
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

FELIPE COLOMBELLI

Assessing the Applicability of Graph Neural
Networks for Cancer Staging Using Sample

Similarity Networks

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Mariana Recamonde Mendoza

Porto Alegre
September 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Rodrigo Machado
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

AGRADECIMENTOS

Agradeço primeiramente aos meus pais, Margarete Rathke Colombelli e Alencar

José Colombelli, que desde cedo sempre me ensinaram sobre a importância dos estudos

por meio de conversas e principalmente exemplos. Agradeço também ao meu irmão,

Roberto Colombelli, por ser o meu principal farol nessa jornada em busca pelo conhe-

cimento, o qual de forma completamente orgânica e indireta me ensinou sobre as coisas

mais importantes da vida, e, sobretudo, aquelas invioláveis que jamais podemos deixar de

lado. Obrigado por todo o amor e proteção, sem vocês eu jamais estaria onde estou.

Este trabalho, porém, também foi resultado da influência de inúmeras outras pes-

soas que participam ou participaram da minha vida, sem as quais esta seção de agradeci-

mentos estaria incompleta. Agradeço de forma especial:

Aos meus outros importantes membros da família que estiveram sempre me apoiando

e nunca deixaram de acreditar em mim: Fabi, Ju e tia Jô. E especialmente à tia Tela, Jaci

e Darlei pelo suporte incrível e por me proporcionarem um lugarzinho em Porto Alegre

para chamar de minha casa.

Aos meus queridos amigos do interior pelos momentos mais felizes que vivi e por

comporem a base da minha saúde mental, em especial: Arthur, Lou, Media, Vivi, Vic,

Uel, Theo, Mestre, Shosha e Luci.

Aos meus queridos amigos de Porto Alegre, por todo o apoio e momentos igual-

mente incríveis, em especial: Amaury, Barboza, Bruno, Clebinho, Ciça, Henrique, Hummes,

Luís, Luma, Pacheco, Paola, Rafael e Tanara.

Aos professores que fizeram parte da minha formação e/ou contribuiram significa-

tivamente para meu interesse nas ciências exatas e ciências naturais, em especial: Mara

Maciel, Sara Wachholz, Marilene Redin Rachele, Samuel Volkweis Leite, André Grahl

Pereira, Rodrigo Machado, Luciana Salete Buriol e Ana Bazzan.

Aos professores Anderson Rocha Tavares e Joel Luís Carbonera pelo aceite na par-

ticipação como banca do trabalho e pelas contribuições que enriqueceram as discussões

aqui realizadas.

Aos meus mais que orientadores, Profa. Érika Cota, Profa. Mariana Recamonde

Mendoza, Profa. Ursula Matte e Prof. Gabriel de Oliveira Ramos. Especialmente à Pro-

fessora Mariana por me introduzir formalmente ao universo acadêmico e nutrir em mim os

valores e habilidades que acredito serem indispensáveis para qualquer cientista sério que

aspire contribuir para um mundo melhor com o seu trabalho e busca pelo conhecimento.

Aos web-influencers responsáveis diretos pelo meu interesse insaciável pela ciên-

cia e construção da minha mentalidade questionadora e ceticista durante meus anos de es-

cola: Yuri Grecco (do antigo EuAteu), Paulo Miranda Nascimento (Pirulla) e Guilherme

Tomishiyo.

Em especial, gostaria de agradecer três amigos que foram fundamentais durante

a minha jornada na construção deste trabalho: Fiba, Rafael e Amaury. Agradeço imen-

samente por amenizarem minhas angústias, presenteando-me com suas companhias nesta

última etapa do curso. Obrigado por me levarem para sair e aliviar a cabeça, por ouvirem

meus choros e vivas, por me aconselharem, por me incentivarem a desenvolver meu lado

pessoal e olhar para além do profissional, pelos memes, risadas, curiosidades, cultura e

todo o resto, obrigado, sem vocês estes dias teriam sido muito mais difíceis.

Por fim, gostaria de agradecer individualmente mais dois amigos, Victor Guerreiro

Vendruscollo e Cléber Henrique de Araújo Gama, aos quais dedico este trabalho.

Obrigado, Vic, por me ensinar o que é matemática “de verdade”, transformando

completamente minha vida ao mostrar de onde vinha a equação da diagonal do quadrado

(e o quão óbvio era esse fato), incentivando-me a aprender geometria – dentre outras

áreas da matemática – através da lógica em detrimento da pura memorização. Obrigado,

amigo, por fazer o que muitos outros professores não foram capazes; por me iluminar

os caminhos mais incríveis da matemática; por mostrar que eu também era capaz e que

eu poderia escolher a ciência da computação como formação sem medo algum. Foste de

extrema importância para chegar onde cheguei e almejar o que almejo.

Também te agradeço imensamente, Clebinho, pelo crescimento pessoal exponen-

cial que me proporcionaste nos anos intensos que passamos muito próximos e unidos.

Obrigado por me fazer refletir sobre coisas de suma importância que nunca antes tinha

gasto tanta energia pensando; por me ensinar sobre o valor incalculável da amizade e

do amor, sobre a importância do diálogo e dos sentimentos, sobre o funcionamento das

pessoas, sobre a necessidade da coragem para agir e se posicionar, sobre o valor dos mo-

mentos compartilhados com outras pessoas e do agora, sobre o mundo, o universo e tudo

mais, obrigado.

ABSTRACT

Cancer staging is a challenging classification task in which, given the samples’ charac-

teristics, the employed strategy needs to categorize them into typically one out of four

stages. As more public biological data becomes available, such task starts receiving more

attention from the scientific community, and questions like the integration and how to

use these varied sources of information emerge. Because of the classification task’s com-

plexity, employing accurate machine learning models could significantly help in related

clinical practices since the cancer stage information is crucial for adopting a successful

patient’s treatment. In particular, deep learning strategies can be very useful as they have

been successfully applied in a wide range of similarly difficult classification tasks. With

that in mind, our study proposes to investigate the applicability of a data modeling ap-

proach based on sample similarity networks to deal with this multi-sourced information,

shifting the problem’s representation to a node classification problem. The Graph Atten-

tion Network and Graph Convolutional Network algorithms are applied for classifying

the samples and their performance is compared to a more traditional Multilayer Percep-

tron algorithm. Our main hypothesis, supported by similar studies, is that, by introducing

something like the samples’ correlation as a measure of similarity, the ones with the same

class will tend to be highly correlated and form a connection in the network, thus, help-

ing in the node classification task that typically assumes the neighborhood influences in

a node’s characteristics. Additionally, with such problem representation, we can also

achieve greater flexibility regarding the data modeling, allowing even semi-supervised

learning techniques to be used. After analyzing the results, we observed no significant

performance gains by using the network-based strategy compared to the Multilayer Per-

ceptron algorithm.

Keywords: Cancer staging. multi-omics. similarity networks. graph neural networks.

Avaliando a aplicabilidade de Graph Neural Networks para estadiamento tumoral

utilizando redes de similaridade de amostras

RESUMO

O estadiamento tumoral é uma tarefa de classificação desafiante na qual, dadas as carac-

terísticas das amostras, a estratégia empregada deve as categorizar em tipicamente um

dos quatro estágios tumorais. À medida em que mais dados biológicos públicos se tor-

naram disponíveis, tal tarefa começou a receber mais atenção da comunidade científica,

dando origem a questões como a integração e a forma de utilizar estas variadas fontes de

informação. Devido à complexidade da tarefa de classificação, o emprego de modelos

de aprendizado de máquina acurados tem a possibilidade de ajudar significativamente nas

práticas clínicas relacionadas, uma vez que a informação do estágio tumoral é crucial para

a adoção de um tratamento bem sucedido do paciente. Em particular, estratégias de apren-

dizado profundo podem ser muito úteis, visto que têm sido aplicadas com sucesso numa

vasta gama de tarefas de classificação igualmente difíceis. Tendo isso em mente, o nosso

estudo se propõe a investigar a aplicabilidade de uma abordagem de modelagem de dados

baseada em redes de similaridade de amostras para lidar com esta informação de múltiplas

fontes, deslocando a representação do problema para um problema de classificação de nós

em um grafo. Os algoritmos Graph Attention Network e Graph Convolutional Network

são aplicados para classificar as amostras e o seu desempenho é comparado com um algo-

ritmo mais tradicional, o Multilayer Perceptron. A nossa hipótese principal, apoiada por

estudos semelhantes, é que, ao introduzir algo como a correlação das amostras como me-

dida de similaridade, aquelas de mesma classe tenderão a estar altamente correlacionadas

e a formar uma conexão na rede, auxiliando, assim, na tarefa de classificação de nós que

tipicamente assume que a vizinhança influencia nas características de um nó. Além disso,

com tal representação de problema, é possível também alcançar uma maior flexibilidade

no que diz respeito à modelagem dos dados, permitindo inclusive a utilização de técni-

cas de aprendizado semi-supervisionado. Após a análise dos resultados, não observamos

quaisquer ganhos significativos de desempenho ao utilizar a estratégia baseada em redes

se comparada com o algoritmo tradicional Multilayer Perceptron.

Palavras-chave: estadiamento tumoral. multi-ômicas. redes de similaridades. graph

neural networks.

LIST OF FIGURES

Figure 2.1 Gene expression measurement approaches. ..20
Figure 2.2 Typical RNA-Seq pipeline. In the in vivo part of the pipeline, the mature

RNA is isolated; the in vitro procedures include the RNA fragmentation,
conversion into double-stranded DNA and sequencing; finally, in the in silico
step, the sequences are aligned to a reference genome. Detailed information
can be found in Lowe et al. (2017). ...21

Figure 2.3 Illustration of the SNF method applied to a scenario in which the sam-
ples are patients and the omics data are composed of mRNA and DNA methy-
lation profiles. In a the original data is represented; b shows the resulting
similarity matrix for each data type; c, the adjacency matrices represented as
graphs, in which the nodes are the patients and the edges, their similarities; d
represents the iterative fusion process happening; and e shows the final SNF
fused graph. The edge colors represent their origin...24

Figure 2.4 GAT illustration. On the left, the LeakyReLU is applied over the
learned weights and attention mechanism linear combination with the nodes’
features. On the right, the multi-head attention process with K = 3 consid-
ering six neighbor nodes for the classification of node 1.......................................30

Figure 2.5 Visual comparison of configuration selection and configuration evalua-
tion hyperparameter tuning methods..32

Figure 4.1 TCGA barcode structure..38
Figure 4.2 Illustration example of a final processed dataset of features. Columns

“Gene X expr” and “miRNA Y expr” represent gene X and miRNA Y expres-
sion levels, respectively. Columns “Gene X meth” represent the methylation
score of gene X. ..39

Figure 4.3 Illustration example of how the sample similarity networks are gener-
ated given a similarity computation strategy. If the produced dense adjacency
matrix does not have its diagonal filled with ones, an extra step for this pro-
cedure is performed..41

Figure 4.4 Illustration of a single ANN experiment process. The experiment has
50 repetitions, choosing different sets of training, validation, and test data at
each one. In the first repetition, the training and validation data are also used
by a hyperparameter tuner, which defines the best ANN configuration to be
used throughout all the experiment’s repetitions. ..44

Figure 5.1 Performance comparison of GAT and GCN across the investigated thresh-
olds for the kidney cancer data (KIRC) using the correlation network based
on multi-omics data (CMON) strategy. Plot (a) shows the mean AUC-ROC
and plot (b) shows the mean AUC-PR. ..47

Figure 5.2 Performance comparison of GAT and GCN across the investigated thresh-
olds for the colon cancer data (COAD) using the correlation network based
on multi-omics data (CMON) strategy. Plot (a) shows the mean AUC-ROC
and plot (b) shows the mean AUC-PR. ..47

Figure 5.3 Performance comparison of GAT and GCN across the investigated thresh-
olds for the lung cancer data (LUAD) using the correlation network based on
multi-omics data (CMON) strategy. Plot (a) shows the mean AUC-ROC and
plot (b) shows the mean AUC-PR..47

Figure 5.4 AUC-ROC performance comparison on KIRC dataset between the MLP
approach and the GNNs using the CMON network generation strategy and
the 99% threshold...49

Figure 5.5 AUC-ROC performance comparison on COAD dataset between the MLP
approach and the GNNs using the CGEN network generation strategy and the
99% threshold...50

Figure 5.6 AUC-ROC performance comparison on LUAD dataset between the MLP
approach and the GNNs using the SNF network generation strategy and the
99% threshold...50

Figure 5.7 Final optimal number of layers and neurons found by the Hyperband
Algorithm for KIRC dataset using CGEN with the different tested thresholds.....55

Figure 5.8 Final optimal number of layers and neurons found by the Hyperband
Algorithm for COAD dataset using CGEN with the different tested thresholds. ..55

Figure 5.9 Final optimal number of layers and neurons found by the Hyperband
Algorithm for LUAD dataset using CGEN with the different tested thresholds. ..56

Figure 5.10 Tuned focal loss γ parameter across the tested sparsification thresholds
applied to CGEN strategy in KIRC dataset. ..57

Figure 5.11 Tuned focal loss γ parameter across the tested sparsification thresholds
applied to CGEN strategy in COAD dataset..58

Figure 5.12 Tuned focal loss γ parameter across the tested sparsification thresholds
applied to CGEN strategy in LUAD dataset. ...58

Figure 5.13 KIRC patient similarity network generated using the CGEN strategy
with a threshold of 75%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.61

Figure 5.14 KIRC patient similarity network generated using the CGEN strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.61

Figure 5.15 KIRC patient similarity network generated using the CGEN strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.62

Figure 5.16 KIRC patient similarity network generated using the CGEN strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.63

Figure A.1 Performance comparison of GAT and GCN across the investigated thresh-
olds for the kidney cancer data (KIRC) using the correlation network based
on gene expression levels (CGEN) strategy. Plot (a) shows the mean AUC-
ROC and plot (b) shows the mean AUC-PR. ...72

Figure A.2 Performance comparison of GAT and GCN across the investigated thresh-
olds for the kidney cancer data (COAD) using the correlation network based
on gene expression levels (CGEN) strategy. Plot (a) shows the mean AUC-
ROC and plot (b) shows the mean AUC-PR. ...72

Figure A.3 Performance comparison of GAT and GCN across the investigated thresh-
olds for the kidney cancer data (LUAD) using the correlation network based
on gene expression levels (CGEN) strategy. Plot (a) shows the mean AUC-
ROC and plot (b) shows the mean AUC-PR. ...73

Figure A.4 Performance comparison of GAT and GCN across the investigated thresh-
olds for the kidney cancer data (KIRC) using the Similarity Network Fusion
(SNF) strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the
mean AUC-PR..73

Figure A.5 Performance comparison of GAT and GCN across the investigated thresh-
olds for the kidney cancer data (COAD) using the Similarity Network Fusion
(SNF) strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the
mean AUC-PR..73

Figure A.6 Performance comparison of GAT and GCN across the investigated thresh-
olds for the kidney cancer data (LUAD) using the Similarity Network Fusion
(SNF) strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the
mean AUC-PR..74

Figure A.7 AUC-ROC performance comparison on KIRC dataset between the MLP
approach and the GNNs using the CGEN network generation strategy and the
99% threshold...75

Figure A.8 AUC-ROC performance comparison on KIRC dataset between the MLP
approach and the GNNs using the CGEN network generation strategy and the
95% threshold...76

Figure A.9 AUC-ROC performance comparison on KIRC dataset between the MLP
approach and the GNNs using the CMON network generation strategy and
the 95% threshold...76

Figure A.10 AUC-ROC performance comparison on KIRC dataset between the
MLP approach and the GNNs using the SNF network generation strategy
and the 99% threshold. ...77

Figure A.11 AUC-ROC performance comparison on KIRC dataset between the
MLP approach and the GNNs using the SNF network generation strategy
and the 95% threshold. ...77

Figure A.12 AUC-ROC performance comparison on COAD dataset between the
MLP approach and the GNNs using the CGEN network generation strategy
and the 95% threshold. ...78

Figure A.13 AUC-ROC performance comparison on COAD dataset between the
MLP approach and the GNNs using the CMON network generation strategy
and the 99% threshold. ...78

Figure A.14 AUC-ROC performance comparison on COAD dataset between the
MLP approach and the GNNs using the CMON network generation strategy
and the 95% threshold. ...79

Figure A.15 AUC-ROC performance comparison on COAD dataset between the
MLP approach and the GNNs using the SNF network generation strategy
and the 99% threshold. ...79

Figure A.16 AUC-ROC performance comparison on COAD dataset between the
MLP approach and the GNNs using the SNF network generation strategy
and the 95% threshold. ...80

Figure A.17 AUC-ROC performance comparison on LUAD dataset between the
MLP approach and the GNNs using the CGEN network generation strategy
and the 99% threshold. ...80

Figure A.18 AUC-ROC performance comparison on LUAD dataset between the
MLP approach and the GNNs using the CGEN network generation strategy
and the 95% threshold. ...81

Figure A.19 AUC-ROC performance comparison on LUAD dataset between the
MLP approach and the GNNs using the CMON network generation strategy
and the 99% threshold. ...81

Figure A.20 AUC-ROC performance comparison on LUAD dataset between the
MLP approach and the GNNs using the CMON network generation strategy
and the 95% threshold. ...82

Figure A.21 AUC-ROC performance comparison on LUAD dataset between the
MLP approach and the GNNs using the SNF network generation strategy
and the 95% threshold. ...82

Figure A.22 KIRC patient similarity network generated using the CMON strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.83

Figure A.23 KIRC patient similarity network generated using the CMON strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.84

Figure A.24 KIRC patient similarity network generated using the CMON strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.84

Figure A.25 KIRC patient similarity network generated using the SNF strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.85

Figure A.26 KIRC patient similarity network generated using the SNF strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.85

Figure A.27 KIRC patient similarity network generated using the SNF strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.86

Figure A.28 COAD patient similarity network generated using the CGEN strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.86

