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“The optimal solution of a model is not an optimal solution of a problem

unless the model is a perfect representation of the problem,

which it never is.”

— THE FUTURE OF OPERATIONAL RESEARCH IS PAST, RUSSELL L. ACKOFF, 1979
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ABSTRACT

This thesis advances the state of the art in Mixed-Integer Linear Programming (MILP)

formulations for Guillotine 2D Cutting Problems by (i) proposing a (re-)formulation that

improves on a state-of-the-art formulation by cutting down its size and symmetries; (ii)

adapting a previously-known reduction in a novel way for the preprocessing phase of

the mentioned formulations; (iii) providing extensive experiments comparing the state of

the art and the proposed formulation over many literature datasets; (iv) proposing a hy-

bridised variant of the mentioned formulations which improves the performance for some

hard instances; (v) proposing and validating a rotation-only symmetry-breaking strategy

for the mentioned formulations. This thesis focuses on the Guillotine 2D Knapsack Prob-

lem with orthogonal and unrestricted cuts, constrained demand, unlimited stages, and no

rotation. However, the formulation may be adapted to many related problems including

the Guillotine 2D Multiple Knapsack Problem, the Guillotine 2D Cutting Stock Problem,

and the Guilltone 2D Orthogonal Packing Problem, all three of which are approached and

experimented upon in this thesis. The code is available.

Concerning the set of 59 instances used to benchmark the the state-of-the-art formulation

in which the author took inspiration, and summing the statistics for all models generated,

the proposed formulation has only a small fraction of the variables and constraints of the

original model (respectively, 3.07% and 8.35%). The enhanced formulation also takes

about 4 hours to solve all instances while the original formulation takes 12 hours to solve

53 of them (the other 6 runs hit a three-hour time limit each). In a recently proposed set of

80 harder instances, the enhanced formulation (with and without the pricing framework)

found: 22 optimal solutions for the unrestricted problem (5 already known, 17 new); 22

optimal solutions for the restricted problem (all new for the problem and none is the same

as the optimal unrestricted solution); better lower bounds for 25 instances; better upper

bounds for 58 instances. Concerning other formulations for the problem in the literature,

the proposed formulation has shorter run times, and it proves the optimality for more in-

stances. The proposed formulation only fails to deliver good solutions in the datasets that

no formulation was able to solve any instance. In such datasets, other formulations did

deliver good primal solutions even if they could not solve any instance.

Keywords: Combinatorial optimization. 2D knapsack. Guillotine cuts. Mathematical

formulation.



O estado da arte em formulações de PLI para a mochila guilhotinada 2D e

problemas relacionados

RESUMO

Essa tese avança o estado da arte em formulações de Programação Linear Inteira (PLI)

para Problemas de Corte Guilhotinado 2D pela (i) propondo uma (re-)formulação que

melhora uma formulação do estado da arte por meio da redução do seu tamanho e suas

simetrias; (ii) adaptando uma redução já conhecida de forma inovadora para a fase de pré-

processamento dessas formulações; (iii) provendo extensivos experimentos comparando

o estado da arte e a formulação proposta sobre vários conjuntos de instância da litera-

tura; (iv) propondo uma variante hibridizada das formulações mencionadas que melhora

a performance para algumas instâncias difíceis; (v) propondo e validando uma estratégia

de quebra de simetrias para as formulações mencionadas. O nosso foco é o Problema da

Mochila 2D Guilhotinado com cortes ortogonais e irrestritos, demanda limitada, estágios

ilimitados, e sem rotação – entretanto, a formulação pode ser adaptada para vários proble-

mas relacionados incluindo o problema da mochila múltipla 2D guilhotinada, o problema

do corte de estoque 2D guilhotinado, e o problema de empacotamento ortogonal 2D gui-

lhotinado, todos os três são abordados e alvo de experimentos nessa tese. O código está

disponível.

Considerando as 59 instâncias usadas nos experimentos da formulação em que o autor

se inspirou, e somando os valores para todos os modelos gerados, a formulação proposta

tem apenas uma pequena fração das variáveis e restrições do modelo original (respec-

tivamente, 3.07% e 8.35%). A formulação melhorada soluciona todas as 59 instâncias

em cerca de 4 horas enquanto a formulação original soluciona 53 em 12 horas (as outras

6 instâncias não são solucionadas dentro do limite de 3 horas por instância). Em um

conjunto de 80 instâncias difíceis recentemente proposto, a formulação melhorada (com e

sem a estrutura de precificação) encontrou: 22 soluções ótimas para o problema com cor-

tes irrestritos (5 já conhecidas, 17 novas); 22 soluções ótimas para o problema com cortes

restritos (todas novas para o problema e nenhuma é a mesma que do problema de cortes

irrestritos); melhores limitantes inferiores para 25 instâncias; melhores limitantes superi-

ores para 58 instâncias. Considerando outras formulações para o problema na literatura, a

formulação proposta apresenta tempos de execução menores, e prova a otimalidade para

mais instâncias. Somente nos conjuntos de instâncias em que nenhuma formulação solu-



cionou instância alguma é que a formulação proposta falhou em encontrar boas soluções

primais enquanto outras formulações obtiveram êxito. A formulação proposta somente

falhou em obter soluções de boa qualidade nos conjuntos de instâncias em que nenhuma

formulação conseguiu solucionar instância alguma. Nesses conjuntos de dados, outras

formulações obtiveram boas soluções primais mesmo não sendo capazes de solucionar

instância alguma.

Palavras-chave: Otimização combinatorial. Mochila 2D. Cortes guilhotinados. Formu-

lação matemática.
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1 INTRODUCTION

The problem this work centres around is the Guillotine 2D Knapsack Problem

with orthogonal (and unrestricted) cuts, constrained demand, unlimited stages, and no ro-

tation. The author will refer to this specific variant as G2KP, and fully describe it in the

next section. The G2KP is a strongly NP-hard problem (KORF, 2003; DOLATABADI;

LODI; MONACI, 2012); more details in Section 7.2. This work also examines a spe-

cific kind of restricted cuts, three distinct problems closely related to the G2KP, and the

variant that allows piece rotation (in all the studied problems); Other problems and vari-

ants may be mentioned to contextualize this work but are not experimented upon. The

work focuses on obtaining optimal solutions through Mixed-Integer Linear Program-

ming (MILP).

The three distinct problems mentioned above are the Multiple Knapsack Problem

(MKP), the Orthogonal Packing Problem (OPP), and the Cutting Stock Problem (CSP).

The Bin Packing Problem (BPP) is also covered, but the author treats it as a special case

of the CSP and distinguishes between the two only when their difference (i.e., piece type

diversity) becomes relevant. The next section explains the G2KP, its variants, and the

basics of the chosen mathematical notation. The other three problems share most of the

variants and the notation but are discussed in a separate chapter (Chapter 7).

1.1 Explanation of the G2KP and its variants

An instance of the G2KP consists of: a rectangle of length L and width W (here-

after called original plate); a set of rectangles J̄ (also referred to as pieces) where each

rectangle i ∈ J̄ has a length li, a width wi, a profit pi, and a demand ui. This work

assumes, without loss of generality, that all such values are positive integers.

The G2KP seeks to maximise the profit of the pieces obtained by cutting the orig-

inal plate. The guillotine qualifier means every cut always goes from one side of a plate

to the other; a cut never stops or starts from the middle of a plate. The original plate is

cut into intermediary plates j ∈ J , J ⊇ J̄ , which are further cut following the same rule.

If a plate is not cut further, then it may either be: thrown away as trim/waste for

no profit; or, if it has the same size as a piece, sold by the piece profit value. Orthogonal

cuts are always parallel to one side of a plate (and perpendicular to the other). In conjunc-

tion with only using guillotine cuts, this means that any intermediary plate j is always
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a rectangle, and has a well-defined lj and wj . Unrestricted cuts mean the machine is

allowed to make horizontal (vertical) cuts different from the length (width) of a piece.

In contrast, restricted cuts mean horizontal (vertical) cuts can only happen at positions

that match a piece length (width), it may also mean that, in addition to this, a piece with

matching length (width) must be extracted from the first child plate of a restricted cut. In

this paper, restricted means only that the position of the cuts is restricted (not that the cut

force a posterior piece extraction); the author creates and employ the term position-only

restricted to keep the reader aware of what is meant. Solving the position-only restricted

problem exactly is a costly but high-quality primal heuristic for the G2KP.

Constrained demand means at most ui copies of piece i can be sold, i.e., converted

into profit. The G2KP with unconstrained demand is not strongly NP-hard, it is weakly

NP-Hard; exact algorithms of pseudo-polynomial time complexity exist (BEASLEY,

1985a). Consequently, if ui ≥ βi : ∀i ∈ J̄ , where βi is an upper bound on the number of

copies of piece i that can be produced from the original plate, then the instance is prob-

ably better solved as an instance of the unconstrained G2KP instead. The author avoids

this kind of instance in the experiments. The modifier unlimited stages means there is

no limit to the number of times the guillotine switches between horizontal and vertical

orientations. In the exact k-staged G2KP, the guillotine is switched at most k − 1 times.

Consequently, in a solution of the two-staged G2KP, all cuts in some orientation (and,

consequently, parallel to each other) are done before any cuts in the other orientation are

done (over the remains of the previous stage). The non-exact k-staged G2KP adds one

extra stage in which the only cuts allowed are the ones that trim plates to the size of pieces

(i.e., one of the children of this last cut must be waste). The no-rotation qualifier means

the plates never are rotated as to switch their length and width during the cutting process;

especially, a plate j cannot be sold as a piece of length wj and width lj .

If the text further qualifies the G2KP, it only means to discard the qualifiers above

that directly conflict with the extra qualifiers, if any. For example, suppose the text refers

to the unconstrained G2KP. In that case, it means only to discard the constrained qualifier

but keep the remaining qualifiers, i.e., no rotation, unlimited stages, as well as guillotined,

orthogonal, and unrestricted cuts. Figure 1.1 may help understand some of the discussed

characteristics.

The literature further distinguishes between weigthed and unweighted problem

variants. In the weighted variant, pieces have an arbitrary profit value, while in the un-

weighted variant, the profit value is always equivalent to the piece area. Consequently,
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Figure 1.1 – Examples of valid patterns for most of the discussed problem variants.

Non-Guillotine Guillotined Non-Orthogonal Orthogonal

Unrestricted cuts Restricted cuts Unlimited stages Inexact 3-staged
In Non-Orthogonal, Unrestricted cuts, and Restricted cuts, the dashed line indicate the
first cut of the pattern. The pattern using only restricted cuts packs one less piece because
no matter which restricted cut is done first, it is impossible to obtain the same six pieces
obtained by the pattern with unrestricted cuts. The initial unrestricted cut is essential to
obtain the six-piece pattern. In Inexact 3-staged, the dashed lines indicate the last cut of
each stage. Consider this last diagram. The bottom three horizontal cuts are done in the
first stage. In the second stage, two pieces from the first stage are trimmed by a vertical
cut and the three leftmost vertical cuts are done. In the third stage, two of the three pieces
of the second stage are trimmed with horizontal cuts and the two rightmost horizontal
cuts are done. The fact the variant is inexact only matters for the topmost piece among
the two pieces cut in the third stage; the vertical cut that trims that piece must be done
after the third stage and therefore happens at the trim-only fourth stage only allowed in a
three-staged variant if it is inexact. Souce: the author.

the unweighted variant is equivalent to minimising waste and is a particular case of the

weighted variant. Any algorithm that solves the weighted variant (as is the case in this

thesis) can solve the unweighted variant by setting the piece profit values to their areas.

