
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FÉLIX DAL PONT MICHELS JÚNIOR

Optimization and adaptation of
applications for vector processors

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Philippe Olivier Alexandre
Navaux

Porto Alegre
July 2022

CIP — CATALOGING-IN-PUBLICATION

Dal Pont Michels Júnior, Félix

Optimization and adaptation of applications for vector pro-
cessors / Félix Dal Pont Michels Júnior. – Porto Alegre:
PPGC da UFRGS, 2022.

81 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2022. Advisor: Philippe Olivier Alexandre Navaux.

1. Vector. 2. Optimization. 3. Performance Analysis. 4. High
Performance Computing. I. Navaux, Philippe Olivier Alexandre
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENT

I would like to thank my family, Elisabeth Dal Pont, Félix Sávio Michels and

Paulo Henrique Dal Pont Michels, for all the material and emotional support during all

my life.

My girlfriend and lifemate Mariana de Oliveira Barra Costa for its love and com-

panionship, which without I would have not made it. To you, all the love I can give.

To my Advisor Prof. Dr. Philippe Olivier Alexandre Navaux, thank for your

patience, guidance and all the opportunities.

To all the other contributors, small or large, direct or not, thank you.

ABSTRACT

Vector processors are designed to favor the execution of an instruction on multiple data,

which increases the number of calculations per cycle, and subsequently improves perfor-

mance in numerical applications, such as wave propagation and fluid mechanics.

In the same vein of performance improvements, quantum computing is becoming a reality

with machines’ latest announcements with nearly 100 qubits. In preparing the execution

of quantum applications, simulators are used. One such simulator available to the public

is Hiperwalk, a Quantum Walk simulator.

Furthermore, the importance of Controlled Source Electromagnetics (CSEM) has in-

creased in the past decade. Along with this interest, its efficiency increased, data acqui-

sition became more straightforward, and costs went down. For the Oil and Gas industry,

modeling this data is necessary for exploration. The Modeling with Adaptively Refined

Elements for 2D Electromagnetics (MARE2DEM), developed at Columbia University, is

one of the tools used to model CSEM data.

Therefore, with performance as the main focus, this master dissertation will be divided

into three parts. The first part is the performance analysis of two classic optimization tech-

niques using two different applications. The second part is the adaptation of Hiperwalk

and subsequent performance analysis. The third part is the adaptation and performance

analysis of MARE2DEM. These applications will utilize the same target architecture to

accelerate their execution, the NEC SX-Aurora TSUBASA, a vector processor. All three

cases improved performance up to 1, 9×, regarding the first part. The second part was

able to increase up to 75% performance. Lastly, the third part reached a 27% improve-

ment over the original implementation and architecture.

Keywords: Vector. Optimization. Performance Analysis. High Performance Comput-

ing.

Otimização e adaptação de aplicações em processadores vetoriais

RESUMO

Os processadores vetoriais são projetados para favorecer a execução de uma instrução em

vários dados, o que aumenta o número de cálculos por ciclo e, posteriormente, melhora o

desempenho em aplicações numéricas, como propagação de ondas e mecânica dos fluidos.

Na mesma linha de melhorias de desempenho, a computação quântica está se tornando

uma realidade com os últimos anúncios das máquinas com quase 100 qubits. Na pre-

paração da execução de aplicações quânticas, são utilizados simuladores. Um desses

simuladores disponíveis ao público é o Hiperwalk, um simulador de Quantum Walk.

Além disso, a importância da Eletromagnética de Fonte Controlada (CSEM) aumentou

na última década. Junto com esse interesse, sua eficiência aumentou, a aquisição de

dados tornou-se mais simples e os custos caíram. Para a indústria de Petróleo e Gás, a

modelagem desses dados é necessária para a exploração. O Modeling with Adaptively

Refined Elements for 2D Electromagnetics (MARE2DEM), desenvolvido na Columbia

University, é uma das ferramentas utilizadas para modelar dados do CSEM.

Assim, tendo o desempenho como foco principal, esta dissertação de mestrado será divi-

dida em três partes. A primeira parte é a análise de desempenho de duas técnicas clássicas

de otimização usando duas aplicações diferentes. A segunda parte é a adaptação do Hi-

perwalk e posterior análise de desempenho. A terceira parte é a adaptação e análise de

desempenho do MARE2DEM. Esses aplicativos utilizarão a mesma arquitetura de des-

tino para acelerar sua execução, o NEC SX-Aurora TSUBASA, um processador vetorial.

Todos os três casos melhoraram o desempenho em até 1, 9×, em relação à primeira parte.

A segunda parte conseguiu aumentar o desempenho em até 75%. Por fim, a terceira parte

alcançou uma melhoria de 27% em relação à implementação e arquitetura originais.

Palavras-chave: Vetorial, Otimização, Análise de Desempenho, Computação de Alto

Desempenho.

LIST OF ABBREVIATIONS AND ACRONYMS

CSEM Controlled-Source Electromagnetic

CTQW Continuous-Time Quantum Walk

DTQW Discrete-Time Quantum Walk

EM Electromagnetic

FEM Finite Element Method

GPUs Graphics Processing Units

HPC High Performance Computing

LNCC National Laboratory of Scientific Computing

MARE2DEM Modeling with Adaptively Refined Elements for 2D Electromagnetics

MT Magnetotelluric

NAS NASA Advanced Supercomputing

PCAD Parque Computacional de Alto Desempenho

QW Quantum-Walk

RTM Reverse Time Migration

SIMD Single Instruction Multiple Data

LIST OF FIGURES

Figure 2.1 Schematic view representing the CSEM method. ...26

Figure 4.1 Workflow of this dissertation general steps. ..36
Figure 4.2 Detailed scheme of each SX-Aurora core. ..36
Figure 4.3 Fortran source code snippet, illustrating a loop unrolling applied to the

benchmark NAS..38
Figure 4.4 Snippet of C source code, illustrating an unrolling loop applied to RTM.....39
Figure 4.5 Quantum walk probability distribution in a 121 square mesh.43
Figure 4.6 Example results of the FTRACE command ..47

Figure 5.1 MFLOPS X NAS Application ...50
Figure 5.2 NAS benchmark: Vector operation rates [%] X NAS app.............................50
Figure 5.3 RTM: MFLOPS X Input Size ..52
Figure 5.4 RTM: Rate of vector operations [%] X Input Size ..52
Figure 5.5 Demonstration data set comparison for outcome validation between x86

and SX-Aurora. ...54
Figure 5.6 Comparison for outcome validation between x86 and SX-Aurora, re-

lated to the real world data set. ...55
Figure 5.7 Resistance difference in percentage, for the Demonstration data set out-

come between SX-Aurora X x86..56
Figure 5.8 Resistance difference in percentage, for the Petrobras data set outcome

between SX-Aurora X x86..56
Figure 5.9 Resistance difference in percentage, for the Demonstration data set out-

come between two x86 executions..56
Figure 5.10 Resistance difference in percentage, for the Petrobras data set outcome

between two x86 executions. ..57
Figure 5.11 Results in seconds of experiment 1 utilizing x86 architecture57
Figure 5.12 Results in seconds of experiment 1 utilizing the SX-Aurora58
Figure 5.13 Experiment 1 comparison between x86 and SX-Aurora runtimes58
Figure 5.14 Experiment 2 comparison of the runtimes between x86 and SX-Aurora....59
Figure 5.15 Runtime for real world dataset - 1 Iteration - x86 architecture.60
Figure 5.16 Runtime for real world dataset - 1 Iteration - SX-Aurora.61
Figure 5.17 Comparison of experiment 3 for x86 and SX-Aurora runtimes61
Figure 5.18 Runtime comparison between x86 and SX-Aurora for all three exper-

iments..62
Figure 5.19 Runtime for each matrix input size: 1024, 4096 and 16384 and 32768

nonzero entities ...63
Figure 5.20 Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for

the smaller input size of 1024 nonzero elements ..64
Figure 5.21 Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for

the smaller input size of 4096 nonzero entities...64
Figure 5.22 Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for

the smaller input size of 16884 nonzero elements ..65
Figure 5.23 Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for

the smaller input size of 32768 nonzero entities...66

LIST OF TABLES

Table 4.1 SX-Aurora Architecture. ...37
Table 4.2 Microarchitecture Cascade Lake (x86). ..37
Table 4.3 Microarchitecture Broadwell (x86). ..37

CONTENTS

1 INTRODUCTION...17
1.1 Simulation..18
1.1.1 Oil and gas prospecting..18
1.1.2 Quantum Walk Simulators ...19
1.2 Objectives...19
1.3 Contributions of this work ...20
1.4 Document organization ..21
2 BACKGROUND CONCEPTS...23
2.1 Quantum-Walk Models ..23
2.2 Optimization techniques...24
2.3 Vector processors and Vectorization ...25
2.4 Controlled-source electromagnetic method..26
3 RELATED WORK ...29
3.1 SX-Aurora..29
3.2 Optimization Techniques..30
3.3 MARE2DEM...31
3.4 Hiperwalk ..32
3.5 Final Thoughts ..33
4 METHODOLOGY ...35
4.1 General Methodology and Infrastructure ..35
4.1.1 Infrastructure..35
4.2 NAS benchmark and RTM ..37
4.3 MARE2DEM...39
4.4 Hiperwalk ..42
4.4.1 Neblina...42
4.4.2 Experiments ...44
4.5 Data collection and Hardware Counters ..44
4.5.1 Linux perf...45
4.5.2 NEC FTRACE ...46
4.5.3 Score-P...47
5 INVESTIGATION AND RESULTS..49
5.1 Optimization with loop unrolling and inlining...49
5.1.1 NAS Benchmark inlining and loop unrolling ..49
5.1.2 RTM optimization with inlining and loop unrolling..51
5.2 NEC MARE2DEM Implementation ...53
5.2.1 Outcome validation ..53
5.2.2 Initial artificial demonstration runtime ..55
5.2.3 Effects of one worker on the first data set..59
5.2.4 Real world data set...60
5.3 Hiperwalk’s improvements with vectorization...62
6 CONCLUSIONS AND FUTURE WORK..67
6.1 Future work...68
6.2 Publications ...69
REFERENCES...71
APPENDIX A — RESUMO EXPANDIDO ..77
A.1 Introdução...77
A.1.1 Simulação..78
A.1.1.1 Prospecção de petróleo e gás ...78

A.1.2 Simuladores de caminhada quântica ...79
A.1.3 Objetivos ...79
A.1.4 Contribuições deste trabalho...81
A.1.5 Principais resultados alcançados...81

17

1 INTRODUCTION

High performance computing (HPC) is indispensable for many industries, com-

mercial sectors and research today. It provides various benefits ranging from facilitating

data analysis to enabling new simulations and modeling (EZELL; ATKINSON, 2016).

Thus, advances in HPC are significant. By increasing the dimensions and decreasing the

execution time, we can benefit different areas of society.

Application performance largely depends on the architecture used and how the

program was coded to run on it. Currently, for acceleration purposes, different architec-

tures are used, such as multicore, manycore, specific accelerators and GPUs (Graphics

Processing Units).

A large number of architectures, while being attractive and flexible, imposes new

challenges for the programmer (MITTAL; VETTER, 2015). The increasing complexity

of the architecture will also increase the difficulty of implementing the application. It is

worth mentioning the idea that there are several common bottlenecks, such as those found

in the memory subsystem, which includes cache, thrashing pollution, among others.

In addition to using new architectures, several techniques are employed to boost

performance, some of which are unique to specific architectures. For example, vectoriza-

tion allows an instruction to act on multiple pieces of data, but not all of them implement

support for it. Other optimizations include increasing the cache memory hit rate, which is

possible on different architectures.

In this sense, NEC Corporation launched a new architecture, a vector processor

called SX-Aurora. This processor has eight processing cores at 1.6 GHz and three levels

of cache memory(KOMATSU et al., 2018). One of the advantages of this architecture in

relation to the other existing ones is the size of its vector units, 256 units. Furthermore, the

NEC compiler makes decisions automatically. That is, it identifies vectorizable areas and

generates code for that. However, the compiler still needs help from the programmer to

facilitate code interpretation, in addition to improving automatic vectorization, following

specific guidelines and, in this case, using optimization techniques such as loop unrolling

and inlining.

Vector architectures are Single Instruction Multiple Data (SIMD), which have

great potential for highly parallelizable scientific applications. Among these are numeri-

cal applications, time prediction, multimedia processing (KSHEMKALYANI, 2012), col-

lision simulation (HENNESSY; PATTERSON, 2019), data compression, and others. One

18

prominent feature of these vector processors is the possibility of using an instruction to

reproduce hundreds of operations. Moreover, all the results of the elements of a vector are

independent, and therefore, checking the resulting data is not necessary. Memory access

is done only once for each vector, inferring a small memory access latency.

1.1 Simulation

Another way to improve scientific output is through simulation. Simulators are

necessary and powerful tools used in various fields, from research to commercial and

industrial enterprises.

1.1.1 Oil and gas prospecting

The investments of the petrochemical industry in controlled-source electromag-

netic (CSEM) have only increased in the last 15 years, and the academic interest goes

along with it (CONSTABLE; SRNKA, 2007) (COOPER; MACGREGO, 2020). The

main reason for these investments is to reduce risk. CSEM provides more data and, there-

fore, more information to give new insights into the seafloor bed, consequently reducing

risk (FANAVOLL; GABRIELSEN; ELLINGSRUD, 2014).

CSEM data acquisition produces a large quantity of data, leading to a tremendous

computational problem for solving inverse modeling. Some regions with complicated

geometry may require additional data, mainly to produce full 3D inversion. However,

2D inversion is much quicker and provides a more straightforward interpretation of actual

data in a shorter runtime, making it a more robust, sensible, and feasible approach (PRICE

et al., 2008).

One necessary implementation to manage this kind of CSEM data is the applica-

tion "Modeling with Adaptively Refined Elements for 2D Electromagnetics", referred to

in this work as MARE2DEM (KEY, 2016). MARE2DEM is an open-source code for 2D

inversion of CSEM data, magnetotelluric (MT) data, and surface-borehole EM data, by

parallel adaptive finite elements for onshore, offshore, and downhole environments. Due

to the large quantity of data provided by CSEM, high computational power is necessary to

execute such data set with efficiency. Therefore, efficient code and a powerful computer

are preferred.