Figure A.29 COAD patient similarity network generated using the CGEN strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.87

Figure A.30 COAD patient similarity network generated using the CGEN strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.87

Figure A.31 COAD patient similarity network generated using the CMON strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.88

Figure A.32 COAD patient similarity network generated using the CMON strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.88

Figure A.33 COAD patient similarity network generated using the CMON strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.89

Figure A.34 COAD patient similarity network generated using the SNF strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.89

Figure A.35 COAD patient similarity network generated using the SNF strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.90

Figure A.36 COAD patient similarity network generated using the SNF strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.90

Figure A.37 LUAD patient similarity network generated using the CGEN strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.91

Figure A.38 LUAD patient similarity network generated using the CGEN strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.91

Figure A.39 LUAD patient similarity network generated using the CGEN strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.92

Figure A.40 LUAD patient similarity network generated using the CMON strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.92

Figure A.41 LUAD patient similarity network generated using the CMON strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.93

Figure A.42 LUAD patient similarity network generated using the CMON strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.93

Figure A.43 LUAD patient similarity network generated using the SNF strategy
with a threshold of 90%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.94

Figure A.44 LUAD patient similarity network generated using the SNF strategy
with a threshold of 95%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.94

Figure A.45 LUAD patient similarity network generated using the SNF strategy
with a threshold of 99%. Black edges represent a connection between nodes
of the same class, and orange edges represent a connection between nodes of
a different class. Node colors represent patients’ cancer stage: green repre-
sents stage I; blue, stage II; magenta, stage III; red, stage IV.95

LIST OF TABLES

Table 3.1 Summary of the considered most similar works to ours. The PSN column
indicates whether or not the study utilizes patient/sample similarity networks.34

Table 4.1 Datasets summarization...38

Table 5.1 AUC-ROC results (mean) in KIRC dataset for each network generation
strategy and each GNN algorithm. Cells in grey highlight the best GNN result
within the same strategy and threshold. Cells in green highlight the best result
for each strategy. ..46

Table 5.2 AUC-ROC results (mean) in COAD dataset for each network generation
strategy and each GNN algorithm. Cells in grey highlight the best GNN result
within the same strategy and threshold. Cells in green highlight the best result
for each strategy. ..46

Table 5.3 AUC-ROC results (mean) in LUAD dataset for each network generation
strategy and each GNN algorithm. Cells in grey highlight the best GNN result
within the same strategy and threshold. Cells in green highlight the best result
for each strategy. ..46

Table 5.4 Best network generation strategies’ setup for each dataset. The rows
highlighted in green are considered the best setup for a particular dataset..............48

Table 5.5 Performances comparison in KIRC dataset of the best setups for each
network generation strategy and each baseline. Highlights in green indicate the
best performance for each metric and results in bold indicate no statistically
significant difference (p < 0.05) compared to the best performance, according
to a Wilcoxon signed-rank test with Bonferroni correction.51

Table 5.6 Performances comparison in COAD dataset of the best setups for each
network generation strategy and each baseline. Highlights in green indicate the
best performance for each metric and results in bold indicate no statistically
significant difference (p < 0.05) compared to the best performance, according
to a Wilcoxon signed-rank test with Bonferroni correction.51

Table 5.7 Performances comparison in LUAD dataset of the best setups for each
network generation strategy and each baseline. Highlights in green indicate the
best performance for each metric and results in bold indicate no statistically
significant difference (p < 0.05) compared to the best performance, according
to a Wilcoxon signed-rank test with Bonferroni correction.52

Table 5.8 Tuned hyperparameters for MLP and the best GNN-based setup in each
dataset. The LR column refers to the learning rate, and the AH to the number
of attention heads used by GAT..59

Table B.1 Number (and percentage) of nodes connected only with themselves in
the KIRC networks for each generation strategy and threshold...............................96

Table B.2 Number (and percentage) of nodes connected only with themselves in
the COAD networks for each generation strategy and threshold.96

Table B.3 Number (and percentage) of nodes connected only with themselves in
the LUAD networks for each generation strategy and threshold.96

LIST OF ABBREVIATIONS AND ACRONYMS

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

mRNA Messenger RNA

miRNA MicroRNA

FPKM Fragments per kilobase of transcript per million mapped reads

SC Spectral Clustering

ML Machine Learning

ANN Artificial Neural Network

MLP Multi-Layer Perceptron

GNN Graph Neural Network

GAT Graph Attention Network

GCN Graph Convolutional Network

FL Focal loss

GDC Genomic Data Commons

TCGA The Cancer Genome Atlas Program

COAD Colon adenocarcinoma

KIRC Kidney renal clear cell carcinoma

LUAD Lung adenocarcinoma

CVD Cardiovascular disease

CPD Chronic pulmonary disease

CGEN Correlation network based on gene expression levels

CMON Correlation network based on multi-omics data

SNF Similarity Network Fusion

DAE Denoising Autoencoder

CONTENTS

1 INTRODUCTION...16
2 BACKGROUND..19
2.1 Biological background and the omics data...19
2.2 Similarity Network Fusion ...23
2.3 Spectral clustering ..25
2.4 Multi-layer perceptron and the fundamentals of artificial neural networks.....25
2.5 Graph Convolutional Networks...27
2.6 Graph Attention Networks...28
2.7 Focal loss ..30
2.8 Hyperparameter optimization with the hyperband algorithm...........................31
3 RELATED WORKS ...33
4 METHODOLOGY ...37
4.1 Analyzed data ..37
4.2 Networks generation...39
4.3 Algorithms and metrics ..41
4.4 Models Evaluation ..43
5 RESULTS...45
5.1 Thresholds ...45
5.2 Baselines comparison..49
5.3 Hyperparameters ..54
5.3.1 Number of layers and units on each layer..54
5.3.2 Focal loss ...57
5.3.3 Best hyperparameters...59
5.4 Networks visualization..60
6 CONCLUSIONS ...64
REFERENCES...66
APPENDIX A — SUPPLEMENTARY FIGURES...72
A.1 GNNs classification performance across thresholds ...72
A.2 GNNs and MLP classification performances...75
A.3 Networks visualization...83
APPENDIX B — SUPPLEMENTARY TABLES ...96
B.1 Networks summary ..96

16

1 INTRODUCTION

According to Ahmad and Anderson (2021), cancer is one of the leading causes of

death in the US, only behind heart disease. While cancer can be very deadly, its survivabil-

ity is intrinsically linked to how advanced the disease is at the time of the diagnosis and the

start of the intervention. Cheaib et al. (2020) report a 5-year renal cell carcinoma survival

rate after nephrectomy of 97.4% for disease stage I (out of four), reaching as low as 26.7%

for disease stage IV. Additionally, the cancer stage assessment is clinically important for

planning a proper therapeutics or surgical intervention (CHEAIB et al., 2020). Although

cancer stage classification is such an important task, it remains rather underexplored. The

majority of research efforts focus on cancer diagnosis and prognostic prediction, leaving

the clinical practices for tumor stage assessment with obsolete long-standing techniques

(YU et al., 2020), which is highly undesirable considering the informative molecular data

we have been conquering with recent technology advancements.

Among the most prominent data with the capability to help solve this question is

the omics data. Cancer research has exploded with the increasingly publicly and freely

available data provided by initiatives such as The Cancer Genome Atlas (TCGA) (PRIOR

et al., 2013; KOUROU et al., 2015), thanks to the advancements in computational power

and the emergence of high-throughput sequencing technologies (REUTER; SPACEK;

SNYDER, 2015). This handful source of data has attracted a lot of attention from ma-

chine learning researchers, posing challenging tasks like cancer diagnosis, early detec-

tion, classification, staging, and treatment response prediction (BERTSIMAS; WIBERG,

2020). There are also a number of efforts to uncover new potential cancer biomarkers

by utilizing techniques such as feature selection (ZHANG; JONASSEN; GOKSØYR,

2021) and ensemble feature selection (TREVIZAN; RECAMONDE-MENDOZA, 2021;

COLOMBELLI; KOWALSKI; RECAMONDE-MENDOZA, 2022).

As will be discussed in Section 2.1, there are different kinds of omics, depicting

the biological state of the organism through different perspectives. The gene expression

data, under the realms of transcriptomics data, is among the most utilized ones, as it trans-

lates to a closer quantification of the proteins being expressed in the body (SUPPLITT et

al., 2021). However, other omics such as miRNomics and methylomics are also impor-

tant indicators of disease establishment. Thus, some efforts have been made to integrate

the multiple omics for joint analysis, giving birth to the multi-omics investigation topic

(MANZONI et al., 2018).

17

Among the integration techniques, similarity-based networks have been receiving

some attention lately, with methods like the Similarity Network Fusion (WANG et al.,

2014). These methods build a graph from the tabular data, using nodes to represent sam-

ples and the edges between these nodes to represent a significant similarity between them.

An example could be a patients network in which two patients are connected if their gene

expression levels have a Pearson correlation coefficient of at least 0.7. For measuring

these similarities, different methods could be used, like the linear correlation between the

samples or their euclidean distance. Some form of sparsification is also usually required

for preventing the resulting sample-sample similarity matrix to produce a dense graph, in

which all the nodes are connected to each other.

As reviewed in Chapter 3, very little effort has been made to investigate the ap-

plication of such data modeling techniques to cancer-related questions, like diagnosis.

However, the application of machine learning algorithms for cancer diagnosis and subtyp-

ing modeled as a node classification problem in sample similarity networks demonstrated

promising results in previous studies (PAI et al., 2019; ZHANG et al., 2022; BAUL et al.,

2022).

In particular, Graph Neural Networks (GNNs) are successful recently proposed

deep learning algorithms specially designed to deal with learning tasks on graphs, taking

advantage of the relational non-euclidean structure of this type of data. This characteristic

makes these algorithms of special interest to the presented node classification problem.

Nonetheless, for the two only other works exploring patient similarity networks based

on omics data we could find (ZHANG et al., 2022; BAUL et al., 2022), neither of them

detailed, for example, the sparsification strategy employed (if any) to the networks con-

struction process. The sparsification greatly impacts the final modeled sample-sample

network and, thus, should be investigated more closely. Additionally, one of the men-

tioned studies did not utilize multi-omics data for the task they were investigating. To the

extent of our knowledge, this is the first work investigating GNN algorithms for cancer

staging using a patient similarity network computed from multi-omics data.

The questions we are interested in answering through our analyzes are:

1. How well can GNNs applied to multi-omics patient similarity networks perform for

the cancer staging task?

2. Do these GNNs perform better than simpler and computationally cheaper counter-

parts, like a multilayer perceptron applied to the integrated tabular data?

3. What are the impacts on classification performance yielded by different sample

18

similarity network generation strategies and thresholds?

4. Are the observed results consistent among different cancer datasets?

5. What are the best hyperparameters for each investigated algorithm?

Regarding question 3 specifically, we argue that threshold-based approaches for

sparsifying adjacency matrices that resulted from pair-wise similarity computations are

more adequate than using top-k methods. Top-k methods connect each node in the net-

work with its k most similar other nodes. This type of sparsification can not result in a

typical real-life complex network, where some nodes, also known as hubs, are highly con-

nected to other nodes, while some other nodes have significantly small degrees (BARABÁSI,

2013). Additionally, because we deal with different similarity calculations, we chose to

investigate the application of quantile-based thresholds instead of a specific number. This

choice enables a more appropriate comparison between different similarity computation

strategies.

In the remaining text we provide the reader with the necessary background for un-

derstanding and reproducing the investigations (Chapter 2); review the related literature

(Chapter 3), pointing out findings and gaps when appropriate; present our adopted inves-

tigation methodology (Chapter 4); discuss and reason about our results (Chapter 5); and

finally conclude the study (Chapter 6) wrapping up with the significant findings, pointing

out some limitations as well as research opportunities. We note that some findings are

surprisingly not in accordance with previous literature; for this, we present some possible

explanations for why this was observed in our experiments.

19

2 BACKGROUND

While many computational methods could be used for the task of cancer staging,

our work focuses on a promising direction of research centered on the sample similarity

network problem modeling. Such structures could be effectively exploited by a recent and

very successful class of algorithms: the Graph Neural Networks (GNNs). In particular,

we model our problem as node classification and apply both the Graph Attention Network

(GAT) and the Graph Convolutional Network (GCN) algorithms.

In this chapter, we describe in detail the selected methods and techniques that will

guide the investigation. We start, however, by situating the reader in the biological context

of the selected data, why it is important and informative for the classification task at hand,

and what their numerical values actually mean.

2.1 Biological background and the omics data

Cancer disease is mainly characterized by uncontrolled cell growth and prolifer-

ation (WEINBERG, 2013). This abnormal cell function is driven by a lot of complex

biological processes, being always associated with genetic and epigenetic changes ac-

cumulated within the cell (SUPPLITT et al., 2021). The genetic component of such a

disrupted system is mainly characterized by the gene expression levels of the organism.

Figure 2.1 illustrates the different omics interested in gene expression levels. As Supplitt

et al. (2021) points out, genomics is the farthest from the actual phenotype, since only

a small percentage of the genome is expressed to the protein level. The final gene ex-

pression is a product influenced by numerous regulation processes and molecules, such

as miRNAs and DNA methylation.

Although proteomics represents a much closer picture of the cell phenotype (QIN;

NIU; ZHAO, 2019), its quantification technologies, such as protein microarrays, are very

limited due to the challenges associated with their utilized techniques and the higher costs

(BHAWE; AGHI, 2015). Thus, transcriptomics has become a key element for analyzing

gene expression levels in search of answers to various biological questions related to can-

cer disease. The transcripts are RNAs that were transcribed using the DNA sequence. In

particular, messenger RNAs (mRNAs) are the transcripts that will actually code proteins,

which will perform various functions within the organism, determining its phenotype.

The number of transcripts produced by a cell can be quantified and characterized by some

20

Figure 2.1 – Gene expression measurement approaches.

Image from Supplitt et al. (2021).

methods, such as mRNA Sequencing (mRNA-Seq).

RNA-Seq pipelines usually isolate the mature mRNA and break it into small frag-

ments (typically around 100 bp). After that, these fragments are converted into double-

stranded DNA, which are more stable molecules than RNA itself and, thus, more suitable

to be sequenced. This DNA is then sequenced using high-throughput sequencing tech-

nologies (REUTER; SPACEK; SNYDER, 2015), which can identify the nucleotides of

the fragments. Finally, the sequenced strands can be aligned to a reference genome, which

allows the researcher to determine which regions were being transcribed and annotate the

gene expression levels of the organism under investigation. We refer the reader to Lowe

et al. (2017) for a more detailed explanation of RNA-Seq methods. Figure 2.2 illustrates

the explained process.

The final product of this whole pipeline for data acquisition is the raw counts. This

data can be carried out in a bulk, single cell, or spatial RNA-Seq analysis. The bulk RNA-

Seq averages the counts of a pool of cells, while the single cell RNA-Seq uses the counts

of each cell separately, and the spatial RNA-Seq dissects the RNA activities spatially (LI;

WANG, 2021).

These counts are also normalized with techniques such as the fragments per kilo-

base of transcript per million mapped reads (FPKM). The FPKM of a sample can be cal-

culated using Equation 2.1 (ZHAO et al., 2021), in which qi represents the count of reads

21

Figure 2.2 – Typical RNA-Seq pipeline. In the in vivo part of the pipeline, the mature RNA is
isolated; the in vitro procedures include the RNA fragmentation, conversion into double-stranded

DNA and sequencing; finally, in the in silico step, the sequences are aligned to a reference
genome. Detailed information can be found in Lowe et al. (2017).

Image from Lowe et al. (2017).

22

aligned to gene/transcript i, li represents the length of this gene/transcript, and
∑

j=1 qj

the total number of reads.

FPKMi =
109qi

li
∑

j=1(qj)
(2.1)

Besides the mRNA, RNA-Seq technologies can also be used to quantify the ex-

pression level of other important transcripts, such as miRNAs. These small non-coding

RNAs are endogenous molecules that have been reported to regulate the gene expression

levels of several oncogenes and tumor suppressor genes. For example, Reddy (2015) re-

ports that data collected from several different cancer tissues consistently show aberrant

miRNA expression. The author mentions the involvement of these abnormal miRNA ex-

pression levels in many types of cancer, including breast, colon, gastric, lung, prostate,

and thyroid.

DNA methylation was originally associated with gene silencing and generally

refers to the addition of methyl groups to the cytosine carbon rings (LI; TOLLEFSBOL,

2021). This chemical interaction is said to be an epigenetic modification, which means

that it occurs naturally depending on different environmental exposures. DNA methy-

lation influences local gene expression levels (SCHÜBELER, 2015) in addition to play-

ing important roles in other biological processes, like cellular identity establishment and

maintenance (LI et al., 2019). Interestingly, as pointed out by Li and Tollefsbol (2021),

DNA methylation has been widely appreciated as a reversible change, and it is highly as-

sociated with carcinogenesis (ALVAREZ et al., 2011), motivating a lot of research efforts

from the scientific community to investigate its potential clinical applications for cancer

disease, as reviewed by (LOCKE et al., 2019).

For measuring the DNA methylation, some technologies like Infinium Human-

Methylation450 BeadChip1 have been proposed, which covers over 450,000 methylation

sites per sample at single nucleotide resolution. At each site, the platform measures the

intensity of the methylated signal (M), and the intensity of the unmethylated signal (U).

A β-value is then calculated using the formula M/(M +U +100). This value is continu-

ous ranging between 0 (indicating 0% methylation) and 1 (indicating 100% methylation)

for each probe corresponding at each DNA site (LI; TOLLEFSBOL, 2021). After addi-

tional data processing steps (see Wang, Wu and Wang (2018) for detailed information),

the dataset ends up with around 450,000 features for the mentioned technology. A com-

mon post-processing technique utilized in this type of data is to select only the probes

1https://www.illumina.com/documents/products/datasheets/datasheet_humanmethylation450.pdf

23

associated with promoter regions, mapping them to particular genes, and, since multiple

probes could be associated with the same gene, take a statistics measurement out of those

probes, for example, the median value (DUAN et al., 2021). Then, the resulting dataset’s

features become genes, resulting in, usually, around 20,000 to 24,000 features.