1.2 Motivation

Guillotine cutting problems are of interest of the industry, especially the wood (YANASSE;

MORABITO, 2008; MORABITO; BELLUZZO, 2007) and glass cutting industries (CLAU-

TIAUX et al., 2019; PARREÑO; ALONSO; ALVAREZ-VALDES, 2020), often because

of machinery limitations. There is a vast and growing literature on the subject as evi-

denced by Iori et al. (2020) and by Russo et al. (2020). The cutting optimization problem

proposed in the ROADEF/EURO Challenge 2018 was a guillotine cutting problem. The

challenge was developed in collaboration with Saint-Gobain Glass France (a reference on
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flat glass manufacture). See Parreño, Alonso and Alvarez-Valdes (2020) for more details

on this challenge.

This work focuses on MILP as the solving method (instead of ad hoc solutions)

because its adaptability amplifies the value of any enhancements discovered. A better

MILP formulation means: a better solving procedure for the many (already mentioned)

closely related problem variants; a better continuous relaxation for computing an opti-

mistic guess on the objective value of all these variants (some ad hoc algorithms of the

literature use MILP solvers to compute their bounds); not only a better exact method but

also a better base for heuristics or anytime procedures; an immediate benefit from par-

allelisation, automatic problem decomposition, and solver-implemented heuristics; and,

finally, better ageing of the method over the years through the current trends of multiple-

cores processors and ever-advancing solver performance.

1.3 Contributions and thesis outline

The contributions of this thesis include:

• an enhanced MILP formulation based on a previous state-of-the-art formulation, its

proof of correctness, and empirical evidence of its better performance;

• a novel way to employ a previously known property (plate-size normalisation) for

both the original and the enhanced formulations, and empirical evidence of its pos-

itive impact on their performance;

• new upper and lower bounds, as well as optimal values, for many recently proposed

hard instances from Velasco and Uchoa (2019);

• a direct comparison with recent formulations of the literature highlighting the weak

and strong points of each;

• the adaptation of the proposed formulation for three related problems (G2MKP,

G2OPP, and G2CSP) and empirical results over literature datasets to serve as base

for future comparisons between formulations;

• an hybridisation of the proposed formulation (with the formulation from Silva,

Alvelos and Carvalho (2010)) that has moderate success in further reducing the run

time for instances in which most time is spent at the B&B phase (by disallowing

some symmetries).
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For such, the author reimplemented a state-of-the-art MILP formulation and an optional

pricing procedure used by it.

The rest of the thesis is organised in the following way. Chapter 2 contextualises

the topic of the thesis in the broader literature and lists the prior work on it. Chapter 3

introduces the necessary mathematical concepts as well as the formulation used as the

basis for the proposed formulation, the proposed formulation itself, and adaptations for

the variant allowing rotation. Chapter 4 experimentally examine the difference in model

size and overall performance between the reimplementation of the base formulation, the

original data on it, and the proposed (re-)formulation. Chapter 5 experimentally examine

the performance of the proposed formulation against other recent formulations of the

literature for the G2KP. Chapter 7 explains how to adapt the proposed formulation to

three related problems and empirically test the adaptations over literature datasets; it also

reports a generation mistake found in the T dataset. Chapter 6 presents an adaptation of

the proposed formulation that hybridises it with a prior formulation for a more restricted

problem without losing the optimality for the general case; experiments are included.

Chapter 8 delivers the conclusions based on the experiments presented in the previous

chapters. Appendix A provides a detailed description of each instance dataset employed

in this thesis.
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2 RELATED WORK

The literature on 2D cutting and packing, in general, is vast, as pointed out by

Iori et al. (2020), which catalogues exact methods and relaxations of problems from this

field. Even if the scope is further restricted to exact methods for the G2KP, the author

could write a forty-page survey on it, as it was done by Russo et al. (2020). Consequently,

the author strongly suggests both surveys mentioned above for any reader interested in a

broader understanding of the literature.

The review presented here is divided into two parts. The first part contextualises

the reader by contraposing aspects of the thesis topic to other aspects found in the broader

cutting and packing literature. The second part focus on the brief history of our main

topic (i.e., MILP formulations for the G2KP).

2.1 Broader literature contextualisation

This section presents a list of aspects not shared by the thesis topic. For each

item, the literature concerning that aspect is briefly summarised. If adequate, the item

also contrasts the aspect with its opposite present in the main topic.

2.1.1 Non-Guillotined problems

Both the G2KP and the 2KP are strongly NP-hard (IORI et al., 2020), and none is a

generalisation of the other. Therefore, theoretically, no problem is overall more challeng-

ing than the other. In terms of modelling, however, the 2KP has the additional challenge

that, once the first piece is cut, the remaining space is nonconvex (FEKETE; SCHEPERS,

1997). The G2KP has a better subproblem structure in this regard. In the G2KP, once

a cut is defined, there are two convex spaces, and the problem may be seen as multi-

ple heterogeneous G2KPs1. However, this nicer structure cannot be fully exploited if a

2KP solving method is adapted to support guillotine cuts. In Nascimento, Queiroz and

Junqueira (2019), for example, the solving method has a harder time solving the G2KP

because it is a method for the 2KP with the overhead of identifying guillotine cuts over it.

1In fact, in the Section 7.3.1 it will be shown that adapting the proposed formulation to the Multiple
Knapsack Problem (homogeneous variant) is very straightforward because of this property.
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2.1.2 Unconstrained problems

The unconstrained G2KP was introduced by Gilmore and Gomory (1965), some

mistakes of this first work were posteriorly corrected by Herz (1972)2 and by Beasley

(1985a)3. Differently from the constrained variant, which is strongly NP-Hard, the uncon-

strained variant is weakly NP-Hard (it generalises the 1D Unbounded Knapsack Problem).

Consequently, exact solving methods in pseudo-polynomial time are possible, especially

through Dynamic Programming (DP). The lack of the combinatorial explosion caused by

keeping track of the residual demand is what makes DP the most popular approach for

the unconstrained variant and mostly unused for the constrained variant. Such is the gap

in difficulty between both variants that the state-of-the-art heuristic for the constrained

variant solves the unconstrained variant repeatedly (VELASCO; UCHOA, 2019). The

state-of-the-art method for the unconstrained problem appears to be Russo, Sforza and

Sterle (2014), which is a DP method; they regarded the B&B algorithm of Kang and

Yoon (2011) as the previous state of the art.

2.1.3 Heuristic methods

As it is common for classic (strongly) NP-Hard problems, the literature on heuris-

tic methods is colossal. For example, Ortmann and Vuuren (2010) compares across 252

heuristics for the 2D Strip Packing Problem (guillotine and non-guillotine variants). For

the thesis main problem, the G2KP, the author believes the best heuristic method is the

one proposed by Velasco and Uchoa (2019). The method is inspired by the dynamic

programming state-space relaxation of Christofides and Hadjiconstantinou (1995), which

also inspired the earlier state-of-the-art heuristic that is Morabito and Pureza (2010). The

procedures described by Velasco and Uchoa (2019) give both lower and upper bounds.

These methods were run over 500 instances of the literature for both rotation and no-

rotation variants; they obtained either optimal or better bounds in all cases. The bounds

2Herz (1972) points out a mistake in an improved algorithm presented in Gilmore and Gomory (1965).
The improved algorithm reduces computational effort by skipping some horizontal and vertical cuts based
on four criteria that should not impact the guarantee of optimality. A counterexample shows that this is
not the case as the only optimal solution of the counterexample is unatainable when the four criteria are
followed.

3Beasley (1985a) points out a mistake in the k-staged recursion presented in Gilmore and Gomory
(1965). In their recursion, the cut orientation of the first stage (either horizontal or vertical) changes de-
pending on the current stage, e.g., the third stage assumes the first stage had vertical cuts, but the fourth
stage assumes the first stage had horizontal cuts instead.
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proved the optimality of 348 instances for the no-rotation variant and 385 for the rotation

variant; some instances were open. Velasco and Uchoa (2019) then proposes 80 more

challenging instances (which are included in this thesis experiments) and proves the opti-

mality of many of them.

2.1.4 Approximative methods

For the G2KP, with and without rotation or weights, Abed et al. (2015) provide

a quasi-Polynomial Time Approximation Scheme (quasi-PTAS), assuming the input data

to be quasi-polynomially bounded integers (Adamaszek and Wiese (2014) has a similar

result for the non-guillotine variant). For the Guillotine 2D Bin Packing Problem (with-

out rotation), Bansal, Lodi and Sviridenko (2005) gives an Asymptotic PTAS (APTAS).

Christensen et al. (2017) informs us that finding a PTAS for the Non-Guillotine 2D Knap-

sack Problem (with or without rotation or weights) is an open problem and that, for the

non-guillotine variant, “Bansal et al. (2009) gave a PTAS for the special case when the

range of the profit-to-area ratio of the rectangles is bounded by a constant for both the

cases with and without rotations” and “there is no FPTAS unless P = NP , even for

packing squares into squares (LEUNG et al., 1990). "Gálvez et al. (2017) propose a

polynomial-time 1.89-approximation for the Non-Guillotine 2D Knapsack Problem4, and

a polynomial-time 3/2 + ε-approximation for the rotation case, improved to a 4/3 + ε-

approximation if all piece profits are set to one. These are the best results for the respective

variants as far as the author knows. For a survey on approximation algorithms for 2D cut-

ting, the author refers to Christensen et al. (2017) and to Iori et al. (2020) (which briefly

updates the former).

2.1.5 Restricted cuts

Considering only restricted cuts allows a simplified branching model: instead of

having to consider a pseudo-polynomial number of horizontal and vertical cuts over each

plate, only 2n possibilities need to be considered, two for each piece, the one with the

4Gálvez et al. (2017) defines the original plate as a square and the pieces as rectangles. It is possible
to employ lossless scaling of the plate and the pieces to, without changing the optimal value, transform the
original plate of any problem instance into a square. One downside is an increase in the absolute dimensions
(i.e., precision).
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horizontal cut first, and the one with the vertical cut first (both generate the respective

piece and up to two residual plates). This exact branching model is employed by Silva,

Alvelos and Carvalho (2010). For the unconstrained variant, Song et al. (2010), proves a

worst-case ratio of at least 6/7 between restricted and unrestricted optimal solutions for

the same instance. In contrast, Furini, Malaguti and Thomopulos (2016), for the con-

strained variant, puts the ratio at most 5/6. However, at least for the considered literature

datasets, most instances have restricted and unrestricted optimal solutions of the same

value. The heuristic for the unconstrained variant described by Song et al. (2010) (which

only employs restricted cuts) finds the unrestricted optimal value in “94.84%, 86.67% and

77.83% for small, medium and large sized unweighted instances” and “99.67%, 99.50%

and 97.00% for small, medium and large sized weighted instances”. Furini, Malaguti and

Thomopulos (2016) found that 47 of 50 instances, solved optimally by both restricted and

unrestricted MILP models, shared the optimal solution value.

