note that the decision tree explana-

tion produced by TRUSTEE achieved a much higher fidelity (i.e., F1 score = 0.90) than
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Figure 4.11 – Comparative bit-rate selection results from Pensive, a Metis-generated decision tree
and a TRUSTEE generated decision, over a 1850kbps link. The legend shows the overall reward

for each method. Results obtained through Pensieve’s and Metis’ reproduction artifacts.

the reward optimized approach produced by Metis (MENG et al., 2020) (i.e., F1 score

= 0.60), at similar explanation sizes. In an experimental deployment of the decision tree

to predict bit-rate over different link capacities, we observed that the decision tree pro-

duced by TRUSTEE was able to match Pensieve’s performance much more faithfully than

the Metis-generated decision tree, in particular for link capacities equal and lower than

1850kbps, as illustrated by Figure 4.11.

4.5 Chapter Summary and Remarks

In this chapter, we address the second research question, which concerns the

amount of trust operators can deposit in the ML models used in self-driving networks

to configure and optimize network devices based on monitored data automatically. In

particular, we criticize the current state-of-the-art in AI/ML in AI/ML-based network se-

curity research and identify some significant deterrents to applying AI/ML-based network

security in practice. We scrutinize three key use-case research efforts representative of the

literature by elevating high-fidelity white-box learning models extracted from an under-

lying black-box learning model to the role of a first-class citizen. As such, the main

objective is no longer the development of a high-performance black-box learning model
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but a careful examination of whether or not a learned model’s typically excellent per-

formance (e.g., high prediction accuracy) is indeed due to the model’s ability to encode

essential structure of the input data or simply the result of some inductive bias encoded

by the trained model. It is only by addressing this so-called problem of underspecification

that we can advance AI/ML-based network security research to the point where the credi-

bility and trust of proposed black-box learning models can be rigorously established, and

their “inner workings" can be explained to network practitioners.
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5 IMPROVING TRUST IN MACHINE LEARNING

In the last few years, we have witnessed a growing tension in the networking

community. Recent research has demonstrated the superiority of AI and ML models over

simpler rule-based heuristics in identifying complex network traffic patterns for a wide

range of network problems (see recent survey articles such as (BOUTABA et al., 2018;

XIN et al., 2018; SHAUKAT et al., 2020; National Academies of Sciences Engineer-

ing and Medicine, 2019)). At the same time, we have seen reluctance among network

operators when it comes to adopting these ML-based research artifacts in production set-

tings (e.g., see (SOMMER; PAXSON, 2010; ARP et al., 2022; APRUZZESE; PAJOLA;

CONTI, 2022)). The black-box nature of most of these proposed solutions is the primary

reason for this lack of enthusiasm. More concretely, the inability to explain how and why

these models make their decisions renders them a hard sell compared to existing simpler

but typically less effective rule-based approaches.

This tension is not unique to networking problems but applies more generally to

any learning models, especially when their decision-making can have severe societal im-

plications (e.g., healthcare, credit rating, job applications, the criminal justice system,

etc.). At the same time, this fundamental tension has also driven recent efforts to “crack

open” the black-box learning models, explaining why and how they make their decisions

(e.g., “interpretable ML” (RUDIN, 2019), “explainable AI (XAI)” (TUREK, 2016), and

“trustworthy AI” (BRUNDAGE et al., 2020)). However, to ensure that these efforts are

of practical use in particular application domains of AI/ML, such as network security,

is challenging and requires further qualifying notions such as (model) interpretability or

trust (in a model) (LIPTON, 2018) and also demands solving several fundamental re-

search problems in these new areas of AI/ML.

In this chapter, we address this thesis’s third and last research question, which in-

quires whether or not there is a feasible way to increase the credibility and trust on ML

models used in self-driving networks. Based on the insights we gathered from address-

ing the previous research questions, we focus on analyzing how trust can be improved

in the ML models used in the second management loop, continuing our network secu-

rity use case. Given the results obtained in previous research questions, we argue that

the safeguards of human verification and feedback in the first management loop provide

operators with an inherently reliable option to check if the ML models are trustworthy

and correct them if necessary. Similar to the computer vision research field, the human
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presence in manually verifying classifications prevents faulty ML models from deploying

system-breaking configurations in the network.

For this thesis, and to guide the development of this chapter, we equate “an end

user having trust in an AI/ML model” with “an end user being comfortable with relin-

quishing control to the model” (LIPTON, 2018). Given this specific definition of what

it means for an AI/ML model to engender trust, we next address fundamental research

challenges related to quantitatively deciding when an end user is comfortable with relin-

quishing control to a given AI/ML model. To this end, a particular focus of this chapter is

on determining whether or not a given AI/ML model suffers from the problem of under-

specification (D’AMOUR et al., 2020).

As we briefly discuss in Chapter 4, the problem of underspecification in modern

AI/ML refers to determining whether the success of a trained model (e.g., high accuracy)

is indeed due to its innate ability to encode some essential structure of the underlying

system or data or is simply the result of some inductive biases that the trained model

happens to encode. In practice, inductive biases typically manifest themselves in an in-

herent inability for out-of-distribution (o.o.d.) generalizations (i.e., test data distribution

is unknown and different from the training data distribution) which, in turn, often reveals

itself in the form of specious learning strategies (e.g., shortcut learning (GEIRHOS et al.,

2020) or spurious correlations (ARJOVSKY et al., 2020)). Such inductive biases imply

that their presence in trained AI/ML models prevents these models from being credible or

trustworthy; that is, they generalize as expected in deployment scenarios. Thus, for estab-

lishing the specific type of trust in an ML model considered in this chapter, it is critical

to identify these inductive biases, and this chapter takes a first step towards achieving this

ambitious goal.

To detect underspecification problems in learning models for network security

problems, we develop TRUSTEE (TRUSt-oriented decision TreE Extraction) (JACOBS et

al., 2022a), which allows us to effectively implement our proposed AI/ML pipeline from

the previous chapter. This framework carefully inspects black-box learning models for the

presence of inductive biases. Figure 5.1 shows how TRUSTEE augments the traditional

ML pipeline to examine the trustworthiness of a given ML model, by implementing Steps

4 (Explain) and 5 (Analyze) of our new AI/ML pipeline presented in the previous section

(Figure 4.2). Specifically developed with the application domain of network security in

mind, TRUSTEE takes a given black-box model, and the dataset used to train that model

as input and outputs “white-box” models in the form of decision trees.
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Figure 5.1 – TRUSTEE overview.

Importantly, in synthesizing these decision trees, TRUSTEE’s focus is first and

foremost on ensuring their practical use, which, in turn, requires leveraging domain-

specific observations to strike a balance between model fidelity (i.e., accuracy of the de-

cision tree) and model complexity. Here, complexity refers to the decision tree’s size and

aspects of the tree’s branches. In particular, when viewing the tree’s branches as decision

rules, we are concerned with their explicitness/intelligibility and coverage; that is, we re-

quire these rules to be readily recognizable by domain experts, be largely in agreement

with the experts’ domain knowledge, and describe how the given black-box model makes

a significant number of its decisions.

TRUSTEE also outputs a trust report associated with the decision tree explanation,

which operators can use to determine whether there is evidence that the given black-

box model suffers from the problem of underspecification. If such evidence is found,

the information provided in the trust report can be used to identify components of the

traditional ML pipeline (e.g., training data, model selection) that need to be modified to

improve upon an ML model that TRUSTEE has found to be untrustworthy.

While our work contributes to the rapidly growing ML literature on model ex-

plainability/interpretability and is inspired by ongoing developments in this area, our

efforts and objectives differ from existing approaches in a number of significant ways.

First, given the inherent complexity of learning problems for networking, the existing ap-

proaches of replacing black-box models with “white-box” models such as decision trees

are generally impractical. For example, among existing methods that are concerned with

local interpretability (i.e., can at best explain the decisions of a trained AI/ML model in a

local region near a particular data point; e.g., see LIME (RIBEIRO; SINGH; GUESTRIN,

2016), SHAP (SHAPLEY, 2016), LEMNA (GUO et al., 2018), etc.), are not suitable for

examining the various instances of the underspecification problem. Second, though our
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effort takes inspiration from prior works that focus on global interpretability (i.e., ex-

plains how a trained ML model makes decisions as a whole; e.g., see (BASTANI; KIM;

BASTANI, 2017; BASTANI; PU; SOLAR-LEZAMA, 2018; LAKKARAJU; BASTANI,

2020)), they are also not suited for the problem at hand. These methods are either only

applicable to a specific class of learning models (e.g., reinforcement learning) or suffer

from poor fidelity. In their current form, these existing methods are all insufficient for

providing the level of model explainability that we demand so that network operators can

decide if they are comfortable with relinquishing control to a given black-box model.

Through the case studies presented in the previous chapter, which allowed us

to answer our second research question, we already illustrated how operators could use

TRUSTEE’s decision trees and associated trust reports to detect the presence of existing

inductive biases. Hence, our focus in this chapter lies in providing a more in-depth anal-

ysis of the TRUSTEE framework itself, showing how it fared when compared to existing

global and local explanation methods, and analyzing the stability of the explanations pro-

duced by TRUSTEE. More specifically, we revisit two of the presented use cases to show

that explanations produced by TRUSTEE achieve a better fidelity-complexity tradeoff than

existing methods in the literature. We also present an illustrative use case to show how

TRUSTEE’s global explanations can avoid common pitfalls of local explanations methods,

represented by SHAP in this analysis.

5.1 Problem Statement

This chapter focuses on post-hoc global model interpretability for the application

domain of network security problems. Although the idea of using decision trees for in-

vestigating global model interpretability for a given black-box learning model has been

explored, the set of requirements that we impose on the decision tree explanations we

desire is non-standard, making this a challenging problem and motivating us to develop

TRUSTEE. For one, we require that our new decision tree extraction method be model-

agnostic; that is, applicable to any given black-box model. Second, we also demand that

the method produces high-fidelity decision tree explanations; that is, decision trees that

accurately describe how the black-box model makes most of its decisions. In addition, we

insist that selected parts of the decision trees extracted by our new method are intelligible

or comprehensible; that is, easy to understand by domain experts.

Given an extracted decision tree that satisfies this set of requirements, our next
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goal is to summarize the pertinent aspects of this synthesized tree in a trust report. This

trust report is intended to be used by domain experts to determine whether the given

black-box model suffers from the problem of underspecification and can therefore not

be trusted. To achieve this goal, we look for ways to exploit the extracted decision tree

explanations to enable the end users to investigate the black-box model for signs that

indicate the presence of inductive biases. In particular, in this chapter, we consider the

following three instances of inductive biases: (i) instances of shortcut learning, (ii) signs

of spurious correlations, and (iii) problems with out-of-distribution samples. On the one

hand, the presence of any of these inductive biases proves that the given black-box model

suffers from the underspecification problem and cannot be trusted. On the other hand, the

absence of these instances does not mean that the black-box model can be trusted.