As discussed, all the presented types of omics data provide valuable biological

insights that could be useful for investigating complex genetic diseases like cancer. With

initiatives like The Cancer Genome Atlas (TCGA), a huge amount of publicly available

omics data has unlocked several research efforts dedicated to analyzing it for answering

various scientific questions. One of the most promising research trends has been inves-

tigating how to integrate all the different omics data, which provide information about

the samples from different biological perspectives, and analyze this data with machine

learning (ML) methods (NICORA et al., 2020), as we will discuss in greater detail in

Chapter 3.

2.2 Similarity Network Fusion

Section 2.1 explained three types of omics data, pointing out the importance of

integrating them for analyzing patients with a complex diseases such as cancer. The Sim-

ilarity Network Fusion (SNF) method was proposed by Wang et al. (2014) with the goal

of integrating this multi-sourced data through sample similarity networks. The algorithm

computes the similarity of each pair of samples, e.g patients, separately, establishing a

dense adjacency matrix for each type of omic. After that, it fuses these matrices through

an iterative process into one final aggregated network, which can be useful to perform

analyses such as disease subtyping, diagnosis, prognosis, etc. Figure 2.3 extracted from

the original article, illustrates this process.

For formally defining the method, we use the same notation and symbols as de-

scribed in the original work (WANG et al., 2014). Thus, the reader must be aware that this

is a special section in the manuscript with its own notation.The matrices in Figure 2.3b are

calculated by a euclidean distance with scaled exponential similarity kernel, as denoted

by Equation 2.2. Assume {x1, x2, ..., xn} as the n patients (samples); W as the n×n sim-

ilarity matrix; W(i,j) as the similarity between nodes xi and xj; ρ(xi, xj) as the euclidean

distance between nodes xi and xj; µ as a hyperparameter, which the authors recommend

to be set between [0.3, 0.8]; mean(ρ(xi, Ni)) the average distance between xi and each of

its neighbors; and ε(i,j) calculated by Equation 2.3.

24

Figure 2.3 – Illustration of the SNF method applied to a scenario in which the samples are
patients and the omics data are composed of mRNA and DNA methylation profiles. In a the
original data is represented; b shows the resulting similarity matrix for each data type; c, the

adjacency matrices represented as graphs, in which the nodes are the patients and the edges, their
similarities; d represents the iterative fusion process happening; and e shows the final SNF fused

graph. The edge colors represent their origin.

334  |  VOL.11  NO.3  |  MARCH 2014  |  nAture methods

Articles

(Online Methods, Supplementary Note 1 and Supplementary
Fig. 4). Combining diverse data types from five different human
cancers, we demonstrated that SNF yields coherent, clinically
relevant patient subtypes and improves on the performance of
popular integrative approaches and a network-based approach
that uses individual data types. The SNF software easily scales
to multiple genome-wide data types with tens of thousands of
measurements and is freely available as Supplementary Software
and at http://compbio.cs.toronto.edu/SNF/.

results
method overview
Given two or more types of data for the same set of samples (e.g.,
patients), SNF first creates a network for each data type and then
fuses these into one similarity network. The initial step is to use a
similarity measure for each pair of samples to construct a sample-
by-sample similarity matrix for each available data type (Fig. 1a,b).
The matrix is equivalent to a similarity network where nodes are
samples (e.g., patients) and the weighted edges represent pairwise
sample similarities (Fig. 1c). Both matrices and networks are effec-
tive visual representations: similarity matrices help identify global
patterns (clusters), whereas networks emphasize the detailed
similarity patterns and the types of data that support each edge.

The network-fusion step (Fig. 1d) uses a nonlinear method
based on message-passing theory10 that iteratively updates every
network, making it more similar to the others with every itera-
tion. After a few iterations, SNF converges to a single network
(Fig. 1e). The empirical convergence for a variety of data sets is
shown on Supplementary Figures 5–7. The method is robust
to a variety of the hyperparameter settings (Online Methods and
Supplementary Figs. 8–10). The advantage of our integrative
procedure is that weak similarities (low-weight edges) disappear,
helping to reduce the noise (Fig. 2 and Supplementary Fig. 2),
and strong similarities (high-weight edges) present in one or
more networks are added to the others. Additionally, low-weight
edges supported by all networks are retained depending on how
tightly connected their neighborhoods are across networks.
Such nonlinearity allows SNF to make full use of a network’s

local structure, integrating common as well as complementary
information across networks.

A case study: glioblastoma multiforme
Multiple integrative approaches have been applied to understand
the heterogeneity and identify the subtypes of glioblastoma multi-
forme (GBM), an aggressive adult brain tumor. Depending on the
type of data used, these integrative analyses often lead to different
conclusions. For example, one analysis that had combined expres-
sion and copy-number-variant data had identified two subtypes11,
but a later analysis2, driven primarily by expression data, had
identified four subtypes, which does not agree with the previous
findings. A recent DNA methylation–based approach had identi-
fied three subtypes: one characterized by a somatic mutation in
IDH1 (ref. 12) and two others roughly corresponding to the sub-
types identified in ref. 2. Though methylation data had been used
for the analysis in ref. 2, the IDH subtype had not been identified
because of the expression data–driven subtyping analysis.

We used SNF to fuse three data types for 215 patients with GBM:
DNA methylation (1,491 genes), mRNA expression (12,042 genes)
and miRNA expression (534 miRNAs). As expected, networks
built using a single data type yielded very different patterns sup-
ports of patient similarity. For example, DNA methylation strongly
supports connectivity in the smallest patient cluster (Fig. 2a),
whereas mRNA expression supports similarity in the medium-
sized cluster (Fig. 2b). DNA methylation and mRNA expression
suggest relatively strong intercluster similarity (Fig. 2a,b), though
the exact patterns are different between those data types. It is
difficult to discern patterns in the patient-similarity network
based on miRNA data alone (Fig. 2c). The fused network gives
a much clearer picture of clustering in our set of patients with
GBM, illustrated by the tightness of connectivity within clusters
and relatively few edges between clusters (Fig. 2d).

We unified the results of several previous GBM analyses as
well as identified new and potentially interesting associations.
For example, our smallest cluster (subtype 3) corresponds to the
previously identified IDH subtype12 consisting of younger patients
with a substantially more favorable prognosis. All patients with

Original dataa b c d e

P
at

ie
nt

s

P
at

ie
nt

s
P

at
ie

nt
s

Patients

Patients

Patient similarity matrices Patient similarity networks Fusion iterations
Fused patient

similarity network

P
at

ie
nt

s

mRNA expression

DNA methylation

Patient similarity:Patients mRNA-based DNA methylation–based Supported by all data

Figure 1 | Illustrative example of SNF steps. (a) Example representation of mRNA expression and DNA methylation data sets for the same cohort of
patients. (b) Patient-by-patient similarity matrices for each data type. (c) Patient-by-patient similarity networks, equivalent to the patient-by-patient
data. Patients are represented by nodes and patients’ pairwise similarities are represented by edges. (d) Network fusion by SNF iteratively updates
each of the networks with information from the other networks, making them more similar with each step. (e) The iterative network fusion results in
convergence to the final fused network. Edge color indicates which data type has contributed to the given similarity.

np
g

©
 2

01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

Image from Wang et al. (2014).

W(i,j) = exp

(
−ρ2(xi, xj)

µεi,j

)
(2.2)

εi,j =
mean(ρ(xi, Ni)) + mean(ρ(xj, Nj)) + ρ(xi, xj)

3
(2.3)

A full kernel, which is represented by the matrix P(i,j), is calculated for computing

the fused matrix. P(i,j) is defined by Equation 2.4. This matrix applies a normalization that

is free of the scale of the diagonals filled with ones (self-similarity) and has the property
∑

j P(i, j) = 1.

P(i,j) =

W(i,j)

2
∑

k ̸=i W(i,k)
, j ̸= i

1/2, j = i
(2.4)

While the matrix P carries the full information about the similarity of each pair

of patients, a new matrix S is defined for encoding the similarity to the K most similar

patients for each patient. S is used as the sparse kernel matrix in the fusion process,

measuring the local affinity, and it is calculated as defined by Equation 2.5, in which Ni

is the set of neighbor nodes of xi.

S(i,j) =

W(i,j)∑
k∈Ni

W(i,k)
, j ∈ Ni

0, otherwise
(2.5)

25

Finally, for computing the SNF matrix in a problem with m data types, where

v = 1, 2, ...,m, we start calculating the matrices P and S for each v, indicated with a

superscript, and iteratively recompute the m matrices P(v) using Equation 2.6 until con-

vergence or a number of predefined iteration steps. In the end, all the P(v) matrices are

combined into a single final matrix, the SNF network result, by applying a simple average

to the m matrices’ values.

P(v) = S(v) ×
(∑

k ̸=v P(k)

m− 1

)
× (S(v))T , v = 1, 2, ...,m (2.6)

2.3 Spectral clustering

Given a similarity matrix S ∈ Rn×n, where n represents the number of samples,

and k the number of clusters, the goal of the Spectral Clustering (SC) algorithm is to

assign each node of the graph (represented by S) to one of the k clusters. While there

are several possible variations for the SC algorithm (LUXBURG, 2007), we focus on the

normalized spectral clustering according to Shi and Malik (2000), which is the guiding

reference for the SC implementation we utilized in our analyzes.

The algorithm starts by constructing a similarity graph, deriving the weighted ad-

jacency matrix A. The unnormalized graph Laplacian L is then computed, following

Equation 2.7, in which D ∈ R(n×n) represents the degree matrix where D(i,i) =
∑

j A(i,j).

After that, the algorithm computes the first k generalized eigenvectors u1, u2, ..., uk from

the problem Lu = λDu. Assuming U ∈ R(n×k) as the matrix containing u1, u2, ..., uk as

columns, and yi ∈ Rk as the vector corresponding to the ith row of U, the algorithm

clusters the points (yi)i=1,2,...,n with the k-means algorithm (HASTIE; TIBSHIRANI;

FRIEDMAN, 2001) into clusters C1,C2, ...,Cn. Finally, it outputs {Y1,Y2, ...,Yk}, with

Yi = {j|yj ∈ Ci}.

L = D − W (2.7)

2.4 Multi-layer perceptron and the fundamentals of artificial neural networks

Multi-layer perceptron (MLP), also called feed-forward network (GOODFEL-

LOW; BENGIO; COURVILLE, 2016), is a particular architecture of Artificial Neural

26

Networks (ANN) in which all the neurons in one layer are connected to all the neurons

of the next layer. Assuming a typical classification problem, the goal of such structures,

which can be thought of mathematical functions f(−→x ,W,
−→
b), is to approximate real

functions f ∗ that map sample features −→x to a specific label. To do that, the ANNs utilize

a matrix of learnable weights W and a learnable bias vector
−→
b that are optimized during

training through a process called backpropagation.

When the network has more than one layer, it maps the input features into another

feature space, which maps this second feature space to the output space or keeps using

additional layers in between, called hidden layers, before mapping those hidden features

to the actual final output space. For example, assuming an MLP with three layers, this

network can be thought of as a chain of functions f (3)(f (2)(f (1)(−→x))), in which each one

has its own weight matrix. The actual computations made by each layer are a multiplica-

tion between the features vector and the weight matrix. Because this type of computation

can not model non-linear functions, the resulting vector or scalar from this multiplication

can be submitted to what is called an activation function a. The first layer linear combi-

nation is mathematically defined by Equation 2.8, in which F represents the number of

dimensions of the feature space; w(1)
i,j represents the value in the ith column and jth row of

the first layer weight matrix W1; and j represents the jth component of the output vector

produced by f
(1)
j (−→x) function application, which could be a single scalar as well.

f
(1)
j (−→x) = a

(
b
(1)
j +

F∑

i=1

w
(1)
i,j xi

)
(2.8)

Another equivalent mathematical representation is given by Equation 2.9.

f (1)(−→x) = a
(−→
b (1) + W1

−→x
)

(2.9)

Of note, traditional deep learning books and other references like Goodfellow,

Bengio and Courville (2016) may denote the linear combination W−→x with a transpose

symbol T in W or −→x . Here, we can simply directly assume that −→x ∈ RF and W ∈ RF ′×F ,

where F ′ represents the size of the output space.

The presented theory only accounts for the feed-forward process. To actually learn

the weights and biases, the model (an instanced MLP architecture) needs to be trained.

Usually, this training happens in a supervised fashion, in which some data samples −→x are

provided as examples along with their respective expected output f ∗(−→x). The network

starts with random weights, and feed-forwards the input −→x , producing an output that is

27

compared with the expected f ∗(−→x). This comparison is computed by a differentiable

cost/loss function, like the mean squared error, and the gradient with respect to the learn-

able parameters is calculated. This gradient indicates in which direction the parameters

must change in order for the loss function to increase. Thus, the negative gradient is used

in order to lower the loss. A learning rate scalar value is applied to adjust the weights in a

controllable manner towards the reduction of the loss function. There are several sophis-

ticated algorithms for performing such a process. We refer the reader to Abdolrasol et

al. (2021) as a starting point for acquiring detailed information about these optimization

algorithms.

When the trained model has a lot less error rate for the training data compared

to the test data, it is said to be overfitting (BILBAO; BILBAO, 2017). The overfitting

phenomenon is undesirable since it means that the model could not generalize well the

problem, appropriately approximating the real function. This could happen due to several

reasons, and techniques known as regularization can be used for trying to solve the is-

sue (GOODFELLOW; BENGIO; COURVILLE, 2016). A simple technique for avoiding

overfitting is the early stopping, in which a patience term p is defined. When a perfor-

mance improvement in the validation data is not observed for p epochs, the model training

halts. Another simple yet very effective regularization technique is the dropout, in which

random input signals of each layer are discarded (zeroed) during the network training. A

given dropout rate defines the percentage of units to drop from the network, which are

selected at random at each training step. This technique was found to improve the perfor-

mance of ANNs in a wide range of problem domains, including in the analysis of biology

computational data (SRIVASTAVA et al., 2014).

2.5 Graph Convolutional Networks

The Graph Convolutional Network (GCN) algorithm proposed by Kipf and Welling

(2017) works based on the assumption that a node’s properties in a network are highly in-

fluenced by its neighbor nodes. It works as a features smoothing, which is based on

an aggregation of the node and its neighbors that undergoes through a standard neural

network function. The proposed algorithm explicitly uses an Ã, which is simply the adja-

cency matrix A with all the nodes having a self-connection, Ã = A + IN , where IN is the

identity matrix. D̃ is the degree matrix of Ã defined analogously to D of Section 2.3.

Before going through any further detail, we simplify the other equations by defin-

28

ing the matrix Â with Equation 2.10. This matrix plays the role of normalizing the nodes’

features considering the degrees of Ã and is indicated in the original GCN paper (KIPF;

WELLING, 2017) as a pre-processing step.

Â = D̃
− 1

2 ÃD̃
− 1

2 (2.10)

The central idea here is that low-degree nodes have more impact on their neighbors

than high-degree nodes, as these high-degree nodes scatter their influence at many nodes.

The matrix multiplication D̃
− 1

2 Ã scales by row, and its result multiplied by another D̃
− 1

2

scales by column. D̃
− 1

2 is used instead of simply D̃
−1

because the normalization process

happens twice, so
√

D̃(i,i)D̃(j,j) is used for rebalancing purposes.

While Â is an N ×N matrix, given that we have N nodes, we also have to define

a matrix (or collection of vectors) for the nodes’ features. For this purpose, we define

X ∈ RN×F as the features matrix, in which F is the number of features. With the matrix

multiplication ÂX we achieve a balanced scaled features vector for each node, which is

the average of all the neighbors’ feature vectors (including itself). The resulting matrix

∈ RN×F represents each node’s scale-averaged features vector on each row of the matrix.

We define an architecture of L stacked GCN layers by Equation 2.11, assuming

W(l) as the layer l’s matrix of learnable weights, σ as an activation function, H(l) as

the matrix of hidden features of the lth layer, and H(0) = X. As more GCN layers are

added, the nodes being classified receive influencing signals (features) from higher-order

neighborhoods. For example, a 2-layer GCN architecture classifies node vi considering

the features of its neighbors and the neighbors of its neighbors. Equation 2.12 exemplifies

a possible 2-layer GCN architecture feed forward activation calculation, using softmax

(WANG et al., 2018) and LeakyReLU (MAAS et al., 2013) as activation functions.

H(l+1) = σ
(

ÂH(l)W(l)
)

(2.11)

f(X,A) = softmax
(

ÂLeakyReLU(ÂXW(0))W(1)
)

(2.12)

2.6 Graph Attention Networks

Proposed by Veličković et al. (2018), the Graph Attention Network (GAT) archi-

tecture implements a self-attention mechanism to learn which neighbors will be the most

29

influential in a node’s classification. The original paper specifically applies a single-layer

feed-forward network as its attention mechanism, and a multi-head attention procedure to

stabilize the learning process (VASWANI et al., 2017).

The GAT layer transforms a set of node features h = {−→h1,
−→
h2, ...,

−→
hN},

−→
hi ∈ RF

into a set of node features h’ = {−→h′
1,
−→
h′
2, ...,

−→
h′
N},

−→
h′
i ∈ RF ′ , where N is the number of

nodes, F is the number of features for each node and F ′ is the number of features for

the output node features. In case this F ′ is representing the output of an ANN model for,

let’s say a four-classes classification problem, this F ′ could be exactly four (the model’s

attributed probability for the node being each one of the problem classes).