2.1.6 Limited number of guillotine stages

Unrestricted cuts are unnecessary to obtain any optimal solution of a two-staged

variant (exact or non-exact), so the distinction between restricted and unrestricted two-

staged variants do not exist. For k-staged variants in which k ≥ 3 there is such distinction,

e.g., Puchinger and Raidl (2007) first models a formulation for the restricted three-staged

G2CSP to then extend it to the unrestricted three-staged G2CSP. For the unconstrained

variant, and a small dataset, Beasley (1985a) reported an average of about 0.4% differ-

ence between the two-staged optimal value and the unlimited stages optimal value (about

the same between two and three-staged, because three-staged is only 0.02% behind un-

limited stages). For the constrained variant, however, Martin et al. (2020a) presents an

average difference of 3.6% between two-staged and unlimited stages optimal solution

values. None of these papers poses this difference as a research question; these percent-

ages are the byproduct of data gathered to answer other questions. For the Guillotine 2D

Bin Packing Problem, there is a theoretical result stating a two-staged optimal solution

value may be at most 1.691 times worse than a solution with unlimited stages, but this is

not a tight bound (BANSAL; LODI; SVIRIDENKO, 2005).
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2.1.7 Exact but not pure MILP

Besides solving methods with no relation to MILP models, this section also in-

cludes techniques that use MILP models but interleave their use with indispensable calls

to non-MILP methods. This section concentrates on works tackling the G2KP, and it is

noted if another problem is considered instead. The exact procedures observed here often

fall into three categories: (i) branch-and-bound (or, as reported in the seminal works, tree

search); (ii) graph-based algorithms; (iii) repeated piece subset selections and packing

tentatives. The first category (i.e., B&B) may be divided into top-down and bottom-up

approaches. Top-down approaches start from the original plate and branch on cuts over it

and its subdivisions; this approach is probably the oldest one and is used in Christofides

and Whitlock (1977) and in Christofides and Hadjiconstantinou (1995). Bottom-up ap-

proaches start from the pieces and combine them into builds, and the builds with each

other, while they are smaller than the original plate. This approach has many examples:

Viswanathan and Bagchi (1993), Hifi (1997), Cung, Hifi and Cun (2000), and Yoon, Ahn

and Kang (2013). The graph-based approaches include Morabito and Arenales (1996)

and Clautiaux et al. (2018) (designed for four-staged but tested on unlimited stages, too);

many previous papers by Clautiaux use graph representations for the G2OPP.

Finally, there are methods (often aided by MILP solvers) that solve a problem to

select the most profitable subset of pieces, and then check if the subset can be guillotine-

packed. Dolatabadi, Lodi and Monaci (2012) uses this approach, as did Pisinger and

Sigurd (2007), but the latter focus on the G2CSP and the G2KP is solved just as a sub-

problem. Russo et al. (2020) consider the methods of both Dolatabadi, Lodi and Monaci

(2012) and Yoon, Ahn and Kang (2013) to be state of the art, but the same work also

points out that both methods have bounding flaws that may lead to incorrect results.

Comprehensive counterexamples for the three bounding flaws found are given in

the appendix of Russo et al. (2020). A brief overview of the roots of these three flaws

follows. The first two flaws one in the antiredundancy strategy D1 of Cung, Hifi and Cun

(2000) and another in the unnamed strategy from Dolatabadi, Lodi and Monaci (2012)

are, in essence, manifestations of the same oversight. The oversight consists of restricting

the search for an optimal solution to combinations of optimal solutions of subproblems

(which are the same as the original problem but with the original plate dimensions re-

duced). Such strategy is the basis of all dynamic programming and works flawlessly for

the unconstrained G2KP. However, in the constrained case, a suboptimal solution to a
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subproblem may be necessary to assemble the optimal solution to the original problem.

A suboptimal solution for a subproblem may be necessary because, if an optimal solution

for the subproblem were used instead, the combined solution would end up with more

copies of some piece type than allowed by the piece demand, immediately becoming an

invalid solution. Removing pieces of the combined solution until the number of copies

respects the demand does not (always) solve the problem; it is possible that the combi-

nation of two suboptimal solutions for the same subproblems would have a better value

than this partially dismantled combination of optimal solutions. The third flaw was found

in the works of G, Seong and Kang (2003), Kang and Yoon (2011), Yoon, Ahn and Kang

(2013) and consists on a rounding problem. Two formulae expressing upper bounds on

the optimal solution value (i.e., optimal profit) have each two terms rounded down before

they are summed. Russo et al. (2020) presents a counterexample in which both upper

bounds give a result one unit lower than the optimal solution value. The bounds are valid

if the rounding down only happens after the sum and not before it. The method of Yoon,

Ahn and Kang (2013) also carries the flaw from Cung, Hifi and Cun (2000), which has

affected other bottom-up methods in the literature too (see Russo et al. (2020) for a com-

plete overview). Consequently, there is no clear definition of which is the best method

currently.

2.2 MILP formulations for the G2KP

Russo et al. (2020) identify three strategies employed by previous exact methods

which cause loss of the optimality guarantee, i.e., these methods cannot be considered

exact anymore. No previous MILP formulation, nor this work, employs any of these

strategies. One of these strategies is a dominance rule valid for the unconstrained case

but not for the constrained one. Interestingly, Herz (1972) proposed a dominance rule for

the unconstrained G2KP based on the same principle and warned about the possibility of

misusing the rule in the constrained case.

The first MILP formulation dealing with guillotine cuts and unlimited stages was

proposed by Messaoud, Chu and Espinouse (2008). The problem considered by Mes-

saoud, Chu and Espinouse (2008) is the Strip Packing Problem5, but adapting the for-

5The Strip Packing Problem is a two-dimensional cutting/packing problem in which the pieces do not
have profit values, and the original plate does not have a predefined length (‘height’ in the context of the
problem); the objective is to minimize the height of the original plate while packing every piece.
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mulation to the knapsack variant would not change its fundamentals. Previously, Lodi

and Monaci (2003) had proposed two MILP formulations for two-staged G2KP. As noted

by Belov (2003), modeling k-staged cuts for k ≥ 3 (unlimited stages included) was con-

sidered difficult at the time. The size of most k-staged formulations is exponential on

the number of stages (i.e., k). The formulation of Messaoud, Chu and Espinouse (2008)

had about 3n4/4 variables and 2n4 constraints (where n is the number of pieces); it also

employed, according to the authors, a “very loose linear relaxation” due to which “the

practical interest of this formulation is still limited”. The characterization of guillotine

cuts proposed by Messaoud, Chu and Espinouse (2008) seems to have been simultane-

ously proposed by Pisinger and Sigurd (2007).

The first MILP formulation specifically for the G2KP was proposed by Furini,

Malaguti and Thomopulos (2016). The formulation is classified as an extension of the

one-cut formulation from Dyckhoff (1981) for the one-dimensional Cutting Stock Prob-

lem. However, the formulation from Silva, Alvelos and Carvalho (2010) can be seen as an

intermediary step between these two: it had already extended the one-cut formulation for

two dimensions in a similar fashion but did not alter the problem from the cutting stock

and was limited to two stages and restricted three stages. An extended version of Fu-

rini, Malaguti and Thomopulos (2016) appears in Thomopulos (2016) (a PhD thesis), and

a prelude to it in Furini and Malaguti (2016). Their formulation has pseudo-polynomial

size, O((L+W )×L×W ) variables and O(L×W ) constraints, and its relaxation provides

a stronger bound than Messaoud, Chu and Espinouse (2008). It was the first formulation

able to solve medium-sized instances of the literature. Besides the formulation, Furini,

Malaguti and Thomopulos (2016) proposes two reductions and one pricing procedure;

these three are reimplemented in this work. They also present and prove a theorem to

assure the correctness of one of their reductions (Cut-Position). A similar theorem and

proof appear in Song et al. (2010) but for the unconstrained variant.

In this work, the author proposes an enhanced formulation based on the formu-

lation from Furini, Malaguti and Thomopulos (2016) mentioned above. A significant

advantage of the enhancement is to avoid the enumeration of any cuts after the middle of

a plate. This advantage appears in many works since Herz (1972). Recently, Delorme and

Iori (2019) enhanced a pseudo-polynomial formulation for the 1D Cutting Stock Prob-

lem to obtain this same advantage. However, the way Delorme and Iori (2019) changes

their formulation to obtain this advantage is different from the approach taken here. The

mechanisms involved in each approach are distinct. Delorme and Iori (2019) mechanism
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adds only a single reflecting dummy node per bin stock size to compensate for the re-

moved arcs/variables, but it is meant for the 1D variant of the problem. The mechanism

proposed here adds a set of extraction variables in which the cardinality depends on the

geometric properties of the specific instance considered, but it is meant for the 2D variant

and also cuts down some symmetries that only exist in the 2D variant (i.e., are not present

in the 1D variant).

The most recent MILP formulations for the G2KP come from the following three

works by Martin et alii: Martin et al. (2020a), Martin, Morabito and Munari (2020a),

Martin, Morabito and Munari (2020b). Besides the formulations from these three works,

a previous formulation from Martin et al. (2019) targets the G2KP with defects (i.e.,

the original plate has regions that cannot be part of any piece). A direct comparison

between formulations with and without defects is unfair; modelling the defects burdens a

formulation greatly. Moreover, most formulations cannot be straightforwardly adapted to

the G2KP with defects, including the one proposed in this work. However, the results may

be interpreted not as a direct comparison, but as an assessment of the impact of modelling

defects over a formulation. These four formulations are discussed in details in Chapter 5

in which they participate in experiments.
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3 TECHNICAL BACKGROUND AND THE PROPOSED FORMULATION

This chapter introduces all the technical details necessary to contextualize the pro-

posed formulation and the formulation itself. Outside of this chapter, the proposed for-

mulation (also referred to as the enhanced formulation) will also be referred to as BBA

(Becker, Buriol, and Araújo) as to follow the same naming convention applied to FMT

(Furini, Malaguti, and Thomopulos) from Furini, Malaguti and Thomopulos (2016). Sec-

tion 3.1 introduces notation for the chosen discretisation, discusses some alternative dis-

cretisations, outlines the cut-and-plate enumeration procedure, and dives deeply into the

known (but innovatively employed) plate-size normalisation. Section 3.2 summarises the

formulation proposed in Furini, Malaguti and Thomopulos (2016), which is the basis for

the formulation proposed by this thesis and gives it an intuitive interpretation. Section 3.3

describes the proposed formulation, how it differs from its basis, and intuition for why

the changes (generally) lead to a performance improvement. Section 3.4 presents a proof

for the claim that the proposed formulation can find a cutting pattern for any multiset of

pieces for which the original formulation also finds a cutting pattern, this is, that the guar-

antee of optimality is retained. Section 3.5 shows how both discussed formulations can be

adapted to allow piece rotation and Section 3.6 shows a reduction that is specific to those

formulations with rotation enabled. Finally, Section 3.7 presents a summary of the pricing

procedure employed in Furini, Malaguti and Thomopulos (2016) and reimplemented by

the author for the experiments of this thesis.