While proving for an arbitrary black-box model that it does not suffer from the

underspecification problem is challenging and remains an unsolved problem, showing that

the model does suffer from the underspecification problem only requires demonstrating

the presence of a single instance of inductive bias, and our work is an initial effort that

simplifies demonstrating that certain biases are present in the model. To help in this effort,

we consider a simple post-processing step for the extracted decision tree explanation that

consists of (i) determining the Top-k branches of the tree, (ii) presenting them in the

form of decision rules that allow for easy inspection, and (iii) quantifying the number of

decisions of the black-box model that are accurately and intelligibly described by these

Top-k branches. This pruning effort is dictated by the very nature of the problem we

intend to address, and its results are summarized in a trust report that end users can consult

to determine whether or not they can trust the given black-box model.

5.2 Extracting Decision Trees

The first step to realizing the agenda detailed in our overview in Section 5.1 con-

sists of generating high-fidelity and inherently interpretable (i.e., “white-box”) counter-

parts for any given black-box model, regardless of the learning method used by the black-

box. To this end, we first discuss existing approaches to this problem and their limitations.

We present an original and practical method that domain experts can apply to extract high-

fidelity decision tree explanations from an arbitrary black-box learning model.
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5.2.1 Existing approaches

Global white-box explanations extracted from a black-box model can often de-

scribe in detail the reasoning behind the model’s behavior, provided they achieve a good

enough fidelity. Earlier works (CRAVEN; SHAVLIK, 1995; BASTANI; KIM; BASTANI,

2017; BASTANI; PU; SOLAR-LEZAMA, 2018; MENG et al., 2020) have proposed dif-

ferent approaches to extracting decision tree explanation from a black-box model, but

they all lack one or more features that we require when using their extracted decision

trees for our purpose (i.e., enabling network security expert to gauge their level of trust

in a given black-box model). We list the prior efforts and their pertinent features in Ta-

ble 5.1. Note that some of these existing methods (BASTANI; PU; SOLAR-LEZAMA,

2018; MENG et al., 2020) are not model-agnostic but have been designed for specific

learning paradigms and models, such as Reinforcement Learning (RL). As such, they typ-

ically rely on assumptions specific to the learning paradigm or model their designs focus

on. For example, in the case of a large class of RL models, it is assumed that the learn-

ing problem can be formulated as a Markov Decision Process (MDP) (WHITE; WHITE,

1989) and the reward function intrinsic to RL is then often used as the function that the

learning model seeks to optimize. On the other hand, prior efforts that do propose model-

agnostic approaches (CRAVEN; SHAVLIK, 1995; BASTANI; KIM; BASTANI, 2017)

tend to produce decision tree explanations that do not satisfy the fidelity requirement that

we demand for realizing our objective (see Section 5.4 for empirical evidence).

Table 5.1 – Existing approaches to extract decision trees.

Method
Optimization
Objective

Stopping
Criterion

Model
Agnostic

High
Fidelity

Domain-specific
Pruning

Trepan (CRAVEN; SHAVLIK, 1995) Fidelity Max Nodes ✓ - -
dtextract (BASTANI; KIM; BASTANI, 2017) Accuracy Max Nodes ✓ - -
VIPER (BASTANI; PU; SOLAR-LEZAMA, 2018) RL Reward Max Iterations - - -
Metis (MENG et al., 2020) RL Reward Max Iterations - - -

TRUSTEE Fidelity Max Iterations ✓ ✓ ✓

Another essential aspect of many of these existing efforts is their stopping crite-

rion to obtain their extracted decision tree explanations. For example, prior efforts such

as (CRAVEN; SHAVLIK, 1995; BASTANI; KIM; BASTANI, 2017) require specifying

the maximum size (i.e., number of nodes) that the extracted DT can have and use this

input parameter as a stopping criterion. Such approaches are convenient for obtaining

explanations guaranteed to be of a specific size, but this convenience typically comes at

the cost of low fidelity, implying that critical decision-making rules may be missing from
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the resulting decision tree. Other methods such as (BASTANI; PU; SOLAR-LEZAMA,

2018) and (MENG et al., 2020) extract decision tree explanations iteratively, require spec-

ifying the maximum number of iterations, and use this user-specified input parameter as a

stopping criterion. Even though these methods do not explicitly optimize for fidelity, they

typically produce high-fidelity explanations at the cost of high complexity (i.e., the large

size of the resulting explanations makes interpreting cumbersome if not impractical). To

overcome this problem, the authors of (MENG et al., 2020) rely on a commonly-used

technique called Cost-Complexity Pruning (CPP) (FRIEDMAN, 2001). Similar to other

pruning methods (ESPOSITO et al., 1997), CPP succeeds in striking a balance between

the overall fidelity of the extracted decision trees and their size. However, from an in-

terpretability perspective, CPP tends to be oblivious to what roles decision-making rules

play as part of the resulting decision tree explanations. Because of this observed trade-

off between model complexity and model interpretability, these methods are ill-suited for

our purpose, where we strive to shed light on the decision-making rules that are key to

interpreting black-box models that arise in the context of solving network security-related

problems.

5.2.2 Model-Agnostic Decision Tree Extraction

Given the absence of readily available model-agnostic methods for extracting

high-fidelity decision tree explanations from black-box learning models, we present in

the following TRUSTEE. TRUSTEE takes as input a given black-box model together with

the dataset that was used to train the black-box and relies on a teacher-student dynamic

derived from imitation learning (HUSSEIN et al., 2017) to extract “white-box” models in

the form of decision tree explanations by iteratively maximizing their fidelity. In effect,

TRUSTEE uses the given black-box model as an oracle to guide the training of multiple

surrogate white-box models (i.e., decision trees) that imitate the black-box’s decisions

and then selects the explanation with the highest overall fidelity as the “best” white-box

counterpart for the given black-box model.

Algorithm 1 describes the different steps that TRUSTEE performs to achieve its

objective. The algorithm requires as primary input a black-box model π∗ that we desire to

explain, the original datasetD0 that was used to train π∗, the number of samples M to use

when training the surrogate decision trees, and the maximum number of iterations N to

use when trying to maximize the fidelity of the considered surrogate decision trees. The
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complete algorithm requires one additional input parameter (Line 12), but we discuss the

utility of this parameter in more detail in Section 5. The algorithm starts by initializing the

training dataset D (Line 2) using the given black-box π∗ to predict the expected outcome

from the given input data D0.

During the i-th (1 ≤ i ≤ N ) iteration (Lines 3-8), the algorithm: (i) uniformly

chooses M training samples from the optimal prediction dataset D (Line 4) to initialize a

training dataset D′; (ii) splits the subsampled dataset D′ for training and testing (Line 5);

(iii) trains a decision tree student π̂i onD′
train (Line 6) using the well-known Classification

and Regression Tree (CART) (BREIMAN et al., 1984) method; (iv) tests the decision tree

explanation using D′
test, selecting the samples that the decision tree classifier wrongfully

classified as D′
e (Line 6), and queries the black-box model for the expected results for D′

e

(Line 7), producing a correction dataset Di (Line 8); and (v) finally augments the optimal

dataset D′ with this correction dataset (Line 9) to reinforce the correct decisions during

the subsequent iterations. The algorithm selects the student model with the highest fidelity

after N iterations (Line 11) and applies a post-processing step (described in Section 5.2)

before returning the final explanation (Line 12). In the following, we give a more detailed

description of the main design choices we made for TRUSTEE.

Algorithm 1 Model agnostic decision tree explanation extraction.

1: procedure TRUSTEE(
π∗: Black-box model,
D0: Initial training dataset,
M : Number of samples to train the decision tree,
N : Number of iterations of the algorithm,
k: Number of branches to select from),

2: Initialize dataset using black-box D ← π∗(∀x ∈ D0)
3: for i← 1 . . . N do
4: Sample M training instances uniformly D′ ← {(x, y) i.i.d.∼ U(D)}
5: Split subsampled dataset for training and testing

D′
train,D′

test ← TRAINTESTSPLIT(D′)
6: Train DT π̂i ← TRAINDECISIONTREE(D′

train)
7: Test and get samples DT misclassifies

D′
e ← {∀(x, y) ∈ D′

test | π̂i(x) ̸= π∗(x)}
8: Get correct outcome from black-box Di ← π∗(∀x ∈ D′

e)
9: Augment dataset D ← D ∪Di

10: end for
11: Select tree with highest fidelity π̂max ← π̂ ∈ {π̂1, ..., π̂N}
12: return TOPKPRUNE(π̂max, k)
13: end procedure
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Multiple iterations and uniform sampling. The CART algorithm traditionally

used to train decision tree models relies on a greedy approach to find the best splits in the

training dataset. This search is performed in three stages: (i) for each feature, the best

split is determined by minimizing a given loss function; (ii) among all these best feature

splits, the best split is selected, and (iii) repeat until either all input samples have been

classified or a stopping criterion has been reached. This greedy approach ensures that the

resulting decision tree will be largely insensitive to the order in which the input samples

are processed for a given training dataset. At the same time, in the absence of any explicit

means to prevent overfitting, this greedy approach is prone to result in an overfitted deci-

sion tree (BRAMER, 2007). While using this approach without further constraints (e.g.,

stopping criterion) to train a decision tree results in perfect fidelity, being overfitted makes

the resulting decision tree ill-suited for providing an intelligible explanation for how the

given black-box model makes its decisions. Instead, the resulting explanation is largely

an artifact of the method used to generate the explanation.

To overcome this problem, we first note that it is unreasonable to expect that a

single decision tree is sufficient to capture the complexity of a black-box model. Indeed,

ignoring this issue may result in a small set of features producing misleading global expla-

nations in some cases (LAKKARAJU; BASTANI, 2020). TRUSTEE tackles this problem

by employing an iterative approach to train multiple student models on the expert model

predictions. To this end, we select a subset of the input samples of size M at each iteration

by sampling uniformly from the original training dataset (Lines 3-9). While some exist-

ing efforts (BASTANI; PU; SOLAR-LEZAMA, 2018) also use an iterative approach to

producing different student models, our approach differs in what training dataset the indi-

vidual student models have at their disposal. In particular, by requiring the uniform sub-

sampling step at each iteration, we ensure that each decision tree explanation will have

a limited view of the entire data, akin to a k-fold cross validation (RUSSELL; NORVIG,

2020). Incorporating this sub-sampling step allows us to stress-test how different features

and/or feature values contribute to the decision-making of the black-box model and then

select the ones that best fit our overall objective.

In practical terms, sampling uniformly at random from the original training dataset

assumes each sample has the same probability of being selected. For imbalanced train-

ing datasets, uniform sampling means that classes with fewer samples will appear less

frequently in the final decision tree explanation, thus negatively impacting TRUSTEE’s

ability to explain the black-box model’s decision-making process for those “underrepre-
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sented” classes. However, it is well known that using imbalanced datasets to train ML

models leads to biases towards the majority classes, and the existing ML literature pro-

vides several approaches that resolve this problem through proper pre-processing of the

original training data (KAUR; PANNU; MALHI, 2019).

