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ABSTRACT

Vector processors are designed to favor the execution of an instruction on multiple data,
which increases the number of calculations per cycle, and subsequently improves perfor-
mance in numerical applications, such as wave propagation and fluid mechanics.

In the same vein of performance improvements, quantum computing is becoming a reality
with machines’ latest announcements with nearly 100 qubits. In preparing the execution
of quantum applications, simulators are used. One such simulator available to the public
is Hiperwalk, a Quantum Walk simulator.

Furthermore, the importance of Controlled Source Electromagnetics (CSEM) has in-
creased in the past decade. Along with this interest, its efficiency increased, data acqui-
sition became more straightforward, and costs went down. For the Oil and Gas industry,
modeling this data is necessary for exploration. The Modeling with Adaptively Refined
Elements for 2D Electromagnetics (MARE2DEM), developed at Columbia University, is
one of the tools used to model CSEM data.

Therefore, with performance as the main focus, this master dissertation will be divided
into three parts. The first part is the performance analysis of two classic optimization tech-
niques using two different applications. The second part is the adaptation of Hiperwalk
and subsequent performance analysis. The third part is the adaptation and performance
analysis of MARE2DEM. These applications will utilize the same target architecture to
accelerate their execution, the NEC SX-Aurora TSUBASA, a vector processor. All three
cases improved performance up to 1,9Xx, regarding the first part. The second part was
able to increase up to 75% performance. Lastly, the third part reached a 27% improve-

ment over the original implementation and architecture.

Keywords: Vector. Optimization. Performance Analysis. High Performance Comput-

ing.






Otimizacao e adaptacao de aplicacoes em processadores vetoriais

RESUMO

Os processadores vetoriais sdo projetados para favorecer a execugdo de uma instru¢cdo em
vérios dados, o que aumenta o nimero de cdlculos por ciclo e, posteriormente, melhora o
desempenho em aplica¢des numéricas, como propagacio de ondas e mecanica dos fluidos.
Na mesma linha de melhorias de desempenho, a computacdo quantica estd se tornando
uma realidade com os ultimos antincios das méaquinas com quase 100 qubits. Na pre-
paracdo da execugdo de aplicagdes quanticas, sdo utilizados simuladores. Um desses
simuladores disponiveis ao publico é o Hiperwalk, um simulador de Quantum Walk.
Além disso, a importancia da Eletromagnética de Fonte Controlada (CSEM) aumentou
na ultima década. Junto com esse interesse, sua eficiéncia aumentou, a aquisicdo de
dados tornou-se mais simples e os custos cairam. Para a industria de Petrdleo e Gés, a
modelagem desses dados € necessdria para a exploracdo. O Modeling with Adaptively
Refined Elements for 2D Electromagnetics (MARE2DEM), desenvolvido na Columbia
University, € uma das ferramentas utilizadas para modelar dados do CSEM.

Assim, tendo o desempenho como foco principal, esta dissertacdo de mestrado serd divi-
dida em trés partes. A primeira parte € a andlise de desempenho de duas técnicas cldssicas
de otimizacao usando duas aplicacdes diferentes. A segunda parte € a adaptagao do Hi-
perwalk e posterior andlise de desempenho. A terceira parte é a adaptacdo e andlise de
desempenho do MARE2DEM. Esses aplicativos utilizardo a mesma arquitetura de des-
tino para acelerar sua execugdo, o NEC SX-Aurora TSUBASA, um processador vetorial.
Todos os trés casos melhoraram o desempenho em até 1, 9x, em relacdo a primeira parte.
A segunda parte conseguiu aumentar o desempenho em até 75%. Por fim, a terceira parte

alcangou uma melhoria de 27% em relac@o a implementacdo e arquitetura originais.

Palavras-chave: Vetorial, Otimizacdo, Andlise de Desempenho, Computacdao de Alto

Desempenho.
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1 INTRODUCTION

High performance computing (HPC) is indispensable for many industries, com-
mercial sectors and research today. It provides various benefits ranging from facilitating
data analysis to enabling new simulations and modeling (EZELL; ATKINSON, 2016).
Thus, advances in HPC are significant. By increasing the dimensions and decreasing the
execution time, we can benefit different areas of society.

Application performance largely depends on the architecture used and how the
program was coded to run on it. Currently, for acceleration purposes, different architec-
tures are used, such as multicore, manycore, specific accelerators and GPUs (Graphics
Processing Units).

A large number of architectures, while being attractive and flexible, imposes new
challenges for the programmer (MITTAL; VETTER, 2015). The increasing complexity
of the architecture will also increase the difficulty of implementing the application. It is
worth mentioning the idea that there are several common bottlenecks, such as those found
in the memory subsystem, which includes cache, thrashing pollution, among others.

In addition to using new architectures, several techniques are employed to boost
performance, some of which are unique to specific architectures. For example, vectoriza-
tion allows an instruction to act on multiple pieces of data, but not all of them implement
support for it. Other optimizations include increasing the cache memory hit rate, which is
possible on different architectures.

In this sense, NEC Corporation launched a new architecture, a vector processor
called SX-Aurora. This processor has eight processing cores at 1.6 GHz and three levels
of cache memory(KOMATSU et al., 2018). One of the advantages of this architecture in
relation to the other existing ones is the size of its vector units, 256 units. Furthermore, the
NEC compiler makes decisions automatically. That is, it identifies vectorizable areas and
generates code for that. However, the compiler still needs help from the programmer to
facilitate code interpretation, in addition to improving automatic vectorization, following
specific guidelines and, in this case, using optimization techniques such as loop unrolling
and inlining.

Vector architectures are Single Instruction Multiple Data (SIMD), which have
great potential for highly parallelizable scientific applications. Among these are numeri-
cal applications, time prediction, multimedia processing (KSHEMKALYANI, 2012), col-
lision simulation (HENNESSY; PATTERSON, 2019), data compression, and others. One
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prominent feature of these vector processors is the possibility of using an instruction to
reproduce hundreds of operations. Moreover, all the results of the elements of a vector are
independent, and therefore, checking the resulting data is not necessary. Memory access

is done only once for each vector, inferring a small memory access latency.

1.1 Simulation

Another way to improve scientific output is through simulation. Simulators are
necessary and powerful tools used in various fields, from research to commercial and

industrial enterprises.

1.1.1 Oil and gas prospecting

The investments of the petrochemical industry in controlled-source electromag-
netic (CSEM) have only increased in the last 15 years, and the academic interest goes
along with it (CONSTABLE; SRNKA, 2007) (COOPER; MACGREGO, 2020). The
main reason for these investments is to reduce risk. CSEM provides more data and, there-
fore, more information to give new insights into the seafloor bed, consequently reducing
risk (FANAVOLL; GABRIELSEN; ELLINGSRUD, 2014).

CSEM data acquisition produces a large quantity of data, leading to a tremendous
computational problem for solving inverse modeling. Some regions with complicated
geometry may require additional data, mainly to produce full 3D inversion. However,
2D inversion is much quicker and provides a more straightforward interpretation of actual
data in a shorter runtime, making it a more robust, sensible, and feasible approach (PRICE
et al., 2008).

One necessary implementation to manage this kind of CSEM data is the applica-
tion "Modeling with Adaptively Refined Elements for 2D Electromagnetics", referred to
in this work as MARE2DEM (KEY, 2016). MARE2DEM is an open-source code for 2D
inversion of CSEM data, magnetotelluric (MT) data, and surface-borehole EM data, by
parallel adaptive finite elements for onshore, offshore, and downhole environments. Due
to the large quantity of data provided by CSEM, high computational power is necessary to
execute such data set with efficiency. Therefore, efficient code and a powerful computer

are preferred.
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1.1.2 Quantum Walk Simulators

Quantum computing advancements will inevitably increase computational power
and efficiency (EASTTOM, 2021). These improvements are necessary as modern com-
puters struggle to process complex biological systems, chemical structures and new ma-
terials (TRABESINGER, 2017). Even unlikely areas, like Virtual Reality, will be able
to take advantage of this new technology (ZABLE et al., 2020). IBM has achieved 127
qubits in its latest quantum-computing chip, marking a new milestone for the whole in-
dustry, the first three-digit qubit count (BALL, 2021). IBM aims to surpass 1000 qubits
by 2023, targeting a never seen increase in computational power.

However, these quantum computers and processors are not fully available to the
general public. To fill this gap between the general scientific community and quantum
computer science, quantum simulators are the best alternative.

A category of such simulators is quantum walk simulators, even though they are
rare. One of those rare cases is the Hiperwalk simulator (LARA; LEAO; PORTUGAL,
2017). This simulator is divided into three parts. The first is a user interface written in
Python that generates arrays and vectors based on user input in the main program. The
second part consists of the calculations for the quantum steps. The Neblina-core library is
used, developed at the National Laboratory of Scientific Computing (LNCC). This library
facilitates matrix-vector and vector-vector type calculations in heterogeneous architec-
tures. Finally, the last part is a module capable of calculating statistical distributions and

generating output data files.

1.2 Objectives

This master’s dissertation has performed an evaluation, adaptation and optimiza-
tion of four separate applications in three distinct parts. These applications are the NAS
benchmark, Reverse Time Migration (RTM), MARE2DEM and Hipewalk.

The first part mentioned above is to optimize the performance of real applications
and a set of benchmarks using loop unrolling and inlining techniques, seeking to improve
the automatic vectorization performed by the compiler. More precisely, the present work

presents the following contributions:

e An experimental performance analysis of the NEC SX-Aurora TSUBASA vector
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accelerator is performed. A benchmark of parallel synthetic maps and an actual

application is used.

e Show that the loop unrolling and inlining techniques are capable of significantly im-
proving the performance of applications when executed in SX-Aurora TSUBASA

in situations where the performance gain is not automatically by its compiler.

The second part is an investigation, adaptation and analysis of MARE2DEM’s ex-
ecution utilizing a vector architecture, the SX-Aurora, and the traditional x86 architecture.
Two data sets will be used, a synthetic one and a real-world case provided by Petrobras,

Brazil’s oil & gas corporation. Therefore, the main goals of this research are:

e The implementation of MARE2DEM on NEC’s SX-Aurora. The standard Intel
math library was substituted for the MARED2DEM in the SX-Aurora because
NEC’s architecture does not support it. All entries that required Intel’s math library

were rewritten, supporting NEC’s mathematical libraries.

e To investigate the performance analysis of this implementation by comparing it with

x86 architecture CPUs.

The third part is regarding the adaptation and performance analysis of Hiperwalk

in NEC’s SX-Aurora. The main goals are:

e Introduction of the Hiperwalk simulator, explaining its use cases;
e The implementation of the kernel of HiperWalk on NEC’s SX-Aurora TSUBASA;

e A performance analysis by comparing the NEC’s HiperWalk adaptation with NVI-
DIA’s GPUs.

The primary goal of this dissertation is to elevate the supposed potential that a vec-
tor architecture can have in the right circumstances, especially the SX-Aurora TSUBASA,

e. g. high memory bandwidth.

1.3 Contributions of this work

The main contributions of this work are the performance analysis of classical opti-
mization techniques for SX-Aurora using two different applications, and the code adapta-
tion and performance analysis of a quantum walk simulator (Hiperwalk) and a geophysics
fine element code used in the gas and petroleum industry (MARE2DEM). It was found

that the optimization techniques were able to increase performance in most cases, and the
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code adaptations also had performance improvements under the right circumstances.