19

1.1.2 Quantum Walk Simulators

Quantum computing advancements will inevitably increase computational power

and efficiency (EASTTOM, 2021). These improvements are necessary as modern com-

puters struggle to process complex biological systems, chemical structures and new ma-

terials (TRABESINGER, 2017). Even unlikely areas, like Virtual Reality, will be able

to take advantage of this new technology (ZABLE et al., 2020). IBM has achieved 127

qubits in its latest quantum-computing chip, marking a new milestone for the whole in-

dustry, the first three-digit qubit count (BALL, 2021). IBM aims to surpass 1000 qubits

by 2023, targeting a never seen increase in computational power.

However, these quantum computers and processors are not fully available to the

general public. To fill this gap between the general scientific community and quantum

computer science, quantum simulators are the best alternative.

A category of such simulators is quantum walk simulators, even though they are

rare. One of those rare cases is the Hiperwalk simulator (LARA; LEãO; PORTUGAL,

2017). This simulator is divided into three parts. The first is a user interface written in

Python that generates arrays and vectors based on user input in the main program. The

second part consists of the calculations for the quantum steps. The Neblina-core library is

used, developed at the National Laboratory of Scientific Computing (LNCC). This library

facilitates matrix-vector and vector-vector type calculations in heterogeneous architec-

tures. Finally, the last part is a module capable of calculating statistical distributions and

generating output data files.

1.2 Objectives

This master’s dissertation has performed an evaluation, adaptation and optimiza-

tion of four separate applications in three distinct parts. These applications are the NAS

benchmark, Reverse Time Migration (RTM), MARE2DEM and Hipewalk.

The first part mentioned above is to optimize the performance of real applications

and a set of benchmarks using loop unrolling and inlining techniques, seeking to improve

the automatic vectorization performed by the compiler. More precisely, the present work

presents the following contributions:

• An experimental performance analysis of the NEC SX-Aurora TSUBASA vector

20

accelerator is performed. A benchmark of parallel synthetic maps and an actual

application is used.

• Show that the loop unrolling and inlining techniques are capable of significantly im-

proving the performance of applications when executed in SX-Aurora TSUBASA

in situations where the performance gain is not automatically by its compiler.

The second part is an investigation, adaptation and analysis of MARE2DEM’s ex-

ecution utilizing a vector architecture, the SX-Aurora, and the traditional x86 architecture.

Two data sets will be used, a synthetic one and a real-world case provided by Petrobras,

Brazil’s oil & gas corporation. Therefore, the main goals of this research are:

• The implementation of MARE2DEM on NEC’s SX-Aurora. The standard Intel

math library was substituted for the MARED2DEM in the SX-Aurora because

NEC’s architecture does not support it. All entries that required Intel’s math library

were rewritten, supporting NEC’s mathematical libraries.

• To investigate the performance analysis of this implementation by comparing it with

x86 architecture CPUs.

The third part is regarding the adaptation and performance analysis of Hiperwalk

in NEC’s SX-Aurora. The main goals are:

• Introduction of the Hiperwalk simulator, explaining its use cases;

• The implementation of the kernel of HiperWalk on NEC’s SX-Aurora TSUBASA;

• A performance analysis by comparing the NEC’s HiperWalk adaptation with NVI-

DIA’s GPUs.

The primary goal of this dissertation is to elevate the supposed potential that a vec-

tor architecture can have in the right circumstances, especially the SX-Aurora TSUBASA,

e. g. high memory bandwidth.

1.3 Contributions of this work

The main contributions of this work are the performance analysis of classical opti-

mization techniques for SX-Aurora using two different applications, and the code adapta-

tion and performance analysis of a quantum walk simulator (Hiperwalk) and a geophysics

fine element code used in the gas and petroleum industry (MARE2DEM). It was found

that the optimization techniques were able to increase performance in most cases, and the

21

code adaptations also had performance improvements under the right circumstances.

1.4 Document organization

This dissertation has been organized as follows. Section 2 presents the theory

regarding the optimization techniques and different applications utilized in this work.

Following, section 3 presents and discusses related work regarding vector architectures,

MARE2DEM and Hiperwalk. The methodology, workflow and execution environment

are presented in section 4. Section 5 depicts the experimental results of our two ap-

proaches, divided into three sections. Finally, section 6 presents the conclusion and pos-

sible future work.

22

23

2 BACKGROUND CONCEPTS

This chapter will provide brief explanations on four background concepts related

to this dissertation and to its three parts, specifically the Quantum-Walk Models, opti-

mization techniques, vectorization and CSEM.

2.1 Quantum-Walk Models

The first proposed quantum walk model was the Discrete-Time Quantum Walks

(AHARONOV; DAVIDOVICH; ZAGURY, 1993). In 2003, Shenvi et al. proposed and

developed a quantum search routine for a hypercube, achieving a time complexity of

O(2
√
N), where N is the number of vertices in the graph (SHENVI; KEMPE; WHALEY,

2003). Comparing it to the classical search algorithm, it has a quadratic gain. A similar

method was developed by Ambainis et al. to create another quantum search algorithm

for a two-dimensional lattice with a time complexity of O(2
√

N .log(N)), close to be-

ing quadratically better than previous classic algorithms (O(N .log(N))) (AMBAINIS;

KEMPE; RIVOSH, 2004).

Building upon Abainis et al. works, Tulsi introduces another qubit in the process,

improving the time complexity (TULSI, 2008). There are even more improvements and

different, however similar, methods in the literature, for example, Hein and Tanner (HEIN;

TANNER, 2010), Abal et al. (ABAL et al., 2012), and Abal et al. (ABAL et al., 2010).

The notion of random quantum walks can be simplified to a spin -1/2 (spin is the

angular momentum of elementary particles) particle going through motion in one dimen-

sion and its decision to change its motion taking a new step to the left or to the right. This

decision is dependant on a calculation done within its z axis of its spin (AHARONOV;

DAVIDOVICH; ZAGURY, 1993).

As a very through review is done Venegas-Andraca regarding quantum walks

(VENEGAS-ANDRACA, 2012). In this work he touches and elaborates on many top-

ics regarding the method. He gives the fundamentals of quantum walks, first starting with

a base in random walks on an unrestricted line. Showing hitting time of classical and

unrestricted classical discrete random walk on a line. Also, while on the fundamentals,

he shows the Discrete Quantum Walk on a line, explaining the coin and its structure, the

Schrodinger approach, the relation of Schrodinger and Discrete Path Integral Analysis to

the Hadamard Walk.

24

Furthermore, Venegas-Andraca approaches with a general coin the Discrete Quan-

tum Walk on a line and also shows it with boundaries. Now with several coins it is possible

to learn about Unrestricted quantum walks on a line.

Most importantly its the Discrete quantum walks on graphs and the algorithms

based on these quantum walks, especially concerning the Hiperwalk simulator. Venegas-

Andraca gives more in depth knowledge about other subjects regarding quantum walks

and also of great importance, touching upon quantum walks and its universality, the sim-

ulation of quantum walks and quantum algorithms utilizing classical computer paradigms

and the simulation of quantum systems by quantum walks.

The most notable division in quantum walk models is the Discrete-time Quantum

Walk (DTQW) and Continuos-time Quantum Walk (CTQW). Their differences are better

described as "[...] DTQW is defined on a discrete-time domain, and in contrast, CTQW

is defined on a continuous-time domain." (JAYAKODY; MEENA; PRADHAN, 2021).

Another well known quantum walk model is the Szegedy’s Quantum Walk. Por-

tugal et al. describes it perfectly: "Szegedy’s QWs are obtained by quantizing classical

discrete Markov chains described by some transition matrix. Szegedy also developed QW-

based search algorithms inspired by a previous known coined-based search algorithm. "

2.2 Optimization techniques

In Part one of this work it is implemented two distinct techniques that are widespread,

inlining and loop unrolling.

Inlining is the technique of placing a copy of a function when it is called. This

improves execution by eliminating unnecessary overheads such as function call instruc-

tions related to using registers and stacks. However, if the function to be applied to the

technique is very large, that is, it takes up much space, inlining can end up consuming a

lot of the instruction cache memory, deteriorating the application’s performance. Thus, it

is recommended to use it for functions that take up little space.

Due to the nature of inlining the function will be expanded inside of another func-

tion. This will increase its spatial locality as well the number of function calls, which may

in turn decrease the cache miss ratio (CHEN et al., 1993). With the enlargement of the

code lines, the compiler can more effectively place its instructions, even improving load

forwarding performance due to sequentially growth (CHEN et al., 1993).

The loop unrolling technique aims to transform a loop so that it applies more than

25

one execution per iteration. This minimizes the number of hops and instructions. In

addition, it can facilitate parallelization and vectorization, as long as the loop variables

are independent.

So, loop unrolling generally becomes effective when the compiler can simulate the

computations done by the loop control (HUANG; LENG, 1999). However, with the help

of the programmer, before the compiler even touches the code, it is possible to efficiently

insert this technique, even in sections that the compilers can’t recognize.

2.3 Vector processors and Vectorization

As defined by Hennessy:

Vector architectures grab sets of data elements scattered about memory, place
them into large, sequential register files, operate on data in those register files,
and then disperse the results back into memory. A single instruction operates
on vectors of data, which results in dozens of register–register operations on
independent data elements. These large register files act as compiler-controlled
buffers, both to hide memory latency and to leverage memory bandwidth.
Since vector loads and stores are deeply pipelined, the program pays the long
memory latency only once per vector load or store versus once per element,
thus amortizing the latency over, say, 64 elements. Indeed, vector programs
strive to keep memory busy. (HENNESSY; PATTERSON, 2012, p. 264)

One of the main features of these vector processors is the possibility of using one

instruction to reproduce hundreds of operations. In addition, all the results of the elements

of a vector are independent of each other, and therefore, it is not necessary to check the

data for risk. Memory access is done only once for each vector, inferring a small memory

access latency.

Of of the main factors today for code vectorization and its success is the structure

of these applications. True data dependencies, which are inherit to some programs, are to

be avoided and, if possible, removed entirely (HENNESSY; PATTERSON, 2012).

In the case of NEC’s latest vector machine, the compiler handles automatically

the vectorization where it is possible to apply. However the programmer should assist

the compiler in recognizing the sections of code to be vectorized. To achieve that, NEC

provides a most useful manual (NEC, 2020a).

Moreover, SX-Aurora main selling point is its peak performance of 3,07 Ter-

aFLOPs and the vector length of 256 units. These two features are extremely important

to keep in mind. Due to the nature of vector processors, vector length is self explana-

tory. Much of the performance can be associated to it, as more calculations are done per

instruction, higher performance is achieved. Whoever, memory bandwidth is different.

26

This advantage is primordial to some programs and applications that deal with higher

quantities of data.

2.4 Controlled-source electromagnetic method

Controlled Source Electromagnetics (CSEM) is a marine geophysical method map-

ping the subsurface resistivity. The CSEM method works as follows: A electrical-field

transmitter is rested close to the seafloor but not at the bottom. Then, electromagnetic

receivers are spaced at specific ranges on the seafloor, resulting in the CSEM data in these

range intervals. Figure 2.1 represents the process mentioned above.

Figure 2.1: Schematic view representing the CSEM method.

So, a boat tows a horizontal electric dipole source (HED), the transmitters, across

a line (2D) or grid (3D) of receivers. Through the emission of and electromagnetic field

the signal is able to propagate, traveling in the subsurface and back to the receivers.

A complete evaluation of CSEM is described by Chave et al. " Controlled source

EM methods utilize time-varying electric and magnetic dipole sources of known geom-

etry to induce electric currents inside the conducting earth " (CHAVE; CONSTABLE;

EDWARDS, 2012).

Also, CSEM adheres, as other electrical methods, to the equivalency principle

which states, as explained by Mehta et al., " the response depends, within limits, primar-

27

ily on the transverse resistance of the target (resistivity thickness product) ". This then

excludes that the response depends individually on the thickness and resistivity.

28

29

3 RELATED WORK

This chapter will present several scientific articles and manuals from the areas

explored in this dissertation. Thus, studies in the fields of parallel and high performance

computing (general optimization techniques and SX-Aurora), quantum computing (Quan-

tum walk theory and simulation), geophysics (MARE2DEM and CSEM) and instrumen-

tation (Score-P).

The general structure will be a summary followed by a brief discussion around its

relation to this dissertation.

3.1 SX-Aurora

The work by Komatsu et al. (KOMATSU et al., 2018) highlights the potential

of the SX-Aurora TSUBASA architecture, comparing it to other architectures, including

Intel Xeon Phi 7290, NVIDIA Tesla V100 and SX-Ace. This comparison is made by

running benchmark applications and two real applications. The results show that the SX-

Aurora architecture can run efficiently, up to 3.5×, in addition to getting a higher speedup

of up to 2.8×.

Yokokawa et al. (YOKOKAWA et al., 2020), demonstrates the capability of the

SX-Aurora TSUBASA architecture for I/O applications, comparing the I/O system of the

new architecture with typical I/O systems. The distinct accelerated I/O function present

in the architecture, for some instances, triples the performance in MB per second.

A performance evaluation of SX-Aurora is done by Komatsu and Kobayashi (KO-

MATSU; KOBAYASHI, 2020). It aims to clarify its potential against benchmark pro-

grams. It uses Stream benchmark to evaluate the memory bandwidth, then the Himeno

and the HPCG benchmarks. They conclude that from these benchmarks, the remarks con-

cerning the high memory bandwidth can be sustained, achieving from 1.37 to 11.7 times

more bandwidth in the Stream benchmark, compared with 4 other architectures, including

its predecessor, SX-Ace.

In a cross between this chapter and the quantum chapter, Kobayashi and Komatsu

report an overview of an ongoing project concerning a "Quantum-Annealing Assisted

Next Generation HPC Infrastructure and its Applications" (KOBAYASHI; KOMATSU,

2021). This infrastructure combines HPC and Quantum-Annealing engines. SX-Aurora

takes a center stage in this infrastructure, therefore, a performance evaluation is also pre-

30

sented. Throughout their analysis, they show the potential of combining SX-Aurora

and Quantum Annealing to provide high-performance and high-sustained computing,

through SX-Aurora capacity to increase performance of memory intensive programs and

the Quantum Annealing possibilities in data clustering optimization.

3.2 Optimization Techniques

It is proposed by Serpa et al. (SERPA et al., 2017) different optimization strate-

gies for a wave propagation model in different architectures. The study shows that using

techniques such as loop interchange, vectorization and mapping of data and threads, it

was possible to achieve a performance increase of up to 8.5 times.

Memory alignment and cache blocking techniques are presented by Castro et al.

(CASTRO et al., 2016), improving the performance of an acoustic wave propagation ap-

plication. Similar to Castro et al., in order to achieve better performance, in this work,

two techniques will be implemented, loop unrolling and inlining.