Dataset augmentation. An important design choice for TRUSTEE involves a

dataset augmentation step (Line 9), where in each iteration, the algorithm uses the optimal

predictions from the black-box model on the sampled dataset D′ to augment the original

training dataset D. The purpose of this step is to over-correct for data samples for which

the student decision tree model makes wrong decisions. Leveraging results from the ex-

isting literature on imitation learning (ROSS; GORDON; BAGNELL, 2011; BASTANI;

PU; SOLAR-LEZAMA, 2018), performing this step can increase the trained student’s

overall accuracy and reduce the overall number of leaf nodes in the resulting tree. For

example, in the case of RL models, this dataset augmentation step helps to course-correct

the wrong trajectories of student models in case they face an unknown (e.g., o.o.d.) state.

In practice, we observe that for complex use cases where running our algorithm without

this dataset augmentation step results in large decision tree explanations, incorporating

this step into our algorithm not only improves the fidelity of an otherwise already high-

fidelity explanation but also, and more importantly, significantly (some 20% on average)

reduces the explanation’s size as measured by the number of nodes of the tree.

Fidelity as objective function. When selecting from among the different student

models (one per iteration) that TRUSTEE extracts from a given black-box model, it uses

model fidelity as an objective function and picks the student model with the highest fi-

delity (Line 11). This design choice implies that while the final decision tree explanation

produced by TRUSTEE is not necessarily the most accurate decision tree for the given

black-box model, it is the decision tree that is most faithful with respect to explaining

how the black-box model makes its decisions. Our working hypothesis is that only by

insisting on this high-fidelity aspect of TRUSTEE’s output we are able to post-process the

resulting decision tree explanation in ways that will help security experts with varying

degrees of domain knowledge to gauge their trust in the given black-box model. Below,

we provide evidence in support of this working hypothesis and describe the type of post-

processing that we perform on the output from TRUSTEE so it can serve as an inherently

practical means for faithfully explaining most of the given black-box model’s decisions.
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5.3 Processing Decision Trees

When synthesizing a high-fidelity decision tree explanation for a given black-box

model, realizing the agenda outlined in Section 3 requires including an additional step in

Algorithm 1 (Line 12). This step consists of purposefully post-processing the generated

decision tree that the algorithm has selected at the end of its iterative process (Line 11)

and requires supplying Algorithm 1 with an additional input parameter k (we discuss k

in more detail below). In particular, the purpose of this post-processing step is to obtain

a final decision tree explanation for the given black-box model that is inherently practical

in the sense of having small complexity and, at the same time, having sufficiently high

fidelity. Here, when referring to the complexity of a decision tree explanation, we mean

small trees but also, and more importantly, trees whose top branches (i.e., decision rules)

explicitly, intelligently, and accurately describe how the black-box model makes most of

its decision.

Effectively, when producing the final decision tree explanation as the output of this

post-processing step, we tolerate some loss of fidelity in return for improved complexity.

In the following, we examine different aspects of this fidelity-complexity tradeoff and

introduce a novel tree pruning method that we call Top-k Pruning. We design this method

for the explicit purpose of ensuring that the final decision tree explanation (i.e., the output

that TRUSTEE produces after applying the post-processing step) can be readily processed

and understood by human domain experts.

5.3.1 Decision Tree Pruning: Tradeoffs

One of the main disadvantages of CART models is that CART’s greedy algorithm

is known to be prone to overfitting, often producing high-fidelity decision trees that can

have thousands of nodes (ESPOSITO et al., 1997). Clearly, such large trees are detri-

mental to our ultimate goal; that is, presenting human domain experts with inherently

practical explanations that they can readily inspect and understand with their available

domain knowledge. In designing TRUSTEE, we similarly focused first on obtaining a

largely unconstrained decision tree explanation with the best possible fidelity (Lines 1-

11). However, our reasoning for doing so is that we explicitly require that the explanation

that TRUSTEE outputs undergoes a post-processing phase for the purpose of assessing

and improving the explanation’s complexity. Moreover, our intuition behind obtaining a
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high-fidelity decision tree explanation first is that manipulating a high-fidelity explanation

with an eye toward reducing its complexity is more likely to result in explanations that,

while experiencing some decrease in their fidelity, still will have higher fidelity than their

counterparts that had lower fidelity to start with.

A commonly-used approach to transforming large decision trees into trees of

smaller sizes is pruning, and the existing literature describes several pruning methods for

decision trees (ESPOSITO et al., 1997; FRIEDMAN, 2001), many of which are highly

effective in obtaining decision trees that have small complexity, at least as far as the size

of the trees is concerned. Among the most widely-used approaches to pruning are (i)

pre-pruning which limits either the total number of nodes or the overall depth of the tree,

and (ii) post-pruning, such as Cost-Complexity Pruning (CCP).

On the one hand, by explicitly constraining either the number of tree nodes or

the tree’s depth, the pre-pruning approaches allow for direct control over the size of the

resulting decision tree. However, this control over tree size typically comes at the cost of

reduced fidelity, mainly because the obtained small trees run the risk of missing important

decision branches as they prevent the consideration of any further decision branches once

the stopping criterion is reached. On the other hand, using post-pruning such as CCP

often results in a better tradeoff between fidelity and size. However, the better tradeoff

comes at the cost of reduced interpretability, mainly because this pruning approach relies

on a parameter that is indirectly responsible for how many nodes of a tree get pruned.

The lack of a more direct control makes it difficult to decide which decision branches to

include in the pruned tree and which to exclude.

5.3.2 Top-k Pruning Method

We present in the following our Top-k pruning method, which requires a parameter

k that specifies the number of Top-k branches to keep when pruning a given decision

tree. In designing the Top-k pruning method, we note that each branch in the decision

tree that TRUSTEE synthesizes by means of its iterative process (Lines 1-11) maps to a

classification “rule”; that is, a combination of individual decisions on features that result

in labeling the input data as part of a specific class (e.g., malware vs benign). Moreover,

each of these “rules” accounts for a certain percentage of all samples in the input dataset,

contributing more or less to the overall model fidelity. Also, as the complexity of the

decision tree grows (i.e., number of branches), so does the fidelity. Based on this empirical
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Figure 5.2 – Fidelity and fraction of samples classified by Top-k branches.

observation that we illustrate for an actual use case in Figure 5.2, the idea behind our Top-

k Pruning method is simple: to detect signs of the presence of inductive biases in a given

black-box model, it often suffices to carefully scrutinize only the Top-k branches of an

extracted high-fidelity decision tree, especially in cases where they intelligibly describe

how the black-box makes most of its decisions. In particular, we argue that the “tail”

end of the branches of an extracted high-fidelity decision tree (i.e., branches that are not

in the Top-k for large values of k) reflect specific decisions of the black-box model that

are overfitted to the training dataset and can, for all practical purposes, be ignored when

trying to explain the most important decisions of the black-box model.

Since TRUSTEE proceeds by first producing a high-fidelity decision tree in an un-

constrained manner, we have a guarantee that the individual branches of this synthesized

tree accurately reflect decisions made by the black-box. Hence, at this point, we are able

to relax our requirements on the overall fidelity of the decision tree explanation so as to

obtain trees that have lower complexity (i.e., are more manageable). At the same time,

we also want end users to be able to carefully control and fine-tune how many of the most

important branches they desire to interpret at a time. Our Top-k pruning method achieves

this goal via the user-specified parameter k that determines the complexity of the final de-

cision tree that TRUSTEE presents to the end user. If at any point a user wants to inspect

more branches of the tree, they can choose a larger k and re-run our algorithm. Note,

however, that due to its probabilistic nature, re-running our algorithm may result in ap-

plying the Top-k pruning method to an extracted decision tree explanation that is different

from the original one. We leave a careful investigation of this aspect of TRUSTEE and its

deeper implications for detecting instances of inductive biases in a given black-box model

for future work.
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5.3.3 Generating Trust Reports

We use the pruned decision tree that forms the output of TRUSTEE as the basis

for populating a trust report that simplifies the task of end users of a given black-box

model to gauge their trust in that model. In particular, we intend this trust report to help

end users readily spot instances of inductive biases in the given black-box model, which

in turn would be proof for the end users that they cannot trust the given model. To this

end, we leverage the fact that by virtue of applying our Top-k pruning technique before

outputting its solution, the final decision tree explanation synthesized by TRUSTEE is a

small tree comprised of k branches. We present the details of this small decision tree

to the end users so they can examine it with an eye towards three common ways the

underspecification problem can manifest in a given black-box model. More precisely, we

are interested in helping end users quickly spot inductive biases that reveal themselves

as instances of shortcut learning strategies through the presence of spurious correlations

or in an inability to generalize for realistic out-of-distribution data. In the following, we

briefly describe how the generated trust report helps with detecting each of these three

inductive biases.

Shortcut learning. Presenting the small decision tree generated by TRUSTEE

and annotating them with pertinent information (e.g., features used, splitting conditions

or clauses present at the different nodes, number of input samples associated with each

branch segment) allows for quick and intelligible perusing and inspection of the tree. In

particular, observing that less than a handful of input features are required to accurately

classify the input data (or a specific class of input samples) is a strong indication of short-

cut learning that can, in general, quickly be confirmed with a minimal amount of domain

knowledge. Note, however, that a small number of features in the output explanation may

also indicate that the classification problem for which the black-box was designed for in

the first place is, in fact, simple and may not require any ML at all.

Spurious correlations. A somewhat more involved investigation of the annotated

small decision tree shown as part of the trust report concerns studying the impact of re-

moving the identified most important feature from the provided dataset. We can then

retrain the black-box model using this altered dataset, proceed to use TRUSTEE to extract

a new decision tree explanation, and repeat this process a number of different times. In

general, the impact of removing important features from the training dataset is that the

classification accuracy of the black-box model decreases. However, it is often the case,
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especially when the data include a very large number of features, that the back-box model

is able to find alternative features so that removing important features leaves the overall

accuracy essentially unchanged. We take this as a strong indication of spurious correla-

tions in the data that can subsequently be easily confirmed via a simple analysis of the

original feature set.

Out-of-distribution samples. The annotated version of the decision tree that is

the output of TRUSTEE and is shown as part of the trust report can also be utilized to con-

sider the individual features in each tree branch and plot the distribution of the values that

each feature can take in the provided dataset (and include the different distribution plots

in the trust report). Inspecting the resulting distributions affords end users an opportunity

to reason whether or not the observed distributions of feature values are consistent with

those encountered in data collected from actual production settings. Such an inspection

is especially informative when the provided datasets consist of network traffic measure-

ments, where feature value distributions are typically dictated by the dominant protocols

in use, where artifacts can often be easily identified, and where generating meaningful

out-of-distribution samples is in general feasible because the expected behavior across

the full TCP/IP protocol stack is either known or well documented.