1.4 Document organization

This dissertation has been organized as follows. Section 2 presents the theory
regarding the optimization techniques and different applications utilized in this work.
Following, section 3 presents and discusses related work regarding vector architectures,
MARE2DEM and Hiperwalk. The methodology, workflow and execution environment
are presented in section 4. Section 5 depicts the experimental results of our two ap-
proaches, divided into three sections. Finally, section 6 presents the conclusion and pos-

sible future work.
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2 BACKGROUND CONCEPTS

This chapter will provide brief explanations on four background concepts related
to this dissertation and to its three parts, specifically the Quantum-Walk Models, opti-

mization techniques, vectorization and CSEM.

2.1 Quantum-Walk Models

The first proposed quantum walk model was the Discrete-Time Quantum Walks
(AHARONOV; DAVIDOVICH; ZAGURY, 1993). In 2003, Shenvi et al. proposed and
developed a quantum search routine for a hypercube, achieving a time complexity of
O(\Q/N ), where N is the number of vertices in the graph (SHENVI; KEMPE; WHALEY,
2003). Comparing it to the classical search algorithm, it has a quadratic gain. A similar
method was developed by Ambainis et al. to create another quantum search algorithm
for a two-dimensional lattice with a time complexity of O(\Q/Wg(]\f)), close to be-
ing quadratically better than previous classic algorithms (O(N.log(N))) (AMBAINIS;
KEMPE; RIVOSH, 2004).

Building upon Abainis et al. works, Tulsi introduces another qubit in the process,
improving the time complexity (TULSI, 2008). There are even more improvements and
different, however similar, methods in the literature, for example, Hein and Tanner (HEIN;
TANNER, 2010), Abal et al. (ABAL et al., 2012), and Abal et al. (ABAL et al., 2010).

The notion of random quantum walks can be simplified to a spin -1/2 (spin is the
angular momentum of elementary particles) particle going through motion in one dimen-
sion and its decision to change its motion taking a new step to the left or to the right. This
decision is dependant on a calculation done within its z axis of its spin (AHARONOV;
DAVIDOVICH; ZAGURY, 1993).

As a very through review is done Venegas-Andraca regarding quantum walks
(VENEGAS-ANDRACA, 2012). In this work he touches and elaborates on many top-
ics regarding the method. He gives the fundamentals of quantum walks, first starting with
a base in random walks on an unrestricted line. Showing hitting time of classical and
unrestricted classical discrete random walk on a line. Also, while on the fundamentals,
he shows the Discrete Quantum Walk on a line, explaining the coin and its structure, the
Schrodinger approach, the relation of Schrodinger and Discrete Path Integral Analysis to

the Hadamard Walk.
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Furthermore, Venegas-Andraca approaches with a general coin the Discrete Quan-
tum Walk on a line and also shows it with boundaries. Now with several coins it is possible
to learn about Unrestricted quantum walks on a line.

Most importantly its the Discrete quantum walks on graphs and the algorithms
based on these quantum walks, especially concerning the Hiperwalk simulator. Venegas-
Andraca gives more in depth knowledge about other subjects regarding quantum walks
and also of great importance, touching upon quantum walks and its universality, the sim-
ulation of quantum walks and quantum algorithms utilizing classical computer paradigms
and the simulation of quantum systems by quantum walks.

The most notable division in quantum walk models is the Discrete-time Quantum
Walk (DTQW) and Continuos-time Quantum Walk (CTQW). Their differences are better
described as "[...] DTQW is defined on a discrete-time domain, and in contrast, CTQW
is defined on a continuous-time domain." (JAYAKODY; MEENA; PRADHAN, 2021).

Another well known quantum walk model is the Szegedy’s Quantum Walk. Por-
tugal et al. describes it perfectly: "Szegedy’s QWs are obtained by quantizing classical
discrete Markov chains described by some transition matrix. Szegedy also developed QW-

based search algorithms inspired by a previous known coined-based search algorithm. "

2.2 Optimization techniques

In Part one of this work it is implemented two distinct techniques that are widespread,
inlining and loop unrolling.

Inlining is the technique of placing a copy of a function when it is called. This
improves execution by eliminating unnecessary overheads such as function call instruc-
tions related to using registers and stacks. However, if the function to be applied to the
technique is very large, that is, it takes up much space, inlining can end up consuming a
lot of the instruction cache memory, deteriorating the application’s performance. Thus, it
is recommended to use it for functions that take up little space.

Due to the nature of inlining the function will be expanded inside of another func-
tion. This will increase its spatial locality as well the number of function calls, which may
in turn decrease the cache miss ratio (CHEN et al., 1993). With the enlargement of the
code lines, the compiler can more effectively place its instructions, even improving load
forwarding performance due to sequentially growth (CHEN et al., 1993).

The loop unrolling technique aims to transform a loop so that it applies more than
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one execution per iteration. This minimizes the number of hops and instructions. In
addition, it can facilitate parallelization and vectorization, as long as the loop variables
are independent.

So, loop unrolling generally becomes effective when the compiler can simulate the
computations done by the loop control (HUANG; LENG, 1999). However, with the help
of the programmer, before the compiler even touches the code, it is possible to efficiently

insert this technique, even in sections that the compilers can’t recognize.

2.3 Vector processors and Vectorization

As defined by Hennessy:

Vector architectures grab sets of data elements scattered about memory, place
them into large, sequential register files, operate on data in those register files,
and then disperse the results back into memory. A single instruction operates
on vectors of data, which results in dozens of register—register operations on
independent data elements. These large register files act as compiler-controlled
buffers, both to hide memory latency and to leverage memory bandwidth.
Since vector loads and stores are deeply pipelined, the program pays the long
memory latency only once per vector load or store versus once per element,
thus amortizing the latency over, say, 64 elements. Indeed, vector programs
strive to keep memory busy. (HENNESSY; PATTERSON, 2012, p. 264)

One of the main features of these vector processors is the possibility of using one
instruction to reproduce hundreds of operations. In addition, all the results of the elements
of a vector are independent of each other, and therefore, it is not necessary to check the
data for risk. Memory access is done only once for each vector, inferring a small memory
access latency.

Of of the main factors today for code vectorization and its success is the structure
of these applications. True data dependencies, which are inherit to some programs, are to
be avoided and, if possible, removed entirely (HENNESSY; PATTERSON, 2012).

In the case of NEC'’s latest vector machine, the compiler handles automatically
the vectorization where it is possible to apply. However the programmer should assist
the compiler in recognizing the sections of code to be vectorized. To achieve that, NEC
provides a most useful manual (NEC, 2020a).

Moreover, SX-Aurora main selling point is its peak performance of 3,07 Ter-
aFLOPs and the vector length of 256 units. These two features are extremely important
to keep in mind. Due to the nature of vector processors, vector length is self explana-
tory. Much of the performance can be associated to it, as more calculations are done per

instruction, higher performance is achieved. Whoever, memory bandwidth is different.
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This advantage is primordial to some programs and applications that deal with higher

quantities of data.

2.4 Controlled-source electromagnetic method

Controlled Source Electromagnetics (CSEM) is a marine geophysical method map-
ping the subsurface resistivity. The CSEM method works as follows: A electrical-field
transmitter is rested close to the seafloor but not at the bottom. Then, electromagnetic
receivers are spaced at specific ranges on the seafloor, resulting in the CSEM data in these
range intervals. Figure 2.1 represents the process mentioned above.

Figure 2.1: Schematic view representing the CSEM method.

Sea

Seabed Receiver Receiver Recelver Receiver Receiver

So, a boat tows a horizontal electric dipole source (HED), the transmitters, across
a line (2D) or grid (3D) of receivers. Through the emission of and electromagnetic field
the signal is able to propagate, traveling in the subsurface and back to the receivers.

A complete evaluation of CSEM is described by Chave et al. " Controlled source
EM methods utilize time-varying electric and magnetic dipole sources of known geom-
etry to induce electric currents inside the conducting earth " (CHAVE; CONSTABLE;
EDWARDS, 2012).

Also, CSEM adheres, as other electrical methods, to the equivalency principle

which states, as explained by Mehta et al., " the response depends, within limits, primar-
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ily on the transverse resistance of the target (resistivity thickness product) ". This then

excludes that the response depends individually on the thickness and resistivity.
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3 RELATED WORK

This chapter will present several scientific articles and manuals from the areas
explored in this dissertation. Thus, studies in the fields of parallel and high performance
computing (general optimization techniques and SX-Aurora), quantum computing (Quan-
tum walk theory and simulation), geophysics (MARE2DEM and CSEM) and instrumen-
tation (Score-P).

The general structure will be a summary followed by a brief discussion around its

relation to this dissertation.

3.1 SX-Aurora

The work by Komatsu et al. (KOMATSU et al., 2018) highlights the potential
of the SX-Aurora TSUBASA architecture, comparing it to other architectures, including
Intel Xeon Phi 7290, NVIDIA Tesla V100 and SX-Ace. This comparison is made by
running benchmark applications and two real applications. The results show that the SX-
Aurora architecture can run efficiently, up to 3.5, in addition to getting a higher speedup
of up to 2.8 x.

Yokokawa et al. (YOKOKAWA et al., 2020), demonstrates the capability of the
SX-Aurora TSUBASA architecture for I/O applications, comparing the I/O system of the
new architecture with typical I/O systems. The distinct accelerated I/O function present
in the architecture, for some instances, triples the performance in MB per second.

A performance evaluation of SX-Aurora is done by Komatsu and Kobayashi (KO-
MATSU; KOBAYASHI, 2020). It aims to clarify its potential against benchmark pro-
grams. It uses Stream benchmark to evaluate the memory bandwidth, then the Himeno
and the HPCG benchmarks. They conclude that from these benchmarks, the remarks con-
cerning the high memory bandwidth can be sustained, achieving from 1.37 to 11.7 times
more bandwidth in the Stream benchmark, compared with 4 other architectures, including
its predecessor, SX-Ace.

In a cross between this chapter and the quantum chapter, Kobayashi and Komatsu
report an overview of an ongoing project concerning a "Quantum-Annealing Assisted
Next Generation HPC Infrastructure and its Applications" (KOBAYASHI; KOMATSU,
2021). This infrastructure combines HPC and Quantum-Annealing engines. SX-Aurora

takes a center stage in this infrastructure, therefore, a performance evaluation is also pre-
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sented. Throughout their analysis, they show the potential of combining SX-Aurora
and Quantum Annealing to provide high-performance and high-sustained computing,
through SX-Aurora capacity to increase performance of memory intensive programs and

the Quantum Annealing possibilities in data clustering optimization.

3.2 Optimization Techniques

It is proposed by Serpa et al. (SERPA et al., 2017) different optimization strate-
gies for a wave propagation model in different architectures. The study shows that using
techniques such as loop interchange, vectorization and mapping of data and threads, it
was possible to achieve a performance increase of up to 8.5 times.

Memory alignment and cache blocking techniques are presented by Castro et al.
(CASTRO et al., 2016), improving the performance of an acoustic wave propagation ap-
plication. Similar to Castro et al., in order to achieve better performance, in this work,
two techniques will be implemented, loop unrolling and inlining.