3.1 Notation, Discretisation, and Plate-Size Normalisation

The performance of solving methods for cutting and packing problems often heav-

ily depends on the number of cut/packing positions considered. Since the seminal works

of Christofides and Whitlock (1977) and Herz (1972), solving methods avoid consid-

ering each possible position but instead consider only a subset necessary to guarantee

optimality. The literature includes many such subsets, which are often referred to as

discretisations. The most common way of computing these discretisations is Dynamic

Programming (DP) algorithms. These DP algorithms usually only take a small fraction

of the running time, but the size of the position subset outputted by them strongly affects

the time spent by the rest of the solving method.

Both the proposed formulation and its basis have one constraint for each attainable



27

distinctly-sized plate and one variable for each potential cut over each of these plates.

Therefore, eliminating a single cutting position has the following effects: (i) it removes

one variable for each distinctly-sized plate that allowed that cutting position; (ii) if that

cutting position was the only way to produce some distinctly-sized plates1, then it also

removes the constraints associated with these plates; (iii) if (ii) excludes one or more

constraints/plates, then it also excludes all variables representing possible cuts over the

excluded plates; (iv) finally, if (iii) eliminates one or more variables/cuts, then it may

trigger (ii) again (i.e., other plates stop being attainable), cyclically.

In this work, the only cut subset (discretisation) considered are the canonical dis-

sections of Herz (1972), hereafter referred to as normal cuts instead. The author ac-

knowledges the existence of stricter discretizations: the raster points of Terno, Linde-

mann and Scheithauer (1987), Scheithauer and Terno (1996), the regular normal patterns

of Boschetti, Mingozzi and Hadjiconstantinou (2002) (named this way by Côté and Iori

(2018)), and the Meet-in-the-Middle (MiM) of Côté and Iori (2018). The reasons for the

author’s choice of discretisation are numerous: it works well with the Plate-Size Normal-

isation procedure described in the sequence; it is the same discretisation employed by

Furini’s formulation (from which the proposed formulation is based on);The main gain

of MiM is reducing the number of cut positions after the middle of a plate, which the

enhanced formulation already discards anyway; the regular normal patterns compute a

distinct subset-sum for each pair of plate and piece, which the author considers exces-

sive (there may exist hundreds of thousands of intermediary plate possibilities); finally,

the raster points complicate the proofs presented here and the Plate-Size Normalisation

weakens its benefits.

The set O = {h, v} denotes the cut orientation: h is horizontal (parallel to width,

perpendicular to length); v is vertical (parallel to length, perpedicular to width). Let us

recall that the demand of a piece i ∈ J̄ is denoted by ui. By defining the set of pieces

fitting a plate j as Ij = {i ∈ J̄ : li ≤ lj ∧wi ≤ wj}, the set Njo (i.e., the set of the normal

cuts of orientation o over plate j) can be defined as:

Njo =

 {q : 0 < q < lj; ∃ni ∈ [0 . . ui],∀i ∈ Ij, q =
∑

i∈Ij nili} if o = h,

{q : 0 < q < wj; ∃ni ∈ [0 . . ui],∀i ∈ Ij, q =
∑

i∈Ij niwi} if o = v.

(3.1)

1Note that the same cutting position, when applied to distinctly-sized plates, may generate different
children.
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The sets defined above never include cuts at the plate extremities (i.e., 0, lj for Njh,

and wj for Njv). Any of these cuts will always create (i) a zero-area plate and (ii) a copy

of the plate that is being cut. Consequently, these cuts only add symmetries and may be

disregarded.

The set J can now be defined by the following procedure: the original plate

(plate 0) is added to J , then for every plate j ∈ J every cut in Njv ∪ Njh is applied

to j, and each child generated is added to J if it can fit at least one piece. The process

finishes when every plate in J was considered for cutting, and no new plates were gener-

ated. Such procedure guarantees each piece i ∈ J̄ will always be present in J unless the

piece does not fit the original plate (in which case it is irrelevant to the problem and could

be removed a priori).

The goal of the Plate-Size Normalisation procedure propose here is to reduce the

number of distinctly-sized plates considered. Fewer distinctly-sized plates mean fewer

constraints and trigger the same cascading effect described by items (ii)–(iv) above. The

property exploited by the procedure is already known and exploited by Alvarez-Valdes,

Parreño and Tamarit (2009) and by Dolatabadi, Lodi and Monaci (2012). The author

chose to state the property the following way:

Proposition 3.1 Given a plate j ∈ J , lj may always be replaced by l′j = max{q : q ∈

Nkh, q ≤ lj} in which k ∈ J , wk = wj , but lk > lj , without loss of optimality. The

analogue is valid for the width.

In other words, if increasing the length (width) of plate j reveals that the original

length (width) did not match a normal cut position in the enlarged plate, then plate j

may be replaced by a shorter plate in which the length (width) is reduced to the largest

normal cut position smaller than the original length (width). For example, given l = [5, 7],

w = [3, 2], a 13x3 plate may be reduced to 12x3 (13 does not match a normal cut while

5 + 7 = 12 does), and a 13x2 plate may be reduced to 7x2 (13 does not match a normal

cut while 7 does). No proof is replicated here. The following can now be defined:

Definition 3.1 (Size-normalised plate) The length of a plate j is considered normalised

if, and only if, lj = l′j . The analogue is valid for the width. The size of a plate is normalised

if, and only if, both its length and its width are normalised.

The Plate-Size Normalisation procedure proposed here consists only of replacing

every non-size-normalised plate enumerated by its normalised counterpart. In summary,
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every intermediary plate for which the length (width) is not a linear combination of the

length (width) of the pieces have its dimensions reduced to the closest linear combina-

tion smaller than itself; this combines multiple plate types that could only pack the same

set of pieces into a single plate type. The only extra effort added by Plate-Size Nor-

malisation consists of binary searches over Njo sets for each plate j, and these may be

carried out without increasing the overall complexity, given the setup of O(LW ) vec-

tors of size O(L +W ); a setup step which also does not increase the overall complexity.

However, in the implementation, the author opted to increase the overall complexity from

O(L2W + LW 2) to O(L2Wlog(L) + LW 2log(W )) because the fraction of time spent

on the enumeration was not enough to justify the memory and code complexity trade-off.

In practice, even if the worst-case complexity increases, the time spent decreases because

the actual number of plates (denoted in the complexity by O(LW ) becomes more distant

from the worst-case. A suitable Nko set for each plate j was already computed by the

plate enumeration procedure before introducing the Plate-Size Normalisation (no extra

effort required).

Remark 3.1 If a normal cut divides a size-normalised plate, then the dimension perpen-

dicular to the cut, in the first child, is normalised. The dimension parallel to the cut in the

first child, and both dimensions of the second child, are not guaranteed to be normalised.

Example 3.1 (Denormalisation after normalised cut) Consider three pieces with l =

[5, 7, 9], w = [6, 4, 11], u = [3, 1, 1], and a plate of dimensions 15x15. The plate dimen-

sions are already normalised. The plate length matches stacking the three copies of the

first piece. The plate width matches the other two pieces lying side-by-side. An horizon-

tal cut at length 7 is a normal cut because it matches the length of the second piece. If

the cut is done, the width of both children is not normalised anymore, nor is the length

of the second child. The width of both children is not normalised because the third piece

does not fit either child so, for both children, the largest width a valid packing may reach

is 12. The length of the second child is not normalised because the largest length a valid

packing inside the second child may reach is 7. The dimensions of both children may be

normalised to 7x12. This example already shows an immediate gain: instead of creating

two new plate sizes, the enumeration only creates a single new plate type. The cut creates

two copies of this single type of plate.

While the basic property (proposition 3.1) is well known by the literature, some

of the developments given here are not. Generally, in the literature, the procedure is em-
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Figure 3.1 – Diagram of Example 3.1
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Notes about the diagrams: (a) the three copies of the first piece stacked; (b) the second and
third pieces side-by-side; (c) both children of an horizontal normal cut over a normalised
plate are not normalised themselves.

ployed a single time just for the original plate, and not for every plate generated during an

enumeration procedure like it is done here. Because the procedure is commonly applied

once, the denormalisation effect mentioned here is not studied or discussed. Also, apply-

ing the procedure a single time often is done to get a better relaxation, which is not the

case for the proposed formulation. In the proposed formulation and its basis, the dimen-

sions are abstracted by a flow graph connecting cuts and plates; the dimensions are not

right-hand values of binding constraints. The plate-size normalisation does not affect the

relaxation; instead, it reduces the model size because multiple intermediary plate types

are conflated into a single type.

3.2 The FMT formulation and associated reductions

Given pseudo-polynomial time and space, an instance of the G2KP can be trans-

formed into a bipartite directed acyclic (multi)graph; solving a flow-like problem over

such graph is equivalent to solving the original G2KP instance. The two disjoint and in-

dependent sets of vertices are (i) the enumerated plate types and (ii) the enumerated cuts

over the plate types. Each cut vertice has one incoming edge and one or two outgoing

edges. The head of the incoming edge is the plate vertice that represents the plate being

cut. The tail of each outgoing edge is a plate vertice representing a plate produced by the

cut. These are all edges that exist in the graph. If the cut vertice has only two incident

edges, it represents a trim cut, i.e., a cut that only reduces the size of an existing plate

without producing a second plate. If the cut vertice has three incident edges, it represents

a plate cut into two smaller plates. As the graph is a multigraph, it allows for parallel
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edges, representing a cut exactly at the middle of a plate generating two copies of the

same plate type.

The aforementioned flow-like problem is as follows. All edges only allow integer

amounts to flow between vertices. The vertice representing the original plate type is the

only one to start with one flow unit (all other vertices start zeroed). If a plate vertice

receives any flow amount, it can keep any portion of the flow in the vertice and freely

redistribute the remaining flow among its outgoing edges. If a cut vertice receives any

flow amount, it multiplies the amount of flow received by the number of outgoing edges,

and must relay the exact amount of flow received to each of the outgoing edges, e.g., if a

cut vertice receives two units of flow then each outgoing edge receives two units of flow.

If a plate vertice represents a plate type of the same dimensions as a piece i, then each

unit of flow kept by the vertice generates a profit pi constrained to a maximum of ui × pi.

The problem is deciding how the plate vertices will distribute the flow they receive to

maximize said profit.