An overview of optimization techniques for cache memory is provided by Kowar-

schik and Weiß (KOWARSCHIK; WEISS, 2003), demonstrating techniques such as: loop

interchange, loop fusion, loop blocking, among others. Some of these techniques are

developed in the present work, observing their effects on a vector architecture.

Jacquelin et al. (JACQUELIN; MARCHAL; ROBERT, 2009) propose algorithms

that use cache memory for multicore architecture and that minimize memory access time,

thus decreasing cache memory failure rate, as well as timely access to shared memory and

cache. The impact of cache memory failure rate is also explored in this article, focusing

now on a vector architecture.

In the work by Sherlon et al. (SILVA; SERPA; SCHEPKE, 2016) is compared dif-

ferent optimization techniques, such as loop unrolling and loop tiling. It demonstrates its

impact on parallel applications, achieving performances of up to 20 times the original. In

this work, we intend to analyze the impact of loop unrolling and inlining in a vector archi-

tecture, different from the focus on the Xeon processor of (SILVA; SERPA; SCHEPKE,

2016).

Theodoris et al. work shows that predicting optimal usage of inlining optimization

is non-trivial and a ongoing effort to improve compilers decision making (THEODOR-

IDIS; GROSSER; SU, 2022). Mainly, the paper shows an investigation of optimal inlin-

ing utilization by applying SPEC2017 benchmark. The result of their work is shown by

31

the creation of an efficient autotuning strategy for the inlining technique, increasing its

performance by up to 27%, in the case of the SPEC2017 benchmark.

Rodrigo et al. proposes in their work a novel loop rolling technique called Ro-

LaG (ROCHA et al., 2022). This new technique is capable of detecting isomorphic code

through SSA graphs. To compare, SPEC2017 and AnghaBench were utilized to bench-

mark this new technique. They show it was possible to achieve up to 2.7% and 9.12%

code reduction, respectively.

3.3 MARE2DEM

Myer, through the use of MARE2DEM, explores 2D inversion of marine CSEM

and MT data (MYER; KEY; CONSTABLE, 2015). The primary purpose is to make the

inversion aware that the subsurface comprises similar geologic domains. The presented

workflow is subjected to CSEM limitations, making fine-scale structural details hard to

be resolved. However, in confounding settings, it is still possible to be used to map the

rough qualities and general extent.

Grayver presents it as a new 3-D parallel inversion scheme for CSEM data in the

frequency domain based on a direct forward solver (GRAYVER; STREICH; RITTER,

2013). Gauss-Newton minimization provides data of model inversion, proving the ap-

proach’s applicability to real-world problems, showing real-world data sets being possible

to manage with only medium-sized clusters.

The application MARE2DEM (KEY, 2016) implements 2D forward and inver-

sion modeling algorithms for MT and CSEM data. The inversion modeling uses CSEM

information provided by a grid of electromagnetic receivers resting on the seafloor bed

and its response to a transmitter below the sea’s surface while being towed by a ship.

This response happens in known intervals and later is converted into electrical resistivity,

making it possible to study the components below the seabed.

Furthermore, MARE2DEM employs finite element method (KEY; OVALL, 2011)

to find the resistivity model. To accurately calculate CSEM and MT models’ solutions,

Kerry Key presents a parallel goal-oriented adaptive finite element method in his work.

He also introduces a reliable goal-oriented error to guide the iterative mesh refinement.

The overall performance is assessed utilizing clusters of 800 processors with real-world

data sets, achieving execution times of only a few seconds.

Yavich and Zhdanov published their work on improving the finite element model-

32

ing through finite difference (YAVICH; ZHDANOV, 2020). This novel implementation

used a finite difference solver based on implicit factorization of the matrix. A comparison

is made between their implementation and three other public available programs. One of

them is MARE2DEM, and it was possible to achieve improved performance with similar

accuracy.

Score-P is a unified performance-measurement infrastructure used for profiling,

event tracing, and evaluating HPC applications (KNÜPFER et al., 2012). It provides a va-

riety of different performance evaluation tools, such as Tau (SHENDE; MALONY, 2006),

Periscope (GERNDT; FÜRLINGER; KEREKU, 2005), Scalasca (GEIMER et al., 2010),

and Vampir (KNÜPFER et al., 2008). Each one addresses Score-P behavior, utilizing cer-

tain factors. Score-P is a complete tool that focuses on bringing the tools mentioned above

and being the central piece that binds them together, accommodating all components.

Hanbo et al. shows in his article a novel wavelet Galerkin method (CHEN; XIONG;

HAN, 2022). This new method is important, mainly, to solve the forward modeling prob-

lem present in Marine Controlled-Source Electromagnetic Method (MCSEM). To evalu-

ate this new method, it was compared to the finite element and difference and the analyti-

cal methods. Their comparison shows that this new method has an advantage in memory

utilization and computing time.

3.4 Hiperwalk

The theory of quantum walks is constantly evolving. The work of Willsch et al.

demonstrates that quantum walks can be modeled without using the notion of particle-

wave duality. For the simulation of quantum walks, the simulator reproduces the ex-

perimental data of an application of quantum walks through atoms in a given trajectory,

starting from the concept of refutability. Any classical mechanics model can be excluded

to calculate the trajectory of the atom (WILLSCH et al., 2020).

Panahiyan applies quantum walks similarly to Pedro Lara (LARA; LEãO; POR-

TUGAL, 2017). Using a step-dependent simulation using the coin concept, it simulates

topological phases and invariants, boundary states, and the possibility of phase transition

(PANAHIYAN; FRITZSCHE, 2019).

Matsuura (MATSUURA, 2021) describes the promise and challenges of bring-

ing quantum computing out of the lab and into a commercial complete computer system

and will give an overview of Intel’s quantum computing research and system develop-

33

ment. Many interdisciplinary research questions cross the boundaries between physics,

engineering, and computer architecture in constructing a full-stack quantum computing

system.

The paper Simulation of Quantum Walks using HPC by Pedro Lara, Aaron Leão,

and Renato Portugal describes the Hiperwalk simulator used in this work (LARA; LEãO;

PORTUGAL, 2017). This work is one of the few quantum walk simulators available to

the public and one of the only ones to use parallelism for the simulation. This simulator

works with vector architectures such as SX-Aurora, as well as other SIMD architectures,

like NVIDIA GPUs. However, the simulator is based on languages and libraries that

restrict portability, such as OpenCL, thus being a good source for adaptation.

The QWalk simulator (MARQUEZINO; PORTUGAL, 2008) is a C-program for

simulating quantum walks on lattices. The pyCTQW simulator (IZAAC; WANG, 2015)

aims to simulate multi-particle continuous-time quantum walks using distributed mem-

ory. The QSWalk.jl simulator (GLOS; MISZCZAK; OSTASZEWSKI, 2019) is a Julia

package that aims to simulate quantum stochastic walks on directed weighted graphs.

Anglés and Pérez explore in their article a quantum walk that is capable of sim-

ulating the pattern of a 1/2 particle spin with an extra dimension in a ordinary spatial

dimension with warped geometry (ANGLéS-CASTILLO; PéREZ, 2021). Through the

Dirac equation it is possible to foresee properties of the quantum walk. As the result, they

are able to correlate localization and high energy physics in quantum walk, finally be-

ing possible to conclude that for simulation of field theory models with more dimensions

reliant on curvature of space-time, quantum walks are prime contenders.

3.5 Final Thoughts

When comparing the works presented previously and the present work, the fo-

cus on the new SX-Aurora TSUBASA architecture is a differential due to its essence of

vector processor and its unique compiler, which, for example, promotes automatic vec-

torization. Another great feature of NEC’s vector architecture is its very large 256 units

vector length, which contributes to the processors ability to manipulate matrices. Also,

it is imperative to note the other main selling point of SX-Aurora, its high bandwidth

memory. To achieve high performances, this advantage must be utilized, which implies

tailoring the applications and choosing the right ones initially, to best harvest this feature.

Furthermore, even in the works presented on the new architecture, none of them

34

implements simple and known optimization techniques, which is the case of those applied

in this work, the loop unrolling and inlining techniques.

35

4 METHODOLOGY

This chapter will focus on all three parts’ general and specific methodologies and

the instrumentation to acquire data. First, the execution environment and the standard

methodology for experimentation and testing. Next, the specifics for each part and the

changes implemented for adaptation. At last, the instrumentation with perf, FTRACE and

score-P.

4.1 General Methodology and Infrastructure

The general experimentation workflow follows four steps: preparing the environ-

ment, running the experiments, collecting data and analyzing. Figure 4.1 shows the steps

with additional information. The blue-green rectangles in the middle represent the signif-

icant steps. The shapes with red color are the three experiments performed. Moreover,

the green circles show additional work related to that step.

The execution environment preparation means creating the routines for compila-

tion/execution and data visualization. Secondly, the experiments selected in the previous

step are carried out in the work environment. The third workflow step is data collection

and management, using R, score-P, perf or FTRACE.

4.1.1 Infrastructure

The experiments utilized the resources of the Parque Computacional de Alto De-

sempenho (PCAD) infrastructure, <http://gppd-hpc.inf.ufrgs.br>, at INF/UFRGS. Figure

4.2 shows a detailed schematic of the SX-Aurora architecture. The environment has eight-

core, global memory, and cache L3, each core with memory cache L1 and L2, one unit of

scalar processing (SPU), and a vector processing unit (VPU), with each VPU containing

load buffer, store buffer, and 32 vector parallel pipeline (VPP) (NEC, 2020d). The table

4.1 shows the detailed specs of the architecture, containing the specs of the processors,

cache, and global memories.

The Intel Cascade Lake microarchitecture is utilized in part two of this work,

involving MARE2DEM, referred there as the x86 architecture. In Table 4.2 you have

the specifications of the Intel Xeon Gold 6226 processor, which has 12 cores operating

http://gppd-hpc.inf.ufrgs.br

36

Figure 4.1: Workflow of this dissertation general steps.

Figure 4.2: Detailed scheme of each SX-Aurora core.

at a frequency between 2.7 GHz and 3.7 GHz. Each core has 32 KB of the L1 cache of

data and instructions and a private 1 MB L2 cache. The L3 shared across all cores has a

capacity of 16.5 MB, and the machine also features 192 GB of DRAM memory (PEREZ

et al., 2018).

For the tests in the third part, regarding Hiperwalk, we used a Tesla machine. It

consists of 2 x Intel Xeon E5-2699 v4 Broadwell (Q1’16), 2.2 GHz, 44 cores (22 per

37

Table 4.1: SX-Aurora Architecture.
Vector Engine Type 10BE
Processor 8 cores @ 1408 MHz
Microarchitecture SX-Aurora
Cache 8 X 32 KB L1I 8 X 32 KB L1D;

8 X 256 KB L2; 8 X 2 MB L3
Memory HBM2 48 GB, 900 MHz

Table 4.2: Microarchitecture Cascade Lake (x86).
Processor 2 X 12 cores @ 2700 - 3700 MHz;
Microarchitecture Cascade Lake
Cache 12 X 32 KB L1I; 12 X 32 KB L1D;

12 X 1 MB L2; 16,5 MB L3
Memory DDR4 192 GB, 2933 MHz

CPU), totaling 44 cores and 88 threads, 256 GB DDR4 RAM, 4 x NVIDIA Tesla P100,

Pascal, 4 x 3584 CUDA Threads.

The Intel Cascade Lake microarchitecture represents the x86 architecture with

NVIDIA’s P100 GPU. In Table 4.3 you have the specifications of the Intel Xeon Gold

6226 processor, which has 22 cores operating at a frequency between 2.7 GHz and 3.7

GHz. Each core has 32 KB of the L1 cache of data and instructions and a private 1 MB

L2 cache. The L3 shared across all cores has a capacity of 16.5 MB, and the machine also

features 192 GB of DRAM memory. (PEREZ et al., 2018). The NVIDIA P100 is a Pascal

GPU with 3584 CUDA cores (NVIDIA, 2016).

4.2 NAS benchmark and RTM

For the evaluation of SX-Aurora, we used the benchmark NAS (BAILEY et al.,

1991) and an actual application used by the oil industry for seismic migration, called Re-

verse Time Migration (RTM) (ZHOU et al., 2018; FOWLER; DU; FLETCHER, 2010;

FLETCHER; DU; FOWLER, 2009). The NAS Benchmark is a series of programs ex-

plicitly designed to evaluate the performance of parallel computers. The RTM modeling

constitutes the simulation of the propagation of waves through time, using the acoustic

Table 4.3: Microarchitecture Broadwell (x86).
Processor 22 cores @ 2200 MHz;
Microarchitecture Broadwell
Cache 12 X 32 KB L1I; 12 X 32 KB L1D;

12 X 1 MB L2; 16,5 MB L3
Memory DDR4 256 GB, 2933 MHz
GPU NVIDIA P100, Pascal, 3584 CUDA

38

equations and the fact that different geological layers have different speeds.

Thus, the applications used for the benchmark NAS were: BT, CG, EP, FT, IS,

MG, SP and UA. The input data class used is B. Specifications for these programs are

found in the NAS documentation (BAILEY et al., 1991). All experiments, benchmark

NAS and RTM modeling, were run ten times, then taking the mean and standard error.

Figure 4.3: Fortran source code snippet, illustrating a loop unrolling applied to the bench-
mark NAS.

do k=ksize-1,0,-1
do m=1,BLOCK_SIZE

do n=1,BLOCK_SIZE, 2
rhs(m,i,j,k) = rhs(m,i,j,k)

lhs(m,n,cc,k)*rhs(n,i,j,k+1)
rhs(m,i,j,k) = rhs(m,i,j,k)

lhs(m,n+1,cc,k)*rhs(n+1,i,j,k+1)
enddo

enddo
enddo

Both applications will receive the same optimizations. The first technique is inlin-

ing which consists of replacing the function call with the function itself. In this work, the

inlining technique was made by combining two modes, using the flag -finline-func-

tions and manually, and thus, the technique can be applied to functions specific, explor-

ing only the benefits of the technique. In addition, the loop unrolling technique was also

applied, which is the action of unrolling the loop. In the following sections, we have ex-

amples of the loop unrolling technique, specifically the Algorithm 4.3 and Algorithm 4.4,

which show the technique applied in the benchmark NAS and in RTM modeling.

The version used is NPB 3.4.1 OpenMP (BAILEY et al., 1991). The applications

BT, CG, EP, FT, IS, MG, SP and UA were executed in their original versions. The BT

program is a tri-diagonal block solver. CG consists of the conjugate gradient method with

irregular memory and communication access. EP is an Embarrassingly parallel appli-

cation. FT is the fast Fourier transform in 3D. Integer sorting is implemented in the IS

program. MG is a 3D potential field solver. SP is similar to BT, being a pentadiagonal

scalar solver. Finally, we have UA, a solver for an unstructured adaptive mesh.

