
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

BERNARDO HUMMES FLORES

Formalization of Mobile Robot Tasks

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Mariana Kolberg
Co-advisor: Prof. Dr. Eric Goubault

Porto Alegre
October 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

The guaranteed coordination and operation of mobile robots without supervision requires

tools capable of representing the vast number of evolving possibilities during a mission.

This work studies the categorical and logical formalization of mobile robot tasks, with the

use of connections between robotics, distributed computing and modal logics.

A demonstration of the equivalences between modal logics and combinatorial topology

is shown as the first element for the unified perspective, alongside some of its uses. This

is followed by a discussion on the connections between models in distributed computing

and robotics, where initial results on the formalization of robot tasks are accompanied by

considerations on applications for gathering and exploration missions.

The work ends by proposing a formalization that extends the previous one in the literature

with the capacity of dealing with faulty robots, limited sensing capabilities and uncertain

behavior.

Keywords: Mobile Robotics. Distributed Computing. Formal Verification.

Formalização de Tarefas de Robôs Móveis

RESUMO

A coordenação e operação de robôs sem supervisão requere ferramentas capazes de repre-

sentar o vasto número de possíveis evoluções de uma missão. Este trabalho é um estudo

da formalização categórica e lógica de tarefas de robôs móveis, fazendo uso de conexões

entre robótica, computação distribuída e lógica modal.

Uma demonstração da equivalências entre lógica modal e topologia combinatória é exi-

bida como o primeiro elemento de uma perspectiva unificada, junto dos seus usos. Uma

discussão segue com as conexões entre modelos em computação distribuída e robótica,

onde resultados iniciais na formalização de tarefas de robôs são acompanhados por con-

siderações nas seus usos para missões de encontro e exploração.

Este trabalho encerra com a proposta de uma formaçização que extende a anterior encon-

trada na literatura com a capacidade de lidar com robôs defeituosos, capacidades limitadas

de sensoriamento e comportamento incerto.

Palavras-chave: Robótica Móvel. Computação Distribuída. Verificação Formal.

LIST OF FIGURES

Figure 2.1 Evolution of the complex through the rounds of (lack of) communica-
tion, credit from Herlihy, Kozlov and Rajsbaum (2014). ...12

Figure 2.2 The evolving states after each general sends a message, credit to Her-
lihy, Kozlov and Rajsbaum (2014)..14

Figure 2.3 The impossible mapping for the generals communication, credit to Her-
lihy, Kozlov and Rajsbaum (2014)..14

Figure 2.4 Non pure simplicial complex of dimension 2 (maximal simplex of di-
mension 2, i.e. triangle). ...15

Figure 2.5 3rd face of a triangle. ...15
Figure 2.6 Star, open star, link and join constructions from the simplicial com-

plexes B and C. ..18
Figure 2.7 Digraphs representing the scenarios where both process successfully

exchange information and when at most one of them fail in the communication.
One of these scenarios is executed at each communication round.31

Figure 3.1 I, T and the subset of their product relevant for the approximate agree-
ment task definition...41

Figure 3.2 Evolution of the knowledge in the DN r model, where each configura-
tion is split in three with the partial or complete transmission of the messages.
Credit to Armenta-Segura, Rajsbaum and Ledent (2020).42

Figure 4.1 Subdivision of T and mapping via δ shown in Herlihy, Kozlov and Ra-
jsbaum (2014). ..56

Figure 4.2 Results in the literature for exploration tasks in LCM.60
Figure 4.3 4 main blocks that appear as the input complex is subdivided.64
Figure 4.4 Possible assembly of all subcomplexes related to the movement of the

robot on the line. ...64

Figure 5.1 Input complex I, output complex O, task complex T and the related
morphisms in the gathering task for two robots on a graph G. Input vertex is
displayed in grey and output vertex in red. No extra communication data is used. .67

Figure 5.2 Diagram must commute for solvability. Robot task definition in blue,
specification in green and solvability criteria in red. ..68

Figure 7.1 Equivalence via functors of a proper Kripke frame (left) and a pure chro-
matic simplicial complex (right). From Goubault, Ledent and Rajsbaum (2018)....75

Figure 7.2 Equivalence via functors of a local proper Kripke model (left of each
pair) and a simplicial model (right of each pair). From Goubault, Ledent and
Rajsbaum (2018)...78

CONTENTS

1 THE CONTEXT ...8
1.1 Introduction...8
1.2 Related work..9
2 THEORETICAL BACKGROUND...11
2.1 Distributed computing..11
2.1.1 Introduction..11
2.1.2 Simplicial complexes ...14
2.1.3 Colorless tasks ...18
2.1.4 General tasks..20
2.2 Look Compute Move ..23
2.2.1 LCM model..23
2.2.2 Taxonomy ..24
2.3 Modal logic ..25
2.3.1 Introduction and syntax..26
2.3.2 Possible worlds model ...27
2.3.3 Temporal logic ...28
2.3.4 Epistemic logic...29
2.3.5 Kripke frames and models on epistemic logic...30
2.3.6 Dynamic epistemic logic (DEL) ..31
2.4 Category theory...32
2.4.1 Introduction..32
2.4.2 Categories ..33
2.4.3 Duality..35
2.4.4 Functors..35
2.4.5 Algebras ...36
3 CONNECTIONS BETWEEN LOGIC AND TOPOLOGY37
3.1 Knowledge Gain Theorem..37
3.2 Approximate agreement from the epistemic logic perspective38
3.2.1 Approximate agreement...38
3.2.2 Simplicial model for DEL..39
3.2.3 Tasks ..40
3.2.4 Approximate agreement as a task ..41
4 DISTRIBUTED COMPUTING APPROACH FOR LCM......................................43
4.1 The topology of look-compute-move robot wait-free algorithms with hard

termination ...43
4.1.1 ALR, EALR, WSFM and their connections ..43
4.1.2 Gathering and binary consensus ..45
4.1.3 Results..48
4.1.4 Robot tasks...54
4.2 Myopic exploration as a robot task ...57
4.2.1 Introduction..57
4.2.2 Known results ..59
4.2.3 Model for exploration ..61
4.3 Simple robot task in line graph..62
5 FORMALIZATION OF TASKS ...65
5.1 Robot tasks ..65
5.2 Formalization of robot tasks ..66

6 A CONCLUSION..70
6.1 Developments...70
6.2 Future work...72
7 APPENDIX..73
7.1 Equivalence of categories ...73
7.1.1 Equivalence between pure simplicial complexes and Kripke frames.74
7.1.2 Equivalence between simplicial models and Kripke models.................................75
REFERENCES...79

8

1 THE CONTEXT

1.1 Introduction

This work is the study of links between computing models for mobile robotics and

similar structures in distributed systems and modal logics, with the goal of providing new

tools for the analysis of guaranteed results in distributed robotic tasks. It is often hard to

reason about the feasibility of scenarios where multiple robots have to cooperate towards

a common objective, as there is an explosion of possible executions without a common

controller for all agents. Furthermore, the possibility of failures has to be addressed, as

well as the resistance of a system to their occurrences. This will be tackled in a proposed

formalization of robot tasks, alongside the envisioned expansions and uses, such as with

gathering and exploration missions.

Guaranteed results in distributed computing have been long approached with alge-

braic topology, with many approaches explored in Herlihy, Kozlov and Rajsbaum (2014),

where the possible executions and the associated evolution of the knowledge within the

agents can be understood as continuous transformations from an initial configuration rep-

resented as a topological element. This has allowed for the inference of possibility and

impossibility results of an algorithm’s capacity to solve a given task accompanied by the

system specification. Recent results, such as in Alcántara et al. (2019), in this domain

showed the similarity with the theoretical models in robotics, opening the exploration and

importation of known results.

In parallel, the similarity with mathematical structures in modal logic can be

observed from a more abstract point of view, such as the one from category theory.

The aforementioned topological structure is strongly connected to Kripke frames used

in modal logics, which allows for the interpretation of an interesting semantics that ex-

pands even more the possible importation of results, with some examples in Goubault,

Ledent and Rajsbaum (2018), Goubault, Ledent and Rajsbaum (2022). Considerations

on this new point of view proposed usage will be shown, as the natural interpretation of

knowledge and time can be advantageous concepts to improve the expressiveness of the

formalization.

Those connections will be exposed in the following chapters, and the necessary

theoretical background can be found in the appendix 2. Considerations on the current

research for each of the fields and their interactions will start with modal logic and com-

9

binatorial topology in chapter 3, then the distributed computing approach used for robots

in chapter 4. A proposed formalization of robot tasks will be presented in chapter 5,

alongside its relation to logic. Finally, in chapter 6 the progress of the goals is discussed,

followed by what is imagined as future work, such as other ways to profit of this abstract

point of view that connects the different fields.

1.2 Related work

It is possible to identify some categories of previous works that were used. The

first one consists of the existing problems and their solutions in robotics within the theo-

retical robotics model of Look-Compute-Move (LCM). Next, we have the existing efforts

in usage of modal logic and distributed computing together, with complementing ap-

proaches. The same happens with distributed computing and theoretical robotics, again

with the LCM model. This is where most of the efforts in this work are found, as it

has only recently started being explored. Finally we have the references with the theory

behind each of the tackled domains.

We will be considering only cases of robot gathering and exploration, that in dis-

cretized environments of graphs/networks, as opposed to models that operate in Euclidean

spaces, such as in Luna et al. (2022), Kirkpatrick et al. (2021). The variations that we are

the most interested in are the cases with lights for implicit communication where one

robot has to see the exposed information, seen in Nakai, Sudo and Wada (2021), Das et

al. (2016), Alcántara et al. (2019), and of limited visibility, where there is a maximum

range to some or all of the robot’s sensors, seen in Flocchini et al. (2005), Datta et al.

(2013a), Guerraoui and Maurer (2019). In some cases they are combined, but it is pos-

sible to understand better how the transmission of information influences the solvability

with myopic robots in the works of Ooshita and Tixeuil (2021), Nagahama, Ooshita and

Inoue (2021), Bramas, Lafourcade and Devismes (2021).

The links between distributed computing and logic have been made with dif-

ferent levels of equivalences among the topological structures used in representing dis-

tributed executions, simplicial complexes, and the Kripke frames, usually in epistemic

logic, presented first in Goubault, Ledent and Rajsbaum (2018) using dynamic epistemic

logic. Variations were explored, with additional information represented, via complex and

Kripke models, and with varying number of agents, seen in Armenta-Segura, Rajsbaum

and Ledent (2020), Ditmarsch et al. (2020), Goubault, Ledent and Rajsbaum (2022). The

10

idea of mixing modalities in order to represent time and knowledge has been explored in

Knight (2013), with the aim of the current work being expanded on this formalization.

The main result relating distributed computing and theoretical robotics has been

presented in Alcántara et al. (2019), where a model of asynchronous computation in

shared memory was shown equivalent to the extended case of asynchronous robots with

lights in a graph. This allowed for the first major importation of results between domains.

Another interesting result in abstraction was made in Ledent (2021), where multiple cases

of gathering were shown to be variations of a more generic problem, allowing for stronger

implications on their solvability. These key results will be expanded later.

As mentioned, a brief introduction of the necessary concepts will be presented

in the following chapter, but a reader may find further explanations beyond the scope

of this work in the following texts. The abstract representation of robotic operations

known as Look-Compute-Move is presented with multiple variations in the collective

of publications Flocchini, Prencipe and Santoro (2019), and the chapters on gathering

and exploration are useful surveys of the area. Together with the book Herlihy, Kozlov

and Rajsbaum (2014), it is possible to observe the theoretical base and for most of what

is dealt in this work and the previously mentioned references. The work Fajstrup et al.

(2016) can also be useful for those interesting in learning more about the mentioned usage

of topology in concurrent applications.

In the case of modal logics Benthem (2010) provides interesting insights on the

power of this formalism and on the usage of Kripke frames. A more extended work on

the temporal and epistemic systems in use can be found in Carnielli and Pizzi (2008).

We used the language of category theory, while Lane (1971) is the original work on it,

Riehl (2016) presents more contextualized explanations, for those coming from different

fields in mathematics, Barr and Wells (1990) does so with a focus in computer scientists’

background and Smith (2018) offers a slower pace in developing the intuition.

11

2 THEORETICAL BACKGROUND

2.1 Distributed computing

Here, some notes expose the base for the study of distributed computation via

topological properties, mainly from Herlihy, Kozlov and Rajsbaum (2014).

2.1.1 Introduction

The usage of topology in order to represent the evolving knowledge of multiple

agents makes use of an interpretation of simplicial complexes, where the multiple possible

states are connected according to the associated possible scenarios. The following cases

will demonstrate how this analysis is made in simple cases and motivate for the more

complex constructions ahead.

2.1.1.1 The muddy children problem

This initial problem instantiates how knowledge evolves via communication of

agents that begin without knowing their own states. One possible enunciation is as fol-

lows:

A group of children is playing in the garden, and some of them end up with
mud on their foreheads. Each child can see the other children’s foreheads but
not his or her own. At noon, their teacher summons the children and says: “At
least one of you has a muddy forehead. You are not allowed to communicate
with one another about it in any manner. But whenever you become certain
that you are dirty, you must announce it to everybody, exactly on the hour.”
The children resume playing normally, and nobody mentions the state of any-
one’s forehead. There are six muddy children, and at 6:00 they all announce
themselves. How does this work?

This is an idealized problem that shows how information can be gained from each

round and that the announcement of existing at least one children with mud in their fore-

head allows this to happen. If we reduce this problem to only 3 children, it get easier to

see how the problem is solved if at least a single one is muddy in the following steps:

1. The professor announces that there is at least one muddy children, removing the

option of everyone being clean.

2. Everyone knows each other’s foreheads, which means that each person can either:

1. See no other muddy forehead, which means that they are the muddy one and

12

announce in the next communication round;

2. See one or two other muddy foreheads, which does not give enough informa-

tion about themselves.

3. Having seen one or two muddy foreheads they can:

1. If they saw only one other muddy, they know they must be the second and

announce in the next round;

2. If they saw two, they don’t have enough information and wait.

3. Having seen two children with mud and two rounds with no announcements, they

all announce that they have a muddy forehead.

This is equivalently represented in the following simplicial complex, where each

solid triangle has a possible configuration of the three children, each with one color, and

considering that they don’t know their own state. This representation consists of each

vertex representing a possible state of the children, muddy or not. Each state is connected

with edges to all others that could be true (it is indistinguishable) while they are true. The

following image shows all possible scenarios.

Figure 2.1 – Evolution of the complex through the rounds of (lack of) communication, credit
from Herlihy, Kozlov and Rajsbaum (2014).

The triangle on top represents all three children are clean, while each individual

vertex of this triangle represents each children being clean, with the different colors dis-

tinguishing them. The facets represent global states (in this case triangles), in the form

111 or 01⊥, where 0 and 1 represent muddy or not, and ⊥ the lack of information This

shows how each vertex has meaning even without context. From this one must note that

each vertex connects exactly two triangles, which are the two possible scenarios where

this children is the only one that changes between muddy or not. These connections, when

interpreted as possible worlds, show that for children A with no knowledge about itself,

13

the world where children B sees no mud in the other ones, children C sees no mud on the

other ones, children B sees mud in A but not in C, and children C sees mud in A but not

in B are equivalent.

As the announcement in step 1 happens, the top triangle is removed and the top

vertices are “exposed”, left without ambiguity. This means that, in this case, a children

will have enough information to announce it, as in step 2.a. This process repeats in the

case of no announcements, leaving the possibilities of ⊥01, 0⊥1, 01⊥,⊥10, 1⊥0, 10⊥.

If some of this scenarios is fulfilled, then there will be no more lack of information and

they announce, as in step 3.1; In step 4 we see them simply having the option of being all

muddy.

2.1.1.2 Two generals problem

This second problem shows how in some cases failures in communication is enough

for making it impossible to reach a decision. The enunciation of the problem is as follows.

Two army division, one commanded by general ALice and one by general
Bob, are camped on two hilltops overlooking a valley, The enemy is camped
in the valley. If both divisions attack simultaneously, they will win, but if only
one division attacks by itself, it will be defeated. As a result, neither general
will attack without a guarantee that the other will attack at the same time.
In particular, neither general will attack without communication from the
other.

At the time the divisions are deployed on hilltops, the generals had not agreed
on whether or when to attack. Now Alice decides to schedule an attack. The
generals can communicate only by messengers. Normally it takes a mes-
senger exactly one hour to get from one encampment to the other. However,
it is possible that he will get lost in the dark or, worse yet, be capture by the
enemy. Fortunately, on this particular night all the messenger happen to
arrive safely. How long will it take Alice and Bob to coordinate their attack?

We are interested in arriving in a common decision for both agents, so that either

the attack and the decision to stay put are shared. However, one can see that no number

of messages will be enough for this to be agreed upon, as the resulting scenario after a

message is received or lost is the same for those who sent it. Another confirmation will be

required and this process will never end. The delay is not considered here, as this problem

is impossible even without taking this into consideration. It is possible to see in image _

the possible states.

At first, we can see that Bob, without any messages received, consider equally

the possibility of Alice having sent either the command to attack at dawn or to attack at

noon. Once a message is received, Alice will see as equally possible the case where Bob

received the message or it has not. This same pattern will repeat forever, and we can

14

Figure 2.2 – The evolving states after each general sends a message, credit to Herlihy, Kozlov and
Rajsbaum (2014).

say that topologically it will always have one connected component. The impossibility

appears when we compare with what are the desired configurations, with three different

scenarios where they either both attack at dawn, at noon or not at all, seen in figure 2.3.