The formulation proposed in Furini, Malaguti and Thomopulos (2016), henceforth

referred to as the FMT formulation, generates models similar to the graph described and

which are solved similarly to the flow-like problem mentioned. As previously defined,

the set O = {h, v} denotes the horizontal and vertical cut orientations. The set Qjo

(∀j ∈ J, o ∈ O) denotes the set of possible cuts (or cut positions) of orientation o over

plate j. The set Qjo is not formally defined because it is a subset of Njo (formally defined

in the last section) that varies based on which reductions are being applied.

The parameter a is a byproduct of the plate enumeration process and represents

the edges of the graph. The value of aoqkj indicates how many copies of a plate j ∈ J are

produced by cutting a plate k ∈ J with a cut of orientation o ∈ O at position q ∈ Qko.

This value may be zero (no plate created by the cut has the same dimensions as j, i.e., no

edge exists), one (one plate created by the cut has the same dimensions as j, i.e., there is an

edge), or two (the parent plate was cut in half, and both halves have the same dimensions

as j, i.e., two parallel edges). This parameter is needed to write the constraints that control

which plates are available. The description of this parameter in Furini, Malaguti and

Thomopulos (2016) has a typo, as pointed out by Martin et al. (2020b):“[...] there is a

typo in their definition of parameter aoqkj , as the indices j and k seem to be exchanged.”.

The original parameter description also forgets the possibility that it may have value two

(instead of just zero and one).

In a valid solution, the value of xo
qj is the number of times a plate j ∈ J is cut with
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orientation o ∈ O at position q ∈ Qjo; i.e., how much flow is being transported by each

edge coming from a plate vertice. The plate 0 ∈ J is the original plate, and it may also

be in J̄ , as there may exist a piece of the same size as the original plate. The yi variable

denotes the number of times a plate i was sold as the piece i (as J̄ ⊆ J , each index i ∈ J̄

denote both a piece and the plate of the exact same dimensions).

max.
∑
i∈J̄

piyi (3.2)

s.t.
∑
o∈O

∑
q∈Qjo

xo
qj ≤

∑
k∈J

∑
o∈O

∑
q∈Qko

aoqkjx
o
qk ∀j ∈ J \ J̄ , j ̸= 0, (3.3)

yi +
∑
o∈O

∑
q∈Qio

xo
qi ≤

∑
k∈J

∑
o∈O

∑
q∈Qko

aoqkix
o
qk ∀i ∈ J̄ , i ̸= 0, (3.4)

∑
i∈{i|i∈J̄∧wi=w0∧li=l0}

yi +
∑
o∈O

∑
q∈Q0o

xo
q0 ≤ 1 , (3.5)

yi ≤ ui ∀i ∈ J̄ , (3.6)

xo
qj ∈ N0 ∀j ∈ J, o ∈ O, q ∈ Qjo, (3.7)

yi ∈ N0 ∀i ∈ J̄ . (3.8)

The objective function maximizes the profit of the plates sold as pieces (3.2).

Constraints (3.3) and (3.4) guarantee that for every intermediary plate j that was further

cut (left-hand side), or plate/piece i that was either sold or further cut (left-hand side),

there must be a cut making available a copy of such plate (right-hand sides). One copy of

the original plate is available from the start (3.5), and it can be either sold as a piece of

the same dimensions or further cut. The amount of sold copies of some piece type must

respect the demand for that piece type (3.6). Finally, the domain of all variables is the

non-negative integers (3.7)-(3.8).

Besides the base formulation, Furini, Malaguti and Thomopulos (2016) also em-

ploys a basic symmetry-breaking strategy and proposes two reductions for the model size.

The cut enumeration in Furini, Malaguti and Thomopulos (2016) excludes one of each

pair of perfectly symmetrical cuts. Perfectly symmetrical cuts are pairs of cuts that create

the same set of two child plates (i.e., just which is the first and which is the second that is

reversed). Furini, Malaguti and Thomopulos (2016) chose to ignore the symmetric cut in

the second half of the plate during the enumeration. The Cut-Position reduction confines

the set of cutting positions over some plates to the restricted set. The condition for a plate



33

to be affected by Cut-Position is that it should be able to pack at most five pieces because,

in such case, its restricted and unrestricted optimal value are the same (see Figure 6.2).

The Redundant-Cut reduction only removes a subset of the trim cuts, i.e., cuts in which

the second child plate is immediately considered waste because it is smaller than every

piece. Redundant-Cut removes a trim cut over plate j, which obtains plate j′, if plate j

itself can only be obtained by trim cuts of the same orientation from larger plates. The

rationale is that these larger plates can directly obtain j′ through a single trim cut instead

of using j as an intermediary plate. This way, the reduction removes unnecessary inter-

mediaries and avoids the many symmetric patterns that only vary on the number of trim

cuts employed to reduce a larger plate down to j′.

3.3 The proposed (re-)formulation

The FMT is elegant: the pieces are just intermediary plates that may be sold. The

proposed changes affect both the enumeration step and the formulation mathematical de-

scription. These changes significantly reduce the model size. However, these changes

also deepen the distinction between plates and pieces and may be regarded as sacrific-

ing some elegance for performance. The essentials of the formulation remain the same,

but the proposed formulation has better performance in the vast majority of the problem

instances. For this reason, the author considers the formulation proposed here as an en-

hanced iteration of the FMT. In general, the relaxation of the proposed model is the same

as the FMT.

As mentioned at the end of the last section, FMT allows for removing one of each

pair of perfectly symmetrical cuts (which can be arbitrarily chosen to be the one in the

second half of the plate). Differently, Christofides and Whitlock (1977) disregards all cuts

after the middle of the plate because of symmetry. If FMT did the same as Christofides

and Whitlock (1977), it could become impossible to trim a plate to the size of a piece. For

example, if there was a piece with a length larger than half the length of a plate, and such

plate has no normal cut with the exact length of the needed trim, then the piece could not

be extracted from the plate, even if the piece fits into the plate. The goal of the proposed

formulation is to reduce the number of cuts (i.e., model variables) by getting closer to

the symmetry-breaking rule used in Christofides and Whitlock (1977) without loss of

optimality. Of course, disregarding every cut after the midplate also insulates against any

perfectly symmetrical cuts and, therefore, supersedes a check just for this specific kind of
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symmetry.

Considering the graph representation for FMT presented in the last section, it can

be said that the proposed formulation throws away the possibility of piece-sized plate ver-

tices to convert flow into profit and creates a third disjoint and independent set of vertices

representing the pieces. The vertices of this new set are all leaves/sinks responsible for

converting flow to the corresponding piece profit. The edges that reach the new vertices

always come from plate vertices, but the plates do not need to have the exact dimensions

of the pieces anymore. These edges work as a shortcut to trimming, and multiple vertice

plates may have an edge pointing to the same piece vertice as well as each vertice plate

may have edges to multiple piece vertices. This change alone leads to a larger model;

however, as the edges to this new set of vertices allow us to obtain pieces without needing

trim cuts, the symmetry-breaking strategy can be expanded to consider every cut after the

middle of a plate. This reduction leads to far fewer edges, as the cut position discreti-

sation is often denser in the second half of the plate (compared to the first half). It also

means fewer plate vertices, as many plates were only necessary as intermediary steps to

trimming a plate to the size of a piece.

3.3.1 Changes to the formulation description

The changes to the formulation are restricted to replacing the set of integer vari-

ables yi, i ∈ J̄ , with a new set of variables eij, (i, j) ∈ E,E ⊆ J̄ × J , and the necessary

adaptations to accomodate this change. In FMT, yi denotes the number of times a plate i

was sold as the piece i (plate i has the exact same dimensions as piece i). The extrac-

tion variables eij denote a piece i was extracted from plate j which dimensions may

only be the same or larger than the piece i dimensions. The exact definition of set E

is discussed over Section 3.3.2; for the purpose of presenting the formulation, the intu-

itive definition of eij just above is enough. For convenience, the following are defined:

Ei∗ = {j : ∃ (i, j) ∈ E} and E∗j = {i : ∃ (i, j) ∈ E}. The variables xo
qj and coefficients

aoqkj have the same meaning as the FMT formulation (Section 3.2).
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max.
∑

(i,j)∈E

pieij (3.9)

s.t.
∑
o∈O

∑
q∈Qjo

xo
qj +

∑
i∈E∗j

eij ≤
∑
k∈J

∑
o∈O

∑
q∈Qko

aoqkjx
o
qk ∀j ∈ J, j ̸= 0, (3.10)

∑
o∈O

∑
q∈Q0o

xo
q0 +

∑
i∈E∗0

ei0 ≤ 1 , (3.11)

∑
j∈Ei∗

eij ≤ ui ∀i ∈ J̄ , (3.12)

xo
qj ∈ N0 ∀j ∈ J, o ∈ O, q ∈ Qjo, (3.13)

eij ∈ N0 ∀(i, j) ∈ E. (3.14)

The objective function maximizes the profit of the extracted pieces (3.9). Con-

straint (3.10) guarantees that for every plate j that was further cut or had a piece extracted

from it (left-hand side), there must be a cut making available a copy of such plate (right-

hand side). One copy of the original plate is available from the start (3.5), and it can be

either have a piece directly extracted or be further cut. The amount of extracted copies of

some piece type must respect the demand for that piece type (a piece extracted is a piece

sold) (3.12). Finally, the domain of all variables is the non-negative integers (3.13)-(3.14).

3.3.2 Changes to the cut-and-plate enumeration

As mentioned in Section 3.2, the FMT was proposed together with some mecha-

nisms to reduce the model size: removing perfectly symmetrical cuts, Cut-Position, and

Redundant-Cut. Cut-Position does not conflict with the proposed formulation and can

be employed alongside it to further reduce the model size. The symmetry-breaking and

Redundant-Cut are superseded in the proposed formulation. Redundant-Cut eliminates

a subset of the trim cuts from the formulation; however, the proposed formulation does

not have trim cuts like those removed by Redundant-Cut because the extraction variables

make them unnecessary.

The use of the x variables does not change from the original formulation to the

revised formulation – however, the size of the enumerated set of variables changes. The

revised enumeration does not create any variable xo
jq in which (o = h ∧ q > ⌈wj/2⌉) ∨

(o = v ∧ q > ⌈lj/2⌉).
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The original formulation has variables yi, i ∈ J̄ , while the revised formulation

replaces them with variables eij , (i, j) ∈ E, E ⊆ J̄ ×J . Set J̄ ×J is orders of magnitude

larger than J̄ . Consequently, set E must be a small subset to avoid having a revised model

with more variables than the original. A suitable subset may be obtained by a simple rule:

(i, j) ∈ E if, and only if, packing piece i in plate j does not allow any other piece to be

packed in j. The reason this restricted subset is enough to keep the model correctness is

presented in next section.

For the enhanced formulation to have more variables than the original formulation,

|E| > |J̄ |+|{xo
jq : j ∈ J∧o ∈ O∧q ∈ Qjo∧(o = h∧q > ⌈wj/2⌉)∨(o = v∧q > ⌈lj/2⌉)}|

must hold, this is, the number of extraction variables must be larger than the number of

pieces plus the sum of the number of cuts after the middle of each enumerated plate.