The compilation uses the exclusive NEC compiler and some flags of this compiler,

namely -O2 and -fopenmp (NEC, 2020b). It is referred to here as the "original" version

the unmodified NAS code only applied to the automatic vectorization of the SX-Aurora

TSUBASA machine. The “optimized version” consists of applying the optimizations

presented above, inlining and loop unrolling.

39

Figure 4.4: Snippet of C source code, illustrating an unrolling loop applied to RTM
for (i=1; i<sx*sy*sz; i+=4) {
maxvel=fmaxf(maxvel,vpz[i]*sqrt(1.0+2*epsilon[i]));
maxvel=fmaxf(maxvel,vpz[i+1]*sqrt(1.0+2*epsilon[i+1]));
maxvel=fmaxf(maxvel,vpz[i+2]*sqrt(1.0+2*epsilon[i+2]));
maxvel=fmaxf(maxvel,vpz[i+3]*sqrt(1.0+2*epsilon[i+3]));

}

Data collection is done through NEC’s profiling program, PROGINF and FTRACE

(NEC, 2020c). This program gives us much information regarding the architecture, and

for this study, mainly the FLOPS and the cache memory failure rate.

The compiler, when inserting specific flags, in this case -report-all, -fdia-

g-inline=2, -fdiag-parallel=2 and -fdiag -vector=2 (NEC, 2020b), m-

akes a complete report, containing, for example, vectorized and non-vectored loops, func-

tions that block vectorization, nested loops, extended loops, among others. This helps in

deciding where to apply the optimizations. For example, for the BT program, the com-

piler was not vectoring some of the areas of computation, specifically the subtraction and

multiplication parts of matrices. Analyzing the code and using the guide developed by

NEC (NEC, 2020b), it is possible to apply the optimization techniques already discussed

and guidelines to facilitate vectorization by the compiler. The Algorithm illustrated in

Figure 4.3 shows the application of the loop unrolling technique in the BT program.

4.3 MARE2DEM

In part two, three experiments are presented, two of them utilizing an artificial

demonstration data set and another one using a real-world data set provided by Petrobras.

The artificial demonstration data set is relatively small compared to the real-world data

set, with only 1028 and 17054 data points. It serves to test the application, providing

validation to any modification implemented. Petrobras provided the second data set. The

second data set is real-world data collected on the ocean floor utilizing the proper set of

equipment. Since it has large amounts of data, it is perfect for testing the SX-Aurora

memory bandwidth advantage.

The compiler flags for MPI Fortran (mpif90 v.7.5.0), MPI C (mpicc v.7.5.0),

NEC MPI Fortran (mpincc v.2.13) and NEC MPI C (mpinfort v.2.13) utilized were -O2,

-fPIC, -fpp and -cxxlib. These last two are exclusive to MPI Fortran.

40

The experiments selected in the previous step are carried out in the work environ-

ment. As mentioned, there are three experiments.

The first one uses the artificial demonstration data set. Several workers and data

groups need to be chosen to run the application. For the x86 architecture, it was utilized

24 workers corresponding to the 24 cores of the CPU and the default group distribution.

NEC’s architecture utilized eight workers and the same default distribution. The second

experiment also utilizes the artificial demonstration data set. However, instead of 24 work-

ers for x86 architecture and eight workers for SX-Aurora, only two will be used, which

will be better explained in Section 5.2.3. Last, the third experiment uses Petrobra’s data

set. It utilizes 24 and 8 workers for the x86 architecture and the SX-Aurora architecture.

Ten executions were performed for all experiments to improve statistical rigor, achieving

the mean execution time and error.

The main reason to utilize only one iteration for each experiment is due to the

amount of time that one whole execution of the entire data, until its stop parameter, is

around 15 to 20 days. So executing these three experiments, 10 times each to ensure there

are no outlier data, without counting failed attempts and other incidents that might occur

in 20 days of computing time, it would be necessary at least 450 days. So to achieve

a faster preliminary, whoever robust and accurate result, we needed to execute only one

iteration. Whoever to achieve the final result for the visual outcome validation we indeed

run the program to its conclusion.

MARE2DEM implements a math library exclusive to Intel’s processors. To ex-

ecute MARE2DEM in the vector architecture SX-Aurora, this math library needs to be

substituted by a general math library or implement NEC’s math library, which works

specifically to the needs of its vector engine. It was concluded that the latter is more

desirable for the present work. It provides better support for parallelization and vector-

ization, and the nature of the library origin, being the same manufacturer of the vector

engine, facilitated the porting process. Besides the math library, there were several other

bugs and code rearrangements that needed to be performed.

Curiously, there were minor discrepancies in the porting process due to different

FORTRAN versions. Some syntaxes that are utilized in FORTRAN nowadays are not

supported. Also, some code structures are very unreliable to work with. One of them is

the bind(C) interface, making FORTRAN’s subroutines and functions compatible with C

code. This section did not work at all, and luckily it was possible to rearrange the code

not to need it.

41

One example of a substituted function is for sparse linear algebra equations. The

original implementation relied heavily on intel’s libraries, which were changed to use

mostly NEC’s functions. Using NEC’s math library, it was possible to use its Sparse Basic

Linear Algebra Subprograms (SBLAS) and HeteroSolver routines. The basic structure of

this function follows: matrix storage, handle initialization, solution and finalization. The

following paragraphs explain these stages.

In this implementation, we utilized Compressed Sparse Row (CSR) format. It

consists of representing a matrix through three vectors. So the first step consists in storing

the matrix in these three arrays. Nonzero entries are stored in the first vector. The column

indices of these nonzero elements are kept in the second array. The third array stores the

cumulative sum of the row counts.

Secondly, we set up the handles, which are all provided by the library. We need to

call for the function that creates the handles while passing all the necessary parameters,

for example, the CSR arrays and column and row counts.

Next, the math library provides the solution through the sblas_execute_mv_rd

function. We need to provide the input we already created in the previous steps. Lastly,

we need to finalize our code by returning our solution vector and destroying the handle.

In terms of mathematical functions, six needed to be replaced or recreated. There

are two functions for factoring a sparse matrix, one for complex numbers and another

for real numbers. Both needed to be recreated entirely, as the workflow of both libraries

is very different. The same goes for the sparse linear algebra solver, one function each

for complex and real numbers. Both were recreated, as described above. Lastly, two

functions to free memory for both were replaced.

A validation of the adaptations to the math library of MARE2DEM was per-

formed. This is necessary to assert that all the modifications made to the math library

are not impacting in the final outcome of this application. Furthermore, in MARE2DEM,

a visual validation is also necessary, due to the changes not only on the math library, but

also in all code. This visual validation is shown in the investigation and results, chapter 5.

To achieve this validation simple mathematical problems were run with both the

original and the modified libraries. Then the results were compared via subtraction. If

the final result is zero, the modification is validated mathematically. The same matrix and

vector input was utilized in all tests. All test came back zero, so all modifications were

validated.

42

4.4 Hiperwalk

Hiperwalk is an open-source program to generate the dynamics of known quan-

tum walk (QW) models in a generic graph using HPC. There are four different models:

Discrete-Time Quantum Walk, Szegedy’s Quantum Walk, Continuous-Time Quantum

Walk , and Staggered Quantum-Walk.

In this version of the Hiperwalk simulator, only two of these models are presently

implemented: the DTQW model and the Staggered Quantum-Walk. As this work utilizes

the DTQW model, we will explain it and show its evolution. Furthermore, we will be

elucidating how Hiperwalk process this model and show an example output. Plans for the

simulator include implementing the remaining two quantum walk models.

The quantum walk simulation in Hiperwalk has three most significant steps: 1)

Input parameters conversion, which includes underlying structures (line and cycles), coin

operators, initial stats, and others; 2) Utilization of converted parameters in a quantum

state, generating a vector in an extensive range of values; and 3) Interpretation of said

vector through statistical analysis (probability distribution).

To achieve its goal, Hiperwalk utilizes high-level abstraction. It starts with a sim-

ple text file as input. The Neblina-core math library handles all calculations. We first

choose our quantum walk model inside the input text file. Then the number of steps we

will be taking. The input graph, with type and size. Finally, we need the initial state of

the quantum walk. There are more optional commands, and some are exclusive to each

quantum walk model. Figure 4.5 shows us an example output of the Hiperwalk simulator.

In Figure 4.5 we have the probability distribution of a quantum walk in a 121 x

121 mesh after 60 steps. The x and y-axis give their positions, and the z-axis provides the

probability [%].

4.4.1 Neblina

Neblina-core is a math library that requires minimal knowledge about parallel

programming from the user by establishing an easy-to-use parallel computing layer. Pro-

gramming in Neblina-core is done sequentially. The interpreter sends data to the CPU

or GPU through a parallel OpenCL API, independently of the processor’s architecture,

platform, or vendor.

However, as stated before, Neblina-core is implemented using a coding language

43

Figure 4.5: Quantum walk probability distribution in a 121 square mesh.

not compatible with NEC’s architecture. To execute HiperWalk in the vector architecture

SX-Aurora, all code sections that use OpenCL need to be substituted by implementing

NEC’s math library.

Similar to MARE2DEM, it was necessary to validate the adaptations to the math

library of neblina-core that were implemented. Again, this is necessary to be sure that the

final outcome does not suffer any influence due to the modifications made to neblina-core,

Hiperwalk math‘s library.

Utilizing the same approach of MARE2DEM, however larger in scope due to the

amount of modified functions, we utilized simple mathematical problems with both the

modified and the original neblina-core. Then the results were compared via subtraction

and if the final result was zero, it meant that the modifications made were mathematically

validated. As before, to ensure this, it was utilized the same matrix and vector input in all

tests. In neblina-core all modifications were validated through this system, as there were

no further modifications done to the main Hiperwalk code, only to neblina-core.

44

4.4.2 Experiments

The execution environment creates the routines for compilation/execution and data

visualization. Four data sets are presented in this work, gradually increasing in size. These

data sets are square matrixes with x amount of nonzero elements. Each matrix has 1024,

4096, 16384, and 32768 nonzero entities. Since the last data set has large amounts of data,

it is perfect for testing the SX-Aurora memory bandwidth advantage over NVIDIA’s.

Because the neblina-core adaptation made for SX-Aurora uses the same functions

as the original implementation, we can use the same Hiperwalk code with minor changes.

Each dataset was executed 20 times, and the average of each result is presented

in the results section. The resulting data recorded was the runtime in seconds, MFLOPs,

and cache hit ratio for L1 and LLC.

Inside Hiperwalk, we have different configurations we need to set. First, we need

to choose how many calculations repetitions will be performed. For all tests, the same

amount of 1000 repetitions was chosen. Second, we can choose which quantum walk

model we want to use, in our case, DTQW.

Instructions for installing the simulator are available at the link: <http://qubit.

lncc.br/qwalk/>. Neblina-core can be found at: <https://paulomotta.pro.br/wp/2021/05/

01/pyneblina-and-neblina-core/>.

4.5 Data collection and Hardware Counters

The use of hardware counters, structures found in many modern processors and

accelerators that allow the monitoring of events internal to these architectures. Some

of these events are the number of instructions executed, the number of cycles, and the

number of memory accesses.

Using these counters makes it possible to collect information in a more specific

and detailed way than information obtained with other higher-level tools.

The user can identify the available information for his specific architecture and

combine different counters to investigate different aspects. In addition, counters from

different cores can also be combined, analyzing the system as a whole.

Thus, using hardware counters to analyze the performance of parallel applications

allows the user to have more control over the process, with less noise on the application.

http://qubit.lncc.br/qwalk/
http://qubit.lncc.br/qwalk/
https://paulomotta.pro.br/wp/2021/05/01/pyneblina-and-neblina-core/
https://paulomotta.pro.br/wp/2021/05/01/pyneblina-and-neblina-core/

45

4.5.1 Linux perf

Linux perf is a profiling tool for Linux systems that allows access to the perf_events

interface of performance events present in superscalar architectures. The tool is used on

the command line using the perf command, and it is possible to list the events avail-

able on the platform using the perf list command. A command commonly used for

performance analysis is the command stat, which allows the collection of information

regarding the execution of an application. Using the -e option, it is possible to list the

events to be collected. The example below represents the command line needed to collect

information about the number of instructions and the number of CPU cycles required to

execute the command ls:

p e r f s t a r t −e i n s t r u c t i o n s , cpu − c y c l e s l s

In addition to executing the command ls and listing the contents of the current

directory, executing the command perf stat with the events instructions and

cpu-cycles gives a similar result as noted below:

Pe r fo rmance c o u n t e r s t a t s f o r ’ l s ’ :

1 . 3 0 9 . 7 1 2 i n s t r u c t i o n s # 0 ,71 i n s n t p e r c y c l e

1 . 8 4 8 . 8 8 6 c y c l e s

0 ,000800891 s e c o n d s t ime e l a p s e d

It is important to note that superscalar architectures usually have a limited number

of hardware counters. Since each hardware counter can be used to monitor a single event

at any given time, the number of events that can be monitored simultaneously is limited.

The perf tool performs a monitoring time-multiplexing technique to monitor a

more significant number of events, allowing each event to have a portion of the counter

usage time.

However, what this approach makes possible is just an estimate of the actual be-

havior of the application since the multiplexed events are not monitored all the time ex-

clusively. Thus, each event should be monitored individually through the perf stat

instruction, performing the application’s profiling several times.

46

4.5.2 NEC FTRACE

Developed by NEC, the FTRACE tool can be used to obtain information from

hardware counters present in NEC’s vector architecture. It is necessary to recompile

the application using the compiler developed by the company NEC to use the tool. For

applications written in C language we use ncc, for C++ applications we use nc++ and

for Fortran applications we use nfort. In addition, you need to add the -ftrace compile

flag, as shown in the example: ncc -ftrace source.c. We can run the application

as we would with a regular executable. At the end of the execution, the information file

ftrace.out is generated, which can be read using the same tool (and directing the

output to the file output):

f t r a c e − f f t r a c e . o u t >> o u t p u t

The generated file has a lot of information. Among them, we can highlight the total

execution time, the name of the functions executed, the number of times each function

was called, the percentage of core utilization by each function, and information about the

number of misses of the different levels of cache, among others.

In Figure 4.6 we have a better representation of the output provided by the FTRACE

tool. Notably, we can view cache information, total and partial execution time per thread

and vectorization information such as vectorization time, vectorization rate and the aver-

age size of the created vectors.