5.4 TRUSTEE Evaluation

This section presents a qualitative and quantitative evaluation of TRUSTEE, com-

paring existing approaches and, arguably, the most popular local explanation method,

highlighting the benefits of global explanations produced by our algorithm.

5.4.1 Stability

Given that TRUSTEE only analyzes a subset of the input data to generate an ex-

planation decision tree, it is expected that the resulting explanations will diverge from

iteration to iteration. However, if a domain expert is to trust the outcomes of TRUSTEE,

it is expected that the same underlying decisions appear in the explanation and that they

are not simply artifacts of the data subset. To ensure that, in this section, we evaluate the

stability of the decision trees outputted by TRUSTEE, using the same Random Forest Clas-

sifier trained on the CIC-IDS-2017 dataset from the Heartbleed use case (Section 4.3.3).
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We also conducted this experiment for other use cases and achieved similar results.

Through manual inspection of TRUSTEE generated decision trees, we noticed that,

while the underlying decisions of the generated decision trees were stable, the actual rules

(from root to leaf) of the tree were not, due to small fluctuations in the tree structure, use

of correlated features for similar decisions and changes in the root node. We tried dif-

ferent approaches to quantify this perceived stability and found out that traditional tree

stability metrics (such as tree edit distance (ZHANG; SHASHA, 1989) and tree isomor-

phism (JOVANOVIĆ; DANILOVIĆ, 1984)) were not a good fit since they failed to cap-

ture the semantic meaning of decision trees. Hence, we relied on the notion of agreement

between decision trees, i.e., comparing if the outcome decision is the same for the same

data across multiple iterations of TRUSTEE. Using a 70%-30% train-test split, we ran

TRUSTEE using the same 70% training data, from which TRUSTEE sampled a different

30% split of data at every iteration, to generate 50 different Top-10 pruned decision tree

explanations from the Random Forest Classifier. We then tested the pair-wise agreement

of those 50 decision trees by measuring the F1-score between their classifications on the

remaining 30% of the data.

Figure 5.3 presents a heat-map with the pair-wise agreement of each iteration of

TRUSTEE with the others. Due to space constraints, we could display 30 out of the 50

different iterations. In addition, Figure 5.4 presents the mean agreement of each of the

50 Top-10 pruned decision trees generated by TRUSTEE on each iteration, i.e., the mean

between the F-1 scores in each line of Figure 5.3. Our results showed high stability of de-

cisions made by explanations produced by TRUSTEE, where Top-k pruned trees produced

the same outcome for the same samples over 90% of the time, on average. However, on

a few iterations (3-4%), the mean agreement of some trees would go as low as 81%. To

avoid producing misleading explanations based on those lower-agreement decision trees,

one could add an outer loop to TRUSTEE ’s algorithm that allows us to produce multiple

explanations and filter out the few with a lower mean agreement than the rest. That way,

the domain expert would be presented with the decision tree explanation with the highest

mean agreement. While this refinement step does not completely prevent TRUSTEE from

generating misleading explanations, which remains an open problem, it gives domain ex-

perts more confidence in the decision presented in the resulting explanation.
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Figure 5.3 – Pair-wise agreement of decision trees generated by 30 out of 50 iteration of
TRUSTEE.

5.4.2 TRUSTEE vs. SHAP

To motivate the need for a new global explanation method, we examine an exam-

ple of shortcut learning presented in (GEIRHOS et al., 2020). In this toy example (Figure

5.5), a deep neural network with three fully connected layers classifies images as either

moons or stars. The neural network is trained with a biased dataset of images (in yellow

in Figure 5.5) in which the stars are always in the upper-right or lower-left quadrants,

while the moons are always in the upper-left or lower-right quadrants. When evaluating

the classifier with i.i.d. test samples (in blue in Figure 5.5), it achieves a perfect F1 score,

which suggests the neural network learns to distinguish between the shapes of moons and

stars.



102

0 5 10 15 20 25 30 35 40 45 50

Iteration

0.00

0.25

0.50

0.75

1.00
F1

-S
co

re

Agreement
Fidelity

Figure 5.4 – Mean agreement of decision trees generated by 50 iteration of TRUSTEE.

5.4.2.1 SHAP for Moons and Stars Use Case

To verify the credibility of the classifier, we first use SHAP (LUNDBERG; LEE,

2017) to explain five random i.i.d. test samples. The left plot of Figure 5.6 shows the

SHAP results for each sample: on the left, the original test sample; in the middle, the

pixels contributing for or against a ’star’ classification; and on the right, the pixels con-

tributing for or against a ’moon’ classification. Blue pixels represent pixels contributing

to classifying a class, while red pixels represent pixels contributing against that classifi-

cation. With this explanation, a domain expert would believe the neural network learned

each object’s correct shape, as all the ’right’ pixels of a moon or a star are in blue, and the

’wrong’ pixels are in red.

When we test the classifier with o.o.d. samples (in red in Figure 5.5), generated

with stars and moons in random positions, the classifier’s accuracy drops to almost the

probability of a random coin toss (i.e., F1 score close to 0.5). From the o.o.d. evaluation

results, it becomes clear that the classifier did not learn the shape of the objects but rather

their positions. By running SHAP on o.o.d. test samples (right plot of Figure 5.6), a

domain expert could detect that the model suffers from underspecification, as only the

pixels in the ’correct’ positions for star and moon are in blue, while stars in the wrong

position get highlighted in red. However, o.o.d. are notoriously hard to come by, and

relying on such cases to identify underspecification issues is detrimental to the purpose of
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Figure 5.5 – Shortcut learning toy example, from (GEIRHOS et al., 2020), used with permission.

model explainability.

This simple example illustrates the limitations of local explainability tools like

SHAP. When presented with i.i.d. test samples, which is usually the case when testing a

classifier, local explanations can easily misguide model developers into believing a model

is trustworthy and ready for production. In practice, local explainability tools work better

for post-hoc analysis, while a global explanation can give a more ’complete’ picture of

how the model behaves, allowing a developer to detect such issues before deploying the

model.

5.4.2.2 TRUSTEE for Moons and Stars Use Case

We start by applying TRUSTEE to extract a decision tree explanation from the

trained neural network, shown in Figure 5.7. Immediately by looking at the decision tree,

it is clear that there is some underspecification problem inflicting the trained black-box.

The generate decision tree explanation only has five nodes (including leaves) and three

branches. With only two decision splits, we can achieve a perfect fidelity to the black-box

decisions (when testing with i.i.d. samples).

By analyzing the decisions made by the generated explanation, we notice that the

pixel numbers indicated in the top nodes correspond to pixels in the upper-left quadrant

(X9233) and the lower-left quadrant (X30129). So, this explanation tells us that only by

looking at two single pixels, which obviously correspond to their positions in the images,

the black-box is capable of perfectly distinguishing between moon and star shapes. This

toy example perfectly synthesizes how powerful a global explanation tool can be in identi-

fying underspecification problems in black-box models. However, as discussed in Section
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Figure 5.6 – Results from running SHAP on i.i.d. (left) and o.o.d. (right) test samples from
shortcut learning toy example. Square on the right mark the cases in which SHAP values show

that only position of elements matter, rather than shape.
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Figure 5.7 – Decision tree explanation extracted from the blackbox neural network model, with
fidelity (i.e., F-1 score) = 1. Each node depicts a decision based on the pixel of the images used

as input for the black-box model.

5.2, our explanation method leverages random sampling to drive explanations to a higher

fidelity. This means that, by repeatedly executing TRUSTEE on this black-box model, one

would get hundreds of different decision tree explanations with perfect fidelity, as this toy

example has numerous intrinsic shortcuts. That is, if we removed the given pixels X9233

and X30129 from the data samples, the black-box would still find other pixels to perfectly

match the desired position of moons and stars, and that would be reflected in the generated

decision tree explanations.
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5.4.3 TRUSTEE vs. Related Work

To complement the qualitative comparison we provided in Section 5.2, we present

below a quantitative comparison of fidelity results from existing approaches in the litera-

ture to extract decision tree explanation from black-box models. We evaluate all compet-

ing approaches using two of the use cases analyzed in Section 4.3: the VPN-vs-NonVPN

Use Case (WANG et al., 2017), where the black-box model is a 1D-CNN, and the Ran-

dom Forest Classifier from the CIC-IDS-2017 Use Case (SHARAFALDIN.; H. Lashkari.;

GHORBANI., 2018). All explanation methods were given the same 200 node limit. Table

5.2 presents the fidelity and size of the resulting explanation from each method.

Since the two analyzed use cases do not rely on RL models, neither VIPER (BAS-

TANI; PU; SOLAR-LEZAMA, 2018) nor Metis (MENG et al., 2020) could be applied to

extract an explanation. In both use cases, TRUSTEE was able to achieve a near-perfect fi-

delity even with the given 200 maximum nodes constraint. While Trepan performed well

for the simpler VPN use case, it produces subpar results for the more complex CIC-IDS-

2017 trained model. Lastly, dtextract had the worst resulting explanation of all methods,

producing very low fidelity decision trees.

Note that dtextract’s only stopping criterion is the number of nodes. Hence, until

the given number of nodes is reached, it will continue adding new nodes to the decision

tree, even if unnecessary, as illustrated by the VPN use case. This behavior also makes

the resulting explanation a bad vehicle for identifying the clear shortcut we describe in

Section 4.3 in that specific use case, which Trepan successfully picked up on. In addi-

tion, neither Trepan nor dtextract could uncover the Heartbleed o.o.d. underspecification

problem from the CIC-IDS-2017 use case presented in the previous chapter.

Table 5.2 – Size and fidelity of decision tree explanations produce by existing methods to
interpret black-box models for different use cases. Size is measured as the number of nodes in the
resulting decision tree. Fidelity is measured as the F1-score between black-box predictions and

decision tree predictions.
VPN vs NonVPN CIC-IDS-2017

Method Max Nodes Size Fidelity Max Nodes Size Fidelity

Trepan (CRAVEN; SHAVLIK, 1995) 200 9 0.99 200 200 0.75
dtextract (BASTANI; KIM; BASTANI, 2017) 200 200 0.55 200 200 0.24
VIPER (BASTANI; PU; SOLAR-LEZAMA, 2018) - - - - - -
Metis (MENG et al., 2020) - - - - - -

TRUSTEE 200 7 1 200 200 0.99
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5.5 Discussion

While using TRUSTEE to scrutinize several use cases of published ML models for

network security problems and uncover a number of common pitfalls in those models that

make them ill-suited for deployment in production networks. For one, model developers

need to be aware that using features in the form of bit- or byte-level representations of

semantically rich raw networking data in the hope that a model will capture meaningful

patterns in the underlying data is problematic. While this practice is standard for ML-

based image and text processing and classification, the distributions of the feature values

(i.e., pixels or words) for these applications are generally available via community crowd-

sourcing datasets. We argue that ML-based network security applications are better off

relying on carefully engineered and semantically meaningful features that are less prone

to measurement artifacts that are commonly present in synthetic datasets such as the ones

we described in Section 4.3 and result in trained models that cannot be trusted.