Topologically this constitutes three disconnected components, which is impossible to map

functionally from the previous space. This will be further explained in sections 2.1.3 and

2.1.4, where the precise requirements for solvability are exposed.

Figure 2.3 – The impossible mapping for the generals communication, credit to Herlihy, Kozlov
and Rajsbaum (2014).

2.1.2 Simplicial complexes

2.1.2.1 Definitions

The representation via graphs is limited to at most one failing process, allowing

for more on the analysis of specific cases such as consensus with synchronous commu-

nication. In order to study general tasks with models where more than once process can

15

fail, simplicial complexes are useful, as higher order graphs.

Definition 2.1 A simplicial complex in the combinatorial view is a pair K = (V ,S),

where V is a finite set of vertices and S ⊆ P(V) is a set of simplices, non-empty subsets

of V , where:

• For every v ∈ V, {v} ∈ S. The sets of singleton vertices are part of the set of

simplices

• S is downward-closed, i.e. for every Y ∈ S and for every non-empty subset

X ⊆ Y,X ∈ S. All of the non-empty subsets of a simplex are part of the set of

simplices too, and we say that X is a face of Y .

The dimension of a simplex X is dim(X) = card(X) − 1, where the cardinality

is the number of edges, and the codim(σ,A) = dim(A) − dim(σ), where facets have

codimension 0. The dimension of a simplicial complex K will be the maximal dimension

of a simplex of K, i.e. dim(K) = max{dim(X)|X ∈ S}. Vertices v ∈ V are usually

identified as a 0-dimensional simplex {v} ∈ S. The maximal simplexes are facets, where

their definition of being strictly contained ∆ ⊂ C is only respected w.r.t. the “original”

complex. A simplicial complex is pure of dimension n if all facets are of the same dimen-

sion n. Graphs can be seen as pure 1 dimensional simplicial complexes, with maximal

simplexes of dimension 1 (i.e. edges), “glued” together. We can see an example in fig-

ure 2.4. Faces can be obtained from excluding a subset of vertices, such as the triangle

defined over {1, 2, 3} has as its third face {1, 2, 3̂}, seen in figure 2.5.

Figure 2.4 – Non pure simplicial complex of dimension 2 (maximal simplex of dimension 2, i.e.
triangle).

Figure 2.5 – 3rd face of a triangle.

16

We can define new complexes from an existing one, such as the l-skeleton of C,

also written skell(C), with the simplicies of C with dimension at most l, e.g. skel0(C) is

the set of vertices. 2σ is the complex containing σ and all of its faces, and usually is the

same as σ. ∂2σ (or ∂σ) is the boundary complex of σ, the set of proper faces (facets), and

can also be defined as skeln−1σ, where n is the dimension of σ.

It is also possible to give a geometric explanation for simplicial complexes, into

its geometric realization |A|, where we have simplexes “glued” by the edges. They live

in Rd and the focus is on the occupied a space and related topology. It is possible to

generate one abstract simplicial complex from a geometric simplicial complex, but many

in the other direction.

2.1.2.2 Coloring

Together with the idea of processes in a distributed system, it becomes relevant to

identify them in the structures used. This is done via the coloring of vertices, where given

a set A of agents, we have:

Definition 2.2 A chromatic simplicial complex is a pair ⟨K,X⟩, consisting of a simplicial

complex K and a coloring map X : V(K) → A, such that for all simplexes X ∈ K, all

vertices of X have distinct colors.

Each color is used to represent a different process/agent/robot in the system. Note

that a coloring consists of a labeling, but not the converse, as not all labeling functions

respect the fact that vertices sharing an edge should not have the same color.

2.1.2.3 Maps

In order to express the communication and decision of the processes, the mapping

of simplicial complexes via carrier maps and simplicial maps is used.

Definition 2.3 A simplicial map is a morphism between two simplicial complexes µ :

A → B, where V(A) is mapped to V(B), such that if {s0, s1, ..., sn} is a simplex in A,

then {µ(s0), µ(s1), ..., u(sn)} will be a simplex in B. Vertices are sent to vertices, and

simplexes to simplexes, where the mapping of the vertices induces the simplexes.

The mapping of distinct vertices does not have to lead to distinct vertices, but when

that happens the simplicial map is called rigid, and the image has the same dimension,

17

i.e. |σ| = |ψ(σ)|. A chromatic simplicial map will always be rigid, and equivalent to a

graph homomorphism in dimension 1, where there is no merger of vertices. Simplicial

maps are approximations of continuous maps in the same way that simplicial complexes

approximate topological spaces.

Definition 2.4 Let A and B be two simplicial complexes, a carrier map is a function

Φ : A → B, where each simplex σ ∈ A is mapped into a subcomplex of B, such that

monotonicity is respected. That is, for all σ, τ ∈ A, if σ ⊆ τ , then Φ(σ) ⊆ Φ(τ). This

can also be expressed as Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ), meaning that the intersection of the

mapping may add information, but will never lose.

The carrier map Φ is called strict if no information is added, that it, Φ(σ ∩ τ) =

Φ(σ) ∩ Φ(τ), in which case, each simplex τ ∈ Φ(A) has a unique carrier in A, that is, a

simplex σ of smallest dimension where τ ∈ Φ(σ). It is considered rigid if every simplex

σ ∈ A and its image Φ(σ) are of the same dimension d. A chromatic carrier map will be

rigid and preserving colors, i.e. for every simplex σ ∈ A, we have that X (σ) = X (Φ(σ)).

The image of Φ(A) will be the union of all subcomplexes of B that are accessed via Φ(σ),

with all σ ∈ A.

The carrier of τ (orCar(τ,Φ(σ))) is the unique simplex σ ∈ A of smallest dimen-

sion, such that τ ∈ Φ(σ), for each simplex τ ∈ Φ(A). σ is the unique smallest simplex

of A that maps to the simplex τ of the subcomplex obtained from Φ(A). Each τ has its

carrier.

2.1.2.4 Constructions

We can construct different simplicial complexes and topological spaces from a

given complex.

The star complex Star(σ,K) is defined from another complex K and a simplex σ.

It corresponds to all facets of K that contain σ. Similarly, a topological space open in the

complex is defined with the open star StarO(σ,K), composed of the interiors of the sim-

plexes containing σ. We can define an open covering of |K| with StarO(v)v∈V (K), where

all vertices ofK are considered. If nothing but a simplex σ is specified, the resulting topol-

ogy will be the intersection of all open stars in its vertices, i.e. StO(σ) =
⋂

v∈V (σ) St
O(v).

From the star operator, we can also define a a link complex from Link(σ,K),

where the link corresponds to the subcomplex ofKwith the simplexes in St(σ,K) without

intersections with σ. The join operator A ∗ B works on two disjoint complexes A and

18

B, and provides a new complex with the union of the vertices of each and combines their

simplexes.

We can see the mentioned constructions above in image 2.6.

Figure 2.6 – Star, open star, link and join constructions from the simplicial complexes B and C.

2.1.3 Colorless tasks

A similar approach for tasks, part of the original work in distributed computing in

Herlihy, Kozlov and Rajsbaum (2014), considers a relation between sets of input values

and sets of output values in what are called colorless tasks, meaning that the identity of

the agents does not matter in the context.

Each of the processes has access to its own identification, but (at least initially)

not that of the other processes. They execute algorithms that can be represented as state

machines, performing read and write operations in a shared memory in order to commu-

nicate with others, between their computation steps. A model called immediate snapshot

describes the read and write steps as atomic and sequential, where they are always ex-

ecuted in adjacent steps and concurrently with other processes. This model allows for

lower bounds, as an impossibility result in a stronger model can be easily extended.

In a given problem with unreliable communication, n+1 processes are considered

to run a protocol (a program alongside the machine specifications), while at most n may

crash silently. In the asynchronous case, fault detection is impossible, as one cannot

distinguish between a slow process and a dead one.

An execution is a set of ordered configurations. Each configuration represents a

collection of simultaneous process states, that is, the values held by each agent in a given

moment. Distinguished configurations represent the initial and final sets of states for a

19

given task. For example, in a binary consensus task, all combinations of states within

the two possible values are acceptable in the initial configuration, meanwhile only the

configurations where all processes possess the same state - 0 or 1 - are acceptable as

final ones. A step is triple Cn, Sn, Cn+1, where Cn and Cn+1 are the configurations at the

beginning and at the end of the step, and Sn is the set of processes that participated in said

step, and only they can change between Cn and Cn+1.

The formalization of a colorless task is composed of a colorless input assignment

I, some colorless output assignment O and a relation ∆ that specifies which outputs

are possible for each input assignment. Note that not all values within a colorless input

assignment must be chosen by the processes of every configuration. Similarly, processes

in a final configuration needs only to choose from the domain of output values. This can

be illustrated again with the case of the binary consensus, where the following definition

applies for any number of processes. First we have that all possible combinations are

valid initially, but only configurations entirely composed of 0’s or 1’s are valid at the end.

I = {{0} {1} {0, 1}}

O = {{0} {1}}

And this relation is expressed with the following carrier map, where sets of states

with values either 0 or 1 have to be mapped to the same configuration, and any other

combination must be mapped to a single valued configuration.

∆(I) =


{{0}} if I = {0}

{{1}} if I = {1}

{{0}, {1}} if I = {0,1}

The protocol describing the behavior of the processes can be decomposed into two

parts with distinct aspects of the problem taken into consideration in each. The first one

is a task-independent protocol, related to the communication model, as each process up-

dates its state based on the exchange, successful or not, with other processes. The second

part is a task-dependent decision, which happens after enough rounds of communication

have passed and a value is deterministically decided for each process. As it is a color-

less task, the decision cannot depend on the process names, only in the set of states. A

process is said to chose or decide the output value u from its final view v if δ(v) = u,

where δ is the decision map. The concept of reachable configurations comes from the

20

different views that can be obtained from “perturbations” in the synchronization. Note

that “perturbations” in the execution will change only the view of one process at a time.

A protocol is a triple (I,P ,Ξ), with the initial configurations I, the reachable

final configurations τ ∈ P from the initial ones, and a map Ξ that carries each initial

configuration to its set of reachable final configurations. A task is considered solvable by

a protocol with a decision map δ, if for every configuration σ ∈ I, and all reachable final

configurations τ ∈ P , i.e. τ ∈ Ξ(σ), their decisions δ(τ) are output assignments O that

respect O given by the task’s specification. That is, O ∈ ∆(τ).

2.1.4 General tasks

Contrasting from the colorless tasks presented before, the general definition of

tasks considers that the processes are identifiable and a solution may depend of their

IDs. This allows for specific configurations to be described, in which combinations of

processes must assume specified values. There are two main ways of defining general

tasks for distributed computing, the first one was developed relying on carrier maps to

represent the relationship between input/output/protocol complexes and the conditions

for task solvability, established in Herlihy, Kozlov and Rajsbaum (2014). This can be

found bellow.

Definition 2.5 A general task is a triple (I,O,∆) where:

• I is a chromatic input complex, it represents the possible initial configurations for

the task;

• O is a chromatic output complex, it represents the valid final configurations for

the task;

• ∆ is a chromatic carrier map from I to O, it shows what are the valid mappings

that satisfy the task’s objective.

The vertices are colored with Π and labeled with V in and V out, so that they are

uniquely identified by their color and label.

The possible solutions are depicted as protocols, as follows.

Definition 2.6 A protocol for n+ 1 processes is a triple (I,P ,Ξ), where:

• I is a pure n-dimensional chromatic simplicial complex, it is the same presented

in definition 2.5;

21

• P is a pure n-dimensional chromatic simplicial complex, it is the configurations

of the systems after rounds of communications and its evolution represents the in-

creased knowledge of the agents;

• Ξ is a chromatic strict carrier map from I to P , where P =
⋃

σ∈I Ξ(σ), it rep-

resents the communication rounds of the protocol and how the simplices evolve

through them.

The vertices are as well colored with Π and labeled with V in and V out, also being

uniquely identified by their color and label.

Definition 2.7 The solvability of a general task (I,O,∆) by a protocol (I,P ,Ξ) is de-

fined by the existence of a chromatic simplicial map δ : P → O that satisfies

δ(Ξ(σ)) ⊆ ∆(σ) for all σ ∈ I

This first approach is easier to visualize as all objects are the presented simplicial

complexes and the arrows follow the sense of their evolution and growth. It can be seen

in the diagram in diagram 2.1. The carrier map establishes relationships that are not

functional, hence harder to rigorously define.

I O

P

(2.1)

In the second approach all relations are functional, as chromatic simplicial com-

plex maps. This is done by changing the direction of the arrows, where they now represent

the existence of a unique “folding” of the complex into the one from the previous step.

The task and protocol definitions change slightly, with the biggest differences seen in

the task solvability criteria. An instance of this is seen in the definition of tasks via the

dynamic epistemic logic point of view, in section 3.2.3.

Definition 2.8 A general task is a triple (I,O, t), where

• I and O are pure n-dimensional chromatic simplicial complexes, the same pre-

sented in definition 2.5

• t : T → I × O is a restriction function (chromatic simplicial map) onto the

product of the input and output complexes. The resulting (n× n)− dimensional T

chromatic simplicial complex represents the valid pairs of final configurations for

each initial configuration.

22

Note that we will always be able to project T into I × O via ΠI .

The other formulation, with an approach based in category theory and first con-

sidered in Goubault (2021), is described as follows.

Definition 2.9 A specification for n+ 1 processes is a tuple (P,S) where

• P is an endofunctor that operates on simplicial complexes, this is the protocol

complex that represents the communications executed between the agents from the

configurations in I. It represents how to produce new states from a set of states

after rounds.

• S : P → id is a natural transformation between endofunctors, and it encodes

the specification of the machine. It specifies the algebra on which the operations

happen. It is a map of how to perform the color preserving folds of the complexes,

dictating how to relate the states.

Note that there will always be a map from P (x) → x, i.e. the “evolved” input

complex after a number of communication rounds can always be folded back into the

original input complex through S.

The original definition requires the protocol carrier map to be strict, i.e. Ξ(σ∩τ) =

Ξ(σ)∩Ξ(τ). The chromatic simplicial map that models it in P (I) preserves this property

as it maps the entire chromatic simplicial complex into another one, preserving labeling

due to its chromatic nature and carrying simplicies to simplices by definition.

Given these elements, we now define the solvability of a general task, given a task

specification and a protocol.

Definition 2.10 The solvability of a general task (I,O, t) by a protocol (P,S) depends

on the existence of a chromatic simplicial map δ from A ⊆ I ×O, the task specification,

to P (I), the protocol complex applied to the initial configurations, such that the following

diagram commutes.

I T ⊆ I ×O

F (I)

23

This definition raises the algebraic structured presented in section 2.4.5, where the

protocol complex endofunctor may be operated via the natural transformation S.

2.2 Look Compute Move

General notes follow with the taxonomy of the gathering and exploration problems

over graphs using the Look-Compute-Move model.

2.2.1 LCM model

The Look-Compute-Move model is an interesting approach to discussing robotic

operations, as it reduces any implementation to three steps that repeat in a loop. The first

one is LOOK, where a robot observes its environment and corresponds to the activation

of the available exteroceptive sensors. This is followed by a COMPUTE step, where the

information gathered by the sensors is used by the algorithm and a decision is taken, which

is then executed in the MOVE step, which corresponds to the activation of the actuators of

the robot, where it changes its state.

Research done in this area targets the upper and lower bounds for the execution of

missions, where the interest lies in finding what is the minimum necessary for a task to be

possible or if the scenario available is sufficient. In the most general version of the model,

the robots are considered identical, with the exact same deterministic program in all of

them. Beyond that, there’s no identification of the robots, being impossible to distinguish

them only with their appearance. They also have no sense of orientation, with no shared

labels for vertices or edges. They occupy no space and can coexist in the same vertex, but

it is impossible for them to see how many others are present with them.

In the case of luminous robots, the robots’ states are composed of their state ma-

chine with and added integer value associated with its light. When the LOOK action is

performed, it is only capable of detecting the existence or not of a robot at a certain vertex

with a specific color.

Usually and in this case, robot are oblivious, meaning that they only have memory

of their most recent past state. A configuration of the system is a vector with the state

of the robots. The possible actions are only LOOK or MOVE, as COMPUTE is assumed

to always happen atomically after a LOOK. It is also assumed that the algorithm always

24

terminate, where all robots always reach a decision given a state. The overall functioning

is described in algorithm 1.

Algorithm 1 A general LOOK-COMPUTE-MOVE algorithm. Code for robot pi.
1: function A(G, vi)
2: while true do
3: viewi ← LOOK(G)
4: (vi, ri)← COMPUTE(viewi)
5: MOVE(vi, ri)
6: end while
7: end function

Where vi is the targeted vertex and ri the chosen color for robot i after perceiving

viewi from the graph.

2.2.2 Taxonomy

In order to represent the most varied scenarios in the real applications, the LCM

model has many variations that aim to modify the capabilities of the robots and charac-

teristics of the environment. They change the amount of information perceived by the

agents, what is observable of the world and how can the robots interact.

Regarding the robots, they may be understood either as physical agents in an Eu-

clidean space or as agents in a graph. In both cases, there are some properties that we

need to observe in order to classify the scenario.

• Movement: robots can have a source of randomness in their input, making the way

they move random or deterministic.