An overview of optimization techniques for cache memory is provided by Kowar-
schik and Weifs (KOWARSCHIK; WEISS, 2003), demonstrating techniques such as: loop
interchange, loop fusion, loop blocking, among others. Some of these techniques are
developed in the present work, observing their effects on a vector architecture.

Jacquelin et al. JACQUELIN; MARCHAL; ROBERT, 2009) propose algorithms
that use cache memory for multicore architecture and that minimize memory access time,
thus decreasing cache memory failure rate, as well as timely access to shared memory and
cache. The impact of cache memory failure rate is also explored in this article, focusing
now on a vector architecture.

In the work by Sherlon et al. (SILVA; SERPA; SCHEPKE, 2016) is compared dif-
ferent optimization techniques, such as loop unrolling and loop tiling. It demonstrates its
impact on parallel applications, achieving performances of up to 20 times the original. In
this work, we intend to analyze the impact of loop unrolling and inlining in a vector archi-
tecture, different from the focus on the Xeon processor of (SILVA; SERPA; SCHEPKE,
2016).

Theodoris et al. work shows that predicting optimal usage of inlining optimization
is non-trivial and a ongoing effort to improve compilers decision making (THEODOR-
IDIS; GROSSER; SU, 2022). Mainly, the paper shows an investigation of optimal inlin-
ing utilization by applying SPEC2017 benchmark. The result of their work is shown by
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the creation of an efficient autotuning strategy for the inlining technique, increasing its
performance by up to 27%, in the case of the SPEC2017 benchmark.

Rodrigo et al. proposes in their work a novel loop rolling technique called Ro-
LaG (ROCHA et al., 2022). This new technique is capable of detecting isomorphic code
through SSA graphs. To compare, SPEC2017 and AnghaBench were utilized to bench-
mark this new technique. They show it was possible to achieve up to 2.7% and 9.12%

code reduction, respectively.

3.3 MARE2DEM

Myer, through the use of MARE2DEM, explores 2D inversion of marine CSEM
and MT data (MYER; KEY; CONSTABLE, 2015). The primary purpose is to make the
inversion aware that the subsurface comprises similar geologic domains. The presented
workflow is subjected to CSEM limitations, making fine-scale structural details hard to
be resolved. However, in confounding settings, it is still possible to be used to map the
rough qualities and general extent.

Grayver presents it as a new 3-D parallel inversion scheme for CSEM data in the
frequency domain based on a direct forward solver (GRAYVER; STREICH; RITTER,
2013). Gauss-Newton minimization provides data of model inversion, proving the ap-
proach’s applicability to real-world problems, showing real-world data sets being possible
to manage with only medium-sized clusters.

The application MARE2DEM (KEY, 2016) implements 2D forward and inver-
sion modeling algorithms for MT and CSEM data. The inversion modeling uses CSEM
information provided by a grid of electromagnetic receivers resting on the seafloor bed
and its response to a transmitter below the sea’s surface while being towed by a ship.
This response happens in known intervals and later is converted into electrical resistivity,
making it possible to study the components below the seabed.

Furthermore, MARE2DEM employs finite element method (KEY; OVALL, 2011)
to find the resistivity model. To accurately calculate CSEM and MT models’ solutions,
Kerry Key presents a parallel goal-oriented adaptive finite element method in his work.
He also introduces a reliable goal-oriented error to guide the iterative mesh refinement.
The overall performance is assessed utilizing clusters of 800 processors with real-world
data sets, achieving execution times of only a few seconds.

Yavich and Zhdanov published their work on improving the finite element model-
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ing through finite difference (YAVICH; ZHDANOV, 2020). This novel implementation
used a finite difference solver based on implicit factorization of the matrix. A comparison
is made between their implementation and three other public available programs. One of
them is MARE2DEM, and it was possible to achieve improved performance with similar
accuracy.

Score-P is a unified performance-measurement infrastructure used for profiling,
event tracing, and evaluating HPC applications (KNUPFER et al., 2012). It provides a va-
riety of different performance evaluation tools, such as Tau (SHENDE; MALONY, 2006),
Periscope (GERNDT; FURLINGER; KEREKU, 2005), Scalasca (GEIMER et al., 2010),
and Vampir (KNUPFER et al., 2008). Each one addresses Score-P behavior, utilizing cer-
tain factors. Score-P is a complete tool that focuses on bringing the tools mentioned above
and being the central piece that binds them together, accommodating all components.

Hanbo et al. shows in his article a novel wavelet Galerkin method (CHEN; XIONG;
HAN, 2022). This new method is important, mainly, to solve the forward modeling prob-
lem present in Marine Controlled-Source Electromagnetic Method (MCSEM). To evalu-
ate this new method, it was compared to the finite element and difference and the analyti-
cal methods. Their comparison shows that this new method has an advantage in memory

utilization and computing time.

3.4 Hiperwalk

The theory of quantum walks is constantly evolving. The work of Willsch et al.
demonstrates that quantum walks can be modeled without using the notion of particle-
wave duality. For the simulation of quantum walks, the simulator reproduces the ex-
perimental data of an application of quantum walks through atoms in a given trajectory,
starting from the concept of refutability. Any classical mechanics model can be excluded
to calculate the trajectory of the atom (WILLSCH et al., 2020).

Panahiyan applies quantum walks similarly to Pedro Lara (LARA; LEaO; POR-
TUGAL, 2017). Using a step-dependent simulation using the coin concept, it simulates
topological phases and invariants, boundary states, and the possibility of phase transition
(PANAHIYAN; FRITZSCHE, 2019).

Matsuura (MATSUURA, 2021) describes the promise and challenges of bring-
ing quantum computing out of the lab and into a commercial complete computer system

and will give an overview of Intel’s quantum computing research and system develop-
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ment. Many interdisciplinary research questions cross the boundaries between physics,
engineering, and computer architecture in constructing a full-stack quantum computing
system.

The paper Simulation of Quantum Walks using HPC by Pedro Lara, Aaron Ledo,
and Renato Portugal describes the Hiperwalk simulator used in this work (LARA; LE3O;
PORTUGAL, 2017). This work is one of the few quantum walk simulators available to
the public and one of the only ones to use parallelism for the simulation. This simulator
works with vector architectures such as SX-Aurora, as well as other SIMD architectures,
like NVIDIA GPUs. However, the simulator is based on languages and libraries that
restrict portability, such as OpenCL, thus being a good source for adaptation.

The QWalk simulator (MARQUEZINO; PORTUGAL, 2008) is a C-program for
simulating quantum walks on lattices. The pyCTQW simulator (IZAAC; WANG, 2015)
aims to simulate multi-particle continuous-time quantum walks using distributed mem-
ory. The QSWalk.jl simulator (GLOS; MISZCZAK; OSTASZEWSKI, 2019) is a Julia
package that aims to simulate quantum stochastic walks on directed weighted graphs.

Anglés and Pérez explore in their article a quantum walk that is capable of sim-
ulating the pattern of a 1/2 particle spin with an extra dimension in a ordinary spatial
dimension with warped geometry (ANGLéES-CASTILLO; PéREZ, 2021). Through the
Dirac equation it is possible to foresee properties of the quantum walk. As the result, they
are able to correlate localization and high energy physics in quantum walk, finally be-
ing possible to conclude that for simulation of field theory models with more dimensions

reliant on curvature of space-time, quantum walks are prime contenders.

3.5 Final Thoughts

When comparing the works presented previously and the present work, the fo-
cus on the new SX-Aurora TSUBASA architecture is a differential due to its essence of
vector processor and its unique compiler, which, for example, promotes automatic vec-
torization. Another great feature of NEC’s vector architecture is its very large 256 units
vector length, which contributes to the processors ability to manipulate matrices. Also,
it 1s imperative to note the other main selling point of SX-Aurora, its high bandwidth
memory. To achieve high performances, this advantage must be utilized, which implies
tailoring the applications and choosing the right ones initially, to best harvest this feature.

Furthermore, even in the works presented on the new architecture, none of them
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implements simple and known optimization techniques, which is the case of those applied

in this work, the loop unrolling and inlining techniques.
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4 METHODOLOGY

This chapter will focus on all three parts’ general and specific methodologies and
the instrumentation to acquire data. First, the execution environment and the standard
methodology for experimentation and testing. Next, the specifics for each part and the
changes implemented for adaptation. At last, the instrumentation with perf, FTRACE and

score-P.

4.1 General Methodology and Infrastructure

The general experimentation workflow follows four steps: preparing the environ-
ment, running the experiments, collecting data and analyzing. Figure 4.1 shows the steps
with additional information. The blue-green rectangles in the middle represent the signif-
icant steps. The shapes with red color are the three experiments performed. Moreover,
the green circles show additional work related to that step.

The execution environment preparation means creating the routines for compila-
tion/execution and data visualization. Secondly, the experiments selected in the previous
step are carried out in the work environment. The third workflow step is data collection

and management, using R, score-P, perf or FTRACE.

4.1.1 Infrastructure

The experiments utilized the resources of the Parque Computacional de Alto De-
sempenho (PCAD) infrastructure, <http://gppd-hpc.inf.ufrgs.br>, at INF/UFRGS. Figure
4.2 shows a detailed schematic of the SX-Aurora architecture. The environment has eight-
core, global memory, and cache L3, each core with memory cache L1 and L2, one unit of
scalar processing (SPU), and a vector processing unit (VPU), with each VPU containing
load buffer, store buffer, and 32 vector parallel pipeline (VPP) (NEC, 2020d). The table
4.1 shows the detailed specs of the architecture, containing the specs of the processors,
cache, and global memories.

The Intel Cascade Lake microarchitecture is utilized in part two of this work,
involving MARE2DEM, referred there as the x86 architecture. In Table 4.2 you have

the specifications of the Intel Xeon Gold 6226 processor, which has 12 cores operating


http://gppd-hpc.inf.ufrgs.br

36

Figure 4.1: Workflow of this dissertation general steps.
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Figure 4.2: Detailed scheme of each SX-Aurora core.
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at a frequency between 2.7 GHz and 3.7 GHz. Each core has 32 KB of the L1 cache of
data and instructions and a private 1 MB L2 cache. The L3 shared across all cores has a
capacity of 16.5 MB, and the machine also features 192 GB of DRAM memory (PEREZ
et al., 2018).

For the tests in the third part, regarding Hiperwalk, we used a Tesla machine. It

consists of 2 x Intel Xeon E5-2699 v4 Broadwell (Q1°16), 2.2 GHz, 44 cores (22 per
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Table 4.1: SX-Aurora Architecture.

Vector Engine Type 10BE
Processor 8 cores @ 1408 MHz
Microarchitecture SX-Aurora
Cache 8 X 32 KB L118 X 32 KB L1D;
8 X256 KBL2;8 X2MBL3
Memory HBM2 48 GB, 900 MHz
Table 4.2: Microarchitecture Cascade Lake (x86).
Processor 2 X 12 cores @ 2700 - 3700 MHz;
Microarchitecture Cascade Lake
Cache 12X 32KBLI1I; 12 X 32 KB L1D;
12X 1 MBL2;16,5MB L3
Memory DDR4 192 GB, 2933 MHz

CPU), totaling 44 cores and 88 threads, 256 GB DDR4 RAM, 4 x NVIDIA Tesla P100,
Pascal, 4 x 3584 CUDA Threads.