For learning how to make these transformations, the GAT layer utilizes a learnable

weight matrix W ∈ RF ′×F and a learnable weight vector −→a ∈ R2F ′ , which is used in the

defined attention mechanism with an additional non-linearity achieved by the LeakyReLU

function application. Considering || as the concatenation operation and Ni as the set of

all negihbor nodes of i, the following equation is utilized for computing the attention

coefficient αij of a neighbor node j over a particular node i (including i itself):

αij =
exp

(
LeakyReLU

(−→a T [W
−→
hi ||W

−→
hj]
))

∑
k∈Ni

exp
(
LeakyReLU

(−→a T [W
−→
hi ||W

−→
hk]
)) (2.13)

The computed αij coefficients are used to obtain the
−→
h′
i classification output. To

do that, another non-linearity σ is applied to the average result of the K multi-head atten-

tion learned outputs, which is the summation of the j nodes’ classification contributions

as defined by the innermost summation in Equation 2.14. Considering K multi-head at-

tention executions, αk
ij as the kth learned αij and Wk as the kth learned weight matrix,

the following equation formalizes the GAT layer output for node i:

−→
h′
i = σ

(
1

K

K∑

k=1

∑

j∈Ni

αk
ijW

k−→hj

)
(2.14)

Figure 2.4 extracted from the original GAT paper (VELIČKOVIĆ et al., 2018)

illustrates how the algorithm operates.

30

Figure 2.4 – GAT illustration. On the left, the LeakyReLU is applied over the learned weights
and attention mechanism linear combination with the nodes’ features. On the right, the

multi-head attention process with K = 3 considering six neighbor nodes for the classification of
node 1.

Published as a conference paper at ICLR 2018

αij

~a

so
ft

m
ax

j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~α
16

~α11

~α
12

~α13

~α 1
4

~α
1
5

~h′1
concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a ∈ R2F ′

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h′1.

Once obtained, the normalized attention coefficients are used to compute a linear combination of the
features corresponding to them, to serve as the final output features for every node (after potentially
applying a nonlinearity, σ):

~h′i = σ

∑

j∈Ni

αijW~hj

 . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h′i =
K

‖
k=1

σ

∑

j∈Ni

αk
ijW

k~hj

 (5)

where ‖ represents concatenation, αk
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h′, will consist of KF ′ features (rather than F ′)
for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h′i = σ

 1

K

K∑

k=1

∑

j∈Ni

αk
ijW

k~hj

 (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

4

Image from Veličković et al. (2018).

2.7 Focal loss

The focal loss (FL) cost function was originally tested in the context of object de-

tection (LIN et al., 2017), but its proposal contemplates ANNs in general, with a focus on

unbalanced classification problems. In these types of problems, traditional loss functions

can bias the machine learning models toward the correct classification of the majority

class, as their successful classification have a larger impact on the loss function output

reduction. Because there is a significant class imbalance in our data (Section 4.1), it is

imperative to adopt strategies such as the application of the FL as a cost function for the

classification using deep learning models.

The original FL is defined for binary classification, having the cross-entropy func-

tion as its basis. As Lin et al. (2017) argue, simply weighting the cross-entropy with

an α parameter does balance the importance of positive/negative examples, but does not

take into account the notion of hard/easy to classify examples. To solve this issue, the

authors propose a modulating factor (1 − pt)
γ that down-weights easy examples. Thus,

the α-weighted FL for binary classification is defined as shown by the equation below.

FL(pt) = −αt(1− pt)
γ log(pt) (2.15)

31

Where pt is the model’s estimated probability p for the positive class if the ob-

served class is actually positive, and 1− p if the observed class is negative. Analogously,

αt is a weighting parameter that establishes a weight for the positive class. Additionally,

while γ is a tunable parameter, Lin et al. (2017) found that γ = 2 worked best for their

experiments, so in this work we follow their recommendation, submitting the models to

other two possible choices for γ (Section 4.3).

If, instead of binary, the classification problem is multi-class, α, γ and p are trans-

formed into vectors of length m, and the FL can be straightforwardly defined by simply

adding the (1− pt)
γ parameter to Equation 2.16 (CHANG et al., 2018), as defined below.

Consider m as the number of classes in the problem and y as a one-hot encoded vector

for the true class of the sample corresponding to the model’s outputted −→p .

FL(−→p) =
m∑

i=1

yiαi(1− pi)
γilog(pi) (2.16)

2.8 Hyperparameter optimization with the hyperband algorithm

ANNs have a lot of configurable hyperparameters, including the number of layers,

units (or neurons) in each layer, learning rate, loss function, optimizer algorithm, dropout

rate, among others. Choosing the exact optimal network setup can be a very challenging

task, demanding lots of experiments and error-prone empirical analyzes. To properly deal

with such a challenging task, several algorithms for hyperparameter optimization/tuning

were proposed (YANG; SHAMI, 2020). The goal of these algorithms is to efficiently

search in the hyperparameters’ choices space for the optimal configuration. In this study,

we utilize the hyperband optimization algorithm due to its computational efficiency when

executed in parallel, and its good performance compared to other traditional hyperparam-

eter optimization methods (LI et al., 2017).

The hyperband algorithm extends the Successive Halving (JAMIESON; TAL-

WALKAR, 2016), utilizing it as a subroutine. Given a budget B and a maximum number

of hyperparameters configurations n, the Successive Halving uniformly allocates the bud-

gets for each participating configuration on each round of the tournament and takes only

the half best ones to the next round, until only one remains. For example, considering

B = 300 epochs and n = 8, there would be three rounds r before deciding the best

configuration, each one with 8, 4, and 2 configurations respectively. On each round, B/r

32

Figure 2.5 – Visual comparison of configuration selection and configuration evaluation
hyperparameter tuning methods.

(a) Configuration selection

Li, Jamieson, DeSalvo, Rostamizadeh and Talwalkar

(a) Configuration Selection (b) Configuration Evaluation

Figure 1: (a) The heatmap shows the validation error over a two-dimensional search space
with red corresponding to areas with lower validation error. Configuration selection
methods adaptively choose new configurations to train, proceeding in a sequential
manner as indicated by the numbers. (b) The plot shows the validation error as
a function of the resources allocated to each configuration (i.e. each line in the
plot). Configuration evaluation methods allocate more resources to promising
configurations.

Consequently, practitioners often default to brute-force methods like random search and
grid search (Bergstra and Bengio, 2012).

In an effort to develop more efficient search methods, the problem of hyperparameter
optimization has recently been dominated by Bayesian optimization methods (Snoek et al.,
2012; Hutter et al., 2011; Bergstra et al., 2011) that focus on optimizing hyperparameter
configuration selection. These methods aim to identify good configurations more quickly than
standard baselines like random search by selecting configurations in an adaptive manner; see
Figure 1(a). Existing empirical evidence suggests that these methods outperform random
search (Thornton et al., 2013; Eggensperger et al., 2013; Snoek et al., 2015b). However,
these methods tackle the fundamentally challenging problem of simultaneously fitting and
optimizing a high-dimensional, non-convex function with unknown smoothness, and possibly
noisy evaluations.

An orthogonal approach to hyperparameter optimization focuses on speeding up configu-
ration evaluation; see Figure 1(b). These approaches are adaptive in computation, allocating
more resources to promising hyperparameter configurations while quickly eliminating poor
ones. Resources can take various forms, including size of training set, number of features,
or number of iterations for iterative algorithms. By adaptively allocating resources, these
approaches aim to examine orders-of-magnitude more hyperparameter configurations than
approaches that uniformly train all configurations to completion, thereby quickly identifying
good hyperparameters. While there are methods that combine Bayesian optimization with
adaptive resource allocation (Swersky et al., 2013, 2014; Domhan et al., 2015; Klein et al.,

2

(b) Configuration evaluation

Li, Jamieson, DeSalvo, Rostamizadeh and Talwalkar

(a) Configuration Selection (b) Configuration Evaluation

Figure 1: (a) The heatmap shows the validation error over a two-dimensional search space
with red corresponding to areas with lower validation error. Configuration selection
methods adaptively choose new configurations to train, proceeding in a sequential
manner as indicated by the numbers. (b) The plot shows the validation error as
a function of the resources allocated to each configuration (i.e. each line in the
plot). Configuration evaluation methods allocate more resources to promising
configurations.

Consequently, practitioners often default to brute-force methods like random search and
grid search (Bergstra and Bengio, 2012).

In an effort to develop more efficient search methods, the problem of hyperparameter
optimization has recently been dominated by Bayesian optimization methods (Snoek et al.,
2012; Hutter et al., 2011; Bergstra et al., 2011) that focus on optimizing hyperparameter
configuration selection. These methods aim to identify good configurations more quickly than
standard baselines like random search by selecting configurations in an adaptive manner; see
Figure 1(a). Existing empirical evidence suggests that these methods outperform random
search (Thornton et al., 2013; Eggensperger et al., 2013; Snoek et al., 2015b). However,
these methods tackle the fundamentally challenging problem of simultaneously fitting and
optimizing a high-dimensional, non-convex function with unknown smoothness, and possibly
noisy evaluations.

An orthogonal approach to hyperparameter optimization focuses on speeding up configu-
ration evaluation; see Figure 1(b). These approaches are adaptive in computation, allocating
more resources to promising hyperparameter configurations while quickly eliminating poor
ones. Resources can take various forms, including size of training set, number of features,
or number of iterations for iterative algorithms. By adaptively allocating resources, these
approaches aim to examine orders-of-magnitude more hyperparameter configurations than
approaches that uniformly train all configurations to completion, thereby quickly identifying
good hyperparameters. While there are methods that combine Bayesian optimization with
adaptive resource allocation (Swersky et al., 2013, 2014; Domhan et al., 2015; Klein et al.,

2

Images from Li et al. (2017).

epochs (100) are uniformly distributed amongst the configurations. For example, in the

second round, each configuration has 25 epochs.

The hyperband algorithm defines a reduction factor (provided as input) instead of

halving the configurations on each round, and it works with a maximum number of re-

source allocation R that can be allocated to a single configuration, instead of a maximum

budget, B. With this value, it randomly samples the budget allocation for each configu-

ration, instead of uniformly distributing them. Li et al. (2017) shows that such a process

allows the exploration of different convergence behaviors. The authors also report a 5× to

30× faster execution of the hyperband optimization compared to other popular Bayesian

optimization algorithms (WU et al., 2019).

Figure 2.5 shows a visual comparison of methods based on configuration selection,

like Bayesian optimization, against configuration evaluation methods like the hyperband

algorithm. In the configuration selection scenario, a sequential process is applied. This

process is represented by Figure 2.5a, in which the heatmap shows a 2D search space with

lower error rates assigned to warmer colors, and the numbers represent the sequence of

configuration explorations. The configuration evaluation technique, on the other hand, is

adaptative in computation, allocating more resources to more promising hyperparameter

configurations. Figure 2.5b illustrates this process, where the lines represent different

configurations plotted for an evaluation metric (loss) against resources allocation.

33

3 RELATED WORKS

As discussed in Section 2.1, there are a number of different omics data avail-

able, which characterize the organism under investigation from different biological per-

spectives. Although the gene expression is the most frequently analyzed one (MATU-

RANA et al., 2019), the integration and joint analysis of the different types of omics

has been also subject of investigation by the scientific community (HUANG; CHAUD-

HARY; GARMIRE, 2017; MANZONI et al., 2018), which coined the term multi-omics.

As reviewed by Menyhárt and Győrffy (2021), besides multivariate methods like the non-

negative matrix factorization (ZHANG et al., 2012), statistical methods such as iCluster

(SHEN; OLSHEN; LADANYI, 2009) and iClusterBayes (MO et al., 2018), and network-

based methods like iOmics (KOH et al., 2019), similarity-based methods for data integra-

tion, like the SNF algorithm reviewed in Section 2.2, have also been studied.

In fact, networks naturally occur in several complex biological investigation set-

tings (MUZIO; O’BRAY; BORGWARDT, 2021; YI et al., 2022). With the increasing re-

ports of GNNs’ success for graph representation learning, such algorithms have also con-

quered a substantial space for biology-related tasks that models their data using graphs,

demonstrating promising results. These algorithms have been used for molecule analysis

in tasks like molecule representation learning (LI et al., 2021), molecule properties predic-

tion (WIEDER et al., 2020), molecule graph generation (MAHMOOD et al., 2021), and

drug-target prediction (MANOOCHEHRI; PILLAI; NOURANI, 2019). Another popular

biology-related use for GNNs is in the healthcare field, in which the applications vary

from the classification of Alzheimer’s disease based on brain resonance imaging (SONG

et al., 2019) to prediction tasks on electronic health records (CHOI et al., 2020).

Network data modeling strategies with graph representation learning using GNNs

are also present in the multi-omics context. The most straightforward application of such

techniques is in the realms of protein-protein interaction networks – for example, for link

prediction (LIU et al., 2019) and protein function prediction (YOU et al., 2021). There

are also some works investigating genomics graph analysis, like in the study by Han et

al. (2019) in which a GCN combined with matrix factorization method was employed

for discovering gene-disease associations, and in Rhee, Seo and Kim (2017), where the

authors apply a GCN for the breast cancer subtyping task, using gene expression data

combined with protein-protein interaction networks.

As can be seen, GNNs and other forms of graph analysis permeate several biologi-

34

Table 3.1 – Summary of the considered most similar works to ours. The PSN column indicates
whether or not the study utilizes patient/sample similarity networks.
Work Multi-omics data Cancer staging GNN PSN

Yu et al. (2020) no yes no no
Pai et al. (2019) yes no no yes
Lu et al. (2022) no no no yes

Lu and Uddin (2021) no no yes yes
Zhang et al. (2022) yes no yes yes
Baul et al. (2022) no no yes yes

cal investigations and have been helping to advance a myriad of research problems within

this field. Because of that, in the remaining text of this chapter, we focus on discussing

with greater detail only the works that we consider most similar to ours (summarized by

Table 3.1), reasoning about their strengths and limitations, which may pose promising

research opportunities and investigation gaps to cover. An exception is the work by Yu

et al. (2020), which, despite not using samples as nodes for their base graphs subject to

graph analysis, is one of the most successful methods for cancer staging we could find in

the literature (considering the number staging system1 for the classes of the problem).

The method proposed by Yu et al. (2020) firstly selects only the differentially ex-

pressed genes, then divides the samples of each cancer stage into 30% for reference and

the remaining for training and testing. With the reference samples, the method computes

a co-expression gene network for each cancer stage, in which genes are nodes and two

genes were linked if their Pearson correlation coefficient in terms of expression was above

0.7. For each sample in the train/test set, the method computes a perturbed co-expression

network for each cancer stage and then extracts from the network a vector subject to clas-

sification, comparing the performance of six ML algorithms: Naive Bayes, treebag, C5.0,

random forests, random ferns, and weighted subspace random forests. With exception of

the Naive Bayes and the random ferns, all the classifiers achieved similar very impressive

performances. The C5.0, for instance, reached an accuracy of 0.9504 for the colon ade-

nocarcinoma (COAD) dataset, 0.9452 for the kidney renal clear cell carcinoma (KIRC)

dataset, and 0.7933 for the lung adenocarcinoma (LUAD) dataset. Despite these very

impressive results, the authors used only gene expression data, no GNN was applied for

the graph classification task and we could not identify any reasoning behind the chosen

correlation threshold. It would also be interesting to investigate closer the influence of

the number of samples selected for computing the base co-expression network, as more

1https://www.nhs.uk/common-health-questions/operations-tests-and-procedures/what-do-cancer-
stages-and-grades-mean

35

samples would result in a network more robust to perturbation from a single sample, and

fewer samples, in a more sensible network, thus, greatly influencing in the input data

subject to classification.

While Yu et al. (2020) approach shows very promising results, our investigation

focus lies in sample (patient) similarity networks. According to (PAI; BADER, 2018),

these networks have the advantage of easily integrating heterogeneous data, and naturally

handling missing information. Authors report only two methods exploring this type of

network modeling approach by the time they published their review: the SNF (already

covered in Section 2.2) and the netDx (PAI et al., 2019). Based on selected genes and

a similarity metric, such as Pearson correlation or euclidean distance, patient networks

are built by netDx using a sparsification technique, which includes three parameters: the

minimum edge weight to include, how many top interactions to include per node (topX),

and the upper bound on the number of edges in a network (maxE). The authors report

different optimal values for the different investigated cancer datasets, where the topX

varied from 30 to 50, and the maxE from 3,000 to 6,000. Label propagation is then

applied to classify the samples. The authors benchmarked their method against classical

ML methods for the cancer survivability task and found that netDx outperformed the other

algorithms.

Lu and Uddin (2021) compared the usage of GCN and GAT for predicting chronic

diseases – cardiovascular disease (CVD) and chronic pulmonary disease (CPD) – from

administrative claim data. They propose to model the data as a weighted patient network

that can capture patients’ latent relationships. Two patients are connected in the network

if they were diagnosed with one or more diseases in common. The weights in the edges

represent how many shared diagnosed diseases the patients had. As node features, the

authors use age, gender, and smoking history. The authors also compare the GNNs with

classical ML algorithms, whose input data corresponds to the node features and network

engineered features based on previous study (LU et al., 2022).The GNN models largely

outperformed the classical ML algorithms. For CVD, GAT achieved 93.49% of accuracy

while the GCN was a little worse with 90.04% of accuracy. This was also observed for

the CPD classification task (89.15% for GAT, and 87.26% for GCN). Lu et al. (2022)

investigated a very similar approach for predicting type 2 diabetes mellitus, but they did

not apply any GNN for the classification task.

Zhang et al. (2022) proposed a DeepGCN (LI et al., 2019) for diagnosing liver

cancer using multi-omics data – RNA-Seq, DNA methylation and copy number varia-

36

tion (CNV). The network was built using the SNF method, and a denoising autoencoder

(DAE) (VINCENT et al., 2008) was applied for learning features from the samples that

were used as node features. The authors successfully demonstrated that using all the three

selected omics data as opposed to just one or a combination of two was the most effective

setting. Additionally, they performed some experiments demonstrating that the presence

of the SNF network was indeed vital to the model’s performance, showing up to 12.2%

of gains in accuracy. Their method, pDeepGCN, was the best compared to other state-

of-the-art and classic machine learning algorithms, with an accuracy of 98.57%, 1.31%

better than the second best method, XGBoost-AD (MA et al., 2020). Although the authors

found impressive classification results, we note that the binary classification task for can-

cer disease is much simpler than the multi-class cancer staging. Additionally, only liver

cancer was explored in their work, and a traditional MLP was not used to compare if such

a simpler deep learning algorithm would have been more (or comparably) successful. We

also could not find any mention of a sparsification procedure in the resulting SNF adja-

cency matrix, neither the authors executed their experiments with sufficient repetitions,

enabling a statistical comparison.