Second, we emphasize that the analyses in this and previous chapters were made

possible because a few other researchers made their artifacts publicly available. In recent

years, the network and security communities have pushed for more reproducibility, and

we second this effort. However, network security researchers interested in using AI/ML

should accept the lack of open-source datasets and a general reluctance for widespread

data sharing as faits accomplis. Instead, they should embrace sharing AI/ML research

artifacts such as learning algorithms or trained learning models and take charge of the

data problem by collecting the necessary data themselves, in close collaboration with

their universities’ IT organizations.

Last, because of a lack of open-source artifacts, we could not find any networking-

related ML model that we deemed trustworthy when analyzing decisions uncovered by

TRUSTEE. Our intuition is that an explanation for a trustworthy model would consist of

decisions a domain expert would agree on and would show strong robustness or stability

properties with respect to the Top-k (for a range of k-values) of the decision trees that

result from multiple executions of TRUSTEE. Yet, determining whether a model can be

trusted ultimately depends on the help of human experts who can assert if the model makes

decisions in accordance with existing domain knowledge or is even capable of teaching

the domain experts new patterns. To realize this goal, we need to overcome the challenge

of involving networking and network security experts in carefully designed user studies

for quantitatively assessing their level of trust in a given black-box ML model. Otherwise,
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we as a community will have to settle for ML solutions that provide recommendations

only, rather than automatic classification, which would require further human interactions.

While using ML for recommendations can help guide human interactions, it would still

prevent us from reaching the vision of a genuinely self-driving network.

5.6 Chapter Summary and Remarks

In this chapter, we address this thesis’s third and last research question, which

drove us to find a practical way to increase the trust of operators in the ML models used

in self-driving networks. In particular, we equate “an end user having trust in an AI/ML

model” with “an end user being comfortable with relinquishing control to the model”

and propose a novel framework called TRUSTEE that allowed us to put in practice the

new AI/ML pipeline to scrutinize decision made by black-box ML models in networking

problems. Our focus in designing TRUSTEE was on determining whether or not a given

AI/ML model suffers from any underspecification, such as shortcut learning or spurious

correlations. As the use cases presented in Chapter 4 already illustrated how operators

could use TRUSTEE’s decision trees and associated trust reports to detect the presence of

underspecification issues, we focused in this chapter on showing how the explanations

produced by TRUSTEE fare compared to existing global and local explanation methods,

in terms of fidelity and complexity. In practical terms, we showed that TRUSTEE, the

Top-k pruning and the proposed trust reports enables operators to carefully analyze and

determine whether ML models can be trusted to relinquish control.
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6 CONCLUSIONS

This thesis has investigated the use of ML techniques in the general design of a

self-driving network. Despite not having a consensus among researchers, all designs of

a self-driving network found in the literature rely heavily on ML classifiers. In partic-

ular, the IBN efforts embodied by self-driving networks require extensive use of ML to

extract information from natural language intents that dictate the network behavior. In

addition, the grand vision of a self-driving network hinges on using ML models to learn

and self-configure network devices according to traffic and user behaviors. However, the

indiscriminate use of ML to solve network management tasks raises an inherent lack of

trust in the black-box classifiers among network practitioners. This lack of trust drove us

to establish the following problem statement for developing this thesis.

Problem Statement: The present thesis aims to enable self-driving networks with

ML, tackling the problem of the inherent lack of trust in ML models that empower it by

assessing their decision-making process.

To tackle this problem, this thesis analyzed and evaluated the decision-making

process of ML-based classifiers that compose a self-driving network. We also propose a

novel method to uncover the “inner-workings” of any given black-box ML model, which

operators and domain experts can leverage to gain trust in decisions made by such ML

models. Our results indicate that ML models employed to extract information from nat-

ural language intents can be trusted, with minimal safeguarding and human-in-the-loop

verification. However, ML models that automatically solve network security and perfor-

mance problems have not been put under proper scrutiny and can easily break when put

under stress, failing to fulfill their given tasks properly.

6.1 Research Questions

The results presented in this thesis allow us to answer the three key research ques-

tions that guided our efforts, as detailed below.

RQ-1: In a self-driving network, can operators trust decisions and classifications

made by current Machine Learning models used to configure the network based on high-

level intents?
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Answer: A self-driving network design requires minimal human interaction from

operators when expressing network intents. This makes it possible to rely on humans

to verify classifications from ML models applied to extracting relevant information from

natural language intents and correct them when necessary by providing feedback. This

feedback loop enables operators to verify and, therefore, trust decisions and classifications

made by such models.

In this thesis, we introduced LUMI, a conversational assistant (i.e., chatbot) that

allows operators to use natural language to describe high-level network intents, filling the

existing gap in IBN literature. LUMI relies on highly accurate ML techniques from NLP

to extract information from input intents and uses its conversational interface to confirm

with operators if the parsed information is correct. More importantly, LUMI can collect

feedback from operators on its classifications and uses that feedback to retrain and im-

prove the underlying ML model accuracy over time. We relied on LUMI to answer the

first research question, and our results showed that LUMI is capable of accurately extract-

ing information from both synthetic and real-world input intents. We also conducted a

small-scale user study with network practitioners from different backgrounds and exper-

tise to assess LUMI’s usability, where 88.5% of participants stated they would instead use

LUMI exclusively or in conjunction with configuration commands.

RQ-2: In a self-driving network, can operators trust decisions and classifications

made by current Machine Learning models used to self-configure the network based on

monitored data analysis?

Answer: ML models widely applied to solve networking problems fail to fulfill

their tasks when put under minimal stress. Since it is unfeasible for an operator to verify

every decision in a zero-touch management loop manually, our results indicate that oper-

ators are, in fact, correct not to trust ML models to configure the network based solely on

monitored data automatically.

In this thesis, we focused on analyzing the application of ML techniques in the

network security problem space as a use case for the second management loop in a self-

driving network. Based on a motivating use case from the network performance domain,

we proposed a revision to the traditional AI/ML pipeline. Our new AI/ML pipeline re-

lies on XAI techniques to extract decision-tree explanations from black-box ML models,

elevating them to the role of first-class citizens, becoming the primary vehicle for scru-

tinizing decisions from ML models. We selected a few key works from the existing lit-

erature to put under scrutiny and reproduce their results. Our analysis showed that while
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most works in the literature report outstanding classification accuracy in their evaluation

scenarios, the classifications made are not credible enough to be put under unforeseen

real-world traffic and could lead to system-breaking configurations to be applied.

RQ-3: Is there a feasible way to increase operator trust in the decision-making

process of Machine Learning models that configure a self-driving network?

Answer: By employing a new research pipeline for AI/ML in networking and net-

work security, one can expose decisions made by black-box ML classifiers and therefore

increase trust in those decisions. Given this knowledge of the “inner-workings” of ML

models, operators can choose to relinquish control to the ML model if they agree with the

decision made by the model.

In this thesis, we introduce TRUSTEE, a novel model-agnostic method for extract-

ing global explanations from black-box ML models in the form of decision trees. To

ensure the extracted explanations are manageable in size while maintaining high fidelity

to the black-box model’s decisions, we introduce the Top-k pruning method. Finally, to

help operators spot the presence of inductive biases in the learning strategies employed by

the ML models, we summarize and condense a series of analyses based on the extracted

explanation and underlying data into a trust report. This set of novel models allowed us to

implement our proposed AI/ML pipeline in practice and improve trust in ML-based meth-

ods of self-driving networks. In addition, our results and experiments show that TRUSTEE

is capable of producing stable global explanations, with a better fidelity-complexity trade-

off than existing methods.

6.2 Future Work and Open Problems

Finally, while the work presented in this thesis advances the state-of-the-art on

multiple fronts, from IBN to XAI, with promising and necessary steps towards fully real-

izing self-driving networks, several challenges and open problems remain to be tackled.

We list some of these research opportunities for future work in this section.

6.2.1 Ambiguities in natural language policies

NLP policies have the potential for ambiguities. In exploring this issue further,

we extracted pairs of intents from our campi dataset and generated 213 pairs in all.



111

Furthermore, we adapted existing NLP efforts on contradiction detection in general text

(MACCARTNEY et al., 2006; MARNEFFE; RAFFERTY; MANNING, 2008; TAWFIK;

SPRUIT, 2018; LINGAM et al., 2018; RITTER et al., 2008; HARABAGIU; HICKL; LA-

CATUSU, 2006; SARAFRAZ, 2012) by developing a Random Forest Classifier trained

to classify pairs of network intents based on contradiction indicators (features) found be-

tween the two input intents. The classifier flagged 9 cases with potential contradictions.

Manual inspection of all 213 intent pairs indicated that most of these cases were

benign. They typically corresponded to cases where universities expressed policies that

depended on a user’s total traffic usage over different periods (e.g., a 10 GB weekly limit

vs. a 5 GB daily limit). The two policies could be applied in any order with no negative

consequences in these cases. One interesting case, however, was a campus that expressed

two different policies at different locations on their website. The first policy indicated

H323 video conferencing was allowed by the University firewall, while the second indi-

cated MSN audio and video communications were not allowed. This is a case where the

relative precedence between the two policies impacts their combined effect.

A promising research opportunity would be to combine LUMI with formal meth-

ods to help detect ambiguities that are potentially of concern. Specifically, translating

NLP policies into LUMI intents enables the use of automated methods that can check

whether the impact of applying two policies is sensitive to their relative ordering but also

provides opportunities to use methods for detecting policy conflicts (PRAKASH et al.,

2015; ABHASHKUMAR et al., 2017).

6.2.2 Deploying Lumi in a production network

The initial design of LUMI was aimed at solving management problems that arise

in a Campus network environment. We have engaged in discussions with operators of our

campus network regarding validating LUMI in production. Below, we discuss some of the

issues raised by the operators and outline challenges and potential solutions.

Co-existing with current technologies. Most campus networks consist of legacy

equipment from multiple vendors with vendor-specific configuration interfaces. Getting

LUMI “production-ready" requires developing a Nile compiler that can accommodate this

diversity in legacy devices. Since the Nile abstraction offers isolation from the system’s

interface and minimizes the need for changes in the early stages of the LUMI pipeline, it is

well-suited for OpenConfig (OPENCONFIG, 2016), a vendor-neutral model for network

management that is supported by an increasing number of devices.
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Extending LUMI for other use-cases. While we have focused on Campus net-

works, deploying LUMI in other environments may require extending its feature set. For

example, unlike the Campus networks we have access to, multi-tenant data-center net-

works may use VXLANs or NVGRE as solutions to scalably share network infrastructure

between tenants. However, LUMI is easily extended to support such features, and we

illustrate the four generic steps required for such extension with the VXLAN example.