It is also possible to control the type of information desired through the two dif-

ferent profiling modes indicated through the VE_PERF_MODE environment variable. If

the variable has the value VECTOR-OP or is undefined (assuming the default value),

FTRACE generates information mainly related to vector instructions. If the value of

the variable VE_PERF_MODE is VECTOR-MEM, the data collected correspond mainly

to memory accesses. In this way, it can be beneficial to use both modes and aggre-

gate your results at the end. You can change the value of the environment variable

VE_PERF_MODE, to one of two modes, as follows:

e x p o r t VE_PERF_MODE=VECTOR−OP

e x p o r t VE_PERF_MODE=VECTOR−MEM

47

Figure 4.6: Example results of the FTRACE command

4.5.3 Score-P

The instrumentation of the MARE2DEM application uses Score-P. Our first step

was to identify which sections of the source code implement the forward response com-

putation, which contains the Finite Element Modeling (FEM), by the worker processes,

considering a refinement group. Since we knew that the forward response parallel com-

putation is implemented using the MPI interface, we started by searching for MPI calls

inside MARE2DEM’s source code, mainly implemented in FORTRAN.

Inside the source code, a subroutine is implemented, which contains the worker’s

logic of which task to perform, according to the message received by the manager process.

Inside is the call path that leads to the forward response computation. With this in mind,

it was utilized the manual region instrumentation (KNÜPFER et al., 2012) functionality

of Score-P to track the timestamps of the call sequence of all workers. This sequence

was grouped into a single manual Score-P region and labeled as compute. Compute is

48

the main MARE2DEM computing phase that will be analyzed since it encapsulates the

majority of the parallel MPI computation performed by the workers.

49

5 INVESTIGATION AND RESULTS

The results section will present the main findings obtained by this dissertation.

The following section is regarding the results of the first part and the optimization tech-

niques implemented in the NAS benchmark and RTM. The second section refers to the

second part, which is the performance results of MARE2DEM’s adaptation for the SX-

Aurora. Finally, the outcome of the third part of this dissertation is the adaptation of

Hiperwalk for NEC’s vector architecture.

5.1 Optimization with loop unrolling and inlining

The experiments and their results are presented below. Initially, the experiments

and analysis results are exposed, with the optimizations implemented. Finally, a discus-

sion of the results obtained, comparing the optimized and the original. Repeating for both

the benchmark NAS and the RTM modeling.

5.1.1 NAS Benchmark inlining and loop unrolling

Thus, applying the previously mentioned optimization techniques, inlining and

loop unrolling, in the benchmark NAS, and comparing it with the original implementation,

we obtain Figure 5.1, being the x axis each application of the benchmark NAS used in this

test, the y axis shows the FLOPS, the red bars corresponds to the original implementation

and the blue bars represents the optimized version.

It is noticed that the FLOPS increase considerably, reaching up to 7.8× higher

for the optimized application of the benchmark BT. Comparing the increase between the

original and the optimized version, we have an average of 204.42 MFLOPS and 1599.18

MFLOPS, respectively.

Also, it is necessary to point out that in two tests the optimization techniques had

a negative impact. Those were the EP and UA. The negative impact regard EP is due to

it being, as the name suggests, Embarrassingly Parallel, which the compiler is more then

capable to optimize 100%. However we still implemented manually the optimizations to

see if there was a possibility to improve.

However in the UA case, the problem is different. Due to its unstructured nature,

50

Figure 5.1: MFLOPS X NAS Application

its incredible difficult to implement these kind of optimizations. Still, we tried to imple-

ment them, as it was with EP. Therefore, we were able to illustrate a point that we must

be careful where we apply optimization prematurely.

In Figure 5.2 we have the rate of vector operations on the y axis for each appli-

cation of the benchmark NAS on the x axis, with the original applications in red and the

optimized version in blue. The BT program in the optimized code has a higher rate of

vector operations than the original, approximately from 20% to 50%, more than twice as

many vector operations. This large increase in operations is due to loop unrolling and

inlining helping the compiler in its automatic vectorization. Furthermore, for the BT pro-

gram, for example, the average size of each vectorization also increased by approximately

31%, going from 92 elements to 120 elements.

Figure 5.2: NAS benchmark: Vector operation rates [%] X NAS app

51

Furthermore, it is worth mentioning that the cache memory also benefited from the

optimizations, again, taking the BT program as an example, an increase of approximately

10% in the success rate of cache L3 was obtained.

Again, here we can see the UA and EP had their MFLOPs decreased due to the

decline in the rate of vectorization.

5.1.2 RTM optimization with inlining and loop unrolling

Next, the experiment using RTM modeling is presented, performed with the orig-

inal version OpenMP. The configuration used for the RTM application is the same as for

the optimization with the NAS benchmark. Again, the compilation makes use of NEC’s

exclusive compiler and the same flags used in the previous experiment. Like the NAS

benchmark, the "original" version matches the unmodified RTM code applied to the au-

tomatic vectorization of the SX-Aurora TSUBASA machine. The optimized version is

equivalent to the implementation of the techniques presented above, inlining and loop

unrolling.

Like NAS optimization, data collection uses the NEC profiling program PROGINF.

Through this program, various information related to the architecture and execution,

mainly the FLOPS and the cache memory failure rate.

Again, the compiler makes a complete report containing various information re-

garding the compilation. For example, to improve vectorization, loop unrolling was used

in several functions. Again, the guide provided by NEC (NEC, 2020a) and the previously

mentioned techniques were used to optimize the application.

Therefore, Figure 5.3 shows the experiment applied to the RTM application, show-

ing the FLOPS on the y axis concerning the input size on the x axis, with the optimized

version in blue bars and the optimized version in red bars. Original version. FLOPS vary

considerably from most minor to most significant entry. Looking at the original version

and the new optimized version, for the most prominent input 504× 504, we have 2429.83

MFLOPS and 4574.75 MFLOPS, respectively, an increase of approximately 1.9×. This

significant increase is mainly due to the decrease in the total number of instructions by

approximately 45%, from 15 · 1010 instructions to 89 · 109 instructions. This is due to the

automatic vectorization done by the NEC compiler, enhanced by the applied techniques

of loop unrolling and inlining. It should also be noted that loop unrolling has decreased

the number of non-vectorized execution instructions.

52

Figure 5.3: RTM: MFLOPS X Input Size

The memory hit rate cache is shown in Figure 5.4. On the y axis, we have the

success rate of the cache L3 memory (LLC) about the input size on the x axis, with the

optimized version in blue bars and the original version in red. Comparing the biggest

data entry 504 × 504 for the original version and the new optimized version, we have an

increase of only 1.5% or so. Although the comparison shows only a small increase for

the success of the cache L3 memory, analyzing the cache L1, we have a 50% decrease

in the time of failure of the cache L1 memory, decreasing from 10 seconds to 5 seconds

approximately. Due to the loop unrolling technique, the loop instruction overheads is

reduced, and inlining minimizes the function call instructions.

Figure 5.4: RTM: Rate of vector operations [%] X Input Size

53

5.2 NEC MARE2DEM Implementation

The following result to be shown is regarding the first experiment. It uses the

artificial demonstrative data set provided along with MARE2DEM’s application. The

following result utilizes the same data set but different worker and refinement group con-

figurations. The last result comes from the third experiment utilizing the real-world data

set provided by Petrobras.

5.2.1 Outcome validation

After the modifications were done to the math libraries exclusive to Intel, a first

experiment was performed. We needed first to be sure that all the modifications had no

repercussions on the final result regarding the output of MARE2DEM’s execution, which

is shown by Figure 5.5.

Figure 5.5 shows the visualization of MARE2DEM final iteration. The graph on

the top shows the execution of an x86 architecture. On the bottom graph, the SX-Aurora

execution is shown. These graphs provide the resistivity regarding the depth of the ocean

floor.

Figure 5.6 also shows the MARE2DEM’s outcome, now related to the final iter-

ation of the real-world data set. The top graph shows the x86 and the bottom one the

SX-Aurora implementation.

Finally we can make a subtraction of both results and show the percentage differ-

ence in both results, in Figure 5.7 and Figure 5.8.

Figure 5.7 gives us the resistance percentage difference in each triangle regarding

the demonstration data set. The highest difference is 3,6%.

In regards the Petrobras data set, Figure 5.8 gives us the resistance percentage

difference in each triangle. Peak percentage difference is 6%.

Besides the small percentage differences and the naked eye comparison, to further

validate the claim that the modification made to the MARE2DEM code had no adverse

effect, Figures 5.7 and 5.8 must be compared to the resistance difference in an execution

of only the unmodified code. So, this test is shown on Figures 5.9 and 5.10.

Similarly as before, Figures 5.9 and 5.10 gives us the resistance percentage differ-

ence in each triangle, for the demo and Petrobras datasets, respectively. Visually they are

identical to Figures 5.7 and 5.8. However there is a small percentage difference. In Figure

54

Figure 5.5: Demonstration data set comparison for outcome validation between x86 and
SX-Aurora.

5.9, the highest percentage difference is 3,8%. In Figure 5.10, the difference is smaller

than before, only 5,9%.

Even though there are differences, this only shows that between executions of

the same dataset on the same unmodified code, there is a similar difference between ex-

ecutions. This is due to the nature of iterating with 2D inversion and adaptive refined

elements. Therefore we can assume that the modifications implemented, the NEC’s math

library and all minor changes had no impact on the final result.

55

5.2.2 Initial artificial demonstration runtime

After assessing the impact on the final results, we can move forward with the

execution’s investigation. Next, Figure 5.11 shows the execution of the artificial dataset

on the x86 architecture.

The x86 architecture execution represented in Figure 5.11 shows the runtime, in

seconds, for every 23 workers. We can see that the final runtime was 206 seconds. The

image shows the expected behavior of one iteration of MARE2DEM’s execution. There is

Figure 5.6: Comparison for outcome validation between x86 and SX-Aurora, related to
the real world data set.

56

Figure 5.7: Resistance difference in percentage, for the Demonstration data set outcome
between SX-Aurora X x86.

Figure 5.8: Resistance difference in percentage, for the Petrobras data set outcome be-
tween SX-Aurora X x86.

Figure 5.9: Resistance difference in percentage, for the Demonstration data set outcome
between two x86 executions.

a clear division between left and right on these runtime graphs. They denote two different

stages of one iteration, as the manager needs all workers to end their load to start the

57

Figure 5.10: Resistance difference in percentage, for the Petrobras data set outcome be-
tween two x86 executions.

Figure 5.11: Results in seconds of experiment 1 utilizing x86 architecture

0

5

10

15

20

25

0 50 100 150 200
Time [seconds]

R
an

k Value
compute

second stage.

Following the next result, we have Figure 5.12. Here we execute the first data set,

the artificial one, on NEC’s SX-Aurora.

Identical to the previous graph, Figure 5.12 gives the runtime for each of the seven

workers. The final runtime was 237 seconds. So, the SX-Aurora performed slower than

the x86 architecture, around 15% slower.

Both Figure 5.12 and Figure 5.11 show the traces collected via Score-P, which can

be hard to understand at a glance. To facilitate the comparison between both runtimes,

Figure 5.13 is presented.

Figure 5.13 shows on the x-axis the experiment being run, while the y axis repre-

sents the runtime of the application in seconds. The light blue bar refers to the SX-Aurora

architecture and the darker blue to the x86 architecture. It is easier now to see the differ-

58

Figure 5.12: Results in seconds of experiment 1 utilizing the SX-Aurora

2

4

6

8

0 50 100 150 200
Time [seconds]

R
an

k Value
compute

ence in runtimes of both platforms.

Figure 5.13: Experiment 1 comparison between x86 and SX-Aurora runtimes

0

50

100

150

200

1
Experiment

R
un

tim
e

[s
ec

on
ds

]

Architecture
SX−Aurora
x86

Initially, it was expected for the SX-Aurora to improve MARE2DEM’s perfor-

mance already. However, upon further investigation, especially if the data set was proper,

it was attested that the amount of data being transferred was small for each worker, which

goes against the advertised advantages of this architecture. SX-Aurora has a very high

memory transfer rate, and this power was not being harvested in this data set, resulting in

a negative result.

59

5.2.3 Effects of one worker on the first data set

After the enlightenment of the last result’s investigation, a second experiment was

proposed, utilizing the same dataset. A new worker and refinement group configuration

was chosen in this second one, so it is possible to appropriate the advantages of the SX-

Aurora architecture.

Hence, the configuration to best take advantage of SX-Aurora high memory trans-

fer was to use only one worker, besides the manager, and one refinement group. The-

oretically, it would allow for a larger-sized data set and higher data transfers during the

MARE2DEM execution. Figure 5.14 shows these results.

Figure 5.14: Experiment 2 comparison of the runtimes between x86 and SX-Aurora.

0

1000

2000

3000

1
Experiment

R
un

tim
e

[s
ec

on
ds

]

Architecture
SX−Aurora
x86

In Figure 5.14 we have a comparison of MARE2DEM’s execution on the x86 and

SX-Aurora architectures. The light blue bar refers to the SX-Aurora execution, and the

dark blue line refers to the x86. Again, similar to the previous two graphs, on the x-axis

is displayed the execution runtime. On the y axis are the two different architectures.

It is easier to compare both architectures’ runtimes now. We can see that SX-

Aurora can improve the runtime without supporting multiple cores and more significant

data transfers. The x86 architecture execution runtime was of 3728 seconds approxi-

mately. SX-Aurora runtime reached around 2677 seconds. An increase in performance of

approximately 39%.

This experiment shows that the SX-Aurora architecture has potential for perfor-

mance gains. However, the experiment does not reflect any real-world use case, as both

platforms are underutilized, which is evident in the total runtime of both experiments,

60

boasting an increase in execution runtime of around 17 times more significant in the worst

case.

5.2.4 Real world data set

As the last experiment was a test to investigate the potential of SX-Aurora archi-

tecture, the last experiment will put this potential to test in a real-world scenario. This

data set, provided by Petrobras, is larger than the previous one by roughly 50 times the

amount of data.

Figure 5.15 shows a similar graph as before. We have on the x-axis the runtime in

seconds. The y axis shows the workers. Particularly on this graph, we have the presence

of the manager, illustrated by the first worker. This graph regards the execution of the real-

world data set on the x86 architecture, achieving, for one iteration, an execution runtime

of 2964 seconds approximately.

Figure 5.15: Runtime for real world dataset - 1 Iteration - x86 architecture.

