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ABSTRACT

Cache memories can account for more than half of the area and energy consumption on

modern processors, which will only increase with the current trend of bigger on-die mem-

ories. Although these components are very effective when the access pattern is cache-

friendly, cache memories incur extra and unnecessary latencies when they cannot serve

the data, which adds to significant energy wastes when data that is never reused is placed

on them.

This work introduces HBPB, a mechanism that detects whether a memory access is cache-

friendly or not, allowing the bypass of the cache for accesses that are not known to be

cache-friendly. Our approach allows the processor to quickly detect when caching ac-

cesses is inadequate, improving overall access latency and reducing energy waste and

cache pollution.

The presented solution achieves reductions of up to 75% in energy consumption and 35%

in latency for a controlled microbenchmark and improvements in power and performance

across various workloads.

Keywords: Cache. Memory. Energy. Computer Architecture.





Caches Eficientes com Bypass Preemptivo Baseado em Histórico

RESUMO

As memórias cache podem responder por mais da metade da área e do consumo de energia

em processadores modernos, o que só aumentará com a tendência atual de memórias

maiores dentro dos chips. Embora esses componentes sejam muito eficazes quando o

padrão de acesso é amigável à cache, as memórias cache ocasionam latências extras e

desnecessárias quando não podem fornecer os dados, o que aumenta o desperdício de

energia significativamente quando dados que nunca são reutilizados são colocados nelas.

Este trabalho apresenta o HBPB, um mecanismo que detecta se um acesso à memória

é amigável à cache ou não, permitindo ser feito bypass da cache para acessos que não

são reconhecidamente como amigáveis às caches. Nossa abordagem permite que o pro-

cessador detecte rapidamente quando utilizar a cache não é adequado para um acesso,

melhorando de forma geral a latência de acesso à memória e reduzindo o desperdício de

energia e a poluição do cache.

A solução apresentada alcança reduções de até 75% no consumo de energia e 35% na

latência para um microbenchmark customizado e melhorias de energia e desempenho em

uma plenitude de aplicações diferentes.

Palavras-chave: Cache, Memórias, Energia, Arquitetura de Computadores.
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1 INTRODUCTION

As processors keep getting faster, cache memories play a vital role in reducing

average memory access latencies, becoming even more critical with each new generation

of processors. The current trend in processor design is to increase the number of cores

and the size of the caches. However, by increasing the number of processing cores, the

competition for space and bandwidth in shared cache memories also increases, which

impacts the performance and efficiency of these memories due to over-utilization, cache

pollution, and trashing. With bigger caches, energy consumption and access latencies also

tend to increase. Thus, the need for more intelligent management of these resources is of

great and growing importance.

Not every memory access can be helped by caching. In fact, for many accesses,

caching the data provokes only extra latency and energy consumption while also replacing

other potentially useful data, which will then have to be fetched again from a slower level

of the memory hierarchy. This results in once more increased latency and energy con-

sumption indirectly. In such a way, when cache-unfriendly memory access are performed

and passed through the cache hierarchy, not only they suffer from increased latency and

unnecessary energy waste, they also pollute the caches, hampering their proper operation

for cache-friendly accesses [Chi and Dietz 1989].

Current processors have limited implementations of bypassing instructions, which

are not well documented for load operations and can have unpredictable behavior that

depends on specifics of the implementation [Guide 2020]. Also, instructions of this kind

cannot be used with fine granularity and require the programmer to employ them properly.

Compilers do not automatically employ these instructions since they would have to know

at compile time that an instruction always accesses non-temporal data. Lately, progress

has been made with cache replacement policies that can tolerate streaming access patterns

and mitigate the cache pollution generated by them, which are effectively implemented

in current processors available in the market [Kumar and Singh 2016]. However, such

methods still perform caching of cache-unfriendly data, not avoiding the massive energy

waste that they represent. For current processors, the only way to effectively bypass the

cache is through non-temporal instructions or by defining a whole region of memory as

non-cacheable with the granularity of a page.

Many researchers have addressed this problem through varied approaches. Sand-

berg et al. developed a framework [Sandberg, Eklöv and Hagersten 2010] to define mem-
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ory accessing instructions as bypassing at compile time. Multiple authors proposed aug-

menting the caches with logic that allows the bypassing decisions to be made in hardware

at runtime [Albericio et al. 2013, Bae and Choi 2020, Wang et al. 2019], most only for

the Last-Level Cache (LLC). Egawa et al. [Egawa et al. 2019] present a mechanism that

can turn off specific levels of the cache hierarchy. Other works such as [Chaudhuri et

al. 2012] propose a mechanism that allows victim fills to be bypassed on victim caches.

Meanwhile, Kohler and Alves [Köhler and Alves 2019] propose to bypass the memory

request when a miss is likely in order to anticipate the request to the Dynamic Random

Access Memory (DRAM) and reduce the latency of the cache miss.

However, none of the existing works present a proposition to bypass both the mem-

ory requests as well as the data fills, on all levels of the cache hierarchy, while allowing

spatial locality and short-term temporal reuse to happen still. Bypassing only for the LLC

can be insufficient as unnecessary fills to the higher-level caches can cause evictions that

provoke victim fills or write-backs to the lower levels of the cache. In this context, we

propose a History-Based Preemptive Bypassing (HBPB) mechanism, with the goal of by-

passing the cache memory for every access that is not known to be cache-friendly and

learning which accesses could benefit from caching.

1.1 Contributions

In this thesis, we propose HBPB. Our mechanism accelerates not only cache-

unfriendly accesses, through the reduction in latency achieved by bypassing the caches,

but also the cache-friendly ones by reducing the cache pollution and increasing their hit

ratio, avoiding energy waste in both cases. The mechanism preemptively bypasses every

memory access from an instruction that is not known to be cache-friendly. Thanks to

observations that the reuse behavior stays consistent for most instructions, we can confi-

dently choose to decide on bypassing or not by the instruction that is provoking a mem-

ory access. By tracking past memory accesses and the instructions that referenced each

address, HBPB can profile the program instructions and leave the cache only for those

instructions that have shown reuse on their data.

The HBPB mechanism yields reductions in cache energy consumption of up to

75% while also achieving speedups of more than 1.5x for a controlled microbenchmark

and 1.25x for a full application benchmark. In this work, we analyze HBPB in multiple

scenarios, through different applications and memory configurations. We also test HBPB
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with cache replacement policies different from the standard Least Recently Used (LRU)

and hardware data prefetchers. On every occasion, HBPB proved to be advantageous

when employed.

We also present a static analysis of the reuse distances for the data accessed by

each memory-accessing instruction from the applications tested and understand the rea-

sons behind the effects shown by HBPB for these benchmarks.

1.2 Organization

The objective of this work is to present HBPB and the context where it is inserted.

This thesis is organized as follows: Chapter 2 presents the motivation for bypassing the

caches. In Chapter 3, the state-of-the-art in cache bypassing is briefly described. Chapter

4 presents HBPB, our proposed implementation of cache bypassing in hardware. Chapter

5 presents our evaluation and proves that HBPB works as intended. In Chapter 6, we show

that the benefits from HBPB also extend to real applications and are still valid among

different hardware configurations. We also provide a static analysis of the reuse distances

for each instruction of the applications tested and show on which of them HBPB acts on.

Chapter 7 brings a conclusion to this work.
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2 CACHE MEMORY BYPASSING MOTIVATION

Cache memories are a powerful mean to mitigate the memory-wall problem [Wulf

and McKee 1995], highlighted by the performance gap between logic and main memory

technologies. Usually organized in a multi-level hierarchy, with smaller and faster levels

closer to the processing cores, they reduce the average memory access latency by storing

data that is likely to be requested by the processor in the near future. The core function-

ality of the cache is exploring the spatial and temporal locality of memory accesses. The

use of cache lines covers spatial locality: every time an access is made, 64 bytes of data

- a cache line - are fetched. This way, if the next accesses are for neighboring data, they

have already been fetched, and the latency is reduced. Temporal locality means that data

that has been recently requested tends to be requested again in the near future. The caches

leverage the temporal locality of memory accesses by storing data that has been requested

in the near past, evicting data that has not been used in a long time when new lines need

to be stored.

However, caches are not effective when the access pattern has no temporal locality

in regards to cache lines. For example, when the application searches through a linked

list, and nodes are not repeated, no data can be serviced by the cache. In this case, regular

cache management dictates that the processor must first check the caches for the presence

of the needed data and then store the data coming from main memory in the caches,

in case it is needed in the future, which never happens. The actions of waiting for the

cache answer before requesting the data to main memory and filling this data in the cache

represent both an unnecessary overhead. If the request could bypass the cache, many

cycles of waiting would be avoided, and if the data could bypass the cache, a significant

amount of energy would be saved. Also, by not storing unnecessary data into the cache,

cache pollution - replacing lines with reuse potential with lines with no reuse potential

- could be mitigated, which in turn would reduce cache misses, saving on latency and

energy again.

Table 2.1 shows the energy and latency costs for accessing different levels of the

memory hierarchy on an Intel Core i7 4770 processor. Latency values have been taken

from the Intel optimization manual [Intel 2018], energy values are given by Cacti [Bal-

asubramonian et al. 2017], given a 22nm technology, and main memory energy values

come from our own experimentations with DDR3 DRAM, and account only for dynamic

energy. We assume the energy for a DRAM Read and Write are equal for simplicity.