Unfortunately, there is no closed formula for these sets (except J̄ which is given), what

makes necessary to compute the full enumeration to verify the difference.

3.4 The proof of correctness

The previous section presented a detailed explanation of the changes to the for-

mulation and variable enumeration. This section proves such changes do not affect the

correctness of the model. . The core of the proof consists in showing that any piece

multiset that can be packed in some plate by the FMT formulation can also be packed by

the enhanced formulation. So, below, what is meant by saying that a plate can pack a

piece multiset is both (i) that the FMT and the enhanced formulation can represent a valid

sequence of cuts obtaining such pieces from a plate but also that (ii) there is a solution for

the decision problem variant of G2KP with the plate and the piece multiset as its inputs.

Both meanings are essentially the same because both formulations are exact and will find

a solution if it exists. The changes to FMT may be summarized to:

1. There is no variable for any cut that occurs after the middle of a plate.

2. A piece may be obtained from a plate if, and only if, the piece is the same size

or smaller than the plate, and the plate cannot pack an extra piece (of any type).

Obtaining a piece from a plate is always regarded as an extraction and not a cut..

The second change alone cannot affect the correctness of the model. The original

formulation was even more restrictive in this aspect: a piece could only be sold if a plate
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of the same dimensions existed. In the revised formulation, an extraction variable will

always exist in such a case because, if a piece and plate match perfectly, there is no space

for any other piece, fulfilling the only criteria for the existence of extraction variables.

Consequently, what needs to be proved is that:

Theorem 3.1 (Piece extractions supersede all cuts after the middle of a plate.) Without

changing the pieces obtained from a plate, any normal cut after the middle of a plate may

be replaced by a combination of piece extractions and cuts at the middle of a plate or

before it.

As mentioned before, normal guillotine cuts can be used to search for a solution

(in contrast to considering a cut at every position) without loss of optimality. So the proof

goes in the direction of showing that everything that can be done with normal guillotine

cuts can be done without the normal cuts after the midplate but by allowing piece extrac-

tions. The theorem above and the proof below assume a plate cannot be cut twice. If a

single cut is applied to a plate, then two new plates are created, and these may be fur-

ther cut. There is no loss of generality by undertaking this assumption, which is already

implicitly undertaken in the rest of this work. This difference can be seen as the same

difference between the representation of the packing with a binary tree instead of a tree

with a variable number of children.

Proof: This is a proof by exhaustion. The set of all normal cuts after the middle of a plate

may be split into the following cases:

1. The cut has a perfect symmetry.

2. The cut does not have a perfect symmetry.

(a) Its second child can pack at least one piece.

(b) Its second child cannot pack a single piece.

i. Its first child packs no pieces.

ii. Its first child packs a single piece.

iii. Its first child packs two or more pieces.

The author believes to be self-evident that the union of items 1, 2a and 2(b)i to 2(b)iii is

equal to the set of all normal cuts after the middle of a plate. An individual proof for each of these

cases is presented below.

Item 1 – The cut has a perfect symmetry. Two horizontal (vertical) cuts over the same plate are

considered perfectly symmetrical if they generate the same children plate; for example, an
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horizontal cut at position five of a plate of length 15 creates the same two children (of

lengths five and 10) than a cut at position 10. Whether a plate is the first or second child of

a cut does not make any difference for the formulation or for the problem. If the cut is in

the second half of the plate, then its symmetry is in the first half of the plate. Consequently,

both cuts are interchangeable, and the one after the midplate may be dismissed.

Item 2a – Its second child can pack at least one piece. Proposition 3.1 allows us to replace the

second child with a size-normalised plate that can pack any demand-abiding set of pieces

the original second child could pack. The second child of a cut that happens after the middle

of the plate is smaller than half a plate, and its size-normalised counterpart may only be the

same size or smaller. So the size-normalised plate could be cut as the first child by a normal

cut in the first half of the plate. Moreover, the old first child (now second child) has stayed

the same size or grown (because of the size-normalisation of its sibling), which guarantees

this is possible.

Item 2(b)i – Its first child packs no piece. If both children of a single cut do not pack any pieces,

then the cut may be safely ignored.

Item 2(b)ii – Its first child packs a single piece. First, let us ignore this cut for a moment and

consider the plate being cut by it (i.e., the parent plate). The parent plate either: can pack

an extra piece together with the piece the first child would pack, or cannot pack any extra

pieces. If it cannot pack any extra pieces, this fulfils the criteria for having an extraction

variable, and the piece may be obtained through it. The cut in question can then be dis-

regarded (i.e., replaced by the use of such extraction variable). However, if it is possible

to pack another piece, then there is a normal cut in the first half of the plate that would

separate the two pieces, and such cut may be used to shorten the plate. This kind of normal

cuts may successively shorten the plate until it is impossible to pack another piece, and the

single piece that was originally packed in the first child may then be obtained by employing

an extraction variable.

Item 2(b)iii – Its first child packs two or more pieces. If the first child packs two or more pieces,

but the second child cannot pack a single piece (i.e., it is waste), then the cut separating the

first and second child may be omitted and any cuts separating pieces inside the first child

may still be done. If some of the plates obtained by such cuts need the trimming that was

provided by the omitted cut, then these plates will be packing a single piece each, and they

are already considered in item 2(b)ii.

Given the cases cover every cut after the middle of a plate, and each case has a proof, then

follows that Theorem 3.1 is correct.

⊓⊔
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Figure 3.2 – Visual help for the proof of correctness
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Theorem 3.1 case examples. Items 1 and 2(b)i are excluded given their simplicity. In all
examples, the parent plate is 15x15. In the example of item 2a, the cut would happen
after the middle of the plate, but then the pieces of the second child can be packed in the
first child instead. In the example of item 2(b)ii, both cuts happen after the middle of
the plate, and there are no other pieces; however, as no piece may be extracted from the
leftovers, then there is an extraction variable available. In the example of item 2(b)ii, a 2x7
piece exists, but it is not extracted from the plate (the demand for it may be exhausted,
for example); therefore, the extraction variable from the previous case does not exist;
however, the 2x7 piece allows us to make a cut just to reduce the plate length and, for
the size of the second child, an extraction variable is available. Finally, in the example
of item 2(b)iii, which cut that happens first may be changed, as there is no piece packed
in the subplate that would originally become the second child.

Figure 3.2 may help the reader to visualize the more complicated parts of the

proof. From the cases above, the FMT formulation (from Furini, Malaguti and Thomop-

ulos (2016)) only treats specially the pairs of cuts that are perfectly symmetrical to each

other (by removing one of them).

3.5 Adaptation to the rotation variant

The adaptation of both FMT and the proposed formulation to the rotation-allowed

variant of G2KP are very similar, and the author chose to employ only the proposed

formulation to illustrate the process. The changes needed are:

1. change the piece set J̄ before the call to the enumeration procedure;

2. create a new set P , which binds the two rotations of every piece;
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3. change the constraint (3.12) to take into account this new set P .

The changes mentioned in item 1 consist of adding to J̄ a new piece i′ for each

piece i for which ∄k ∈ J̄ : lk = wi ∧ wk = li, piece i′ have li′ = wi, wi′ = li,

and ui′ = ui; differently, for each piece i for which ∃k ∈ J̄ : lk = wi ∧ wk = li (i.e., for

each piece i that has its rotation as an already existing piece k), both ui and uk become

the sum of their original values (given by the instance).

The set P mentioned in item 2 may be defined as P = {{i, k} ∈ P : i ∈ J̄ , k ∈

J̄ , lk = wi ∧ wk = li}. Each element of P is a set of two pieces.

Finally, as mentioned in item 3, the following change is made:

∑
j∈Ei∗

eij ≤ ui ∀i ∈ J̄ (3.12)

to

∑
j∈Ei∗

eij +
∑
j∈Ek∗

ekj ≤ ui ∀{i, k} ∈ P (3.15)

3.6 The rotation-specific mirror plate enhancement

The previous section describes only the minimal changes necessary to adapt the

proposed formulation for the rotation-allowed variant. This section describes a reduc-

tion for the formulation that is only possible if rotation is allowed. This change is also

compatible with the FMT formulation.

The core idea of the enhancement is that, if all pieces can rotate, then any two

plates j and j′, for which lj = wj′ ∧ wj = lj′ holds, are equivalent to each other. The

rationale is simple: if a set of pieces is extracted from plate j through a guillotine cutting

pattern, then there exists an equivalent guillotine pattern in which every piece is rotated

and which can be extracted from plate j′ which is the rotation of plate j. This way, if

the cut and plate enumeration generates such plates j and j′, only one of them needs to

be kept (but every cut that generated the removed plate needs now to generate the kept

rotation instead). Finally, the opposite statement is also true (yet very inefficient): if all

plates could somehow rotate, then the pieces themselves would not need to be able to
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rotate, and distinct piece types that are rotations of each other could be considered the

same.

The modifications necessary for the reduction are restricted to the cut-and-plate

enumeration. Only plates in which the length is smaller than the width are allowed. If

a cut would generate a plate with its length greater than its width, then the cut instead

creates the rotated version of the plate, in which the length is the smallest dimension.

This change can potentially reduce the number of plates (constraints) to half their original

amount. Consequently, the number of variables (cuts and extractions over specific plate

types) may also reduce up to half their original amount.

The only downside of mirroring the plates is that the Redundant-Cut reduction

needs to be either disabled or adapted. If plate mirroring is enabled, then Redundant-Cut

needs to keep track if either (or both) child plates of a cut were rotated or not. This track-

ing usually is not necessary to implement just the plate mirroring itself. The experiments

employing rotation focus mostly on the proposed formulation (in which Redundant-Cut

is already disabled because it is superseded); the few experiments with rotation-enabled

FMT have Redundant-Cut disabled.

3.7 The pricing phase

The pricing procedure described in Furini, Malaguti and Thomopulos (2016),

Thomopulos (2016) was reimplemented by us. ]No significant changes were made to the

procedure. As the experiments include multiple comparisons involving this procedure, a

summary of the procedure is presented below. For simplicity, the procedure takes an al-

ready built model (from either the original formulation or the enhanced version), and any

previous reductions mentioned were already applied. Clautiaux et al. (2018) refers to a

similar procedure (that they apply to their own formulation) as lagrangian filtering; how-

ever, this term is not employed by Furini, Malaguti and Thomopulos (2016), Thomopulos

(2016).

1. Fix to zero all variables representing horizontal (vertical) cuts that do not match a

piece length (width).

2. Remove all integrality constraints and solve the relaxed model to obtain an upper

bound for the position-only restricted problem.

3. Obtain a lower bound from an inexact 2-staged heuristic (FURINI; MALAGUTI;
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THOMOPULOS, 2016; DOLATABADI; LODI; MONACI, 2012).

