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ABSTRACT

There is a growing move to offload functionality, e.g., TCP or key-value stores, into the

network – either on SmartNICs or programmable switches. While offloading promises

significant performance boosts, these programmable devices often provide little visibil-

ity into their performance. Moreover, many existing tools for analyzing and debugging

performance problems, e.g., distributed tracing, do not extend into these devices.

Motivated by this lack of visibility, the first half of this work presents the design and

implementation of Foxhound, an observability framework for in-network compute. This

framework introduces a co-designed query language, compiler, and storage abstraction

layer for expressing, capturing and analyzing distributed traces and their performance

data across an infrastructure comprising servers and programmable data planes.

While Foxhound is our proof of concept for flexible in-network tracing, we discovered

that the traditional tracing paradigm which Foxhound embodies can suffer from scalabil-

ity issues given hardware limitations of programmable data planes. In our effort to miti-

gate this, we identified a subset of common tracing queries that could be hyper-optimized

even beyond Foxhound’s capabilities. These optimizations represent a departure from tra-

ditional tracing and constitute another framework, Mimir, presented in the latter half of

this work. Mimir trades-off flexibility for efficiency by exploring a set of design choices

that optimize for common diagnosis and localization tasks. Our evaluations using three

representative offloaded applications on an Intel Tofino-based testbed, an emulator and a

simulator show that Mimir can support a subset of common tracing tasks at scale with sig-

nificant lower overheads than Foxhound. Moreover, our experiments with an in-network-

compute-enhanced DeathStarBench “social network” microservice demonstrates the use-

fulness of our approach for end-to-end diagnosis.

Keywords: In-Network Compute. Telemetry. Debugging.





Telemetria e diagnóstico para computação in-network

RESUMO

Há um movimento crescente para descarregar a funcionalidade, por exemplo, TCP ou

armazenamentos de valores-chave, na rede - em SmartNICs ou planos de dados progra-

máveis. Embora o descarregamento prometa aumentos significativos de desempenho,

esses dispositivos programáveis geralmente fornecem pouca visibilidade de seu desem-

penho. Além disso, muitas ferramentas existentes para analisar e depurar problemas de

desempenho, por exemplo, rastreamento distribuído, não se estendem a esses dispositivos.

Motivado por essa falta de visibilidade, a primeira metade deste trabalho apresenta o de-

sign e implementação do Foxhound, um framework de observabilidade para computação

em rede. Esse framework apresenta uma linguagem de consulta, um compilador e uma

camada de abstração de armazenamento coprojetados para expressar, capturar e analisar

rastreamentos distribuídos e seus dados de desempenho em uma infraestrutura que inclui

servidores e planos de dados programáveis.

Embora o Foxhound seja nossa prova de conceito para rastreamento flexível na rede, des-

cobrimos que o paradigma de rastreamento tradicional que o Foxhound incorpora pode

sofrer de problemas de escalabilidade devido às limitações de hardware dos planos de da-

dos programáveis. Em nosso esforço para mitigar isso, identificamos um subconjunto de

consultas de rastreamento comuns que podem ser hiper-otimizadas mesmo além das oti-

mizações do Foxhound. Essas otimizações representam um afastamento do rastreamento

tradicional e constituem outro framework, o Mimir, apresentado na segunda metade deste

trabalho. O Mimir troca a flexibilidade pela eficiência, explorando um conjunto de opções

de design que otimizam tarefas comuns de diagnóstico e localização. Nossas avaliações

usando três aplicativos descarregados representativos em um testbed baseado em Intel To-

fino, um emulador e um simulador mostram que o Mimir pode suportar um subconjunto

de tarefas de rastreamento comuns em escala com overhead significativamente menor do

que o Foxhound. Além disso, nossos experimentos com um microsserviço do DeathStar-

Bench aprimorado por computação em rede demonstram a utilidade de nossa abordagem

para diagnóstico de fim-a-fim.

Palavras-chave: Computação in-network, Telemetria, Debugging.
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1 INTRODUCTION

1.1 Contextualization

With the end of Moore’s law (VARDI, 2014; Theis; Wong, 2017), application

developers have started exploring alternative methods for accelerating applications, e.g.,

graphics processing units (GPUs) and tensor processing units (TPUs). Programmable data

planes (PDPs) with their ability to execute arbitrary computation have recently emerged

as a promising hardware accelerator. In light of this development, both industry and

researchers have begun to actively investigate new design points (BENSON, 2019) for

classic distributed applications by offloading functionality into the network. In this work,

we refer to this design point as in-network compute functions (INCs). These new design

points promise to improve performance (JIN et al., 2017; TIRMAZI et al., 2019a), scala-

bility (SAPIO et al., 2017; LAO et al., 2021), or reliability (KANNAN; JOSHI; CHAN,

2019).

This new design point complicates traditional management and diagnosis tech-

niques. In particular, the pre-existing network diagnosis tools, e.g., NetFlow (CISCO,

2019) or In-Network Telemetry (KIM et al., 2015), are insufficient because they focus

on traditional network performance metrics and provide no visibility into the inner work-

ings of the in-network applications. However, distributed tracing (SIGELMAN et al.,

2010) which has traditionally provided visibility into applications is not supported by

PDPs. Essentially, while there has been extensive work on demonstrating the viability

of in-network applications (JIN et al., 2017; LAO et al., 2021; ZHU et al., 2020), de-

signing scheduling algorithms for them (ZHENG; BENSON; HU, 2018) and developing

language abstractions (SONCHACK et al., 2021), there has been relatively more minor

work on developing holistic diagnosis frameworks for them.

To summarize, emerging programmable data plane frameworks lack sufficient

primitives (MACE; FONSECA, 2018) to enable the rich semantic-aware diagnosis tools

required by DevOps to diagnose large-scale distributed systems.

1.2 Problem Setting

Existing diagnosis frameworks either focus on diagnosing distributed applica-

tions (JAEGER, 2020), debugging stateful network elements and programs (SULTANA
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et al., 2017), or detecting network problems (NARAYANA et al., 2017a; GUPTA et al.,

2018). However, debugging in-network compute applications (INCs) requires methods to

capture, process jointly, and analyze the execution of requests across both the distributed

applications running on servers and their in-network counterparts running on the pro-

grammable data planes – a relatively non-trivial task. A natural path forward is to mirror

efforts to extend distributed applications into the network by extending distributed tracing

unto programmable data planes. Distributed tracing has become the prevalent strategy for

introspecting on networked distributed services. While some popular services offer trac-

ing plugins, deciding what gets traced is usually a difficult trade-off between performance

and expressiveness.

However, such an extension is also challenged by the programmable data plane

language and hardware constraints which limit both scalability and flexibility. Opti-

mizing systems in both of these dimensions concurrently limits our design, as there is a

common trade-off between flexibility and scalability that creates a “short-blanket” situa-

tion: advancing on one end will generally make solutions recede on the other. Thus, we

will deal with these problems separately in this work: The first half of this dissertation

will tackle flexibility (Foxhound) and the latter half will optimize for scalability (Mimir).

While the systems are substantially different, queries of both systems can interoperate

and thus can be mixed-and-matched to customize the flexibility-scalability tradeoff to

individual cases.

1.3 This Work

Flexible In-Network Distributed Tracing. The initial half of this work presents

Foxhound, which aims to bridge the gap between traditional network telemetry (NARAYANA

et al., 2017b; GUPTA et al., 2018; SONCHACK et al., 2018; SONCHACK et al., 2018)

and distributed tracing (SIGELMAN et al., 2010) by tackling program executions which

cross the boundary between distributed applications and the network. Unlike traditional

network telemetry (GUPTA et al., 2018) which focuses on packet level statistics, Fox-

hound can capture an INC’s internal program state. Specifically, Foxhound enables flex-

ible, end-to-end diagnosis by capturing and integrating trace data across programmable

data planes (switches and NICs) and x86 servers.

The core idea of Foxhound is simple: developers annotate data in their INCs,

which is queried by operators at runtime. Foxhound handles everything in-between such
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as data collection, storage, exports and, integration. To interface with users, we intro-

duce low-level annotations and a high-level query language. The query language allows

DevOps1 to optimize common queries with domain-specific knowledge, meanwhile, the

annotations allow programmers to decompose trace analysis into local processing on

switches and global processing on the controller, thereby reducing memory and band-

width requirements.

Scalable In-Network Distributed Tracing. In the latter half of this work, we

present Mimir, inspired by the operational approach to diagnosing large-scale distributed

systems used in today’s web-scale infrastructure (GUO et al., 2020a; KALDOR et al.,

2017; BERG et al., 2021). Specifically, while distributed traces capture rich contextual

information about the flow of execution across multiple processes (or devices), in prac-

tice, distributed traces are aggregated to determine the “expected behavior”, and problems

are detected by comparing traces for a new request (i.e., “observed behavior”) against this

aggregated notion of normalcy. Specifically, outlier detection is used to determine if a new

trace is anomalous relative to the aggregated information by performing a pair-wise com-

parison of node characteristics or edge distribution (e.g., processing latency (SAMBASI-

VAN et al., 2011; HUANG; ZHU, 2021; ANAND et al., 2020) or control flow (SAMBA-

SIVAN et al., 2011; GUO et al., 2020a) outliers).

Mimir builds on these observations to provide scalable in-network distributed trac-

ing. In particular, our work leverages the aggregate-based diagnosis prevalent in dis-

tributed systems to redistribute and rethink the division of labour between the computing

elements and the diagnosis elements by offloading aggregate analysis to programmable

devices. Given the limitations of programmable devices, simply offloading functionality

poses scalability and practical concerns. Our work addresses these concerns by exploring

novel designs that decouple the storage and processing requirements of the different com-

ponents of the diagnosis process and uses domain knowledge about device characteristics

to place the decoupled storage and processing on different components of the devices.

In essence, while traditional distributed tracing centralizes and decouples the gen-

eration and collection of data from analysis to enable flexible tracing, Mimir argues for

distributing and co-designing collection and analysis of the in-network compute aspect of

tracing to enable scalability and efficiency.

1We use DevOp as short for Developer-Operator, by which we mean to designate workers which can
work interchangeably between development and operation of a software system.
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1.4 Contributions

We now break up our contributions with respect to each of our designs.

Foxhound presents the following main contributions:

• We introduce an in-network storage layer which allows users to either completely

aggregate trace information into in-network data structures, or efficiently export this

to the CPU interface present in Tofino switches.

• We design a tracing query language and compiler to allow users to specify cus-

tomizable, high-level tracing and processing tasks that guide the instrumentation

and optimization of the storage layer.

• Finally, using a popular INC (NetCache (JIN et al., 2017)), we evaluate Foxhound

against several diagnosis techniques and different failure modes, highlighting the

importance of query-specific optimizations through micro-benchmarks.

Mimir’s main contributions are:

• We identify common design patterns for INCs and characterize the implication of

these design patterns for debugging distributed applications.

• We introduce scalable design choices that allows us to efficiently extend distributed

tracing into the network by rethinking the division of responsibility and appropri-

ately mapping storage and processing to different components of a programmable

switch.

• We present a prototype of Mimir, port three representative INCs to Mimir, and eval-

uate Mimir with a combination of a hardware testbed, a simulator, and an emulator.

1.5 Roadmap

The rest of this document is structured as follows:

• Chapter 2 presents our background on several related topics related to both network

programmability, in-network compute, and distributed tracing.

• Chapter 3 presents the design of Foxhound, the flexibility-facing front of this work.

This chapter brings foxhound-specific motivation, design and architecture choices,

an evaluation, and finally, discussions and limitations.
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• Chapter 4 presents the design of Mimir, the scalability-facing front of this work. Its

substructure is the same as in Chapter 3.

• Chapter 5 presents related works and compares both Mimir and Foxhound to other

works which occupy different points in the design space, discussing interesting

differences and similarities whenever possible.

• Chapter 6 presents our conclusion: we summarize our technical contributions as

well as the central lessons learned from this work; Finally, we discuss important

threads of future work.
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2 BACKGROUND

We introduce programmable data planes (Section 2.1), PDP telemetry (Section 2.2),

in-network computation (Section 2.3), and finally distributed tracing (Section 2.4).

2.1 Programmable Data Planes

Programs for programmable data planes (PDPs) are largely written in the P4 lan-

guage (BOSSHART et al., 2014) which is built around the match-action table abstraction.

Tables perform actions associated with a set of conditions that the packet satisfies. Each

match-action table is in essence a list of if-else statements that look only to the packet

headers, with the only kind of persistent state being kept in SRAM registers and control-

plane-driven tables that the program flow can interact with. We will now briefly discuss

the language limitations and hardware limitations that the PDP architecture places on

network programs.

Unlike other more traditional languages, P4 does not allow loops, floating point

arithmetic, or pointer-based indirection. Additionally, current programmable data plane

hardware (INTEL, 2022) is designed with limited SRAM memory and provides a limit

on the data access (DANG et al., 2017). For example, during one pipeline execution,

each register can only be accessed once while processing a packet and the programmable

pipeline only has a fixed amount of stages and resources usable by each stage. Addition-

ally, pipeline stages, registers, and SRAM need to be shared by all of the modules of a P4

program, compilation of a P4 program will fail if any of the resources exceed hardware

limits (DANG et al., 2017). This means that telemetry should be optimized and effective,

so as to justify its resource consumption. Attempts to bypass the data-access limitation

or stage limitation generally revolve around packet recirculation (e.g., running the packet

through the pipeline again to be able to do more processing or accessing registers twice).

However, recirculation comes with its own set of problems, such as recirculated packets

limiting overall bandwidth (SONCHACK et al., 2021), possibly pressurizing queues and

creating congestion or packet drops. For this reason, the use of recirculation is generally

limited.

Finally, we mention that while PDPs offer several limitations, there have also

been improvements over the state of the art of network switches. Of specific interest to

this work is the more powerful PCI-based CPU port that allows the ASIC and the switch
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Figure 2.1: PDP Telemetry Design Points
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CPU to send packets to one another. This CPU port has more throughput than those found

in previous fixed-function switches (SONCHACK et al., 2018) and can accommodate a

wide range of telemetry tasks. We note, however, that the CPU port throughput (at most

32 Gbps) is still not powerful enough to sample 100% of the aggregated traffic of the pro-

grammable switch (e.g., 3.2 or 6.4 Tbps). This limitation as well as the other limitations

mentioned in this section severely impact the design space of telemetry solutions.

2.2 PDP Telemetry

Today, there are three key design points for scalable network telemetry: (INT-

style) appending data to the packets, (retrospection) storing data locally for analysis, (mir-

ror) exporting packet headers to a third-party entity for analysis. Below we highlight the

limitations of each design point.

• INT-style (Fig. 2.1a): Perhaps the most famous is to append the required data to

the packet (KIM et al., 2015; BASAT et al., 2020a; JEYAKUMAR et al., 2014a;

HANDIGOL et al., 2014). Unfortunately, existing techniques are extremely limited

in the calculations that can be performed on the device to determine which data can

be exported and also limited in the post-processing that can be done to limit data

export. Furthermore, while existing techniques vary in flexibility concerning the

amount of data exported and the conditions for exporting such data, when used for

proactive diagnosis they export a significant amount of data. For example, tradi-

tional INT only allows exporting program states and variables without restricting
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export, whereas TPP (JEYAKUMAR et al., 2014a) allows for some restrictions.

Both are still limited to simple program state or switch state.

• Packet Mirror (Fig. 2.1b): An interesting set of techniques (GUPTA et al., 2018;

YU et al., 2019; LI et al., 2019) mirror packet headers to a central location for

diagnosis. The central location, in turn, uses packet headers to reconstruct switch

state and protocol behavior. Unfortunately, as others (KANNAN et al., 2021) have

observed, such works capture only the packet headers and are generally unable to

capture switch-internal runtime state where valuable information for INC debug-

ging can be found (e.g., register state observed, table rules hit, match-action units

used, hash functions applied).

• Retrospection (Fig. 2.1c): At the opposite end of the spectrum, recent work (KAN-

NAN et al., 2021; WANG et al., 2020b) has demonstrated that programmable

switches can store, on switch SRAM, up to approximately O(10) seconds worth

of diagnostic data, a sufficient amount for most network diagnostic tasks.