24

Table 2.1 – Memory hierarchy characteristics for a Intel Core i7 4770 22nm processor.
Level Size Latency (Cycles) Read Energy (pJ) Write Energy (pJ)
L1 32 KB 4 199 202
L2 256 KB 11 169 175
L3 8 MB ∼34 1122 1163
DRAM 4 GB ∼100-200 6140 6140

Current processors offer the functionality of load, store and prefetch instructions

with a non-temporal hint. Non-temporal stores are well established due to the need for

offloading data to other devices with short latencies and are used mainly on drivers and

kernel code. Also, the possibility of using write combining - buffering many stores to

neighboring locations before issuing a single write operation to memory - makes non-

temporal stores even more useful. However, for load instructions, functionality is much

more restricted. On ARM, the LDNP instruction performs a load of a pair of values into

two registers with a non-temporal hint. What the processor does with this hint is not well

specified. On x86, non-temporal load instructions have been introduced with SSE 4.1.

When these instructions are used interchangeably with regular load instructions, caching

is usually done anyway, rendering their employment almost useless [Guide 2020]. For

proper bypassing of the caches to occur, the memory region that is being accessed must

be configured as write combining, reducing the freedom for the programmer or compiler

to employ them.

In addition to not having a transparent and dependable implementation, these in-

structions only exist for Single Instruction Multiple Data (SIMD) operations and have

to be used explicitly. For example, while a regular arithmetic instruction can perform a

memory access, for this access to be made non-temporal, a non-temporal SIMD load has

to be performed for the desired data, the value has to be copied from the SIMD registers

to regular registers, and then the arithmetic operation can be done. Also, as the mem-

ory region has to be defined as uncacheable at the allocation, this limits the flexibility to

decide between bypassing the cache or not depending on the state of the system or by-

passing only some parts of the data on a data structure. Consequently, detecting which

instructions could perform non-temporal accesses at run-time is of great value.

Figure 2.1 shows the sequence diagram of a memory access that misses in all lev-

els of cache and is serviced by the main memory, considering all caches are inclusive.

The request crosses all cache levels and prompts fills and evictions on every level. If the

evicted line has been modified, a Write Back (WB) to the next level of the memory hier-

archy must be done. The data is requested to the main memory only after it is confirmed
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Core L1 L2 DRAML3
Request

Request
Request
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Writeback Writeback Writeback
Figure 2.1 – Sequence diagram of a cacheable memory access through a traditional memory

hierarchy.

Core L1 L2 DRAML3

Request
Request

Request

Answer

Request

Figure 2.2 – Sequence diagram of a non-temporal memory access through a traditional memory
hierarchy.

that it is not present in the caches. Figure 2.2 shows how a non-temporal memory access

is performed. The request goes directly to the main memory, and the caches are checked

in parallel. Since the request has arrived in the main memory much earlier, the answer

arrives earlier. If the data happened to be in the caches, the data from the main memory

is discarded. No fills are done, so no evictions or Write Backs are necessary.

Figure 2.3 shows the different latencies involved in a main memory access both in

a regular access and in a bypassed access. Since the physical address generation is usually

done in parallel with the L1 cache check, it can not be avoided by the non-temporal access.

The bypassed access takes 45 fewer cycles than usual, being 43% faster, assuming the

DRAM latency for a row buffer hit.

Figure 2.4 shows the energy costs of an access to main memory in the worst case,

in which all cache evictions are from dirty lines and Write Backs are prompted on all

levels. In the best case, no Write Backs are done, and so the only energy costs are from

the DRAM read and cache fills. When the access is non-temporal, the only energy cost is

from reading the DRAM. With that in mind, a non-temporal access can save up to 60% of

the dynamic energy in comparison with a regular access. Also, considering the latency is

reduced, it further saves on static energy. It is crucial as well to note that saving on power

inside the processor package is more beneficial due to thermal dissipation factors.
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3 RELATED WORK

Improving the memory system efficiency is of major importance and is the goal of

a growing proportion of the research in computer architecture. From complete overhauls

of their organization to minor policy tweaks, the caches are the usual target for enhance-

ments in the memory hierarchy. The most common approach is to improve the cache

replacement policy, which means changing the way that a cache block is selected for

eviction when a new block must be stored [Wu et al. 2011, Jain and Lin 2016, Beckmann

and Sanchez 2017, Kim et al. 2017, Jain and Lin 2018, Shi et al. 2019]. However, not as

many works suggest completely skipping the caches when serving data to the processor.

Some authors have studied cache bypassing benefits and how to select accesses to

be bypassed. Most approaches are done in hardware. However, Sandberg et al. [Sand-

berg, Eklöv and Hagersten 2010] suggest detecting which instructions access data with no

temporal locality through profiling and analysis of the reuse distance of addresses. With

this information, the authors propose using non-temporal prefetch instructions before the

selected instructions to bypass the last level cache for the data. The lines are also evicted

directly to memory.

Gupta et al. [Gupta, Gao and Zhou 2013] suggest the introduction of a bypass

filter on the LLC that allows inclusive last-level caches to be bypassed. At the same time,

data is still stored in higher levels of the cache hierarchy.

Chaudhuri et al. [Chaudhuri et al. 2012] present Cache Hierarchy Aware Replace-

ment (CHAR) algorithms for inclusive LLCs that can be used on exclusive LLCs in order

to bypass victim fills. They classify cache lines in the L2 cache in five classes according

to four parameters: if they are prefetched or not, come from an LLC hit or miss, how

many times they are reused in the L2 before being evicted, and their coherence state. The

mechanism then monitors if the lines from each class are dead when filled in the LLC

and uses this classification to decide whether future lines from the same class should be

bypassed.

Sembrant et al. [Sembrant, Hagersten and Black-Schaffer 2016] propose a mech-

anism that tracks the reuse of cache lines brought by each instruction at each level of

the cache hierarchy. The authors then propose the Reuse Aware Placement (RAP). This

mechanism learns the reuse distance of data from each instruction and places this data on

the most appropriate cache level on the hierarchy, bypassing data from instructions that

do not fetch reused lines.
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Kharbuti et al. [Kharbutli, Jarrah and Jararweh 2013] propose the Selective Cache

Insertion and Bypassing (SCIP), a history-based mechanism that tracks the reuse of cache

blocks in a counter and leverages this information to decide on the subsequent blocks’

insertion location.

Sim et al. [Sim et al. 2012] propose FLEXclusion, a dynamic mechanism that

changes the inclusion policy of a multi-layered cache between exclusive and non-inclusive,

using the set dueling technique to decide between them. The authors claim that the mech-

anism can find the best policy at run time to improve performance and reduce energy

waste. While changing the LLC to exclusive is equivalent to bypassing it for data arrivals,

effectively removing them from the data path, they are still filled on evictions.

Egawa et al. [Egawa et al. 2019] propose a mechanism that monitors each cache

level efficiency and bypasses the levels that are not energy efficient. The authors suggest

using the Hits Per Kilo-Instruction of the cache level and the miss penalty of each level

to achieve a metric called Hidden Access Latency Per Kilo-Instruction. This metric is

used in conjunction with the power consumption of a given cache level to determine if

bypassing this level would improve the system’s energy efficiency. However, there is no

way to keep the caches working for blocks that could eventually benefit from them. If the

mechanism detects that a particular cache level is ineffective, no access can benefit from

them.

Gaur et al. [Gaur, Chaudhuri and Subramoney 2011] observe that the LRU policy

and its derivatives are ineffective when employed on an exclusive cache hierarchy and

propose new insertion and bypassing policies better tailored to this set of caches, based

on events that are more significant on exclusive caches, such as the number of times a

cache line transits between the cache levels or the use count of a cache line during its

residency on the L2 cache.

Wang et al. [Wang et al. 2019] introduce FILtered Multilevel caching policy

(FILM). This mechanism places evicted data into the optimal cache level instead of fill-

ing them into the next level, as traditionally, bypassing the levels where it is predicted

not to be reused. The mechanism uses a PC-based reuse predictor for each level. The

authors also tailor the mechanism to train differently with prefetch requests, increasing its

efficiency.

Bae and Choi propose the Filter Cache [Bae and Choi 2020], a small filter on the

Last Level Cache that detects whether lines have spatial or temporal reuse. The filter

then is used to fill on the LLC only lines with temporal reuses, because only cache lines
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with temporal reuse potential need to be stored on the LLC since the private caches serve

the spatial reuses. With this, the authors claim the LLC can be reduced by 75% without

compromising the performance.

The Reuse Cache [Albericio et al. 2013], proposed by Albericio and Ibáñez, is a

cache architecture where the tag array is decoupled from the data array on the Last Level

Cache. The tag array has a greater capacity than the data array. When accesses from the

private cache arrive and miss on the tag array, the data is fetched from the main memory

and is filled only on the tag array and sent to the private caches. When the access hits

only on the tag array, the data is then fetched again from the main memory and filled

into the data array. This scheme allows the data array to be much smaller and only store

cache lines that have shown reuse. The authors, however, do not suggest leveraging any

information on the memory access to automatically cache a line without it needing to be

accessed twice.