• Identity/Symmetry: they may be labeled or anonymous / symmetric or asymmetric,

corresponding to the their distinguishability.

• Knowledge: what do they know of the map and other agents considerably influ-

ences their algorithms, which is related to the information accessible in preparation

of a mission.

• Communication: there are multiple different means of exchanging information and

their capacity of sending self-generated messages, which is the source of most of

the difficulties in asserting the acquired knowledge throughout the mission.

• Chirality: it is possible for the robots to agree on a sense of rotation, also influencing

their capacity to make coordinated decisions.

25

• Collisions: they may have different interpretations and consequences if they are

either immaterial, fail-stop or intolerable.

• Movement: regarding the self knowledge of the robots, rigid, fixed or non-rigid

movements determine the garantees of MOVE operations, such as if they always go

to the desired destination, cover a minimum distance or none of them.

• Space and visibility: someones we have to consider the extent agents may have, and

if they limit each other’s visibility with opacity.

When considering the environments in which the robots operate, we will be con-

sidering only the discrete case, where we use approximations of the real world in graphs.

Again, there are specifications that dictate what the agents can perceive and what should

they expect during navigation, here we see the most important ones.

• Identity/Symmetry: the nodes may have distinct identities, which heavily influences

the ease of localization and coordination.

• Edge labeling: similarly to the case above, edges may be locally or globally consis-

tent, being also used as part of the efforts to break symmetry in the mission.

• Time: different schedulers exists with varying levels of guarantees, while central-

ized ones may keep everyone synchronous, weaker constraints exist with semi-

synchronous and asynchronous operations.

• Storage: this is an aspect of communication that depends on the environment, where

it allows for tokens or messages to be left by one agent for another.

• Agent generation: it may be possible for agents to be cloned into new ones or

existing ones merge, such as with the activation or synchronization of robots during

a mission.

• Fault tolerance: the agents and the scheduler may be subject to crash faults or

byzantine faults, again changing the assumptions of the mission, being relevant to

know if it is possible to detect them or keep working after they appear.

2.3 Modal logic

The notes on the basis of modal logic for this work are mostly based from Benthem

(2010).

26

2.3.1 Introduction and syntax

Modal logic constitutes a super-set of the standard formal logic, with added modal

operators that allow for the expression of notions similar to “possibility” and “necessity”,

which use as notation the symbols □, read as “box” and ♢, read as “diamond”. Those

additions allow us to create formulas composed of propositions, statements that can be

either true or false, with added meaning, such as “p will eventually become true” and “p

always is true throughout some relevant range of situations”.

Multiple interpretations exist of modal logic, interesting examples are Godel’s

view of □p as the “mathematical provability of p” and Tarski’s view of modal formulas

as describing subsets in topological spaces. Another of its crossings to different fields is

Montague semantics, where intentional expressions are studied with a mix of modal logic

and type theory. The idea itself of modal logic being an enrichment of classical logical

is not agreed by all, and a common perspective is of it as “local” quantifiers that refer to

objects “accessible” from the current one, which will be explored a bit with the possible

worlds model in section 2.3.2.

The first step for a formalization is the definition of the atomic elements

AT = p, q, r, ...,⊤,⊥

with generic atoms, an atom representing “always true” and another one repre-

senting “always false”, respectively.

This is then followed by a way to construct formulas from those atoms

φ ::= AT | ¬φ | (φ ∧ ψ) | (φ ∨ ψ) | (φ→ ψ) | ♢φ |□φ

From this, the first concept to be understood is that all atoms are formulas, and

if an atom is a formula, then so is its constructions as ¬φ, (φ ∧ ψ), which continues

recursively. With this, all formulas can be defined in a finite number of steps. Examples

of equivalent expressions are:

1. ♢φ↔ ¬□¬φ

2. □φ↔ ¬♢¬φ

3. ¬□(♢φ ∧ ♢¬φ)↔ □♢φ→ ♢□φ

The first one can be read as “it is possible that φ is true if and only if it is not

necessary that φ is not true”, and the second as “φ is necessarily true iff it is not possible

27

that φ is not true”. The third one is a formalization of the idea “nothing is absolutely

relative”, with the possible interpretation of the first half as “it is not necessary that the

possibility of φ coexists with the possibility of ¬φ”, and the second half is its rewriting

into McKinsey axiom, an important conclusion in modal logic that will not be explored

here.

In our case, this formalism will be another point of view on the same constructions

used to represent distributed executions of tasks. Some usages of this equivalence will be

shown later in this work. It is useful to keep in mind that the different interpretations that

can be given to the same structures present here, in distributed computing and robotics.

2.3.2 Possible worlds model

An important usage of the modal logic system is the multiple worlds model, in

which we give a semantic interpretation to the formulas as a graph-like structure that

represent the possible truth values for the propositions involved in a given formula. It

consists of a specific interpretation using Kripke models.

The possible worlds model is defined as a triple M = (W,R, V), composed of

a collection of worlds W , an accessibility relation between worlds R, and a valuation

map with truth values V for a proposition p at the world s. The relation R expresses the

constraints in transitioning between worlds, while the complete graph may display the

possible evolution from an initial proposition. The truth values obtainable from V (p, s)

can also be expressed as M, s |= φ, whenever φ is true in a given state s of the model M.

The truth definition in the possible worlds models happens as follows

1. M, s |= p iff V (p, s) = 1

2. M, s |= ¬φ iff not M, s |= φ

3. M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

4. M, s |= □φ iff for all inciding t of s as: M, t |= φ

5. M, s |= ⋄φ iff for some inciding t of s as: M, t |= φ

Here, 1 is the basic definition of the valuation map, 2 and 3 expand this definition

to the negation and conjunction. 4 says that for the valuation of φ in the world s in the

model M to be necessarily true, it has to hold in every world t of the same model that

leads to s. 5 says that for possibility of φ being true when valuated in a similar situation,

some world t of the same model that leads to s has to be true. Finally, the concept of

28

modal validity can be affirmed to a given formula φ if M, s |= φ ∀(M, s), also written as

|= φ.

Having those definitions, we can profit of the possible worlds diagrams to both

have a visual representation of our formulas and to infer the possible values of each “node”

from the relationship graph of an existing system. A way of using the latter is finding

where a given modal formula holds in the analyzed graph, such as

p, 1 2, p

4 3

(2.3)

In the case that wish to know in which worlds the formula ♢□♢p holds, we can

use the truth value definitions in the graph 2.3.2 to expand the known information, giving

us the following (non exhaustive) valid formulas after some iterations:

• 1: ♢□♢p

• 2: p, ♢p

• 3: ♢p, □♢p, ♢□♢p

• 4: □♢p, ♢□♢p

Note that the values p are true in 1 and 2 since the beginning of the evaluation. As

it is impossible to conclude ♢□♢p for the world 2, no matter how many more iterations,

we cannot say that it is a valid formula, i.e. it is not true in all worlds of the model.

However, we have arrived to the fact that the modal formula holds for the worlds 1, 3 and

4.

Those examples only make use of the base formal system of modal logic, however

it is important to note that they are compatible with the temporal-epistemic extensions and

that integration is relevant for the envisioned work, even though they are not discussed

here.

2.3.3 Temporal logic

The first extension to logic that suits our needs increasing our capacity of formally

representing robotics tasks is temporal logic. It is capable of placing propositions in the

29

past or future, with certainty or not, either as a finite event or a continuous one. The

formalization starts with the following addition to the syntax rules and interpretations

φ ::= ... | Fφ | Pφ |Gφ |Hφ

where F and P are initially defined as the idea of “at least once in the future, φ

will be true” and “at least once in the past, φ has been true”, respectively. Those two

operators are derived into the universal modalities G and H, that inform that “always in

the future, from now, φ is true” and “always in the past, until now, φ was true”.

From this initial specification some interesting expressions can already be formed,

such as:

1. GFφ

2. PHφ

3. G(φ→ Fφ)

Expressions 1 and 2 join the base operators with universal modalities, generating

finite events that are sure to happen at some point, being them read as “φ is always going to

be true at some later stage” and “once upon a time, φ had always been true”, respectively.

Example 3 can be read as “φ will always imply that φ will be true in the future”, that can

also be understood as φ being true will always “enable” itself afterwards.

Those constructions also enable the interpretation of validity throughout time

across worlds (possibilities of a system, shown in section 2.3.2), such as:

1. M, t |= Fφ iff for some t′ > t : M, t′ |= φ

2. M, t |= Pφ iff for some t′ < t : M, t′ |= φ

which shows how the ordering of moments in time “before” or “after” others may

be used for creating expressions in this extension.

Similarly to what will be presented on the following section on epistemic logic,

there are further tools available that allow for the deduction and extraction of truths about

the scenario that are fundamental in guaranteeing the behavior of some studied system.

2.3.4 Epistemic logic

The epistemic extension to modal logic deals with knowledge, what information

is shared and what can be assumed from what each one has access to. With it, the ideas

30

of an agent having a certain information or something being common knowledge among

a group of agents become formalized through the following increased syntax rules

φ ::= ... |Kiφ | CGφ

where Kiφ expresses that the agent i knows φ to be true, and CGφ that the group

of agents G knows φ to be true, and each agent knows that the other ones know as well. It

is interesting to note that the common knowledge operator can represented in the nested

form Ck, such as in the following case with the two agents g and w:

C2
{g,w}φ→ Kg(Kgφ ∧Kwφ) ∧Kw(Kgφ ∧Kwφ)

The idea of an agent i considering the possibility of some information φ has the

special notation of Biφ, being it is equivalent to ¬Ki ¬φ. The latter can also be read as

“the agent i does not know if φ is false”.

Here are some examples of how this augmented syntax can be used:

1. ¬KQ φ ∧ ¬KQ ¬φ

2. BQ(KA φ ∨KA ¬φ)

The first example models the idea that Q does not know weather φ is true, a trans-

lation from the more immediate reading of “Q doesn’t know if φ and it also doesn’t know

if ¬φ”. The second example makes use of the “belief” notation, being possible to read it

as “Q thinks that A might know φ”.

This extension is relevant for the study of distributed robotic tasks, where the

possible knowledge of the individual robots is fundamental for evaluating the feasibility

of those tasks.

2.3.5 Kripke frames and models on epistemic logic

The idea of possible worlds comes from Kripke models, where a layer of seman-

tics is added on top of a Kripe frame, in order to represent the accessibility relations

as equivalences of worlds between agents. The are multiple systems of interpretations

for those models, and one of them that interests us is S5n, where the worlds and their

connectiosn represent knowledge of the environment by the agents.

Definition 2.11 A Kripke frame on the epistemic system S5n is a pair M = ⟨S,∼⟩ de-

fined over a set A of agents, with a set of states S and a family of binary equivalence

31

relations between states for every a ∈ A. It is written u ∼a v for the worlds u and v that

are indistinguishable for agent a.

A Kripke frame is considered proper if every pair of states can be distinguished

by at least one agent, that is, no two worlds can be merged without loss of information.

2.3.6 Dynamic epistemic logic (DEL)

The study of change is possible within the framework provided by epistemic logic

through the extension with action models. This is particularly useful when dealing with

message passing systems, where decisions are made by an agent, which in turn affect the

other agents. We add the notion of an action cb, composed of a series of communications c

between the agents and their starting values {b0, b1, ..., bi}. In the case of two agents g and

w, we represent with the 3 digraphs in figure 2.7 the situations where both communicate

or at most one fails. Note that it only encodes the communications, without its content.

Figure 2.7 – Digraphs representing the scenarios where both process successfully exchange
information and when at most one of them fail in the communication. One of these scenarios is

executed at each communication round.

An epistemic model M , which already expresses the shared knowledge of the

agents is accompanied by an action model A, with the definition bellow.

Definition 2.12 An action model A is a triple ⟨T,∼, pre⟩, where:

• T is the domain of action points

• ∼a is an equivalence relation on T , for each agent a ∈ A

• pre : T → LK is a function that assigns a precondition formula pre(t) for all

t ∈ T .

32

Given an action model, the indistinguishability relation generates a Kripke model

similar to the epistemic model, where t ∼a t
′ if and only if they have the same view, i.e.

viewa(t) = viewa(t
′). The view their current knowledge of the world, gained from the

rounds of communication.

The epistemic and action models are combined into the product update model with

the possible worlds consequent of each action in M [A].

Definition 2.13 A product update model M [A] = ⟨S[A],∼[A], L[A]⟩ is the combination

of an epistemic model M and an action model A, where:

• The worlds in S[A] are pairs (s, t), such that pre(t) holds in s

• Two worlds (s, t) ∼[A]
a (s′, t′) if s ∼a s

′ and t ∼a t
′

• The valuation of L[A]((s, t)) = L(s)

2.4 Category theory

Here, the notes on category theory for the study of robot tasks and their connection

with distributed computing and modal logics are shown, primarily studied with Riehl

(2016), Smith (2018).

2.4.1 Introduction

Category theory came to existence as a set of formalizations allowing the study

of generic abstract structures in mathematics, following the efforts of algebraic topology,

being first proposed by S. Mac Lane in Lane (1971). The key take from the categorical

view is that relations are more important than elements to describe structure. The three

main concepts are categories, functors, which allow for the transformation from one cat-

egory to another, and natural transformations, that allow for the transformation from one

functor to another.

Much of the interest in category theory comes from the fact that it reflects on

itself, meaning that all constructions when viewed from the proper perspective give rise

to their own category, such as functors between categories creating the functor category.

This multitude of perspectives can be evaluated with varying levels of equivalence (with

a corresponding rigor), such as equality, isomorphism, equivalence, natural isomorphism

33

and adjunction. In the same line of thought, it is also useful how that reflexivity allows

for the perception of universal constructions, phenomena that are present throughout the

different categories, each with their own interpretation but sharing the same properties,

such as limits, colimits, adjunctions and ends. Those constructions will not be covered

here but it must be noted the richness in theoretical representations.

2.4.2 Categories

The first relevant definition is that of categories, which may be understood as

families of structures with structure-preserving maps between them.

Definition 2.14 A category C is composed of two kinds of things:

• C-objects, usually expressed with upper case letters;

• C-arrows, also called C-morphisms, usually expressed with lower case letters.

Where the objects must respect three axioms:

1. Sources and targets. For each arrow f , a specific collection of objects is associ-

ated with its domain and codomain, those not being necessarily distinct. We may

write f : A→ B for the arrow f with src(f) = A and tgt(f) = B, or dom(f) = A

and cod(f) = B.

2. Composition. Any pair of arrows f : A → B and g : B → C, where dom(g) =

cod(f), may be composed into a new arrow g ◦ f : A → C. This is understood as

the application of f followed by the application of g in the previous result, and is

called the composite of f and g.

3. Identity arrows. Any given object A is equipped with an identity arrow 1A : A→

A, that has dom(1A) = cod(1A).

And the arrows must respect two other axioms:

1. Associativity of composition. The composition operation is associative, which

means that for any f : A → B, g : B → C, h : C → D, we will always have that

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. Identity arrows behave as identities. The identity arrows can always be added to

operations without change in result, such that for any arrow f : A → B, we have

that f ◦ 1A = f = 1B ◦ f .

34

Those properties are exemplified in the following commutative diagram, where

paths that start and finish on the same objects are always equivalent.

A B C (2.4)

As mentioned before, categories may be used to represent an infinity of mathe-

matical structures, table 2.1 shows some categories with their respective interpretations

of the main elements. It is interesting to note that in this list there are algebraic categories

(Set, Grp, Rng, Bool), order categories (Pos, Tot), geometric categories (Top, Met, Vectk)

and a logic category (ProofT).

Table 2.1 – Some examples of notorious categories of well known mathematical structures.

Category Structure Objects Morphisms

Set Sets sets total functions
Grp Groups groups group homomor-

phisms
Ab Abelian groups abelian groups group homomor-

phisms
Rng Rings rings ring homomorphisms
Bool Boolean algebras Boolean algebras structure preserving

maps
Pos Partially-ordered sets sets order preserving

maps
Tot Totally-ordered sets sets order preserving

maps
Top Topopologies topological spaces continuous maps be-

tween spaces
Met Metric spaces set of points S

equipped with a real
metric d

non-expansive maps

Vectk Vector spaces over a
field k

set of vectors
equipped with
addition and mul-
tiplication by scalars
in the field k

linear maps between
spaces

Prooft Formal theory T sentences φ, ψ, . . .
of the formal lan-
guage T

the target of the ar-
row is sufficient to
prove the source

35

2.4.3 Duality

A useful property of categorical constructions is the immediately available dual

interpretation. It corresponds to the Cop category associated with C, where the following

happens:

1. Cop -objects are the same as C -objects.

2. Given the arrows in C, such as f : A → B, the Cop will have the source and target

swapped, such as f op : B → A.

3. The identity arrows are preserved the same, 1opA = 1A.

4. Composition also has the source and target swapped, such that f ◦op g = g ◦ f ;

This way of constructing categories allows us to have “free proofs”, from whatever

categorical concept.

2.4.4 Functors

Functors appear as the first level of higher-order abstraction, as they represent

transitions between two categories. It is attributed to John Baez, a researcher in higher-

order category theory, the quote “every sufficiently good analogy is yearning to become

a functor.”. This expressed the fundamental functioning of functors as ways to transfer

acquired notions from one perspective into another.

Functors are one of the structure-preserving maps mentioned at the beginning of

the section, and given two categories C and D, the functor F : C → D satisfies the

following attributes:

(1) D -objects are obtainable from C -objects through F, expressed as F (A) = B,

belonging to the respective categories.