However, storing observability data significantly increases the storage requirements

since, by default, aggregation is not as easy to perform on request data as it is on

packet data. Network telemetry queries are accustomed to working with aggregated

per-flow statistics, abstracting information about individual packets. This is not triv-

ially done for compute-centric queries, which may depend on data about individual

requests. Largely due to this reason, our measurement shows that while network

telemetry tasks can store up to O(10) seconds worth of observability data (with

per-flow aggregation (KANNAN et al., 2021)), we can only store O(1) millisec-

ond of unaggregated, per-request data (under a 10MPPS workload using a 1MB

SRAM buffer to store only timestamps and identifiers) — a significant decrease in

the capacity of retrospection.

2.3 In-Network Compute Functions

Programmable Networks offer the possibility of deploying the switch code as a

soft solution (i.e., not etched in silicon). This allows vendors of programmable switches to

sell blank programmable hardware and let users customize the behavior of this hardware.
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In-network compute functions (INCs1) are network programs to perform computation

inside the network, generally to offload applications running on x86 servers.

INCs allows for a new dimension of optimizations that goes beyond simply adding

more raw hardware horsepower to x86 applications. Essentially, scalability in the real

world was many times a problem which operators and system designers could buy them-

selves out of by adding more powerful CPUs and CPU cores. With the end of Moore’s

law (Theis; Wong, 2017), the need arose to explore alternative methods for accelerat-

ing applications. Offloading computation to INCs has recently (and timely) emerged as

a promising post-Moore alternative to improve performance. A vast range of problems

have been shown to be offloadable into the network, we now list the highly recurring ones

below, as well as describe some of the underlying hardware mechanisms that make PDPs

advantageous in solving these problems.

• Caching: This category uses the in-switch memory of programmable switches to

store key-value pairs (JIN et al., 2017; YU et al., 2020; JIN et al., 2018). A common

technique is to use the top-of-rack switch as a cache and leverage its advantageous

position in order to intercept lookup requests and answer them even before they

reach the x86 servers to which they were destined. A significant limitation of this

class of work is the memory limitation imposed by programmable switches. How-

ever, it has been shown that an in-network cache can bring significant improvements

to highly skewed workloads – where a few keys are highly popular and account for

most of the requests. This workload distribution allows systems such as NetCache

to cache these highly popular keys and respond to them at line rate, completely

bypassing the server and therefore avoiding the x86 lookup cost.

• Data Aggregation: This class of techniques performs in-network data aggregation

for higher scalability (SAPIO et al., 2017; LAO et al., 2021); Essentially, systems

such as DAIET (SAPIO et al., 2017) or ATP (LAO et al., 2021) will take advantage

of highly-connected network switches in the topology and use them as a distributed

network of aggregators — instead of all hosts needing to communicate their results

to an aggregator entity (N-to-1, possibly a bottleneck), the hosts will communicate

their results to intermediary switches which will aggregate results and forward only

the aggregates. This technique can be effective in increasing throughput of impor-

1“In-Network Computation” (INC) is a broad paradigm which has recently gained momentum along
with programmable data planes. In this work we denote the network programs which carry out computation
inside the network as In-Network Compute functions, and we use the same acronym – INC – for brevity.
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tant and commonly run jobs such as distributed neural network training (LAO et al.,

2021).

• Scheduling: Several research efforts have leveraged programmable switches to

schedule requests between servers (TIRMAZI et al., 2019b; ZHU et al., 2020; LI

et al., 2020). These works build upon the concept of load balancing and will con-

sider important server-level aspects such as CPU usage to make informed decisions

about how to schedule incoming requests. The advantage of PDPs is to be able to

do this at line rate for billions of packets per second and to be able to use arbitrary

information in order to load balance (as opposed to network-level middlebox load

balancers, which focus on network-level information).

Other less prevalent problems which have been shown to be feasibly offloadable

are Machine Learning (SANVITO; SIRACUSANO; BIFULCO, 2018; XIONG; ZIL-

BERMAN, 2019) and Pattern Matching (JEPSEN et al., 2019).

2.4 Distributed Tracing

Distributed tracers aggregate information across different hosts involved in the

processing of a single request. To enable distributed tracing, developers must instrument,

with annotations, their programs to store relevant context information (for example, in

user-defined “baggages” (MACE; FONSECA, 2018)). At run time, the instrumentation

captures context data, in atoms called “spans”, and exports to a centralized collector. The

collector merges spans that belong to the same TraceID and finally reconstructs a trace,

which is then stored in a database or filesystem. Essentially, the reconstructed trace is a

directed acyclic graph, or DAG, that contains the spans generated in response to process-

ing a request, illustrating the flow of control across different processes. Postprocessing

happens by querying the database for existing traces and processing the query results.

Below we discuss a list of common tracing use-cases. Abstractly, traces are ei-

ther analyzed in isolation or in conjunction with a group of traces. When a trace is an-

alyzed in isolation the key objective is to determine if the trace includes well-known

“anti-patterns”2. The more interesting scenario occurs when a trace is compared against

a group. Here the goal is to either detect anomalous behavior, or to understand the collec-

tive resource utilization of the group. Below we elaborate on the most common diagnosis

2Patterns that occur in high correlation with undesirable outcomes.
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Figure 2.2: D.T. Use Cases

(A) (B) (C)

Source: The Authors (2022)

use cases (KALDOR et al., 2017; SAMBASIVAN et al., 2016).

Distributed Profiling. To detect slow nodes or functions, traces with unusually

long delays are generally worth investigating. To do this, traces are aggregated into a

call graph (gray node Figure 2.2(a)) and annotated with the distribution of latency for the

different calls. Problems are detected when a call in a new trace (Figure 2.2(b)) includes

latency at the tail of the distributions.

Anomaly Detection. A request may be routed through different applications

based on runtime decisions (e.g., request type or data access patterns), and identifying

unusual workflows is necessary. This is similar to distributed profiling, however, the anal-

ysis focuses on the flow of execution itself. Here an anomaly is a trace (Figure 2.2(c))

that includes an unusual call (triangle node in Figure 2.2(c)): either a call that does not

exist in the trace graph or a call that appears in the trace graph with low probability.

Resource Attribution. Some workflows may take a larger toll on the network

than others, and we may need to determine resources used by a collection of workflows.

We need to analyze a group of traces (Figure 2.2(a)) belonging to a tenant or an application

to determine the resources used by either the tenant or the application.
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3 FLEXIBLE IN-NETWORK DISTRIBUTED TRACING — FOXHOUND

Foxhound is our framework for flexibly implementing server-grade observability

queries in the data plane. We begin this chapter by presenting the motivating insights

behind Foxhound. Essentially, we wish to show the reader that INCs can fail just as x86

applications and that – unlike x86 applications – diagnosing INC failures is still a vastly

unexplored challenge.

Afterward, we will elaborate on the two main components which Foxhound in-

troduces to tackle this challenge, namely (i) our optimized storage layer – which seeks

to efficiently record and expose switch-internal data – and (ii), our query language –

oriented towards flexibility while also allowing users to optimize their queries and the

storage layer. We finalize with our evaluation of Foxhound and important discussions.

3.1 Motivation

We motivate Foxhound by presenting a case study of specific INC failures, how

they could be tackled in a similar vein by using traditional x86 observability, and how

traditional network telemetry fails to tackle these problems.

3.1.1 INC Case Study – NetCache

To motivate the need for tracing, we describe a case study around the NetCache

INC (JIN et al., 2017). In NetCache, key-value pairs are stored at ToR switches. These

ToR switches identify the most frequent keys being queried and cache them. When Net-

Cache sees a get request, the key can either “hit” the cache, in which case the switch itself

will answer the request and the packet will be returned to the client with the relevant key-

value, or “miss” the cache. For misses, two events happen, (i) NetCache does a fallback

lookup, sending the packet to an x86 server that has the key and will reply to the request

instead, and (ii) if the missing key is identified as hot, NetCache sends a cache request to

its control program (running locally at the switch’s x86 CPU). The control program then

updates NetCache, caching the detected key.

Consider a DevOp who wishes to introspect on a storage microservice which is

being accelerated by NetCache (Fig. 4.1). When NetCache is deployed, a significant
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Figure 3.1: Gantt Diagram of NetCache Operations
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Source: The Authors (2022)

part of lookups will happen in-network where there is no visibility other than the usual,

network-centric telemetry. As we will show, network-centric telemetry systems cannot

provide the level of visibility needed for troubleshooting NetCache and, more generally,

INCs. We identify some of these situations:

Latency Problems. A common high level performance indicator is latency. Specif-

ically for NetCache, there will be two latency profiles (Fig. 4.1), one for hits (i.e., fast,

when the switch answers the query directly) and one for misses (i.e., slow, when the

switch needs to perform a fallback lookup at an x86 server). Skewed latency distributions

can indicate a stale cache in which the currently cached keys are not relevant, leading

to lower hit-ratio and a higher need for slower fallback lookups. This kind of diagno-

sis is impractical in network-centric telemetry, given it requires end-to-end RPC latency

information from both servers and switches.

Component Failure. If NetCache’s x86 control program fails, NetCache will still

be performing correctly, but its x86 counterpart will not. This becomes clear once we

look at the DAG of a group of executions and see that some of them have missing edges

responsible for updating the cache. Without application-specific information about the

chains of operations happening in the devices, this error is hard to localize.

Misconfiguration. INCs such as NetCache can be misconfigured in many ways,

such as the count-min sketches for identifying heavy-hitting key-value pairs being too

small and producing false positives. In this case, the DAG of executions will start showing

unreasonable invocation counts for an edge that was previously rare. Again, network-

telemetry has critical limitations for doing this kind of analyses.
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Takeaway: Compute-specific problems, which are widely studied by x86 observ-

ability efforts (SAMBASIVAN et al., 2011; GUO et al., 2020b), are still unexplored in the

context of PDPs and INCs. Network-centric telemetry systems tend to ignore application-

specific data and semantics of INCs, which are fundamental for problem localization and

diagnosis.

3.1.2 The Many Forms of Tracing Data

Recent publications (SAMBASIVAN et al., 2016) and presentations at industry

conferences (YAKIMOV, 2019; SHKURO, 2019) have shed some light on how dis-

tributed tracing data is currently being used in the wild at large scale production infras-

tructure. Below we discuss a list of the more common formats and use-cases (KALDOR

et al., 2017; SAMBASIVAN et al., 2016).

Aggregate-based: With aggregation, one can reason about several traces at once (ANAND

et al., 2020; SAMBASIVAN et al., 2011), differently from the classical "single-trace

view". Aggregates generally can be used as indicators of normalcy (e.g., hit-ratio of a

cache or latency distribution of a lookup).

Span-Based: Traces do not need to be span-complete to be useful. Sometimes upfront

sampling decisions could leave important spans untraced. In identifying a run-time con-

dition of interest (e.g., operation with latency above the 99th percentile), capturing even

a single span can be useful, for example, to identify the source and destination addresses

involved and try to isolate the offending component.

E2E-based: Classic distributed traces (SIGELMAN et al., 2010; JAEGER, 2020) which

capture the entire “life” of a request. E2E traces make no compromise on data-richness

and coverage (beyond sampling), which makes them the most heavyweight, but also the

most versatile approach. Through post-processing, E2E traces can be useful for all other

tasks, such as aggregation, anomalous trace detection, and resource attribution.

3.1.3 Limitations of Current Telemetry

In-network compute creates a need for compute-centric observability inside the

network (BENSON, 2019). Developer-Operators (DevOps) today need cross-layer vis-

ibility (e.g., Section 3.1.2) to diagnose distributed architectures. However, most of the
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compute-specific aspects of INCs are ignored by current network-centric telemetry sys-

tems. Furthermore, INCs are always deployed in the context of a distributed system

comprised of x86 servers and network switches. Thus, we have a need to localize errors

within the infrastructure, which makes device-centric debugging and switch-local teleme-

try insufficient. While several telemetry solutions were designed for programmable net-

works (NARAYANA et al., 2017a; GUPTA et al., 2018; SONCHACK et al., 2018; SON-

CHACK et al., 2018; SULTANA et al., 2017; KIM et al., 2015; WANG et al., 2020a;

WANG et al., 2020b), the end-to-end aspect for analyzing computation is still missing.

The main workflow of network telemetry remains unchanged: to analyze what comes in

and what goes out of each switch. In-network compute forces us to shift perspective when

introspecting on the network: we must correlate events happening in-between packets in

and out, throughout the infrastructure.

Current Shortcomings: Recent works have presented several different ways

of introspecting on programmable switches. However, none of these efforts efficiently

combines the diagnosis classes (Section 3.1.2) necessary to holistically debug a network

armed with in-network compute. These works either (i) are not able to match traces from

switches to their respective server executions (NARAYANA et al., 2017a; GUPTA et al.,

2018), (ii) will only export aggregated records, generally optimized to network-centric

measurements and data structures (SONCHACK et al., 2018; WANG et al., 2020b). Con-

versely, some works will disallow aggregates and optimized data structures, only operate

with heavy measurements, creating high overheads (SULTANA et al., 2017; KIM et al.,

2015).

General issues with the more network-centric works include inability to reach into

internal states from switch variables. Essentially, they only look at the packet ins and

outs, while neglecting the computation in-between (NARAYANA et al., 2017a; GUPTA

et al., 2018; SONCHACK et al., 2018). Finally, most works will not instrument arbitrary

source codes (incurring in an error-prone manual merging of INC code and observability

code).

3.1.4 Challenges of Extending Traditional Distributed Tracing

There are a few common ways to export data from switches. The fundamental

challenge lies in the restrictions placed by the PDP-ecosystem as it is physically limited

in storage resources and practically limited in the amount of telemetry data we can gener-



30

ate. Techniques such as INT (KIM et al., 2015) can achieve high throughput for exporting

tracing data, however, they utilize a high percentage of the total bandwidth and will de-

crease the INC’s performance. Foxhound argues for using switch memory as temporary

storage, and optimizes the export of traces through the CPU link of switches.

Programmable switches have their x86 CPUs (control plane) interconnected to

their switching ASIC (data plane). This interconnect is given through a PCI interface,

which offers a low-throughput link that can be used to not significantly impact switch

performance. Specifically, this link can be used to export telemetry data directly out of

the data plane and into the switch’s x86 CPU which avoids overusing high throughput

links of switches, possibly over many hops (SONCHACK et al., 2018).

3.2 Foxhound Design

We introduce the workflow of Foxhound (Section 3.2.1).

3.2.1 Workflow

We explain our workflow with an end-to-end running example (and the corre-

sponding (steps) in Figure 3.2). Consider a DevOp who wishes to introspect on a key-

value store microservice which is being accelerated by NetCache (JIN et al., 2017).

Query Setup. Initially, INCs such as NetCache have their code annotated to in-

dicate variables of potential interest (0). Next, a DevOp will write the desired query to

Foxhound (1), which then generates and loads an optimized instrumentation to data plane

switches based on previously annotated code (2). Next, whenever a client tries to send a

query packet to NetCache, a shim layer at the client (now made aware of the new query

(3)), will tag outbound packets with an RPCID and create a stub span at the x86 trace.

RPC Tracing. The tagged packet then proceeds into the network, where it may

go through one or more INCs (5). Upon triggering an INC, the instrumented switches will

store, at the switch ASIC, the state of annotated variables along with the RPCID of the

tagged packet (6).

Trace Export. Finally, the switch CPU continuously captures the data-plane resi-

dent information and exports it in the form of PDP spans to the Foxhound framework (7).

The stub spans previously inserted at the x86 traces will be filled out by matching RPCIDs
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Figure 3.2: Foxhound Workflow




DevOp

Raw Trace

Storage

Query

PDP

Developer

iCF.p4

Compiler

Shim LayerShim Layer

Query Setup

Trace Data

Packets

Framework

Instrumented

Data Plane Switches


JaegerJaeger

Cross
Layer

Integrator

Source: The Authors (2022)

and infusing the x86 trace with information from Foxhound’s PDP spans (8). Finally, a

holistic, cross-plane trace is made available to the DevOp via usual tracing interfaces (e.g.,

Jaeger) (9).

3.3 Foxhound Architecture

Next we provide a brief overview of the main components in Foxhound, as well

as design choices we made.

3.3.1 Shim Layer

Foxhound needs shim layers to run on the application servers for tagging RPC

invocations which should trigger PDP tracing, as well as explicitly creating stub spans

on server traces, which denotes where to put information from PDP spans during the

end-to-end merge.

Tags. In essence, the trace instrumentation on each switch uses the tags to deter-
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Table 3.1: Annotation primitives

Annotation Description
@Store(Var) Stores Var locally at the switch
@Sketch(Var, Args) Uses a sketch for optimized storage

Source: The Authors (2022)

mine if and how they should store data by pattern matching on the QueryID of the RPC

packet. Query IDs are assigned to RPCs by the shim layer based on a set of user-queried

conditions observed at runtime.