Teran et al. [Teran, Wang and Jiménez 2016] propose using a perceptron-based

reuse predictor that feeds features of memory accesses such as different parts of the tag

of the address and the PC of the instruction as well as recent occurring PCs into tables of

weights that are changed when a block is reused or evicted. These weights are used to

make predictions on the reuse of new accesses. The reuse prediction is then used to decide

on the placement of the new block in the LLC. The decision can be to bypass the cache

if the block is predicted not to have any reuse. On [Jiménez and Teran 2017], the authors

introduce the Multiperspective Reuse Prediction, where they tweak the perceptron-based

predictor and add a more extensive set of features.

Kohler and Alves [Köhler and Alves 2019] propose that requests of data to the last

level cache and main memory could be made in parallel when the access is predicted to

miss in the Last Level Cache (LLC) in order to reduce the request latency. The authors

use the past behavior of the requests from the same instruction to predict its future results.

Most of the previous work is, to some degree, very conservative with bypassing.

Most of the time, they suggest bypassing only the LLC or being exceedingly selective

when deciding to bypass or not. In this context, our work aims to complement the state-

of-the-art with a proposal of a mechanism that bypasses all the caches preemptively in

both ways, requests and data, and show that it can be done in hardware at runtime, using

a straightforward heuristic.

The main focus of this work is to analyze the impact of bypassing all the cache

levels, preemptively, on both ways while offering a small buffer for spatial reuse to still
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occur. Employing a separate prefetcher on this buffer to target the non-temporal accesses

is also an important contribution of our work. We also propose a heuristic to select the

lines to be bypassed.



31

4 HISTORY BASED PREEMPTIVE BYPASSING

In order to achieve an online conversion of regular memory accesses into non-

temporal accesses, we propose the History-Based Preemptive Bypassing (HBPB) mecha-

nism. The mechanism has two main goals:

• Increase performance by avoiding cache latencies for cache-unfriendly access;

• Reduce cache pollution and increase energy efficiency by not filling data from

cache-unfriendly accesses into the caches.

The mechanism works by storing the history of recent memory accesses and clas-

sifying instructions into cache-friendly or not. HBPB assumes every instruction is not

cache-friendly unless it has been detected as such. Thus, it aggressively tunes accesses

from instructions not known to be cache-friendly into non-temporal (bypassed) memory

accesses, preemptively bypassing all the cache levels.

4.1 HBPB Architecture

The mechanism requires three major additions to the architecture, as displayed in

Figure 4.1. First, a table that stores identifiers of instructions is required. Each entry has

the Program Counter (PC) as a key and a saturating counter as a value. This table is called

the Classified Instructions Table (CIT). In order to reduce the storage needed, every PC

can be hashed, and the mechanism then only sees this hash.

The mechanism also needs an Access History Table (AHT), which stores memory

addresses and the identifier of the instruction that generated the last memory accesses to

this address. This table needs to be as big as the number of lines in the caches and keep

their ordering. It can be a replica of the LLC for better efficiency, storing the PC hash of

the instruction that generated the access instead of the cache block. This is analogous to

an L3 cache simulator inside the processor.

We also need a Non-Temporal Buffer (NTB) structure to hold the data requested

by bypassing instructions. This buffer allows for data that have reuse only in a short

distance to be serviced by this buffer, avoiding polluting the caches. The NTB allows the

mechanism to sample only the L1d new misses, drastically reducing its overhead. The

NTB acts as a parallel L1d, avoiding filling the L1 with non-temporal data and trickling

unnecessary Write Backs through the cache hierarchy.
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Figure 4.1 – HBPB architectural additions.

HBPB receives requests from the L1 and Last Level Cache, and serves data from

the NTB to the LLC and directly to the core Load-Store Queue (LSQ). It requests, re-

ceives, and sends data to the DRAM.

4.2 HBPB Operation

The workings of the mechanism are depicted as a flowchart in Figure 4.2.
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Figure 4.2 – HBPB decision flowchart.

When a memory accessing instruction is executed, and the access provokes a new

miss on the data L1 cache, the processor sends the access information to HBPB. The

mechanism will then decide if this memory access should be bypassed, and use the data

from the access to train its future decisions.

4.2.1 Decision

When HBPB is requested to decide if an access should be bypassed or not, it

checks for the presence of the instruction identifier on the CIT and the value of its counter.

If the counter is above the threshold, the mechanism signals to the L1d that the access

should not be bypassed. If the instruction is not present on the table or its counter is
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below the threshold, the L1d is informed that this access should be bypassed.

4.2.2 Training

The mechanism checks for the presence of the memory address on the AHT. If

the address is on the table, it means the data has been reused, and the instructions that

requested it are cache-friendly, so the mechanism increments the counters for both the

current instruction and the instruction that initially brought the data into the AHT on the

CIT. If there is no entry for the instructions on the CIT, they are added with the counter

set above the threshold.

If the address is not present in the AHT, it is inserted, and one element of the table

is evicted, according to the AHT replacement policy, which is the same as the LLC. The

instruction that brought the evicted element has accessed a dead line, and so its counter is

decremented on the CIT if present. This is done to allow for instructions that bring dead

data into the cache to be able to be trained back into bypassing instructions even if they

rarely hit in the cache. The value decremented from the counter must be smaller than the

value added on hits so that instructions are not excessively penalized for a short burst of

evictions of its lines from the AHT.

If the address misses in the AHT and the instruction is present on the CIT with

its counter saturated negatively, HBPB understands that this instruction is strongly cache-

unfriendly and does not add the address to the AHT. This reduces the number of writes to

the structure and makes it a better representation of the cache without the data that is very

likely to be bypassed. In this situation, the mechanism still adds the address to the table

with a 1/32 chance to allow instructions that eventually change behavior to be reclassified.

4.3 Data and Request Paths With HBPB

The paths of the memory requests through the system are depicted in Figure 4.3,

and Figure 4.4 illustrates the paths of the data. When a miss occurs in the L1 data cache

for an address that is not already present on the Miss Status Holding Registers (MSHR), it

means that a new request needs to be propagated through the memory hierarchy, usually in

the form of an L2 request. With the usual operating scheme of the caches, the requests are

propagated in only one path: New L1 misses are requested to the L2; New L2 misses are
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propagated to the L3, for which new misses generate a new DRAM request. The memory

that has the data then sends the data back to the memory that asked for it, trickling the

data back to the processor core.

We propose an alternative way for requests to arrive in the DRAM. When the

HBPB orders an L1 miss to be bypassed, a new request is created and forwarded to the

NTB, which will then propagate the request to the DRAM if it results in a new miss. The

lower level caches still have to be checked in parallel because it is possible that the access

is a cache hit. When the parallel cache query is confirmed as a miss, the NTB serves

the data to the processor, and the pending misses in the cache MSHRs are deleted. If the

NTB has a copy of the data, it can serve it to the processor immediately. Having a write-

invalidate coherence protocol guarantees that the NTB has the most up-to-date version of

the data.

Write operations that miss on the L1 cache generate a Read For Ownership (RFO)

request that propagates to the other caches. Bypassed RFOs also propagate the write

operation to the NTB, but they can be committed only when the miss on all the caches is

confirmed. If the parallel request to the caches ends up resulting in a hit, this pending write

is canceled, and the data read from memory is invalidated. When the write is committed

in the NTB, all lines storing this address in the caches must be invalidated, following the

write-invalidate protocol. To maintain data consistency, the LLC has to confirm that an

address is not present in the NTB before accepting a new line from the DRAM, in case it

has been written by a bypassed write.

Non-Temporal accesses are deployed to both the caches and the main memory.

If the mechanism has mistakenly classified the instruction as not cache-friendly and the

request hits in the caches, the access operates regularly, the PC is trained as cache-friendly

on the CIT, and the data from the NTB is not read by the access.

The most significant benefit of inserting only data that is likely to be cache-friendly

in the caches is that it does not require extensive training before deciding to bypass a

cache line. On existing mechanisms, the decision to bypass data from an instruction is

only made after said instruction has already flushed the entire cache. By doing this more

aggressive bypassing, we can avoid pollution and energy waste from shorter bursts of

accesses, leaving the cache available for data that is proven to be reusable.
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4.4 HBPB Hardware Overhead

The most significant hardware overhead incurred by HBPB is the AHT. This struc-

ture must store one entry for every cache line available for the processor. Each entry is

comprised of an instruction identifier and a memory address. We do not need to store the

whole 64 bits of the Program Counter to identify each instruction inside the mechanism.

For better area efficiency, we identify each instruction as a 16-bit hash of its PC. Since the

AHT is a clone of the Last Level Cache, the memory address is stored as a combination

of index and tag, as in the caches. On a configuration with a 1 MB, 16-way set associative

Last Level Cache with 64-Byte cache lines, the tag field of a cache block is 48 bits long.

This means the AHT would need to store 64 bits for every cache line available on

the processor LLC, while the LLC needs 560 bits for the tag and data fields. The AHT

then needs an area equal to 11.4% of the LLC. Such an implementation implicates that

the AHT would require 131 KB of extra storage. Larger cache sizes would need an AHT

proportionally smaller because there are fewer bits required for the tag, given that the

associativity remains the same.