(2) D -arrows between D -objects are preserved through F, such that the arrow

F (f) : F (A)→ F (B) in D is equivalent to the arrow f : A→ B in C.

These operations via the functor F must respect the following conditions:

1. Preserve identities. Any identity arrow for a C object A will be mapped to the

corresponding identity in D, such that F (1A) = 1F (A).

2. Respect composition. Any two arrows f and g in C, with the corresponding com-

posite g ◦ f , with always have F (g ◦ f) = F (g) ◦ F (f).

36

Those properties are expressed in the following diagram 2.4.4, which is the same

as 2.4.2 after having a functor F applied. It always has similar paths commuting.

F (A) F (B) F (C) (2.5)

2.4.5 Algebras

It is possible to describe an algebraic structure from endofunctors, that is, functors

that map objects and morphisms inside a single category.

Definition 2.15 Given an endofunctor F : C → C, an F-algebra is a pair (X, a :

F (X)→ X) where X is an object of C.

This definition lets us define the interaction of algebras in a category, as follows.

Category 2.1 The category of F-algebras Alg(F) is composed of

• objects: algebras of a given endofunctor F : C → C

• morphisms: given two F-algebras (X, a) and X ′, a′, there is a morphism between

them iff there is a morphism fromX toX ′ in C and the following diagram commutes

F (X) X

F (X ′) X ′

Mathematical objects that fit that structure may be manipulated in more interesting

ways. This is part of the future ideas for the structures used in the formalization of robot

tasks, leading to the co-existing modalities of temporal and epistemic logics.

37

3 CONNECTIONS BETWEEN LOGIC AND TOPOLOGY

The first studied connection is made between the topological structures called sim-

plicial complexes, used in distributed computing, and Kripke frames, first created as a se-

mantic system for modal logics. An important theorem in modal logics will be presented

in section 3.1, alongside some considerations on its usage for the topological applications.

It is then followed by a work that makes use of this equivalence will be presented in sec-

tion 3.2. The equivalence between those two concepts will be shown in the categorical

perspective can be found in the appendix 7.1,

3.1 Knowledge Gain Theorem

An useful property observed in modal logic systems, such as S5n, and extended

for simplicial models like the one studied above, is the guaranteed persistence of knowl-

edge, and the certainty that any observed information in a state will always be present in

the states leading to it. This is formalized in the Knowledge Gain Theorem, as follows:

Theorem 3.1 Consider simplicial modelsM = ⟨C,X , l⟩, and a morphism f :M →M ′.

Let X ∈ F(C) be a facet of M , a an agent, and ϕ a formula which does not contain

negations except, possibly, in front of atomic propositions. Then, M ′, f(X) |= ϕ implies

M,X |= ϕ.

This can be proven by induction. Considering first atomic propositions, this holds

as morphisms preserve valuation, that is, M ′, f(Y) |= p iff M,Y |= p. Given the theorem

true for atomic propositions, the case of conjunction and negation follow trivially by the

induction hypothesis on ϕ.

For the knowledge operator, we suppose that M ′, f(X) |= Kaϕ, for us to show

that M,X |= Kaϕ. If we consider another facet Y in which a ∈ X (X ∩ Y), we have

that for any a-colored vertex v, f(v) ∈ f(X) ∩ f(Y), X (f(v)) = a and therefore a ∈

X (f(X) ∩ f(Y)) as defined in chromatic simplicial maps. The unchanged colouring

within the intersection shows that M ′, f(Y) |= ϕ, and with the induction hypothesis we

have M,Y |= ϕ.

For the common knowledge operator, we have that M ′, f(X) |= CBϕ, for us to

show that M,X |= CBϕ. That can be shown in similar fashion as in the knowledge

operator, where this has to be proven for all facets Y that are reachable from X from

38

simplexes sharing a B-colored vertex. As any f(Y) will be reachable from f(X), so will

M ′, f(Y) |= ϕ and therefore M,Y |= ϕ.

This result is interesting as it gives us another interpretation for what happens in

the communication rounds of a distributed system. We know that throughout the fold-

ing of the subdivision steps, from the protocol complex back to the input complex, the

knowledge of the agents will be preserved, i.e. no knowledge is added to the model. The

implications of this are still to be studied, and possibly stronger results may be achievable

from different modal systems.

3.2 Approximate agreement from the epistemic logic perspective

An interesting usage of this shared concepts happens with the article Armenta-

Segura, Rajsbaum and Ledent (2020), where the simplicial models seen before are used

to represent the evolving knowledge of agents and a formalism is presented for thinking

about the solvability of their tasks. The logic view on consensus has been first studied in

Fagin (1995), and now we see it a relaxed version of the problem.

3.2.1 Approximate agreement

Approximate agreement is a widely worked problem in distributed computing,

agents have to decide on values that are sufficiently close to each other, selecting them

from an initial set of values. This is sometimes the case where consensus is impossible,

and a relaxed result may be sufficient, such as when sensors need to estimate some mea-

surements or clocks have to be synchronized. The closeness factor is parametrised by

ϵ ≥ 0, where all agents have to reach values at most ϵ away from the others.

An example task is the requirement that two agents with arbitrary initial values

decide in a pair (da, db) inside the interval of the initial ones with a distance of at most

1/3k from one another, where k is the number of rounds executed. Algorithm 2 is a very

simple solution to this, considering cases where messages may be lost, and ⊥ is received,

representing the absence of new information.

Here, the decision made by a process will depend on whether or not it receives

some value from the other process. The reason for the failure does not matter and a

process that fails to send in one round may send in another. We can see in figure 3.1

39

Algorithm 2 Approximate Agreement for N = 2 processes and ϵ = 1/3k. Code for
process qi.

1: function APPROXIMATEAGREEMENT(l)
2: send(l)
3: m← receive()
4: if m ̸= ⊥ then
5: l← l/3 + 2m/3
6: end if
7: return l
8: end function

two possible executions of algorithm 2 during 5 rounds, where all communications are

depicted with arrows and the current value next to the agent.

□0 □
2
3 □

8
9 □

26
27 □

80
81

■1 ■3
3

■9
9

■27
27

■81
81

□0 □
2
3 □

4
9 □

12
27 □

38
81

■1 ■1
3

■5
9

■13
27

■39
81

(3.1)

3.2.2 Simplicial model for DEL

The simplicial model for DEL, first seen in section 2.3.6, is another usage of the

equivalence seen in section 7.1.2. The simplicial model is maintained for the similar

epistemic approach, and a simplicial action model is defined, which allows for the later

definition of the knowledge of the agents gained from the execution of an algorithm.

Definition 3.1 A simplicial action model is a triple ⟨T,X , pre⟩, where

• (T,X) define a chromatic simplicial complex, where the facets are communicative

actions

• each facet X ∈ F(T) has pre-assigned a precondition formula pre(X) ∈ LK

The following product update simplicial model is simply a simplicial model where

the underlying complex is a subset of C × T , the product of the simplicial epistemic

model and the simplicial action model. The associated action model will only be available

40

in the product if the preconditions allow for the connection to exist. Given an action

t = cb0b1 between two processes {g, w}, a precondition pre(cb0b1) = inputb0g ∧ inputb1w ,

will guarantee that the values of the processes are indeed b0 and b1.

Definition 3.2 A product update simplicial model C[A], given a collection of agents A,

simplicial epistemic model C and a simplicial action model A, and will have

• vertices in the form of {⟨a, viewa(c
b0b1)⟩|a ∈ A, cb0b1 ∈ calA};

• facets in the form of {⟨a0, viewa0(c
b0b1)⟩, ⟨a1, viewa1(c

b0b1)⟩} for each action cb0b1 ∈

A;

• precondition that the agents involved have the input values of the actions as their

current values.

3.2.3 Tasks

The distributed computing perspective is seen again with the evolving knowledge

of the agents via the product update simplicial model. This allows for the reasoning of

tasks slightly differently than how it will be done in section 4.1.4. Here, we also define

an input simplicial model I = ⟨T,X , l⟩, where each facet, alongside its labeling, is a

possible initial configuration. Now we have two different simplicial action models: a

communication model T = ⟨T,X , pre⟩, representing the expected behavior of knowledge

gain between the agents over time, and an algorithm A, that encodes the actual behavior

of the agents in the possible executions from the initial configurations.

A task T is solvable via the algorithm A if each agent produces an output corre-

sponding to a facet of T via I[A], respecting the preconditions. A morphism δ must exist,

mapping facets X ∈ I[A] to facets (i, dec) ∈ I[T], where dec is a facet of T with the

decisions of the agents in X (and i is the shared facet from I), so that pre(dec) also holds

in i. Equivalently, we say that the following diagram in diagram 3.2 must commute. The

simplicial morphism ΠI is a simple projection from the subset of the products I × T and

I × A.

41

I[A]

I I[T]

(3.2)

3.2.4 Approximate agreement as a task

Consider the N-approximate agreement task, which requires that the decided val-

ues da, db after k rounds respect |da−db| ≤ 1/N , and they have to be of the form k/N , for

0 ≤ k ≤ N . This can still be used to solve the continuous approximate agreement as we

just need to choseN so that 1/N < ϵ. Now we will express the problem of N-approximate

agreement as a task.

The input simplicial model I, the task T and the simplicial product update model

for N = 5 rounds are seen in image 3.1. They correspond to the possible initial con-

figurations with two agents that have to chose between the values {0, 1} and end within

= 1/5 of one another. The values in the product are their initial values in I, each “block”

is the possible decisions that respect T . The two edges in the middle connecting the two

“blocks” represent the indistinguishability of the initial values, as they are not only con-

nected to the corresponding subdivisions, but to the other initial values, similarly to what

is displayed in I.

Figure 3.1 – I, T and the subset of their product relevant for the approximate agreement task
definition.

Now, if we consider again the dynamical network model DN r, where processes

may send or not messages to each other at each round, we have the update model presented

42

in image 3.2.

Figure 3.2 – Evolution of the knowledge in the DN r model, where each configuration is split in
three with the partial or complete transmission of the messages. Credit to Armenta-Segura,

Rajsbaum and Ledent (2020).

This leads us to theorem 3.2 bellow.

Theorem 3.2 The N-approximate agreement task is not solvable in the r-round model

DN r, when N ≥ 3r + 1.

Each configuration edge generates three other ones after a round, leading to 3r

edges after r rounds.

This means that, if k = ⌈3r/2⌉, an edge where φ01 is true will be at most distance

k − 1 from an edge of inputs 00 or 11. This says that the group knowledge of φ01 cannot

be nested more than ⌈3r/2⌉ times. If we choose to have φ = Ekφ01 with k = ⌈N/2⌉,

the same will be true for N ≥ 3r + 1 as it implies that ⌈N/2⌉ ≥ ⌈3r/2⌉, hence it will not

hold in any world Z of DN r.

Now, if we take the fact that 11 and 00 from I[T] are both in the image of δ,

because of diagram 3.2, and also that the image of δ(I[DN r]) will be connected, since

I[DN r] is connected. At least one of the worlds between 11 and 00 should also be present

in the image of δ, any of which would satisfy Ekφ01, for k = ⌈N/2⌉.

This leads us to a situation where φ := Ekφ01 does not hold Z in I[DN r], but

does in δ(Z). However, we know that this is impossible due to theorem 3.1, showing that

there is no map δ that solves N-approximate agreement in DN r, when N ≥ 3r + 1.

43

4 DISTRIBUTED COMPUTING APPROACH FOR LCM

The publication of Alcántara et al. (2019) opened the usage of topology as a math-

ematical framework in dealing with robotics through the Look-Computer-Move model.

This chapter is dedicated to the study of this intersection, starting with an in-depth review

of the base work in section 4.1. Section 4.2 will discuss the usual scenarios of explo-

ration missions with limited visibility. Lastly, section 4.3 will expose thoughts on the

formalization of a simple robotic missions.

4.1 The topology of look-compute-move robot wait-free algorithms with hard termi-

nation

This work formalizes the connection of the asynchronous luminous robot (ALR)

model on graph networks and asynchronous wait-free multiprocess read/write shared

memory (WFSM) model. This relation of a Look-Compute-Move (LCM) robot with

finite cycles with distributed computing is then used to provide a topological characteri-

zation of the robot tasks, as in Alcántara et al. (2019).

4.1.1 ALR, EALR, WSFM and their connections

4.1.1.1 Asynchronous luminous robot model

This model considers the existence of N ≥ 2 autonomous, deterministic mobile

robots, that take positions in the vertices of a graph G. As it is asynchronous, each robot

has its own notion of time and move independently at different speeds, with a scheduler

deciding the next operation to be executed and by who. The robots are equipped with a

constant number of lights that allow for a perceivable representation of their state or some

message. This communication is implicit and only happens when looked at.

The LOOK step allows it to see a snapshot of the positions of all robots and their

configuration of lights, the COMPUTE step generates a target adjacent vertex and MOVE

changes the robot’s position to that target. The state of the robot encodes its local vari-

ables.

There also is the extended version of the model (EALR), where not all robots need

to be present at the first moment, their appearance is asynchronous and they might crash

44

at any moment, remaining visible. This is represented with a negative positive integer that

is shown in its light. It becomes part of the scheduler’s tasks to decide when each robot

appears and disappears.

4.1.1.2 Asynchronous wait-free multiprocess read/write shared memory model

This model for distributed computing is composed of N ≥ 2 asynchronous pro-

cesses where at most N − 1 may crash and stop its execution. They have view access to

a memory M and write access to a single register M [i]. The WRITEi(x) and SNAPSHOT

actions are atomic. As they are wait-free, their instructions cannot involve waiting for

steps of another process.

4.1.1.3 Simulating ALR in WFSM

The ALR model can be simulated in the WSFM model considering a process qi for

each robot pi. The register allocated for each process will store the state of pi, its position

and light value. The MOVEi(vi, ri) operation will be simulated via a WRITEi((vi, ri)),

and LOOK(G) will be simulated via a SNAPSHOT(M), all being atomic.

4.1.1.4 Equivalence of EALR and WFSM

The two models are presented as equivalent showing how one can simulate the

other, similarly to the way presented in the previous segment, with the addition of the

value ⊥ for those robots that are not yet active. This leads to theorem 4.1.

Theorem 4.1 A robot task T on G is solvable in the EALR model with N 2 robots tolerat-

ing f failures if and only if T is solvable in the WFSM model with N 2 processes tolerating

up to f failures.

The first direction of the equivalence is made considering a an algorithm A that

solves the task T , which tolerates up to f failures, in the EALR model. We can solve it

in the WFSM model with N processes, tolerating up to f failures by simulatingA, where

there is a process pi simulating each robot pi. For this purpose, the code of each robot is

simulated step by step, and the MOVE and LOOK operations are done so atomically.

For the simulation in the reversed order, we consider an algorithm A that solves a

robot task T with N ≥ 2 processes, tolerating up to f failures, in the WFSM model. T

can be solved in EALR simulatingA the other way around, where each robot ri simulates

45

the code of each process qi. For this, each robot will store the value of the respective

register in the shared memory M , and won’t modify it. They are also assigned to vertices

vi in the graph G, which is connected, and will not move. WRITEi(x) operations are

simulated by storing that value in the robot’s light with MOVE(vi, x). The LOOK(G) and

SNAPSHOT(M) are used similarly.

4.1.2 Gathering and binary consensus

4.1.2.1 Gathering with termination

The tackled problem is that of gathering, where the multiple robots attempt to

decide on a common vertex. Termination is required in the problem statement, that is,

all robots must be capable of deciding on a next vertex in finite time. This is particularly

interesting for the asynchronous models, as the robots have arbitrarily long operations

with no guaranteed bounds for the delay, and this way it is possible to know that the

system will end after a bounded number of cycles. Weaker termination properties are

not enough as waiting for other robots to finish before performing an operation wouldn’t

work.

Gathering with termination has to respect the following properties:

1. TERMINATION. Every robot decides a vertex in a bounded number of LCM cycles.

2. VALIDITY. The decided vertex cannot be fixed in advance.

3. AGREEMENT. All decided vertices are the same.

4.1.2.2 Binary consensus problem

The binary consensus problem, within distributed computing, corresponds toN ≥

2 processes starting with a value from w ∈ {1, 2}, such that their final decision respects

the following properties:

1. TERMINATION. Every correct process decides a value.

2. VALIDITY. Every correct process decides a value that it is proposed by at least one

process.

3. CONSENSUS-AGREEMENT. All decided values are the same.

First, we have to consider pi-solo executions, where pi is the only one taking steps

46

from a configuration C until it decides, and all other robots take steps afterwards. This

is important as it guarantees that a process will not be executed concurrently with others,

and all pi with the same configuration C will arrive at the same decision in the same

number of steps, as they are deterministic.

Now we consider the solo-trivial property for a gathering algorithm, meaning that

there is a vertex û, which will be decided by every pi in a pi-solo execution starting at

C. The non-existence of this property will be relevant as it means that there is at least

one configuration C from which that two robots will decide on two different vertices, in

a ri-solo execution.

A proof can be made using an algorithmA, which does not possess the solo-trivial

property and satisfies TERMINATION and CONSENSUS-AGREEMENT in the ALR model,

in order to create Algorithm 3, where binary consensus is solvable for two processes in

WFSM model.