3.3.2 Instrumented Switches

Switches run the instrumentation created by the query compiler. Additionally, we

use the x86 CPU present in switches to export data.

Annotations. In distributed tracing, programs are either manually (CHOW et al.,

2014; KALDOR et al., 2017) or automatically (MACE; ROELKE; FONSECA, 2015)

annotated. In INC-networks, we anticipate that INC code will be manually annotated.

Fortunately, today’s PDP programs are manually annotated for verification reasons (LIU

et al., 2018; FREIRE et al., 2018) and we believe we can piggyback on these efforts: we

argue that in addition to creating verification-oriented annotations, the developers should

add annotations for tracing.

Foxhound’s annotations (Table 4.3) provide hints as to how the data should be

stored. Specifically, data can be stored as-is using the @Store annotation, which directly

correlates to an RPCID, useful for single span and end-to-end diagnoses (Section 3.1.2);

or summarized and aggregated within specialized data structures—@Sketch, useful for

aggregate-based diagnosis, where individual RPCID information is not needed and is lost

during aggregation. Annotated examples can be found later in Section 3.6.

Storage Layer. Our storage layer is responsible for (i) Efficiently storing data

for which we provide two primitives, the TraceStore and TraceStats, which build upon

each annotation. (2) Efficiently addressing hardware limitations of the PCI-CPU interface

is physically limited and can only export a subset (max 32Gbps) of full line rate (e.g.,

3.2Tbps), which we do by intelligently scheduling data transfers from ASIC to CPU and

effective rate limiting which data is stored. The idea is that we cannot circumvent the
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hardware limitations on exports without abusing in-network links, we prefer to allow

users to dynamically prioritize queries and arbitrarily partition the CPU-link between the

queries.

3.3.3 Foxhound Framework

Implements the query compiler that optimally configures Foxhound with infor-

mation extracted from the queries. The compiler can configure sketch structures (as per

user annotations, Section 3.4) and post-processing can be partitioned and pushed into

PDP devices (as per user queries Section 3.5) for more efficiency. It also comprises the

cross-layer integrator, where trace data obtained from the switch CPU of PDP devices is

collected and merged into trace data from x86 servers.

Trace Query Language. The goal of our query language is to provide a high-

level interface for capturing operator tracing policies, an interface that is expressive for the

general case while also simultaneously capturing the subtle details required by Foxhound

to optimize for efficiency, performance, and accuracy. Our query language builds on a

well accepted tracing language for expressing tracing requirements: Baggage (MACE;

FONSECA, 2018). In particular, while baggage traditionally captures the data to collect

and causally correlate, we extend it to also capture the operator’s intended processing

and analysis requirements (written as procedures which operate on the annotated vari-

ables). Describing the processing and analysis requirements is the lynch-pin in minimiz-

ing storage overheads as this allows us to either restrict what we store (using early filtering

primitives at the ASIC) or in ideal situations to only store summaries of the collected in-

formation (using @Sketch annotations).

Query Compiler & Cross-Plane Integrator. Once the annotated source codes

and DevOp queries are submitted to Foxhound, the query compiler will generate an in-

strumented version of the annotated P4 code to be loaded on the switches. The instru-

mentation includes code to capture the state of variables at their annotated points in the

code, as well as domain-specific query optimizations, and the instantiation of our storage

layer. Finally, after the instrumented source code is loaded, query setup is complete and

control passes to the query engine. The main objective of the cross-plane integrator is

merging PDP traces into server traces, finalizing post-processing, and exporting the inte-

grated traces to a traditional trace storage backend (such as the Jaeger collector) where

DevOps can access the cross-plane traces.
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3.4 Storage Layer

We discuss the intuition behind our storage layer (Section 3.4.1), detail the layer’s

abstractions (Section 3.4.2), and describe its scheduling algorithms (Section 3.4.3).

3.4.1 Storage Intuition

Intuitively, the different use-cases for tracing (§ 3.1.2) require different type of

data. Specifically, aggregate-based tracing enables aggregated data (SONCHACK et al.,

2018; GUPTA et al., 2018; NARAYANA et al., 2017a) while span-based and E2E-based

require raw switch state (SULTANA et al., 2017). These two approaches explore different

points in the design of diagnostic systems with the former enabling scalable diagnosis but

sacrificing precision, while the latter enables precise packet level diagnosis, it suffers

from scalability limitations. Foxhound aims to support both extremes while providing the

developers with a query language to control these trade-offs. By explicitly designing for

trace-specific usecases, Foxhound improves storage efficiency and by tailoring storage, at

runtime, to queries, Foxhound maximizes storage use.

3.4.2 Storage Abstractions

Our storage layer exposes two different primitives:

TraceStore. TraceStore maintains raw trace data and acts as an append-only log

for storing spans from tagged invocations (which are the RPCID from the tag, and the

state from relevant annotations). Traditionally, storing raw data is unscalable. However,

the sole goal of the TraceStore is not to store an arbitrarily large amount of trace data but

to capture sufficient trace data to enable optimizations that batch and transfers the data to

the CPU.

Implementation: Programmable switches provide two main storage hardware: ta-

bles and registers. Tables are unfortunately too slow to update at line rate, and thus we

design TraceStats atop the register array hardware structure. We implement Foxhound’s

TraceStore using a circular buffer. The logical representation of TraceStore is shown

in Fig. 3.3. Specifically, we instantiate an N-slot circular buffer for each annotation and

one for storing RPCIDs. However, we will also want to replicate these register arrays
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Figure 3.3: Pipeline Piggybacking.
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throughout the pipeline stages in order to be able to batch spans (explained further into

the section).

TraceStats. TraceStats consist of a set of sketch data structures for effectively

capturing device-local histograms and distributions. These structures are instantiated on

demand according to Sketch annotations within the code.

Implementation: Significant work exists on instantiating sketches on PDPs (LIU

et al., 2016; ZHANG et al., 2021; LIU et al., 2019b). Foxhound’s TraceStats builds on

this rich literature of work. While prior work generally focus on create general sketches,

Foxhound tailors and codesigns TraceStat’s sketches to the specific type of data being

captured and the query primitive being applied on the data. In Table 3.2, we provide a

non-exhaustive list of these structures and highlight example procedures that they map

to. The hardware structures, e.g., sketches, are co-designed with the query language’s

procedures, with the access methods for each structure being defined on the procedures.

One could extend the structures of Foxhound by implementing a hardware sketch (in P4)

and a procedure with the necessary access methodology. In short, we support hardware

structures that effectively aggregate data required for coarse grained analyses (overall

network and INC health indicators).

3.4.3 Scheduling and Rate Limiting Algorithms

Foxhound-instrumented switches need to have a pipeline scheduling algorithm to

coordinate the export strategy as well as rate limit queries.
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Table 3.2: TraceStats Sketches

Sketch Example
Procedure

Input
Args

Memory

Array ControlDstr. Width Width
Histogram LatencyDstr. BinSz,Max Max*BinSz−1

Matrix Attribution #Rows,#Cols #Rows∗#Cols
EWMA MovingAverage n n

Source: The Authors (2022)

Figure 3.4: Rate Limiting.
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PCI Scheduling. Naively, exporting individual register arrays results in signifi-

cant under utilization of an already limited resource (i.e., the switch’s CPU-link (SON-

CHACK et al., 2018)). A more common approach is to have the switch generate a packet

which is then recirculated through the ASIC multiple times – each time the packet recircu-

lates multiple arrays are appended to the packet. This approach improves the throughput

of the switch CPU-link however, the act of recirculating reduces the throughput for traffic

being forwarded by the switch.

Motivated by these short comings, Foxhound’s explore a different point in the

design space inspired by StarFlow (SONCHACK et al., 2018). The idea is to carefully

select the stateful registers used to instantiate the TraceStore within the switch’s pipeline

in a way that spans can be batched in a "once-through" fashion (Fig. 3.3). Whenever a

packet is received, concurrently to that packet’s original processing path, Foxhound will

read spans from the buffer area and batch them. These batches of spans will piggyback

on the ordinary packets up until the end of the pipeline, where the batched spans will be

cloned, the batch is sent to the CPU and the original packet is transparently forwarded.

PCI Rate Limiting. Exporting data with the PCI takes much more time than it

takes for the TraeStore’s log to fill up. To ensure that Foxhound only attempts to export
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data when the PCI is available for exporting, we introduce a cooldown period (Figure 3.4)

which ensures that there exists a minimal time gap of length d between two PCI exports.

Gaps smaller than d are forcefully dropped. By only allowing exports with gap greater

than d, we (i) keep the CPU link close to its actual limit and do not overuse the packet

replication engine, (ii) keep the queue of the CPU-link relatively free. While the former

allows us to be more efficient, the latter powers our mechanism for rate-limiting and

prioritizing queries and attempting to fulfill sampling guarantees.

To enable this “cooldown” period, we leverage a unique and rarely used hardware

resource: the queue of the CPU port. Essentially, we rate limit packets by storing packets

in the CPU port queue according to priority.

Algorithm 1 PIPELINESCHEDULING(PKTIN)
1: if not OnCooldown() or PriorityExport(PktIN.Query) then
2: Export=True //Free to Export
3: else
4: Export=False // On Cooldown, save span to memory
5: end if
6: if not Export then
7: RegPtr← (RegPtr+1)%BatchSize
8: Regs[RegPtr][WriteIDX]← PktIN.span
9: if RegPtr == 0 then
10: WriteIDX← (WriteIDX + 1) % BufferSize //Wrote 1 complete batch
11: end if
12: end if
13: if Export then
14: ExportHdrs← ExportHdrs + PktIN.span
15: for i=0; i < BatchSize; i++ do
16: ExportHdrs← ExportHdrs + Reg[i][WriteIDX - 1] // Get last full batch
17: end for
18: LastReg[0]← LastReg[0]-(BatchSize+1)
19: CloneToCPU()
20: end if

Implementation Details: Algorithm 1 showcases our pipeline scheduling strategy

for the data plane. The algorithm brings two main concepts, batching and rate limiting

the exported traces in order to enforce Foxhound’s prioritized sampling rates. In Line 1,

Cooldown is discovered by saving the timestamp of the last export and comparing to the

current timestamp to see if a minimum amount of time has passed. Whenever exports

are allowed, Foxhound will opportunistically piggyback a single batch of spans together

with the packet being exported (Line 13–20). This is done by concatenating the current

packet’s span (Line 14) with previously recorded spans from the other buffer instances

(lines 15–17). Contrarily, if the storage layer is on cooldown (Line 4), Foxhound will

commit the span to memory. Lines 6 to 11 do basic bookkeeping to store spans among N

(the predefined batch size) circular buffers.
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3.5 Query Language

In this section, we present an overview of our query language (Section 3.5.1), a

detailed description of its constructs (Section 3.5.2), and our strategy for partitioning the

trace computation within the infrastructure (Section 3.5.3).

3.5.1 Query Language Overview

Our aim in designing our query language is to make it simple to express diagno-

sis tasks traditionally applied to distributed tracing while hiding crucial hardware details.

These diagnosis tasks generally focus on collecting data, e.g., latency or error conditions,

for a specific subset of the infrastructure, e.g., applications or tenants, under certain con-

ditions, e.g., high load. To extract insights, diagnosis data is post-processed. Lastly, to

scale, certain queries are sampled.

In designing our query language, we take inspiration from SQL – a query language

currently used by DevOps to analyze existing diagnosis data1. We note that, unlike other

PDP query languages, the body of queries will specify DevOps-relevant parameters, with

the low-level processing needs defined on postprocesses which DevOps can invoke as

black boxes. The grammar for our query language is described in Figure 3.5. At a high

level, the language allows DevOps to select: what data they are interested in collecting;

from which services this data should be collected; in which conditions should this data be

collected; and how should this data be sampled. Table 3.3 summarizes the constructs.

Table 3.3: Foxhound Query Language Constructs

Construct Description
SELECT(What) Specifies postprocessing for the trace
FROM(Selection) Defines to which entities the trace applies
WHERE(Cdtn) Describes preconditions for tracing
SAMPLEBY(SampleType) States the sampling parameters of the trace
FILTER(Args) Allows early filtering of trace data

Source: The Authors (2022)

1Diagnostic data is often stored in Cassanda, MySQL, Redis.
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Figure 3.5: Foxhound query syntax

〈Query〉 ::= SELECT 〈What〉 FROM 〈Selection〉
WHERE 〈Cdtn〉 SAMPLEBY 〈SampleRate〉
FILTER 〈FilterOp〉

〈What〉 ::= procedure(args)

〈Selection〉 ::= 〈appID, incID, srcID, dstID〉

〈Cdtn〉 ::= 〈Cdtn〉 〈Op〉 〈Cdtn〉
| 〈ContextOp〉

〈SampleRate〉 ::=p, lowerBound

〈FilterOp〉 ::= (annotated_var,〈Op〉,value)

〈ContextOp〉 ::= context[key] 〈Op〉 value

〈Op〉 ::= ≤ | ≥ | == | !=

Source: The Authors (2022)

3.5.2 Query Language Constructs

We now describe the clauses as well as highlight important design nuances we

imbued in the language.

SELECT: Much like the SQL statement, SELECT specifies the trace data to col-

lect. This is done by either (i) directly specifying the low-level annotated variables to

be traced and/or (ii) specifying high-level procedures (either built-in or user-defined) that

will perform some form of post processing to the traced variables.

FROM: The goal of the FROM clause is to define the entities or predicates from

which the trace data is collected. Entities are expressed as a tuple of appID, INCID,

srcID, dstID. The elements of this tuple represent, respectively, a high level application

(which invokes INCs), a target INC, a source and a destination. Programmers can assign

wildcard values to any of the elements of the tuple.

WHERE: The WHERE statement allows DevOps to specify runtime conditions for a

query. RPCs that satisfy those conditions should be tagged with the appropriate QueryID

by the shim layer. In particular, the WHERE clause supports logical expressions which

involve a context object. Applications can write arbitrary runtime data on the context

object for queries to be able to access. For example, the application can write, at each

RPC, the current USERID to context; Later, DevOps will be able to write a Foxhound

query Q1 for a specific value of USERID. This allows DevOps, for example, to focus on



40

Q1 packets by either not sampling packets for that query or even specifically prioritizing

Q1 packets using Foxhound’s prioritization scheme.

SAMPLEBY: Sampling is instrumental in scaling distributed tracing and monitoring

in general. Our SAMPLEBY construct represents a departure from traditional SQL style

queries. Essentially, usual traces such as Jaeger will make an upfront decision of whether

to trace a request or not based on a sampling rate. One of two jobs of our SAMPLEBY

construct is to negate Jaeger’s decision and, with probability p, not trace the in-network

part of the invocation2. This is because switch throughput may not be enough to fulfill

even the sampled rate mandated by Jaeger to its x86 spans. We argue that DevOps should

not change x86 parameters due to PDP limitations, and this is why Foxhound leaves

Jaeger’s sampling untouched, SAMPLEBY is only for the data plane.

This double sampling may become too aggressive and hurt accuracy. Given that

we cannot circumvent the hardware limitations on exports without abusing in-network

links, we prefer to allow users to dynamically prioritize queries and arbitrarily partition

the low-overhead CPU-link between the queries. Essentially, each query’s SAMPLEBY

takes a second argument lowerBound that parameterizes Foxhound’s mechanism for

query rate-limiting (Section 3.4).

FILTER: The filter construct serves to guide Foxhound’s optimization of queries

by pushing processing down into the programmable ASIC3.

PROCEDURES: Foxhound’s PROCEDURES are functions which allow DevOps to con-

trol and perform post processing on the traced data. This notion of procedures is similar

to “stored procedures” in SQL-based systems — in a similar vein, Foxhound provides

a set of INC-independent built-in procedures (summarized in Table 3.4) and allows De-

vOps to create their own INC-specific procedures. The insights behind the PROCEDURE

construct are many; Removing explicit, low-level processing from queries promotes a

better separation: the query focuses on parameterizing trace behavior while procedures

encapsulate low-level processing; Writing procedures as ordinary programs allows us to

extend all of the functionality of the host language, instead of pre-defining a constrained

set of processing functionalities.

2SAMPLEBY can also override the decision made by the WHERE clause.
3In our current prototype, this filtering is manual and is done with a hard threshold specified by the user.

Alternatively the threshold could be dynamically changed using table rules or stateful registers
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Table 3.4: Built-in Procedures

# Procedure Annotation Primitive Description

Q1 SlowHosts(Percentile) Latency Store Discovers the sources of requests with latency >
Percentile.