4. Employ the reduced costs of the model variables, the position-only restricted upper

bound, and the heuristic lower bound to price-out variables (more details below) by

fixing them to zero.

5. Restore the integrality constraints, warm-start with the heuristic solution from (step

item 3), solve the model (currently, a reduced MILP model for the position-only re-

stricted variant of the problem) and obtain a probably better lower bound. While un-

likely, the heuristic may have already provided an optimal solution for the position-

only restricted problem.

6. Remove all integrality constraints again.

7. DO solve the relaxed model, compute the reduced cost of the fixed variables, and

unfix a subset of the variables with positive reduced cost WHILE variables with

positive reduced cost exist. This loop is responsible for reintroducing any variables

representing unrestricted cuts needed to solve the unrestricted variant back to the

model. More details on the subset of the variables selected are below.

8. Employ the reduced costs and the upper bound, both obtained from the last solve in

the loop, as well as the lower bound from the MILP solve of the position-only re-

stricted model (item 5), to price-out variables (similarly to what was done in item 4).

9. Warm-start the model with the solution from item 5.

10. Restore integrality constraints, remove all variables yet fixed to zero, and return the

model.

In item 4 and item 8, a variable is priced out if ⌊reduced_cost(var) + ub⌋ ≤ lb,

where the upper and lower bounds are the ones available at the corresponding step. The

rationale behind this requirement is straightforward. If forcing var to assume value 1 is

enough to reduce the upper bound from the relaxation to less than the lower bound, then

that variable (guillotine cut) cannot be used to provide a solution better than the current

lower bound. Any variables necessary to produce the current lower bound are kept.

The criteria for choosing the subset of variables in each iteration of item 7 takes

into account two parameters: nmax and p̄. If any variables have reduced cost above p̄, they

define the subset; otherwise, the first nmax variables with positive reduced cost define the
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subset. The original description of the procedure does mention an ordering of the variable

pool, so what constitutes the first nmax variables is not well-defined. The author chose

to interpret that the nmax variables of largest reduced cost are selected. Both parameters

are automatically computed for each instance: nmax is one-fifth of the sum of the demand

vector u, and p̄ is one-fourth of the sum of the profits for every piece (taking demand into

account).

The original description of the procedure does not indicate if, during the pro-

cess, the variables are fixed and unfixed, or removed and added back. Preliminary tests

indicated that the fix-and-unfix approach had better performance, so it was used in the

experiments of this work. In the last step, all variables yet fixed to zero are removed.
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4 EMPIRICAL ANALYSIS OF THE PROPOSED ENHANCEMENTS

There are three formulation implementations that provide data used in the compar-

isons of this chapter: original refers to the implementation presented in Furini, Malaguti

and Thomopulos (2016) and in Thomopulos (2016); faithful refers to the reimplemen-

tation of original employed in this thesis; enhanced refers to the enhanced formulation

presented in Section 3.3. The original implementation was not available1. Consequently,

all data relative to original presented in this work comes from Thomopulos (2016). As

both original and faithful refer to implementations of the FMT, the term ‘FMT’ is avoided

in this chapter. For the sake of brevity and consistency, in this section, if a reference could

be made to both Thomopulos (2016) and Furini, Malaguti and Thomopulos (2016), or

to either of them, then only the former is cited. Both faithful and enhanced data were

obtained by runs using the setup described in Section 4.1.

Each formulation may be modified by applying any combination of the follow-

ing optional procedures: priced – refer to the pricing procedure described in Section 3.7

(originally from Thomopulos (2016)); normalised – the plate-size normalisation proce-

dure described in Section 3.1; warmed – the MILP models solved were warm-started with

a solution found by a previous step; Cut-Position and Redundant-Cut – are reduction pro-

cedures described in Furini, Malaguti and Thomopulos (2016) and in Thomopulos (2016),

that may be enabled and disabled individually. For each experiment described in the next

sections, if a procedure is not mentioned, then it is disabled. The term restricted priced

refers to the model for the restricted version of the problem that is solved inside the pric-

ing procedure mentioned above. Consequently, for each run of a priced variant, there

will be a restricted priced run with the same combination of optional procedures. The

differences between the restricted priced and the (unrestricted) priced models are mainly

that: (i) the restricted priced model never has an horizontal (vertical) cut that does not

match the length (width) of a piece; (ii) the restricted priced model is MIP-started with

the solution of an heuristic (described in Thomopulos (2016)) while the priced model is

MIP-started with the solution of the restricted priced model; (iii) the distinct solutions

used to MIP-start the respective models are also used as the lower bound for the pricing

procedure (details in Thomopulos (2016)).

Without the set of model variables (guillotine cuts) removed by the pricing, plates

of some dimensions may become impossible to obtain. These plates are not necessary to

1The author os this work asked the authors of Furini, Malaguti and Thomopulos (2016) for the original
implementation and Dimitri Thomopulos informed us it was not available.
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obtain an optimal solution; otherwise, the pricing could not have removed all variables

that led to them. Most of these plates could be further cut, but the value of the variables

associated with such cuts can only be zero now, and, therefore, these variables can be

removed too. This thinning effect may be recursive, as each newly removed variable may

render some plate sizes unobtainable, similarly to what is described in Section 3.1. Hence,

the pricing phase uncovers a set of unnecessary variables larger than the set it directly re-

moves. The effort to remove such unnecessary variables and constraints is negligible.

The algorithm to select which variables and constraints are kept is similar to finding the

connected subgraph (starting from the original plate) in the graph representation of the

formulation described at Section 3.2. In priced variants of faithful and enhanced this

purge procedure is done unless stated otherwise. The experiments will show that this

purge drastically reduces the number of variables and constraints but has almost no effect

on the running times. Consequently, the author believes the solver can detect and re-

move such variables by itself. Nonetheless, the author encourages future comparisons to

implement this purge procedure, as it helps determine the real size of the solved models.

Each experiment helps to substantiate choices taken in the subsequent experi-

ments: Section 4.2 explains the choice of LP algorithms made in all remaining experi-

ments; Section 4.3 provides evidence that faithful is on par with original, allowing us to

use it as a replacement; Section 4.4 compares faithful to enhanced and shows the value

of some of this thesis contributions (namely, the normalise procedure and the enhanced

formulation); Section 4.5 applies the methods with best results in the last experiment to

prove new optimal values and bounds for harder instances.

4.1 Setup

Every experiment in this work uses the following setup unless stated otherwise.

The CPU was an AMD® RyzenTM 9 3900X 12-Core Processor (3.8GHz, cache: L1 –

768KiB, L2 – 6 MiB, L3 – 64 MiB) and 32GiB of RAM were available (2 x Crucial

Ballistix Sport Red DDR4 16GB 2.4GHz). The operating system used was Ubuntu 20.04

LTS (Linux 5.4.0-42-generic). Hyper-Threading was disabled. Each run executed on

a single thread, and no runs executed simultaneously. The computer did not run any

other CPU-bound tasks during the experiments. The exact version of the code used is

available online (<https://github.com/henriquebecker91/GuillotineModels.jl/tree/0.2.4>),

and it was run using Julia 1.4.2 (BEZANSON et al., 2017) with JuMP 0.20.1 (DUNNING;

https://github.com/henriquebecker91/GuillotineModels.jl/tree/0.2.4
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HUCHETTE; LUBIN, 2017) and Gurobi 9.0.2 (OPTIMIZATION, 2020). The following

Gurobi parameters had non-default values: Threads = 1; Seed = 1; MIPGap =

10−6 (to guarantee optimality); and TimeLimit = 10800 (i.e., three hours). The next

section explains the rationale for using Method = 2 (i.e., barrier) to solve the root node

relaxation of the final built model; and Method = 1 (i.e., dual simplex) inside pricing (if

pricing is enabled).

4.2 The choice of LP algorithm

Thomopulos (2016) do not specify the algorithm used for solving the MILP root

node relaxation and, if pricing is enabled, for solving some LP models (upper bound com-

putation) and the MILP root node relaxation of the restricted priced model. As Gurobi

is used here, the Method parameter (for LP models and MILP root node relaxations) is

being discussed, and not the NodeMethod parameter (for non-root nodes). The choice

of the algorithm can drastically impact running times. A preliminary experiment included

all LP algorithms available in Gurobi. Table 4.1 presents the data of the two algorithms

selected for use. They are the Dual Simplex and the Barrier.

The runs use the faithful implementation, with Cut-Position and Redundant-Cut

enabled, in its priced (Priced PP-G2KP in Thomopulos (2016)) and not priced (PP-

G2KP in Thomopulos (2016)) variants. For convenience, the experiment is limited to

a few instances. This subset consists of all instances for which the Complete PP-G2KP

Model finds the optimal solution within the time limit in Furini, Malaguti and Thomopu-

los (2016) (Table 2). If pricing is disabled, the root node relaxation contributes to most of

the running time. This characteristic makes them a good choice for this experiment.

The following conclusions can be derived from Table 4.1. Using the Barrier algo-

rithm in the pricing phase is not viable. This impracticality happens because the pricing

phase includes an iterative variable pricing phase. This iterative phase repeatedly adds

variables to one LP model and solves it again. The Barrier algorithm solves every LP

from scratch; the Dual Simplex reuses the previous basis and saves considerable effort.

However, Barrier performs better if there is no previous base to reuse. Consequently,

the configuration chosen was Dual Simplex for the pricing phase and Barrier for the root

relaxation of the final model.
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Table 4.1 – Comparison of LP-solving algorithms used inside solving procedure

Instance Dual Simplex Barrier DS + B
N. P. R. % Priced N. P. R. % Priced Priced

CU1 27.37 92.11 3.79 24.18 94.68 3040.82 3.58
STS4 93.49 89.88 48.80 49.94 77.32 7851.30 47.75
STS4s 103.20 94.92 39.29 43.74 86.34 8470.41 38.36
gcut9 226.68 72.29 3.92 51.48 85.77 2060.04 4.01
okp1 51.95 84.18 38.89 32.41 67.78 – 38.79
okp4 98.25 93.35 144.30 72.09 92.31 – 141.53
okp5 178.13 89.89 252.09 96.38 67.24 – 239.44

Dual Simplex and Barrier indicate the respective algorithm was used for all LPs and root
node relaxations, DS + B means that Dual Simplex was used to solve all LPs inside the
pricing phase, and Barrier was used to solve the root node relaxation of the final model.
The columns N.P. (Not Priced) and Priced display the time to solve (in seconds) using
the aforementioned variant. The columns R.% refer to the per cent of the time spent by
Not Priced in the root node relaxation of the final model. Source: the author.

4.3 Comparison of faithful against original

Without a reimplementation of original, any comparison would need to be made

directly against the data in Thomopulos (2016). However, such a comparison would

hardly be fair, as it compares across machines, solvers, and programming languages.