In a first step, one must decide the abstraction level in which LUMI should handle nat-

ural language text. Consistent with LUMI’s design philosophy, for VXLAN support, a

high-level intent could be “Block incoming traffic for tenant A”, where “tenant A” refers

to a specific VXLAN Network Identifier (VNI). Next, LUMI’s training dataset has to be

augmented appropriately, the Nile language must be extended with new keywords (e.g.,

a tenant(’A’) operator for the VXLAN example), and the Nile compiler has to be

instrumented to handle the new set of configurations. In the case of VXLAN, similarly

to VLANs, tenants’ names must be mapped to VNIs. Lastly, since OpenFlow switches

support VXLANs, all that is needed is to extend Merlin to allow matching traffic based

on VNI for each tenant.

6.2.3 How to verify if Lumi is correct?

We discuss potential sources of errors in each stage of the LUMI pipeline and

possible solution approaches.

Translating human language to Nile intents. Information extraction from nat-

ural language is inherently prone to errors. LUMI alleviates this problem by asking op-

erators for feedback and using their responses to check if the extracted information was

correct. Over the longer term, we plan to leverage ongoing ML research efforts that focus

on making ML models more robust and secure so they can be deployed in security- and

safety-critical settings such as production network environments (HUANG et al., 2017;

BASTANI et al., 2016).

Compiling Nile intents. Recent works on formal network verification (BECK-

ETT et al., 2017; ABHASHKUMAR; GEMBER-JACOBSON; AKELLA, 2020; PRABHU

et al., 2020) provide sub-second verification of waypointing, reachability, and isolation

properties and are well suited for verifying configurations generated by LUMI-compiled

intents. LUMI supports time-constrained intent deployment and QoS features. Despite

recent work on verifying such properties (e.g., (SUNG et al., 2009; KIM et al., 2015)),



113

more advances may be needed in the area, including the possible adaption of existing

verification techniques to a LUMI-specific setting.

Post-deployment behavior monitoring. Ultimately, we envision the LUMI pipeline

shown in Figure 3.2 to include a monitoring module for verifying that the deployed con-

figurations respect the intents produced by the refinement process and achieve the objec-

tive(s) that the operator expressed (in natural language) in the first place. By monitoring

both the traffic and configurations of specific devices affected by a deployed intent, such a

module would allow operators to query at any time if the deployed intent produced the de-

sired network behavior (FOSTER et al., 2020), thereby improving the operators’ trust in

relying on LUMI. However, deciding which traffic, devices, and properties to monitor will

require instrumenting networks with an unprecedented level of control that is currently

only possible by leveraging the latest programmable data plane technologies (GUPTA

et al., 2018; BASAT et al., 2020). At the same time, developing such a module can be

viewed as a first step toward realizing the vision of self-driving networks (MOGUL, 2018;

FEAMSTER; REXFORD, 2018; BEHRINGER et al., 2015).

6.2.4 Distilling stable explanations from TRUSTEE

We show in Chapter 5 that TRUSTEE is capable of generating multiple different

explanations for the same black-box ML model, as it relies on a fraction of the training

data to produce decision trees. While our results demonstrate that these explanations are

mostly in agreement, we believe that there is an opportunity to reconcile those multiple

explanations into a single stable decision tree. One possible alternative to achieve that is to

rely on methods for model distillation (HINTON; VINYALS; DEAN, 2015; BUCILUA;

CARUANA; NICULESCU-MIZIL, 2006), which aim to encode large and complex mod-

els into smaller and simpler light-weight models. As such, one could envision a method

that compresses different classification rules from multiple decision trees generated by

TRUSTEE into a single decision tree. This would further reduce the possibility of gener-

ating misleading explanations from the underlying data.
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APPENDIX A — ETHICAL CONCERNS

In Chapter 4, we describe a dataset collected and curated in the campus network

from the University of California Santa Barbara (UCSB). While collecting that dataset

does not have any activity that directly involves human subjects, it does involve packet

traces and associated IDS alerts from the campus network, which may contain personally

identifiable information, or PII. Thus, we performed a proper anonymization process for

this dataset. Below, we explain the steps taken to conduct our research ethically.

The campus dataset removes any personally identifiable information. All of our

data collection and research processes were reviewed and approved by the university’s in-

stitutional review board (IRB). The UCSB performs separate reviews to obtain researcher

access to administrative data. Since this dataset comes from an operational campus net-

work, the data collection and research processes were also separately reviewed by a com-

mittee formed by the institute. The committee, which comprises campus stakeholders and

IT experts, has approved to use this dataset for research purposes. All researchers who

have or have had access to the campus dataset has gone through proper training before

accessing and viewing the dataset. Moreover, all researchers and research projects are

reviewed again, every two to three years. Figure A.1 shows the data collection pipeline

we instrumented at our campus network. Researchers only had access to the collection

server, which is colored in shaded-gray.

Anonymization effort: For the campus dataset, to avoid extracting any privacy-

sensitive information, we only collected the five tuples from a packet and the set of IDS

rules it triggered. To protect user anonymity, our network operator used a modified ON-

TAS (KIM; GUPTA, 2019) to anonymize all MAC addresses and local, or campus in-

ternal, IP addresses. The program anonymizes privacy-sensitive fields in packets at a

programmable data plane at line-rate. Thus, the mirrored campus trace was anonymized

before the packet trace was even captured at our collection server. We have preserved off-

campus, or non-local, IP addresses. This is because our analysis depends on identifying

certain Autonomous Systems (AS) or applications (e.g., Zoom) in the Internet. Although

a remote IP address theoretically can be used to identify a particular off-campus recipient

in the Internet, we consider this sufficiently hard to do. Most IP addresses on the Internet

belongs to large ISPs and corporations (e.g., AT&T, Amazon, Google) or enterprise net-

works, and are mostly assigned dynamically using the DHCP protocol. Thus, given just

a non-campus IP address, it requires considerable effort to be correctly and confidently
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Figure A.1 – IDS alert and packet trace collection system.

pinpoint who exactly owned and used the IP address at a given time. Absolutely no effort

was made by researchers to pinpoint or identify a particular user using a non-campus,

external IP address.

Dataset management: Our campus dataset is stored at a secure infrastructure

that is managed by professional IT staff. Only IRB-trained and approved researchers and

authorized IT staff members are allowed to access the storage space. The dataset is strictly

prohibited from being moved or copied out of the managed infrastructure in general.

Dataset curation: We curated a dataset of real-world traffic from our university

campus network. The collected anonymized headers in nPrint format are available along-

side the reproducibility assets of the paper (JACOBS et al., 2022b).

We mirrored to our servers all the traffic of the main campus up-link which desti-

nation or source IP addresses were in the university’s internal network. We also installed

the Suricata IDS 6.0.4 with publicly available rules and selected a subset of rules to be

captured, aiming to find the same attacks as were presented in the CIC-IDS-2017 dataset

(see corresponding rules in enable.conf and disable.conf files of the dataset). After that,

we configured the mirrored traffic to be sent to the Suricata IDS host without any mod-

ifications for intrusion analysis, and at the same time, we configured our equipment to

truncate the packets leaving only the first 93 bytes and save remaining headers. The re-

sulting truncated PCAPs and Suricata’s fast.log make up the dataset for the analysis.

Using the previously described setup, we captured 12 hours of live network traffic

during one of the working days in January 2022. We anonymized all the IP addresses and

preprocessed the PCAPs with nPrint according to the original nPrint IDS case preprocess-

ing. For the resulting dataset, we considered any flow that triggered the alert from Suricata

IDS as an attack of the corresponding type, so port scans with different settings were all

labeled simply as "port scan". For the analysis of nPrintML, we selected a balanced subset

of each category that we observed during the traffic capture.
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APPENDIX B — SCIENTIFIC PRODUCTION

The research work presented in this thesis was reported to the scientific commu-

nity through paper submissions to renowned conferences and journals. The process of

doing research, submitting papers, gathering feedback, and improving the work helped to

achieve the maturity hereby presented.

B.1 Papers: Published and Ongoing Work

The following list shows the main papers and articles related to this thesis.

1. Refining network intents for self-driving networks. Arthur Selle Jacobs, Ricardo

José Pfitscher, Ronaldo Alves Ferreira, Lisandro Zambenedetti Granville. Pro-

ceedings of the Annual Conference of the ACM SIGCOMM Afternoon Workshop

on Self-Driving Networks (SelfDN 2018). Budapest, Hungary, 2018, pp 15-21.

<http://doi.acm.org/10.1145/3229584.3229590>

• Abstract: Recent advances in artificial intelligence (AI) offer an opportu-

nity for the adoption of self-driving networks. However, network operators

or home-network users still do not have the right tools to exploit these new

advancements in AI, since they have to rely on low-level languages to specify

network policies. Intent-based networking (IBN) allows operators to specify

high-level policies that dictate how the network should behave without wor-

rying how they are translated into configuration commands in the network

devices. However, the existing research proposals for IBN fail to exploit the

knowledge and feedback of the network operator to validate or improve the

translation of intents. In this paper, we introduce a novel intent-refinement

process that uses machine learning and feedback from the operator to translate

the operator’s utterances into network configurations. Our refinement process

uses a sequence-to-sequence learning model to extract intents from natural

language and the feedback from the operator to improve learning. The key

insight of our process is an intermediate representation that resembles natural

language that is suitable to collect feedback from the operator but is structured

enough to facilitate precise translations. Our prototype interacts with a net-

work operator using natural language and translates the operator input to the

http://doi.acm.org/10.1145/3229584.3229590
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intermediate representation before translating to SDN rules. Our experimental

results show that our process achieves a correlation coefficient squared (i.e.,

R-squared) of 0.99 for a dataset with 5000 entries and the operator feedback

significantly improves the accuracy of our model.

• Type: Workshop paper.

• Status: Published.

• Qualis: None.

• Award: Best paper.

2. Refining network intents for self-driving networks. Arthur Selle Jacobs, Ri-

cardo José Pfitscher, Ronaldo Alves Ferreira, Lisandro Zambenedetti Granville.

ACM SIGCOMM Computer Communication Review, Volume 48, Issue 5, 2018,

pp 55–63. <https://doi.org/10.1145/3310165.3310173>

• Abstract: Recent advances in artificial intelligence (AI) offer an opportu-

nity for the adoption of self-driving networks. However, network operators

or home-network users still do not have the right tools to exploit these new

advancements in AI, since they have to rely on low-level languages to specify

network policies. Intent-based networking (IBN) allows operators to specify

high-level policies that dictate how the network should behave without wor-

rying how they are translated into configuration commands in the network

devices. However, the existing research proposals for IBN fail to exploit the

knowledge and feedback from the network operator to validate or improve

the translation of intents. In this paper, we introduce a novel intent-refinement

process that uses machine learning and feedback from the operator to translate

the operator’s utterances into network configurations. Our refinement process

uses a sequence-to-sequence learning model to extract intents from natural

language and the feedback from the operator to improve learning. The key

insight of our process is an intermediate representation that resembles natural

language that is suitable to collect feedback from the operator but is structured

enough to facilitate precise translations. Our prototype interacts with a net-

work operator using natural language and translates the operator input to the

intermediate representation before translating to SDN rules. Our experimental

results show that our process achieves a correlation coefficient squared (i.e.,

https://doi.org/10.1145/3310165.3310173
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R-squared) of 0.99 for a dataset with 5000 entries and the operator feedback

significantly improves the accuracy of our model.