Q2 HitRatioAnomaly(Low,High) Hit Store/Sketch Localizes situations where cache hit-ratio was
outside a specific range.

Q3 SpectroScope(Threshold) pkt.op Store Builds an RPC call graph and discovers anoma-
lous edges using (SAMBASIVAN et al., 2011).

Q4 LatencyDistribution() Latency Store/Sketch Aggregates latency into a histogram

Q5 Latency(Threshold) Latency Store Traces events with latency higher than a thresh-
old

Q6 INCTrigger() Flag Store Filters out spans that did not trigger INCs.

Q7 Attribution() - Store/Sketch Maintain per switch port, per-INC invocation
counts

Q8 Visited() - Store/Sketch Marks the switches reached by specified execu-
tions

Q9 ErrCode() ErrCode Store Stores P4-specific Error Codes.

Q10 ErrCodeDist() ErrCode Store/Sketch Calculates per-switch distribution of P4-specific
Error Codes.

Source: The Authors (2022)

3.5.3 Query Partitioning

Foxhound’s optimizations are focused on creating an early reduction in the tracing

dataflow by opportunistically fragmenting postprocessing operations (either aggregation

or filtering) and embedding of a subset of these within the data plane switches, so as to

avoid the switch export bottleneck and ease CPU load. In Foxhound these optimizations

are (i) in-switch span FILTERS and (ii) sketch primitives (in-network data aggregation).

Sketches have their own fixed processing dictated by annotations. But FILTERs are query-

specific.

Filtering Spans We note that partitioning procedures as to where each computa-

tion executes inside the infrastructure (i.e., switch ASIC, switch CPU, or framework) can

yield effective optimizations on the overall flow of data. For example, assume a procedure

that drops spans which do not meet a certain condition. To filter out spans directly at the

ASIC means that (i) unused span will not be exported through the PCI and (ii) neither will

they need to be filtered at the framework. If the condition cannot be expressed in P4, we

could still place the filter on the switch CPU rather than on the framework, which helps

unburdening the latter.
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Figure 3.6: End-to-End Instrumentation

(a) Query

1 SELECT SlowHosts("P99")
2 FROM ("DSB","NetCache" ,*,*)
3 WHERE Context["Time"] < 06:30
4 FILTER("Latency",">", 1ms)

(b) Annotated Source Code

1 #DevOp Annotated NetCache.p4
2 if(pkt.op==WRITE)
3 CacheWrite(pkt.key ,pkt.val);
4 if(pkt.op==READ)
5 if(isCached(pkt.key)) #Hit
6 Hit=1;
7 pkt.val=CacheRead(pkt.key);
8 ipv4.dst = Sender;
9 else #Miss
10 Hit=0;
11 hdr.NC.begin=now();
12 ipv4.dst = Server;
13 if(HotKey(pkt.key))
14 CloneToCPU=True;
15 if(pkt.op== READREPLY)
16 Latency=NOW()-hdr.nc.begin;
17 @Store(Latency)
18 @Store(ipv4.source)
19 @Sketch(Array ,idx=Hit ,+1)
20 @Store(pkt.op)
21
22 Forward(Ipv4.dst);

(c) Instrumented Source Code.

18 if(pkt.op== READREPLY)
19 Latency=NOW()-hdr.nc.begin;
20 #Previously: @Store(Latency)
21 if(Latency > P99_REGISTER [0])
22 RPCID_REG[next]=pkt.RPCID;
23 LATENCY_REG[next]= Latency;

Source: The Authors (2022)
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3.6 End-to-End Foxhound

We now present and end-to-end rundown of Foxhound’s workflow and optimiza-

tions with a complete example.

Compilation and Optimization. Initially, the system is given a query (Fig. 3.6a)

and annotated source code of an INC (Fig. 3.6b). Foxhound’s compiler then creates in-

strumented source code (Fig. 3.6c) to be compiled by P4C, and initialization commands

to be run at switches. The filter operation in our example will modify the instrumentation

of the @Store(Latency) annotation4.

Shim-Layers are informed of all queries and will decide, for each invocation, the

relevant query by evaluating the WHERE condition. In our example, NetCache invocations

from the DSB’s SocialNetwork application occurring before 6:30 AM will be tagged and

assigned to query zero. The absence of SAMPLEBY presumes 100% sampling rate.

Runtime and Cross-Plane Trace Integration. Tagged packets will be run through

our pipeline scheduling algorithm Algorithm 1. The PDP spans which are succesfully ex-

ported will be sent to the framework for merging.

The cross plane integrator finds each x86 span containing RPCID references (server

spans created by the shim-layers point to PDP spans through their RPCID). The integra-

tion is then reduced to de-referencing the PDP pointers and actually hard-coding PDP

spans into the original server spans (PDP spans are disguised as server spans, but iden-

tified as originated from the network). Finally, we leverage Jaeger (JAEGER, 2020) for

exporting the now augmented server spans and making end-to-end, cross-plane traces

available to DevOps.

3.7 Prototype

Compiler: The Foxhound P4-to-P4 translator is written in 1100 lines of Python

Code. We fill the templates by using Python F-strings, which allows our program to run

compiler logic inline with P4 code (similarly to templates of BeauCoup (CHEN et al.,

2020)). All P4 storage layer templates are written in 88 lines of P4-14 and 198 lines of

Python. All of our P4-Tofino compilations used Barefoot SDEs 8.9.1 (legacy, due to the

fact that NetCache was written for an old version of the SDE) and Intel P4 SDE 9.4.0. We

discover Tofino pipeline resource usage by using the P4insight tool from SDE 9.4.0.
4For simplicity, we omit the instrumentation of the sketch annotation that was showcased in the figure
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Shim Layer and Switch CPU agent: The shim layer and switch-CPU agents are

written in a total of 2422 lines of Python Code. To read/write to stateful switch elements,

our switch-CPU agent uses either the PCI-based API of the Tofino ASIC (for a hardware

deployment) or the Thrift API of BMv2 (P4LANG, 2020) (for emulated topologies). For

rate-limiting on our hardware testbed we used tc. For our E2E deployment, we instantiate

the social network microservice of DSB (GAN et al., 2019) using Docker (MERKEL,

2014; DOCKER. . . , ). In all of our deployments we use a 1 second interval between

polling @Sketch annotations (1 poll per second). While this was sufficiently accurate for

our evaluations, early experiments suggest that much higher frequencies are attainable

using the Tofino API (up to 1M polls per second for 10-slot registers).

Query Engine and E2E Integration: For end-to-end tests, we use the Jaeger

collector (JAEGER, 2020) with Badger file-system backend. We leverage Jaeger’s JSON

endpoint for reading x86 traces and writing back the integrated, cross-layer traces with

the added Foxhound spans. For standalone Foxhound experiments, we built a customized

collector.

3.8 Evaluation

Our evaluation of Foxhound is motivated by the following questions: (i) How

well does Foxhound perform relative to state-of-the-art diagnosis systems? What are the

overheads? (§ 3.8.3), and (ii) How do the individual components of Foxhound enhance

its effectiveness and feasibility on current programmable hardware? (§ 3.8.4).

3.8.1 Experiment Setup

We evaluate Foxhound using a combination of large scale emulation to explore

the benefits of Foxhound at a larger scale and a small hardware testbed to understand and

microbenchmark Foxhound’s performance characteristics.

Emulator setup: We use the BMv2 emulator (P4LANG, 2020) to emulate a Fat-

Tree k = 4 topology. We evaluate 3 different queries (Table 3.4). The experiments were

executed on a virtual machine running with 4 cores and 16GB of memory. The clients

and server are located on randomly selected pods to ensure traffic traverses the entire

topology.
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Hardware Testbed Setup: Our hardware testbed comprises 2 servers with 8-core

Intel Core i7-9700 CPU @ 3.00GHz, 16GB RAM, running Ubuntu 18.04 with kernel

version 4.15. The servers are connected through 40Gbps Agilio LX SmartNICs to a

Wedge 100BF-32X 32-port programmable switch powered by a 3.2Tbps Tofino ASIC

and a quad-core Intel D1517 x86 CPU @ 1.6GHz. For NetCache experiments, we use 1

server as the client and the other as the server. Our workload uses the same distribution as

the NetCache paper (JIN et al., 2017), with NetCache requests being mixed with random

background traffic in a 1:1 ratio. This is important because we also want to see the effect

of background traffic on approaches which do not discriminate INC packets from the

background traffic (e.g., INT).

Telemetry Systems. We compare Foxhound against different classes of telemetry

techniques.

Inband Network Telemetry. (e.g., INT, PINT (BASAT et al., 2020b)) which,

contrary to Foxhound, stores network-centric data on packet headers and extracts those

headers at end-hosts for processing. We note that we refer to INT as the real-world so-

lution (INT. . . , ) which uses network switches as INT sources to create headers which

record per-packet network-centric data and then remove those headers and export them

prior to packet delivery (at INT sinks). Each hop collects conventional data such as

SwitchID, timestamps, and egress port. We do not refer to INT as the open specifica-

tion of any in-network system which includes data in-header (which is a fundamental

technique in our own work, and not a competing technique). Finally, we use statistical

outlier detection to detect problems.

Jaeger. Works (JAEGER, 2020; ZIPKIN, 2021; FONSECA et al., 2007) that

collect traces from x86-applications and stores them at a central collector. We instrument

the applications with annotations, e.g., for NetCache we annotate the client and cache

server. We reuse Spectroscope (SAMBASIVAN et al., 2011) localization techniques to

detect problems.

Optimized Foxhound. Whenever possible, we will show alternate versions of a

query implemented with some of Foxhound’s optimizations. In our experiments, these

are the P99 approach for (Q1) and the Sketch approach (Q2).
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3.8.2 Problem Setup

Next, we describe how we inject problems described in Section 3.1.2, the intuition

behind our localization queries, and how the query is implemented by the competing

systems.

3.8.2.1 Q1 – Latency Spikes

Random Latency spikes are injected at the x86 servers responsible for processing

lookups.

Query Rationale: We instantiate Q1 in order to catch the spans with high laten-

cies above the 99th percentile (P99) of the distribution. Entities involved in processing of

these spans are generally responsible for the degradation and we want to localize them.

Instrumentation: High latency spans are usually discovered in x86 tracers by

post-hoc ordering of all spans by ascending latency and filtering out the ones above the

P99 threshold. Foxhound and Jaeger will employ this strategy to profile the fallback

lookup span (which is observed at the switch by Foxhound and at the cache server by

Jaeger). Optimized Foxhound, however, uses a previous estimation of the P99 (from

historic records) to allow the switches to filter out high-latency spans (i.e., at the switch,

only export spans for request with latency above a threshold).

For INT, we will use timestamp and egress port to profile per-port traffic patterns.

We postprocess INT records to discover a per-port packet-count timeseries. We have

found that this instrumentation yields the more consistent and positive results for INT in

our evaluations. We repeat the same instrumentation throughout all 3 queries.

3.8.2.2 Q2 – Cache Degradation

NetCache control program failure leads to a stale cache with irrelevant keys.

Query Rationale: Q2 discovers a per-device timeseries of the hit-ratio metric

common to caches in general. NetCache normally updates itself by caching “trending”

keys to keep the cache relevant and maximize hit-ratio. If the x86 control program of

a NetCache switch fails, it will stop updating and the hit-ratio tends to decline as the

workload changes.

Instrumentation: The unoptimized Foxhound constructs the hit ratio timeseries

by looking at post-hoc span storage and dividing the number of hit spans by the number
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of miss spans over a sliding window. Jaeger can also discover a hit-ratio timeseries en-

tirely from post-hoc traces by dividing #GetSpans−#FallBackSpans
#GetSpans

. The optimized version

uses Foxhound data structures to maintain a device-local hit-ratio sketch, which is con-

tinuously polled to construct the desired timeseries. INT instrumentation is the same as

Q1.

3.8.2.3 Q3 – E2E Microservice Failure

We augment DSB’s social network (GAN et al., 2019) with in-network compute

from NetCache. We then randomly kill components (both x86 servers and switches) from

the infrastructure.

Query Rationale: To diagnose a component failure in large service infrastruc-

tures, Q3 draws inspiration from Spectroscope (SAMBASIVAN et al., 2011) and profiles

the invocation pattern of RPCs inside a large infrastructure (DeathStarBench’s Social Net-

work (GAN et al., 2019)). Let Microservices A and B be nodes and calls between them

be represented as directed edges. Edge A → B has weights proportional to the amount

of times A calls B. Q3 searches for changes in any of the edge weights (e.g., a microser-

vice being called more/less than usual). Ideally, after problem injection there will be a

noticeable change somewhere in the DAG edges.

Instrumentation: Because this is a cross-layer query, it is ideal to unite traces

from both Jaeger and Foxhound to create the full DAG, this approach is called E2E. For

reference purposes, we also run the query with standalone Foxhound and Jaeger. There is

no Foxhound-optimized version of this end-to-end query as it is not trivially optimizable

through hardware filtering or sketching.

Note on Localization. An important distinction must be made about the local-

ization done in Foxhound. In practice, errors in one service will likely propagate to the

calling services. For example, if NetCache fails to answer the microservice that called

it, then that microservice will likely also fail and the entire caller-callee chain will re-

cursively fail. This is called an error propagation (EP) chain (GUO et al., 2020b). For

the purpose of Foxhound, we consider localization to only be successful when a system

localizes the entity in which the initial error (root cause) occurred.

However, while Foxhound focuses on localizing where root causes happened, we

do not perform root cause analysis in this evaluation, as the latter generally entails a

greater level of detail about why the error happened (usually through manual investiga-

tion).
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Figure 3.7: Simulated Localization Accuracy
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3.8.3 Problem Localization Effectiveness

This section presents case studies to explore the accuracy and overheads of prob-

lem localization on a realistic fat tree topology. We ignore hardware limitations and in-

stead simulate an ideal environment in which all the strategies have as much bandwidth

as necessary and no packet losses. This allows us to discover the more efficient strategies

(i.e., higher in accuracy, lower in bandwidth) and to assess effectiveness of Foxhound

optimizations such as hardware filtering and sketching. Due to simulation limitations,

our considered rate of requests per second (O(100) RPS) is not representative of high-

throughput deployments (O(100M) RPS). Realistic RPS and hardware limitations are

discussed in later sections.

Q1 – Localizing Latency Spikes. INT fails completely given that it misattributes

all errors to the switches where INT is running. For this query, the latency degradation

happens exclusively at x86 servers responsible for servicing fallback lookups. Contrarily,

Jaeger and Foxhound were able to localize errors to the x86 server. Jaeger instruments
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the server process directly and is able to easily discover spans with higher latency at

postprocessing.

Foxhound can also diagnose the error. As per Fig. 3.5b, NetCache READREPLY

spans have latency and source information. The former can be used to identify high

latency spans, and the latter will identify the server which processed them.

Finally, our hardware filtering strategy achieved near-perfect accuracy for this sce-

nario (Fig. 3.6a) with lowest overhead (Fig. 3.7a). The slight decrease in accuracy from

Foxhound to P99 is due to the fact that P99 does not export all spans, only the ones above

a predefined threshold. Specifically, while Foxhound discovers the ground truth post-hoc

and is able to accurately pinpoint the high-latency spans, the in-switch filter (P99) is sub-

ject to changes during runtime which may cause spans to miss the P99 threshold and be

lost. This tradeoff, however, is appealing in terms of bandwidth.

This showcases our strategy of up-fronting postprocessing to trim down the data

flow early. By informing our hardware filter with a simple threshold, we can keep tracing

targeted to spans of interest, whereas non-filtered strategies will always export spans,

dramatically increasing necessary bandwidth.

Q2 – Localizing Cache Degradation

Initially, INT managed to capture some of the anomalous behavior induced by

the error. However, the noise from the background traffic ended up hindering the overall

accuracy. In general, application-level changes to an INC are not well reflected in tradi-

tional network-centric metrics. INT and several other works on network telemetry treat

all packets as equal and ignore the semantics of the RPCs.

We created t-INT (targeted-INT) to show that if INT had the ability to discrim-

inate between INC-traffic and non-INC, it could be viable for this specific query as the

packet-counts on switch links would be correlated with hit-ratio (the control problem cre-

ates lower hit-ratio, which increases packets at the fallback lookup links). Regardless,

INT lacks this server-switch coordination and even t-INT is shown to have difficulties

when trying to identify INC problem patterns through completely application-agnostic

measurements.