The Intel Cascade Lake microarchitecture represents the x86 architecture with
NVIDIA’s P100 GPU. In Table 4.3 you have the specifications of the Intel Xeon Gold
6226 processor, which has 22 cores operating at a frequency between 2.7 GHz and 3.7
GHz. Each core has 32 KB of the L1 cache of data and instructions and a private 1 MB
L2 cache. The L3 shared across all cores has a capacity of 16.5 MB, and the machine also
features 192 GB of DRAM memory. (PEREZ et al., 2018). The NVIDIA P100 is a Pascal
GPU with 3584 CUDA cores (NVIDIA, 2016).

4.2 NAS benchmark and RTM

For the evaluation of SX-Aurora, we used the benchmark NAS (BAILEY et al.,
1991) and an actual application used by the oil industry for seismic migration, called Re-
verse Time Migration (RTM) (ZHOU et al., 2018; FOWLER; DU; FLETCHER, 2010;
FLETCHER; DU; FOWLER, 2009). The NAS Benchmark is a series of programs ex-
plicitly designed to evaluate the performance of parallel computers. The RTM modeling

constitutes the simulation of the propagation of waves through time, using the acoustic

Table 4.3: Microarchitecture Broadwell (x86).

Processor 22 cores @ 2200 MHz;

Microarchitecture Broadwell

Cache 12X 32KBLI1I; 12 X 32 KB L1D;
12X 1 MBL2;16,5MB L3

Memory DDR4 256 GB, 2933 MHz

GPU NVIDIA P100, Pascal, 3584 CUDA
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equations and the fact that different geological layers have different speeds.

Thus, the applications used for the benchmark NAS were: BT, CG, EP, FT, IS,
MG, SP and UA. The input data class used is B. Specifications for these programs are
found in the NAS documentation (BAILEY et al., 1991). All experiments, benchmark

NAS and RTM modeling, were run ten times, then taking the mean and standard error.

Figure 4.3: Fortran source code snippet, illustrating a loop unrolling applied to the bench-

mark NAS. ,
do k=ksize-1,0,-1

do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE, 2
rhs(m,i, j,k) = rhs(m,1i, 3, k)
lhs(m,n,cc,k)*rhs(n,i, j, k+1)
rhs(m,1i,j,k) = rhs(m,1i, j, k)
lhs (m,n+1,cc,k)*rhs(n+l1,1i, j,k+1)
enddo
enddo
enddo

Both applications will receive the same optimizations. The first technique is inlin-
ing which consists of replacing the function call with the function itself. In this work, the
inlining technique was made by combining two modes, using the flag -finline-func-
t ions and manually, and thus, the technique can be applied to functions specific, explor-
ing only the benefits of the technique. In addition, the loop unrolling technique was also
applied, which is the action of unrolling the loop. In the following sections, we have ex-
amples of the loop unrolling technique, specifically the Algorithm 4.3 and Algorithm 4.4,
which show the technique applied in the benchmark NAS and in RTM modeling.

The version used is NPB 3.4.1 OpenMP (BAILEY et al., 1991). The applications
BT, CG, EP, FT, IS, MG, SP and UA were executed in their original versions. The BT
program is a tri-diagonal block solver. CG consists of the conjugate gradient method with
irregular memory and communication access. EP is an Embarrassingly parallel appli-
cation. FT is the fast Fourier transform in 3D. Integer sorting is implemented in the IS
program. MG is a 3D potential field solver. SP is similar to BT, being a pentadiagonal
scalar solver. Finally, we have UA, a solver for an unstructured adaptive mesh.

The compilation uses the exclusive NEC compiler and some flags of this compiler,
namely —02 and —fopenmp (NEC, 2020b). It is referred to here as the "original" version
the unmodified NAS code only applied to the automatic vectorization of the SX-Aurora
TSUBASA machine. The “optimized version” consists of applying the optimizations

presented above, inlining and loop unrolling.
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Figure 4.4: Snippet of C source code, illustrating an unrolling loop applied to RTM
for (i=1; i<sxxsyx*sz; 1i+=4) {

maxvel=fmaxf (maxvel,vpz[i]xsqgrt (1.0+2xepsilon[i]));
maxvel=fmaxf (maxvel,vpz[i+1l]xsqgrt (1.0+2xepsilon[i+1]));
maxvel=fmaxf (maxvel,vpz[i+2]*sqgrt (1.0+2xepsilon[i+2]));
maxvel=fmaxf (maxvel,vpz [i+3]*sqgrt (1.0+2xepsilon[i+3]));

Data collection is done through NEC’s profiling program, PROGINF and FTRACE
(NEC, 2020c). This program gives us much information regarding the architecture, and
for this study, mainly the FLOPS and the cache memory failure rate.

The compiler, when inserting specific flags, in this case ~-report-all, -fdia-
g-inline=2,-fdiag-parallel=2and -fdiag -vector=2 (NEC, 2020b), m-
akes a complete report, containing, for example, vectorized and non-vectored loops, func-
tions that block vectorization, nested loops, extended loops, among others. This helps in
deciding where to apply the optimizations. For example, for the BT program, the com-
piler was not vectoring some of the areas of computation, specifically the subtraction and
multiplication parts of matrices. Analyzing the code and using the guide developed by
NEC (NEC, 2020b), it is possible to apply the optimization techniques already discussed
and guidelines to facilitate vectorization by the compiler. The Algorithm illustrated in

Figure 4.3 shows the application of the loop unrolling technique in the BT program.

4.3 MARE2DEM

In part two, three experiments are presented, two of them utilizing an artificial
demonstration data set and another one using a real-world data set provided by Petrobras.
The artificial demonstration data set is relatively small compared to the real-world data
set, with only 1028 and 17054 data points. It serves to test the application, providing
validation to any modification implemented. Petrobras provided the second data set. The
second data set is real-world data collected on the ocean floor utilizing the proper set of
equipment. Since it has large amounts of data, it is perfect for testing the SX-Aurora
memory bandwidth advantage.

The compiler flags for MPI Fortran (mpif90 v.7.5.0), MPI C (mpicc v.7.5.0),
NEC MPI Fortran (mpincc v.2.13) and NEC MPI C (mpinfort v.2.13) utilized were —02,
—fPIC, —fpp and —cxx1ib. These last two are exclusive to MPI Fortran.
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The experiments selected in the previous step are carried out in the work environ-
ment. As mentioned, there are three experiments.

The first one uses the artificial demonstration data set. Several workers and data
groups need to be chosen to run the application. For the x86 architecture, it was utilized
24 workers corresponding to the 24 cores of the CPU and the default group distribution.
NEC’s architecture utilized eight workers and the same default distribution. The second
experiment also utilizes the artificial demonstration data set. However, instead of 24 work-
ers for x86 architecture and eight workers for SX-Aurora, only two will be used, which
will be better explained in Section 5.2.3. Last, the third experiment uses Petrobra’s data
set. It utilizes 24 and 8 workers for the x86 architecture and the SX-Aurora architecture.
Ten executions were performed for all experiments to improve statistical rigor, achieving
the mean execution time and error.

The main reason to utilize only one iteration for each experiment is due to the
amount of time that one whole execution of the entire data, until its stop parameter, is
around 15 to 20 days. So executing these three experiments, 10 times each to ensure there
are no outlier data, without counting failed attempts and other incidents that might occur
in 20 days of computing time, it would be necessary at least 450 days. So to achieve
a faster preliminary, whoever robust and accurate result, we needed to execute only one
iteration. Whoever to achieve the final result for the visual outcome validation we indeed
run the program to its conclusion.

MARE2DEM implements a math library exclusive to Intel’s processors. To ex-
ecute MARE2DEM in the vector architecture SX-Aurora, this math library needs to be
substituted by a general math library or implement NEC’s math library, which works
specifically to the needs of its vector engine. It was concluded that the latter is more
desirable for the present work. It provides better support for parallelization and vector-
ization, and the nature of the library origin, being the same manufacturer of the vector
engine, facilitated the porting process. Besides the math library, there were several other
bugs and code rearrangements that needed to be performed.

Curiously, there were minor discrepancies in the porting process due to different
FORTRAN versions. Some syntaxes that are utilized in FORTRAN nowadays are not
supported. Also, some code structures are very unreliable to work with. One of them is
the bind(C) interface, making FORTRAN’s subroutines and functions compatible with C
code. This section did not work at all, and luckily it was possible to rearrange the code

not to need it.
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One example of a substituted function is for sparse linear algebra equations. The
original implementation relied heavily on intel’s libraries, which were changed to use
mostly NEC’s functions. Using NEC’s math library, it was possible to use its Sparse Basic
Linear Algebra Subprograms (SBLAS) and HeteroSolver routines. The basic structure of
this function follows: matrix storage, handle initialization, solution and finalization. The
following paragraphs explain these stages.

In this implementation, we utilized Compressed Sparse Row (CSR) format. It
consists of representing a matrix through three vectors. So the first step consists in storing
the matrix in these three arrays. Nonzero entries are stored in the first vector. The column
indices of these nonzero elements are kept in the second array. The third array stores the
cumulative sum of the row counts.

Secondly, we set up the handles, which are all provided by the library. We need to
call for the function that creates the handles while passing all the necessary parameters,
for example, the CSR arrays and column and row counts.

Next, the math library provides the solution through the sblas_execute_mv_rd
function. We need to provide the input we already created in the previous steps. Lastly,
we need to finalize our code by returning our solution vector and destroying the handle.

In terms of mathematical functions, six needed to be replaced or recreated. There
are two functions for factoring a sparse matrix, one for complex numbers and another
for real numbers. Both needed to be recreated entirely, as the workflow of both libraries
is very different. The same goes for the sparse linear algebra solver, one function each
for complex and real numbers. Both were recreated, as described above. Lastly, two
functions to free memory for both were replaced.

A validation of the adaptations to the math library of MARE2DEM was per-
formed. This is necessary to assert that all the modifications made to the math library
are not impacting in the final outcome of this application. Furthermore, in MARE2DEM,
a visual validation is also necessary, due to the changes not only on the math library, but
also in all code. This visual validation is shown in the investigation and results, chapter 5.

To achieve this validation simple mathematical problems were run with both the
original and the modified libraries. Then the results were compared via subtraction. If
the final result is zero, the modification is validated mathematically. The same matrix and
vector input was utilized in all tests. All test came back zero, so all modifications were

validated.
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4.4 Hiperwalk

Hiperwalk is an open-source program to generate the dynamics of known quan-
tum walk (QW) models in a generic graph using HPC. There are four different models:
Discrete-Time Quantum Walk, Szegedy’s Quantum Walk, Continuous-Time Quantum
Walk , and Staggered Quantum-Walk.

In this version of the Hiperwalk simulator, only two of these models are presently
implemented: the DTQW model and the Staggered Quantum-Walk. As this work utilizes
the DTQW model, we will explain it and show its evolution. Furthermore, we will be
elucidating how Hiperwalk process this model and show an example output. Plans for the
simulator include implementing the remaining two quantum walk models.