The other major overhead from HBPB is the NTB, which has the same size as the

L1 data cache. In this case, 32 KB for the data array and 3264 Bytes for the tag array.

The CIT must store the instruction identifier with its saturated counter. The mech-

anism requires this structure to have low read latency since the decision to issue a regular

or non-temporal access has the window of time between the instruction decode and its

placement on the LSQ. Thus, a hash table of counters indexed by the hash of the Program

Counter is an appropriate solution for it. We observed that storing the state of as few as

128 instructions per core yields indistinguishable results compared to an infinite table that

stores all instructions.
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5 EVALUATION

In this chapter, we detail an evaluation of HBPB and show the results obtained

by the mechanism for a group of microbenchmakrs that prove that our proposal works as

intended.

5.1 Implementation

We implemented our mechanism in ChampSim [ChampSim 2021], a cycle-accurate,

trace-driven x86 simulator. We modeled a system with a cache hierarchy as in Table 2.1,

with non-inclusive, non-exclusive, writeback caches.

We modeled a system inspired on the Core i7 4770 CPU, but with a smaller L3

cache to reduce the needed working set size for the benchmarks and bring the simulation

time to a more sensible level. Full details of the modeled system are present in Table 5.1.

The energy consumption for this cache was adjusted accordingly on Cacti. As a proof of

concept, we ran simulations on several microbenchmarks in the simulator.

For fairness in the results, we compared the HBPB configurations with the LLC

reduced, to offset the extra overheads from HBPB with a significant margin. The LLC was

reduced from 16-way to 13-way, while keeping the same number of sets. This reduces the

cache capacity by 18.75%. The latency and energy consumption of the smaller cache was

kept the same in order to keep the number of changes at a minimum and avoid giving any

unfair advantages to the HBPB configurations. We compare the effects of the mechanism

with a baseline configuration without HBPB and a bigger LLC.

Table 5.1 – Modeled system.

Component Configuration

Core 3.4 GHz, 64/36-entry Load/Store Queue, 2 Load Units, 1 Store Unit
L1 Instruction Cache 32KB, 8-way, 4 cycles latency
L1 Data Cache 32KB, 8-way, 4 cycles latency
L2 Cache 256KB, 8-way, 11 cycles latency
Baseline L3 Cache 1MB, 16-way, 34 cycles latency

Non-Temporal Buffer 32KB, 8-way, 4 cycles latency
HBPB L3 Cache 832KB, 13-way, 34 cycles latency

DRAM DDR3, 1600 MT/s, tCAS = 10, 2 channels, 8 Banks/Channel, Dual Rank

We tested three different versions of HBPB to better understand the practical ef-

fects of each of the proposed modifications:
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• HBPB-R: Bypasses only the requests. Cache fills are done normally;

• HBPB-F: Bypasses only the fills. No parallel requests are issued;

• HBPB-RF: Bypasses both requests and fills.

We use Cacti [Muralimanohar, Balasubramonian and Jouppi 2009] to estimate

the energy consumption of the caches and, to the best the tool can provide, the energy

overhead for the HBPB structures. The values used in the evaluation are shown in Table

5.2. Energy consumption values are a product of the number of reads and writes to the

memories and their respective energy costs. Each access to HBPB incurs in a read and a

write to the AHT, except when the information is not filled. In this case, only a read is

accounted for.

Table 5.2 – Energy values used on the evaluation.

Cache Read Energy (pJ) Write Energy (pJ)

L1 199 202
L2 169 175
L3 925 936
NTB 199 202
AHT 50 87

We present the effect of the mechanism on the cycles, cache dynamic energy, and

Energy-Delay-Squared Product (ED2P) of the applications. The ED2P is calculated as

a product of the square of the number of cycles and the dynamic energy of the caches,

including the HBPB structures. The ED2P allows the balance between performance and

power to be synthesized in a single value. We chose to have the cycles squared to give

more weight to the performance part of ED2P, which is the usual approach when employ-

ing this metric. As in the cycles and energy, the smaller the ED2P, the better.

5.2 Proof of Concept

The mechanism should excel in applications that access large chunks of data with

no reuse. Two classic examples of this behavior are linked list traversals and pattern

matching. We tested both of these examples with microbenchmarks specially made for

this evaluation, as well as a few kernels from the PolyBench benchmark suite [Yuki and

Pouchet 2015] that exhibit streaming memory access patterns. Those kernels are often

part of full-fledged applications, and if the mechanism achieves its goals on the kernels,

it should also transfer to full applications.
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Figure 5.1 shows the effect of HBPB on the execution cycles of the kernels com-

pared to the baseline configuration, and Figure 5.2 displays the cache dynamic energy for

the kernels, while Figure 5.3 shows the resulting ED2P.
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Figure 5.1 – Effect of HBPB on the cycles for the kernel microbenchmarks.
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Figure 5.2 – Effect of HBPB on the cache dynamic energy for the kernel microbenchmarks.

5.2.1 Linked List

Linked lists are one of the most common data structures, so they are present in

many applications of the most diverse fields. One defining characteristic of linked lists

is that when it is being traversed, the position of the next node in memory is only known
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Figure 5.3 – Effect of HBPB on the ED2P for the kernel microbenchmarks.

Table 5.3 – Working set size from the microbenchmarks used.

Application Working Set

Linked List 8 MB
Pattern Matching 26 MB
Deriche 270 MB
Floyd-Warshall 2 MB
Jacobi 1D 764 MB
Jacobi 2D 382 MB
YOLO CNN 569 MB

after the current node is read, so it is heavily dependent on the memory access latency. In

order to get to a single node, other nodes must be read, and since those nodes are needed

only to get to the desired node, they have no reuse. Those factors make caching linked

list accesses a poor choice, and bypassing the caches for them shows good potential for

improvements.

HBPB improves this benchmark performance by anticipating the requests to the

DRAM and shortening the path between memory and core. While HBPB-R and HBPB-F

reduce the cycles by 14.9% and 20.5%, respectively, when combined in HBPB-RF, they

achieve a 35.3% reduction. HBPB-R cannot reduce the cache fills, but since it also causes

fills to the NTB, the total cache energy is increased by 16%. HBPB-F and HBPB-RF

behave the same way, and both achieve a 74% reduction in total cache energy. This way,

ED2P is drastically reduced to only 10.8% of its original value.
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5.2.2 Pattern Matching

Another typical display of cache unfriendly memory accesses is found in pat-

tern matching applications (e.g., searching for matching text, matching images, DNA

sequence comparison). We developed a simple implementation of text matching to bench-

mark HBPB. When executing grep, for example, an application that searches for occur-

rences of patterns that match given regular expressions, the processor has to load all the

files to be searched, byte by byte, and check for the patterns. Most of this data is never

reused, and caching is unnecessary. To verify the efficiency of the mechanism in bypass-

ing the cache-unfriendly accesses from pattern matching applications, we developed a

simple benchmark that searches for a string on a file using the string class from C++

with its find() method, similar to an in-memory grep application. Since it does more

than just memory accesses, the mechanism achieves a smaller, 19.2% reduction in cycles

for it with HBPB-RF. HBPB-R is responsible for the biggest reduction in cycles, with a

12.8% reduction. Meanwhile, HBPB-F avoids most cache fills and reduces the energy

by 75%. Combined in HBPB-RF, the mechanism achieves both performance and power

improvements, resulting in an ED2P of only 16.7% of the baseline configuration, which

is equivalent to a 500% improvement.

5.2.3 Jacobi 1D

A 1D stencil application is a good candidate for bypassing. A large structure is

traversed while only a few elements are reused in a short interval.

Listing 5.1 – Jacobi 1D kernel code

for (t=0; t < STEPS; t++) {

for (i=1; i < N-1; i++)

B[i] = 0.33 * (A[i-1] + A[i] + A[i+1]);

for (i=1; i < N-1; i++)

A[i] = 0.33 * (B[i-1] + B[i] + B[i+1]);

}

Since every iteration of the loop can be done in parallel by the out-of-order proces-

sor, the accesses end up being merged, resulting in a single request for an address that will

experience a long reuse distance. The stores performed by the application also experience



44

no reuse since they are performed sequentially to the array. Caching the data for these

stores is usually useless.

All versions of HBPB successfully speed up this application, and HBPB-F man-

ages to reduce the cache energy by 38%. The total ED2P is then reduced by 56.3% with

HBPB-RF.

5.2.4 Jacobi 2D

The Jacobi 2D benchmark from PolyBench is similar to its 1D counterpart but

operates on 2D matrices instead of 1D vectors. HBPB cannot achieve improvements as

good as on the 1D version of the benchmark, resulting in a slight regression in perfor-

mance, with a 0.6% increase in total cycles with HBPB-RF. However, the cache energy

is dramatically reduced due to the conversion of all the stores into non-temporal stores,

bypassing the caches. The cache dynamic energy is reduced by 24.8% with HBPB-F and

23.3% with HBPB-RF. Even with a performance reduction, the ED2P is reduced by 25%

for HBPB-F and 22.3% for HBPB-RF.

5.2.5 Floyd-Warshall

The Floyd-Warshall algorithm finds the shortest path between every pair of nodes

in a graph 1. The PolyBench implementation utilizes an n × m matrix where the value

of each position represents the distance between the nodes n and m. The kernel accesses

memory with a very stream-like behavior, in which HBPB-R manages to work well, re-

ducing the total cycles by over 10%. HBPB-F reduces the cache energy by also 10%.