Conversely, Jaeger and Foxhound managed to successfully localize the cache

degradation. We note that our simulations allow a sampling rate of 100%, which is

impractical and sometimes impossible in hardware (as will be shown in later sections).

As such, this timeseries-driven query can (and should) be implemented more efficiently

by using a Foxhound sketch to perform in-network aggregation. The sketched approach
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achieved the same accuracy while also being independent of the 100% sampling and uti-

lizing negligible, constant bandwidth (whereas the bandwidth of the other strategies will

scale upwards with higher RPS). This result does not argue against the separation of data

generation and processing that is customary to distributed tracing, but rather showcases

that early processing such as aggregation can be used to dramatically improve the effec-

tiveness of some queries.

Q3 – Localizing Microservice Failures

For Q3, INT suffers from the same traffic isolation problem and the fact that it

will always misattribute the errors to switches, even when the error is in x86 services.

Additionally, INT was rarely able to localize even the NetCache errors that happened in

the switch, since the larger infrastructure of DSB contains a wide range of underlying

traffic patterns which generate noise to INT measurements.

As for the compute-centric systems, Jaeger managed to consistently localize x86

errors to their root causes. However, by lack of switch instrumentation, it could not pin-

point in-network problems to the responsible switches. Hence, its accuracy was almost

perfect for problems at the x86, and zero otherwise. Foxhound had the exact opposite be-

havior and managed to localize in-network component failures while completely missing

errors from RPCs that did not go through the NetCache INC (e.g., RPCs between two x86

microservices). Lastly, we introduced a new system (E2E) to show that the end-to-end

traces which merge x86 spans from Jaeger and INC spans from Foxhound managed to

actually localize all types of problems.

3.8.4 Hardware Micro-Benchmarks

This section presents several microbenchmarks of Foxhound in an Intel Tofino-

powered testbed. We showcase the implications of high-RPS tracing and also the benefits

of Foxhound optimizations in that context. We also profile hardware-usage of our in-

switch modules to understand the practicality of Foxhound in real deployments.

3.8.4.1 Tofino Pipeline Resource Consumption

Table 3.5 shows the resources needed by different configurations of Foxhound and

its storage layer. We instrument Foxhound on top of NetCache which serves as the base-
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Figure 3.9: Tofino Microbenchmarks
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Table 3.5: Tofino Pipeline Resource Occupancy

Version/Resource SRAM SALU STAGES VLIW P4 LoC
NetCache (NC) 25.1% 41.7% 7/12 4.9% 1646
NC + Pipeline Scheduling 25.7% 47.9% 8/12 6.3% 1810
NC + Sched + Batching (x2) 29.1% 54.2% 12/12 7.8% 1940
NC + Sched + Filtering (Q1) 25.9% 50.0% 7/12 5.5% 1849
NC + Sched + Sketching (Q2) 25.9% 50.0% 8/12 6.3% 1840
NC + All of Above 29.3% 56.3% 12/12 8.1% 1977

Source: The Authors (2022)
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line. Pipeline stages were the most critical resources5. Specifically, we could not com-

pile batching larger than x2 in our P4-14 NetCache codebase due to shortage of pipeline

stages. However, this could be due to compiler inefficiencies of the legacy 8.9.1 compiler,

as we managed to reach higher batching numbers in a newer compiler, albeit not on Net-

Cache. Lastly, the usage of the other hardware resources both on the table (and others

ommited, such as TCAM) was minimal. All circular buffers had 1024 32-bit wide slots

and the Q2 sketch had 256 slots.

Batching and PCI limit. To showcase batching larger than x2, we used a P4-

16 source code on a newer compiler (SDE 9.4.0). Fig. 3.8a shows that the PCI link

bottleneck for Tofino happens at around 800k spans per second and that batching can be

used to increase throughput.

3.8.4.2 Hardware Filtering

Hardware filtering is used to optimize Q1. The unoptimized version of Q1 (Fig. 3.8b)

illustrates the hardware limitations which were hinted at in previous sections. Specifically,

coverage over high latency spans sees a sharp drop after reaching the PCI bottleneck (i.e.,

max RPS at which PCI can do 100% sampling). The probability of blindly catching in-

teresting spans becomes lower at higher throughputs. Hardware filtering, however, allows

for complete coverage over spans with latency above the threshold, keeping bandwidth

low even at higher RPS rates (Fig. 3.8c), by only exporting this reduced set of interesting

spans.

3.8.4.3 Sketching

Sketching is used to optimize Q2. The unoptimized version of Q2 also suffers

from inaccuracies past the PCI bottleneck, as it relies on having a representative set of

spans from which it can discover the hit-ratio metric. At higher throughputs, sampling

becomes much lower than 100% which hinders the accuracy of Q2. Conversely, the

usage of Foxhound’s customizable data structures allows the same hit-ratio query to be

both perfectly accurate and constant in bandwidth, regardless of the RPS.

5In RMT hardware, “usage” of pipeline stages does not stack additively and is dictated by several fac-
tors (SIVARAMAN et al., 2016; JOSE et al., 2015).
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3.8.4.4 Query Prioritization

For the query prioritization experiment, we ran 2M RPS through the switch, out

of which 10k RPS were randomly assigned to a high-priority query. This high priority

query was configured to have 10k high priority exports per second. Fig. 3.8d shows that

with 150 nanoseconds of minimum PCI cooldown, the coverage over high priority spans

was almost total (3x increase against baseline), with a 15% decrease in overall coverage.

In raw numbers, the trade-off was that 120k normal spans were lost in order to capture

almost all 10k high-priority spans.

3.9 Discussion & Limitations

Integration with Existing Technologies. Despite our proof-of-concept being

able to successfully diagnose an end-to-end deployment of an INC-accelerated microser-

vice, we are still subject to limitations of INCs such as incompatibility with TLS en-

cryption6 or TCP7. Those limitations are not specific to INC tracing, but rather to INCs

themselves and are being actively discussed and investigated (STEPHENS et al., 2021).

We also do not evaluate INCs that rely heavily on packet recirculation. Regardless, we

have found Foxhound’s instrumentation scheme generalizes to a considerable range of

INCs as we have preliminarily instrumented both the P4xos and the CrossPod INCs.

General Applicability of Foxhound Principles. While Foxhound focuses on

working around PDP limitation on INC tracing, a few of our insights such as early fil-

tering of spans and data aggregation into sketches could also be used for x86 tracing.

Sketch aggregations can be especially useful for providing device-centric runtime distri-

butions, which have been shown to be a useful aggregation mode for tracing data (MACE;

ROELKE; FONSECA, 2015). Early filtering of spans also has an x86 counterpart which

is tail sampling, where tracers will save a span in case some anomalous condition is met

such as high latency. In this regard, tail sampling is currently implemented with fixed

policies (GRAFANA, 2020) but we believe our query language could be used to specify

and reconfigure these policies.

6Programmable switches are not able to decipher the payload of TLS-encrypted packets. This is why
INCs tend to use clear, unencrypted formats.

7As a general rule, INCs need to parse, for every packet, well-defined application headers in order to
work. However, if an application sent those headers using traditional TCP, there is no guarantee that the INC
header would not be split between different packets, which would make the header extremely impractical
to parse (STEPHENS et al., 2021).
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Bypassing the PCI bottleneck. We could export the batched spans directly to the

framework through the 100G switch links instead of the switch’s PCI-based CPU port.

This alternative can achieve higher tracing coverage over the full line rate, however, it is

also the most costly in terms of network throughput which does not appeal to production

environments. Instead, we argued for and show in our evaluations that the switch’s PCI-

based CPU interface will offer a quick and low-overhead sink for in-network traces which

can be made more targeted and effective through query-specific optimization.
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4 SCALABLE IN-NETWORK DISTRIBUTED TRACING — MIMIR

At its core, Foxhound focused on maximizing query expressiveness and data rich-

ness. During our evaluation of Foxhound, we noticed promising optimizations, namely (i)

keeping statistical distributions as in-network sketches and (ii) using a-priori knowledge

of what is relevant to inform early-on hardware filtering, minimizing export overhead.

These insights form the base of Mimir, a framework that is focused on maximizing scala-

bility of certain high-impact queries which Foxhound could not scale to more demanding

workloads.

We begin this chapter by motivating and recapping the use of aggregation in dis-

tributed tracing and INC offload patterns. Finally, we outline domain-specific insights

which will guide our design of Mimir.

After our motivation, we sketch our vision and the design choices necessary to

accomplish it: offloading large parts of trace processing to the data plane leads to an early

and considerable reduction in the data flow. Mimir essentially wants to limit data flow

by only capturing data summaries. While this limits flexibility (e.g., not all Foxhound

queries can be implemented in Mimir), it will also allow PDP tracing to scale to more

demanding workloads. Lastly, we decompose the architecture and prototype of Mimir

and finalize with its evaluation and discussion of central topics.

4.1 Motivation

In this section, we discuss crucial attributes of distributed tracing (Section 4.1.1),

describe recent efforts to offload distributed applications and the limitations of extending

distributed tracing to them (Section 4.1.2).

4.1.1 Distributed Tracing and Aggregation

Distributed tracing is currently the dominant method for localizing performance

problems in distributed systems. Many hyperscalers (GOOGLE, 2021; ALIBABA, 2021;

GUO et al., 2020a; KALDOR et al., 2017) and startups (PINTEREST, 2022; NETFLIX,

2022; KAMON, 2022) use it to capture structural and temporal properties, which en-

gender a deeper understanding of their distributed systems. This deeper understanding
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Table 4.1: Tracing Adopters

System Company Outlier
Detection

Structural
Aggregation

Temporal
Aggregation

Cloud Trace (GOOGLE, 2021) Google Req./Aggr. −
Tracing-Analysis (ALIBABA, 2021) Alibaba Aggregates −
PinTrace (PINTEREST, 2022) Pinterest − −
JCallGraph (LIU et al., 2019) JD.com Requests −
Jaeger (JAEGER, 2020) Uber −
GMTA (GUO et al., 2020a) Ebay Aggregates
Canopy (KALDOR et al., 2017) Facebook −
Inca (NETFLIX, 2022) Netflix Requests
Kamon Telemetry (KAMON, 2022) Kamon −
Lightstep (LIGHTSTEP, 2022) Lightstep Req./Aggr.

Source: The Authors (2022)

allows for localizing and pinpointing performance problems to specific processes or ser-

vices within their infrastructure. At its core, distributed tracing captures the flow of exe-

cution for a request across the processes that handle the request. Each process generates

data, called spans, when it handles a request: a span captures start and end processing

times. The collection of spans generated by all processes which handle a specific request

is called a trace. Recall from Chapter 2 that a trace is essentially a DAG of spans which

happened during the processing of a request.

To do perform diagnostic activities, traces are often aggregated into “groups”

based on clustering techniques or request type. This aggregation enables operators to

understand how their infrastructure has evolved by analyzing changes in clusters over

time – we call this system-level performance analysis. Alternatively, they use the aggre-

gated information to detect real time performance anomalies by finding individual traces

in a cluster that differ from others (i.e., outliers performance) – we call this request-level

performance analysis. Table 4.1 demonstrates the types of aggregation-based diagnosis

supported by current infrastructures. The key motivating observation of our work is that

aggregation is a dominant method for understanding and diagnosing performance prob-

lems both at the request level and more globally at the system level. Below we elaborate

on two dominant problem diagnosis techniques and discuss how various aggregation ap-

proaches are used.

• Temporal Aggregation-based Diagnosis. allows operators to detect problems due

to resource sharing or interference between different functions running on a node.

These methods focus on inferring the expected number of concurrent requests or

expected resource usage. Anomalies, either too many or too few requests, are con-

sidered indications of problems.
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Figure 4.1: NetCache Operation Diagrams
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• Structural Aggregation-based Diagnosis. detects problems due to application

processing logic (e.g., long processing latencies or incorrect logic). These methods

focus on inferring the expected latencies or expected application behavior (e.g. call

structure). Here also, anomalies, unusually high latency or unexpected behavior are

considered indicative of problems.

While both approaches can be used to diagnose structural or request-level prob-

lemswith unexpected behavior, existing networking techniques (WANG et al., 2020b;

BASAT et al., 2020b; KIM et al., 2015) which excel at only diagnosis queuing problems

or network latency problems fall into the former class (Temporal). Interestingly, for the

latter class which requires introspection into program code and a broader understanding

of interactions between different components (e.g. network switches and x86 servers),

there is a need for new techniques.

4.1.2 Common Design Patterns of In-network Compute (INC)

With the advent of programmable data planes, a vast range of distributed appli-

cations have been offloaded into the network. These offloads generally follow one of a

few predefined patterns. Next we illustrate these patterns with the help of the previously

discussed NetCache INC (recall INC Case Study – NetCache in Section 3.1.1).

NetCache accelerates traditional caches (e.g., MemCached or Redis) by storing

a subset of key-value pairs at ToR switches, thus the ToR switch can respond to “GET”

requests for the key-value pairs that it currently stores. To realize this vision, NetCache
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must identify the most frequent keys being queried and cache them. To do this, NetCache

maintains a data structure in the ASIC to summarize the current lookup patterns and

NetCache runs a process on the switch CPU to periodically analyze this data structure

and appropriately update the ASIC cache.

Design Pattern #1: As with NetCache, many other INCs run in a hybrid mode

with aspects compiled to the ASIC and an accompanying process running on the switch

CPU (Table 4.2 (Col 1)).

Design Pattern #2: As with NetCache, many other INCs typically rely on the

application running on the x86 as the last resort when the INC cannot process an RPC

request either due to lack of data or because the functionality is not offloaded – we call

this a Fallback pattern (Table 4.2 (Col 2)).

Design Pattern #3: In the case of NetCache, the functionality being offloaded

is client facing and thus clients directly interact with the INC. In other scenarios, e.g.,

ML (LAO et al., 2021), Coordination (YU et al., 2020), the functionality being offloaded

is an application internal functionality then only servers of that service interact with the

INC. Thus, while the servers in the Web-Tier will interact with the Cache Tier’s INC

(i.e., NetCache), only members of the DB Tier will interact with the DB Tier’s INC (i.e.,

NetLock). The key observation here is that the location for inserting an INC’s span data

for reconstructing a trace is highly dependent on the nature of the functionality being

offloaded.

Design Pattern #4: Finally, the purely event-driven nature of programmable data

planes disaggregates this workflow into several distinct control flows, e.g., while the cache

Figure 4.2: Span DAGs used to localize problems.
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Figure 4.3: Annotated NetCache Code

1 #DevOp Annotated NetCache.p4
2 if(pkt.op==WRITE)
3 CacheWrite(pkt.key ,pkt.val);
4 @End("HotOut")
5
6 if(pkt.op==READ)
7 if(isCached(pkt.key)) #Hit
8 @Begin("Hit")
9 pkt.val=CacheRead(pkt.key);
10 ipv4.dst = Sender;
11 @End("Hit")
12 else #Miss
13 @Begin("Fallback Lookup")
14 ipv4.dst = Server;
15 if(HotKey(pkt.key))
16 @Begin("HotOut")
17 CloneToCPU=True;
18
19 if(pkt.op== READREPLY)
20 @End("Fallback Lookup")

Source: The Authors (2022)

Table 4.2: Offload Patterns for Different INCs

INCs Hybrid Fallback Functionality Event-driven
NetCache Yes Yes External Yes
P4xos Yes No External Yes
CrossPod No Yes Both Yes
DAIET No No Internal Yes
ATP Yes No Internal Yes

Source: The Authors (2022)

hit (a) is captured as a continuous workflow (Figure 4.31 lines 8-11) the HotOut is two

distinct workflows (Figure 4.3 lines 2-4 and lines 16-17). This is distinct from traditional

x86 servers where request processing follows a run to completion model and context is

maintained between calls.

Takeaways: The NetCache use case illustrates several dimensions along which

INCs can be characterized: These dimensions also incidentally highlight complicated in-

teractions that are themselves potential avenues for performance problems. In Table 4.2,

we present a list of INCs and characterize them along these dimensions. Effectively in-

1In this figure, we showcase our disaggregated @BEGIN and @END annotations. We found it necessary to
have this disaggregation in order to be able to better model application semantics in the context of these
event-driven programmable devices (e.g., it allows us to match a request to its reply despite the switch not
keeping any context over the packets).
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tegrating traces from programmable data planes with traditional distributed tracing needs

to capture and address the relationships between the INC and the server applications.

• INCs inherent event driven nature requires maintaining and tracking state between

disjoint events to recreate spans. Yet, maintaining state locally on a switch intro-

duces scalability challenges (Patterns #4).