0

5

10

15

20

25

0 1000 2000 3000
Time [seconds]

R
an

k

Value
compute
jacobianCompute
smoothingOccam

Next, Figure 5.16 has the execution of the MARE2DEM application on the SX-

Aurora architecture. In the last graph, the x-axis and y-axis are the runtimes in seconds

and the workers. The final runtime is around 2341 seconds for one iteration.

To better represent the comparison between runtimes, Figure 5.17 is shown. The

x-axis represents the experiment, while the y-axis shows the application runtime in sec-

onds. The light blue refers to the SX-Aurora architecture and the darker blue to the x86

architecture. Here it is possible to visualize the last statistic, and the SX-Aurora impacts

the performance by around 27%.

61

Figure 5.16: Runtime for real world dataset - 1 Iteration - SX-Aurora.

0

2

4

6

8

0 1000 2000 3000
Time [seconds]

R
an

k

Value
compute
jacobianCompute
smoothingOccam

Figure 5.17: Comparison of experiment 3 for x86 and SX-Aurora runtimes

0

1000

2000

3000

3
Experiment

R
un

tim
e

[s
ec

on
ds

]

Architecture
SX−Aurora
x86

Now, the last illustration, Figure 5.18, elucidates and realizes some of the po-

tentials that NEC’s SX-Aurora has under the right circumstances, especially when we can

take advantage of its inherent positive traits, like its vector architecture, which can perform

multiple of the same calculation with only one instruction and, in this case specifically,

the high memory bandwidth available.

Figure 5.18 shows in the y axis the runtime of each experiment. The x-axis dis-

plays the number of all experiments that achieved the runtimes exhibited on the y axis.

The light blue color gives the SX-Aurora architecture, and the darker blue represents the

x86 architecture.

We employed ten executions in the first and last experiment to improve the statis-

tical rigor to have the mean execution time and error. It is visible that the mean execution

62

Figure 5.18: Runtime comparison between x86 and SX-Aurora for all three experiments.

0

1000

2000

3000

1 2 3
Experiment

R
un

tim
e

[s
ec

on
ds

]

Architecture
SX−Aurora
x86

time is similar to the three experiments performed, approximately maintaining the differ-

ences in runtime between platforms.

This graph, Figure 5.18 illustrates the path taken by this work. We began the

runtime evaluation with worse performance for SX-Aurora. However, after analyzing and

evaluating the advantages of the architecture, the two subsequent experiments utilized and

realized the potential that SX-Aurora has when harvesting its potential.

5.3 Hiperwalk’s improvements with vectorization

This section will show the improvement vector architectures can make in quantum

walk simulators. The first result is the average runtime from 20 executions of each matrix,

namely 1024, 4096, 16384, and 32768 nonzero elements. It shows both architectures,

NVIDIA and NEC Hiperwalk’s implementation.

It is prudent to note that significant code differences in the Neblina math library

will necessarily impact performance, as running the HiperWalk simulator in SX-Aurora

was the main point.

These results were obtained in seconds. The runtimes of the two NEC and NVIDIA

architectures for the four input sizes, 1024, 4096, 16384, and 32768, respectively, are

161,85s, 256,99s, 1401,21s and 5021,94s in regards to SX-Aurora, and NVIDIA’s perfor-

mance is 117,9s, 224,4s, 1820,1s, and 8814,1s. Figure 5.19, which shows these results,

will be a recurring reference onward due to its significance.

It is noticed in Figure 5.19 that by increasing the number of nonzero input enti-

63

Figure 5.19: Runtime for each matrix input size: 1024, 4096 and 16384 and 32768
nonzero entities

ties, NEC’s architecture begins to gain with NVIDIA’s architecture. The 16384 use case

achieved an average of roughly 24% decrease in runtime, from 1820,1 seconds on the

P100 to 1401,2 seconds on the SX-Aurora.

The adaptation decreased around 43%, a performance gain of around 75%, achiev-

ing approximately 8814,1 and 5012,9 seconds, for the P100 and SX-Aurora, respectively,

in the most extensive data set.

These results meet our expectations. NEC’s architecture could not utilize its main

strength with low nonzero elements. It is evident that only when a large amount o data is

transferred SX-Aurora surpass NVIDIA’s architecture.

Figure 5.19 is the main result our objectives were expected to accomplish. To

better elucidate the reasons for these improvements, other metrics were extracted.

As mentioned in the methodology, Figure 5.20 shows a graph where the x-axis

provides the architecture in question. The y axis shows the relevant unit; in the left, we

get the percentage[%], and the right y-axis shows Floating Point Operations per second.

Going back to Figure 5.19 the first data set, 1024 nonzero elements, has signifi-

cantly poorer performance than the original implementation. Evidence shown in Figure

5.20, points toward what is expected. With small amounts of data provided by the matrix,

NEC’s SX-Aurora cannot surpass the original OpenCL implementation. SX-Aurora vec-

torized a great deal of the code, around 96%. Its vector length was extensive, with 131

units. Its LLC cache hit rate was 60%, contrasting with NVIDIA’s 80%. However, the L1

cache hit rates were similar, with NEC’s 85% and NVIDIA’s 96%. In terms of raw per-

formance, the SX-Aurora architecture achieved 0,11 MFLOPs and the P100 architecture

64

Figure 5.20: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the
smaller input size of 1024 nonzero elements

around 0,29 MFLOPS.

The second data set results are shown in Figure 5.21. Here we have the same x-axis

that provides the particular architecture and the y-axis the relevant unit, the percentage[%]

to the left and the right y-axis the Floating Point Operations per second.

Figure 5.21: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the
smaller input size of 4096 nonzero entities

Taking another look at Figure 5.19, the second data set with 4096 nonzero entities

has a very similar performance to the original implementation. As expected, 5.21 shows

again that we still have not enough data to utilize SX-Aurora’s potential fully. SX-Aurora

was able to vectorize the code, around 91%. The vector length reached 124 units. Its LLC

cache hit rate was 90%, contrasting with NVIDIA’s 63%. However, the L1 cache hit rates

65

were similar, with NEC’s 78% and NVIDIA’s 75%. In terms of raw performance, the

SX-Aurora architecture achieved 0,39 MFLOPs and the P100 architecture around 0,51

MFLOPS.

The third data set results are presented in Figure 5.22. The x-axis provides the

architecture in question. The left y-axis is percentage[%], and the right y-axis shows

Floating Point Operations per second.

Figure 5.22: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the
smaller input size of 16884 nonzero elements

The third data set, 16884 nonzero elements, shows substantial performance in-

creases over the original implementation. Figure 5.22 show pieces of evidence pointing

toward the advantages of SX-Aurora. With more significant data NEC’s SX-Aurora can

surpass the original OpenCL implementation. SX-Aurora vectorized around 89% of the

code. Its vector length was extensive, with 176 units. However, the LLC cache hit rate

was much lower, around 30%, contrasting with NVIDIA’s 41%. L1 cache is different,

with NEC’s 55% and NVIDIA’s 39%. In terms of raw performance, the SX-Aurora ar-

chitecture achieved 1,23 MFLOPs and the P100 architecture around 0,81 MFLOPS.

The fourth data set results are presented in Figure 5.23. The x-axis provides the

architecture in question. The left y-axis is percentage[%], and the right y-axis shows

Floating Point Operations per second.

Now, the last illustration, Figure 5.23, elucidates and realizes some of the po-

tentials that NEC’s SX-Aurora has under the right circumstances, especially when we can

take advantage of its inherent positive traits, like its vector architecture, which can perform

multiple of the same calculation with only one instruction and, in this case specifically,

the high memory bandwidth available.

66

Figure 5.23: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the
smaller input size of 32768 nonzero entities

In Figure 5.19, the fourth and last data set, with 32768 nonzero entities, has im-

proved performance even further. Again, looking at Figure 5.23, provides ample evidence

for this runtime improvement. Vectorization in SX-Aurora was able to reach around 80%.

Its vector length was close to SX-Aurora’s limits, with 223 units of 256. Comparing cache

hit ratios, SX-Aurora had only 15% LLC cache hit rate and 43% for the L1 cache hit ratio.

NVIDIA again fared better for LLC hit ratio, with 67% and L1 cache hit ratio of 11%.

Regarding raw performance, the SX-Aurora architecture achieved around 5,51 MFLOPs

and the P100 architecture around 2,94 MFLOPS.

We can show that, besides the advantage of higher memory bandwidth, the auto-

vectorization provided by NEC’s compiler is key to its success. Our primary evidence is

that the vectorization vector length increases with each step in the input size. Even though

the overall vectorization percentage has decreased, the more considerable vector length

makes up for this loss and improves performance further.

67

6 CONCLUSIONS AND FUTURE WORK

Performance accelerator devices such as GPUs, are essential components for the

high performance of modern supercomputers. Under this motivation, there are significant

efforts in developing vector processors to also act as performance accelerating devices.

In addition to having a high processing capacity SIMD, vector accelerators stand out for

allowing applications to benefit from performance gains with little or no intervention in

the application’s source code, the fact that is less frequent in acceleration with GPUs.

In this dissertation, we did a performance review of the newly released SX-Aurora

TSUBASA (KOMATSU et al., 2018; YOKOKAWA et al., 2020) vector accelerator. This

analysis was done in three parts.

For the first part, we use NAS, which is a notorious benchmark of parallel applica-

tions, as well as a real application of seismic migration, called RTM. Our main objective

was to verify how much performance can be gained with the SX-Aurora TSUBASA in

two situations, namely: (i) without any intervention in the source code and only with the

automatic optimizations of the SX-Aurora TSUBASA compiler and (ii) with simple opti-

mization techniques known in the literature, in situations where the performance gain was

not automatic.

Furthermore, Quantum walk simulation is an essential tool for studying Quantum

Computing. So its performance must be perfectly attuned to the desired architecture. It is

true, especially for the HiperWalk simulator and vector architectures, due to the way the

simulator is designed, utilizing vector-vector and matrix-vector calculations. The second

part of this work utilizes the SX-Aurora to try and harvest its potential on the quantum

walk software Hiperwalk. We show that it is possible to utilize its strengths, improving

general performance. However, it is necessary to consider the advantages of this kind of

architecture and the specific positives the SX-Aurora has. Our primary objective in this

second part is to analyze the possible improvements SX-Aurora architecture can bring to

a heavily vectorizable code.

Lastly, modeling CSEM data is an arduous process. Large amounts of complex

data need to be read, transferred, modified and iterated. It poses a significant challenge

for developers and users. Therefore it is crucial to have the right tool for the right job.

There are significant efforts in developing vector processors to act also as performance

accelerator devices. In addition to having a high SIMD processing capacity, vector accel-

erators stand out for allowing applications to benefit from performance gains with little or

68

no intervention in the application’s source code, which is less frequent when accelerating

with other heterogeneous architectures.

The third and final part of this work utilizes the SIMD, as mentioned earlier, archi-

tecture to try and harvest its potential on a CSEM modeling software called MARE2DEM.

An extensive experimental load was carried out, which showed evidence of the

strengths of the vector architecture mentioned. In the first part, we were able to improve

the performance (FLOPS) of the actual application RTM up to 1.9× and up to 7.8× for

the benchmark NAS. Also, for the second part, we improved the performance, the runtime

in seconds, of a real-world CSEM data set from around 2964s to 2341s, approximately

27%. For the third part, after refactoring the code base, it was possible to perform exper-

iments to analyze NEC’s improvements compared to another architecture. We achieved

a performance gain of around 75% for the last use case, signifying that wider input sizes

favor NEC’s architecture.

We show that it is possible to utilize its strengths, improving general performance.

However, it is necessary to consider the advantages of this kind of architecture and the

specific positives the SX-Aurora has.

6.1 Future work

As future work, for both code adaptations, we will extend the analysis to more

real-world data sets, to gauge its impacts. Implementation of performance optimization

techniques such as loop unrolling and inlining, similar to Félix’s (MICHELS et al., 2020),

the first part of this dissertation, implementation and expand it further with loop tiling

and loop interchange optimizations. These techniques were proven, in the first part of

this work, to be advantageous to obtain performance gains in the SX-Aurora TSUBASA

vector accelerator (MICHELS et al., 2020).

For the first part, expand our analysis to more real applications, notably Machine

Learning and Artificial Intelligence applications, as well as verify if more performance

optimization techniques, such as loop tiling and loop interchange can also be advanta-

geous to obtain performance gains in the SX-Aurora TSUBASA vector accelerator.

Regarding the second part, a more in-depth study of the correlation between group

refinement configurations and overall performance is desired for MARE2DEM.

Finally for the Hiperwalk code adaptation, we also expect to extend the Neblina-

core development, producing a new module with CUDA to assess NVIDIA’s GPUs better.

69

Also, the main development team behind Hiperwalk is working in decreasing the

dependence in OpenCL, due to its declining support. Futhermore, there is also effort

to implement the remaining planned quantum walks, namely, Szegedy’s Quantum Walk,

Continuous Time Quantum Walk (CTQW) and Stepped Quantum Walk.

6.2 Publications

Through the development of this dissertation three main articles were published,

each one referring to one part of this dissertation.

The first published work is "Otimização de Aplicações Paralelas em Aceleradores

Vetoriais NEC SX-Aurora" (MICHELS et al., 2020), regarding the use of optimization

techniques for NEC’s SX-Aurora in the NAS benchmark and RTM applications.

The second major publication regards the adaptation and analysis of a Quantum

Walk simulator entitled Hiperwalk, entitled "Simulando Passeios Quânticos em Proces-

sadores Vetoriais" (MICHELS et al., 2022).

The third scientific article, and most recent, focuses on adapting MARE2DEM’s

code, and subsequently analyze its performance, to NEC’s SX-Aurora. This article is

entitle "Investigating Oil and Gas CSEM application on vector architectures" (MICHELS;

SCHNORR; NAVAUX, 2022).

70

71

REFERENCES

ABAL, G. et al. Spatial quantum search in a triangular network. Mathematical
Structures in Computer Science, Cambridge University Press (CUP), v. 22,
n. 3, p. 521–531, Feb 2012. ISSN 1469-8072. Available from Internet: <http:
//dx.doi.org/10.1017/S0960129511000600>.

ABAL, G. et al. Spatial search on a honeycomb network. Mathematical Structures
in Computer Science, Cambridge University Press (CUP), v. 20, n. 6, p. 999–1009,
Nov 2010. ISSN 1469-8072. Available from Internet: <http://dx.doi.org/10.1017/
S0960129510000332>.

AHARONOV, Y.; DAVIDOVICH, L.; ZAGURY, N. Quantum random walks. Phys. Rev.
A, American Physical Society, v. 48, p. 1687–1690, Aug 1993. Available from Internet:
<https://link.aps.org/doi/10.1103/PhysRevA.48.1687>.