When combined in HBPB-RF, the two forms of bypassing yield a reduction in ED2P of

22.6%.

5.2.6 Deriche

The Deriche filter can be used for edge detection or smoothing of images. The

kernel performs horizontal and later vertical passes through an image, with little to no

1Appendix B contains the results obtained for other graph applications, from the GAP benchmark suite
[Beamer, Asanović and Patterson 2015]
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data reuse on each pass. This application performs many mathematical computations for

every memory access, so the impact of the memory access latency on the final perfor-

mance is smaller than it would be otherwise. HBPB did not manage to yield significant

performance improvements on this kernel, only 2%. However, the cache energy was mas-

sively reduced by nearly 34.2% with HBPB-F and 29.8% with HBPB-RF. The resulting

ED2P was then equivalent to the reductions in energy consumption.

5.2.7 Yolo CNN

The You Only Look Once (YOLO) Convolutional Neural Network (CNN) [Red-

mon et al. 2016] is a very fast CNN used to detect objects and their boundaries in real-

time. This network is faster than others at detection because it only needs a single network

evaluation, unlike other methods. We ran the CPU implementation of the network on a

16 MP image and extracted the execution trace, which was then simulated in our test

environment. We used the Tiny-YOLO version for its faster execution completion.

In this application, HBPB-RF reduced total cycles by 10.5% and cache energy by

8.9%. The resulting reduction in ED2P was 27%.

Since object recognition is one of the tasks that leverage the most benefits from

computing on the edge, due to the video stream not needing to be transmitted to a dif-

ferent device [Abbas et al. 2017], achieving energy savings on this kind of application is

essential since edge devices are frequently powered by a battery.

5.2.8 Final Remarks

On average, performance was improved by 15% with HBPB-RF on the tested mi-

crobenchmarks, while the cache energy was reduced by 44.6%. Total ED2P was reduced

by 58% on average with HBPB-RF. HBPB-R always increases the total energy because

it can not avoid cache fills; it only adds fills to the NTB and AHT. HBPB-F was demon-

strated to be the biggest contributor to the final effects of the mechanism.

Figure B.14 shows the total accesses to HBPB by type and the decisions made

by mechanism for each of the microbenchmarks, represented as a percentage of the total

instructions of the benchmark. The plot clearly shows how the linked list and pattern

matching applications are similar in access types, being constituted of only loads, which
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are mostly bypassed. Since the linked list is randomly shuffled across memory, though,

some of the time, the reuse distance of an access will fall within the cache capacity, and

the instruction will be trained as cache-friendly.
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Figure 5.4 – Frequency of each type of access for the microbenchmarks with HBPB.

The deriche application shows a mix between loads and stores, and both are by-

passed by HBPB half of the time. Floyd-Warshall has mostly loads, and only about 10%

of them are bypassed. This correlates well with the reduction in cache energy observed.

On Jacobi 1D, nearly all loads are bypassed, but only about a half of the stores are by-

passed. On the two-dimensional version of the Jacobi algorithm, only the stores are by-

passed. This explains why the performance for this application is not improved, since it

depends on the latency of the loads, not the stores. The stores, however are all bypassed,

and hence the cache energy is drastically reduced. For YOLO, most of the accesses are

also bypassed, although, like Floyd-Warshall, less than 2% of the program instructions

perform memory accesses that result in a new L1 miss, which reduces the ability of HBPB

to improve performance even more.
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6 RESULTS AND ANALYSIS

In order to verify that the benefits from HBPB on the kernels transfer to full ap-

plications, we tested the mechanism with some applications from the memory intensive

benchmarks from SPEC CPU 2017 [Henning 2021], using the traces generated for the

ML-Based Data Prefetching Competition [Jiménez 2019], using the biggest workload

sizes for each application. Table 6.1 shows the size of the working sets for each of the

applications tested, obtained by counting the unique memory addresses acessed on the

traces.

Table 6.1 – Working set size from the SPEC CPU 2017 applications used.

Application Working Set

cactuBSSN 273 MB
fotonik3d 1.5 GB
gcc 177 MB
lbm 2.5 GB
mcf 1.7 GB
omnetpp 47 MB
roms 378 MB
wrf 64 MB
xalancbmk 16 MB

6.1 Experimental Results

In this section, the effects of HBPB on the performance and energy consumption

of the SPEC applications is presented.

6.1.1 Performance

Regarding the execution cycles, HBPB-R was the most effective on the SPEC

benchmarks, reducing the total cycles by 6% on average. On cactuBSSN and mcf, the

effect was nearly inexistent, while omnetpp was accelerated by merely 1%, and wrf by

2.4% with HBPB-R. Bigger improvements were seen on the execution times of fotonik3d,

which was reduced by 7%, lbm, by 5.4%, roms by 8.3% and xalancbmk, by 9.1%. With a

18.1% reduction in execution cycles, gcc was the application that benefited the most with

HBPB-R regarding performance.
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HBPB-F improved the performance only on mcf and xalancbmk, by 12.8% and

6.3% respectively. When combined in HBPB-RF, the performance was a product of both

previous versions. When only HBPB-R improved the performance, the gains were smaller

on HBPB-RF, but when both versions showed improvement, the final gains were greater

than in any of the previous versions. On mcf, the total cycles were reduced by 19.5% with

HBPB-RF, and over 14% on xalancbmk. On average, the cycles were reduced by 5.1%

with HBPB-RF.
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Figure 6.1 – Effect of HBPB on the cycles for the SPEC CPU 2017 benchmarks.

6.1.2 Cache Energy

When looking at the effects of the mechanism on the cache dynamic energy, shown

in Figure 6.2, HBPB-R never manages to yield improvements, since it only anticipates

memory requests to the DRAM. At the same time, it only adds cache fills to the NTB and

AHT. This version goes as far as increasing the energy consumption by 12.7% on gcc, and

4% on average. Meanwhile, HBPB-F main goal is to reduce cache energy consumption,

in which it succeeds. On cactuBSSN, fotonik3d and gcc, the changes were smaller than

1%. Small reductions are also observed on omnetpp, roms and wrf, with 1.2%, 2.6% and

1.6% respectively.

Massive improvements were yielded by HBPB-F on lbm, mcf and xalancbmk. On

lbm, the reduction in cache energy consumption was 13%, and 17.6% on xalancbmk. The

greatest reduction happened on mcf, where HBPB-F managed to reduce the energy con-

sumption by 29.1%. On Average, energy consumption was reduced by 7.7% with HBPB-
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F. The effect of HBPB-RF on the caches’ energy consumption was strongly correlated to

the effect of HBPB-F. On average, HBPB-RF yielded a reduction of 7.3%.
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Figure 6.2 – Effect of HBPB on the cache dynamic energy for the SPEC CPU 2017 benchmarks.

6.1.3 Energy-Delay-Squared Product

The resulting effects of HBPB on the ED2P of the SPEC 2017 benchmarks were

positive except for two occasions, as shown in Figure 6.3. On gcc, since HBPB-F de-

creased the performance and did not improve the energy consumption significatively, the

ED2P was increased by 4.1%. On mcf, since HBPB-R increased the energy consumption

and decreased the total cycles by a smaller margin, the ED2P ended up being raised by

5.3%. HBPB-RF never deteriorated the ED2P. Apart from cactuBSSN, where the mech-

anism had nearly to no effect, and fotonik3d, wrf and omnetpp, where the decreases in

ED2P were of 2.9%, 2.3%, and 2.4%, respectively, HBPB-RF yielded sizeable benefits

when considering the ED2P as the desired metric.

On gcc, even if not as great as the reduction by HBPB-R, of 24%, HBPB-RF

reduced the ED2P by nearly 7%, simply due to the speed-up achieved by bypassing the

requests. On roms, the ED2P reduction yielded by HBPB-R was also greater than the one

by HBPB-RF, since the speed-up with the first was bigger. HBPB-R reduced ED2P by

12.6%, while HBPB-RF reduced it by 5.8%. On lbm, xalancbmk and mcf, since HBPB-

RF improved both performance and energy efficiency, the reductions in ED2P are much

more substantial, being 15.8%, 38.4% and 53.7% respectively. On average, HBPB-RF

reduced ED2P by 16.6%.
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Figure 6.3 – Effect of HBPB on the ED2P for the SPEC CPU 2017 benchmarks.

6.1.4 Summary

Table 6.2 summarizes the key impacts of HBPB on the SPEC applications’ per-

formance and energy efficiency. For some of the applications, HBPB-RF massively im-

proved energy efficiency and performance while never affecting any application nega-

tively by more than 1%.