• INCs encapsulate a range of application-specific functionality. Yet, their inclusion

into distributed traces must introduce edges and nodes that accurately reflect the

flow of events between the accelerator and the applications (Patterns #1 and #3).

• INCs are often split across switch ASIC and switch local CPU. Yet, tracing must

accurately capture this Hybrid pattern by tracing both ASIC executions and also

spin-off x86 executions which may happen in the switch CPU (Pattern #2).

4.2 Design

We envision that effectively disaggregating distributed tracing and localizing prob-

lems to programmable data plane requires solving three challenges: (1) overcoming hard-

ware memory constraints to scalably maintain sufficient execution context to create spans,

(2) overcoming hardware processing constraints to support general aggregate-based di-

agnosis of trace data, and (3) overcoming language restrictions to provide a customizable

set of outlier and anomaly detection algorithms.

To address these challenges, Mimir builds on insights about the common case

diagnostic workflow and application design patterns. Specifically, Mimir explores a novel

partitioning and delegation of diagnostic functionality to the switch data plane, which

explores a judicious decoupling of storage and processing across different components of

the data plane. Next, we discuss the design principles that enable Mimir to solve these

challenges and highlight the key observations that underpin our principles.

First, while observability frameworks support an arbitrary set of analyses, in real-

ity (MACE, 2017; CHOW et al., 2014; KALDOR et al., 2017), DevOps diagnosis efforts

are mostly centered around limited set operations (e.g., latency, control-flow). Second,

today, developers annotate code (CHOW et al., 2014; KALDOR et al., 2017) to provide

existing telemetry systems with visibility into their programs. Mimir capitalizes on these

observations and proposes the following distributed in-network design approach. 2

2Note that Mimir creates an RPC abstraction for DevOps to express the complex interactions of their
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To scalably maintain sufficient execution context to create Mimir Decouples Tran-

sient from Persistent storage. Typically, trace creation requires temporary storage of

per-RPC data, whereas trace analysis requires the storage of aggregated data. While stor-

ing per-RPC data on a switch is not scalable, we observe that span creation requires the

switch to process both requests and responses. Developer annotations explicitly identify

relevant content on the request and response processing code paths. Mimir builds on these

observations to design a storage-layer which scales by decoupling storage of transient per-

RPC data from persistent aggregate data by storing per-RPC data in packets and aggregate

data in customized in-switch data structures (e.g., histograms). The use of packet headers

to store per-RPC data allows our storage layer to scale to large workloads.

To support general aggregation-based diagnosis, Mimir Delegates performance

diagnosis. Existing trace-based diagnostic efforts compare individual traces (actual be-

havior) against aggregated ones (expected behavior). Unfortunately, programmable data

planes cannot export sufficient data to a centralized location for such analysis. Mimir

builds on the observation that the comparisons are often made pairwise by comparing

equivalent nodes and edge distributions in the expected behavior (e.g., aggregated be-

havior) against the nodes in the actual trace. Instead, Mimir delegates these pairwise

comparisons to the switch. In particular, instruments programs to store the aggregate data

corresponding to the delegated portion of the pairwise analysis and also instruments them

to perform the predetermined analysis.

To provide a customizable set of outlier and anomaly detection algorithms, Mimir

Tiers Performance Diagnosis Empirical evidence shows that operators are interested in

two broad classes of trace-based analysis: first, identifying when a request’s behavior

differs from the system’s expected behavior, and second, detecting when a system’s gen-

eral behavior differs from its expected behavior. However, the comparison of aggregate

system behavior requires complex algorithms (e.g., Earth Mover’s (VASERSTEIN, 1969;

PANARETOS; ZEMEL, 2019) or distribution comparions (MASSEY, 1951; SMIRNOV,

1944)), the request-based analysis are performed using simple thresholds (e.g., latency

thresholds, number of requests), which can be easily implemented in line rate in hard-

ware. Mimir leverages the differences in granularity of the two diagnosis efforts to ex-

plore a tier-ed design system wherein the fine-grained per-RPC analysis, which can be

implemented using lightweight threshold, are implemented in switch’s ASIC while the

coarse-grained system-level analysis, which requires complex analysis, is implemented

offloaded applications and coordinate this abstraction using minimal state on packet headers.
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Figure 4.4: Mimir Workflow
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on the switch’s local CPU.

4.2.1 Workflow

Mimir requires developers to introduce annotations and operators or SREs to spec-

ify the list of performance problem of interest (e.g., the latency percentile of interest or

the nature of aggregate system-level behaviors changes of interest). Naturally, manually

annotating INCs introduces some overheads we note that today programs are either man-

ually (CHOW et al., 2014; KALDOR et al., 2017) annotated to enable distributed tracing.

We support a subset of the generaly annotations (In Table 4.3) used for creating basic

Spans and traces (a Mimir-annotated example of NetCache is found on Fig. 4.3).

In Table 4.4, we provide a brief description of the set of performance proce-

dures supported for defining the performance problems of interest. Our system-level and

request-level procedures are a union of analysis used in academic (SAMBASIVAN et al.,

2011) and industrial systems (OPENTELEMETRY, 2021) for trace-based diagnosis.

Mimir takes the annotated source code, and a set of performance problem defini-

tions, and uses these as inputs into Mimir’s Translator which automatically instruments

the P4-code with sufficient primitives to capture spans, store aggregated data, and per-

form request-level performance diagnosis 1 . Subsequently, Mimir uses a traditional



63

Table 4.3: Annotation primitives

Annotation Description
@Begin(Span,<Parent>) Starts an in-network span
@End(Span) Ends an in-network span

compiler to compile the instrumented P4 code and uses a traditional toolchain to deploy

the compiled code to the switch 2 . Mimir configures the Mimir-Shim to capture RPC

information from packets exchanged from clients 3 . Finally, Mimir configures and pa-

rameterizes the deployment, e.g., configuring the Mimir-Agent running on the switch

CPU to perform outlier/anomaly detector functions on the appropriate aggregate data and

installing rules to setup thresholds 4 .

Table 4.4: Anomaly Detection Procedures.

API Call Diagnostic Description
Level

Latency(Percentile) Span Capture spans where latency
is greater than a %.

ControlFlow(Thres) Span Capture spans where control
flow is outside a threshold.

Distribution(Algo, Thresh) Aggregate Create an alarm when a distr.
is skewed from a baseline.
Op. specifies comparison algo
for detecting skew

Source: The Authors (2022)

4.2.2 End-to-End Diagnosis

To achieve a seamless end-to-end diagnosis of distributed systems, Mimir inte-

grates into existing distributed tracing frameworks, e.g., Jaeger (JAEGER, 2020). Re-

call, in Jaeger (with tail-sampling enabled), individual servers export spans to a Gateway,

which recreates traces, filters significant traces, and exports important traces to a central-

ized data store (the controller). Mimir generates information which it sends to the Gate-

way or to the centralized data store. Specifically, when individual spans violate operators-

specified thresholds (i.e., request-level performance problems), then Mimir generates and

sends data to the Gateway, which triggers Jaeger to capture the entire trace for detailed

analysis and export them to the controller 5 . On the other hand, when aggregate trace

behavior violates operator specified characteristics (i.e., system-level performance analy-

sis), then Mimir exports summarized behaviors to the controller and merges them into the
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aggregate traces used for posthoc analysis of system behaviors 6 .

4.3 Mimir Architecture

To understand how the different components within Mimir operate, we begin by

illustrating, in Figure 4.5, Mimir’s high-level functionality and interaction of its core com-

ponents. When distributed applications generate RPC requests (i.e., RPC caller), Mimir’s

shim layer intercepts and introduces tags to the RPCs for identifying and correlating pack-

ets for tracing at switches 1 . These requests are forwarded into the network 2 and when

an INC processes an RPC, Mimir adds a context to the request 3 . At the receiving server

(i.e., RPC responder), the associated shim layer intercepts and extracts the context of the

receiving RPC for further processing 4 . When the response is generated, the shim layer

adds the context again3 before forwarding the response into the network 4b . When the

INC gets the RPC response, it removes the context and uses it to create a span, stores

the latency profile and execution control flow into appropriate aggregate structures 5a ,

performs request-level analysis by comparing the span data against pre-defined thresholds

5b , and in case an anomaly is detected the offending span is exported to the observabil-

ity gateway 5c . Finally, the RPC response is forwarded to the RPC calling server. In

the background, Mimir periodically exports the aggregates to the local switch CPU 6a ,

where pre-specified outlier and anomaly detection procedures run. This aggregated in-

formation is further exported to the tracing collector 6b . Next, we discuss the detailed

functionality of the above system components.

4.3.1 Decoupling Storage with Translator

The Translator takes as input an annotated P4 program and operator specified

queries (Table 4.4) and automatically instruments the P4 program to include: (i) our

tailored data structures for capturing and storing the aggregated observability data, (ii)

processing logic to export temporary span data into request packet headers and to sub-

sequently retrieve this data from response packets, and (iii) processing logic to perform

request-level analysis and generate span alerts to the gateway.

Aggregate Storage. Mimir’s Translator must instrument the code to use simple

3Request and responses are matched by RPCID.
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Figure 4.5: Mimir Architecture
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data structures to support aggregate-style analysis of the latency or the control flow. In

particular, these data structures must be small and linear due to the hardware constraints,

i.e., limited registers arrays. Also, they must be easy to update to address language/pro-

cessing constraints, i.e., limited processing cycles and processing logic. We opt for a

design that explicitly trades off simplistic update semantics with a complex query mech-

anism. This trade off aligns with the distinction between switch ASIC, where updates

are performed, and switch local CPU (or centralized controller), where complex anomaly

detection (or central analysis) is performed.

Our Translator introduces array-based histograms (CORMODE; HADJIELEFT-

HERIOU, 2010) and adapts prior work in the context of Mimir. The main reason why we

opted to use array-based histograms over probabilistic counting sketches is because while

sketches allow us to further increase the number histograms we can support, we found

that these probabilistic structures require added control logic, reduced accuracy, both of

which we avoid by using pure exponential bins. More importantly, because the cardinal-

ity of our data (e.g., number of exponential bins for latency and distinct control flows) is

small, the benefits of probabilisitics structures are significantly smaller than in traditional

networking scenarios with high cardinality (e.g., number of distinct flows).

Extracting Histograms From Annotations: Our Translator walks through a pro-
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Table 4.5: Mimir P4 Templates

Template P4 LoC Parameterization
Latency Set 7 Annotations

Latency Calc 16 Annotations
Latency Histogram 8 –
Control-Flow Set 7 Annotations

Control-Flow Hist. 16 –
Span Trigger 34 Procedures (Table 4.4)

Source: The Authors (2022)

gram replacing annotation that indicate the start of a Span (i.e., @Begin) with templates

(“set” in Table 4.5) that add context into meta-header fields and annotations that indicate

the end of a Span (i.e., @End) with templates that calculate and increment the appropriate

bin in the histogram.

Domain-Specific Histogram Optimizations: Our work builds on two key insights

about the nature of our histograms to further optimize our data structures.

First, the latency histograms are sparse, in-nature. Rather, than exploring equal

sized bins, we use exponential sized bins which simultaneously allow high accuracy and

low overheads (TRAEGER; DERAS; ZADOK, 2008; JOUKOV et al., 2006). Unfortu-

nately, existing hardware does not support appropriate operation to support exponential or

logarithmic operations. Instead, we allocate and use a TCAM table to mimic the logarith-

mic operations. To approximate the binary logarithmic operation, we perform a TCAM

lookup to determine the most significant bit of each timestamp (which is guaranteed to

yield the binary logarithm of any timestamp t, truncated down to the nearest integer). This

TCAM table is prepopulated to ensure that this lookup returns the index for approprimate

bin. We note that this logarithm lookup table can be shared by all latency histograms.

Finally, the granularity of the latency histogram can be manipulated through a DevOp-

specified configuration value (e.g., shifting from log base 2 to a different base).

Second, for control-flow histogram, we observed that while there are an exponen-

tial number of potential control paths, the number of valid combination of control paths is

small. We can identify them by using Ball-Larus algorithm in PDPs (KODESWARAN et

al., 2020) and this will restrict the number of bins. Together these allow us to restrict the

number of bins in a control-flow histogram and to reduce the size of our data structures.

Third, and more generally, we note that given the fact that the size of these his-

tograms are generally smaller than the size of a register array, we have been able to mul-
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tiplex multiple of these histograms into arrays.

Temporary Storage. To reconstruct a span, distributed applications usually main-

tain context to track the flow of execution across function calls. However, programs main-

tain little contextual state in programmable data planes due to memory constraints. In

Mimir, guided by developer annotations, the Translator instruments the program to gen-

erate appropriate context information and store them in packet headers. Specifically, we

focus on the context required to determine span latency and identify span control paths:

start-time and SpanID. We plan to explore a richer context that captures event information

as part of future work.

4.3.2 Tier-ed Analysis with Mimir-Agent

Mimir supports two diagnostic levels: request-level (on switch ASIC) and system-

level (on switch CPU).

System-Level. System-level procedures compare the current distribution with

prior ones to detect changes in system behavior. Examples are comparing the latency

distribution to see if it has increased (e.g., more lengthy RPCs) and comparing the control-

flows to discover changes to the request pattern (e.g., a relative increase in misses). Our

goal is to support a broad range of procedures used in prior-works (TRAEGER, 2008;

TRAEGER; DERAS; ZADOK, 2008; JOUKOV et al., 2006; SAMBASIVAN et al.,

2011). We currently support Earth Mover’s Distance (EMD) algorithm, a well understood

and wildly used diagnostic algorithm for understanding changes in the distributions. We

select EMD because unlike other algorithms it does not suffer from overestimating the

importance of comparing one bin to its neighboring bins (cross-bin algorithms which

compare bins all-to-all) or underestimating it (bin-by-bin algorithms which only compare

two by two) (TRAEGER, 2008; TRAEGER; DERAS; ZADOK, 2008; JOUKOV et al.,

2006). Given that these procedures run on switch-CPU in the Mimir-Agent, we can easily

extend the Mimir-Agent to include other relevant procedures.

Request-Level. Conversely, Request-level diagnosis is used for finding anoma-

lous spans. Request-level procedures include finding spans with latency at the tail-edge

of the distribution (e.g., P99) and unlikely structure, e.g., less than 1% observed occur-

rence. These values, such as P99, can be discovered separately at each switch by us-

ing information from Mimir distributions. We support these diagnostic procedures in the

switch ASIC. For this subset, our Translator instruments the code with one table for hold-
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ing threshold values for each of the appropriate checks (latency greater than a threshold

or bitmap matches specific bitmaps) and appropriate code for generating a clone packet

which sends the span information to the gateway.

4.3.3 Mimir-Shim

Our shim layer is responsible for inserting and deinserting the Mimir header used

to capture RPC information – this allows for Mimir to interoperate transparently with ex-

isting distributed systems. Essentially, before packets are sent, a shim-layer at the caller

encapsulates packets by inserting a blank Mimir header with the fields necessary for the

switches to record compute data (e.g., timestamps for each RPC). When packets are re-

ceived, the shim-layer at the receiver removes Mimir headers, in case they are present, to

allow transparent sending and receiving by applications.

4.4 Prototype

Translator: The Mimir P4-to-P4 translator is written in 1100 lines of Python

Code. We fill the templates by using Python F-strings, which allows our program to run

compiler logic inline with P4 code (similarly to templates of BeauCoup (CHEN et al.,

2020)). All P4 templates which are used to instrument the storage layer for annotations

are written in a combined 88 lines of P4-14 and 198 lines of Python. All of our exponential

bins histograms (for latency) use 32-bit timestamps and index the log2 of that timestamp

(through our approximation algorithm, which uses corresponding 32 TCAM LPM rules)

within a 32-slot wide register. All of our P4-Tofino compilations used Barefoot SDEs

8.9.1 (legacy) and Intel P4 SDE 9.4.0. We discover Tofino pipeline resource usage by

using the P4insights tool from SDE 9.4.0.

Mimir-Shim and Mimir-Agent: The shim layer and switch-CPU agents are writ-

ten in a total of 2422 lines of Python Code. To read/write to stateful switch elements,

our switch-CPU agent uses either the PCI-based API of the Tofino ASIC (for a hardware

deployment) or the Thrift API of BMv2 (P4LANG, 2020) (for emulated topologies). For

deploying our emulated testbed, we extended mininet (LANTZ; HELLER; MCKEOWN,

2010). For our hardware testbed we used tc. For our E2E deployment, we instantiate the

social network microservice of DSB (GAN et al., 2019) using Docker (MERKEL, 2014).
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In all of our deployments we use a 1 second interval between polling the switch distribu-

tions (1 poll per second), but early experiments suggest that much higher frequencies are

attainable using the Tofino API (1M polls per second).