Baul et al. (2022) proposed the omicsGAT method for cancer subtype prediction

and cancer patient stratification using RNA-Seq data. They apply a GAT algorithm for

learning hidden features from a sample similarity network (built using correlation scores

between the samples) and a three-layers MLP for classifying the hidden features. For

the classification task, the authors compare their method with classical ML algorithms, as

well as an MLP and a GCN. Although the task was tumor subtyping, we do not consider

it comparable to the multi-class cancer staging we are dealing with, since they separate

it into two tasks with only positive or negative possible outcomes. Their method was the

best among the tested ones, but no statistically significant differences were found for the

estrogen receptor classification task when compared to the SVM and random forest algo-

rithms. Once again, we could not find any indication of a sparsification procedure in the

manuscript. The correlation-based sample similarities would produce a dense adjacency

matrix, but, by inspecting their source code2, a binary sparse adjacency matrix is expected

as input for their method.

2https://github.com/compbiolabucf/omicsGAT

37

4 METHODOLOGY

For assessing if sample similarity networks can be used to improve the classifica-

tion of tabular data, particularly for high-quality cancer staging, we defined three strate-

gies for building these networks based on our literature review (see Section 3). To take

advantage of this relational data structure, we utilized two recently proposed and already

successful algorithms for node label prediction: the GCN and GAT graph neural network

architectures. Additionally, as a graph analysis baseline algorithm, we used the Spectral

Clustering directly into the SNF matrix, as proposed by Wang et al. (2014). On the other

hand, as a baseline strategy to compare with the sample similarity network ones, we used

a traditional MLP directly with the tabular data.

4.1 Analyzed data

The target datasets used by the employed methods for cancer staging were ac-

quired from and pre-processed by Duan et al. (2021). This pre-processed data was orig-

inally provided freely and publicly by The Cancer Genome Atlas Program (TCGA), a

popular program that has already characterized over 20000 cancer and matched normal

samples across 33 types of cancer1. Particularly, we selected the omics datasets contain-

ing only the statistically significant features as evaluated by the authors that processed

and published these datasets2.

Among the provided types of omics data, we selected transcriptomics, miRNomics,

and methylomics as they are the most informative and used omics for related classifica-

tion problems (DUAN et al., 2021). While the authors analyzed nine types of cancer,

we selected only the three types with the larger amount of samples of the minority class,

which turned out to be the COAD (colon adenocarcinoma), KIRC (kidney renal clear cell

carcinoma) and LUAD (lung adenocarcinoma) cohorts.

For the acquisition of the cancer stage information of each sample, we collected

clinical data from FireBrowse (CENTER, 2016), which is an initiative that compiles and

facilitates the access of TCGA data, in addition to offering them in a pre-processed format

that simplifies analyses. By using the FireBrowse data with the multi-omics datasets, it

was possible to build a traditional multi-class classification dataset for each of the selected

1https://cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
2https://github.com/GaoLabXDU/MultiOmicsIntegrationStudy

38

Table 4.1 – Datasets summarization
Cancer Type # Stage 1 # Stage 2 # Stage 3 # Stage 4 # Features

COAD 44 112 85 41 4200
KIRC 152 31 72 58 4200
LUAD 244 109 73 19 4200

Figure 4.1 – TCGA barcode structure.

Image from GDC’s documentation3.

cancer types. The summarization of these datasets is provided in Table 4.1. The 4200

features of each dataset correspond to 2000 features from mRNASeq data, 200 features

from miRNASeq data, and 2000 features from DNA methylation data.

To generate the class information for the samples inside the multi-omics datasets,

their index was used. Each sample is named with a TCGA barcode that contains basic

information as shown by Figure 4.1.

The samples in the multi-omics datasets did not have the complete barcode, they

included information about the Project (only TCGA samples), TSS (tissue source site),

Participant (the subject from whom the samples were collected) and the Sample (the

type of the sample that was collected). Because we are interested in the cancer staging

problem, we added a data processing step for eliminating all possible tissue samples that

were labeled as control or tumor-adjacent (normal, non-cancerous samples). For doing

that, we followed the Genomic Data Commons (GDC) documentation3 and isolated only

the samples having a code number ranging from 01 to 09 in the Sample TCGA barcode

field.

By making sure we were dealing only with tumor-tissue samples, we could prop-

erly integrate the resulting data with the clinical information dataset downloaded from

FireBrowse. This enabled the generation of the class dataset, which was a simple look-up

3https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/

39

Figure 4.2 – Illustration example of a final processed dataset of features. Columns “Gene X expr”
and “miRNA Y expr” represent gene X and miRNA Y expression levels, respectively. Columns

“Gene X meth” represent the methylation score of gene X.

table that linked the barcodes with their respective class (one of the four possible cancer

stages). Subtypes of specific stages (e.g “Stage 3 A”, “Stage 1 II”, etc) were agglutinated

in one type (“Stage 3”, “Stage 1”, etc) and “Stage X” samples were discarded as they are

uncharacterized tumor samples regarding the adopted cancer staging system.

Each sample – a row in the tabular data for the MLP algorithm, and a node in the

sample similarity networks for the graph-based algorithms – had the same set of features

with no faulty values. The original downloaded data was composed of three separate

datasets, one for each of the adopted omics. These datasets represented the features in

the rows and the samples in the columns. Thus, a transposition step followed by an inner

join-based concatenation process for the three was needed to produce a single tabular

dataset representing the sample features. Figure 4.2 shows a partial example of a dataset

of features, illustrating its final format.

4.2 Networks generation

Our main goal is to investigate if the multi-omics cancer staging task can benefit

from the sample similarity network modeling. We take advantage of such non-euclidean

relational structures by utilizing a class of newly developed and successful ML algorithms

for this kind of data, graph neural networks. To properly address this research question,

we investigate three sample similarity network generation strategies for our data:

• CGEN: correlation network based on gene expression levels

• CMON: correlation network based on multi-omics data

• SNF: Similarity Network Fusion

40

The three strategies produce a dense adjacency matrix with sample similarity val-

ues for all pairs of samples. Thus, in order to produce a sparse adjacency matrix, we apply

thresholds in the sample similarities, zeroing all the values that were below the defined

thresholds. Additionally, the diagonals are filled with ones, producing an auto-connection

for every node, since, without this auto-connection, the GNN models would not be able

to consider the features of the node subject to classification.

To avoid applying arbitrary thresholds to sample similarity values generated from

different strategies, we chose to work with percentiles, particularly {1%, 5%, 10%, 25%,

50%, 75%, 90%, 95%, 99%}. These percentile-oriented thresholds are related to the top

biggest values for the sample-sample connections. A percentile of 75% indicates that

only the top 25% most similar sample-sample connections would be kept. Thus, the

greater the percentile, the more strict the network is with its connections, meaning that

this network would have fewer connections. We acknowledge that such a strategy has

its limitations, since we are enforcing the network to have at least a specified number of

connections, and there could be a case in which a very sparse network would be a more

proper representation of the similarity relations between the data samples. This way, an

automatic and more sophisticated method for selecting the appropriate threshold should

be used. Nonetheless, we argue that such a challenge is a research problem of its own and

beyond the scope of this work, leaving its investigation for future research efforts.

Since miRNA expression and DNA methylation act directly and indirectly in the

regulation of gene expression levels characterized by the RNASeq data, this data can

be considered as a more immediate representation of the relation between the collected

samples and the state of the organisms under investigation. Considering this, the CGEN

strategy calculates the pairwise Pearson correlation coefficients, r, of only the samples’

gene expression levels, ignoring the other features. The r coefficient is then used as a

measure of similarity for the samples.

On the other hand, the CMON strategy considers the three omics as indispensable

information for describing the samples’ similarity. Thus, it calculates the correlations

separately for each omic, which left all pairwise samples with three correlation values.

CMON considers as the samples’ similarity the biggest r value among the three computed

ones. For instance, if sample A and sample B have r = 0.3 considering the mRNASeq

data, r = 0.8 considering the miRSeq data, and r = 0.01 considering the methylation

data, the actually quantified similarity between A and B according to CMON is 0.8.

Finally, the SNF strategy also considers all the three omics, but, unlike CMON, it

41

Figure 4.3 – Illustration example of how the sample similarity networks are generated given a
similarity computation strategy. If the produced dense adjacency matrix does not have its

diagonal filled with ones, an extra step for this procedure is performed.

fuses the three adjacency matrices into one, as explained in Section 2.2. The final connec-

tions are drawn by the same threshold logic followed by CMON and CGEN. Figure 4.3

illustrates how this process works, abstracting the way the similarity matrix is calculated,

which depends on the adopted strategy. Note that the final network representation is in the

format of an edge list. However, this is an irrelevant implementation decision that does

not affect the experiments themselves.

4.3 Algorithms and metrics

To investigate the potential of the sample similarity network modeling, we ap-

ply two top-performative GNN algorithms: Graph Attention Networks and Graph Con-

volutional Networks. We work with StellarGraph (DATA61, 2018) implementation of

both and compare with an MLP, whose implementation choice was Keras (CHOLLET

et al., 2015), and the Scikit-learn’s Spectral Clustering unsupervised learning algorithm

(PEDREGOSA et al., 2011). The ANN algorithms were also subject to hyperparameter

tuning.

The hyperparameter tuning process was executed for tuning the ANN models in

the first experiments’ repetition using only the training and validation data (the data split

is detailed in Section 4.4). After that, the tuned hyperparameters were fixed and used in

the remaining experiments’ repetitions. Because the set of possible choices for hyperpa-

rameters can increase exponentially, we tried to select the most relevant ones that were

42

hard to intuitively be set for our problem; could produce a lot of impact on the perfor-

mance; and, whenever possible, were shared across the different ANN architectures. We

also considered those that could generate interesting discussions depending on the tuning

results.

Thus, the selected hyperparameters and their respective possible choices were the

following:

• Number of hidden layers: {1, 2, 3}

• Number of neurons/units on each layer: {32, 64, 128}

• Focal loss γ: {0, 1, 2}

• Dropout: {0, 0.1, 0.2, 0.3}

• Learning rate: {0.0001, 0.0005, 0.001, 0.005}

The only hyperparameter selected for tuning that was not shared across the algo-

rithms was the GAT’s number of attention heads, which could be set by choosing from

the following set of possible values: {2, 4, 8}. Additionally, as explained in Chapter 2,

the number of hidden layers for the GNN architectures defines the number of hops in the

neighborhood that will influence the classification of a given node.

As our work represents early efforts for the application of the sample similar-

ity networks modeling with GNNs for node classification, we do not investigate thor-

oughly the classification performance from different perspectives, discussing particular

difficult stages to classify, for example. Rather, we concentrate efforts on analyzing the

multiple algorithms and problem-modeling setups, comparing each other, and reason-

ing about their strengths and limitations. Because our data is significantly unbalanced

(see Table 4.1), the AUC-ROC and AUC-PR were adopted as evaluation metrics for the

assessments. Particularly, the AUC-PR was selected as the guiding metric for the hyper-

parameter tuning optimization process. An exception to that is the SC algorithm, which

is unable to provide probabilities for applying a classification threshold in its standard

implementation (see Section 2.3). In this case, the greatest accuracy obtained from each

possible cluster-class assignment was collected and used as its evaluation metric. Hence,

for comparing the other classification algorithms with SC, the accuracy was also collected.

43

4.4 Models Evaluation

For each cancer dataset, each network generation strategy with a particular thresh-

old application represented a single GAT or GCN experiment. These experiments were

executed 50 times each with 50 different stratified sets of training (80% of samples), val-

idation (10% of samples), and test (10% of samples) data. The MLP experiment was

based on a single 50-repetitions experiment for each cancer dataset, as the network mod-

eling strategies and the varying thresholds did not affect anything in the data used for

training and testing the MLP. In addition, for ensuring a fair comparison among the ANN

algorithms, a seed was used at the beginning of each experiment, which guarantees the

same train-validation-test split for each one of the 50-repetitions experiments.

On the other hand, the SC algorithm experiment consisted of 50 executions using

all the data for each dataset considering its SNF affinity matrix, as proposed by (WANG

et al., 2014). The lack of train/validation/test split in the SC experiments is due to its

unsupervised learning nature, which can enable the usage of all the data samples. Besides,

as explained in Section 4.3, no AUC metrics were collected for this algorithm and the

metric used for comparing the performances was the highest accuracy considering all

possible clustering-class association combinations possible. This approach could also

jeopardize the cancer staging application in real-life scenarios since it would demand the

correct classification of the clusters as an additional human analysis intervention process.

The hyperparameter tuning was executed only in the first repetition of each exper-

iment of the ANNs, using the validation data for evaluating the hyperparameters choices

in the tuning optimization process. However, the validation data was also utilized in

the remaining repetitions for the early stopping strategy, which intends to avoid models’

overfitting during the training. The early stopping patience was set to 10 for the hyperpa-

rameter tuning process and 50 for the training of the selected model configuration, both

with a maximum of 300 epochs. Figure 4.4 illustrates what is the execution flow of a

single ANN experiment with its 50 repetitions.

44

Figure 4.4 – Illustration of a single ANN experiment process. The experiment has 50 repetitions,
choosing different sets of training, validation, and test data at each one. In the first repetition, the
training and validation data are also used by a hyperparameter tuner, which defines the best ANN

configuration to be used throughout all the experiment’s repetitions.
8/9/22, 12:17 AM experiments

https://whimsical.com/experiments-AJbtskY77uihYDM2qnbkk7 1/1

Cancer dataset

Model

performance

Test data

ANN model

Best ANN

configuration

Validation data

Hyperparameter

tuning

Training data Training data Test dataValidation data

Model

performance

Best ANN

configuration

ANN model

1st repetition 2nd ~ 50th repetition

45

5 RESULTS

As presented in Chapter 1, among the investigation questions our study aims to

address, we want mainly to understand if the network modeling approach improves the

standard tabular one for the cancer staging multi-class classification problem, and how

well GNNs perform with such data. An MLP model learning with the tabular data was

used as a baseline for evaluating if the network modeling approach improved its perfor-

mance. As a graph baseline, we chose the SC algorithm explained in earlier chapters.

The following sections present our findings, firstly discussing the varying thresh-

olds for each sample network generation strategy. The best threshold for each strategy is

then used for comparing the strategies against each other and the baselines. We proceed

the analysis of the results with a discussion about the best hyperparameters found by the

implemented tuning technique and if they changed throughout different network gener-

ation strategies and thresholds. Finally, we provide some insights into why the lowest

thresholds produced the worst results, proposing informative network visualizations for

enabling this discussion.

5.1 Thresholds

As discussed in Section 4.2, nine quantile-based thresholds were selected for in-

vestigating the performance of the GNN algorithms. Tables 5.1, 5.2 and 5.3 show the

mean AUC-ROC across the 50 repetitions for each algorithm and each strategy executed

on the KIRC, COAD and LUAD datasets, respectively.

From the first inspection of the results tables it is possible to see that, with some

exceptions, the higher thresholds yielded better performances, especially for the GAT

model. Perhaps the most notable exception, in this case, was GAT’s performance for the

LUAD dataset using CMON strategy and a threshold of 95%, in which the performance

drop was substantially visible. These results indicate that more strict thresholds, i.e. net-

works with fewer connections, tend to work better. Figures 5.1, 5.2 and 5.3 reinforce

that there is also a tendency to improve the AUC-PR performance of the networks as the

threshold increases, although some performance fluctuations are also observed. The per-

formance growth plots in the Appendix A.1 (Figures A.1–A.6) show a similar behavior

for the other strategies. In Section 5.4, we discuss with greater detail a possible expla-

nation for why this is happening. Additionally, the best results observed for each pair

46

Table 5.1 – AUC-ROC results (mean) in KIRC dataset for each network generation strategy and
each GNN algorithm. Cells in grey highlight the best GNN result within the same strategy and

threshold. Cells in green highlight the best result for each strategy.
KIRC 1% 5% 10% 25% 50% 75% 90% 95% 99%

GAT 0.52 0.47 0.51 0.56 0.62 0.62 0.63 0.63 0.69CGEN
GCN 0.54 0.61 0.60 0.59 0.60 0.60 0.62 0.64 0.71
GAT 0.63 0.53 0.58 0.51 0.59 0.64 0.67 0.67 0.73CMON
GCN 0.68 0.67 0.64 0.67 0.66 0.70 0.69 0.66 0.71
GAT 0.51 0.50 0.45 0.61 0.62 0.56 0.68 0.68 0.71SNF
GCN 0.57 0.63 0.64 0.65 0.68 0.71 0.70 0.71 0.70

Table 5.2 – AUC-ROC results (mean) in COAD dataset for each network generation strategy and
each GNN algorithm. Cells in grey highlight the best GNN result within the same strategy and

threshold. Cells in green highlight the best result for each strategy.
COAD 1% 5% 10% 25% 50% 75% 90% 95% 99%

GAT 0.50 0.50 0.49 0.54 0.50 0.60 0.56 0.58 0.65CGEN
GCN 0.52 0.51 0.55 0.56 0.56 0.59 0.64 0.60 0.62
GAT 0.50 0.51 0.55 0.50 0.52 0.52 0.55 0.53 0.65CMON
GCN 0.55 0.56 0.56 0.57 0.56 0.56 0.59 0.56 0.63
GAT 0.48 0.52 0.51 0.51 0.52 0.57 0.51 0.59 0.63SNF
GCN 0.44 0.50 0.56 0.53 0.55 0.53 0.54 0.61 0.63

dataset-strategy were, with only one exception (because of a tie), in the highest tested

threshold: 99%; however, as we will discuss later, there is a caveat to this threshold.