Table 6.2 – Summary of the percentual reductions in Cycles and Cache Energy obtained with
HBPB on the SPEC CPU 2017 applications.

cactuBSSN fotonik3d gcc lbm mcf omnetpp roms wrf xalancbmk mean

Cycles (R) 0.0 7.0 18.1 5.4 0.4 1.3 8.4 2.4 9.1 5.9
Cycles (F) 0.0 0.5 -2.1 0.7 12.3 0.0 0.1 0.1 6.3 2.1
Energy (F) -0.9 0.0 0.3 12.9 29.1 1.3 2.6 1.6 17.6 7.7

Cycles (RF) 0.0 1.6 3.4 2.4 19.5 0.6 2.0 0.5 14.1 5.1
Energy (RF) -0.9 -0.2 0.3 11.7 28.6 1.1 2.0 1.3 16.6 7.3

The plot in Figure 6.4 shows the decisions made by HBPB-RF on incoming re-

quests arrived after an L1 miss. It helps in understanding the effects of the mechanism on

the applications from the SPEC CPU 2017 benchmark suite. The accesses are presented

as a percentage of the total program instructions. On lbm, xalancbmk, gcc, and mcf, appli-

cations that were sped-up by the mechanism, a sizeable portion of the Load instructions

were bypassed, reducing their latency and improving the performance. On lbm, the im-

provements in energy efficiency were much greater than those in performance, which is

explained by most of the accesses from this application that suffered interference from

HBPB being Stores. Since Stores are not as relevant for program performance, the effect
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of bypassing them is more perceivable on the cache energy consumption.

Some applications were not affected by the mechanism for different reasons. On

cactuBSSN for example, the HBPB decided to make regular accesses for practically all

the instructions. On wrf, omnetpp and fotonik3d there were simply not enough L1 misses

for HBPB to act on. Meanwhile, mcf has more than 16 L1 misses by 100 instructions, and

HBPB-RF can leverage this behavior to bypass many accesses and improve efficiency.
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Figure 6.4 – Frequency of each type of access for the SPEC 2017 benchmarks with HBPB-RF.

Since bypassing the caches affects the L1 miss pattern, which is the information

used by HBPB to perform on, it is expected that HBPB-R and the versions that bypass

the fills, HBPB-F and HBPB-RF, make slightly different decisions. The plot in Figure

6.5 shows the decisions made by HBPB-R. The most significant difference to be noted is

the fact that across multiple applications, the ratio of accesses that are bypassed is bigger.

Most notably, nearly all the requests from gcc and fotonik3d are bypassed on this version

of the mechanism, which explains the greatest speed-ups achieved by HBPB-R for these

applications. Other applications, such as lbm and roms, which also have a bigger speed-up

with HBPB-R than with HBPB-RF, have a significant increase in bypassed loads with the

first as well.
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Figure 6.5 – Frequency of each type of access for the SPEC 2017 benchmarks with HBPB-R.

6.2 Static Reuse Distance Analysis

We performed an analysis of the memory access traces of the applications to better

understand why HBPB was able to improve performance in some programs but not in

others. ChampSim was modified to provide an output of all the memory accesses, with

their instruction PC and the memory address of the data.

With this data, we calculated the reuse distance - the amount of memory accesses

to unique addresses between two references to the same address - for each access and

grouped them by instruction. We group the reuse distances into five buckets:

• MSHR: When the reuse distance is between 0 and 2. We assume that requests to

the same address that are close to each other are merged in the buffers;

• L1: When the reuse distance is greater than the MSHR but smaller than the size of

the L2 cache;

• L2: When the reuse distance is greater than the L1 cache but smaller than the size

of the L3 cache;

• L3: When the reuse distance is smaller than the capacity of the caches but greater

than the capacity of the L2 cache;

• Miss: When the reuse distance is greater than the capacity of the caches.

We calculated both the forward distance - the number of unique addresses refer-

enced between a given reference and the next reference to the same address - and the

backward distance - the number of unique addresses accessed between a given reference
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and the last reference to this address. For example, if the backward distance for an access

is inside the L3 bucket, we expect this reference to result in an L3 hit. If the forward

distance for this access is into the Miss bucket, we expect that the next reference to this

address will be a cache miss or that it is never going to be accessed again.

From the line in the middle, we plot the reuse distances for each of the 135 most

frequently occurring instructions of each application, spread across the x-axis ordered by

frequency. The bars are colored regarding the frequency of each reuse distance bucket.

The forward reuse distances are stacked above the line, while the backward distances are

stacked below the line.

We combine this data with the simulation results obtained when running the ap-

plications with HBPB-RF. The instructions that have been bypassed are annotated with a

color code representing the ratio of bypasses performed for the instruction. Green lines

indicate that the instruction was bypassed more than 90% of the time, yellow means the

instruction was bypassed between 50% and 90% of the time, while red lines indicate that

the memory accesses from the instruction were bypassed between 10% and 50% of the

time. Store instructions have the colored shape above the bars, while loads are annotated

at the bottom.

In this section, we show the results for all the applications from SPEC CPU 2017

that were tested. The ideal application for HBPB has many misses and instructions that

are clearly offending in a manner that they are responsible for bringing dead data into the

cache or always causing misses when accessing the memory.

6.2.1 cactuBSSN

Figure 6.6 shows the reuse distances of the most frequently occurring memory

accessing instructions on the cactuBSSN benchmark. Due to the sheer amount of different

instructions in this application alone, HBPB can not profile each instruction correctly. In

fact, there are over 400 instructions that perform the highest number of memory accesses,

and thousands of other instructions that also perform a very high number of accesses. As

shown in the previous section, HBPB does not perform bypasses for cactuBSSN.
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Figure 6.6 – Frequency of reuse distances for the 135 most frequently occurring instructions for
cactuBSSN.

6.2.2 fotonik3d

The distribution of memory accesses between the instructions is similar on fo-

tonik3d, as shown in Figure 6.7. The accesses are however more concentrated on fewer

instructions, which allows HBPB to bypass some of the accesses. The reuse distances for

the most frequent instructions is either too long or too short, so HBPB can bypass most

of these instructions, exclusively loads. It suffers from the same problem as cactuBSSN

of having hundreds of instructions that access the memory.
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Figure 6.7 – Frequency of reuse distances for the 135 most frequently occurring instructions for
fotonik3d.

6.2.3 gcc

On gcc, the case is exactly the opposite. A single load instruction is responsible

for the majority of the accesses while the rest is almost all concentrated in the second most

frequent instruction, as depicted in Figure 6.8. The reuse distances from these instructions

fall in either too long or very short for the most part. HBPB-RF bypasses 30% of the
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accesses from the main instruction, but HBPB-R bypasses it every time.
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Figure 6.8 – Frequency of reuse distances for the 135 most frequently occurring instructions for
gcc.

6.2.4 lbm

The distribuition of reuse distances per instruction for lbm is extremely suitable to

HBPB. As shown in Figure 6.9, the most frequent load instruction performs more than

double the accesses of the other loads, and the backwards reuse distance of the addresses

it accesses is always in the Miss bucket. This allows HBPB to bypass the accesses for this

instruction that always cause a cache miss, reducing the access latency. HBPB bypasses

this instruction 50% of the time. Among the remaining instructions, most are stores that

show reuse. HBPB bypasses some of them. After the stores, there are loads, of which a

good parcel of them also display reuse distances that suit bypassing, and HBPB correctly

detects and bypasses their accesses.
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Figure 6.9 – Frequency of reuse distances for the 135 most frequently occurring instructions for
lbm.
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6.2.5 mcf

The distribution of the reuse distances of mcf, as shown in Figure 6.10 high-

lights the potencial of this application to benefit from reduced cache pollution. The three

most frequent instructions from mcf are responsible for the majority of the memory ac-

cesses, with the fourth and fifth most frequent instructions also heavily access the memory.

The most frequent instruction is heavily cache-unfriendly, and HBPB correctly bypasses

nearly all the accesses from this instruction. The second and third instructions are deeply

cache-friendly, and HBPB does not bypass their accesses, while the fourth and fifth most

frequent instructions are also almost always bypassed. All of them are loads, which makes

their bypassing more contributing to the final performance.
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Figure 6.10 – Frequency of reuse distances for the 135 most frequently occurring instructions for
mcf.

The bypassed instructions that would otherwise pollute the cache with their data

no longer do it. This leaves more space in the caches for the also very frequent cache-

friendly instructions. That is the reason for the performance being improved mainly by

HBPB-F on this application. HBPB-F can display all its potential in mcf, where it speeds

up the application by avoiding cache pollution, saves energy by not filling unnecessary

data into the cache, and avoids fills by not evicting data that has reuse for data that does

not.

6.2.6 omnetpp

On omnetpp, for which the reused distances are shown in Figure 6.11, the most

frequently occurring memory accessing instructions display short reuse distances that fre-

quently fall into the L1, L2 and L3 range. There are no clearly non-temporal instructions.
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Only a very small amount of the least frequent instructions are bypassed.
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Figure 6.11 – Frequency of reuse distances for the 135 most frequently occurring instructions for
omnetpp.

6.2.7 roms

Similarly to fotonik3d, the accesses from roms are well distributed among the in-

structions, as shown in Figure 6.12. A good parcel of the instructions are bypassed even-

tually, but none stand out as a clear offender that must be bypassed all the time.
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Figure 6.12 – Frequency of reuse distances for the 135 most frequently occurring instructions for
roms.

6.2.8 wrf

The memory accesses of wrf are distributed among many instructions, with a few

being more frequent than the rest, as seen in Figure 6.13. Nearly all of the instructions,

however, have very short reuse distances, so they are better served by the L1 cache. As

demonstrated previously on this section, only a small amount of the accesses actually

miss on the L1 cache and need intervention from HBPB.
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Figure 6.13 – Frequency of reuse distances for the 135 most frequently occurring instructions for
wrf.