Collectors: For end-to-end tests, we use the Jaeger collector (JAEGER, 2020) and

leverage Jaeger’s JSON endpoint for integration. For standalone Mimir experiments, we

use an unoptimized Python collector (710 LoC).

INC-related Setup: We extended the same client and server applications from

both open and closed-source versions of the three evaluated INCs. All of them were

written in Python and were easy to adapt with our Python shim-layer.

4.5 Evaluation

We evaluate Mimir’s performance characteristics and general feasibility with a

Tofino-based hardware testbed and Mimir’s scaling properties with a large-scale emulated

testbed.

4.5.1 Experiment Setup

We begin by describing our setup.

Testbed Setup: Our hardware testbed comprises 2 servers with 8-core Intel Core

i7-9700 CPU @ 3.00GHz, 16GB RAM, running Ubuntu 18.04 with kernel version 4.15.

The servers are connected through 40Gbps Agilio LX SmartNICs to a Wedge 100BF-32X

32-port programmable switch powered by a 3.2Tbps Tofino ASIC and a quad-core Intel

D1517 x86 CPU @ 1.6GHz. For NetCache experiments, we use 1 server as the client

and the other as the server. Our workload uses the same distribution as the NetCache

paper (JIN et al., 2017).

Applications (INCs): We evaluated Mimir using three INCs which showcase

a diverse set of designs for in-network computing. NetCache described earlier (Sec-

tion 4.1) illustrates a design used in several subsequent works (JIN et al., 2018; YU et al.,

2020; LI et al., 2020). P4xos offloads the Paxos consensus protocol (LAMPORT, 1998)

into network switches, avoiding the usual bottlenecks of the software implementation and

drastically increases the maximum throughput. Finally, CrossPod encompasses different

compute blocks such as in-network MemCached acceleration and compression, each with



70

its own offload patterns.

Emulator Setup: We use the BMv2 software switch (P4LANG, 2020) to emulate

a k = 4 fat-tree topology in all our experiments. The experiments were executed on an

Ubuntu 16.04 virtual machine running with 4 cores @ 2.9GHz and 16GB of memory. For

NetCache (JIN et al., 2017), we divide the hosts into two groups: hosts in two of the

pods act as clients, and send requests to servers in the other pods. We deploy a NetCache

instance on the ToR switches of the server pods and attach an additional host to act as

the switch CPU. For P4xos (DANG et al., 2020), in each pod we assign a host to each

role: client, proposer server, and two learner replicas. We also assign hosts as an in-

network coordinator (aggregator layer) and as an in-network acceptor (edge layer). For

CrossPod (SULTANA et al., 2021), hosts in one pod transmit data to a server in another

pod. In between them is CrossPod’s MemCached booster (in-network cache). Unlike

NetCache, this time, the cache is deployed on the client pod’s ToR.

Metrics: For accuracy, we focus on singling out the offending components (i.e.,

localization). We run several 10-second simulations, and at t = 5 seconds, we introduce

specific failures (described next). Given the ground truth about the type of problem(s)

injected and the location of injection, we can easily determine if detection and localization

are correct or incorrect. For overheads, we focus on Mimir’s switch resource and network

bandwith footprint.

Workload: For NetCache and CrossPod, we reuse the same workloads and or

flow characteristics as the original papers (JIN et al., 2017; SULTANA et al., 2021). For

P4xos, we randomize the keys and values that each client sends to proposers. 4

INC Failure Injection. Bugs in programmable data planes are increasingly di-

verse and prominent (DUMITRESCU et al., 2020; TIAN et al., 2021; STOENESCU et

al., 2018; FREIRE et al., 2018; LIU et al., 2018; KANNAN et al., 2021). We take in-

spiration from previous works to extract representative bug categories that demonstrate

Mimir’s ability to localize problems, namely:

Latency Degradation (LAT) (KANNAN et al., 2021; WANG et al., 2020b): We

artificially increase the latency of RPCs by having the server randomly pause for a prede-

termined period when responding to RPCs requests.

Misconfiguration (CFG) (DUMITRESCU et al., 2020): We alter the INC’s source

code to misconfigure their data structures, by specifying data structure sizes that are too

small for their workloads. For example, with NetCache, we misconfigure the sketch size

4For CrossPod, Because of emulation limitations (BMV2. . . , ), all aggregate flow rates are set at ap-
proximately 100 RPS.
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which leads to constant frequency overestimations and ultimately false-positive hot-outs.

Control Failure (CTRL) (TIAN et al., 2021): We terminate the INC’s control pro-

gram which is running on the switch’s local CPU.5

Versioning (VER) (TIAN et al., 2021): We randomly select a single switch to run

an outdated INC which uses headers with different fields (P4xos) or header values (Cross-

Pod). Due to these header changes, the INC may ignore packets (no optimizations per-

formed) or process them incorrectly (matching to a garbled header value).

4.5.2 Competing Systems & Instrumentation

We compare and evaluate Mimir against the following three classes of observabil-

ity techniques:

AppTracing. (JAEGER, 2020; ZIPKIN, 2021; FONSECA et al., 2007), e.g., Jaeger,

collect traces from x86-applications and stores them at a central collector. We instrument

the applications with annotations, e.g., for NetCache we annotate the client and cache

server. We reuse Spectroscope (SAMBASIVAN et al., 2011) localization techniques to

detect problems.

Strawman. is a barebone, unoptimized version of Foxhound which collects spans

from the entire in-network execution of a request. This approach generates a packet for

each INC invocation and exports whatever information is available at that time to a central

collector. For localization, Strawman reuses the same procedures as Mimir (Table 4.4).

4.5.3 Problem Diagnosis (Localization)

We begin by analyzing the accuracy of Mimir against competing techniques in

three scenarios:

Emulator Deployment. First, we consider an emulated deployment in which

INCs accelerate a two-tier services. In Fig. 4.6, we observe a bimodal behavior with

Mimir and Strawman correctly localizing all of the in-network problems expect the la-

tency problem (i.e., LAT Fig. 4.5a) which was a problem at the server. Moreover, we

5For NetCache, this prevents the ASIC cache from being updated, leading to a stale cache. For Cross-
Pod, this causes compute blocks to become unreachable. For P4xos, this prevents the configuration of
multicasting, resulting in traffic circumventing the acceptor switch and in essence preventing traffic from
using P4xos.
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observe that AppTracing is able to correctly localize only the latency problem (i.e., LAT

Fig. 4.5a). We note that this behavior is consistent because both Mimir and Strawman are

only using in-network information whereas AppTracing is only using server-side infor-

mation. Later, when we integrate Mimir with AppTracing for an End-to-End system on

our Testbed (Fig. 4.6a), the combined technique is able to localize these latency problems.

Additionally, we note that in these experiments throughput is sufficiently low for

Strawman to capture sufficient information however we show how Strawman’s accuracy

degrades at scale in (Section 4.5.3).

Physical Switch. In Fig. 4.6a, we demonstrate with our hardware testbed that

the accuracy observed in the emulator for Mimir is representative of that from an actual

physical switch. Moreover, while Mimir retains a high accuracy, we observe that, at these

higher rates, Strawman’s accuracy degrades. In analyzing Strawman (Section 4.5.4), we

observed that at high data rates Strawman is unable to export spans, which leads to low

coverage and ultimately nullifies accuracy. Finally, we note that the latency misattribution

is still present for Mimir.

End-to-End Deployment. Finally, we focus our analysis on the home-timeline

microservice from DeathStarBench (GAN et al., 2019)’s social network application and

introduce the NetCache accelerator between the timeline service and client storage ser-

vice. In particular, the switch replies instead of the client storage service when the time-

line service makes a request due to our modifications. We inject two problems: one of

our INC problems (e.g., misconfiguration problem) and an x86 specific problem (we call

this a POST problem). For the POST problem, we disrupt the post storage service, which is

invoked right after the client lookup, in order to retrieve the posts that should show on a

user’s home-timeline.

From Fig. 4.6b, we observe that, as expected, Mimir detects the INC specific prob-

lems (blue circles) and fails completely to detect errors at the x86 (orange X), while App-

Tracing only detects the x86 specific problem with complete accuracy (purple diamonds)

and suffers to detect the configuration problem (orange squares). Most importantly, we

observe that we identify and effectively localize both issues combined in an end-to-end

manner (E2E).
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Figure 4.6: Simulated Localization Accuracy
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4.5.4 Overheads and Scalability

We evaluate the overheads and scalability of Mimir on our pyhsical testbed with a

Tofino-based hardware switch.

Overheads. We focus on the switch ASIC resource overheads, in particular con-

centrating on sALU and memory. Table 4.6 shows the resource usage of different INCs

with (Mimir) and without (Base) Mimir instrumentation. We see that our SRAM over-

heads are always marginal due to the reduced size of our histograms. Our TCAM usage

(from the log2 approximation algorithm) is bound by the timestamp bit-width and thus

will also be negligible (sub 100 entries). Our SALU impact is a function of the number

of annotated RPCs, which are low enough that we did not need to implement any opti-

mizations such as register-sharing for our histograms. Finally, we conducted experiments
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Figure 4.7: Localization Accuracy
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Figure 4.8: Emulated Trace Export Overhead
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on the throughput of register polling and found that a complete polling period for Mimir

registers on our NetCache prototype takes approximately 13us.

Scalability. Now, we turn our attention to understanding the scalability of Mimir

with respect to the bandwidth overheads associated with exporting data from a network

of switches to a central entity (Figure not shown due to space). Abstractly, we observe

that for Mimir the rate of requests has minimal impact on network bandwidth because

Mimir exports constant sized data aggregates and alert information. We note, however

(not shown due to space), that total network bandwidth is naturally a linear function of

topology because each switch needs to generate reports. The alerts generated by Mimir

are also a function of the number and type of problems. Conversely, both the topology

and request rate will cause Strawman to have higher overhead.

To understand the broader deployment context, and put Mimir’s overheads in per-

spective, we provide export overheads in Fig. 4.8 for the different INCs. Looking across

these INCs, we observe variance in bandwidth overheads and identify that this variance

is due to the number of INCs deployed in the network. More importantly, we observe
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Table 4.6: Tofino Pipeline Resource Occupancy

Resource NetCache P4xos CrossPod
Base Mimir Base Mimir Base Mimir

sRAM 36.3% 37.3% 44.0% 44.7% 3.6% 4.7%
sALU 66.7% 72.9% 60.4% 64.6% 25.0% 31.3%
TCAM 5.6% 5.9% 0.3% 0.7% 0.3% 1.0%

Source: The Authors (2022)

that Mimir’s overheads, even at low RPS, are orders of magnitude lower compared to

competing techniques. In particular, adding Mimir to AppTracing to provide complete

End-to-End visibility over infrastructures with offloaded components would only provide

a relatively small increase in bandwidth overheads.

4.5.5 Understanding Mimir

We conclude by examining the components within Mimir to understand how they

contribute to its scalability and accuracy. To understand different design points, we incre-

ment Strawman (Unoptimized Foxhound) with two orthogonal techniques from Mimir.

Firstly, we make use of packet headers to coordinate span information into Strawman to

create Strawman++. This is a form of mix-and-match between the techniques of Fox-

hound and Mimir that was hinted on earlier in the introduction chapter and helps us un-

derstand the performance impact of each optimization.

Reducing the Tracing Data Stream. We begin by comparing our use of a

decoupled storage layer for aggregation against Strawman, which generates and exports

spans (Figure not shown due to space). We observe that Strawman can export approxi-

mately 400k spans per second whereas temporarily storing information in the header (i.e.,

Strawman++) and exploring all information together in one span increases the export

rate to approximately 750k spans per second. Recall, Strawman exports spans for every

traced packet which enters the switch (i.e., once for NetCache read-request, another for

read-reply). In both cases, performance is limited by known PCI-e problems (NEUGE-

BAUER et al., 2018) (e.g., hardware constraints and software inefficiencies). Regardless,

at higher RPS only Mimir maintains high coverage due to in-network aggregation.
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4.6 Discussion & Limitations

Debugging: Our approach extends and supports a sufficient set of tracing prim-

itives and annotations to detect and localize problems. However, problem resolution re-

quires debugging the root cause either by examining snapshots of variables or developer

log files. As part of future work, we plan to extend Mimir to support richer annotation to

enable logs and variable snapshots.

Targeted Diagnosis: While we focus on diagnosing the entire infrastructure, op-

erators are often interested in focusing their efforts on specific applications/tenants or on

workflows that include specific services. We are extending Mimir to address these sce-

narios by translating the “scope” into tags that the agent adds. Given these tags, Mimir

maintains an additional data structure to store the focused aggregates. We are exploring

existing extensions to P4 (SONCHACK et al., 2021) to instantiate and effectively main-

tain these additional data structures dynamically.

Random Sampling: Currently, Mimir only generates spans based on request-

level performance procedures. This is traditionally known as tail-based sampling. In

truth, most operators also use random sampling to generally understand their infrastruc-

tures. While Mimir does not generate random spans, we note that our aggregates can be

combined with the aggregated random sampling to understand trends.
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5 RELATED WORK

In this section we review the state-of-the-art in network telemetry (Section 5.1.

and Section 5.2), distributed tracing (Section 5.3), and finally general debugging of net-

work programs (Section 5.4). We focus our discussions on the works that more closely

relate to our two systems.

5.1 Telemetry data exported into packet headers

Raw telemetry data (e.g., observed queue size) can be exported into packet head-

ers (BASAT et al., 2020b; JEYAKUMAR et al., 2014b; KIM et al., 2015) as network

traffic goes through switches (previously discussed in Chapter 2). Collected information

is sent to a centralized entity for post-processing and for mining relevant statistics. Over-

all, the in-header approach demands high bandwidth and storage overheads per packet.

Further, this technique imposes high CPU overheads due to the need for processing each

individual packet header.

INT (KIM et al., 2015). In-band Network Telemetry (INT) has become a well-

established technique for PDP telemetry due to several reasons such as the high level of

visibility it provides and the ease of implementation on current programmable hardware.

In the context of INCs, despite allowing for extremely fine-grained telemetry, INT funda-

mentally lacks coordination between INT sources (switches that insert INT headers) and

x86 servers and is therefore unsuited for diagnosis of cross-plane executions. Addition-

ally, because INT is stored on packet headers that can be created at every hop, collecting

a large amount of metadata would quickly and significantly increase the bandwidth over-

head of INT. Recent efforts such as Probabilistic-INT (PINT (BASAT et al., 2020b))

have been successful in mitigating some of the INT overhead by trading-off accuracy and

bandwidth.

Kodeswaran et al. (KODESWARAN et al., 2020) does code path profiling of P4

programs. They implement the efficient Ball-Larus algorithm for profiling the path taken

by individual packets. A noteworthy difference is that they do so without programmer

input (e.g., annotations), purely focusing on efficiently capturing a packet’s path (e.g.,

traversed tables and functions) within a program’s control flow graph. This path profiling

closely relates to Mimir’s structural profiling. However, Kodeswaran et al. profiles the

structure of source code while Mimir profiles the structure of trace DAGs. Additionally,
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Mimir aggregates the DAG structures directly in switch counters as distributions, while

Kodeswaran et al. does not aggregate their optimized bitmask, which can instead be put

into each packet’s header for INT-like postprocessing.

5.2 Telemetry data aggregated by switches

Network switches can be used as memory buffers to aggregate (e.g., per-flow

packet count) and export records (GUPTA et al., 2018; NARAYANA et al., 2017a; SON-

CHACK et al., 2018). This class of works essentially uses a combination of retrospection

and packet mirroring (Chapter 2). However, this can create potentially high bandwidth

and CPU demands: even aggregation might not be enough, for example, when the num-

ber of flows becomes too large. Alternatively, instead of exporting per-flow records, a

switch can aggregate flow data into fixed-size sketches (e.g., Nitrosketch (LIU et al.,

2019b), UnivMon (LIU et al., 2016)). Both this and the above forms of switch aggre-

gation provide a much lighter exporting scheme compared to using packet headers. Also,

in-network aggregation into sketches can save even more bandwidth when exporting data,

i.e., by aggregating records into statistical data structures. Foxhound piggybacks on this

idea by allowing for customized sketch structures to be deployed for its queries. Like-

wise, Mimir employs in-network data structures to minimize overheads, leveraging data

structures built around the procedures which they offload.