• Type: Journal article.

• Status: Published.

• Qualis: A3.

3. Deploying Natural Language Intents with Lumi. Arthur Selle Jacobs, Ricardo

José Pfitscher, Ronaldo Alves Ferreira, Lisandro Zambenedetti Granville, Sanjay

Rao. Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos.

Beijing, China, 2019, pp 82–84. <https://doi.org/10.1145/3342280.3342315>

• Type: Poster.

• Status: Published.

• Qualis: None.

4. Hey, Lumi! Using Natural Language for Intent-Based Network Management.

Arthur Selle Jacobs, Ricardo José Pfitscher, Rafael Hengen Ribeiro, Ronaldo Alves

Ferreira, Lisandro Zambenedetti Granville, Walter Willinger, Sanjay Rao. 2021

USENIX Annual Technical Conference (USENIX ATC 21). Virtual Conference,

2021, pp 625-639. <https://www.usenix.org/conference/atc21/presentation/jacobs>

• Abstract: In this work, we ask: what would it take for, say, a campus net-

work operator to tell the network, using natural language, to "Inspect traffic

for the dorm"? How could the network instantly and correctly translate the re-

quest into low-level configuration commands and deploy them in the network

to accomplish the job it was "asked" to do? We answer these questions by pre-

senting the design and implementation of Lumi, a new system that (i) allows

operators to express intents in natural language, (ii) uses machine learning and

operator feedback to ensure that the translated intents conform with the oper-

ator’s goals, and (iii) compiles and deploys them correctly in the network. As

part of Lumi, we rely on an abstraction layer between natural language intents

and network configuration commands referred to as Nile (Network Intent Lan-

guagE). We evaluate Lumi using synthetic and real campus network policies

and show that Lumi extracts entities with high precision and compiles intents

in a few milliseconds. We also report on a user study where 88.5% of par-

https://doi.org/10.1145/3342280.3342315
https://www.usenix.org/conference/atc21/presentation/jacobs


133

ticipants state they would rather use Lumi exclusively or in conjunction with

configuration commands.

• Type: Conference paper.

• Status: Published.

• Qualis: A1.

5. AI-ML and Network Security: The Emperor has no Clothes. Arthur Selle Ja-

cobs, Roman Beltiukov, Walter Willinger, Ronaldo Alves Ferreira, Arpit Gupta,

Lisandro Zambenedetti Granville. ACM Conference on Computer and Communi-

cations Security (CCS) 2022. Los Angeles, CA, USA, 2022, pp 1537–1551.

• Abstract: Several recent research efforts have proposed Machine Learning

(ML)-based solutions that can detect complex patterns in network traffic for

a wide range of network security problems. However, without understanding

how these black-box models are making their decisions, network operators are

reluctant to trust them and deploy them in their production settings. One rea-

son for this reluctance is a problem called underspecification, defined here as

the failure to specify (an ML model) in adequate detail.In practice, this prob-

lem manifests itself in ML models that exhibit unexpectedly poor behavior

when deployed in real-world settings and is not unique to the network security

domain. Common among modern ML models, addressing this problem has

prompted growing interest in developing interpretable ML solutions such as

decision trees that can “explain” how a given black-box model makes its deci-

sions and that can be easily interpreted by humans, at least in theory. However,

synthesizing decision trees that capture a given black-box model’s decisions

with high fidelity while also being manageable in practice (i.e., small enough

in size for humans to comprehend) is challenging. In this paper, we focus on

synthesizing high-fidelity and low-complexity decision trees to help network

operators determine if their ML models suffer from the problem of underspeci-

fication. To this end, we develop TRUSTEE, a framework that takes an existing

ML model and training dataset as input and generates a high-fidelity, easy-to-

interpret decision tree and associated trust report as output. Using publicly

available datasets and published learning models, we show how practitioners

can use TRUSTEE to identify three common instances of model underspecifi-

cation; i.e., evidence of shortcut learning, presence of spurious correlations,
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APPENDIX C — AWARDS

Throughout the course of the doctoral studies, the present student and research

topic were granted the following awards.

1. 2020 IBM PhD Fellowship Award. Arthur Selle Jacobs

• Year: 2020.

• Duration: 2 years.

• Description: For 70 years IBM has recognized and rewarded outstanding PhD

students around the world through a highly competitive IBM PhD Fellowship

Award program. The distinguished 2021 IBM PhD Fellowship Award recip-

ients demonstrated expertise in pioneering research areas, such as artificial

intelligence, hybrid cloud technology, quantum computing, data science, se-

curity, and the next generation of cutting-edge processors. The 2020 IBM

PhD Fellowship Award Program received hundreds of applications from 183

universities in 32 countries. Applications were reviewed by eminent technol-

ogists from across IBM. The award recipients demonstrated academic excel-

lence as well as provided innovative, exceptional research proposals.
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APPENDIX D — RESUMO ESTENDIDO

Conforme as redes modernas crescem em tamanho e complexidade, elas também

se tornam cada vez mais sujeitas a erros humanos (BECKETT et al., 2017; FEAMSTER;

REXFORD, 2018). Essa tendência tem levado a indústria e a academia a tentar automati-

zar as tarefas de gerenciamento e controle, com o objetivo de reduzir a interação humana

com a rede e erros humanos (BECKETT et al., 2016; APOSTOLOPOULOS, 2020;

NETWORKS, ; VMWARE, 2021). Idealmente, os pesquisadores imaginam um projeto

de rede que não seja apenas automático (i.e., , dependente de instruções humanas), mas

autônomo (i.e., , capaz de tomar suas próprias decisões). A rede autônoma tem sido uma

meta buscada há anos, com diversos conceitos, projetos e implementações, mas nunca

foi totalmente realizada, principalmente devido às limitações tecnológicas (FEAMSTER;

REXFORD, 2018). Avanços recentes em Inteligência Artificial (IA) e Aprendizado de

Máquina (Machine Learning — ML) introduziram ar fresco neste conceito, ressurgindo

como o conceito renomeado de redes autodirigidas, em vista de suas contrapartes de au-

tomóveis autodirigidos.

D.1 Redes Autodirigidas

Embora o conceito de redes autodirigidas não tenha uma definição padronizada,

com cada empresa e pesquisador tendo sua própria visão e arquitetura (MOGUL, 2018;

FEAMSTER; REXFORD, 2018; JUNIPER, 2017; NETWORKS, 2018; HUAWEI, 2019;

WATTS, 2020; FOSTER et al., 2020), alguns elementos de design são comuns em todas

as instâncias. Como nenhuma definição padrão foi adotada como padrão pela comu-

nidade, contamos com a seguinte definição de rede autônoma, resumindo os principais

aspectos encontrados na literatura, que está detalhadamente descrita no Capítulo 2.

Definition D.1.1. Uma rede autodirigidas é uma rede autônoma capaz de agir de acordo

com as intenções de alto nível de uma operadora e se adaptar automaticamente às mu-

danças no tráfego e no comportamento dos usuários. Para alcançar essa visão, uma rede

precisaria cumprir quatro requisitos principais: (i) compreender as intenções de alto nível

de um operador para ditar seu comportamento, (ii) monitorar-se com base nas intenções

de entrada, (iii) prevêr e identificar padrões em dados monitorados e (iv) adaptar-se a

novos comportamentos sem a intervenção de um operador.
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Na Figura D.1, apresentamos um projeto de alto nível de uma rede autodirigida

que resume as características e requisitos encontrados na literatura.

Network Substrate
Monitor

...
...

...
...

...

...

Operator LearnInterpret & Compile

(1) Intent
(6) Decisions

(2) Validation

(3 & 7) Configs (5) Data(4) Behavior

Figure D.1 – Projeto de uma rede autodirigida.

Este projeto de rede autodirigida é composto de dois ciclos de gerenciamento.

No lado esquerdo da Figura D.1, vemos o primeiro ciclo de gerenciamento (1, 2, 3 e

4), que começa com um operador (1) especificando intenções de alto nível que ditam

como a rede deve se comportar — e.g., , definindo metas relacionadas à qualidade de

serviço, segurança e desempenho - sem se preocupar com os detalhes de baixo nível

que são necessários para programar a rede para atingir essas metas (também conhecido

como redes baseada em intenção, ou Intent-Based Networking — IBN) (CLEMM et al.,

2019). Idealmente, especificar essas intenções deve ser tão fácil quanto descrevê-las em

linguagem natural. No entanto, permitir que os operadores usem livremente a linguagem

natural para descrever as intenções da rede requer que a rede empregue técnicas de ML

de última geração do Processamento de Linguagem Natural (PLN) (JURAFSKY; MAR-

TIN, 2019), que estão sempre sujeitas a gerar erros e classificações incorretas. Portanto,

depois de extrair informações relevantes das intenções de entrada, uma rede autodirigida

iria então (2) validar os dados extraídos com o operador antes de (3) compilá-los em

configurações reais e implantá-los no substrato de rede. Para fechar o primeiro ciclo de

gerenciamento, a rede então monitoraria a si mesma de acordo com as intenções descritas,

e coletaria o comportamento do tráfego para (4) apresentá-lo aos operadores para verificar

se o comportamento implementado corresponde aos objetivos iniciais.
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No lado direito da Figura D.1, o segundo ciclo de gerenciamento (5, 6 e 7) começa

depois que as intenções são implantadas no substrato da rede, onde os dispositivos são

instrumentados com recursos de monitoramento para coletar o uso e o tráfego dados.

Esses dados são então (5) analisados e processados para produzir (6) decisões (autôno-

mas) usando modelos de ML treinados, que idealmente se adaptariam e se retreinariam

constantemente à medida que novos dados fossem coletados. As decisões tomadas por

tais modelos de ML seriam então processadas e (7) compiladas em configurações para

ajustar o comportamento da rede (semelhante a 3), fechando o segundo ciclo de geren-

ciamento. Mais notavelmente, duas áreas de rede seriam as que mais se beneficiariam

desse ciclo de gerenciamento: segurança cibernética e desempenho da rede. Por exem-

plo, as decisões dos modelos de ML podem incluir a identificação do tráfego de ataque

que precisa ser bloqueado ou mitigado, ou até mesmo otimizações de uso de recursos

com base na carga de tráfego. Observem que, apesar de também depender fortemente

de técnicas de ML propensas a erros, dado o período de tempo e a frequência com que

tais decisões e implantação de configurações ocorreria para acompanhar o tráfego de en-

trada, seria impossível incluir validação humana neste segundo ciclo de gerenciamento,

em contraste com o primeiro. Além disso, outro aspecto importante a ser lembrado é que

autoconfigurações feitas com base em decisões de modelos de ML no segundo ciclo de

gerenciamento podem prejudicar e contradizer as configurações feitas por meio de intents

de rede no primeiro ciclo de gerenciamento. A possibilidade de tais conflitos surgirem,

juntamente com a incapacidade de incluir validações feitas por humanos, aumenta as pos-

síveis consequências para qualquer decisão tomada por modelos de ML no segundo ciclo

de gerenciamento.