6.2.9 xalancbmk

On xalancbmk, the majority of the accesses is distributed among few instructions,

of which a significant portion exhibits long reuse distances, as shown in Figure 6.14.

These instructions, however, also show some sort of reuse inside the L2 and L3 ranges,

making caching them sometimes useful. HBPB then bypasses the accesses from these

instructions the majority of the time, but not always. If in a specific program phase these

instructions show cache-friendliness, they are not bypassed.
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Figure 6.14 – Frequency of reuse distances for the 135 most frequently occurring instructions for
xalancbmk.

This analysis allows us to understand more deeply how HBPB works, and proves

how the instruction reuse pattern is consistent for each instruction. Specially on mcf, it is

clear how having predominantely offending instructions coexisting with predominantely

cache-friendly instructions allows HBPB-RF to show its strength at its fullest.
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6.3 Sensibility to Memory Configuration

Different hardware configurations change the cache behavior and can impact the

effects of HBPB. We tested HBPB with a different cache size and replacement policies

and introduced hardware data prefetchers to study their impact on the mechanism.

6.3.1 Bigger Cache Capacity

With a higher cache capacity, bypassing can become less attractive since the caches

have a higher probability of serving the data and being useful. As shown in Figure 6.15,

HBPB is less effective if the L3 capacity is bigger. On xalancbmk, the mechanism has

no effect with an 8 MB LLC, which is expected since this application’s working set fits

almost entirely into the L3. Still, HBPB-RF improved ED2P even with bigger LLC ca-

pacities.
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Figure 6.15 – Effect of HBPB on the cycles for the SPEC CPU 2017 benchmarks with different
cache capacities.

Figure 6.16 shows the types of accesses and the decisions from HBPB-RF on an

8MB LLC. As expected, all the accesses from xalancbmk are cached normally in this

version.

Naturally, if the latency of the caches were compensated for their increased size,

the speed-up from bypassing would be magnified, as would the energy consumption re-

duction if the energy per access was increased accordingly. In this case, the decrease in

ED2P from HBPB-RF would be even more significant.
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Figure 6.16 – Frequency of each type of access for the SPEC 2017 benchmarks with HBPB-RF
with an 8MB LLC.

6.3.2 Prefetcher

Data prefetching is a very useful technique employed to reduce the memory ac-

cess latencies. By anticipating what data the processor may need in the near future, the

prefetchers can bring this data closer to the processor, into a higher level cache, for ex-

ample. If a prefetch is not usefull, however, it incurs an unnecessary cache fill, eviction,

and potentially the need to re-fetch the data that was evicted, resulting in reduced energy

efficiency and performance.

Hardware data prefetchers completely change the pattern of requests between the

levels of the memory hierarchy, including the L1 misses, and it is deemed necessary to

investigate how prefetching impacts the effects of HBPB. For the cache prefetchers, we

utilized a next-line prefetcher for the L1, an IP-Stride prefetcher for the L2, and a next-

line prefetcher for the LLC that operates only on regular accesses, not cache checks from

bypassed accesses. We also utilized an IP-Stride prefetcher on the NTB that operates only

on bypassed accesses.

The plot in Figure 6.17 shows the effect of the prefetchers and HBPB-RF on the

execution cycles of the applications from SPEC CPU 2017 normalized to the version

without HBPB nor prefetchers. The prefetchers, when employed on the baseline version,

always improved the performance when compared to the version without it, going as far

as reducing the total cycles by 69% on gcc. This version, apart from mcf, consistently

outperformed HBPB-RF with no prefetchers. On mcf, however, the access pattern is not a



61

stream, where the employed prefetchers can accurately work, and they end up decreasing

performance by causing more cache pollution. HBPB-RF with prefetchers performed

only slightly better than the baseline version with prefetchers.
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Figure 6.17 – Effect of HBPB on the cycles for the SPEC CPU 2017 benchmarks with
prefetchers.

The prefetchers massively increased cache energy consumption, as shown in Fig-

ure 6.18. On mcf, since almost every prefetch from the LLC was inaccurate, the energy

consumption was doubled. On average, prefetchers increased energy consumption by

31.5% on the baseline version and 26.9% when employed with HBPB-RF.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

ca
ctu

BSSN

fo
ton

ik3
d

gc
c

lbm mcf

om
ne

tpp ro
ms

wrf

xa
lan

cb
mk

mea
n

Application

C
ac

h
e 

E
n

er
gy

 N
or

m
al

iz
ed

 t
o 

B
as

el
in

e

Mechanism

Baseline + Pref
HBPB-RF
HBPB-RF + Pref

Figure 6.18 – Effect of HBPB on the cache energy for the SPEC CPU 2017 benchmarks with
prefetchers.

The effect of the prefetchers on the ED2P strongly varied across the applications,

as shown in Figure 6.19. On cactuBSSN, mcf, omnetpp, and xalancbmk, prefetchers wors-
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ened the final ED2P, while on the others they yielded improvements. When compared to

the baseline version with no HBPB nor prefetchers, the prefetchers alone reduced ED2P

by 31%, and when employed over HBPB-RF, ED2P was reduced by 34%. When compar-

ing both versions with prefetchers, HBPB reduced ED2P by 4.5%.
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Figure 6.19 – Effect of HBPB on the ED2P for the SPEC CPU 2017 benchmarks with prefetchers.

Across all the applications and metrics, the best configuration always included

HBPB-RF. Table 6.3 shows the best version among the configurations with HBPB-RF,

baseline, with and without prefetchers. Versions with results within 0.5% are consid-

ered equal. On average, HBPB overperformed the baseline configuration on all metrics,

even with hardware prefetchers available. For ED2P, HBPB improved over the baseline

configuration in 5 out of 9 applications.

Table 6.3 – Best configuration for each metric for each of the SPEC applications considering
prefetchers.

Application Best Performance Best Energy Best ED2P

cactuBSSN HBPB/Baseline + Pref HBPB/Baseline HBPB/Baseline
fotonik3d HBPB/Baseline + Pref HBPB/Baseline HBPB/Baseline + Pref
gcc HBPB/Baseline + Pref HBPB/Baseline HBPB/Baseline + Pref
lbm HBPB + Pref HBPB HBPB + Pref
mcf HBPB HBPB HBPB
omnetpp HBPB/Baseline + Pref HBPB HBPB
roms HBPB/Baseline + Pref HBPB HBPB/Baseline + Pref
wrf HBPB/Baseline + Pref HBPB HBPB + Pref
xalancbmk HBPB + Pref HBPB HBPB

mean HBPB/Baseline + Pref HBPB HBPB+Pref
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6.3.3 Cache Replacement Policies

Different cache replacement policies have been developed, aiming to keep data

that is more useful in the cache to the detriment of data that is deemed less useful. We test

HBPB on three of these policies, employed on the LLC, as well as LRU, which was used

previously. The AHT uses the same replacement policy as the LLC.

• LRU: Least Recently Used

• SHiP: Signature-based Hit Predictor (PC) [Wu et al. 2011]

• SRRIP: Static Re-Reference Interval Prediction [Jaleel et al. 2010]

• DRRIP: Dynamic Re-Reference Interval Prediction [Jaleel et al. 2010]

Figure 6.20 shows the impact of HBPB-RF on the ED2P of the applications with

the four different replacement policies. Apart from cactuBSSN, HBPB-RF always im-

proves ED2P. The performance of HBPB across the different policies did not vary signi-

ficatively. With DRRIP, SHiP, and to a lesser extent SRRIP, HBPB had a smaller impact

on xalankbmk due to the ability of these policies to keep a fraction of the working set on

the caches since the working set from xalancbmk is so small, a sizeable portion of it is

able to stay on the cache and improve the final performance, mitigating the gains from

HBPB.
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Figure 6.20 – Effect of HBPB on the ED2P for the SPEC CPU 2017 benchmarks with different
LLC replacement policies.

LRU is the replacement policy where HBPB yielded the biggest reductions in

ED2P. On average, 16.5%. With the other three policies, however, HBPB still improved
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ED2P, although on a smaller margin. On SHiP, the average reduction was 12.5%. On

SRRIP, 15%, and on DRRIP, 12.1%. Although with some variance, HBPB performed

similarly with different LLC replacement policies, still yielding considerable reductions

in ED2P.
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7 CONCLUSION

This thesis presented History-Based Preemptive Bypassing (HBPB), a novel mech-

anism for bypassing the cache for all memory accesses from instructions not known to be

cache-friendly based on the access history. HBPB learns which instructions are cache-

friendly by keeping a copy of the tag array of the caches as if there were no bypasses and

checking if the access would hit on this cache.

HBPB improves the latency of instructions that miss in the cache through the

anticipation of DRAM requests and improves overall system performance by avoiding

cache pollution. Avoiding unnecessary cache fills and Write Backs reduces energy waste

in the caches. Improving the hit ratio reduces DRAM accesses, which further enhances

energy efficiency.