Marple (NARAYANA et al., 2017a). Marple is a query-driven telemetry system

which supports only queries that can be aggregated at the switch ASIC. While Marple

allows scalable queries over headers of packet-ins and outs (network telemetry), Mimir

and Foxhound focus on providing abstractions for capturing the computation in-between

(in-network compute). Despite that difference, their storage layers share insights. Specifi-

cally, Marple instantiates a hashtable at the switch to store key-value pairs and opportunis-

tically aggregate query data early (akin to Mimir and some of the Foxhound optimizations

demonstrated earlier).

Sonata (GUPTA et al., 2018). Sonata is a query-oriented telemetry framework

which employs both retrospection for data that can be efficiently aggregated in-switch

(akin to Marple), and packet mirroring otherwise. The latter case has Sonata mirror pack-

ets to a stream processor. This strategy incurs in high overhead, however, Sonata manages

to mitigate some of this overhead by restricting the conditions for exporting packets (e.g.,

only export when a packet is destined for port 22). This filtering generally happens inside
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the Sonata-powered switch and the conditions for filtering are extracted automatically

from Sonata queries. With respect to aggregated data, Sonata deploys a hash-table for its

queries.

SpiderMon (WANG et al., 2020b). Spidermon focuses on finding performance

degradation root causes using historical data about switch queue occupancy. Like Mimir,

Spidermon decomposes an end-to-end investigation into device-local ones. When drops

are detected, SpiderMon audits switch “logs” in order to discover who caused the prob-

lem. SpiderMon, as well as our two systems, argue for the use of upfront processing at

ASICs, based on the data we need for analysis. However, while Foxhound and Mimir

focus on data and procedures for localizing general in-network compute problems, Spi-

derMon optimizes a well-known problem (network contention) and tries to perform root

cause analysis for that specific problem. In other words, while SpiderMon is optimized

to diagnose network performance degradation, the arbitrary information relevant to un-

derstanding performance degradation of INCs cannot be contemplated with the general

metrics and analysis proposed.

5.3 x86 Distributed Tracing

This corresponds to traditional distributed tracing in which a tracing agent collects

information from traces of a x86 application (e.g., Jaeger (JAEGER, 2020), Zipkin (ZIP-

KIN, 2021)). Although distributed tracing has been for many years the de-facto standard

for observability, it does not account for what is happening within the in-network com-

puting. As such, distributed tracing can detect problems from the application level but

cannot see into the network and thus fails to localize problematic switches involved in an

RPC call.

SpectroScope (SAMBASIVAN et al., 2011). SpectroScope is a system that relies

heavily on aggregating x86 distributed traces and performing troubleshooting on the ag-

gregates. Mimir is closely related to SpectroScope as both works attempt to troubleshoot

the aggregates and not the raw traces. However, SpectroScope operates with the tradi-

tional separation between data collection and processing. Basically, SpectroScope will

aggregate traces from a database filled with traces which have already been collected.

Spectroscope will then diagnose the aggregates. Given the additional constraints of PDPs,

having a database filled with raw traces is cumbersome and may result in heavy sampling,

and thus Mimir optimizes data collection to collect only the aggregates necessary for
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postprocessing and diagnosis.

Fay (ERLINGSSON et al., 2012). Fay is a tracing platform that allows the spec-

ification of queries that define both what to trace via dynamic instrumentation and early

aggregation, as well as how to process and combine trace events from multiple sources

(data-parallel computation). Fay focuses these ideas to collect metrics based on local (not

distributed) traces of kernel functions. Fay shares high level ideias with Mimir about

aggregation and early trimming of the data flow. Essentially, Fay offloads metrics aggre-

gation to the devices producing the metrics, allowing them to aggregate early and reduce

data footprint. Conversely, Mimir argues for decomposing certain end-to-end distributed

tracing workflows (e.g., structural and temporal aggregation) down to the device-level,

where we can also aggregate early.

5.4 Other Debugging Approaches

This section overviews a few alternative techniques which have been explored to

troubleshoot problems in programmable data planes. Instead of statically instrumenting

run-time data collection – a standard practice of observability frameworks – these tech-

niques explore alternative directions.

Simulation. Clara (QIU et al., 2020) presents a simulation-based system for pre-

dicting the behaviour of P4 programs when deployed onto different SmartNIC architec-

tures. This prediction tackles hard-to-simulate measurements (such as processing latency)

by modelling specific information from each SmartNIC. Differently from Foxhound and

Mimir, Clara does not aim at capturing actual runtime measurements, but rather simulate

them to provide performance insights.

Verification. Works like p4v (LIU et al., 2018) allow programmers to use anno-

tations to verify P4 programs. It translates P4 programs to Guarded Command Language

(GCL) and then uses a theorem prover for checking properties of interest. Similarly to

p4v, Assert-P4 (FREIRE et al., 2018) also uses annotations directly in P4 source code

to define invariant conditions written as assertions. It then translates P4 code to C and

symbolically executes this code. Bugs are discovered if at any point the code reaches an

assertion and the invariant is violated. Vera (STOENESCU et al., 2018) also translates P4

code and performs a symbolic execution of the program. However, Vera is able to identify

a range of bugs automatically without assertions. Vera also translates P4 code to an opti-

mized language (STOENESCU et al., 2016). While most works aimed at debugging P4
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programs attempt to debug and guarantee properties about switch code alone, our work

encompasses a more comprehensive view of the network, tracing executions from and to

servers and their distributed applications.

Dynamic Instrumentation. PhD (SULTANA et al., 2017) is a query-oriented

FPGA debugging system. PhD dynamically instruments FPGAs to execute remote code

from user queries to control and observe the flow of a program. While this high level

of flexibility favours debugging purposes, the intended use of our systems for in-network

tracing in production environments prohibits us to. Furthermore, switching ASICs such

as the Barefoot Tofino do not support the proposed dynamic re-instrumentation that PhD

leverages. The absence of sketch structures and overall aggregation also makes PhD

queries unable to scale more demanding queries to line rate.
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6 CONCLUSION

6.1 Summary of Contributions

Our work began with the motivation of bridging the gap between INC functional-

ity and diagnosis. In developing our solution, we identified that there was a clear trade-off

between flexibility and scalability. We decided then to treat each of these dimensions as

a different problem. Ultimately, this work presents two steps towards in-network tracing:

one towards expressiveness (Foxhound) and the other towards scalability (Mimir).

Foxhound abridges the entire spectrum of telemetry, from isolate to aggregate

data and allows operators to write expressive queries and also optimize them. Foxhound

is a proof-of-concept that PDP limitations can be bypassed to enable flexible diagnosis

(as seen by our many queries and our evaluation).

Mimir, on the other hand, focuses on a subset of tracing queries and optimizes

them to be implemented in hardware and scale out to more demanding workloads. Mimir

is a proof-of-concept a handful of “catch-all” queries amenable to aggregation (e.g., pro-

filing DAG structure distributions) can be effective in diagnosing common INC problems.

Moreover, Mimir’s optimizations showcase the benefits of offloading part of these queries

into the data plane and (differently from traditional tracing) the benefits of designing a

storage layer around these queries, promoting the early thinning of the dataflow and thus

alleviating several bottlenecks (including the PCI bottleneck which plagued Foxhound).

We also note that an important overlap of Foxhound and Mimir is that, for certain

queries, the practical export limitations of current programmable switches can be miti-

gated by using domain-specific knowledge about a given tracing query (e.g., what traces

do we care about?) to inform data collection. Due to practical concerns, this kind of

optimization remains unexplored by most x86 distributed tracing libraries in the wild, but

we argue that it is an important thread of research.

While Mimir and Foxhound stand on widely different points in the design space,

our decomposition of both systems into their more fundamental pieces allows us to judge

each optimization for what it is worth and create an entire spectrum of possible mix-

ing and matching between Foxhound and Mimir techniques (with even the possibility of

inter-operating queries from both systems in the same switch). This alleviates the main

limitation of our work: the fact that our main optimizations are query-specific. Specifi-

cally, there can be situations (queries) in which Mimir’s disaggregated tracing may lose
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important end-to-end information. In this case, a Foxhound query may be more adequate

as it can provide end-to-end traces. Alternatively, Foxhound queries may suffer from sam-

pling if the workloads are too demanding or if the query relies on having a high-fidelity set

of traces. Our work presents techniques and optimizations that allow users to maximize

one dimension or the other, but even so, we do not offer a complete solution for efficiently

implementing all possible queries.

Finally, it is our sincere hope that the motivation and “lessons learned” presented

in this work (especially those related to scalability) as well as the underlying body of

techniques and optimizations that power Foxhound and Mimir can serve to strengthen the

state-of-the-art in INC observability and reduce the barrier of adoption for actual INC-

accelerated environments.

6.2 Future Work

Many threads emerged during this work that could be pursued as future work such

as:

• Tuning PCI-e communication protocols to increase tracing throughput: As

we saw in Section 3.8.4.1, the PCIe interface is actually an important bottleneck

for low-overhead tracing efforts. While this interface has evolved in programmable

switches (when compared to fixed-function ones, (SONCHACK et al., 2018)), more

low-level work could be done to optimize the usage of the PCIe interface, for ex-

ample, with a batching primitive which allows PDP spans to be continuously ac-

cumulated into a large ethernet frame which, once full, would be exported. This

would remove the high resource pressure that batching has on the programmable

pipeline (Section 3.8.4.1), and instead implements batching as a hardware primitive

of Tofino.

• Incorporating logs and metrics into our PDP observability framework: De-

vOps are accustomed to the wide range of observability techniques needed to debug

server applications. Troubleshooting in large distributed systems generally follows

a pipeline, iterating and drilling down from high-level performance indicators of

problems (what? – global metrics and performance indicators), followed by local-

ization of the offending component inside the infrastructure (where? – distributed

tracing) and finally debugging the problem with machine-centric retrospection to
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the specific code paths (which? – logs). For our systems to be complete, we would

need to include some notion of those three data sources (metrics, traces, and logs).

• More Real-World INC data and Root Cause Analysis: Our designs themselves

could be more thoroughly evaluated if real-world INC data were publicly available.

We believe that this validation is crucial and takes precedence over other kinds of

future work. Additionally, such datasets would open up the possibility of mining

and identifying the signatures of certain classes of bugs. This identification of bug

signatures would allow our systems to attempt root cause analysis. For example,

a control failure on NetCache has a unique signature in the structure of the traced

DAGs: after the failure, no outgoing edges come out of the switch CPU node. While

this is an over-simplification of a real-world signature, more robust RCA techniques

exist and have been demonstrated to be feasible (WANG et al., 2020b).

• SmartNIC Observability: SmartNICs have also been shown to be able to offload

computation (LIU et al., 2019a). Thus, we reason that the motivation behind Fox-

hound and Mimir would also apply to SmartNICs which perform in-network com-

putation. While this work focused solely on programmable switches (e.g., Intel

Tofino), we plan to study the SmartNIC environment in order to discover how well

the principles of our work would apply to SmartNICs. In that regard, general-

purpose SmartNICs offer a higher degree of flexibility when compared to some of

the limitation of P4 programmable data planes.
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APPENDIX A — RESUMO EXPANDIDO

Há um movimento crescente para descarregar a funcionalidade, por exemplo, TCP

ou armazenamentos de valores-chave, na rede - em SmartNICs ou planos de dados pro-

gramáveis. Embora o descarregamento prometa aumentos significativos de desempenho,

esses dispositivos programáveis geralmente fornecem pouca visibilidade de seu desem-

penho. Além disso, muitas ferramentas existentes para analisar e depurar problemas de

desempenho, por exemplo, rastreamento distribuído, não se estendem a esses dispositivos.

Motivado por essa falta de visibilidade, a primeira metade deste trabalho apre-

senta o design e implementação do Foxhound, um framework de observabilidade para

computação em rede. Esse framework apresenta uma linguagem de consulta, um compi-

lador e uma camada de abstração de armazenamento coprojetados para expressar, capturar

e analisar rastreamentos distribuídos e seus dados de desempenho em uma infraestrutura

que inclui servidores e planos de dados programáveis.

Embora o Foxhound seja nossa prova de conceito para rastreamento flexível na

rede, descobrimos que o paradigma de rastreamento tradicional que o Foxhound incorpora

pode sofrer de problemas de escalabilidade devido às limitações de hardware dos planos

de dados programáveis. Em nosso esforço para mitigar isso, identificamos um subcon-

junto de consultas de rastreamento comuns que podem ser hiper-otimizadas mesmo além

das otimizações do Foxhound. Essas otimizações representam um afastamento do ras-

treamento tradicional e constituem outro framework, o Mimir, apresentado na segunda

metade deste trabalho. O Mimir troca a flexibilidade pela eficiência, explorando um con-

junto de opções de design que otimizam tarefas comuns de diagnóstico e localização.

Nossas avaliações usando três aplicativos descarregados representativos em um testbed

baseado em Intel Tofino, um emulador e um simulador mostram que o Mimir pode su-

portar um subconjunto de tarefas de rastreamento comuns em escala com overhead sig-

nificativamente menor do que o Foxhound. Além disso, nossos experimentos com um

microsserviço do DeathStarBench aprimorado por computação em rede demonstram a

utilidade de nossa abordagem para diagnóstico fim-a-fim.

Resumidamente, nosso trabalho como um todo tem a motivação de preencher a

lacuna entre a funcionalidade proporcionada pelas INCs e o diagnóstico das INCs. Ao de-

senvolver nossas soluções, identificamos que havia um claro trade-off entre flexibilidade

e escalabilidade. Decidimos então tratar cada uma dessas dimensões como um problema

diferente. Em última análise, este trabalho apresenta dois passos para o rastreamento em
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rede: um para a expressividade (Foxhound) e outro para a escalabilidade (Mimir).

Foxhound conecta todo o espectro de telemetria, tanto dados isolados quanto da-

dos agregados, e permite que os operadores escrevam consultas expressivas e também as

otimizem. Foxhound é uma prova de conceito de que as limitações dos planos de dados

programáveis podem ser contornadas para permitir um diagnóstico flexível (como visto

por nossas muitas consultas e avaliações).

Mimir, por outro lado, concentra-se em um subconjunto de consultas de rastrea-

mento e as otimiza para serem implementadas em hardware e dimensionadas para cargas

de trabalho mais exigentes. Mimir é uma prova de conceito de que algumas consultas im-

portantes e genéricas que são passíveis de agregação (por exemplo, perfis de distribuições

de estrutura de traces) podem ser eficazes no diagnóstico de problemas comuns de INC.

Além disso, as otimizações do Mimir mostram os benefícios de descarregar parte dessas

consultas no plano de dados e (diferentemente do rastreamento tradicional) os benefícios

de projetar uma camada de armazenamento em torno dessas consultas, promovendo a fil-

tragem precoce do fluxo de dados e, assim, aliviando vários gargalos (incluindo o gargalo

PCI que atormentou o Foxhound).

Enquanto Mimir e Foxhound estão em pontos amplamente diferentes no espaço de

design, nossa decomposição de ambos os sistemas em suas peças mais fundamentais nos

permite julgar cada otimização individualmente e criar um espectro inteiro de possíveis

misturas e combinações entre as técnicas de Foxhound e Mimir (com até a possibilidade

de interoperar consultas de ambos os sistemas no mesmo switch).

Finalmente, é nossa sincera esperança que a motivação e as “lições aprendidas”

apresentadas neste trabalho (especialmente aquelas relacionadas à escalabilidade), bem

como o corpo subjacente de técnicas e otimizações que constituem Foxhound e Mimir

possam servir para fortalecer o estado da arte em observabilidade de INCs e reduzir a

barreira de adoção para ambientes acelerados por INC.

Como principal trabalho futuro, prentendemos conseguir datasets reais de INCs.

Pensamos que nosso trabalho poderia ser melhor avaliado se os dados INC do mundo

real estivessem disponíveis publicamente. Acreditamos que esta validação é crucial e tem

precedência sobre outros tipos de trabalhos futuros. Além disso, esses conjuntos de dados

abririam a possibilidade de mineração e identificação das assinaturas de certas classes de

bugs. Essa identificação de assinaturas de bugs permitiria que nossos sistemas tentassem

a análise da causa raiz (root cause analysis ou RCA). Por exemplo, uma falha de controle

no NetCache tem uma assinatura diferenciada na estrutura dos DAGs rastreados: após a
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falha, nenhuma aresta sai do nó da CPU do switch. Embora esta seja uma simplificação

excessiva de uma assinatura do mundo real, existem técnicas de RCA mais robustas que

demonstraram viabilidade e que poderiamos utilizar.
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