AMBAINIS, A.; KEMPE, J.; RIVOSH, A. Coins make quantum walks faster. arXiv,
2004. Available from Internet: <https://arxiv.org/abs/quant-ph/0402107>.

ANGLéS-CASTILLO, A.; PéREZ, A. A quantum walk simulation of extra
dimensions with warped geometry. arXiv, 2021. Available from Internet:
<https://arxiv.org/abs/2105.01375>.

BAILEY, D. H. et al. The nas parallel benchmarks. The International Journal of
Supercomputing Applications, Sage Publications Sage CA: Thousand Oaks, CA, v. 5,
n. 3, p. 63–73, 1991.

BALL, P. First quantum computer to pack 100 qubits enters crowded race. Nature,
v. 599, n. 7886, p. 542–542, November 2021. Available from Internet: <https:
//ideas.repec.org/a/nat/nature/v599y2021i7886d10.1038_d41586-021-03476-5.html>.

CASTRO, M. et al. Seismic wave propagation simulations on low-power and
performance-centric manycores. Parallel Computing, Elsevier, v. 54, p. 108–120, 2016.

CHAVE, A. D.; CONSTABLE, S. C.; EDWARDS, R. N. 12. electrical exploration
methods for the seafloor. In: . Electromagnetic Methods in Applied Geophysics:
Volume 2, Application, Parts A and B. [s.n.], 2012. p. 931–966. Available from
Internet: <https://library.seg.org/doi/abs/10.1190/1.9781560802686.ch12>.

CHEN, H.; XIONG, B.; HAN, Y. An effective algorithm for 2d marine csem modeling
in anisotropic media using a wavelet galerkin method. Minerals, v. 12, n. 2, 2022. ISSN
2075-163X. Available from Internet: <https://www.mdpi.com/2075-163X/12/2/124>.

CHEN, W. et al. The effect of code expanding optimizations on instruction cache design.
IEEE Transactions on Computers, v. 42, n. 9, p. 1045–1057, 1993.

CONSTABLE, S.; SRNKA, L. An introduction to marine controlled-source
electromagnetic methods for hydrocarbon exploration. Geophysics, v. 72, n. 2, 2007.

COOPER, R.; MACGREGO, L. Renewed interest in csem in oil and gas exploration.
GEOExPro, v. 17-5, 2020.

http://dx.doi.org/10.1017/S0960129511000600
http://dx.doi.org/10.1017/S0960129511000600
http://dx.doi.org/10.1017/S0960129510000332
http://dx.doi.org/10.1017/S0960129510000332
https://link.aps.org/doi/10.1103/PhysRevA.48.1687
https://arxiv.org/abs/quant-ph/0402107
https://arxiv.org/abs/2105.01375
https://ideas.repec.org/a/nat/nature/v599y2021i7886d10.1038_d41586-021-03476-5.html
https://ideas.repec.org/a/nat/nature/v599y2021i7886d10.1038_d41586-021-03476-5.html
https://library.seg.org/doi/abs/10.1190/1.9781560802686.ch12
https://www.mdpi.com/2075-163X/12/2/124

72

EASTTOM, W. Quantum computing and cryptography. In: . Modern
Cryptography: Applied Mathematics for Encryption and Information Security.
Cham: Springer International Publishing, 2021. p. 385–390. ISBN 978-3-030-63115-4.
Available from Internet: <https://doi.org/10.1007/978-3-030-63115-4_19>.

EZELL, S. J.; ATKINSON, R. D. The vital importance of high-performance computing
to us competitiveness. Information Technology and Innovation Foundation, April,
v. 28, 2016.

FANAVOLL, S.; GABRIELSEN, P. T.; ELLINGSRUD, S. Csem as a tool for better
exploration decisions: Case studies from the barents sea, norwegian continental
shelf. Interpretation, v. 2, n. 3, p. SH55–SH66, 2014. Available from Internet:
<https://doi.org/10.1190/INT-2013-0171.1>.

FLETCHER, R. P.; DU, X.; FOWLER, P. J. Reverse time migration in tilted transversely
isotropic (tti) media. Geophysics, Society of Exploration Geophysicists, v. 74, n. 6, p.
WCA179–WCA187, 2009.

FOWLER, P. J.; DU, X.; FLETCHER, R. P. Coupled equations for reverse time migration
in transversely isotropic media. Geophysics, Society of Exploration Geophysicists, v. 75,
n. 1, p. S11–S22, 2010.

GEIMER, M. et al. The scalasca performance toolset architecture. Concurr. Comput.:
Pract. Exper., John Wiley and Sons Ltd., GBR, v. 22, n. 6, p. 702–719, abr. 2010. ISSN
1532-0626.

GERNDT, M.; FÜRLINGER, K.; KEREKU, E. Periscope: Advanced techniques for
performance analysis. In: PARCO. [S.l.: s.n.], 2005.

GLOS, A.; MISZCZAK, J. A.; OSTASZEWSKI, M. Qswalk.jl: Julia package for
quantum stochastic walks analysis. Computer Physics Communications, v. 235, p.
414–421, 2019. ISSN 0010-4655.

GRAYVER, A. V.; STREICH, R.; RITTER, O. Three-dimensional parallel distributed
inversion of CSEM data using a direct forward solver. Geophysical Journal
International, v. 193, n. 3, p. 1432–1446, 03 2013. ISSN 0956-540X. Available from
Internet: <https://doi.org/10.1093/gji/ggt055>.

HEIN, B.; TANNER, G. Quantum search algorithms on a regular lattice. Physical
Review A, American Physical Society (APS), v. 82, n. 1, Jul 2010. ISSN 1094-1622.
Available from Internet: <http://dx.doi.org/10.1103/PhysRevA.82.012326>.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture: A Quantitative
Approach. 5. ed. Amsterdam: Morgan Kaufmann, 2012. ISBN 978-0-12-383872-8.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture. [S.l.]: Cambridge:
Horgan Kaufmann Publishers, 2019.

HUANG, J.; LENG, T. Generalized loop-unrolling: a method for program speedup. In:
Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software
Engineering and Technology. ASSET’99 (Cat. No.PR00122). [S.l.: s.n.], 1999. p.
244–248.

https://doi.org/10.1007/978-3-030-63115-4_19
https://doi.org/10.1190/INT-2013-0171.1
https://doi.org/10.1093/gji/ggt055
http://dx.doi.org/10.1103/PhysRevA.82.012326

73

IZAAC, J. A.; WANG, J. B. pyCTQW: A continuous-time quantum walk simulator on
distributed memory computers. Comput. Phys. Commun., v. 186, p. 81 – 92, 2015.

JACQUELIN, M.; MARCHAL, L.; ROBERT, Y. Complexity analysis and performance
evaluation of matrix product on multicore architectures. In: IEEE. 2009 International
Conference on Parallel Processing. [S.l.], 2009. p. 196–203.

JAYAKODY, M. N.; MEENA, C.; PRADHAN, P. One-dimensional discrete-
time quantum walks with general coin. arXiv, 2021. Available from Internet:
<https://arxiv.org/abs/2102.07207>.

KEY, K. Mare2dem: a 2-d inversion code for controlled-source electromagnetic and
magnetotelluric data. Geophysical Journal International, Oxford University Press,
v. 207, n. 1, p. 571–588, 2016.

KEY, K.; OVALL, J. A parallel goal-oriented adaptive finite element method for 2.5-d
electromagnetic modelling. Geophysical Journal International, v. 186, n. 1, p. 137–154,
2011. Available from Internet: <+http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x>.

KNÜPFER, A. et al. The vampir performance analysis tool-set. In: Parallel Tools
Workshop. [S.l.: s.n.], 2008.

KNÜPFER, A. et al. Score-p: A joint performance measurement run-time infrastructure
for periscope,scalasca, tau, and vampir. In: BRUNST, H. et al. (Ed.). Tools for High
Performance Computing 2011. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
p. 79–91.

KOBAYASHI, H.; KOMATSU, K. Performance evaluation of sx-aurora tsubasa and its
qa-assisted application design. In: . [S.l.: s.n.], 2021. p. 3–20.

KOMATSU, K.; KOBAYASHI, H. Performance evaluation of sx-aurora tsubasa by using
benchmark programs. In: . [S.l.: s.n.], 2020. p. 69–77. ISBN 978-3-030-39180-5.

KOMATSU, K. et al. Performance evaluation of a vector supercomputer sx-aurora
tsubasa. In: SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. Dallas Convention Center Arena: IEEE, 2018. p.
685–696.

KOWARSCHIK, M.; WEISS, C. An overview of cache optimization techniques and
cache-aware numerical algorithms. In: Algorithms for memory hierarchies. [S.l.]:
Springer, 2003. p. 213–232.

KSHEMKALYANI, P. A. Vector Processors. University of Illinois, 2012. Available
from Internet: <https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf>.

LARA, P. C. S.; LEãO, A.; PORTUGAL, R. Simulation of quantum walks using hpc.
Journal of Computational Interdisciplinary Sciences, v. 6, p. 21, 2017.

MARQUEZINO, F. L.; PORTUGAL, R. The QWalk simulator of quantum walks.
Comput. Phys. Commun., v. 179, n. 5, p. 359–369, 2008.

https://arxiv.org/abs/2102.07207
+ http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x
https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf

74

MATSUURA, A. Quantum computing: A scalable, systems approach. In: .
Proceedings of the 18th ACM International Conference on Computing Frontiers.
New York, NY, USA: Association for Computing Machinery, 2021. p. 1. ISBN
9781450384049. Available from Internet: <https://doi.org/10.1145/3457388.3460817>.

MICHELS, F. et al. Simulando passeios quânticos em processadores vetoriais. In: Anais
do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.
Porto Alegre, RS, Brasil: SBC, 2022. ISSN 0000-0000.

MICHELS, F.; SCHNORR, L.; NAVAUX, P. Investigating oil and gas csem application
on vector architectures. In: Computational Science and Its Applications – ICCSA
2022 Workshops. Porto Alegre, RS, Brazil: Springer International Publishing AG, 2022.

MICHELS, F. et al. Otimização de aplicações paralelas em aceleradores vetoriais
nec sx-aurora. In: Anais do XXI Simpósio em Sistemas Computacionais de Alto
Desempenho. Porto Alegre, RS, Brasil: SBC, 2020. p. 311–322. ISSN 0000-0000.
Available from Internet: <https://sol.sbc.org.br/index.php/wscad/article/view/14079>.

MITTAL, S.; VETTER, J. S. A survey of cpu-gpu heterogeneous computing techniques.
ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 47, n. 4, p. 1–35,
2015.

MYER, D.; KEY, K.; CONSTABLE, S. Marine csem of the scarborough gas field, part
2: 2d inversion. Geophysics, Society of Exploration Geophysicists, v. 80, p. 187–196,
2015.

NEC. How to Use C/C++ Compiler for Vector Engine. 2020. <https://www.hpc.nec/
api/v1/forum/file/download?id=pgNh9b>. Accessed: 09/2021.

NEC. How to Use Fortran Compiler for Vector Engine. 2020. <https://www.hpc.nec/
api/v1/forum/file/download?id=pRdhmv>. Accessed: 09/2021.

NEC. PROGINF/FTRACE User’s Guide. 2020. <https://www.hpc.nec/documents/sdk/
pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf>. Accessed: 09/2021.

NEC. SX-Aurora TSUBASA A100-1 series user’s guide. 2020. <https://www.hpc.nec/
documents/guide/pdfs/A100-1_series_users_guide.pdf>. Accessed: 09/2021.

NVIDIA. NVIDIA Tesla P100 GPU Accelerator. 2016. <https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.
pdf>. Accessed: 12-2021.

PANAHIYAN, S.; FRITZSCHE, S. Simulation of the multiphase configuration and
phase transitions with quantum walks utilizing a step-dependent coin. Phys. Rev. A,
American Physical Society, v. 100, p. 062115, Dec 2019. Available from Internet:
<https://link.aps.org/doi/10.1103/PhysRevA.100.062115>.

PEREZ, A. F. et al. Lower Numerical Precision Deep Learning Inference and
Training. 2018. <https://software.intel.com/content/www/us/en/develop/articles/
lower-numerical-precision-deep-learning-inference-and-training.html>. Accessed:
09-2021.

https://doi.org/10.1145/3457388.3460817
https://sol.sbc.org.br/index.php/wscad/article/view/14079
https://www.hpc.nec/api/v1/forum/file/download?id=pgNh9b
https://www.hpc.nec/api/v1/forum/file/download?id=pgNh9b
https://www.hpc.nec/api/v1/forum/file/download?id=pRdhmv
https://www.hpc.nec/api/v1/forum/file/download?id=pRdhmv
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/guide/pdfs/A100-1_series_users_guide.pdf
https://www.hpc.nec/documents/guide/pdfs/A100-1_series_users_guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.pdf
https://link.aps.org/doi/10.1103/PhysRevA.100.062115
https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html
https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html

75

PRICE, A. et al. 1d, 2d and 3d modeling and inversion of 3d csem data offshore west
africa. In: . SEG Technical Program Expanded Abstracts 2008. [s.n.], 2008. p.
639–643. Available from Internet: <https://library.seg.org/doi/abs/10.1190/1.3063732>.

ROCHA, R. C. O. et al. Loop rolling for code size reduction. In: 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). [S.l.: s.n.],
2022. p. 217–229.

SERPA, M. S. et al. Strategies to improve the performance of a geophysics model for
different manycore systems. In: IEEE. 2017 International Symposium on Computer
Architecture and High Performance Computing Workshops (SBAC-PADW). [S.l.],
2017. p. 49–54.

SHENDE, S. S.; MALONY, A. D. The tau parallel performance system. Int.
J. High Perform. Comput. Appl., Sage Publications, Inc., USA, v. 20, n. 2,
p. 287–311, may 2006. ISSN 1094-3420. Available from Internet: <https:
//doi.org/10.1177/1094342006064482>.

SHENVI, N.; KEMPE, J.; WHALEY, K. B. Quantum random-walk search algorithm.
Physical Review A, American Physical Society (APS), v. 67, n. 5, May 2003. ISSN
1094-1622. Available from Internet: <http://dx.doi.org/10.1103/PhysRevA.67.052307>.

SILVA, S. A. da; SERPA, M. da S.; SCHEPKE, C. Técnicas de otimização loop unrolling
e loop tiling em multiplicações de matrizes utilizando openmp. In: Workshop de
Iniciação Científica do WSCAD. [S.l.: s.n.], 2016. p. 13–18.