Compared to a traditional cache architecture with no prefetchers, HBPB achieves

reductions in execution time of up to 37% for a linked list microbenchmark and 20.5% for

a full-fledged SPEC CPU application. The mechanism also yields energy savings of up

to 75% for the microbenchmark and 30% for a SPEC application even when accounting

for its overhead. When using ED2P as a metric, HBPB improves nearly all the highly

memory-intensive applications tested from SPEC 2017.

We performed an analysis of the reuse distance of the accesses from each instruc-

tion for every application tested to understand why HBPB had the effects observed. Ap-

plications that have a mix of strongly cache-unfriendly instructions with cache-friendly

instructions benefited the most from HBPB.

We tested HBPB when employing hardware data prefetchers, and the mechanism

was proven to be either advantageous or at least not detrimental on every application when

considering any metric. HBPB also still proved to be useful when considering different

cache replacement policies and cache capacities.

7.1 Future Work

In a future work, we intend to perform an analysis of the effects of HBPB on a

multicore architecture. On such a hardware, HBPB should have its capabilities magnified

due to the increased pressure on the memory subsystem and competition for the caches.

Eventually, the mechanism would have to be tweaked to perform better on this condi-

tion. HBPB has the potential to mitigate cache pollution from a streaming program while
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keeping the caches for cache-friendly applications.
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APPENDIX A — RESUMO EXPANDIDO

A.1 Introdução

Com a crescente tendência de aceleração dos processadores em velocidade despro-

porcional às memórias DRAM, o emprego de memórias cache se torna fundamental para

mitigar essa disparidade de desempenho que cresce a cada nova geração. As memórias

cache funcionam armazenando dados que o processador requisitou recentemente, na pre-

missa de que a tendência é que tal dado tenha maiores chances de ser requisitado nova-

mente em um futuro próximo. Se isso ocorrer, a cache consegue fornecer o dado para o

processador, reduzindo drasticamente a latência do acesso.

Entretanto, nem todo acesso à memória deve ser salvo na cache. Dados que não

terão reuso em um futuro próximo, ao serem salvos nas caches, provocam apenas um

gasto energético desnecessário, além de uma latência extra para verificar a presença dos

dados nas caches e preenchê-la. Além disso, ao serem salvos nas caches, esses dados

podem substituir dados que têm de fato potencial de reuso, forçando o processador a

buscar novamente esses dados da memória principal, mais lenta e gastando novamente a

energia para escrita nas caches.

Esta dissertação tem como objetivo propor um mecanismo chamado HBPB, que

faz preemptivamente o bypass das caches, isto é, faz o acesso à memória principal sem uti-

lização das caches, para todas as instruções que não são conhecidas por serem amigáveis

à cache. O mecanismo mantém uma estrutura que armazena os últimos endereços aces-

sados e qual instrução foi responsável por efetuar aquele acesso. Com isso, consegue

aprender rapidamente se alguma instrução acessa dados que possuem reuso, deixando as

caches para elas. Para uma benchmark de lista encadeada, o HBPB conquista reduções

em Energy-Delay-Squared Product (ED2P) de até 74% para uma lista encadeada, e 53%

para um benchmark do SPEC 2017.

A.2 HBPB

Nessa dissertação, introduzimos o History-Based Preemptive Bypassing (HBPB),

um mecanismo que possui o intuito de contornar as caches para todos os acessos de in-
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struções que não são sabidamente amigáveis à cache. Para funcionar, o HBPB precisa de

três estruturas: A Access History Table (AHT), o Non-Temporal Buffer (NTB) e a CIT

(Classified Instructions Table). A AHT funciona como uma segunda cache LLC, porém

em vez de armazenar uma linha de cache de 64 Bytes, armazena uma hash de 2 Bytes de

um Contador de Programa que identifica uma instrução. O overhead total da estrutura é

equivalente a 11.4% do tamanho da LLC para uma LLC de 1 MB. O NTB é o respon-

sável por armazenar os dados dos acessos para os quais foi feito bypass. Ele age como

uma cache paralela à própria cache principal. Seu tamanho é o equivalente a L1 normal

do processador. Já a CIT é responsável por armazenar as instruções já classificadas pelo

mecanismo, com um contador indicando se tal instrução acessa dados com reuso ou não.

O HBPB trabalha com os acessos entre a L1 e a L2. Ao ocorrer um novo miss na

L1, o HBPB é questionado se o acesso deve ser feito de forma regular ou com bypass. O

mecanismo decide o que fazer baseado no contador relativo à instrução que fez o acesso

na CIT. O mecanismo usa esse acesso para treinar a CIT. Se o endereço acessado está pre-

sente na AHT, significa que houve reuso daquele endereço em um intervalo que caberia

na cache, portanto esse acesso é amigável à cache. Tanto a instrução que trouxe original-

mente o dado quanto a que está fazendo o acesso atual têm seu contador incrementado

na CIT. Se o endereço não está presente na AHT, é inserido, e uma entrada da tabela é

removida, assim como na LLC. A instrução que trouxe o dado removido é treinada na

CIT como não temporal. A Figura A.1 apresenta um fluxograma do funcionamento do

mecanismo.

Não

Sim

Endereço na
AHT? 

Treina PCs como
AmigáveisInsere

endereço/PC na
AHT

Novo Miss L1d

Treina PC
removido como
não amigável 

Remove entrada
antiga da AHT

Não faz Bypass

Não

Sim

PC é amigável 
à cache?

Faz Bypass

Não

Sim

PC zerado na  
CIT?

Figure A.1 – Fluxograma de decisão do HBPB.

Quando é feito o bypass para um acesso, a requisição é enviada ao NTB, que pode

devolver o dado ao processador ou buscá-lo da memória principal. Se for confirmado que

de fato o dado não estava presente nas caches, o dado buscado da memória é enviado ao

processador, sem inseri-lo nas caches.
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A.3 Resultados

O HBPB foi implementado em um simulador, e testado sob várias circunstân-

cias com diferentes aplicações e configurações de cache. O overhead do mecanismo foi

compensado com uma redução na LLC quando empregado o HBPB. Ao testá-lo em mi-

crobenchmarks controlados, o mecanismo comportou-se como esperado, obtendo até 74%

de redução do ED2P para uma lista encadeada, e 53% para a aplicação mcf do SPEC CPU

2017.

A Figura A.2 apresenta o efeito do HBPB no ED2P das aplicações do SPEC 2017.

Foi testado também duas versões adicionais do mecanismo: HBPB-R, que efetua apenas

o bypass das requisições, e HBPB-F, que efetua bypass apenas das escritas nas caches.

A versão completa é chamada de HBPB-RF. Em média, o ED2P foi reduzido em 16.6%

para essas aplicações com HBPB-RF. Para nenhuma das aplicações houve piora no ED2P,

enquanto para 6 das 9 aplicações testadas houve melhora superior a 5%.
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Figure A.2 – Efeito do HBPB no ED2P das aplicações do SPEC CPU 2017 benchmarks.

A.4 Conclusão

Nesta dissertação foram apresentados os benefícios de não utilizar as memórias

cache para determinados acessos à memória, como a economia de energia e ciclos de

execução. Foi proposto um mecanismo de hardware, HBPB, que decide quando fazer

bypass da cache ou não, baseado no histórico dos acessos da instrução.

O mecanismo obteve bons resultados tanto para consumo energético quanto para
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desempenho. Considerando-se a métrica ED2P, o mecanismo obteve reduções de até 53%

para uma aplicação do SPEC 2017, conseguindo melhorias significativas para dois terços

das aplicações testadas.
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APPENDIX B — EXTRA RESULTS

B.1 Microbenchmarks
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Figure B.1 – Frequency of reuse distances for the 50 most frequently occurring instructions for
Pattern Matching.
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Figure B.2 – Frequency of reuse distances for the 50 most frequently occurring instructions for
Deriche.
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Figure B.3 – Frequency of reuse distances for the 50 most frequently occurring instructions for
Floyd-Warshall.
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Figure B.4 – Frequency of reuse distances for the 50 most frequently occurring instructions for
Jacobi 1D.

1.2E7

Instruction

A
cc

es
se

s 
p

er
 R

eu
se

 D
is

ta
n

ce

MSHR L1 L2 L3 MISS

Figure B.5 – Frequency of reuse distances for the 50 most frequently occurring instructions for
Jacobi 2D.
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B.2 GAP

Table B.1 – Working set size from the GAP benchmarks used.

Application Working Set

bc 146 MB
bfs 49 MB
cc 132 MB
pr 136 MB
sssp 195 MB
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Figure B.6 – Frequency of reuse distances for the 50 most frequently occurring instructions for
bc.
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Figure B.7 – Frequency of reuse distances for the 50 most frequently occurring instructions for
bfs.
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Figure B.8 – Frequency of reuse distances for the 50 most frequently occurring instructions for
cc.
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Figure B.9 – Frequency of reuse distances for the 50 most frequently occurring instructions for
pr.
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Figure B.10 – Frequency of reuse distances for the 50 most frequently occurring instructions for
sssp.
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Figure B.11 – Effect of HBPB on the cycles for the GAP benchmarks.
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Figure B.12 – Effect of HBPB on the cache energy for the GAP benchmarks.
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Figure B.13 – Effect of HBPB on the ED2P for the GAP benchmarks.
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Figure B.14 – Frequency of each type of access for the GAP benchmarks with HBPB.
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