D.2 Definição de Problema e Perguntas de Pesquisa

Como os dois ciclos de gerenciamento na rede autodirigida apresentada na Figura

D.1 dependem fortemente de modelos de ML para tomar decisões e classificações que afe-

tam diretamente a rede, um problema específico se torna proeminente com este design:

confiança. Aplicar ML para resolver tarefas de gerenciamento de rede, como as descritas

acima, tem sido uma tendência popular entre os pesquisadores recentemente (BOUTABA

et al., 2018). No entanto, apesar do tópico receber muita atenção, os operadores da indús-

tria têm relutado em tirar proveito de tais soluções, principalmente por causa da natureza

de caixa preta dos modelos de ML que produzem decisões sem qualquer explicação ou
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razão para as quais essas decisões foram tomadas. Dada a natureza de alto risco das redes

de produção, torna-se impossível confiar em um modelo de ML que pode tomar ações

inadequadas automaticamente e, o mais importante para o escopo desta tese, um desafio

proibitivo que deve ser abordado para que uma rede autodirigidas seja alcançada.

Definição de Problema: A presente tese visa habilitar redes autônomas com ML,

abordando o problema da inerente falta de confiança nos modelos de ML que as capaci-

tam, avaliando seus processos de tomada de decisão.

Para abordar o problema descrito acima, devemos primeiro investigar e avaliar

a precisão e a credibilidade das classificações feitas pelos modelos de ML usados para

processar intenções de alto nível do operador. Em seguida, devemos analisar e avaliar a

precisão e credibilidade das decisões tomadas pelos modelos de ML usados para autocon-

figurar a rede de acordo com os dados monitorados. Por fim, devemos investigar se existe

um método viável para melhorar a confiança dos operadores nas decisões tomadas pelos

modelos de ML em ambos ciclos de gerênciamento. Para pavimentar o caminho para

a resolução do problema acima, formulamos três perguntas de pesquisa que orientam o

desenvolvimento desta tese. A primeira pergunta de pesquisa que esta tese apresenta diz

respeito ao uso de técnicas de ML para analisar informações relevantes de intenções de

rede de entrada e compilá-las em uma configuração de rede que atenda às intenções dadas.

PP-1: Em uma rede autodirigida, os operadores podem confiar nas decisões e

classificações feitas pelos modelos de aprendizado de máquina atuais usados para con-

figurar a rede com base em intenções de alto nível?

A primeira pergunta de pesquisa é abordada no Capítulo 3. Para tanto, é preciso

avaliar a confiabilidade e a usabilidade de um sistema habilitado para IBN que permite aos

operadores de rede descrever as intenções da rede usando linguagem natural livremente

e compilá-las na configuração da rede de acordo, conforme mostrado no primeiro ciclo

de gerenciamento do rede de condução apresentada na Figura D.1. No entanto, ao revisar

a literatura existente, evidenciamos que nenhum sistema de ponta-a-ponta foi proposto

para permitir isso. Portanto, nosso primeiro passo para responder PP-1 é propor LUMI,

um assistente de conversação (i.e., chatbot) que permite aos operadores usarem linguagem

natural para descrever intenções de rede de alto nível. LUMI utiliza de técnicas de ML al-

tamente precisas de PLN para extrair informações de intenções de entrada e usa sua inter-

face de conversação para confirmar com os operadores se as informações extraidas estão

corretas. Para obter a confirmação dos operadores, propomos a Network Intent Language

(Nile), uma linguagem de definições de intenções de alto nível que se assemelha ao in-
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glês estruturado, usando-o como uma camada de abstração entre intenções em linguagem

natural e comandos de configuração de rede. Mais importante ainda, LUMI é capaz de

coletar feedback dos operadores nas intenções do Nile criadas com informações extraídas

da linguagem natural e usa esse feedback para treinar novamente e melhorar a precisão do

modelo de ML subjacente ao longo do tempo. Em nossa avaliação, mostramos que LUMI

é capaz de extrair com precisão informações de inteções de entrada sintéticos e do mundo

real, e realizamos um estudo de usuário com profissionais de rede de diferentes origens e

níveis de especialização para avaliar sua usabilidade. Os resultados deste capítulo indicam

que, com proteção mínima, os operadores podem, de fato, confiar nas classificações feitas

pelos modelos de ML atuais usados para analisar informações de inteções de alto nível.

A segunda pergunta de pesquisa que esta tese coloca diz respeito ao uso de mode-

los de ML para tomar decisões com base em dados coletados dos dispositivos de substrato

de rede, e configurar automaticamente a rede para ajustar e otimizar o uso de recursos e

segurança.

PP-2: Em uma rede autodirigida, os operadores podem confiar nas decisões e

classificações feitas pelos modelos atuais de aprendizado de máquina usados para auto-

configurar a rede com base na análise de dados monitorados?

A segunda pergunta de pesquisa é abordada no Capítulo 4. Para tanto, focamos

nossos esforços na análise da aplicação de técnicas de ML em problemas de segurança

de rede, como um caso de uso representando o segundo ciclo de gerenciamento da rede

autônoma apresentada na Figura 1.1. Como mencionado anteriormente, muitos trabalhos

que aplicam classificadores baseados em ML foram propostos no domínio da segurança

de rede. Portanto, para responder a PP-2, pesquisamos a literatura existente para sele-

cionar alguns trabalhos reprodutíveis baseados em ML para analisar e reproduzir seus

resultados. Enquanto a maioria dos trabalhos na literatura relata uma excelente precisão

de classificação em seus cenários de avaliação, estamos preocupados com a credibili-

dade das classificações feitas. Em particular, como não podemos esperar que operadores

revisem todas as decisões tomadas pelos modelos de classificação em um ciclo de geren-

ciamento acelerado, se um modelo treinado com conjuntos de dados sintéticos ou irreais

falhar quando apresentado a tráfego imprevisto do mundo real, isso pode levar a resulta-

dos desastrosos. Para esmiuçar os resultados dos trabalhos selecionados, contamos com

o emergente campo de técnicas de IA eXplicável (IAX), que nos permitem extrair ex-

plicações de caixa-branca de modelos de caixa-preta. O método de IAX específico us-

ado para examinar modelos é descrito posteriormente no Capítulo 5. Nossos resultados
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mostram que, quando examinados, os modelos de ML analisados não cumprem suas tare-

fas, indicando que os operadores estão, de fato, corretos em não confiar nos modelos de

ML para configurar automaticamente a rede com base apenas nos dados monitorados.

Finalmente, a terceira e última questão de pesquisa que esta tese apresenta diz

respeito à falta de confiança dos operadores nos modelos de ML dos quais as redes au-

todirigidas dependem, e como essa confiança pode ser aumentada.

PP-3: Existe uma maneira viável de aumentar a confiança do operador no pro-

cesso de tomada de decisão de modelos de aprendizado de máquina que configuram uma

rede autônoma?

A terceira e última questão de pesquisa é respondida no Capítulo 5. Para re-

sponder PP-3, primeiro igualamos “um operador que confia em um modelo de IA/ML”

com “um operador que se sente confortável em abrir mão do controle para o modelo

de IA/ML” (LIPTON, 2018). Dada essa definição específica do que significa para um

modelo de IA/ML gerar confiança, pesquisamos o estado da arte para encontrar métodos

IAX para examinar modelos de ML e identificamos uma lacuna nos métodos IAX ex-

istentes para produzir explicações fiéis para qualquer dado modelo de caixa preta. Tais

métodos aumentariam potencialmente a confiança dos operadores no processo de tomada

de decisão dos modelos de ML, desde que as explicações produzidas fossem fiéis, de

tamanho gerenciável e, acima de tudo, sólidas. Ao tentar preencher essa lacuna e respon-

der PP-3, neste capítulo, propomos TRUSTEE, um novo método de IAX para produzir

explicações de alta fidelidade na forma de árvores de decisão que aproximam a tomada

de decisão processo a partir de modelos de caixa preta, independente de modelo. Além

disso, também implementamos uma série de análises com base na explicação da árvore de

decisão gerada e nos dados subjacentes, condensados em um relatório de confiança. Nos-

sos resultados mostram que as explicações produzidas pelo TRUSTEE, juntamente com os

relatórios de confiança gerados, permitem que operadores e especialistas de domínio ex-

aminem cuidadosamente os modelos de ML e decidam se são confiáveis ou sofrem de

algum viés indutivo. Os resultados que obtivemos respondendo PP-2 e PP-3 confirmam

nossa intuição de que os modelos de ML amplamente aplicados para resolver problemas

de rede não foram submetidos ao escrutínio adequado e podem quebrar facilmente se apli-

cados em cenários de mundo real. Esses modelos devem ser corrigidos para cumprir suas

tarefas adequadamente na prática, para que possamos um dia alcançar redes autodirigidas

de fato.
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D.3 Principais Contribuições

No processo de responder às três questões de pesquisa colocadas nesta tese, faze-

mos as seguintes contribuições:

• Propomos um sistema de gerenciamento de rede baseado em intenção de ponta

a ponta com uma interface de conversação que permite aos operadores usar lin-

guagem natural para descrever suas intenções desejadas para o comportamento da

rede. Contamos com esse sistema para avaliar a precisão das técnicas atuais de

ML na extração de informações relevantes de intents de alto nível, que podem ser

verificadas manualmente pelos operadores por meio da interface de conversação.

• Revisamos a literatura existente sobre o uso de técnicas de ML para segurança de

rede e examinamos vários casos de uso da literatura para analisar a credibilidade

das decisões tomadas por modelos de ML altamente precisos que permitem uma

rede autônoma. Os resultados que obtivemos revelam problemas sistemáticos so-

bre como os pesquisadores vêm empregando classificadores baseados em ML para

resolver problemas de segurança de rede.

• Para aumentar a confiança e confiabilidade da abordagem atual aos modelos de ML,

propomos um novo pipeline metodológico de como pesquisadores e operadores de-

vem empregar e avaliar técnicas de ML para resolver problemas de rede. Para

implementar nosso pipeline proposto, apresentamos um novo método de IAX para

produzir explicações a partir de qualquer modelo de ML de caixa preta na forma de

árvores de decisão. Também introduzimos um novo método de poda para garantir

que as explicações extraídas sejam concisas, mantendo uma boa fidelidade, e um

relatório de confiança que condensa e analisa os aspectos mais relevantes da expli-

cação extraída para ajudar os especialistas do domínio a identificar problemas com

os modelo de caixa preta.
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