The quantum walk simulation in Hiperwalk has three most significant steps: 1)
Input parameters conversion, which includes underlying structures (line and cycles), coin
operators, initial stats, and others; 2) Utilization of converted parameters in a quantum
state, generating a vector in an extensive range of values; and 3) Interpretation of said
vector through statistical analysis (probability distribution).

To achieve its goal, Hiperwalk utilizes high-level abstraction. It starts with a sim-
ple text file as input. The Neblina-core math library handles all calculations. We first
choose our quantum walk model inside the input text file. Then the number of steps we
will be taking. The input graph, with type and size. Finally, we need the initial state of
the quantum walk. There are more optional commands, and some are exclusive to each
quantum walk model. Figure 4.5 shows us an example output of the Hiperwalk simulator.

In Figure 4.5 we have the probability distribution of a quantum walk in a 121 x
121 mesh after 60 steps. The x and y-axis give their positions, and the z-axis provides the

probability [%].

4.4.1 Neblina

Neblina-core is a math library that requires minimal knowledge about parallel
programming from the user by establishing an easy-to-use parallel computing layer. Pro-
gramming in Neblina-core is done sequentially. The interpreter sends data to the CPU
or GPU through a parallel OpenCL API, independently of the processor’s architecture,
platform, or vendor.

However, as stated before, Neblina-core is implemented using a coding language
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Figure 4.5: Quantum walk probability distribution in a 121 square mesh.
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not compatible with NEC’s architecture. To execute HiperWalk in the vector architecture
SX-Aurora, all code sections that use OpenCL need to be substituted by implementing
NEC’s math library.

Similar to MARE2DEM, it was necessary to validate the adaptations to the math
library of neblina-core that were implemented. Again, this is necessary to be sure that the
final outcome does not suffer any influence due to the modifications made to neblina-core,
Hiperwalk math‘s library.

Utilizing the same approach of MARE2DEM, however larger in scope due to the
amount of modified functions, we utilized simple mathematical problems with both the
modified and the original neblina-core. Then the results were compared via subtraction
and if the final result was zero, it meant that the modifications made were mathematically
validated. As before, to ensure this, it was utilized the same matrix and vector input in all

tests. In neblina-core all modifications were validated through this system, as there were

no further modifications done to the main Hiperwalk code, only to neblina-core.
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4.4.2 Experiments

The execution environment creates the routines for compilation/execution and data
visualization. Four data sets are presented in this work, gradually increasing in size. These
data sets are square matrixes with x amount of nonzero elements. Each matrix has 1024,
4096, 16384, and 32768 nonzero entities. Since the last data set has large amounts of data,
it is perfect for testing the SX-Aurora memory bandwidth advantage over NVIDIAs.

Because the neblina-core adaptation made for SX-Aurora uses the same functions
as the original implementation, we can use the same Hiperwalk code with minor changes.

Each dataset was executed 20 times, and the average of each result is presented
in the results section. The resulting data recorded was the runtime in seconds, MFLOPs,
and cache hit ratio for L1 and LLC.

Inside Hiperwalk, we have different configurations we need to set. First, we need
to choose how many calculations repetitions will be performed. For all tests, the same
amount of 1000 repetitions was chosen. Second, we can choose which quantum walk
model we want to use, in our case, DTQW.

Instructions for installing the simulator are available at the link: <http://qubit.
Incc.br/qwalk/>. Neblina-core can be found at: <https://paulomotta.pro.br/wp/2021/05/

01/pyneblina-and-neblina-core/>.

4.5 Data collection and Hardware Counters

The use of hardware counters, structures found in many modern processors and
accelerators that allow the monitoring of events internal to these architectures. Some
of these events are the number of instructions executed, the number of cycles, and the
number of memory accesses.

Using these counters makes it possible to collect information in a more specific
and detailed way than information obtained with other higher-level tools.

The user can identify the available information for his specific architecture and
combine different counters to investigate different aspects. In addition, counters from
different cores can also be combined, analyzing the system as a whole.

Thus, using hardware counters to analyze the performance of parallel applications

allows the user to have more control over the process, with less noise on the application.


http://qubit.lncc.br/qwalk/
http://qubit.lncc.br/qwalk/
https://paulomotta.pro.br/wp/2021/05/01/pyneblina-and-neblina-core/
https://paulomotta.pro.br/wp/2021/05/01/pyneblina-and-neblina-core/
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4.5.1 Linux perf

Linux perf is a profiling tool for Linux systems that allows access to the perf_events
interface of performance events present in superscalar architectures. The tool is used on
the command line using the perf command, and it is possible to list the events avail-
able on the platform using the perf 1ist command. A command commonly used for
performance analysis is the command stat, which allows the collection of information
regarding the execution of an application. Using the —e option, it is possible to list the
events to be collected. The example below represents the command line needed to collect
information about the number of instructions and the number of CPU cycles required to

execute the command 1s:

perf start —e instructions ,cpu—cycles Is

In addition to executing the command 1s and listing the contents of the current
directory, executing the command perf stat with the events instructions and

cpu-cycles gives a similar result as noted below:

Performance counter stats for ’Is ’:
1.309.712 instructions # 0,71 insnt per cycle
1.848.886 cycles
0,000800891 seconds time elapsed

It is important to note that superscalar architectures usually have a limited number
of hardware counters. Since each hardware counter can be used to monitor a single event
at any given time, the number of events that can be monitored simultaneously is limited.

The perf tool performs a monitoring time-multiplexing technique to monitor a
more significant number of events, allowing each event to have a portion of the counter
usage time.

However, what this approach makes possible is just an estimate of the actual be-
havior of the application since the multiplexed events are not monitored all the time ex-
clusively. Thus, each event should be monitored individually through the perf stat

instruction, performing the application’s profiling several times.
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4.5.2 NEC FTRACE

Developed by NEC, the FTRACE tool can be used to obtain information from
hardware counters present in NEC’s vector architecture. It is necessary to recompile
the application using the compiler developed by the company NEC to use the tool. For
applications written in C language we use ncc, for C++ applications we use nc++ and
for Fortran applications we use nfort. In addition, you need to add the -ftrace compile
flag, as shown in the example: ncc —ftrace source.c. We can run the application
as we would with a regular executable. At the end of the execution, the information file
ftrace.out is generated, which can be read using the same tool (and directing the

output to the file output):

ftrace —f ftrace.out >> output

The generated file has a lot of information. Among them, we can highlight the total
execution time, the name of the functions executed, the number of times each function
was called, the percentage of core utilization by each function, and information about the
number of misses of the different levels of cache, among others.

In Figure 4.6 we have a better representation of the output provided by the FTRACE
tool. Notably, we can view cache information, total and partial execution time per thread
and vectorization information such as vectorization time, vectorization rate and the aver-
age size of the created vectors.

It is also possible to control the type of information desired through the two dif-
ferent profiling modes indicated through the VE_PERF_MODE environment variable. If
the variable has the value VECTOR-OP or is undefined (assuming the default value),
FTRACE generates information mainly related to vector instructions. If the value of
the variable VE_PERF_MODE is VECTOR-MEV, the data collected correspond mainly
to memory accesses. In this way, it can be beneficial to use both modes and aggre-
gate your results at the end. You can change the value of the environment variable

VE_PERF_MODE, to one of two modes, as follows:

export VE_PERF_MODE=VECTOR-OP
export VE_PERF MODE=VECTOR-MEM
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4.5.3 Score-P

The instrumentation of the MARE2DEM application uses Score-P. Our first step
was to identify which sections of the source code implement the forward response com-
putation, which contains the Finite Element Modeling (FEM), by the worker processes,
considering a refinement group. Since we knew that the forward response parallel com-
putation is implemented using the MPI interface, we started by searching for MPI calls
inside MARE2DEM’s source code, mainly implemented in FORTRAN.

Inside the source code, a subroutine is implemented, which contains the worker’s
logic of which task to perform, according to the message received by the manager process.
Inside is the call path that leads to the forward response computation. With this in mind,
it was utilized the manual region instrumentation (KNUPFER et al., 2012) functionality
of Score-P to track the timestamps of the call sequence of all workers. This sequence

was grouped into a single manual Score-P region and labeled as compute. Compute is
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the main MARE2DEM computing phase that will be analyzed since it encapsulates the

majority of the parallel MPI computation performed by the workers.
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S INVESTIGATION AND RESULTS

The results section will present the main findings obtained by this dissertation.
The following section is regarding the results of the first part and the optimization tech-
niques implemented in the NAS benchmark and RTM. The second section refers to the
second part, which is the performance results of MARE2DEM’s adaptation for the SX-
Aurora. Finally, the outcome of the third part of this dissertation is the adaptation of

Hiperwalk for NEC’s vector architecture.

5.1 Optimization with loop unrolling and inlining

The experiments and their results are presented below. Initially, the experiments
and analysis results are exposed, with the optimizations implemented. Finally, a discus-
sion of the results obtained, comparing the optimized and the original. Repeating for both

the benchmark NAS and the RTM modeling.

5.1.1 NAS Benchmark inlining and loop unrolling

Thus, applying the previously mentioned optimization techniques, inlining and
loop unrolling, in the benchmark NAS, and comparing it with the original implementation,
we obtain Figure 5.1, being the x axis each application of the benchmark NAS used in this
test, the y axis shows the FLOPS, the red bars corresponds to the original implementation
and the blue bars represents the optimized version.

It is noticed that the FLOPS increase considerably, reaching up to 7.8x higher
for the optimized application of the benchmark BT. Comparing the increase between the
original and the optimized version, we have an average of 204.42 MFLOPS and 1599.18
MFLOPS, respectively.

Also, it is necessary to point out that in two tests the optimization techniques had
a negative impact. Those were the EP and UA. The negative impact regard EP is due to
it being, as the name suggests, Embarrassingly Parallel, which the compiler is more then
capable to optimize 100%. However we still implemented manually the optimizations to
see if there was a possibility to improve.

However in the UA case, the problem is different. Due to its unstructured nature,



50

Figure 5.1: MFLOPS X NAS Application
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its incredible difficult to implement these kind of optimizations. Still, we tried to imple-
ment them, as it was with EP. Therefore, we were able to illustrate a point that we must
be careful where we apply optimization prematurely.

In Figure 5.2 we have the rate of vector operations on the y axis for each appli-
cation of the benchmark NAS on the z axis, with the original applications in red and the
optimized version in blue. The BT program in the optimized code has a higher rate of
vector operations than the original, approximately from 20% to 50%, more than twice as
many vector operations. This large increase in operations is due to loop unrolling and
inlining helping the compiler in its automatic vectorization. Furthermore, for the BT pro-
gram, for example, the average size of each vectorization also increased by approximately

31%, going from 92 elements to 120 elements.

Figure 5.2: NAS benchmark: Vector operation rates [%] X NAS app
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Furthermore, it is worth mentioning that the cache memory also benefited from the
optimizations, again, taking the BT program as an example, an increase of approximately
10% in the success rate of cache L3 was obtained.

Again, here we can see the UA and EP had their MFLOPs decreased due to the

decline in the rate of vectorization.