Algorithm 3 Binary Consensus for N=2 processes tolerating one failure. Code for process
qi

1: function BINARYCONSENSUS(i, w)
2: M [i]← w
3: v ← Decision of ri in the simulation of A starting from C ▷ A solves gathering

for two robots, so v will be the same vertice for both.
4: if v = x1 then ▷ The decision of A determines in which value to have consensus.
5: return M [1]
6: else
7: return M [2]
8: end if
9: end function

The fact that A solves the binary consensus problem is proved by showing that it

respects the problem’s properties.

1. TERMINATION. It happens as A satisfies Termination.

2. VALIDITY. For a different value than the proposed to be decided, the executions

would have to simulate something other than a r1-solo execution of A from C,

which is not the case. The executions have ids corresponding to the order and they

are not concurrent.

3. CONSENSUS-AGREEMENT. It will be respected asA satisfies the Agreement prop-

erty of gathering with termination, so all decide on the same value.

47

4.1.2.3 Weakened gathering problems

Two weakened versions of the gathering problem are presented, both dealing with

Validity properties for what it is to be sufficiently close for the gathering. They still deal

with instances where termination is respected.

It is also noticeable that when dealing with only two robots, the edge-gathering

and 1-gathering are the same problem. Also that solutions to the edge-gathering also

solve the 1-gathering, but not the other way around.

4.1.2.4 Edge-gathering

In this instance, the gathering is relaxed so that the robots only have to share an

edge, meaning that they have two options for where to decide. For this variation, it has to

respect the following properties.

1. TERMINATION. Every correct robot decides as vertex in G in a bounded number of

LCM cycles.

2. VALIDITY. All robots must decide on the same vertex (rep. edge) if they start on

the same vertex (resp. edge).

3. EDGE-AGREEMENT. All decided vertices belong to the same edge.

4.1.2.5 1-Gathering

This instance extends the idea of edge-gathering to the idea of convergence to a

maximum distance of 1, where the name comes from. Here, the robots have to decide a

position at this maximum distance, which means that they should all belong to the same

complete sub-graph. The following properties must be respected.

1. TERMINATION. Every correct robot decides as vertex in G in a bounded number of

LCM cycles.

2. VALIDITY. All robots must decide on vertices of the same subgraph if they start

inside of a complete subgraph.

3. 1-AGREEMENT. All decided vertices belong to the same complete subgraph.

48

4.1.3 Results

The results of the article are summarized in the following table 4.1.

Table 4.1 – Results from Alcántara et al. (2019).

Problem in EALR Robots Lights Graph Solvability

Gathering N ≥ 2 unbounded Connected Impossible: Th. 4.2
Edge-gathering N ≥ 2 diam(T)− 1 Tree Possible: Th. 4.3

N ≥ 3 0 Connected with diam(G) ≥ 31 Impossible: Th. 4.4
N ≥ 3 unbounded With a cycle Impossible: Th. 4.5

1-Gathering N ≥ 2 diam(T)− 1 Tree Possible: Th. 4.3
N ≥ 2 0 Dominating vertex2 Possible: Th. 4.6
N ≥ 2 bounded The clique graph of G is a tree3, 4 Possible: Th. 4.7
N ≥ 3 0 diam(G) ≥ 3 and no triangles Impossible: Th. 4.4
N ≥ 3 unbounded With cycles and no triangles Impossible: Th. 4.9

4.1.3.1 Gathering

The first main result is exposed in theorem 4.2 right after the connection between

the ALR/EALR and WFSM models via the Binary Consensus problem.

Theorem 4.2 The gathering problem with termination is unsolvable by any algorithm in

the ALR model, even if robots have powerful capabilities, namely, they are non-oblivious

and able to detect multiplicities, share the same labeling of G and have an unbounded

number of lights.

This results comes from the fact that the same algorithm that would solve the

gathering in ALR would solve the binary consensus in WFSM, which has already been

proved impossible. The decision of the gathering problem requires it not to have the

solo-trivial property, because they cannot have a predefined vertex for convergence per

the VALIDITY property, which would happen if that property held, and without the solo-

trivial it implies that the binary consensus is solvable. It is interesting to note that the

impossibility comes from the validity condition, and not the capacities of the robots. It is

necessary to drop one of the properties in order to solve it.

The point is to have an algorithm not respecting solo-trivial property, meaning

that it can be used to solve binary consensus with an EALR → WFSM simulation.
1diam(G) is the length of the shortest path between the vertices the most far apart.
2Dominating vertex is the unique vertex with the most connecting edges.
3A clique is a subset of the graph where every two distinct vertices are connected, that is, a subgraph

that is complete.
4Clique graph of G is a new graph where each clique in G is reduced to a single vertex.

49

No gathering algorithm that respects validity will have the solo-trivial property, which

would mean that they can also solve binary consensus as well. Since binary consensus

is knowingly impossible to solve, any algorithm that solves gathering while respecting

validity will also be impossible to produce.

4.1.3.2 Edge-gathering

Algorithm 4 is proposed for the solution of the edge-gathering problem.

Algorithm 4 Edge-Gathering algorithm for N ≥ 2 robots on any tree T = (V,E). Code
for robot pi.

1: function EDGE-GATHERINGTREES(vi, T)
2: Move(vi, 0)
3: for ri ← 1 to diam(t)− 1 do
4: viewi ← Look(T)
5: max_roundi ← max{rj : (∗, rj) ∈ viewi} ▷ largest round value among the

robots
6: Si ← {vj : (vj,max_roundi) ∈ viewi ∨ vj = vi}
7: Ti ← smallest subset of T spanning all vertices in Si ▷ smallest set of edges

connecting all nodes with robots in the max round value and pi
8: if vi is a leaf of Ti ∧ diam(Ti) > 0 then
9: vi ← vertex of Ti that is adjacent to vi ▷ pi moves deeper into the tree if

in a leaf node
10: end if
11: Move(vi, 0)
12: end for
13: return vi
14: end function

It works by making the robots in the maximal rounds dictate the destination of

the others, as they are the only ones considered at each robot’s execution. All robots will

either be at a leaf node among the maximal round ones and move deeper inside it, or stay

still, either leading to the gathering or having their node become a leaf at some point.

Theorem 4.3 is demonstrated in the sequence.

Theorem 4.3 Algorithm 4 solves the edge-gathering problem in the EALR model forN ≥

2 robots on any tree T in diam(T) − 1 rounds using diam(T) − 1 distinct light colors

and tolerating up to N − 1 crash failures.

This is proved with several lemmas that demonstrate that it holds within the VA-

LIDITY and EDGE-GATHERING properties. This is helped with proofs that all robots will

always remain inside the minimum subtree that contains their initial vertices. And with

50

the proof that, considering that the largest number of rounds before edge-gathering is

diam(T) − 1, the maximum distance between two robots in their rounds r and m will

always be constrained by diam(T)−min(r,m). With their positions limited to the initial

subtree and with them always approaching, this variation of gathering is proved solvable.

The following results about the edge-gathering problem are about their impossibil-

ity in specific configurations. They are made after the equivalence is established between

the EALR and WFSM models.

Theorem 4.4 Let G be a connected graph with diam(G) ≥ 3. Then, no algorithm A

solves edge-gathering on G for N ≥ 3 robots without lights in the STRONG version of

the EALR model, with at most two robots failing.

This first impossibility result makes the statement that lights are necessary for

edge-gathering to be solvable. It is shown first the impossibility to solve with 3 processes

tolerating up to 2 failures, and then extended to N processes using the result on the BG

simulation Borowsky et al. (2001). The BG simulation helps by letting us consider an

extension from t+1 processes and t maximum failures to N processes and also t failures.

Also must be noted that the STRONG version consists of robots that are non-oblivious,

non-anonymous, non-disoriented, share the same labeling of G and can detect multiplici-

ties, meaning that the problem is not in its capacity.

It is contradictory to solve edge-gathering with N ≥ 3 processes and up to 2

failures, as without lights it is not possible to have more information than the positions,

qualifying it as restricted algorithm, and if it was possible to have a restricted algorithmA

to solve it, then via the BG simulation there would be an algorithm B capable of solving

it for N = 3 processes and up to 2 failures. VALIDITY and EDGE-AGREEMENT cannot

exist at the same time as the lack of lights does not allow the robots to distinguish certain

executions and, among those, VALIDITY requires the same decision to be made in cases

that it would not respect EDGE-AGREEMENT, making it impossible for Algorithm B to

exist, and consequently also Algorithm A.

Theorem 4.5 now shows how even with an unbounded number of lights, the exis-

tence of a cycle makes it impossible to solve edge-gathering. Its proof is done by showing

that if such algorithm existed, it would solve the k-Set agreement problem for 3 processes

tolerating 2 failures, which is impossible in the WFSM model when k = 2. The k-Set

agreement problem extends the Binary consensus problem by accepting up to k different

values to be decided.

51

Theorem 4.5 Let G be a connected cyclic graph, then there is no algorithm that solves

edge-gathering on G for N ≥ 3 robots tolerating two failures in the STRONG version of

the EALR model.

First, the vertices are remapped into a simple cycle with three distinct and con-

secutive vertices, so that v2 is mapped to 2, v3 is mapped to 3 and all the others to 1,

and it is assumed the existence of an algorithm A that solved the edge-gathering with

3 robots in a graph with a cycle. It is considered that there is an algorithm that solves

edge-gathering for 2 robots in a path P without lights and, equivalently, an algorithm B

that solves edge-gathering on P in WFSM for two processes q1 and q2.

Algorithm 5 uses A and B to solve the 2-Set Agreement problem for 3 processes

with up to 2 failures.

Algorithm 5 2-Set Agreement algorithm for N = 3 processes tolerating 2 failures. Code
for process qi.

1: function SETAGREEMENT(v)
2: M [i]← vi
3: if i = 3 then
4: u← v3 ▷ q3 is fixed with v3 for algorithm A
5: else
6: u← B.EdgeGathering2Robots(vi, P) ▷ A will receive at most two

adjacent nodes for the initial position of q1 and q2
7: end if
8: yj ← A.EdgeGatheringCycle(u,G)
9: if yj ∈ {v1, v2, v3} then

return M [j]
10: end if

return M [1]
11: end function

It works by mapping each of the 3 vertices to the corresponding index in the mem-

oryM , so that the process p3 can be ignored and edge-gathering is solved with the remain-

ing two using B. Because of how the vertices are arranged, the now determined input to

A will always decide on vertices that share an edge, assuming that B works as intended.

This result is impossible, as it has already been proved for the 2-Set Agreement problem.

This result for N = 3 (after showing that VALIDITY and EDGE-AGREEMENT

properties are respected) is extended to N ≥ 3 and 2 failures again using the BG simula-

tion, concluding the proof with the equivalency between WFSM and EALR models.

52

4.1.3.3 1-gathering

The first result for 1-gathering comes with theorem 4.3 as well, as an edge-gathering

constitutes an instance of gathering on a complete subgraph.

It is possible, however, to achieve 1-gathering in relaxed configurations, that need

not respect the tree structure. This is first shown for graphs with a dominating vertex and

then for graphs with a clique graph that has a tree structure, both of them for N ≥ 2

robots.

Theorem 4.6 Let G be a graph with at least one dominating vertex, then, 1-gathering is

solvable in the EALR model for N ≥ 2 robots without lights on G in only one round and

tolerating up to N − 1 crash failures.

Theorem 4.6 is supported by algorithm 6, which solves in a single round the gath-

ering. It either stays in the same vertex it started if all perceivable vertices belong to the

same complete graph, otherwise it moves to any dominating vertex. As a dominating ver-

tex will be at most at distance 1 of all other vertices, it is impossible to have a distance

of 2 or larger. This respects the 1-AGREEMENT and VALIDITY properties, as they will

either not execute a MOVE operation if already satisfied or solve it in a single operation.

Note that lights are not needed for this.

Algorithm 6 1-gathering algorithm forN ≥ 2 robots on any connected graphG = (V,E)
with at least one dominating vertex. Code for robot pi.

1: function 1GATHERINGDOMINATINGVERTEX(vi, G)
2: Move(vi, 0)
3: viewi ← Look(G)
4: if ∃vj ∈ viewi such that dist(vi, vj) ≥ 2 then ▷ It is not in a complete subgraph.
5: vi ← v̂ ▷ Target the dominant vertex v̂.
6: Move(vi, 0)
7: end if

return vi
8: end function

Theorem 4.7 Let G be a graph such that K(G) is a tree. Then, 1-gathering is solvable

in EALR for N ≥ 2 robots on G in at most (2 ·diam(K(G))+diam(G)) rounds, using at

most 4 · diam(K(G)) · |V (G)| · |V (K(G))| light colors and tolerating up to N − 1 crash

failures.

The other result in a relaxed graph structure shown in 4.7. This proof is done

by reducing the problem to a distributed version of the same solved by 4. For this, the

53

notion of clique graphs K(G) are used, where each vertex represents a maximal complete

subgraph of G, with the edges representing that those two subgraphs share vertices (their

intersection is not empty). It is also used a graph K ′(G), a subdivision of K(G) where

every edge is replaced by a pair that introduces a new vertex between them, meaning that

every {Kx, Ky} ∈ E(K(G)) is replaced with {Kx, Kxy} and {Kxy, Ky}.

For this reduction, a pair of functions fin : V (G) 7→ V (K(G)) and fout :

V (K ′(G)) 7→ V (G) is needed, where fin transforms inputs to 1-gathering on G to in-

puts to the Edge-gathering algorithm, and out transforms outputs from it to the ones from

1-gathering on G. The lights also gain extra functionality, where they display the input

vertex vi, the vertex where pi stands on the simulated graphK ′(G), and the round number

on the simulated Algorithm 4.

This is all used in Algorithm 7. Note that a robot may move while another is

still deciding in the simulation of Algorithm 4 from fin, for that purpose it preserves

its initial position in the lights, so that information stays accessible independent of their

actual position. This means that their actual position will not be used for computations,

as we can see in line 5.

Algorithm 7 1-gathering algorithm forN ≥ 2 robots on any connected graphG = (V,E)
whose clique graph K(G) is a tree. Code for robot pi.

1: function 1GATHERINGCLIQUETREE(vi, G, fin, fout)
2: Move(vi, vi|⊥|⊥)
3: ui ← SimulateEdgeGatheringTrees(fin(vi), K ′(G)) ▷ it doesn’t matter where

they are inside a complete graph, so all positions are treated the same
4: ri ← light value of pi ▷ the light has to be preserved, as it may move, but the

initial value will be used by others
5: Si ← {wi : (∗, wi| ∗ |∗) ∈ Look(G)} ▷ the initial position of all robots is

obtained from the lights, as they will preserve that information even while moving
6: if exists an initial position wi ∈ Si such that wi belongs to the complete subgraph
ui, i.e. wi ∈ V (ui) then

7: xi ← wi ▷ it moves to a complete subgraph if an initial positions requires for
validity

8: else
9: xi ← fout(ui) ▷ moves to the output of Algo 4

10: end if
11: while xi ̸= vi do ▷ loop to reach the target vertex
12: vi ← closes vertex to xi
13: Move(vi, ri)
14: end while
15: return vi
16: end function

54

Theorem 4.8 Let G be a connected graph with diam(G) ≥ 3 and no triangles. Then,

there is no algorithm A that solves 1-gathering problem on G for N ≥ 3 robots without

lights in the Strong version of the EALR model, with at most two robots failing.

Now again we have more impossibility results. Theorem 4.8 on 1-gathering also

comes from Theorem 4.4, being the same situation when there are no triangles, which

makes edge-gathering the only possibility at distance 1.

Theorem 4.9 Let G be a connected cyclic graph without triangles. There is no algorithm

that solves 1-gathering on G for N ≥ 3 robots tolerating two failures in the STRONG

version of the EALR model.

Similarly as it is done for theorem 4.8, Theorem 4.9 extends from the idea of

Theorem 4.5 with the fact that 1-gathering is equivalent to edge-gathering when there are

no triangles, being possible to hold distance 1 only in the vertices that share an edge.

4.1.4 Robot tasks

It is possible to represent initial and final positions of robots in a graphG via com-

binatorial topology constructs called simplexes, where multiple of them can be bundled

into complexes that represent all configurations allowed in a given robot task.

Definition 4.1 A robot task T on G is a triple ⟨I,O,△⟩, where:

1. I is an input complex, and is composed of all input simplexes. An input simplex

σ represents a possible combination of initial position for all robots.

2. O is an output complex, and is composed of all output simplexes. An output sim-

plex τ represents a possible combination of vertices where the robots are allowed

to end, a set of decided vertices.

3. △ is a monotonic carrier map between the input and output complexes.

Both I and O are closed under containment, meaning that any subset of an input

(resp. output) simplex will also be an input (resp. output) simplex. In other words, robots

are allowed to start (resp. end) in any subset of initial (resp. final) vertices.

This formalization allows for the representation of tasks such as gathering. In

this case, AGREEMENT property is held by the output simplexes in O being composed

of all sets with a single vertex of G, and the VALIDITY property by forcing that all input

55

simplexes with cardinality 1 will also be their output via △ (|σ| = 1,△(σ) = {σ},

otherwise△(σ) = O).

In the case of edge-gathering, the output complex O of the previous definition

has added the sets of two vertices that belong to the same edge in G, in order to respect

EDGE-AGREEMENT, and the VALIDITY constraint it updated so that two robots sharing

an edge can choose either or both the vertices (△(σ) = {σ, {v1}, {v2}})

Originally it was defended that not all problems could be represented as robot

tasks, as of all tasks are defined in terms of the vertices of G, and all positions in the

output complex will be valid alongside their subsets. A task definition also cannot be

specified so that certain robots end up or not in specific vertices. An example is the task

of forming a connected graph, which should not be representable, as the final positions

allow for any number of robots to be placed, with no way to constrain the placement of

the vertices around.