By inspecting the tables, it is also possible to notice that GCN tends to surpass

GAT across the different tested thresholds, especially in the lowest ones, which can indi-

cate a more robust nature of the GCN model in terms of the network modeling quality.

Nonetheless, in terms of the best performance for each dataset-strategy, GAT surpasses

GCN in all strategies for LUAD, all strategies for COAD (just tying in SNF), and also

when using CMON for KIRC, losing in CGEN and tying in SNF. The GCN algorithm

shines in the KIRC dataset, in which it dominates GAT in most of the thresholds, in par-

ticular as the best strategy using CGEN.

Table 5.3 – AUC-ROC results (mean) in LUAD dataset for each network generation strategy and
each GNN algorithm. Cells in grey highlight the best GNN result within the same strategy and

threshold. Cells in green highlight the best result for each strategy.
LUAD 1% 5% 10% 25% 50% 75% 90% 95% 99%

GAT 0.50 0.52 0.51 0.58 0.54 0.53 0.51 0.63 0.70CGEN
GCN 0.52 0.53 0.53 0.58 0.59 0.57 0.61 0.64 0.68
GAT 0.52 0.51 0.48 0.51 0.55 0.63 0.61 0.51 0.70CMON
GCN 0.55 0.57 0.55 0.55 0.55 0.55 0.60 0.61 0.68
GAT 0.52 0.50 0.52 0.55 0.58 0.56 0.55 0.61 0.70SNF
GCN 0.50 0.53 0.53 0.56 0.57 0.57 0.60 0.64 0.67

47

Figure 5.1 – Performance comparison of GAT and GCN across the investigated thresholds for the
kidney cancer data (KIRC) using the correlation network based on multi-omics data (CMON)

strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.
(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.55

0.60

0.65

0.70

AU
C-

RO
C

KIRC: CMON

Algorithm
GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.30

0.35

0.40

0.45

0.50

AU
C-

PR

KIRC: CMON

Algorithm
GAT
GCN

Figure 5.2 – Performance comparison of GAT and GCN across the investigated thresholds for the
colon cancer data (COAD) using the correlation network based on multi-omics data (CMON)

strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.
(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

AU
C-

RO
C

COAD: CMON
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.26

0.28

0.30

0.32

0.34

0.36

0.38

AU
C-

PR

COAD: CMON
Algorithm

GAT
GCN

Figure 5.3 – Performance comparison of GAT and GCN across the investigated thresholds for the
lung cancer data (LUAD) using the correlation network based on multi-omics data (CMON)

strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.
(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.50

0.55

0.60

0.65

0.70

AU
C-

RO
C

LUAD: CMON
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

AU
C-

PR

LUAD: CMON
Algorithm

GAT
GCN

While higher thresholds seemed to be linked with better performances, it still

remains as an open question the searching for the best possible threshold for each dataset-

strategy. Systematic and automatic approaches should be more closely investigated for

48

preventing biases in the threshold choices.

As we will discuss in Section 5.4, the resulting networks from the application of

the threshold 99% have a lot of nodes without connections, which can put into question

whether such a threshold is appropriate to decide the best GNN model for the tested

domain. In fact, if we disregard this threshold, the GCN model becomes the best GNN

for all strategies in KIRC, all strategies in COAD, and two strategies in LUAD, which

would completely invert the conclusion of the analysis.

Regarding the network generation strategies, CMON seems to work best when

observing the best results (rounded with two decimal places) for each strategy, but again,

when disregarding the last threshold this is not true anymore. So we consider that there is

no strong indication that one is more appropriate than the others, which puts the adopted

SNF method in advantage since it is the most efficient algorithm, at least when using the

default euclidean distance metric. It is worth mentioning, though, that there are lots of

other possible affinity equations to test, even correlation ones, so it remains as an open

question how the other SNF parameters could further affect the observed results.

For clarity, Table 5.4 explicitly presents what setups were considered the best ones

dataset-strategy-wise, considering AUC-ROC metric with more than two rounded decimal

places. Additionally, it is convenient to elect a single best dataset setup for other analyzes

where it would be too complex to discuss each setup. These best setups for each dataset

are highlighted in green by the same table.

Table 5.4 – Best network generation strategies’ setup for each dataset. The rows highlighted in
green are considered the best setup for a particular dataset.

Dataset Setup Algorithm Threshold
CGEN-Best GCN 99%
CMON-Best GAT 99%KIRC

SNF-Best GAT 99%

CGEN-Best GAT 99%
CMON-Best GAT 99%COAD

SNF-Best GCN 99%

CGEN-Best GAT 99%
CMON-Best GAT 99%LUAD

SNF-Best GAT 99%

49

5.2 Baselines comparison

The following comparison with the baselines considers only the best setup for each

network generation strategy (threshold-algorithm). We explore some visualizations for

analyzing the results of the three ANN algorithms and constructing a better understanding

of their performances considering the fluctuations of the 50 different executions of each

experiment. After that, we chose to compare quantitatively these three GNNs for each

cancer dataset against the MLP and the SC (with SNF) approaches.

For a better understanding of how the GNN methods compare to the MLP and

each other in each scenario, it is useful to compare their distributions side-to-side visually.

Figures 5.4, 5.5 and 5.6 compare the AUC-ROC for the best threshold-network on each

dataset as defined by Table 5.4. Since the MLP uses tabular data, its performance is

independent of threshold choice and only changes for the different cancer datasets.

Analyzing Figure 5.4, it is possible to notice that the medians are really close to

each other, with GCN having a slight disadvantage. In Figures 5.5 and 5.6, this median

difference between MLP and GAT to GCN is more clearly visible. Additionally, the MLP

for KIRC showed a more consistent AUC-ROC performance, centering the observations

Figure 5.4 – AUC-ROC performance comparison on KIRC dataset between the MLP approach
and the GNNs using the CMON network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

KIRC: CMON - 0.99

50

Figure 5.5 – AUC-ROC performance comparison on COAD dataset between the MLP approach
and the GNNs using the CGEN network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

COAD: CGEN - 0.99

Figure 5.6 – AUC-ROC performance comparison on LUAD dataset between the MLP approach
and the GNNs using the SNF network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

LUAD: SNF - 0.99

51

Table 5.5 – Performances comparison in KIRC dataset of the best setups for each network
generation strategy and each baseline. Highlights in green indicate the best performance for each
metric and results in bold indicate no statistically significant difference (p < 0.05) compared to

the best performance, according to a Wilcoxon signed-rank test with Bonferroni correction.
KIRC Accuracy AUC-ROC AUC-PR

SC 0.38 ± 0.00 - -
MLP 0.51 ± 0.06 0.74 ± 0.05 0.54 ± 0.08

CGEN-Best 0.48 ± 0.06 0.71 ± 0.04 0.50 ± 0.07
CMON-Best 0.51 ± 0.08 0.73 ± 0.06 0.52 ± 0.08

SNF-Best 0.48 ± 0.07 0.71 ± 0.05 0.49 ± 0.07

Table 5.6 – Performances comparison in COAD dataset of the best setups for each network
generation strategy and each baseline. Highlights in green indicate the best performance for each
metric and results in bold indicate no statistically significant difference (p < 0.05) compared to

the best performance, according to a Wilcoxon signed-rank test with Bonferroni correction.
COAD Accuracy AUC-ROC AUC-PR

SC 0.30 ± 0.00 - -
MLP 0.41 ± 0.09 0.66 ± 0.06 0.39 ± 0.09

CGEN-Best 0.41 ± 0.08 0.65 ± 0.06 0.39 ± 0.07
CMON-Best 0.41 ± 0.09 0.65 ± 0.07 0.38 ± 0.08

SNF-Best 0.37 ± 0.10 0.63 ± 0.07 0.36 ± 0.07

around its mean with a smaller interquartile range. This is not the case for COAD and

LUAD datasets when comparing the MLP to the other algorithms.

No outliers were observed and most violin plots seemed to represent a Gaussian

distribution. An exception to that is the MLP performance for the LUAD dataset, which

has a little bump in its left tail, which could maybe be more properly modeled by a bi-

modal distribution. This shape has also appeared in some other scenarios and this is why

we preferred to perform the statistical tests with a Wilcoxon signed-rank test, which is

a non-parametric test (WOOLSON, 2007). In Appendix A.2, the other distributions for

each network generation strategy considering the thresholds 95% and 99% are presented.

Tables 5.5, 5.6 and 5.7 show how the best GNN for each network generation strat-

egy compares with the two adopted baselines in terms of accuracy, AUC-ROC and AUC-

PR. All values were rounded to two decimal places and the cells of each table represent

the mean value for the 50 executions ± their standard deviation for that specific metric.

The first thing that can be noticed is that the SC approach, adopted by Wang et al.

(2014), is the worst among all the tested methods. Despite its computational efficiency,

there seems to be no reason to adopt such an approach, since it is the least accurate one

and has also all the limitations discussed in Section 4.4.

Nonetheless, the graph-based algorithms could also not overcome the performance

of a traditional MLP with statistical significance, considering a Wilcoxon signed-rank test

52

Table 5.7 – Performances comparison in LUAD dataset of the best setups for each network
generation strategy and each baseline. Highlights in green indicate the best performance for each
metric and results in bold indicate no statistically significant difference (p < 0.05) compared to

the best performance, according to a Wilcoxon signed-rank test with Bonferroni correction.
LUAD Accuracy AUC-ROC AUC-PR

SC 0.30 ± 0.01 - -
MLP 0.45 ± 0.06 0.71 ± 0.04 0.46 ± 0.07

CGEN-Best 0.46 ± 0.07 0.70 ± 0.04 0.43 ± 0.07
CMON-Best 0.43 ± 0.07 0.70 ± 0.04 0.42 ± 0.06

SNF-Best 0.45 ± 0.07 0.70 ± 0.05 0.44 ± 0.07

with Bonferroni correction and p < 0.05. Some interesting points to mention are that the

CGEN strategy was significantly worse than MLP regardless of the metric in the KIRC

dataset and that the CMON strategy was significantly worse than the best method for all

metrics in the LUAD dataset. While in all cases there was always a strategy comparable

to the MLP, with no statistically significant difference, the baseline is way easier to im-

plement, and the input data is also easier to process for accomplishing the integration of

the multi-omics. Thus, when only reasoning about the convenience and performance for

the investigated classification task in the tested datasets, there seems to be no advantage

for using the network modeling approach with the tested GNNs, contrary to the findings

of Zhang et al. (2022) and Baul et al. (2022).

It is important to notice that one of the mentioned studies did not use multi-omics

data, and neither of the works tried to tackle the challenging task of cancer staging. Ad-

ditionally, Zhang et al. (2022) utilized DAE for learning hidden features for the nodes,

instead of using all the data features; and applied a DeepGCN model, instead of the orig-

inal GCN. However, given the great impact on performance observed by changing the

network generation strategy and the threshold application, we argue that this could be

the greatest focal investigation point, and, as reviewed in Chapter 3, both works did not

mention their similarity matrix sparsification methodology.

An additional observation is that the performance results of the investigated meth-

ods by our work are not even close to the ones reported by Yu et al. (2020), who also

studied the cancer staging classification task, although with gene co-expression networks

and under the perspectives of a graph classification task. A possible explanation for the

poor performances obtained in our experiments may be due to the absence of feature se-

lection or other dimensionality reduction approaches, contrary to what the related work

did. With low sample size and large feature spaces, deep learning algorithms as applied

in our study may suffer more with performance drops. Thus, this extra data processing

53

step could be important to improve the final observations.

Even with all the presented negative arguments against the usage of the patient

similarity network data modeling technique with GNNs, there is still room for their us-

age, since, for all metrics in all datasets, there was always a GNN with comparable perfor-

mance. As pointed out by Pai and Bader (2018), there are some advantages to modeling

the problem with patient similarity networks. Among them, the authors mention that

these networks can naturally handle heterogeneous data by converting each data type into

a similarity network; can naturally handle missing data, as a patient missing in one net-

work may be in another and could still be used; and also provides greater interpretability,

as this representation can convert the data into network views where the decision bound-

ary can be visually evident, besides being conceptually analogous to clinical diagnosis,

which often involves a physician relating a patient to a mental database of similar patients

they have seen. In addition to that, we note that such a modeling approach can easily

enable semi-supervised learning, which is the original application scenario thought for

GCN, and also have the ability to propagate neighbors features through the network for

handling missing information, as proposed recently by Rossi et al. (2021).

Finally, we also observe that the node classes themselves could be used as features

of the training nodes. This would not only provide significantly more information to the

patients network, helping in the classification of similar patients, but also would not be

naturally available to the tabular data modeling approach used by algorithms such as the

investigated MLP. In fact, the netDx method proposed by Pai et al. (2019), utilizes only

label propagation as its classification technique over biological networks and reported

improved performance compared to other machine learning algorithms, which indicates a

very promising research opportunity that was not investigated here.

With the analyzes made in these two first sections of the results chapter, we an-

swered four out of the five questions posed in Chapter 1. We demonstrated 1) how well

can GNNs applied to multi-omics patient similarity networks perform for the cancer stag-

ing task; 2) that these GNNs did not outperform a simpler and cheaper MLP model applied

to corresponding tabular data; 3) what were the performance impacts of changing the net-

work generation strategy and selected sparsification threshold; and 4) that, despite some

expected performance differences, the results’ conclusions were comparable among the

three different selected cancer datasets. In the following sections, we discuss the hyper-

parameters tuning results for answering the final fifth question; and analyze the resulting

patient similarity networks for investigating further how the thresholds and network gen-

54

eration strategies impact the final network.

5.3 Hyperparameters

As explained in Chapter 4, there were a number of hyperparameters subjected to

hyperparameter tuning. This process is important for analyzing the applicability of the

whole methodology with less interference from users’ arbitrary choices since the ANNs’

tuner can select different combinations of hyperparameters for achieving a better perfor-

mance. It is important to remember when analyzing the number of layers for the GNNs,

that this parameter tells how many hops in the neighborhood the models should consider.

Thus, if only one layer is used, it means only the first-order neighbors will influence a

node’s classification. Additionally, because there were too many variations of experi-

ments and approaches, we chose to closely analyze and visually explore a subset of them.

We selected the CGEN strategy for the first visual analysis since it is the most commonly

used approach for generating sample similarity networks, and the 99% threshold for the

second visual analysis, since it is the best one in terms of classification performance, as

discussed previously.

To recap, the tuned hyperparameters and their respective possible choices were:

• Number of hidden layers: {1, 2, 3}

• Number of neurons on each layer: {32, 64, 128}

• Focal loss γ: {0, 1, 2}

• Dropout: {0, 0.1, 0.2, 0.3}

• Learning rate: {0.0001, 0.0005, 0.001, 0.005}

• GAT’s number of attention heads: {2, 4, 8}

5.3.1 Number of layers and units on each layer

In Figure 5.7, we show the final optimal number of layers and neurons found by

the Hyperband Algorithm for KIRC dataset using the CGEN network generation strategy.

Figures 5.8 and 5.9 show the same information for COAD and LUAD, respectively. The

MLP results were only plotted for comparison reasons, but its hyperparameters do not

vary across thresholds and network generation strategies since it uses tabular data directly.

55

Figure 5.7 – Final optimal number of layers and neurons found by the Hyperband Algorithm for
KIRC dataset using CGEN with the different tested thresholds.

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

Threshold (categorized)

0

50

100

150

200

250

300

350

400

N
um

be
r o

f n
eu

ro
ns

CGEN tuned number of neurons (KIRC)

layer_0_units
layer_1_units
layer_2_units

MLP
GAT
GCN

Figure 5.8 – Final optimal number of layers and neurons found by the Hyperband Algorithm for
COAD dataset using CGEN with the different tested thresholds.

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

Threshold (categorized)

0

50

100

150

200

250

300

350

400

N
um

be
r o

f n
eu

ro
ns

CGEN tuned number of neurons (COAD)

layer_0_units
layer_1_units
layer_2_units

MLP
GAT
GCN

It is interesting to notice in the KIRC dataset that the tuner selected only 32 layer

units and a single layer in the GAT’s 1% and 5% thresholds, despite its performance

limitations. For the 10% threshold, the chosen number of units for its single layer quadru-

pled, and yet it achieved the second lowest GAT-CGEN performance. In this dataset, no

threshold caused GAT to use three layers of neurons, and the best setup did not use the

maximum number of units. In fact, the maximum number of units and layers were only

56

Figure 5.9 – Final optimal number of layers and neurons found by the Hyperband Algorithm for
LUAD dataset using CGEN with the different tested thresholds.

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

Threshold (categorized)

0

50

100

150

200

250

300

350

400

N
um

be
r o

f n
eu

ro
ns

CGEN tuned number of neurons (LUAD)

layer_0_units
layer_1_units
layer_2_units

MLP
GAT
GCN

selected by GAT’s tuner in the LUAD dataset using a CGEN threshold of 90%, and by

GCN’s tuner also in the LUAD dataset using a CMON threshold of 75%. Interestingly, in

the KIRC dataset, the best GCN threshold, which vastly increased the GCN performance

compared to the other thresholds, only used one layer with 64 units.

Out of all the performed experiments, there were only two cases in which a GNN-

strategy did not achieve the best performance using the 99% threshold. In the KIRC

dataset using a GCN with SNF, the best thresholds were the 75% and 95%. In both of

these thresholds, the tuner algorithm chose only one GCN layer with 128 units in the

75% threshold, and also only one GCN layer but with 32 units for the 95% threshold. In

contrast, both the 90% and the 99% thresholds used three GCN layers. This could indicate

that the poorer performance could be related to an inadequate choice of hyperparameters

from the utilized algorithm. This phenomenon also happens in the COAD dataset using a

GCN with CGEN, in which the best threshold was the 90%, and the model had only one

layer with 32 units, while for the 99% threshold the model had three layers with 128, 64

and 64 units respectively.