THEODORIDIS, T.; GROSSER, T.; SU, Z. Understanding and exploiting optimal
function inlining. In: Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems. New York, NY, USA: Association for Computing Machinery, 2022.
(ASPLOS ’22), p. 977–989. ISBN 9781450392051. Available from Internet:
<https://doi.org/10.1145/3503222.3507744>.

TRABESINGER, A. Quantum computing: towards reality. 2017. Available from
Internet: <https://doi.org/10.1038/543S1a>.

TULSI, A. Faster quantum-walk algorithm for the two-dimensional spatial search.
Physical Review A, American Physical Society (APS), v. 78, n. 1, Jul 2008. ISSN
1094-1622. Available from Internet: <http://dx.doi.org/10.1103/PhysRevA.78.012310>.

VENEGAS-ANDRACA, S. E. Quantum walks: a comprehensive review. Quantum
Information Processing, Springer Science and Business Media LLC, v. 11,
n. 5, p. 1015–1106, jul 2012. Available from Internet: <https://doi.org/10.1007%
2Fs11128-012-0432-5>.

WILLSCH, M. et al. Discrete-event simulation of quantum walks. Frontiers in Physics,
Frontiers, v. 8, p. 145, 2020.

YAVICH, N.; ZHDANOV, M. S. Finite-element em modelling on hexahedral grids
with an fd solver as a pre-conditioner. Geophysical Journal International, Oxford
University Press, v. 223, n. 2, p. 840–850, 2020.

https://library.seg.org/doi/abs/10.1190/1.3063732
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1145/3503222.3507744
https://doi.org/10.1038/543S1a
http://dx.doi.org/10.1103/PhysRevA.78.012310
https://doi.org/10.1007%2Fs11128-012-0432-5
https://doi.org/10.1007%2Fs11128-012-0432-5

76

YOKOKAWA, M. et al. I/o performance of the sx-aurora tsubasa. In: IEEE. 2020
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). [S.l.], 2020. p. 27–35.

ZABLE, A. et al. Investigating immersive virtual reality as an educational
tool for quantum computing. In: 26th ACM Symposium on Virtual Reality
Software and Technology. New York, NY, USA: Association for Computing
Machinery, 2020. (VRST ’20). ISBN 9781450376198. Available from Internet:
<https://doi.org/10.1145/3385956.3418957>.

ZHOU, H.-W. et al. Reverse time migration: A prospect of seismic imaging methodology.
Earth-Science Reviews, Elsevier, v. 179, p. 207–227, 2018.

https://doi.org/10.1145/3385956.3418957

77

APPENDIX A — RESUMO EXPANDIDO

A.1 Introdução

A computação de alto desempenho é indispensável para muitas indústrias, setores

comerciais e pesquisas hoje. Ele oferece vários benefícios, desde facilitar a análise de

dados até permitir novas simulações e modelagem (EZELL; ATKINSON, 2016). Assim,

os avanços em HPC (High Performance Computing) são significativos. Aumentando as

dimensões e diminuindo o tempo de execução, podemos beneficiar diferentes áreas da

sociedade.

O desempenho do aplicativo depende em grande parte da arquitetura usada e de

como o programa foi codificado para ser executado nele. Atualmente, para fins de acel-

eração, são utilizadas diferentes arquiteturas, como multicore, manycore, aceleradores

específicos e GPUs (Graphics Processing Units).

Um grande número de arquiteturas, embora atraentes e flexíveis, impõem novos

desafios ao programador (MITTAL; VETTER, 2015). A crescente complexidade da ar-

quitetura também aumentará a dificuldade de implementação do aplicativo. Vale ressaltar

a ideia de que existem vários gargalos comuns, como os encontrados no subsistema de

memória, que inclui poluição cache, thrashing, entre outros.

Além de usar novas arquiteturas, várias técnicas são empregadas para aumentar o

desempenho, algumas das quais são exclusivas de arquiteturas específicas. Por exemplo,

a vetorização permite que uma instrução atue em vários dados, mas nem todos imple-

mentam suporte para isso. Outras otimizações incluem o aumento da taxa de acerto da

memória cache, que é possível em diferentes arquiteturas.

Nesse sentido, a NEC Corporation lançou uma nova arquitetura, um processador

vetorial chamado SX-Aurora. Este processador possui oito núcleos de processamento a

1,6 GHz e três níveis de memória cache (KOMATSU et al., 2018). Uma das vantagens

desta arquitetura em relação às demais existentes é o tamanho de suas unidades vetoriais.

Além disso, o compilador NEC toma decisões automaticamente. Ou seja, identifica áreas

vetorizáveis e gera código para isso. No entanto, o compilador ainda precisa de ajuda do

programador para facilitar a interpretação do código, além de melhorar a vetorização au-

tomática, seguindo orientações específicas e, neste caso, utilizando técnicas de otimização

como unrolling e inlining de loops.

As arquiteturas vetoriais são Single Instruction Multiple Data (SIMD), que têm

78

grande potencial para aplicações científicas altamente paralelizáveis. Entre eles estão apli-

cações numéricas, previsão de tempo, processamento multimídia (KSHEMKALYANI,

2012), simulação de colisão (HENNESSY; PATTERSON, 2019), compressão de dados,

entre outros. Uma característica proeminente desses processadores vetoriais é a possibil-

idade de usar uma instrução para reproduzir centenas de operações. Além disso, todos

os resultados dos elementos de um vetor são independentes e, portanto, não é necessário

verificar os dados resultantes. O acesso à memória é feito apenas uma vez para cada vetor,

inferindo uma pequena latência de acesso à memória.

A.1.1 Simulação

Outra forma de melhorar a produção científica é através da simulação. Os sim-

uladores são ferramentas necessárias e poderosas utilizadas em diversos campos, desde

pesquisas até empreendimentos comerciais e industriais.

A.1.1.1 Prospecção de petróleo e gás

Os investimentos da indústria petroquímica em eletromagnetismo de fonte con-

trolada (CSEM) só aumentaram nos últimos 15 anos, e o interesse acadêmico acompanha

isso (CONSTABLE; SRNKA, 2007) (COOPER; MACGREGO, 2020) (FANAVOLL; GABRIELSEN;

ELLINGSRUD, 2014). A principal razão para esses investimentos é reduzir o risco. O

CSEM fornece mais dados e, portanto, mais informações para fornecer novos insights

sobre o fundo do mar, reduzindo consequentemente o risco.

A aquisição de dados CSEM produz uma grande quantidade de dados, levando

a um tremendo problema computacional para resolver a modelagem inversa. Algumas

regiões com geometria complicada podem exigir dados adicionais, principalmente para

produzir inversão 3D completa. No entanto, a inversão 2D é muito mais rápida e fornece

uma interpretação mais direta dos dados reais em um tempo de execução mais curto,

tornando-a uma abordagem mais robusta, sensata e viável (PRICE et al., 2008).

Uma implementação necessária para gerenciar este tipo de dados CSEM é a apli-

cação "Modeling with Adaptively Refined Elements for 2D Electromagnetics", referido

neste projeto como MARE2DEM (KEY, 2016). MARE2DEM é um código de código

aberto para inversão 2D de dados CSEM, dados magnetotelúricos (MT) e dados EM de

poços superficiais, por elementos finitos adaptativos paralelos para ambientes onshore,

79

offshore e de fundo de poço. Devido à grande quantidade de dados fornecidos pelo

CSEM, é necessário alto poder computacional para executar tal conjunto de dados com

eficiência. Portanto, código eficiente e um computador poderoso são preferidos.

A.1.2 Simuladores de caminhada quântica

Os avanços da computação quântica inevitavelmente aumentarão o poder e a efi-

ciência computacional (EASTTOM, 2021). Essas melhorias são necessárias à medida

que os computadores modernos lutam para processar sistemas biológicos complexos, es-

truturas químicas e novos materiais (TRABESINGER, 2017). Mesmo áreas improváveis,

como Realidade Virtual, poderão aproveitar essa nova tecnologia (ZABLE et al., 2020).

A IBM alcançou 127 qubits em seu mais recente chip de computação quântica, mar-

cando um novo marco para toda a indústria, a primeira contagem de qubits de três dígitos

(BALL, 2021). A IBM pretende ultrapassar 1000 qubits até 2023, visando um aumento

nunca visto no poder computacional.

No entanto, esses computadores e processadores quânticos não estão totalmente

disponíveis para o público em geral. Para preencher essa lacuna entre a comunidade

científica em geral e a ciência da computação quântica, os simuladores quânticos são a

melhor alternativa.

Uma categoria de tais simuladores são os simuladores de caminhada quântica,

embora sejam raros. Um desses casos raros é o simulador Hiperwalk (LARA; LEãO;

PORTUGAL, 2017). Este simulador é dividido em três partes. A primeira é uma in-

terface de usuário escrita em Python que gera arrays e vetores com base na entrada do

usuário no programa principal. A segunda parte consiste nos cálculos para as etapas

quânticas. É utilizada a biblioteca Neblina-core, desenvolvida no Laboratório Nacional

de Computação Científica (LNCC). Esta biblioteca facilita cálculos do tipo matriz-vetor

e vetor-vetor em arquiteturas heterogêneas. Por fim, a última parte é um módulo capaz de

calcular distribuições estatísticas e gerar arquivos de dados de saída.

A.1.3 Objetivos

Esta dissertação de mestrado realizou um estudo, avaliação, adaptação e otimiza-

ção de quatro aplicações distintas em três partes distintas. Esses aplicativos são o bench-

80

mark NAS, Reverse Time Migration (RTM), MARE2DEM e Hipewalk.

A primeira parte mencionada acima é otimizar o desempenho de aplicações reais

e um conjunto de benchmarks utilizando técnicas de loop unrolling e inlining, buscando

melhorar a vetorização automática realizada pelo compilador. Mais precisamente, o pre-

sente trabalho apresenta as seguintes contribuições:

• Uma análise de desempenho experimental do acelerador vetorial NEC SX-Aurora

TSUBASA é realizada. Um benchmark de mapas sintéticos paralelos e um aplica-

tivo real é usado.

• Mostrar que as técnicas de unrolling e inlining de loop são capazes de melhorar

significativamente o desempenho das aplicações quando executadas no SX-Aurora

TSUBASA em situações em que o ganho de desempenho não é automático pelo seu

compilador.

A segunda parte é uma investigação, adaptação e análise da execução do MARE2DEM

utilizando uma arquitetura vetorial, o SX-Aurora, e a tradicional arquitetura x86. Serão

utilizados dois conjuntos de dados, um sintético e um caso real fornecido pela Petrobras,

empresa brasileira de petróleo e gás. Portanto, os principais objetivos deste trabalho são:

• Descreva a implementação do MARE2DEM no SX-Aurora da NEC. A biblioteca

matemática padrão da Intel foi substituída pelo MARED2DEM no SX-Aurora porque

a arquitetura da NEC nãot apoiá-lo. Todas as entradas que exigiam a biblioteca

matemática da Intel foram reescritas, suportando as bibliotecas matemáticas da

NEC.

• Investigar a análise de desempenho desta implementação comparando-a com CPUs

de arquitetura x86.

A terceira parte é referente à adaptação e análise de desempenho do Hiperwalk no

SX-Aurora da NEC. Os principais objetivos são:

• Apresentar o simulador Hiperwalk, explicando seus casos de uso;

• Descrever a implementação do kernel do HiperWalk no SX-Aurora TSUBASA da

NEC;

• Uma análise de desempenho de nossa implementação comparando-a com as GPUs

da NVIDIA.

O objetivo principal desta dissertação, como um todo, é elevar o suposto poten-

cial que uma arquitetura vetorial pode ter nas circunstâncias certas, especialmente o SX-

81

Aurora TSUBASA.

A.1.4 Contribuições deste trabalho

As principais contribuições deste trabalho são a análise de desempenho de técnicas

clássicas de otimização para SX-Aurora usando duas aplicações diferentes, e a adaptação

de código e análise de desempenho de um simulador de caminhada quântica (Hiperwalk)

e um código de elementos finos geofísicos usados na área de gás e petróleo indústria

(MARE2DEM). Verificou-se que as técnicas de otimização foram capazes de aumentar o

desempenho na maioria dos casos, e as adaptações de código também tiveram melhorias

de desempenho nas circunstâncias corretas.

A.1.5 Principais resultados alcançados

Este trabalho apresenta como principais resultados um ganho de desempenho nas

tres partes analisadas. Na primeira parte, sendo essa relacionada as técnicas de otimiza-

ção, teve um aumento de desempenho de 1,9 vezes no caso real utilizando RTM e 7,8 para

o benchmark NAS. A segunda parte pode-se observar um aumento de aproximadamente

27% no desempenho. Já na terceira parte percebe-se um ganho de 75%.

	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Simulation
	1.1.1 Oil and gas prospecting
	1.1.2 Quantum Walk Simulators

	1.2 Objectives
	1.3 Contributions of this work
	1.4 Document organization

	2 Background concepts
	2.1 Quantum-Walk Models
	2.2 Optimization techniques
	2.3 Vector processors and Vectorization
	2.4 Controlled-source electromagnetic method

	3 Related work
	3.1 SX-Aurora
	3.2 Optimization Techniques
	3.3 MARE2DEM
	3.4 Hiperwalk
	3.5 Final Thoughts

	4 Methodology
	4.1 General Methodology and Infrastructure
	4.1.1 Infrastructure

	4.2 NAS benchmark and RTM
	4.3 MARE2DEM
	4.4 Hiperwalk
	4.4.1 Neblina
	4.4.2 Experiments

	4.5 Data collection and Hardware Counters
	4.5.1 Linux perf
	4.5.2 NEC FTRACE
	4.5.3 Score-P

	5 Investigation and Results
	5.1 Optimization with loop unrolling and inlining
	5.1.1 NAS Benchmark inlining and loop unrolling
	5.1.2 RTM optimization with inlining and loop unrolling

	5.2 NEC MARE2DEM Implementation
	5.2.1 Outcome validation
	5.2.2 Initial artificial demonstration runtime
	5.2.3 Effects of one worker on the first data set
	5.2.4 Real world data set

	5.3 Hiperwalk's improvements with vectorization

	6 Conclusions and Future work
	6.1 Future work
	6.2 Publications

	References
	Appendix A — Resumo expandido
	A.1 Introdução
	A.1.1 Simulação
	A.1.1.1 Prospecção de petróleo e gás

	A.1.2 Simuladores de caminhada quântica
	A.1.3 Objetivos
	A.1.4 Contribuições deste trabalho
	A.1.5 Principais resultados alcançados