Note that while this framework supports the case of failure of robots, it does not

allow take into consideration the limits in the sensors of the robots, considering always

unrestricted communication and visibility of the map. A new understanding, with a more

realistic view, will be discussed in chapter 6.

4.1.4.1 Solvable robot tasks

A topological characterization is proposed of solvable robot tasks following an

approach for distributed computing. It is a consequence if the equivalence between the

EALR and WFSM models and a theorem from Herlihy and Shavit (1999) stating that a

robot task is solvable in WFSM if and only if there is a subdivision of I and a simplicial

decomposition map to O respecting△. Theorem 4.10 is then proposed.

Theorem 4.10 A robot task on G, ⟨I,O,△⟩ is solvable for N robots in the EALR model

tolerating N − 1 failures if and only if there is a subdivision Subd(I) and a simplicial

map δ from Subd(I) to O, such that for every input simplex σ, δ(Subd(σ)) ⊆ △(σ).

A task T makes use of processes IDs, which translates to colored vertices in the

input and output simplexes, corresponding to those IDs. T will have a wait-free read/write

protocol if and only if its input complex I has a chromatic subdivision X (note that it is

colored from the IDs), and this subdivision can be mapped to the output complex O in

a color-preserving manner. Such map δ : X(I) 7→ O must be done so that for each

simplex s′ ∈ X(s), δ(s′) is carried by△(s), in other words, each simplex obtained from

56

the subdivision of another simplex, must have its mapping to the output simplex via δ

carried by its mapping via△.

The chromatic subdivision X(I) is the final state of a distributed computation

after an execution that starts with I. Locally, if we consider s, a simplex representing

a single initial configuration in I, X(s) will give us the final state of all processes that

started as s after being subdivided by a distributed algorithm, while V (X(s)) will be the

final state of each process. This final states obtained from Subd(I) are then mapped to

their corresponding decisions in the complex of possible decisionsO via the decision map

δ. This is visible in Figure 4.1.

Remark 4.1 The map△ lets us obtain the decisions made from the combination of initial

positions in I, among all possible decisions inO. This represents the properties that must

be respected for each problem. The color-preserving simplicial mapping δ lets us do the

same after the execution of a distributed algorithm, represented by X(I). δ must exist for

a task T to be solvable via X .

Figure 4.1 – Subdivision of T and mapping via δ shown in Herlihy, Kozlov and Rajsbaum (2014).

Note that while the general case is dealt with chromatic simplexes, this work has

only presented the usage of colorless tasks for robots, where the decision of specific robots

is not important, only the respect of the final configurations by the set of agents.

This entire comprehension of robot tasks has been reviewed, and will also be

presented in chapter 6.

57

4.2 Myopic exploration as a robot task

Besides the study of gathering problems in the previous parts of this work, it is also

interesting the case of robot exploration. This was mostly motivated by the statement in

Alcántara et al. (2019) that only converging tasks could be represented as shown in section

4.1, while diverging tasks such as exploration would be impossible in the topological

structure of the configuration. This has been shown wrong, making use of a different

interpretation of the simplicials seen before.

As an attempt to approximate the guaranteed theoretical methods and the appli-

cable results required by roboticists, it was also a motivation to study those problems in

more realistic scenarios. One characteristic that was found relevant is the range of the

robot’s sensors, which has been approached in the literature mostly regarding the visibil-

ity radius when their communication depends on it. This scenario is similar to underwater

robots that cannot use global communication systems due to their submersion. Here, the

taxonomy, recent results and some considerations will be exposed.

4.2.1 Introduction

The considered robots in the LOOK-COMPUTE-MOVE model have the capacity

of sensing their local vicinity. They are assumed to be anonymous and oblivious, with no

direct means of communication. Two main variations studied:

• Terminating exploration. TE. each vertex is visited by at least one robot and, even-

tually, all robots stop. Interesting finite tasks, such as find out the boundaries of an

unknown area.

• Exclusive perpetual exploration. EPE. each robot visits every vertex infinitely of-

ten and no two robots traverse the same edge at the same time nor visit the same

vertex at the same time. Interesting for maintenance scenarios with limited space

the prevent crossing or occupying the same space. In this case, no starting position

has towers (multiple robots in the same vertex).

The LOOK step changes the most, as it rules the behavior of the snapshots. Since

their sensing capabilities are limited, there is a visibility radius ρ, where a robot sees the

rooted subgraph induced by the vertices at distance at most ρ from the itself, perceiving

the number of robots and whatever information they display inside that subgraph.

58

The problems now have the added difficulty of reconstructing information from

fewer moments when it can be gathered about the other agents. Solutions will require

more steps as the MOVE operations are chosen to increase the chance of encounter when

needed. The accuracy of this information changes according to the scenario, where, for

example, the parameter multiplicity detection dictates if they can identify exactly how

many robots exist or simply “more than one” on a vertex.

Other usual variations of the problem are described in Bonnet and Defago (2011):

• Foraging. Similar to terminating exploration, but the goal is replaced by finding all

resources located in unknown locations.

• Surveillance. Equivalent to perpetual exploration, without the exclusivity. Usually

focuses on lowering the number of robots.

• Patrolling. Similar to surveillance, but restrictions are imposed on the movement

pattern so to counter a malicious agent.

• Pursuit/Chase. Similar to foraging, where the searched resources (the intruders)

are not static.

All of them may change over the number of agents and constraints based on the

scenario.

While the robots are usually presented as oblivious, i.e. they cannot remember

more than one action in the past, they are capable of some communication in the form

of lights or a local whiteboard. They have their visibility limited by a parameter ρ and

are only perceived in vertices. They are not always equipped with lights, but it may

be needed if we chose to reduce it to a version of gathering, as Theorems 4.4 and 4.9

show that without lights the number of solvable families is severely reduced. They are

considered sometimes considered opaque, limiting the view of other robots if aligned.

Most of the works start from a general finite connected graph, and they restrict to

specific families in order to solve, such as in Flocchini, Prencipe and Santoro (2019), Bra-

mas, Lafourcade and Devismes (2021). The most common families are Rings, Tree, Grids

and Tori, but there are also efforts for more general impossibility conclusions. Time-

varying graphs (TVA) are also considered in Gotoh et al. (2021), where a temporal do-

main is considered together with a edge presence function, describing in which time steps

the edge exists.

59

4.2.2 Known results

Usually the focus is on the smallest or largest number of robots, κ−(n) and κ+(n),

of any n-vertex graph of a given family, discussed in Flocchini, Prencipe and Santoro

(2019). Tables 4.2 and 4.2.2 present an extract of the results found in the literature.

While considering only the case of myopic robots, we have the following table

with the latest results:

Table 4.2 – Recent results for myopic exploration tasks.

Problem Graph Synchrony Visibility Colors Result

TE grid Fsync 2 2 Possible, 2 robots, CC. 12

TE grid Fsync 2 2 Possible, 2 robots. 12

TE grid Fsync 2 1 Possible, 3 robots, CC. 12

TE grid Fsync 2 1 Possible, 3 robots. 12

TE grid Fsync 1 3 Possible, 2 robots, CC. 12

TE grid Fsync 1 3 Possible, 2 robots. 12

TE grid Fsync 1 2 Possible, 3 robots, CC. 12

TE grid Fsync 1 2 Possible, 3 robots.12

TE grid Ssync, Async 2 3 Possible, 2 robots, CC.12

TE grid Ssync, Async 2 3 Possible, 2 robots.12

TE grid Ssync, Async 2 2 Possible, 2 robots, CC.12

TE grid Ssync, Async 2 2 Possible, 2 robots.12

TE grid Ssync, Async 1 3 Possible, 3 robots, CC. 12

TE grid Ssync, Async 1 3 Possible, 3 robots.12

TE ring FSync 1 1 Possible, 5 robots. 13

TE ring SSync, Async 1 1 Impossible. 13

TE ring Fsymc, Ssync, Async ≥ 2 ≥ 2 Possible, 3 robots. 14

TE ring Fsync 1 ≥ 2 Possible, 3 robots. 15

TE ring Ssync, Async 1 ≥ 2 Possible, 4 robots. 15

PE ring Fsync 1 ≥ 2 Possible, 2 robots.15

PE ring Ssync, Async 1 ≥ 2 Possible, 3 robots. 15

PE ring Fsymc, Ssync, Async ≥ 2 ≥ 2 Possible, 2 robots. 16

lin Bramas, Lafourcade and Devismes (2021)
min Datta et al. (2013b)
nin Nagahama, Ooshita and Inoue (2019)
oin Ooshita and Tixeuil (2021)
pin Nagahama, Ooshita and Inoue (2019)

From these references, it is possible to notice some main takeaways. First, the

breakage of symmetries is a key part of the problem to be addressed in order to render

it solvable, such that it is often the case of few robots that perform the exploration and

others are used to keep track of the process while staying off symmetric configurations.

The termination is based on specific configurations of the robots, such as positions of the

robots in the map, sometimes making use of the communications channels, with lights or

whiteboards. Lastly, that common chirality seems to be an efficient property in reducing

60

Problem
G

raph
Sync

#
R

obots
#

L
ights

V
isibility

L
abels

R
esult

E
PE

G
rid

Fsync
1

finite
finite

local
Im

possible.T
h

3.2
9

E
PE

G
rid

Fsync
2

1
finite

local
Im

possible.T
h

3.4
9

E
PE

G
rid

Fsync
2

2
1

local
Im

possible.T
h

3.5
9

E
PE

G
rid

Fsync
3

1
1

local
Im

possible.T
h

3.6
9

E
PE

G
rid

Fsync
2

3
1

local
Possible.A

lg
V
on
e
23

9

E
PE

G
rid

Fsync
2

2
2

local
Possible.A

lg
V
tw
o
22

9

E
PE

G
rid

Fsync
3

1
2

local
Possible.A

lg
V
tw
o
31

9

PE
T

V
G

5,H
6

Fsync,Ssync
k
≥

2η
+
1

7
0

w
hiteboard

local
Possible.T

h.6
6

PE
T

V
G

,W
(l) 8

Ssync
k
≥

2l
+
1

0
w

hiteboard
local

Possible.T
h.10

10

PE
T

V
G

,W
(l)

Ssync
k
≥

2l
0

w
hiteboard

local+leader
Possible.T

h.23
10

PE
T

V
G

,W
(l)

Fsync
k
≥

2l
0

w
hiteboard

local
Possible.T

h.19
10

PE
T

V
G

,W
(l)

Fsync
k
>

2l−
1

0
w

hiteboard
local+leader

Possible.T
h.34

10

T
E

,E
PE

n-R
ing,

n
≥

3
Fsync

k
<
n
/2

0
global

global
Im

possible.L
m

9.1
k

Figure
4.2

–
R

esults
in

the
literature

forexploration
tasks

in
L

C
M

.

iin
B

ram
as,L

afourcade
and

D
evism

es
(2021)

jin
G

otoh
etal.(2021)

kin
Flocchini,Prencipe

and
Santoro

(2019)
eTim

e-V
arying

G
raph,w

ith
unknow

n
topology.

fTem
porally

connected.T
he

graph
is

alw
ays

connected
overthe

tim
e

dom
ain.

gη
is

the
evanescence

ofthe
graph,the

num
beroftransientedges.

hl-bounded
1-interval.A

llgraphs
are

connected
w

ith
atm

ostltransientedges,those
thatare

notalw
ays

present.

61

the difficulty of the problem, and is a reasonable assumption when understood as the

existence of a compass.

4.2.3 Model for exploration

From this bibliography research, a model has been created for the future develop-

ments, aggregating the factors that were found the most interesting to be studied in a first

moment. Scenarios with underwater robots are envisioned, as simple problems are still

complicated to deal with, given the heavily constrained information available.

4.2.3.1 Proposed robot model

• Asynchronous, as no common scheduler is available with global communication;

• Luminous, with unbounded lights. This models the implicit communication that

has to be observed in order to succed.

• Myopic, with visibility limited to ρ = 1.

In order to emulate a scenario with underwater drones, communication and vis-

ibility have to be restricted. Considering that any graph family will be a discretization

of the aquatic environment, we can associate the sensing limits to that discretization. It

is possible to give the interpretation that the current node is a zone with guaranteed vis-

ibility, and the adjacent nodes are the ones at the limit of that, where sensing becomes

likely but not guaranteed. This fits the usage of grid graphs, describing the limitations

in each of the physical dimensions. In the case of terminating exploration, the problem

statement implies the existence of a configuration where all robots decide not to move.

This configuration must not be a part of the initial configurations.

4.2.3.2 Simulating myopic EALR in WFSM

In order to simulate EALR in WFSM, the MOVE(vj, cj) operations of robot ri are

replaced by WRITE((vj, rj)) of process pi, where the initial data stored at the register is

always the current vertex of ri, and this information is used for the simulated COMPUTE

operation. The same operation can be adapted in order to ignore values from registers that

start with vertices deemed to far away from the current process’. Similarly, the SNAPSHOT

operation can be adapted to only return the contents of registers with nearby vertices

62

expressed at the beginning of the data, simulating the restricted visibility of the LOOK

step.

The converse simulation can make use of the proof from Alcántara et al. (2019),

where instead of robots assuming any position in a connected graph, they assume posi-

tions that respect the visibility limit of the model. This still has to be developed, and an

attempt is seen bellow.

4.2.3.3 First idea for EALR

This may be representable inside the robot tasks if we consider that they have to

end in a distinguishable vertex, such as the dominant one. The point is that they are only

allowed to go to that vertex once they have explored all open edges. Some other family

of graphs would be more interesting though.

Usage of lights to store the history of chosen paths. If we assume common sense

of direction, i.e. any two robots a, b with a numbering function for the edges, leaving

edges λ(Vi), will have λa(Vi) = λb(Vi), for any vertex Vi ∈ G.

The lights store a history of pairs with the chosen port and the degree of the vertex

in which that choice was made, such as L = {(P1, D1), (P1, D1), · · ·, (PN , DN)}. An

alternative is also a sort of heap tree where we leave “empty” spaces for the unexplored

edges. In either case that structure will be completed as they meet other robots, and fill

the map. It may be better to use lights to signal the end of all explorations, and terminate

when consensus is reached about it.

And the following operations are considered:

• LOOK. They have a SNAPSHOT of the vertices that are in path with distance at most

ρ.

• COMPUTE. At each time they follow a path to the closest unexplored edge. If there

are no unexplored edges, they go to the dominant vertex and terminate. They may

cross the dominant edge before the final path.

• MOVE. They move to the next vertex in the computed path.

4.3 Simple robot task in line graph

As part of the study on how the simplicial complexes work for a proper robot task

formalization, their usage to represent configurations instead of simply positions in the

63

graph was considered. The configuration interpretation includes everything in the state of

the robots, such as their lights, their position and, if needed be, their history of positions.

As a tool for verifying solvability, all information is accessible for the analysis.

This approach was studied with the case of a robot moving in a line graph, com-

posed of three vertices and two edges connecting them. The interest is to expand it to

the case of grid graphs, where each vertex that is not a boundary has 4 neighbors, two in

each dimension. Grid graphs were considered in section 4.2.3. The 1-gathering problem

is shown in the example, where robots have to find themselves with at most 1 edge sepa-

rating them all, as this is the simplest problem in the line graph that is solvable after one

step, while having the input and output complexes different.

Each robot has three possible starting positions and can either move to the left or

right in the representation in the top of image 4.3, next to the input complex I and output

complexO, where the configurations consist only of their positions. in the case ofO, this

is a shorthand for the idea that any configuration ending in those positions suffices, as one

would note that more information is stored in the protocol complex. Note that the only

difference is that while the two robots can start in any pair of positions in the graph, they

can only end in those that share an edge, eliminating the pairs with only outsider vertices.

The four possible subdivisions are represented in image 4.3. Those consist of the

cases where two robots start at the same vertex, with possibility of moving in both direc-

tions or not, and when they do not start in the same vertex, where only one has multiple

movement options. All possible movements in the complete version of the protocol com-

plex√ are assembled as in image 4.4. Note that we have two pairs of pyramids connected

by the actions of staying in the same place, and that the assembly can only be done with

vertices representing the same history of positions, i.e. both encode robot A starting in

vertex v1 and moving to v2, istead of simply their current position.

Further work still will be done to expand this into a grid, but patterns are already

noticeable as each pair of pyramids represents set of movements in one dimension, and

they are connected by the configurations with “staying still” actions.

64

Figure 4.3 – 4 main blocks that appear as the input complex is subdivided.

Figure 4.4 – Possible assembly of all subcomplexes related to the movement of the robot on the
line.

65

5 FORMALIZATION OF TASKS

5.1 Robot tasks

Robot tasks may be formalized similarly to the way presented for general tasks in

section 2.1.4, making use of the equivalences presented in section 4.1.

We will chose to use as base definitions 2.8 and 2.9, as the presence of exclu-

sively functional relations is easier to abstract, which is not the case of carrier maps in

2.5 and 2.6. Note as well that these definition do not allow for the consideration of the

sensing limitations of the robots, and a direct usage inspired by the robot tasks in section

4.1.4 would only for cases of unlimited visibility, which hardly corresponds with realistic

scenarios.

From this, we have two possible interpretations of the protocol specification and

the solvability decision map. In both cases, the existence of lights will simply increase the

combinatorial complexity, either during the evolution of the movements, or in the decision

map displaying the solvability.