In the best CGEN threshold for the LUAD dataset, while GAT’s preferred number

of layers was three, GCN, again, worked better using only one layer. This pattern of

GCN’s best threshold selecting only one layer happened in all cases, except for COAD

modeled with SNF (2 layers) and LUAD modeled with CMON (3 layers). For GAT’s best

threshold, the chosen number of layers and units on each layer varied a lot, but as opposed

57

to GCN there was no case in which only one layer was selected, which can indicate that

GAT’s attention mechanism could work better with higher order neighborhoods.

5.3.2 Focal loss

One of the things we were interested in investigating with the hyperparameters

tuning process was whether the focal loss (FL) function would be preferred for our clas-

sification task. A simple way for enabling this investigation is to set different possible

choices for the γ parameter, including 0. Since we are using a weighted categorical ver-

sion of the FL, a γ = 0 would mean that the traditional weighted categorical cross-entropy

would be utilized instead, i.e. the focusing parameter for modulating factor (1−p) would

turn this multiplying term into 1, the multiplicative identity.

Figures 5.10, 5.11 and 5.12 show the tuned γ for each threshold. Again, it is

important to notice that the MLP value is only plotted for comparison since the network

generation strategies and their different thresholds do not affect the MLP.

The first interesting aspect to notice is that a decent amount of cases fell into the

γ = 0 scenario. Since our problem deals with highly unbalanced data and we optimized

the hyperparameters choices by utilizing the AUC-PR metric, we expected the FL to be

of particular interest to our problem. This is because the γ parameter helps to focus on

the classes that are difficult for the model to classify. However, a γ = 0 means that this

focusing mechanism was not the best option when it comes to achieving greater AUC-

PRs. Specifically, there were seven cases in which the best performance of the GNN

Figure 5.10 – Tuned focal loss γ parameter across the tested sparsification thresholds applied to
CGEN strategy in KIRC dataset.

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold (categorized)

0

1

2

 (g
am

m
a)

CGEN tuned Focal Loss' (KIRC)

MLP
GAT
GCN

58

Figure 5.11 – Tuned focal loss γ parameter across the tested sparsification thresholds applied to
CGEN strategy in COAD dataset.

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold (categorized)

0

1

2

 (g
am

m
a)

CGEN tuned Focal Loss' (COAD)

MLP
GAT
GCN

Figure 5.12 – Tuned focal loss γ parameter across the tested sparsification thresholds applied to
CGEN strategy in LUAD dataset.

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold (categorized)

0

1

2

 (g
am

m
a)

CGEN tuned Focal Loss' (LUAD)

MLP
GAT
GCN

algorithm used a γ = 0. This corresponds to 35% of the best results (dataset-GNN-

strategy wise). The cases in which such a phenomenon happens are the following:

• On KIRC dataset: GCN-CGEN-99%, GAT-CMON-99%, GAT-SNF-90%

• On COAD dataset: GAT-CMON-99%, GAT-SNF-99%, GCN-SNF-99%

• On LUAD dataset: GAT-CGEN-99%

Besides, this tuned choice for γ was also present in the MLP experiment executed

in the KIRC dataset. While this was expected to occur in a few cases, we were surprised

by the number of hyperparameter-tuned settings that included such choice, particularly in

those with the best performance. These results cannot but cast some doubt on whether the

FL can actually be useful for our kind of data, highlighting its generalization limitation

59

Table 5.8 – Tuned hyperparameters for MLP and the best GNN-based setup in each dataset. The
LR column refers to the learning rate, and the AH to the number of attention heads used by GAT.
Dataset Setup Layers Neurons γ Dropout LR AH

KIRC GAT CMON-99% 3 [32, 64, 32] 0 0 0.0005 2
MLP 3 [32, 128, 128] 0 0 0.0005 -

COAD GAT CGEN-99% 3 [128, 32, 64] 1 0 0.0005 4
MLP 1 [128] 1 0 0.0005 -

LUAD GAT SNF-99% 2 [64, 32] 2 0 0.001 4
MLP 3 [128, 32, 32] 2 0 0.0005 -

for different unbalanced datasets than the investigated by (LIN et al., 2017).

5.3.3 Best hyperparameters

Finally, we aim to address the fifth question our study proposes to address: what

are the best hyperparameters for each investigated algorithm? For simplicity, we chose

to document here only the tuned parameters for the best setups of each dataset (see Ta-

ble 5.4), as well as the MLP versions. Table 5.8 shows the resulting tuned hyperparame-

ters.

It is interesting to notice that none of the top performative GNNs used only one

layer, suggesting that the 2- and 3-order neighbors are also important and actually con-

tributed to the classification task. The number of neurons varied and no pattern such as

"farthest neighbor features yielded a layer with less number of neurons" was observed.

The preferred learning rate was 0.0005, although in one GNN scenario a learning rate two

times higher was chosen.

A more peculiar scenario depicted by Table 5.8 is the ANNs’ dropout avoidance.

All the experiments showcased in Table 5.8 used a dropout of zero. Since this is a very

popular regularization strategy to avoid high-variance models, one could make a case

arguing that maybe the ANNs were oversimplifying the assumption. However, this is

most unlikely given that the tuner algorithm could choose more complex networks with

more learning parameters. Another explanation for this is that either the tuner algorithm

did not have enough epochs to decide whether a specific setup choice was better than the

other, or it chose a close to perfect ANN complexity architecture given that it 1) did not

overfit the data, since no dropout was applied; and 2) did not underfit the data, since the

maximum number of layers/neurons were not selected. An exception to 2) is the GAT

CGEN-99% setup, in which the maximum number of neurons for its first layer was in

60

fact selected by the tuner.

5.4 Networks visualization

In order to reason about the classification limitations in the networks with lower

thresholds, we propose to analyze these networks visually. In our plots, we represent each

node with a specific color, indicating its class. For the edges, we chose to depict in black

the ones connecting nodes of the same class, and in orange the ones connecting nodes of

different classes. Additionally, we removed all auto-connections for achieving a cleaner

visualization, but the reader has to keep in mind that all nodes have an auto-connection.

Since all cancer datasets showed similar behaviors for each network generation

strategy and threshold, we arbitrarily concentrate our discussion on KIRC. Figures 5.13

and 5.14 show the proposed network visualization for CGEN using the thresholds 75%

and 90%, respectively. By looking at these plots, it becomes very clear why the GNNs can

not properly classify the samples, having the worst results in lower thresholds. The 75%

threshold produces a very chaotic network with lots of connections between nodes of dif-

ferent classes, which is certainly negatively impacting the learning task. Lower thresholds

produce even messier networks and the classification only gets more challenging, since

each node classification receives feature inputs from a lot of neighbors that do not have

the same class. Thus, there is no doubt that a proper network modeling technique is of

great importance for the node classification task.

Figures 5.15 and 5.16 show the KIRC networks for the two most strict investi-

gated thresholds, 95% and 99%. Even the 95% network has lots of connections between

nodes of different classes, although in this network we start to see better separation of the

green and magenta nodes, i.e. stage I and stage III patients, respectively. Moving to the

pickier threshold of 99%, we observe that most connections are lost and start question-

ing if the resulting structure is representative of a sample similarity network at all since

the majority of the nodes do not have any edges, with exception of their own not plotted

auto-connection. This can indicate that a network-free representation is indeed preferred

and why the 99% threshold achieved better results: as fewer connections are added, more

closely the problem becomes to a tabular classification one in which the only input for

the classifier deciding a sample’s class is this sample’s own features. This could also ex-

plain why there were several cases of GNNs performance in the 99% threshold with no

statistically significant difference compared to the MLP performances.

61

Figure 5.13 – KIRC patient similarity network generated using the CGEN strategy with a
threshold of 75%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure 5.14 – KIRC patient similarity network generated using the CGEN strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

62

Figure 5.15 – KIRC patient similarity network generated using the CGEN strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Therefore, GNNs performances in the 99% threshold could be questioned, and

more thresholds between 90% and 99% should be explored. The best case scenario

would be to algorithmically decide the most appropriate threshold to use, although, as

we showed, the sole GNN performance could not be an adequate heuristic for that. In

Appendix A.3 we show other resulting patient similarity networks, and in Appendix B.1

we show a summary of how many nodes were connected only with themselves for each

network generation strategy and threshold.

63

Figure 5.16 – KIRC patient similarity network generated using the CGEN strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

64

6 CONCLUSIONS

Cancer staging with multi-omics integrated data is an investigation topic that has

been gaining more attention recently, although gene expression alone applied to cancer

diagnosis is still the most typical kind of research present in the literature. Some methods

based on patient similarity have been proposed recently, with promising results. How-

ever, we could not find any study investigating this type of data representation for cancer

staging, particularly utilizing multi-omics data. Additionally, some of the few studies in-

vestigating sample similarity networks do not even apply recent more advanced methods

for graph representation learning, such as GNNs. Here, we investigated the applicability

of GNNs to sample similarity networks generated with multi-omics data for the multi-

class classification problem of cancer staging.

Contrary to related literature, our findings did not show classification performance

advantages for the network modeling approach compared to a simpler multilayer percep-

tron applied to corresponding tabular integrated data. We show that the sparsification

method applied to the similarity matrix and the computation of these similarities among

pair-wised samples are of great relevance for a proper classification using GNNs, i.e. the

modeling quality of the networks is key to achieving better classification performance.

Even though these sample-sample networks have been studied by the cancer scientific

community, a more comprehensive and systematic investigation about them is required.

Our findings contribute to the understanding of such networks and the justification for

more research efforts in this direction.

Nonetheless, as discussed in Chapter 5, there are still relevant application spaces

for such networks. Among the applications, we mentioned its usage for semi-supervised

learning and the ability to easily integrate and deal with heterogeneous and missing data.

Since there was always a GNN-strategy setup capable of achieving similar performance

results as the MLP adopted as baseline, this makes the approach suitable for the same

task, although the network methods are more complex to configure and use. Besides,

there were some promising research opportunities pointed out in the results discussions,

such as the utilization of a dimensionality reduction technique and the usage of training

samples’ classes as features for the classification of the other samples. Additionally, for

ML researchers and practitioners interested in the same classification task, we provide

a comprehensive study of some important hyperparameters utilized by the investigated

algorithms, which could guide future research efforts.

65

Therefore, Graph Neural Networks are applicable to cancer staging using multi-

omics sample similarity networks. However, the method could not achieve similar per-

formance to the state-of-the-art (YU et al., 2020) and more investigation is needed to

reason if this is due to the utilized data (DUAN et al., 2021) or lack of additional/different

modeling techniques and classification algorithms.

66

REFERENCES

ABDOLRASOL, M. G. et al. Artificial neural networks based optimization techniques:
A review. Electronics, MDPI, v. 10, n. 21, p. 2689, 2021.

AHMAD, F. B.; ANDERSON, R. N. The leading causes of death in the us for 2020.
Jama, American Medical Association, v. 325, n. 18, p. 1829–1830, 2021.

ALVAREZ, H. et al. Widespread hypomethylation occurs early and synergizes with gene
amplification during esophageal carcinogenesis. PLoS genetics, Public Library of Sci-
ence San Francisco, USA, v. 7, n. 3, p. e1001356, 2011.

BARABÁSI, A.-L. Network science. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, The Royal Society Publishing,
v. 371, n. 1987, p. 20120375, 2013.

BAUL, S. et al. omicsgat: Graph attention network for cancer subtype analyses. bioRxiv,
Cold Spring Harbor Laboratory, 2022.

BERTSIMAS, D.; WIBERG, H. Machine learning in oncology: methods, applications,
and challenges. JCO Clinical Cancer Informatics, American Society of Clinical Oncol-
ogy, v. 4, 2020.

BHAWE, K. M.; AGHI, M. K. Microarray analysis in glioblastomas. In: Microarray
Data Analysis. [S.l.]: Springer, 2015. p. 195–206.

BILBAO, I.; BILBAO, J. Overfitting problem and the over-training in the era of data: Par-
ticularly for artificial neural networks. In: IEEE. 2017 eighth international conference
on intelligent computing and information systems (ICICIS). [S.l.], 2017. p. 173–177.

CENTER, B. I. T. G. D. A. Analysis-ready standardized tcga data from broad gdac fire-
hose 2016_01_28 run. Broad Institute of MIT and Harvard. Dataset., 2016.

CHANG, J. et al. Brain tumor segmentation based on 3d unet with multi-class focal
loss. In: IEEE. 2018 11th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI). [S.l.], 2018. p. 1–5.

CHEAIB, J. G. et al. Stage-specific conditional survival in renal cell carcinoma after
nephrectomy. In: ELSEVIER. Urologic Oncology: Seminars and Original Investiga-
tions. [S.l.], 2020. v. 38, n. 1, p. 6–e1.

CHOI, E. et al. Learning the graphical structure of electronic health records with graph
convolutional transformer. In: Proceedings of the AAAI conference on artificial intel-
ligence. [S.l.: s.n.], 2020. v. 34, n. 01, p. 606–613.

CHOLLET, F. et al. Keras. 2015. <https://keras.io>.

COLOMBELLI, F.; KOWALSKI, T. W.; RECAMONDE-MENDOZA, M. A hybrid en-
semble feature selection design for candidate biomarkers discovery from transcriptome
profiles. Knowledge-Based Systems, p. 109655, 2022. ISSN 0950-7051. Available from
Internet: <https://www.sciencedirect.com/science/article/pii/S0950705122008383>.

https://keras.io
https://www.sciencedirect.com/science/article/pii/S0950705122008383

67

DATA61, C. StellarGraph Machine Learning Library. [S.l.]: GitHub, 2018. <https:
//github.com/stellargraph/stellargraph>.

DUAN, R. et al. Evaluation and comparison of multi-omics data integration methods for
cancer subtyping. PLoS computational biology, Public Library of Science San Fran-
cisco, CA USA, v. 17, n. 8, p. e1009224, 2021.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press,
2016.

HAN, P. et al. Gcn-mf: disease-gene association identification by graph convolutional
networks and matrix factorization. In: Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data mining. [S.l.: s.n.], 2019. p. 705–
713.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The elements of statistical learning.
springer series in statistics. New York, NY, USA, 2001.

HUANG, S.; CHAUDHARY, K.; GARMIRE, L. X. More is better: Recent progress in
multi-omics data integration methods. Frontiers in Genetics, Frontiers, v. 8, p. 84, 2017.

JAMIESON, K.; TALWALKAR, A. Non-stochastic best arm identification and hyperpa-
rameter optimization. In: PMLR. Artificial intelligence and statistics. [S.l.], 2016. p.
240–248.

KIPF, T. N.; WELLING, M. Semi-supervised classification with graph convolutional net-
works. In: International Conference on Learning Representations (ICLR). [S.l.: s.n.],
2017.

KOH, H. W. et al. iomicspass: network-based integration of multiomics data for predictive
subnetwork discovery. NPJ systems biology and applications, Nature Publishing Group,
v. 5, n. 1, p. 1–10, 2019.

KOUROU, K. et al. Machine learning applications in cancer prognosis and prediction.
Computational and structural biotechnology journal, Elsevier, v. 13, p. 8–17, 2015.

LI, C. et al. 3dmol-net: learn 3d molecular representation using adaptive graph convolu-
tional network based on rotation invariance. IEEE Journal of Biomedical and Health
Informatics, IEEE, 2021.

LI, G. et al. Deepgcns: Can gcns go as deep as cnns? In: Proceedings of the IEEE/CVF
international conference on computer vision. [S.l.: s.n.], 2019. p. 9267–9276.

LI, L. et al. Hyperband: A novel bandit-based approach to hyperparameter optimization.
The Journal of Machine Learning Research, JMLR. org, v. 18, n. 1, p. 6765–6816,
2017.

LI, S. et al. Prenatal epigenetics diets play protective roles against environmental pollu-
tion. Clinical epigenetics, BioMed Central, v. 11, n. 1, p. 1–31, 2019.

LI, S.; TOLLEFSBOL, T. O. Dna methylation methods: Global dna methylation and
methylomic analyses. Methods, Elsevier, v. 187, p. 28–43, 2021.

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

68

LI, X.; WANG, C.-Y. From bulk, single-cell to spatial rna sequencing. International
Journal of Oral Science, Nature Publishing Group, v. 13, n. 1, p. 1–6, 2021.

LIN, T.-Y. et al. Focal loss for dense object detection. In: Proceedings of the IEEE
international conference on computer vision. [S.l.: s.n.], 2017. p. 2980–2988.

LIU, L. et al. Integrating sequence and network information to enhance protein-protein in-
teraction prediction using graph convolutional networks. In: IEEE. 2019 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM). [S.l.], 2019. p. 1762–
1768.

LOCKE, W. J. et al. Dna methylation cancer biomarkers: translation to the clinic. Fron-
tiers in genetics, Frontiers Media SA, v. 10, p. 1150, 2019.

LOWE, R. et al. Transcriptomics technologies. PLoS computational biology, Public Li-
brary of Science San Francisco, CA USA, v. 13, n. 5, p. e1005457, 2017.

LU, H.; UDDIN, S. A weighted patient network-based framework for predicting chronic
diseases using graph neural networks. Scientific reports, Nature Publishing Group, v. 11,
n. 1, p. 1–12, 2021.

LU, H. et al. A patient network-based machine learning model for disease prediction: The
case of type 2 diabetes mellitus. Applied Intelligence, Springer, v. 52, n. 3, p. 2411–2422,
2022.

LUXBURG, U. V. A tutorial on spectral clustering. Statistics and computing, Springer,
v. 17, n. 4, p. 395–416, 2007.

MA, B. et al. Diagnostic classification of cancers using extreme gradient boosting algo-
rithm and multi-omics data. Computers in biology and medicine, Elsevier, v. 121, p.
103761, 2020.

MAAS, A. L. et al. Rectifier nonlinearities improve neural network acoustic models. In:
CITESEER. Proc. icml. [S.l.], 2013. v. 30, n. 1, p. 3.