5.1.2 RTM optimization with inlining and loop unrolling

Next, the experiment using RTM modeling is presented, performed with the orig-
inal version OpenMP. The configuration used for the RTM application is the same as for
the optimization with the NAS benchmark. Again, the compilation makes use of NEC’s
exclusive compiler and the same flags used in the previous experiment. Like the NAS
benchmark, the "original" version matches the unmodified RTM code applied to the au-
tomatic vectorization of the SX-Aurora TSUBASA machine. The optimized version is
equivalent to the implementation of the techniques presented above, inlining and loop
unrolling.

Like NAS optimization, data collection uses the NEC profiling program PROGINF.
Through this program, various information related to the architecture and execution,
mainly the FLOPS and the cache memory failure rate.

Again, the compiler makes a complete report containing various information re-
garding the compilation. For example, to improve vectorization, loop unrolling was used
in several functions. Again, the guide provided by NEC (NEC, 2020a) and the previously
mentioned techniques were used to optimize the application.

Therefore, Figure 5.3 shows the experiment applied to the RTM application, show-
ing the FLOPS on the y axis concerning the input size on the x axis, with the optimized
version in blue bars and the optimized version in red bars. Original version. FLOPS vary
considerably from most minor to most significant entry. Looking at the original version
and the new optimized version, for the most prominent input 504 x 504, we have 2429.83
MFLOPS and 4574.75 MFLOPS, respectively, an increase of approximately 1.9x. This
significant increase is mainly due to the decrease in the total number of instructions by
approximately 45%, from 15 - 10'? instructions to 89 - 10° instructions. This is due to the
automatic vectorization done by the NEC compiler, enhanced by the applied techniques
of loop unrolling and inlining. It should also be noted that loop unrolling has decreased

the number of non-vectorized execution instructions.
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Figure 5.3: RTM: MFLOPS X Input Size
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The memory hit rate cache is shown in Figure 5.4. On the y axis, we have the
success rate of the cache L3 memory (LLC) about the input size on the = axis, with the
optimized version in blue bars and the original version in red. Comparing the biggest
data entry 504 x 504 for the original version and the new optimized version, we have an
increase of only 1.5% or so. Although the comparison shows only a small increase for
the success of the cache L3 memory, analyzing the cache L1, we have a 50% decrease
in the time of failure of the cache L1 memory, decreasing from 10 seconds to 5 seconds
approximately. Due to the loop unrolling technique, the loop instruction overheads is

reduced, and inlining minimizes the function call instructions.

~ Figure 5.4: RTM: Rate of vector operations [%] X Input Size
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5.2 NEC MARE2DEM Implementation

The following result to be shown is regarding the first experiment. It uses the
artificial demonstrative data set provided along with MARE2DEM'’s application. The
following result utilizes the same data set but different worker and refinement group con-
figurations. The last result comes from the third experiment utilizing the real-world data

set provided by Petrobras.

5.2.1 Outcome validation

After the modifications were done to the math libraries exclusive to Intel, a first
experiment was performed. We needed first to be sure that all the modifications had no
repercussions on the final result regarding the output of MARE2DEM’s execution, which
is shown by Figure 5.5.

Figure 5.5 shows the visualization of MARE2DEM final iteration. The graph on
the top shows the execution of an x86 architecture. On the bottom graph, the SX-Aurora
execution is shown. These graphs provide the resistivity regarding the depth of the ocean
floor.

Figure 5.6 also shows the MARE2DEM’s outcome, now related to the final iter-
ation of the real-world data set. The top graph shows the x86 and the bottom one the
SX-Aurora implementation.

Finally we can make a subtraction of both results and show the percentage differ-
ence in both results, in Figure 5.7 and Figure 5.8.

Figure 5.7 gives us the resistance percentage difference in each triangle regarding
the demonstration data set. The highest difference is 3,6%.

In regards the Petrobras data set, Figure 5.8 gives us the resistance percentage
difference in each triangle. Peak percentage difference is 6%.

Besides the small percentage differences and the naked eye comparison, to further
validate the claim that the modification made to the MARE2DEM code had no adverse
effect, Figures 5.7 and 5.8 must be compared to the resistance difference in an execution
of only the unmodified code. So, this test is shown on Figures 5.9 and 5.10.

Similarly as before, Figures 5.9 and 5.10 gives us the resistance percentage differ-
ence in each triangle, for the demo and Petrobras datasets, respectively. Visually they are

identical to Figures 5.7 and 5.8. However there is a small percentage difference. In Figure
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Figure 5.5: Demonstration data set comparison for outcome validation between x86 and
SX-Aurora.
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5.9, the highest percentage difference is 3,8%. In Figure 5.10, the difference is smaller
than before, only 5,9%.

Even though there are differences, this only shows that between executions of
the same dataset on the same unmodified code, there is a similar difference between ex-
ecutions. This is due to the nature of iterating with 2D inversion and adaptive refined
elements. Therefore we can assume that the modifications implemented, the NEC’s math

library and all minor changes had no impact on the final result.
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5.2.2 Initial artificial demonstration runtime

After assessing the impact on the final results, we can move forward with the
execution’s investigation. Next, Figure 5.11 shows the execution of the artificial dataset
on the x86 architecture.

The x86 architecture execution represented in Figure 5.11 shows the runtime, in
seconds, for every 23 workers. We can see that the final runtime was 206 seconds. The

image shows the expected behavior of one iteration of MARE2DEM’s execution. There is

Figure 5.6: Comparison for outcome validation between x86 and SX-Aurora, related to
the real world data set.
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Figure 5.7: Resistance difference in percentage, for the Demonstration data set outcome
between SX-Aurora X x86.
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Figure 5.8: Resistance difference in percentage, for the Petrobras data set outcome be-
tween SX-Aurora X x86.
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Figure 5.9: Resistance difference in percentage, for the Demonstration data set outcome
between two x86 executions.
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a clear division between left and right on these runtime graphs. They denote two different

stages of one iteration, as the manager needs all workers to end their load to start the
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Figure 5.10: Resistance difference in percentage, for the Petrobras data set outcome be-
tween two x86 executions.
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Figure 5.11: Results in seconds of experiment 1 utilizing x86 architecture
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second stage.

Following the next result, we have Figure 5.12. Here we execute the first data set,
the artificial one, on NEC’s SX-Aurora.

Identical to the previous graph, Figure 5.12 gives the runtime for each of the seven
workers. The final runtime was 237 seconds. So, the SX-Aurora performed slower than
the x86 architecture, around 15% slower.

Both Figure 5.12 and Figure 5.11 show the traces collected via Score-P, which can
be hard to understand at a glance. To facilitate the comparison between both runtimes,
Figure 5.13 is presented.

Figure 5.13 shows on the x-axis the experiment being run, while the y axis repre-
sents the runtime of the application in seconds. The light blue bar refers to the SX-Aurora

architecture and the darker blue to the x86 architecture. It is easier now to see the differ-
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Figure 5.12: Results in seconds of experiment 1 utilizing the SX-Aurora
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Figure 5.13: Experiment 1 comparison between x86 and SX-Aurora runtimes
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Initially, it was expected for the SX-Aurora to improve MARE2DEM'’s perfor-
mance already. However, upon further investigation, especially if the data set was proper,
it was attested that the amount of data being transferred was small for each worker, which
goes against the advertised advantages of this architecture. SX-Aurora has a very high
memory transfer rate, and this power was not being harvested in this data set, resulting in

a negative result.
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5.2.3 Effects of one worker on the first data set

After the enlightenment of the last result’s investigation, a second experiment was
proposed, utilizing the same dataset. A new worker and refinement group configuration
was chosen 1n this second one, so it is possible to appropriate the advantages of the SX-
Aurora architecture.

Hence, the configuration to best take advantage of SX-Aurora high memory trans-
fer was to use only one worker, besides the manager, and one refinement group. The-
oretically, it would allow for a larger-sized data set and higher data transfers during the

MARE2DEM execution. Figure 5.14 shows these results.

Figure 5.14: Experiment 2 comparison of the runtimes between x86 and SX-Aurora.
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In Figure 5.14 we have a comparison of MARE2DEM’s execution on the x86 and
SX-Aurora architectures. The light blue bar refers to the SX-Aurora execution, and the
dark blue line refers to the x86. Again, similar to the previous two graphs, on the x-axis
is displayed the execution runtime. On the y axis are the two different architectures.

It is easier to compare both architectures’ runtimes now. We can see that SX-
Aurora can improve the runtime without supporting multiple cores and more significant
data transfers. The x86 architecture execution runtime was of 3728 seconds approxi-
mately. SX-Aurora runtime reached around 2677 seconds. An increase in performance of
approximately 39%.

This experiment shows that the SX-Aurora architecture has potential for perfor-
mance gains. However, the experiment does not reflect any real-world use case, as both

platforms are underutilized, which is evident in the total runtime of both experiments,
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boasting an increase in execution runtime of around 17 times more significant in the worst

case.

5.2.4 Real world data set

As the last experiment was a test to investigate the potential of SX-Aurora archi-
tecture, the last experiment will put this potential to test in a real-world scenario. This
data set, provided by Petrobras, is larger than the previous one by roughly 50 times the
amount of data.

Figure 5.15 shows a similar graph as before. We have on the x-axis the runtime in
seconds. The y axis shows the workers. Particularly on this graph, we have the presence
of the manager, illustrated by the first worker. This graph regards the execution of the real-
world data set on the x86 architecture, achieving, for one iteration, an execution runtime

of 2964 seconds approximately.

Figure 5.15: Runtime for real world dataset - 1 Iteration - x86 architecture.
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Next, Figure 5.16 has the execution of the MARE2DEM application on the SX-
Aurora architecture. In the last graph, the x-axis and y-axis are the runtimes in seconds
and the workers. The final runtime is around 2341 seconds for one iteration.

To better represent the comparison between runtimes, Figure 5.17 is shown. The
x-axis represents the experiment, while the y-axis shows the application runtime in sec-
onds. The light blue refers to the SX-Aurora architecture and the darker blue to the x86
architecture. Here it is possible to visualize the last statistic, and the SX-Aurora impacts

the performance by around 27%.
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Figure 5.16: Runtime for real world dataset - 1 Iteration - SX-Aurora.
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Figure 5.17: Comparison of experiment 3 for x86 and SX-Aurora runtimes
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Now, the last illustration, Figure 5.18, elucidates and realizes some of the po-
tentials that NEC’s SX-Aurora has under the right circumstances, especially when we can
take advantage of its inherent positive traits, like its vector architecture, which can perform
multiple of the same calculation with only one instruction and, in this case specifically,
the high memory bandwidth available.

Figure 5.18 shows in the y axis the runtime of each experiment. The x-axis dis-
plays the number of all experiments that achieved the runtimes exhibited on the y axis.
The light blue color gives the SX-Aurora architecture, and the darker blue represents the
x86 architecture.

We employed ten executions in the first and last experiment to improve the statis-

tical rigor to have the mean execution time and error. It is visible that the mean execution
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Figure 5.18: Runtime comparison between x86 and SX-Aurora for all three experiments.
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time is similar to the three experiments performed, approximately maintaining the differ-
ences in runtime between platforms.

This graph, Figure 5.18 illustrates the path taken by this work. We began the
runtime evaluation with worse performance for SX-Aurora. However, after analyzing and
evaluating the advantages of the architecture, the two subsequent experiments utilized and

realized the potential that SX-Aurora has when harvesting its potential.