Recall the two main structures needed for the evaluation of a task: the task defini-

tion and the specification protocol. The task definition is a triple (I,O, t), where we rep-

resent all possible initial and final configurations in the chromatic simplicial complexes

I and O, while the valid pairs of input/output are filtered via the restriction function

t : I × O → T . The specification is a pair (P,S), where P describes the subdivisions

applied to I over the rounds, while S specifies how a folding between rounds must be

done in order to obtain the original complex.

In the first interpretation, we consider that the specification S models communi-

cation, how the robots exchange information, and the decision map δ models movement.

The specification is equivalent to the LOOK steps, while the decision map δ represents a

reconstruction of the mission through the equivalent MOVE steps. Again, the COMPUTE

step is considered to be atomically executed in sequence of a LOOK operation, without

loss of generality. Solvability is a matter of finding a decision map δ : T → P (I) that

shows the existence of a sequence of movements for all robots, given the possible com-

munications from P (I), that respect the visibility of the robots. While the visibility may

be unlimited or not, this takes place in the communication rounds, where the ones beyond

a visibility threshold are eliminated.

Alternatively, in a way that may be perceived as more natural, the specification

66

of the robot represents how it can interact with the environment, with all possible MOVE

operations encoded in the protocol complex P (I), together with the lights as part of the

state, in case they exist. The decision map δ required for a solvable task will have to map

from a subset of the protocol complex Q ⊆ P(I) that possesses at least one execution

with the initial/terminal values specified in T ⊆ I ×O, encoding the sequence of moves

that need to happen in order to the attainable configurations in Q to be feasible. The

configurations in Q are the accumulated history of the robots, with all vertices they have

gone through, such as presented in section 4.3, with a full evolution after one step.

5.2 Formalization of robot tasks

The chosen formalization makes use of chromatic complexes, as seen in 2.1.4, in-

stead of colorless ones. This is done in order to have the power to specify configurations

for individual robots. Note that the case where all robots can assume whatever configura-

tion acceptable, usually expressed in colorless tasks, can also be written as a general task,

being simply more verbose. As the first modification, we decorate the configurations,

which originally represented only the positions of the robots in the graph, with all knowl-

edge of their state. This includes lights, used for the formalization of communication,

past positions and whatever other information may be available. A robot task definition is

formalized as follows.

Definition 5.1 A robot task is a triple (I,O, t), where:

• I is a chromatic simplicial complex, it encodes all feasible initial configurations

in the task;

• O is a chromatic simplicial complex, it encodes all final configurations that satisfy

the objective of the task;

• t : T → I × O is a chromatic simplicial map, it restricts which pairs of in-

put/output configurations that are compatible with the task.

Consider the vertex-gathering example for two robots in a graph composed of two

vertices and one edge. Image 5.1 depicts the elements of definition 5.1. While they are

allowed to start in any of the two vertices, as shown in I, they must end in the same

vertex, either of the two available, shown in O. The product I ×O generates all possible

combinations of initial and final configurations, however not all of them respect validity,

67

in which an initial configuration where the problem is already solved must not be changed

by the algorithm, and those are filtered out in T via t.

Figure 5.1 – Input complex I, output complex O, task complex T and the related morphisms in
the gathering task for two robots on a graph G. Input vertex is displayed in grey and output

vertex in red. No extra communication data is used.

The second part needed is a way to express the workings of the robotic system, in

order to check whether it respects the criteria for solvability. This is done in the following

robot specification.

Definition 5.2 A robot specification is a triple (P,S), where:

• P is an endofunctor operating on simplicial complexes, it generates the possible

states each configuration will assume in the execution of another set of given states.

• S : P → id is a natural transformation, it encodes the specification of how the

robots are capable of moving. It describes the relation between states.

The chromatic simplicial complex P (I) will be a combination of all paths robots

can take, while respecting their specification. Each vertex will represent a series of states

a robot will have gone through. Note that multiple instances of the same robot may end up

at the same state after a round in the protocol complex, but each will have had a different

path to it. The existence of those options in paths is the first motivation for the following

solvability criteria.

Remark 5.1 Recall that the original definition in section 2.1.4 requires the protocol car-

rier map to be strict, i.e. Ξ(σ ∩ τ) = Ξ(σ) ∩ Ξ(τ). The chromatic simplicial map

that models it in P (I) preserves this property as it maps the entire chromatic simplicial

complex into another one, preserving labeling due to its chromatic nature and carrying

simplicies to simplices by definition.

68

Definition 5.3 The solvability of a robot task (I,O, t) with a specification (P,S) is at-

tested by the existence of two morphisms s and δ so that diagram 5.2 commutes, where:

• s : Q → P (I) is a chromatic simplicial map, acting as a restriction map that

selects in Q at least one configuration from P (I) that possess the same initial and

final states required by the task definition T . This is done in order to respect the

next morphism.

• δ : Q → T is a chromatic simplicial map that applies the restrictions of the

robots’ sensing capacities. In the case of unlimited vision, it will be the identity

map.

Figure 5.2 – Diagram must commute for solvability. Robot task definition in blue, specification in
green and solvability criteria in red.

This formalization lets us consider multiple aspects of a mission with multiple

robots. First, faulty robots that may stop working are represented by definition in lower

dimensions of the simplices, as the combinatorial structures are closed under containment.

The usage of inpure simplicial complexes, that is, with maximal simplices that are not of

the same dimensions, we can represent configurations where robots have crashed and are

no longer responsive. The case of “freeze” crashes is also representable, as it consists of

robots no longer changing their states, but being observed the same way of one that takes

a lot of time to update.

The δ map, as a representation of the sensing capacities of the robots, allows to

filter state histories in P (I) do not respect those limitations. The example of limited

visibility works by filtering all MOVE operations that are consequent of sensing robots

that could not have been seen. The intuition is to reconstruct the execution of an algorithm

in configuration of state histories, while respecting the actions they could have performed.

Another problem often present in robotic implementations is the lack of precision

in the robot’s movements and other interactions with the environment, which can also be

encoded in the specification and generate states for all posibilities. Since the simplicial

69

complexes simply connect indistinguishable states, we have access to a natural way to

represent uncertainty in these discrete environments.

70

6 A CONCLUSION

6.1 Developments

The developed work has addressed the initial connections presented between modal

logics, combinatorial topology and the look-compute-move model for robotics. This has

been motivated by the lack of practical results in guaranteed methods that are made avail-

able for robotic implementations, as well as instigating possibility of connecting different

domain of research in order to share results between them.

Roboticists in search of guaranteed methods often face an entry barrier, as results

are expressed mathematically in terms that usually do not intersect that what is required

for robotic applications. Furthermore, it is not rare for guaranteed methods to be devel-

oped without tangible robotic implementations in mind, where the tackled problems are

either too simplistic or without a clear path for adaptation into an actual algorithm applied

in a robot. While the value in a gradual building of the theory for greater results is not

being questioned, the proven properties are frequently lost during an adapted implemen-

tation due to the lack of ease in its use and incomplete understanding.

This has been observed to happen more often with approaches that deal with dis-

crete variations of problems, as opposed to those in some Euclidean space. As seen in this

work, the discrete approach for robotic problems offers interesting equivalence at differ-

ent levels with other domains in mathematics. This motivates the efforts for its use as a

more accessible expression of guaranteed methods, where the relation between the math-

ematical structures and consequences in a robotic mission are made clearer. An initial

attempt of this was presented in chapter 5.

While a brief theoretical background is offered in chapter 2, the initial effort in un-

derstanding the aforementioned mathematical links is presented in chapter 3. The knowl-

edge gain theorem is presented as a result in logic that can be useful when seen through the

computing perspective. Finally, a concrete use of the equivalence in Armenta-Segura, Ra-

jsbaum and Ledent (2020) is presented with the representation of the approximate agree-

ment problem in the point of view of dynamic epistemic logic. The concept of equivalence

of categories is presented in details in the appendix, alongside the categorical represen-

tation of modal logic through Kripke frames and models and distributed computing with

simplicial complexes and models, which are then shown equivalent

Later, chapter 4 offers a comprehensive introduction to the results presented in

71

Alcántara et al. (2019), a fundamental step for the usage of the topological approach on

distributed computing for theoretical robotics. The models and the problems are pre-

sented, and the results discussed. The initial version of robot tasks in the literature is

present at this part, however one will notice that multiple elements of its interpretation

and definition are modified by the end of this work.

Following this base, the existing work and motivations for the study of exploration

tasks and sensory limitations is exposed, also accompanied by the recent results and a

proposed robot model. At last, we see an exercise on the topological representation of

a simple robot task, with the full evolution of a single step in the case of two robots

working in a three vertices line graph. This served as one base of intuition for the later

formalization of tasks.

It is noticeable how these equivalences each bring different sets of tools for tack-

ling with robotic tasks. Topological methods favor the derivation of impossibility results,

as topological invariants are easier to verify, together with their consequences in the solv-

ability framework. On the other hand, the logical approach is much more suited for ver-

ification, since they facilitate the reasoning of possibility results. Together, they vastly

improve the tools available when analyzing missions of robots as tasks.

In the last chapter 5, a new understanding of robot tasks is exposed, together with

the intuitions for it. This is followed by the actual formalization, which gives insights

to a new approach still in development for the proof of guaranteed missions in swarm

robotics. The key features, beyond a new solvability criteria, is its natural support for

multiple types of robotic failures, such as crashes and freezes, for unreliable movement

and limited sensing capabilities of the agents. This also extends the previous definition

by supporting diverging tasks, such as exploration, since it allows for the representation

of more specific and descriptive configurations.

A presentation of a part of this work has been done in a seminar of works related

to the AID CIEDS FARO Project, at ENSTA Paris. One should note that the activities

developed have undertaken a more formative path, as a preparation for a PhD project

under the same title with École Polytechnique, focusing on broader foundations than in a

different case.

https://perso.ensta-paris.fr/~chapoutot/meetings/?aid-cieds-june-2022

72

6.2 Future work

The proposed formalization of robot tasks still has to be tested in a range of ap-

plications, even though problems of gathering and exploration were used as motivations

during the construction of this new framework. The next envisioned step is to verify

existing results in the literature using the new framework, ideally achieving the same con-

clusions. This should be done first with the most simple cases, and later evolved are more

of the features described above are used, mainly with faulty robots and limited sensing.

The study of the modal logic equivalencies has just begun, and another future step

is to explore other results to take advantage between the two domains. Specifically, the

usage of multimodalities, i.e. both epistemic and temporal logic at the same time, is of

great interest for the expression of robot tasks. Beyond the existing theory to be exploited,

it is interesting the possibility of using the logic language for the description of missions,

which can be much more easily translated to natural language.

The structures used for the proposed formalization fits the requirements for form-

ing an algebra operating via endofunctors, and another idea is to explore this in order to

define a “step” operator, a more formal way to describe robots evolving over time. This

goes alongside the interest in multimodalities.

On the side of efforts approaching theoretical and practical results, one interest

is to find a better graph discretization of continuous environments. Since all algorithms

are reasoned based on a family of graphs, an immediate mapping would facilitate the

interpretation and usage of guaranteed results. This choice will hardly be unique, but

it would be an interesting advancement to define rules for it, according to the sensors

available and the type of environment. This has been briefly explored with the usage of

grid graphs for underwater maps.

At last, still aiming in a facilitated transition between theoretical and applied meth-

ods, the development of tools for visualization and verification would certainly help. In a

first moment, the visualization of the subdivision of simplicial complexes would already

help with the interpretation, given that those structures can grow quickly in size and com-

plexity. Further work in the verification of tasks are also envisioned, with such a tool

making possible a faster verification of the viability of missions at a very early stage of

development. This is in part favored with the logical equivalences that are already suited

for proving possibility results.

73

7 APPENDIX

7.1 Equivalence of categories

The idea of equivalent categories can be worked from the perspective of the 2-

category Cat, the category of all categories, which has categories as objects, functors

between them as morphisms and natural transformations as 2-morphisms. In this envi-

ronment, the corresponding notion to isomorphism of objects will carry the idea of equiv-

alence between categories, and this is the case of pairs of functors between categories

that are inverse to each other up to natural isomorphism. In the analogy of “forgetfull-

ness” of functors, those that belong to an equivalence relation forget neither properties

nor structure between categories.

This means that we can specify two functors

F : C → D

and

G : D → C

that allow going from one category to another, presenting natural isomorphism

(their composition relates to the identity functors):

F ◦G ≃ idD G ◦ F ≃ idC

An alternative to attest this equivalence is if the functors F and G are essentially

surjective and fully faithful, meaning that they are surjective up to isomorphism and func-

tions between its hom sets (the set of all morphisms) are bijective.

As an essentially surjective functor F : C → D, for every object y of D, there will

be an object x of C that satisfies the isomorphism F (x) ∼= y inD. The same has to be true

for the functor G : D → C.

As a fully faithul functor, F : C → D will have the following function to be

bijective

F : C(x, y)→ D(F (x), F (y))

The key intuition is to have two categories presenting the same skeleton (without

the fat, stripping down the representation of the objects), and that are the same as long as

we look only at the morphisms.

74

With the equivalences established in the next sections, we will be able to think

more concretely on the similar concepts that can be shared between domains.

7.1.1 Equivalence between pure simplicial complexes and Kripke frames.

An interesting development is the connection of epistemic logic and distributed

computability, which is done via an equivalence between the simplicial complexes model,

combinatorial topological structures used to represent distributed tasks, presented in sec-

tion 2.1.2, and the Kripke model, presented in section 2.3.5.

Those constructions give raise to the following categories.

Category 7.1 SA is a category of pure chromatic simplicial complexes on A with

• objects: pure chromatic simplicial complexes, where all maximal complexes are

of the same dimension n and the coloring map is defined over A.

• morphisms: chromatic simplicial maps.

Category 7.2 KA is a category of proper Kripke frames over A with

• objects: proper Kripke frames, e.g. M = ⟨S,∼⟩, N = ⟨T,∼′⟩, where all states

are distinguishable by at least one agent.

• morphisms: a morphism f : M → N means that there is mapping between the

states S to T such that for all a ∈ A, for all u, v ∈ S, u ∼a v implies f(u) ∼′
a f(v).

From Goubault, Ledent and Rajsbaum (2018) we have the following theorem.

Theorem 7.1 SA and KA are equivalent categories.

This is proven via the constructions of two functors F : SA → KA and G : KA →

SA as follows.

The first functor F takes a simplicial complex C and generates a Kripke frame

F (C) = ⟨S,∼⟩, where a set of states S is generated for each facet of C, and the equiv-

alence relation ∼a for all a ∈ A is obtained from the intersection of facets, i.e. for the

facets X and Y of C, there is a relation X ∼a Y if a ∈ X (X ∩ Y).

The chromatic simplicial mapping f : C → D in SA is respected via F (f) :

F (C) → F (D), as for any a ∈ A that is the coloring of a vertex in the intersection of

facets in C will also be a coloring in the intersection of those facets after f , a consequence

75

of them being rigid and never merging vertices, i.e. X (v) = a = X (f(v)), where v ∈

X ∩ Y and f(v) ∈ f(X) ∩ f(Y). Consequently, f(X) ∼a f(Y) holds and F (f) will be

a morphism between Kripke frames.

The second functor G takes a Kripke frame M = ⟨S,∼⟩ defined over a set of

agents A = {a0, ..., an} and generates a simplicial complex G(M) = C. The vertices

of C will be equivalence classes, considering a n-simplex for each state s ∈ S, i.e. V =

{vsi |s ∈ S, 0 ≤ i ≤ n}, and two vertices vsi and vs
′

i that belong to the same equivalence

class [vsi] ∈ V/ ∼ai if they correspond to equivalent states via the agent ai, i.e. s ∼ai s
′ .

The simplexes of C will be defined as {[vs0], ..., [vsn]}. The coloring X ([vsk]) = ai is well-

defined as the agents in the same equivalence class have the same color. The facets of C

will be all of the simplexes, as all states can be distinguished in the proper Kripke frame.

A morphism between Kripke frames f : M → N will be mapped to a chromatic

simplicial map G(f) : G(M)→ G(N) consistently as going from a vertex [vsi] ∈ G(M)

to [v
f(s)
i] ∈ G(N) does not depend on the representative of the equivalence class to pre-

serve the indistinguishability relation.

The composition of F and G defines isomorphisms, both in KA and SA. This

can be verified from the properties above being bijective relations, constituting a pair of

adjoint functors.

Example 7.1 Figure 7.1 shows an example of this equivalence. Each of the three states

is transformed into a 2-dimensional simplex, facets composed of 3 vertices, one for each

agent. It is noticeable that the two states that are indistinguishable only by agent b, in

black, are the triangles connected via the black vertex. The other two states, indistin-

guishable by agents g and w, are connected via the grey and white verticces.

Figure 7.1 – Equivalence via functors of a proper Kripke frame (left) and a pure chromatic
simplicial complex (right). From Goubault, Ledent and Rajsbaum (2018).

7.1.2 Equivalence between simplicial models and Kripke models

Extending the concepts of simplicial complexes and Kripke frames to also contain

information about values held by the agents, we arrive at the simplicial models and Kripke

76

models. The information are atomic propositions, defined as AP = {pa,x|a ∈ A, x ∈ V},

and V is a set of countable values. The interpretation for pa,x is true if agent a hold the

value x.