MAHMOOD, O. et al. Masked graph modeling for molecule generation. Nature com-
munications, Nature Publishing Group, v. 12, n. 1, p. 1–12, 2021.

MANOOCHEHRI, H. E.; PILLAI, A.; NOURANI, M. Graph convolutional networks for
predicting drug-protein interactions. In: IEEE. 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). [S.l.], 2019. p. 1223–1225.

MANZONI, C. et al. Genome, transcriptome and proteome: the rise of omics data and
their integration in biomedical sciences. Briefings in Bioinformatics, Oxford University
Press, v. 19, n. 2, p. 286–302, 2018.

MATURANA, E. López de et al. Challenges in the integration of omics and non-omics
data. Genes, MDPI, v. 10, n. 3, p. 238, 2019.

MENYHÁRT, O.; GYŐRFFY, B. Multi-omics approaches in cancer research with ap-
plications in tumor subtyping, prognosis, and diagnosis. Computational and structural
biotechnology journal, Elsevier, v. 19, p. 949–960, 2021.

69

MO, Q. et al. A fully bayesian latent variable model for integrative clustering analysis of
multi-type omics data. Biostatistics, Oxford University Press, v. 19, n. 1, p. 71–86, 2018.

MUZIO, G.; O’BRAY, L.; BORGWARDT, K. Biological network analysis with deep
learning. Briefings in bioinformatics, Oxford University Press, v. 22, n. 2, p. 1515–1530,
2021.

NICORA, G. et al. Integrated multi-omics analyses in oncology: a review of machine
learning methods and tools. Frontiers in oncology, Frontiers Media SA, v. 10, p. 1030,
2020.

PAI, S.; BADER, G. D. Patient similarity networks for precision medicine. Journal of
molecular biology, Elsevier, v. 430, n. 18, p. 2924–2938, 2018.

PAI, S. et al. netdx: interpretable patient classification using integrated patient similarity
networks. Molecular systems biology, v. 15, n. 3, p. e8497, 2019.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

PRIOR, F. W. et al. Tcia: an information resource to enable open science. In: IEEE. 2013
35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). [S.l.], 2013. p. 1282–1285.

QIN, H.; NIU, T.; ZHAO, J. Identifying multi-omics causers and causal pathways for
complex traits. Frontiers in genetics, Frontiers Media SA, v. 10, p. 110, 2019.

REDDY, K. B. Microrna (mirna) in cancer. Cancer cell international, Springer, v. 15,
n. 1, p. 1–6, 2015.

REUTER, J. A.; SPACEK, D. V.; SNYDER, M. P. High-throughput sequencing technolo-
gies. Molecular cell, Elsevier, v. 58, n. 4, p. 586–597, 2015.

RHEE, S.; SEO, S.; KIM, S. Hybrid approach of relation network and localized
graph convolutional filtering for breast cancer subtype classification. arXiv preprint
arXiv:1711.05859, 2017.

ROSSI, E. et al. On the unreasonable effectiveness of feature propagation in learning on
graphs with missing node features. arXiv preprint arXiv:2111.12128, 2021.

SCHÜBELER, D. Function and information content of dna methylation. Nature, Nature
Publishing Group, v. 517, n. 7534, p. 321–326, 2015.

SHEN, R.; OLSHEN, A. B.; LADANYI, M. Integrative clustering of multiple genomic
data types using a joint latent variable model with application to breast and lung cancer
subtype analysis. Bioinformatics, Oxford University Press, v. 25, n. 22, p. 2906–2912,
2009.

SHI, J.; MALIK, J. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence, Ieee, v. 22, n. 8, p. 888–905, 2000.

SONG, T.-A. et al. Graph convolutional neural networks for alzheimer’s disease classifi-
cation. In: IEEE. 2019 IEEE 16th International Symposium on Biomedical Imaging
(ISBI 2019). [S.l.], 2019. p. 414–417.

70

SRIVASTAVA, N. et al. Dropout: a simple way to prevent neural networks from overfit-
ting. The journal of machine learning research, JMLR. org, v. 15, n. 1, p. 1929–1958,
2014.

SUPPLITT, S. et al. Current achievements and applications of transcriptomics in per-
sonalized cancer medicine. International Journal of Molecular Sciences, v. 22, n. 3,
2021. ISSN 1422-0067. Available from Internet: <https://www.mdpi.com/1422-0067/22/
3/1422>.

TREVIZAN, B.; RECAMONDE-MENDOZA, M. Ensemble feature selection compares
to meta-analysis for breast cancer biomarker identification from microarray data. In:
SPRINGER. International Conference on Computational Science and Its Applica-
tions. [S.l.], 2021. p. 162–178.

VASWANI, A. et al. Attention is all you need. Advances in neural information process-
ing systems, v. 30, 2017.

VELIČKOVIĆ, P. et al. Graph attention networks. In: International Conference on
Learning Representations. [S.l.: s.n.], 2018.

VINCENT, P. et al. Extracting and composing robust features with denoising autoen-
coders. In: Proceedings of the 25th international conference on Machine learning.
[S.l.: s.n.], 2008. p. 1096–1103.

WANG, B. et al. Similarity network fusion for aggregating data types on a genomic scale.
Nature methods, Nature Publishing Group, v. 11, n. 3, p. 333–337, 2014.

WANG, M. et al. A high-speed and low-complexity architecture for softmax function in
deep learning. In: IEEE. 2018 IEEE asia pacific conference on circuits and systems
(APCCAS). [S.l.], 2018. p. 223–226.

WANG, Z.; WU, X.; WANG, Y. A framework for analyzing dna methylation data from
illumina infinium humanmethylation450 beadchip. BMC bioinformatics, Springer, v. 19,
n. 5, p. 15–22, 2018.

WEINBERG, R. A. The Biology of Cancer. [S.l.]: Garland Science, 2013.

WIEDER, O. et al. A compact review of molecular property prediction with graph neural
networks. Drug Discovery Today: Technologies, Elsevier, v. 37, p. 1–12, 2020.

WOOLSON, R. F. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials, Wi-
ley Online Library, p. 1–3, 2007.

WU, J. et al. Hyperparameter optimization for machine learning models based on
bayesian optimization. Journal of Electronic Science and Technology, Elsevier, v. 17,
n. 1, p. 26–40, 2019.

YANG, L.; SHAMI, A. On hyperparameter optimization of machine learning algorithms:
Theory and practice. Neurocomputing, Elsevier, v. 415, p. 295–316, 2020.

YI, H.-C. et al. Graph representation learning in bioinformatics: trends, methods and ap-
plications. Briefings in Bioinformatics, Oxford University Press, v. 23, n. 1, p. bbab340,
2022.

https://www.mdpi.com/1422-0067/22/3/1422
https://www.mdpi.com/1422-0067/22/3/1422

71

YOU, R. et al. Deepgraphgo: graph neural network for large-scale, multispecies protein
function prediction. Bioinformatics, Oxford University Press, v. 37, n. Supplement_1, p.
i262–i271, 2021.

YU, X. et al. Co-expression based cancer staging and application. Scientific reports,
Nature Publishing Group, v. 10, n. 1, p. 1–10, 2020.

ZHANG, G. et al. A novel liver cancer diagnosis method based on patient similarity net-
work and densegcn. Scientific Reports, Nature Publishing Group, v. 12, n. 1, p. 1–10,
2022.

ZHANG, S. et al. Discovery of multi-dimensional modules by integrative analysis of
cancer genomic data. Nucleic acids research, Oxford University Press, v. 40, n. 19, p.
9379–9391, 2012.

ZHANG, X.; JONASSEN, I.; GOKSØYR, A. Machine Learning Approaches for
Biomarker Discovery Using Gene Expression Data. In: NAKAYA, H. I. (Ed.). Bioin-
formatics. [S.l.]: Exon Publications, 2021. p. 53–64.

ZHAO, Y. et al. Tpm, fpkm, or normalized counts? a comparative study of quantification
measures for the analysis of rna-seq data from the nci patient-derived models repository.
Journal of translational medicine, BioMed Central, v. 19, n. 1, p. 1–15, 2021.

72

APPENDIX A — SUPPLEMENTARY FIGURES

A.1 GNNs classification performance across thresholds

Figure A.1 – Performance comparison of GAT and GCN across the investigated thresholds for
the kidney cancer data (KIRC) using the correlation network based on gene expression levels
(CGEN) strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.

(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.50

0.55

0.60

0.65

0.70

AU
C-

RO
C

KIRC: CGEN
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.25

0.30

0.35

0.40

0.45

0.50

AU
C-

PR

KIRC: CGEN
Algorithm

GAT
GCN

Figure A.2 – Performance comparison of GAT and GCN across the investigated thresholds for
the kidney cancer data (COAD) using the correlation network based on gene expression levels
(CGEN) strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.

(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

AU
C-

RO
C

COAD: CGEN
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.26

0.28

0.30

0.32

0.34

0.36

0.38

AU
C-

PR

COAD: CGEN
Algorithm

GAT
GCN

73

Figure A.3 – Performance comparison of GAT and GCN across the investigated thresholds for
the kidney cancer data (LUAD) using the correlation network based on gene expression levels
(CGEN) strategy. Plot (a) shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.

(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

AU
C-

RO
C

LUAD: CGEN
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

AU
C-

PR

LUAD: CGEN
Algorithm

GAT
GCN

Figure A.4 – Performance comparison of GAT and GCN across the investigated thresholds for
the kidney cancer data (KIRC) using the Similarity Network Fusion (SNF) strategy. Plot (a)

shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.
(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.45

0.50

0.55

0.60

0.65

0.70

AU
C-

RO
C

KIRC: SNF
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.25

0.30

0.35

0.40

0.45

0.50

AU
C-

PR

KIRC: SNF
Algorithm

GAT
GCN

Figure A.5 – Performance comparison of GAT and GCN across the investigated thresholds for
the kidney cancer data (COAD) using the Similarity Network Fusion (SNF) strategy. Plot (a)

shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.
(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

AU
C-

RO
C

COAD: SNF
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.24

0.26

0.28

0.30

0.32

0.34

0.36

AU
C-

PR

COAD: SNF
Algorithm

GAT
GCN

74

Figure A.6 – Performance comparison of GAT and GCN across the investigated thresholds for
the kidney cancer data (LUAD) using the Similarity Network Fusion (SNF) strategy. Plot (a)

shows the mean AUC-ROC and plot (b) shows the mean AUC-PR.
(a) AUC-ROC

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

AU
C-

RO
C

LUAD: SNF
Algorithm

GAT
GCN

(b) AUC-PR

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Threshold

0.275

0.300

0.325

0.350

0.375

0.400

0.425

AU
C-

PR

LUAD: SNF
Algorithm

GAT
GCN

75

A.2 GNNs and MLP classification performances

Figure A.7 – AUC-ROC performance comparison on KIRC dataset between the MLP approach
and the GNNs using the CGEN network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

KIRC: CGEN - 0.99

76

Figure A.8 – AUC-ROC performance comparison on KIRC dataset between the MLP approach
and the GNNs using the CGEN network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

KIRC: CGEN - 0.95

Figure A.9 – AUC-ROC performance comparison on KIRC dataset between the MLP approach
and the GNNs using the CMON network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

KIRC: CMON - 0.95

77

Figure A.10 – AUC-ROC performance comparison on KIRC dataset between the MLP approach
and the GNNs using the SNF network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

KIRC: SNF - 0.99

Figure A.11 – AUC-ROC performance comparison on KIRC dataset between the MLP approach
and the GNNs using the SNF network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

KIRC: SNF - 0.95

78

Figure A.12 – AUC-ROC performance comparison on COAD dataset between the MLP approach
and the GNNs using the CGEN network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

COAD: CGEN - 0.95

Figure A.13 – AUC-ROC performance comparison on COAD dataset between the MLP approach
and the GNNs using the CMON network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

COAD: CMON - 0.99

79

Figure A.14 – AUC-ROC performance comparison on COAD dataset between the MLP approach
and the GNNs using the CMON network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

COAD: CMON - 0.95

Figure A.15 – AUC-ROC performance comparison on COAD dataset between the MLP approach
and the GNNs using the SNF network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

COAD: SNF - 0.99

80

Figure A.16 – AUC-ROC performance comparison on COAD dataset between the MLP approach
and the GNNs using the SNF network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

COAD: SNF - 0.95

Figure A.17 – AUC-ROC performance comparison on LUAD dataset between the MLP approach
and the GNNs using the CGEN network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

LUAD: CGEN - 0.99

81

Figure A.18 – AUC-ROC performance comparison on LUAD dataset between the MLP approach
and the GNNs using the CGEN network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

LUAD: CGEN - 0.95

Figure A.19 – AUC-ROC performance comparison on LUAD dataset between the MLP approach
and the GNNs using the CMON network generation strategy and the 99% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

LUAD: CMON - 0.99

82

Figure A.20 – AUC-ROC performance comparison on LUAD dataset between the MLP approach
and the GNNs using the CMON network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

LUAD: CMON - 0.95

Figure A.21 – AUC-ROC performance comparison on LUAD dataset between the MLP approach
and the GNNs using the SNF network generation strategy and the 95% threshold.

MLP GAT GCN
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

LUAD: SNF - 0.95

83

A.3 Networks visualization

Figure A.22 – KIRC patient similarity network generated using the CMON strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

84

Figure A.23 – KIRC patient similarity network generated using the CMON strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.24 – KIRC patient similarity network generated using the CMON strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

85

Figure A.25 – KIRC patient similarity network generated using the SNF strategy with a threshold
of 90%. Black edges represent a connection between nodes of the same class, and orange edges
represent a connection between nodes of a different class. Node colors represent patients’ cancer

stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.26 – KIRC patient similarity network generated using the SNF strategy with a threshold
of 95%. Black edges represent a connection between nodes of the same class, and orange edges
represent a connection between nodes of a different class. Node colors represent patients’ cancer

stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

86

Figure A.27 – KIRC patient similarity network generated using the SNF strategy with a threshold
of 99%. Black edges represent a connection between nodes of the same class, and orange edges
represent a connection between nodes of a different class. Node colors represent patients’ cancer

stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.28 – COAD patient similarity network generated using the CGEN strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

87

Figure A.29 – COAD patient similarity network generated using the CGEN strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.30 – COAD patient similarity network generated using the CGEN strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

88

Figure A.31 – COAD patient similarity network generated using the CMON strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.32 – COAD patient similarity network generated using the CMON strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

89

Figure A.33 – COAD patient similarity network generated using the CMON strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.34 – COAD patient similarity network generated using the SNF strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

90

Figure A.35 – COAD patient similarity network generated using the SNF strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.36 – COAD patient similarity network generated using the SNF strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

91

Figure A.37 – LUAD patient similarity network generated using the CGEN strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.38 – LUAD patient similarity network generated using the CGEN strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

92

Figure A.39 – LUAD patient similarity network generated using the CGEN strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.40 – LUAD patient similarity network generated using the CMON strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

93

Figure A.41 – LUAD patient similarity network generated using the CMON strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.42 – LUAD patient similarity network generated using the CMON strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

94

Figure A.43 – LUAD patient similarity network generated using the SNF strategy with a
threshold of 90%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

Figure A.44 – LUAD patient similarity network generated using the SNF strategy with a
threshold of 95%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

95

Figure A.45 – LUAD patient similarity network generated using the SNF strategy with a
threshold of 99%. Black edges represent a connection between nodes of the same class, and

orange edges represent a connection between nodes of a different class. Node colors represent
patients’ cancer stage: green represents stage I; blue, stage II; magenta, stage III; red, stage IV.

96

APPENDIX B — SUPPLEMENTARY TABLES

B.1 Networks summary

Table B.1 – Number (and percentage) of nodes connected only with themselves in the KIRC
networks for each generation strategy and threshold.

KIRC 1% 5% 10% 25% 50% 75% 90% 95% 99%
CGEN 0 0 0 0 0 0 0 13 (4%) 179 (57%)
CMON 0 0 0 0 0 0 1 (0%) 10 (3%) 180 (57%)

SNF 0 0 0 0 0 0 0 0 163 (52%)

Table B.2 – Number (and percentage) of nodes connected only with themselves in the COAD
networks for each generation strategy and threshold.

COAD 1% 5% 10% 25% 50% 75% 90% 95% 99%
CGEN 0 0 0 0 0 0 3 (0%) 19 (7%) 210 (74%)
CMON 0 0 0 0 0 0 1 (0%) 30 (11%) 239 (85%)

SNF 0 0 0 0 0 0 0 2 (0%) 202 (71%)

Table B.3 – Number (and percentage) of nodes connected only with themselves in the LUAD
networks for each generation strategy and threshold.

LUAD 1% 5% 10% 25% 50% 75% 90% 95% 99%
CGEN 0 0 0 0 0 0 1 (0%) 26 (6%) 259 (58%)
CMON 0 0 0 0 0 0 1 (0%) 31 (7%) 257 (58%)

SNF 0 0 0 0 0 0 0 0 169 (38%)

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Biological background and the omics data
	2.2 Similarity Network Fusion
	2.3 Spectral clustering
	2.4 Multi-layer perceptron and the fundamentals of artificial neural networks
	2.5 Graph Convolutional Networks
	2.6 Graph Attention Networks
	2.7 Focal loss
	2.8 Hyperparameter optimization with the hyperband algorithm

	3 Related works
	4 Methodology
	4.1 Analyzed data
	4.2 Networks generation
	4.3 Algorithms and metrics
	4.4 Models Evaluation

	5 Results
	5.1 Thresholds
	5.2 Baselines comparison
	5.3 Hyperparameters
	5.3.1 Number of layers and units on each layer
	5.3.2 Focal loss
	5.3.3 Best hyperparameters

	5.4 Networks visualization

	6 Conclusions
	References
	Appendix A — Supplementary figures
	A.1 GNNs classification performance across thresholds
	A.2 GNNs and MLP classification performances
	A.3 Networks visualization

	Appendix B — Supplementary tables
	B.1 Networks summary