5.3 Hiperwalk’s improvements with vectorization

This section will show the improvement vector architectures can make in quantum
walk simulators. The first result is the average runtime from 20 executions of each matrix,
namely 1024, 4096, 16384, and 32768 nonzero elements. It shows both architectures,
NVIDIA and NEC Hiperwalk’s implementation.

It is prudent to note that significant code differences in the Neblina math library
will necessarily impact performance, as running the HiperWalk simulator in SX-Aurora
was the main point.

These results were obtained in seconds. The runtimes of the two NEC and NVIDIA
architectures for the four input sizes, 1024, 4096, 16384, and 32768, respectively, are
161,85s, 256,99s, 1401,21s and 5021,94s in regards to SX-Aurora, and NVIDIA’s perfor-
mance is 117,9s, 224,4s, 1820,1s, and 8814,1s. Figure 5.19, which shows these results,
will be a recurring reference onward due to its significance.

It is noticed in Figure 5.19 that by increasing the number of nonzero input enti-



63

Figure 5.19: Runtime for each matrix input size: 1024, 4096 and 16384 and 32768
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ties, NEC’s architecture begins to gain with NVIDIA’s architecture. The 16384 use case
achieved an average of roughly 24% decrease in runtime, from 1820,1 seconds on the
P100 to 1401,2 seconds on the SX-Aurora.

The adaptation decreased around 43%, a performance gain of around 75%, achiev-
ing approximately 8814,1 and 5012,9 seconds, for the P100 and SX-Aurora, respectively,
in the most extensive data set.

These results meet our expectations. NEC’s architecture could not utilize its main
strength with low nonzero elements. It is evident that only when a large amount o data is
transferred SX-Aurora surpass NVIDIA’s architecture.

Figure 5.19 1s the main result our objectives were expected to accomplish. To
better elucidate the reasons for these improvements, other metrics were extracted.

As mentioned in the methodology, Figure 5.20 shows a graph where the x-axis
provides the architecture in question. The y axis shows the relevant unit; in the left, we
get the percentage[ %], and the right y-axis shows Floating Point Operations per second.

Going back to Figure 5.19 the first data set, 1024 nonzero elements, has signifi-
cantly poorer performance than the original implementation. Evidence shown in Figure
5.20, points toward what is expected. With small amounts of data provided by the matrix,
NEC’s SX-Aurora cannot surpass the original OpenCL implementation. SX-Aurora vec-
torized a great deal of the code, around 96%. Its vector length was extensive, with 131
units. Its LLC cache hit rate was 60%, contrasting with NVIDIA’s 80%. However, the L1
cache hit rates were similar, with NEC’s 85% and NVIDIA’s 96%. In terms of raw per-
formance, the SX-Aurora architecture achieved 0,11 MFLOPs and the P100 architecture
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Figure 5.20: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the
smaller input size of 1024 nonzero elements
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around 0,29 MFLOPS.

The second data set results are shown in Figure 5.21. Here we have the same x-axis
that provides the particular architecture and the y-axis the relevant unit, the percentage[ %]
to the left and the right y-axis the Floating Point Operations per second.

Figure 5.21: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the

smaller input size of 4096 nonzero entities
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Taking another look at Figure 5.19, the second data set with 4096 nonzero entities
has a very similar performance to the original implementation. As expected, 5.21 shows
again that we still have not enough data to utilize SX-Aurora’s potential fully. SX-Aurora
was able to vectorize the code, around 91%. The vector length reached 124 units. Its LLC

cache hit rate was 90%, contrasting with NVIDIA’s 63%. However, the L1 cache hit rates
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were similar, with NEC’s 78% and NVIDIA’s 75%. In terms of raw performance, the
SX-Aurora architecture achieved 0,39 MFLOPs and the P100 architecture around 0,51
MFLOPS.

The third data set results are presented in Figure 5.22. The x-axis provides the
architecture in question. The left y-axis is percentage[%], and the right y-axis shows

Floating Point Operations per second.

Figure 5.22: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the
smaller input size of 16884 nonzero elements
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The third data set, 16884 nonzero elements, shows substantial performance in-
creases over the original implementation. Figure 5.22 show pieces of evidence pointing
toward the advantages of SX-Aurora. With more significant data NEC’s SX-Aurora can
surpass the original OpenCL implementation. SX-Aurora vectorized around 89% of the
code. Its vector length was extensive, with 176 units. However, the LLC cache hit rate
was much lower, around 30%, contrasting with NVIDIA’s 41%. L1 cache is different,
with NEC’s 55% and NVIDIA’s 39%. In terms of raw performance, the SX-Aurora ar-
chitecture achieved 1,23 MFLOPs and the P100 architecture around 0,81 MFLOPS.

The fourth data set results are presented in Figure 5.23. The x-axis provides the
architecture in question. The left y-axis is percentage[%], and the right y-axis shows
Floating Point Operations per second.

Now, the last illustration, Figure 5.23, elucidates and realizes some of the po-
tentials that NEC’s SX-Aurora has under the right circumstances, especially when we can
take advantage of its inherent positive traits, like its vector architecture, which can perform
multiple of the same calculation with only one instruction and, in this case specifically,

the high memory bandwidth available.
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Figure 5.23: Vectorization [%], LLC and L1 cache hit ratio [%] and MFLOPs for the
smaller input size of 32768 nonzero entities
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In Figure 5.19, the fourth and last data set, with 32768 nonzero entities, has im-
proved performance even further. Again, looking at Figure 5.23, provides ample evidence
for this runtime improvement. Vectorization in SX-Aurora was able to reach around 80%.
Its vector length was close to SX-Aurora’s limits, with 223 units of 256. Comparing cache
hit ratios, SX-Aurora had only 15% LLC cache hit rate and 43% for the L1 cache hit ratio.
NVIDIA again fared better for LLC hit ratio, with 67% and L1 cache hit ratio of 11%.
Regarding raw performance, the SX-Aurora architecture achieved around 5,51 MFLOPs
and the P100 architecture around 2,94 MFLOPS.

We can show that, besides the advantage of higher memory bandwidth, the auto-
vectorization provided by NEC’s compiler is key to its success. Our primary evidence is
that the vectorization vector length increases with each step in the input size. Even though
the overall vectorization percentage has decreased, the more considerable vector length

makes up for this loss and improves performance further.
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6 CONCLUSIONS AND FUTURE WORK

Performance accelerator devices such as GPUs, are essential components for the
high performance of modern supercomputers. Under this motivation, there are significant
efforts in developing vector processors to also act as performance accelerating devices.
In addition to having a high processing capacity SIMD, vector accelerators stand out for
allowing applications to benefit from performance gains with little or no intervention in
the application’s source code, the fact that is less frequent in acceleration with GPUs.

In this dissertation, we did a performance review of the newly released SX-Aurora
TSUBASA (KOMATSU et al., 2018; YOKOKAWA et al., 2020) vector accelerator. This
analysis was done in three parts.

For the first part, we use NAS, which is a notorious benchmark of parallel applica-
tions, as well as a real application of seismic migration, called RTM. Our main objective
was to verify how much performance can be gained with the SX-Aurora TSUBASA in
two situations, namely: (i) without any intervention in the source code and only with the
automatic optimizations of the SX-Aurora TSUBASA compiler and (ii) with simple opti-
mization techniques known in the literature, in situations where the performance gain was
not automatic.

Furthermore, Quantum walk simulation is an essential tool for studying Quantum
Computing. So its performance must be perfectly attuned to the desired architecture. It is
true, especially for the HiperWalk simulator and vector architectures, due to the way the
simulator is designed, utilizing vector-vector and matrix-vector calculations. The second
part of this work utilizes the SX-Aurora to try and harvest its potential on the quantum
walk software Hiperwalk. We show that it is possible to utilize its strengths, improving
general performance. However, it is necessary to consider the advantages of this kind of
architecture and the specific positives the SX-Aurora has. Our primary objective in this
second part is to analyze the possible improvements SX-Aurora architecture can bring to
a heavily vectorizable code.

Lastly, modeling CSEM data is an arduous process. Large amounts of complex
data need to be read, transferred, modified and iterated. It poses a significant challenge
for developers and users. Therefore it is crucial to have the right tool for the right job.
There are significant efforts in developing vector processors to act also as performance
accelerator devices. In addition to having a high SIMD processing capacity, vector accel-

erators stand out for allowing applications to benefit from performance gains with little or
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no intervention in the application’s source code, which is less frequent when accelerating
with other heterogeneous architectures.

The third and final part of this work utilizes the SIMD, as mentioned earlier, archi-
tecture to try and harvest its potential on a CSEM modeling software called MARE2DEM.

An extensive experimental load was carried out, which showed evidence of the
strengths of the vector architecture mentioned. In the first part, we were able to improve
the performance (FLOPS) of the actual application RTM up to 1.9x and up to 7.8 x for
the benchmark NAS. Also, for the second part, we improved the performance, the runtime
in seconds, of a real-world CSEM data set from around 2964s to 2341s, approximately
27%. For the third part, after refactoring the code base, it was possible to perform exper-
iments to analyze NEC’s improvements compared to another architecture. We achieved
a performance gain of around 75% for the last use case, signifying that wider input sizes
favor NEC’s architecture.

We show that it is possible to utilize its strengths, improving general performance.
However, it is necessary to consider the advantages of this kind of architecture and the

specific positives the SX-Aurora has.

6.1 Future work

As future work, for both code adaptations, we will extend the analysis to more
real-world data sets, to gauge its impacts. Implementation of performance optimization
techniques such as loop unrolling and inlining, similar to Félix’s (MICHELS et al., 2020),
the first part of this dissertation, implementation and expand it further with loop tiling
and loop interchange optimizations. These techniques were proven, in the first part of
this work, to be advantageous to obtain performance gains in the SX-Aurora TSUBASA
vector accelerator (MICHELS et al., 2020).

For the first part, expand our analysis to more real applications, notably Machine
Learning and Artificial Intelligence applications, as well as verify if more performance
optimization techniques, such as loop tiling and loop interchange can also be advanta-
geous to obtain performance gains in the SX-Aurora TSUBASA vector accelerator.

Regarding the second part, a more in-depth study of the correlation between group
refinement configurations and overall performance is desired for MARE2DEM.

Finally for the Hiperwalk code adaptation, we also expect to extend the Neblina-

core development, producing a new module with CUDA to assess NVIDIA’s GPUs better.
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Also, the main development team behind Hiperwalk is working in decreasing the
dependence in OpenCL, due to its declining support. Futhermore, there is also effort
to implement the remaining planned quantum walks, namely, Szegedy’s Quantum Walk,

Continuous Time Quantum Walk (CTQW) and Stepped Quantum Walk.

6.2 Publications

Through the development of this dissertation three main articles were published,
each one referring to one part of this dissertation.

The first published work is "Otimizacdo de Aplicagcoes Paralelas em Aceleradores
Vetoriais NEC SX-Aurora" (MICHELS et al., 2020), regarding the use of optimization
techniques for NEC’s SX-Aurora in the NAS benchmark and RTM applications.

The second major publication regards the adaptation and analysis of a Quantum
Walk simulator entitled Hiperwalk, entitled "Simulando Passeios Qudnticos em Proces-
sadores Vetoriais" (MICHELS et al., 2022).