Definition 7.1 A simplicial model is a triple M = ⟨C,X , l⟩, where C and X define a

pure chromatic simplicial complex, and l : V(C) → P(AP) a labeling function that

associates a set of atomic propositions to each vertex of the simplicial complex. The

atomic propositions are related to the agent represented in that vertex, i.e. X (v), where

l(v) ⊆ APX (v).

Definition 7.2 A Kripke model is a triple M = ⟨S,∼, L⟩, where S and∼ define a proper

Kripke frame, and L : S → P(AP) retrieves the set of atomic propositions that are true

in a state s ∈ S. The kripke model will be local if for every agent a ∈ A, all equivalent

states for a contain the same set of atomic propositions concerning a, i.e. s ∼a s
′ implies

L(s) ∩ APa = L(s′) ∩ APa.

From those models, we can define the following categories.

Category 7.3 SMA,AP is the category of simplicial models over the set of agents A and

atomic propositions AP with:

• objects: simplicial models.

• morphisms: chromatic simplicial mapping that preserver labeling, i.e. given f :

M →M ′, l′(f(v)) = l(v).

Category 7.4 KMA,AP is the category of local proper Kripke models with:

• objects: local proper Kripke models.

• morphisms: morphisms between Kripke frames that preserve labeling, i.e. given

f :M →M ′, for every state s ∈ S, L′(f(s)) = L(s).

Which are stated equivalent in the second theorem from Goubault, Ledent and

Rajsbaum (2018).

Theorem 7.2 SMA,AP and KMA,AP are equivalent categories.

The functors F : SM → KM and G : KM → SM are used to navigate

between those two categories, and they use the same operations explained in section 7.1.1

for the underlying simplicial complexes and Kripke frames.

77

With F, given a simplicial model M = ⟨C,X , l⟩, we associate a Kripke model

F (M) = ⟨F(C),∼, L⟩. As we have to associate the labeling of the simplicial complex

to sets of true atomic propositions of a state, where the labeling L(X) of a facet X ∈

F(C) is given by the union of the labeling of all vertices belonging to that facet, i.e.

L(X) =
⋃

v∈X l(v). Note that facets are translated into states in the Kripke model. It

will be local as equivalent states for an agent a, X ∼a Y , come from facets that share a

vertex, and the information in the labeling of that vertex will be present in both states, i.e.

L(X) ∩ APa = L(Y) ∩ APa = l(v).

With G, given a Kripke model M = ⟨S,∼, L⟩, we associate a simplicial model

G(M) = ⟨G(S),X , l⟩. Here, we have to define a labeling function according to the true

atomic propositions in each state s ∈ S, considering that they are mapped to n-simplexes

{vs0, ..., vsn}, according to the number of agents n. The label of each vertex vsi , which

corresponds to the view of the state s by agent ai, will be the true propositions related to

ai in s, i.e. l(vsi) = L(s) ∩ APai . Since the Kripke model is local, two equivalent states

according to an agent will always have the same labeling.

Again, F and G constitute two adjoint functors with the properties shown above

and the composition of them lead to isomorphisms.

Example 7.2 We can see in figure 7.2 another example of this equivalence. Here, each of

the two agents has a binary value of 0 or 1 and knows its own state, but doesn’t know the

one from the other agent. This means that for each possible value of an agent, there are

two equally possible states for the other agent.

In the Kripke model, this is represented with the shared states (pairs of binary

values) that are indistinguishable according to the agents in the connecting edges. For

example, agent w cannot distinguish between the global statews 01 and 11, as it knows

to have the value 1, while g may have 0 or 1. This is translated in the simplicial model

with an edge, a 1-dimensional complex, for each global state, and the colored vertices at

the extremes representing the agents. Their labels are their own state, so an edge with the

global state 01 will connect a gray vertex labeled 0 and a white vertex labeled 1.

As theorem 7.2 states the equivalence between simplicial and Kripke models, it is

possible to express the semantics present in Kripke models in terms of simplicial models.

Definition 7.3 The truth value of some ϕ belonging to the epistemic logic using agents A

and atomic propositions AP , can be evaluated in a given epistemic state (M,X), where

78

Figure 7.2 – Equivalence via functors of a local proper Kripke model (left of each pair) and a
simplicial model (right of each pair). From Goubault, Ledent and Rajsbaum (2018).

M = ⟨C,X , l⟩ is a simplicial model and X is a facet of that simplicial model. This truth

value is defined as follows:

M,X |= p iff p ∈ l(X)

M,X |= ¬ϕ iff M,X ⊭ ϕ

M,X |= ϕ ∧ ψ iff M,X |= ϕ and M,X |= ψ

M,X |= Kaϕ iff for all Y ∈ F (C), a ∈ X (X ∩ Y) implies M,Y |= ϕ

And this leads to the following proposition.

Proposition 7.1 Given a simplicial modelM and a facetX , M,X |= ϕ iff F (M), X |=K

ϕ. Conversely, given a local proper Kripke modelN and state s,N, s |=K ϕ iff G(N), G(s) |=

ϕ, where G(s) is the facet {vs0, ..., vsn} of G(N).

79

REFERENCES

ALCáNTARA, M. et al. The topology of look-compute-move robot wait-free algorithms
with hard termination. Distributed Computing, v. 32, n. 3, p. 235–255, jun. 2019. ISSN
1432-0452. Available from Internet: <https://doi.org/10.1007/s00446-018-0345-3>.

ARMENTA-SEGURA, J.; RAJSBAUM, S.; LEDENT, J. Two-agent Approximate Agree-
ment from an Epistemic Logic perspective. p. 16, 2020.

BARR, M.; WELLS, C. Category Theory for Computing Science. [s.n.], 1990. ISBN
978-0-13-120486-7. Available from Internet: <https://dl.acm.org/doi/10.5555/92134>.

BENTHEM, J. v. Modal logic for open minds. Stanford, California: Center for the
Study of Language and Information, 2010. (CSLI lecture notes, no. 199). OCLC:
ocn457148948. ISBN 978-1-57586-599-7 978-1-57586-698-7 978-1-57586-598-0.

BONNET, F.; DEFAGO, X. Exploration and Surveillance in Multi-robots Networks. In:
2011 Second International Conference on Networking and Computing. [S.l.: s.n.],
2011. p. 342–344.

BOROWSKY, E. et al. The BG distributed simulation algorithm. Distributed Com-
puting, v. 14, n. 3, p. 127–146, jul. 2001. ISSN 1432-0452. Available from Internet:
<https://doi.org/10.1007/PL00008933>.

BRAMAS, Q.; LAFOURCADE, P.; DEVISMES, S. Optimal Exclusive Perpetual Grid
Exploration by Luminous Myopic Opaque Robots with Common Chirality. In: Inter-
national Conference on Distributed Computing and Networking 2021. Nara Japan:
ACM, 2021. p. 76–85. ISBN 978-1-4503-8933-4. Available from Internet: <https://dl.
acm.org/doi/10.1145/3427796.3427834>.

CARNIELLI, W.; PIZZI, C. Modalities and Multimodalities. [S.l.: s.n.], 2008. OCLC:
1144208333. ISBN 978-1-4020-8590-1.

DAS, S. et al. Autonomous mobile robots with lights. Theoretical Computer Sci-
ence, v. 609, p. 171–184, jan. 2016. ISSN 03043975. Available from Internet: <https:
//linkinghub.elsevier.com/retrieve/pii/S0304397515008476>.

DATTA, A. K. et al. Ring Exploration by Oblivious Agents with Local Vision. In: 2013
IEEE 33rd International Conference on Distributed Computing Systems. [S.l.: s.n.],
2013. p. 347–356. ISSN: 1063-6927.

DATTA, A. K. et al. Ring Exploration by Oblivious Robots with Vision Limited to 2 or
3. In: HIGASHINO, T. et al. (Ed.). Stabilization, Safety, and Security of Distributed
Systems. Cham: Springer International Publishing, 2013. (Lecture Notes in Computer
Science), p. 363–366. ISBN 978-3-319-03089-0.

DITMARSCH, H. van et al. Knowledge and simplicial complexes. arXiv:2002.08863
[cs], feb. 2020. ArXiv: 2002.08863. Available from Internet: <http://arxiv.org/abs/2002.
08863>.

FAGIN, R. (Ed.). Reasoning about knowledge. Cambridge, Mass: MIT Press, 1995.
ISBN 978-0-262-06162-9.

https://doi.org/10.1007/s00446-018-0345-3
https://dl.acm.org/doi/10.5555/92134
https://doi.org/10.1007/PL00008933
https://dl.acm.org/doi/10.1145/3427796.3427834
https://dl.acm.org/doi/10.1145/3427796.3427834
https://linkinghub.elsevier.com/retrieve/pii/S0304397515008476
https://linkinghub.elsevier.com/retrieve/pii/S0304397515008476
http://arxiv.org/abs/2002.08863
http://arxiv.org/abs/2002.08863

80

FAJSTRUP, L. et al. Directed Algebraic Topology and Concurrency. Cham: Springer
International Publishing, 2016. ISBN 978-3-319-15397-1 978-3-319-15398-8. Available
from Internet: <http://link.springer.com/10.1007/978-3-319-15398-8>.

FLOCCHINI, P.; PRENCIPE, G.; SANTORO, N. (Ed.). Distributed Computing by Mo-
bile Entities: Current Research in Moving and Computing. Cham: Springer Interna-
tional Publishing, 2019. (Lecture Notes in Computer Science, v. 11340). ISBN 978-3-
030-11071-0 978-3-030-11072-7. Available from Internet: <http://link.springer.com/10.
1007/978-3-030-11072-7>.

FLOCCHINI, P. et al. Gathering of asynchronous robots with limited visibility. Theoret-
ical Computer Science, v. 337, n. 1-3, p. 147–168, jun. 2005. ISSN 03043975. Available
from Internet: <https://linkinghub.elsevier.com/retrieve/pii/S0304397505000149>.

GOTOH, T. et al. Exploration of dynamic networks: Tight bounds on the number of
agents. Journal of Computer and System Sciences, v. 122, p. 1–18, dec. 2021. ISSN
0022-0000. Available from Internet: <https://www.sciencedirect.com/science/article/pii/
S0022000021000416>.

GOUBAULT, E. Private notes on algebra, coalgebras and temporal-epistemic logics.
2021.

GOUBAULT, ; LEDENT, J.; RAJSBAUM, S. A Simplicial Complex Model for Dynamic
Epistemic Logic to study Distributed Task Computability. Electronic Proceedings in
Theoretical Computer Science, v. 277, p. 73–87, sep. 2018. ISSN 2075-2180. ArXiv:
1809.03095. Available from Internet: <http://arxiv.org/abs/1809.03095>.

GOUBAULT, ; LEDENT, J.; RAJSBAUM, S. A Simplicial Model for KB4n: Epistemic
Logic with Agents that May Die. p. 20, 2022.

GUERRAOUI, R.; MAURER, A. Gathering with extremely restricted visibility.
arXiv:1906.06239 [cs], jun. 2019. ArXiv: 1906.06239. Available from Internet: <http:
//arxiv.org/abs/1906.06239>.

HERLIHY, M.; KOZLOV, D. N.; RAJSBAUM, S. Distributed computing through com-
binatorial topology. Amsterdam: Morgan Kaufmann, is an imprint of Elsevier, 2014.
ISBN 978-0-12-404578-1.

HERLIHY, M.; SHAVIT, N. The topological structure of asynchronous computability.
Journal of the ACM, v. 46, n. 6, p. 858–923, nov. 1999. ISSN 0004-5411, 1557-735X.
Available from Internet: <https://dl.acm.org/doi/10.1145/331524.331529>.

KIRKPATRICK, D. et al. Separating Bounded and Unbounded Asynchrony for Au-
tonomous Robots: Point Convergence with Limited Visibility. In: Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing. Virtual Event Italy:
ACM, 2021. p. 9–19. ISBN 978-1-4503-8548-0. Available from Internet: <https://dl.acm.
org/doi/10.1145/3465084.3467910>.

KNIGHT, S. The Epistemic View of Concurrency Theory. p. 217, sep. 2013.

LANE, S. M. Categories for the working mathematician. New York: Springer-Verlag,
1971. (Graduate texts in mathematics, 5). ISBN 978-0-387-90035-3 978-0-387-90036-0
978-3-540-90036-8.

http://link.springer.com/10.1007/978-3-319-15398-8
http://link.springer.com/10.1007/978-3-030-11072-7
http://link.springer.com/10.1007/978-3-030-11072-7
https://linkinghub.elsevier.com/retrieve/pii/S0304397505000149
https://www.sciencedirect.com/science/article/pii/S0022000021000416
https://www.sciencedirect.com/science/article/pii/S0022000021000416
http://arxiv.org/abs/1809.03095
http://arxiv.org/abs/1906.06239
http://arxiv.org/abs/1906.06239
https://dl.acm.org/doi/10.1145/331524.331529
https://dl.acm.org/doi/10.1145/3465084.3467910
https://dl.acm.org/doi/10.1145/3465084.3467910

81

LEDENT, J. Brief Announcement: Variants of Approximate Agreement on Graphs and
Simplicial Complexes. In: Proceedings of the 2021 ACM Symposium on Princi-
ples of Distributed Computing. Virtual Event Italy: ACM, 2021. p. 427–430. ISBN
978-1-4503-8548-0. Available from Internet: <https://dl.acm.org/doi/10.1145/3465084.
3467946>.

LUNA, G. A. D. et al. TuringMobile: a turing machine of oblivious mobile robots with
limited visibility and its applications. Distributed Computing, v. 35, n. 2, p. 105–122,
abr. 2022. ISSN 0178-2770, 1432-0452. Available from Internet: <https://link.springer.
com/10.1007/s00446-021-00406-6>.

NAGAHAMA, S.; OOSHITA, F.; INOUE, M. Ring Exploration of Myopic Luminous
Robots with Visibility More Than One. In: GHAFFARI, M. et al. (Ed.). Stabilization,
Safety, and Security of Distributed Systems. Cham: Springer International Publishing,
2019. (Lecture Notes in Computer Science), p. 256–271. ISBN 978-3-030-34992-9.

NAGAHAMA, S.; OOSHITA, F.; INOUE, M. Terminating Grid Exploration with Myopic
Luminous Robots. In: 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). [S.l.: s.n.], 2021. p. 586–595.

NAKAI, R.; SUDO, Y.; WADA, K. Asynchronous Gathering Algorithms for Autonomous
Mobile Robots with Lights. In: JOHNEN, C.; SCHILLER, E. M.; SCHMID, S. (Ed.).
Stabilization, Safety, and Security of Distributed Systems. Cham: Springer Interna-
tional Publishing, 2021. (Lecture Notes in Computer Science), p. 410–424. ISBN 978-3-
030-91081-5.

OOSHITA, F.; TIXEUIL, S. Ring exploration with myopic luminous robots. Informa-
tion and Computation, p. 104702, jan. 2021. ISSN 08905401. Available from Internet:
<https://linkinghub.elsevier.com/retrieve/pii/S0890540121000171>.

RIEHL, E. Category Theory in Context. [S.l.: s.n.], 2016.

SMITH, P. A Gentle Introduction to Category Theory. [S.l.: s.n.], 2018.

https://dl.acm.org/doi/10.1145/3465084.3467946
https://dl.acm.org/doi/10.1145/3465084.3467946
https://link.springer.com/10.1007/s00446-021-00406-6
https://link.springer.com/10.1007/s00446-021-00406-6
https://linkinghub.elsevier.com/retrieve/pii/S0890540121000171

	Abstract
	Resumo
	List of Figures
	Contents
	1 The Context
	1.1 Introduction
	1.2 Related work

	2 Theoretical Background
	2.1 Distributed computing
	2.1.1 Introduction
	2.1.2 Simplicial complexes
	2.1.3 Colorless tasks
	2.1.4 General tasks

	2.2 Look Compute Move
	2.2.1 LCM model
	2.2.2 Taxonomy

	2.3 Modal logic
	2.3.1 Introduction and syntax
	2.3.2 Possible worlds model
	2.3.3 Temporal logic
	2.3.4 Epistemic logic
	2.3.5 Kripke frames and models on epistemic logic
	2.3.6 Dynamic epistemic logic (DEL)

	2.4 Category theory
	2.4.1 Introduction
	2.4.2 Categories
	2.4.3 Duality
	2.4.4 Functors
	2.4.5 Algebras

	3 Connections Between Logic and Topology
	3.1 Knowledge Gain Theorem
	3.2 Approximate agreement from the epistemic logic perspective
	3.2.1 Approximate agreement
	3.2.2 Simplicial model for DEL
	3.2.3 Tasks
	3.2.4 Approximate agreement as a task

	4 Distributed Computing Approach for LCM
	4.1 The topology of look-compute-move robot wait-free algorithms with hard termination
	4.1.1 ALR, EALR, WSFM and their connections
	4.1.2 Gathering and binary consensus
	4.1.3 Results
	4.1.4 Robot tasks

	4.2 Myopic exploration as a robot task
	4.2.1 Introduction
	4.2.2 Known results
	4.2.3 Model for exploration

	4.3 Simple robot task in line graph

	5 Formalization of Tasks
	5.1 Robot tasks
	5.2 Formalization of robot tasks

	6 A Conclusion
	6.1 Developments
	6.2 Future work

	7 Appendix
	7.1 Equivalence of categories
	7.1.1 Equivalence between pure simplicial complexes and Kripke frames.
	7.1.2 Equivalence between simplicial models and Kripke models

	References