The third scientific article, and most recent, focuses on adapting MARE2DEM’s
code, and subsequently analyze its performance, to NEC’s SX-Aurora. This article is
entitle "Investigating Oil and Gas CSEM application on vector architectures" (MICHELS;
SCHNORR; NAVAUX, 2022).
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APPENDIX A — RESUMO EXPANDIDO

A.1 Introducao

A computagao de alto desempenho € indispensdvel para muitas industrias, setores
comerciais e pesquisas hoje. Ele oferece vérios beneficios, desde facilitar a andlise de
dados até permitir novas simula¢des e modelagem (EZELL; ATKINSON, 2016). Assim,
os avangos em HPC (High Performance Computing) s@o significativos. Aumentando as
dimensdes e diminuindo o tempo de execucdo, podemos beneficiar diferentes areas da
sociedade.

O desempenho do aplicativo depende em grande parte da arquitetura usada e de
como o programa foi codificado para ser executado nele. Atualmente, para fins de acel-
eracdo, sao utilizadas diferentes arquiteturas, como multicore, manycore, aceleradores
especificos e GPUs (Graphics Processing Units).

Um grande nimero de arquiteturas, embora atraentes e flexiveis, impdem novos
desafios ao programador (MITTAL; VETTER, 2015). A crescente complexidade da ar-
quitetura também aumentard a dificuldade de implementagdo do aplicativo. Vale ressaltar
a ideia de que existem vdrios gargalos comuns, como os encontrados no subsistema de
memoria, que inclui polui¢do cache, thrashing, entre outros.

Além de usar novas arquiteturas, vdrias técnicas sdo empregadas para aumentar o
desempenho, algumas das quais sao exclusivas de arquiteturas especificas. Por exemplo,
a vetorizacdo permite que uma instru¢do atue em vdarios dados, mas nem todos imple-
mentam suporte para isso. Outras otimizacdes incluem o aumento da taxa de acerto da
memoria cache, que € possivel em diferentes arquiteturas.

Nesse sentido, a NEC Corporation langou uma nova arquitetura, um processador
vetorial chamado SX-Aurora. Este processador possui oito nicleos de processamento a
1,6 GHz e trés niveis de memoria cache (KOMATSU et al., 2018). Uma das vantagens
desta arquitetura em relacdo as demais existentes é o tamanho de suas unidades vetoriais.
Além disso, o compilador NEC toma decisdes automaticamente. Ou seja, identifica areas
vetorizdveis e gera cddigo para isso. No entanto, o compilador ainda precisa de ajuda do
programador para facilitar a interpretacao do cédigo, além de melhorar a vetorizagdo au-
tomatica, seguindo orientagcdes especificas e, neste caso, utilizando técnicas de otimizacao
como unrolling e inlining de loops.

As arquiteturas vetoriais sdo Single Instruction Multiple Data (SIMD), que tém
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grande potencial para aplicacdes cientificas altamente paralelizaveis. Entre eles estdo apli-
cacdes numéricas, previsao de tempo, processamento multimidia (KSHEMKALYANI,
2012), simulacao de colisao (HENNESSY; PATTERSON, 2019), compressao de dados,
entre outros. Uma caracteristica proeminente desses processadores vetoriais € a possibil-
idade de usar uma instrucdo para reproduzir centenas de operagdes. Além disso, todos
os resultados dos elementos de um vetor sdo independentes e, portanto, ndo € necessario
verificar os dados resultantes. O acesso a memoria € feito apenas uma vez para cada vetor,

inferindo uma pequena laténcia de acesso a memoria.

A.1.1 Simulacao

Outra forma de melhorar a producdo cientifica € através da simulagdo. Os sim-
uladores sdo ferramentas necessdrias e poderosas utilizadas em diversos campos, desde

pesquisas até empreendimentos comerciais e industriais.

A.1.1.1 Prospecgdo de petroleo e gds

Os investimentos da industria petroquimica em eletromagnetismo de fonte con-
trolada (CSEM) s6 aumentaram nos dltimos 15 anos, e o interesse académico acompanha
isso (CONSTABLE; SRNKA, 2007) (COOPER; MACGREGO, 2020) (FANAVOLL; GABRIELSEN;
ELLINGSRUD, 2014). A principal razdo para esses investimentos € reduzir o risco. O
CSEM fornece mais dados e, portanto, mais informagdes para fornecer novos insights
sobre o fundo do mar, reduzindo consequentemente o risco.

A aquisicdo de dados CSEM produz uma grande quantidade de dados, levando
a um tremendo problema computacional para resolver a modelagem inversa. Algumas
regides com geometria complicada podem exigir dados adicionais, principalmente para
produzir inversao 3D completa. No entanto, a inversdo 2D é muito mais rdpida e fornece
uma interpretacdo mais direta dos dados reais em um tempo de execuc¢do mais curto,
tornando-a uma abordagem mais robusta, sensata e viavel (PRICE et al., 2008).

Uma implementagdo necessdria para gerenciar este tipo de dados CSEM ¢ a apli-
cacdo "Modeling with Adaptively Refined Elements for 2D Electromagnetics", referido
neste projeto como MARE2DEM (KEY, 2016). MARE2DEM ¢é um cédigo de cédigo
aberto para inversao 2D de dados CSEM, dados magnetoteliricos (MT) e dados EM de

pocos superficiais, por elementos finitos adaptativos paralelos para ambientes onshore,
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offshore e de fundo de pogo. Devido a grande quantidade de dados fornecidos pelo
CSEM, € necessdrio alto poder computacional para executar tal conjunto de dados com

eficiéncia. Portanto, cédigo eficiente e um computador poderoso sao preferidos.

A.1.2 Simuladores de caminhada quantica

Os avanc¢os da computagcdo quantica inevitavelmente aumentardo o poder e a efi-
ciéncia computacional (EASTTOM, 2021). Essas melhorias sdo necessdrias a medida
que os computadores modernos lutam para processar sistemas biolégicos complexos, es-
truturas quimicas e novos materiais (TRABESINGER, 2017). Mesmo areas improvaveis,
como Realidade Virtual, poderdo aproveitar essa nova tecnologia (ZABLE et al., 2020).
A IBM alcangou 127 qubits em seu mais recente chip de computacdo quantica, mar-
cando um novo marco para toda a industria, a primeira contagem de qubits de trés digitos
(BALL, 2021). A IBM pretende ultrapassar 1000 qubits até 2023, visando um aumento
nunca visto no poder computacional.

No entanto, esses computadores e processadores quanticos nao estio totalmente
disponiveis para o publico em geral. Para preencher essa lacuna entre a comunidade
cientifica em geral e a ciéncia da computacdo quantica, os simuladores quanticos sdo a
melhor alternativa.

Uma categoria de tais simuladores s@o os simuladores de caminhada quantica,
embora sejam raros. Um desses casos raros € o simulador Hiperwalk (LARA; LE3O;
PORTUGAL, 2017). Este simulador é dividido em trés partes. A primeira é uma in-
terface de usudrio escrita em Python que gera arrays e vetores com base na entrada do
usudrio no programa principal. A segunda parte consiste nos cdlculos para as etapas
quanticas. E utilizada a biblioteca Neblina-core, desenvolvida no Laboratorio Nacional
de Computacgdo Cientifica (LNCC). Esta biblioteca facilita calculos do tipo matriz-vetor
e vetor-vetor em arquiteturas heterogéneas. Por fim, a dltima parte € um médulo capaz de

calcular distribuicdes estatisticas e gerar arquivos de dados de saida.

A.1.3 Objetivos

Esta dissertacdo de mestrado realizou um estudo, avaliacdo, adaptacao e otimiza-

cdo de quatro aplicacdes distintas em trés partes distintas. Esses aplicativos sd@o o bench-
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mark NAS, Reverse Time Migration (RTM), MARE2DEM e Hipewalk.

A primeira parte mencionada acima € otimizar o desempenho de aplicacdes reais
e um conjunto de benchmarks utilizando técnicas de loop unrolling e inlining, buscando
melhorar a vetorizagdo automatica realizada pelo compilador. Mais precisamente, o pre-

sente trabalho apresenta as seguintes contribui¢des:

e Uma andlise de desempenho experimental do acelerador vetorial NEC SX-Aurora
TSUBASA € realizada. Um benchmark de mapas sintéticos paralelos e um aplica-

tivo real é usado.

e Mostrar que as técnicas de unrolling e inlining de loop sdo capazes de melhorar
significativamente o desempenho das aplicacdes quando executadas no SX-Aurora
TSUBASA em situagdes em que o ganho de desempenho nao € automético pelo seu

compilador.

A segunda parte € uma investigacao, adaptacao e andlise da execucio do MARE2DEM
utilizando uma arquitetura vetorial, o SX-Aurora, e a tradicional arquitetura x86. Serdo
utilizados dois conjuntos de dados, um sintético e um caso real fornecido pela Petrobras,

empresa brasileira de petréleo e gas. Portanto, os principais objetivos deste trabalho sdo:

e Descreva a implementacdo do MARE2DEM no SX-Aurora da NEC. A biblioteca
matematica padrdo da Intel foi substituida pelo MARED2DEM no SX-Aurora porque
a arquitetura da NEC naot apoid-lo. Todas as entradas que exigiam a biblioteca
matematica da Intel foram reescritas, suportando as bibliotecas matematicas da
NEC.

e Investigar a andlise de desempenho desta implementacdo comparando-a com CPUs

de arquitetura x86.

A terceira parte € referente a adaptacao e andlise de desempenho do Hiperwalk no

SX-Aurora da NEC. Os principais objetivos sdo:
e Apresentar o simulador Hiperwalk, explicando seus casos de uso;
e Descrever a implementagdo do kernel do HiperWalk no SX-Aurora TSUBASA da
NEC;
e Uma anélise de desempenho de nossa implementacdo comparando-a com as GPUs

da NVIDIA.

O objetivo principal desta dissertacdo, como um todo, € elevar o suposto poten-

cial que uma arquitetura vetorial pode ter nas circunstancias certas, especialmente o SX-
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Aurora TSUBASA.

A.1.4 Contribuicoes deste trabalho

As principais contribuicdes deste trabalho sdo a andlise de desempenho de técnicas
classicas de otimizagdo para SX-Aurora usando duas aplicacdes diferentes, e a adaptacao
de cddigo e andlise de desempenho de um simulador de caminhada quantica (Hiperwalk)
e um codigo de elementos finos geofisicos usados na drea de gds e petrdleo industria
(MARE2DEM). Verificou-se que as técnicas de otimizacdo foram capazes de aumentar o
desempenho na maioria dos casos, e as adaptacdes de cddigo também tiveram melhorias

de desempenho nas circunstancias corretas.

A.1.5 Principais resultados alcancados

Este trabalho apresenta como principais resultados um ganho de desempenho nas
tres partes analisadas. Na primeira parte, sendo essa relacionada as técnicas de otimiza-
cdo, teve um aumento de desempenho de 1,9 vezes no caso real utilizando RTM e 7,8 para
o benchmark NAS. A segunda parte pode-se observar um aumento de aproximadamente

27% no desempenho. J4 na terceira parte percebe-se um ganho de 75%.
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