Also, for example, it does not allow us to assess the benefits of applying the plate-size

normalisation procedure to the original formulation. The purpose of this section is to

show that faithful may be fairly used in place of original. For this purpose, Table 4.2

compares the number of model variables and number of plates of the diverse model vari-

ants presented in Thomopulos (2016). The chosen dataset is, therefore, the same as the

one used in these works for the comparison to be possible. The dataset aggregates 59 in-

stances of the previous literature from many distinct sources, and all instances are either

artificially generated or of undisclosed origin. A detailed entry about this dataset and all

of its constituting instances can be found in appendix A under the FMT59 (which is the

name adopted for this dataset in this work). The number of enumerated plates strongly

correlates to the number of constraints in the model. Thomopulos (2016) presents the

number of plates, not the number of constraints. To simplify the comparison, the same is

done here.

The Priced PP-G2KP runs in Thomopulos (2016) had three time limits of one

hour to solve: the restricted model (i.e., obtaining a lower bound); the iterative variable

pricing (i.e., obtaining an upper bound); the final model. Such configuration always gen-

erates a final model. However, it also has two drawbacks:(i) the computer performance
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Table 4.2 – Comparison of faithful against original

Variant T. L. E. R. O. #v F. %v O. #p F. %p
Complete PP-G2KP 0 0 156,553,107 100.00 1,882,693 100.00
Complete +Cut-Position 0 0 103,503,930 99.99 1,738,263 100.01
Complete +Redundant-Cut 0 0 121,009,381 109.94 1,882,693 100.00
PP-G2KP (CP + RC) 0 0 74,052,541 120.05 1,738,263 100.01
Restricted PP-G2KP 0 0 5,335,976 99.28 306,673 99.99
Priced Restricted PP-G2KP 0 1 3,904,683 102.20 305,690 99.99
(no purge) Priced PP-G2KP 3 7 14,619,460 93.74 1,642,382 100.01
Priced PP-G2KP 3 7 14,619,460 31.92 1,642,382 25.55
The sum of columns T. L. (Time Limit) and E. R. (Early Return) gives the number of in-

stances excluded from consideration in the respective row. Column T. L. has the number
of instances for which faithful reached the time limit without generating the respective
model variant – these instances are: Hchl7s, okp2, and okp3. The column E. R. has the
number of instances for which this thesis reimplementation found an optimal solution
before generating the respective model variant. Columns O. #v and O. #p refer to origi-
nal.Column O. #v (O. #p) presents the sum of variables (plates) for the instances in which
faithful generated a model. Columns F. %v and F. %p refer to faithful Column R. %v
(R. %p) has the sum of variables (plates) in the generated models as a percentage of the
quantity obtained by the original implementation. Source: the author.

may define the answer given in the first two phases, affecting the size of the final model

(and making it harder to make a fair comparison);(ii) if the restricted model, or the iterated

variable pricing, cannot be done in one hour, then the final model will probably hit the

time limit too – in Thomopulos (2016), every run that hits one of the two first time limits

also hits the third time limit. The author chose to use a single three-hour time limit for the

experiments of this chapter. In the other chapters, either the more common one-hour time

limit is employed or, for relatively short experiments, no time limit is employed.

Table 4.2 references the names used in Thomopulos (2016). The Complete PP-

G2KP is the formulation with all optional procedures disabled, while the PP-G2KP mean

both Cut-Position and Redundant-Cut are enabled. Restricted PP-G2KP and its priced

version are solved inside Priced PP-G2KP runs. If the lower and upper bounds found

during pricing are the same, then the optimal solution was found before generating the

final model. The instances in which this happened for an unrestricted solution are 3s,

A1s, CU1, CU2, W, cgcut1, and wang20. The instance A1s presented this behaviour

already in the pricing of the restricted model.

The original had no purge phase after pricing. Consequently, for the columns that

refer to original, the last row just repeats the data of the row above.

The following conclusions can be derived from Table 4.2. All variants, except

Priced PP-G2KP, are within ±0.01% of the expected number of plates (and, conse-
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quently, of constraints). The Complete PP-G2KP, Complete +Cut-Position, and Re-

stricted PP-G2KP are within ±1% of the expected number of variables. The number

of variables in both Complete +Redundant-Cut and PP-G2KP (CP + RC) is 10 ∼ 20%

larger than expected. Given the experiments isolate such divergence to cases in which

Redundant-Cut is enabled, the author believes there is some disagreement between the

original implementation of Redundant-Cut and its reimplementation. However, the reim-

plementation follows closely the description given in Thomopulos (2016). The number

of variables and plates in Priced variants is not entirely deterministic. The number of

variables of Priced variants is either slightly above (+2%) or lower (−6 ∼ 68%).

For all non-priced variants, the fraction of the running time spent in the model

generation is negligible. Consequently, the comparison presented in Table 4.2 is suffi-

cient. The author cannot say the same for the priced variants. Thomopulos (2016) does

not report the size of the multiple LP models solved inside the iterative pricing (a phase

of the pricing). For instances in which original and faithful executed all phases of pricing

and solved the final model, the original spent 34.35% of its time in the iterative pricing

phase, while faithful spent 61.69%. It is hard to pinpoint the source of this discrepancy.

One possible explanation is that, in original, other phases took more time than they took

in faithful. For example, faithful uses the barrier algorithm for the root node relaxation of

the final model, which reduces the percentage of time spent in this phase. Nevertheless,

for the subset of the instances aforementioned, the total time spent by faithful was about

13% of the time spent by original. While the difference between machines and solvers

does not allow us to infer much from that figure, the author believes that the magnitude

of the difference guarantees that faithful is not a gross misrepresentation.

4.4 Comparison of faithful against enhanced

The primary purpose of this section is to evaluate the impact of the proposed

enhancements to the state of the art. The contributions evaluated here are the normalise

reduction (i.e., the plate-size normalisation presented in Section 3.1) and the enhanced

formulation (presented in Section 3.3.1). The state of the art consists in a formulation

(Complete PP-G2KP), two reductions (Cut-Position and Redundant-Cut), and a pricing

procedure presented in Furini, Malaguti and Thomopulos (2016), Thomopulos (2016). In

this section, the reimplementation of Complete PP-G2KP named faithful (to distinguish

from the data of the original) is employed. The author also reimplemented the reductions
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Table 4.3 – Comparison of faithful vs. enhanced over the 59 instances used in Thomopulos
(2016)

Variant T. T. #e #m #s #b S. T. T. #variables #plates
Faithful 106,057 – 59 53 0 41,257 88,901,964 1,738,366
Enhanced 25,538 – 59 58 2 14,738 3,216,774 231,836
F. +Normalizing 60,078 – 59 56 0 27,678 60,316,964 610,402
E. +Normalizing 14,169 – 59 59 52 14,169 2,733,125 145,157
F. +N. +Warming 60,542 – 59 56 0 28,142 60,316,964 610,402
E. +N. +Warming 9,778 – 59 59 4 9,778 2,733,125 145,157
Priced F. +N. +W. 49,919 8 50 55 0 6,719 3,210,857 174,214
Priced E. +N. +W. 9,108 8 51 59 1 9,108 600,778 64,904
P. F. +N. +W. -Purge 50,054 8 50 55 0 6,854 8,072,810 544,892
P. E. +N. +W. -Purge 9,209 8 51 59 0 9,209 1,021,526 134,102
The meaning of each column follows: T. T. (Total Time) – sum of the time spent in

all instances including timeouts, in seconds; #e (early) – number of instances in which
pricing found an optimal solution (and, consequently, did not generate a final model); #m
(modeled) – number of instances that generated a final model; #s (solved) – number of
solved instances; #b (best) – number of instances that the respective variant solved faster
than any other variant; S. T. T. (Solved Total Time) – same as Total Time but excluding
runs ended by time or memory limit; #variables (#plates) – sum of the variables (plates)
in all generated final models (see column #m). The first row (Faithful) has two runs
that ended in memory exhaustion. The time of these runs is accounted for as they were
timeouts. Source: the author.

and the pricing procedure, but as enhanced may also enable these optional procedures,

the text avoids labelling them as faithful to minimise confusion.

The faithful and enhanced formulations cannot be combined. However, both allow

enabling any combination of the optional procedures. The only exception is Redundant-

Cut, which is unnecessary for enhanced and, therefore, never applied to it. Outside of this

exception, in this section, Redundant-Cut and Cut-Position are always enabled. These

reductions never increase the number of variables (or constraints), cost negligible compu-

tational effort, and were already discussed in Furini, Malaguti and Thomopulos (2016),

Thomopulos (2016).

This section also discusses the effects of the purge procedure and warm-starting

the non-priced model. The deterministic heuristic used to MIP-start the non-priced mod-

els is the same used in the restricted priced model solved inside the pricing procedure.

Considering the data from Table 4.3, the following statements can be made:

1. enhanced solves more instances than faithful (using at most 24% of its time);

2. the number of variables of ‘Enhanced’ is almost the same as ‘Priced F. +N. +W.’;

3. between ‘Enhanced’ and ‘Priced F. +N. +W.’ the former has better results;
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4. normalise further reduces variables by 14 ∼ 32% and plates by 37 ∼ 65%;

5. MIP-starting enhanced makes it slightly slower in 52 instances;

6. MIP-starting enhanced saves more than one hour in the other 7 instances;

7. any benefit from MIP-start in ‘F. +N. +Warming’ was negated by its timeouts;

8. purge greatly reduces the model size but has almost no effect on running time;

9. the effects of applying pricing to enhanced are not much better than purge;

10. applying pricing to faithful is positive overall but loses one solved instance.

Both the number of variables (cuts) and plates (constraints) are reduced by en-

hanced. The reduction in the number of variables (cuts) is a direct consequence of the

enhanced differential: making unnecessary any cuts after the middle of each plate. How-

ever, the reduction in the number of plates (constraints) is an indirect consequence of the

same differential.

One of the ways the enhanced reduces the number of constraints is by innately

avoiding the creation of some size-normalised plate types. The length (width) of an hor-

izontal (vertical) cut is always normalised, i.e., a demand-abiding combination of piece

lengths (widths), and so is the length (width) of the first child, but there is no guarantee

about the length (width) of the second child. If the cut happens after the middle of the

plate and the length (width) of the second child is not normalised (or the second child

cannot pack any piece and is discarded as waste), then there is no perfectly symmetrical

cut in the first half of the plate. Horizontal (vertical) cuts in the first half of the same plate

(the only ones available to the enhanced formulation) cannot create a second child with

the same normalised length (width) of the previously mentioned first child. Therefore,

plates with the non-normalised length (width) are obtained by both formulations, but the

normalised counterparts are obtained only by the original formulation. The fact that a

plate is normalised (or not) is irrelevant in itself (at least for the considered formulations).

The fact that the enhanced formulation has the non-normalised plate instead of its nor-

malised counterpart is not relevant to the performance of the formulation (much less to its

correctness). However, having both the non-normalised plate and the normalised coun-

terpart increases the number of constraints without any clear advantage and, therefore,

negatively impacts the performance of the original formulation.

Considering the data from Table 4.4, the following statements can be made:
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Table 4.4 – Fraction of the total time spent in each step (only runs that executed all steps)

Variant Time E % H % RP % IP % FP % LP % BB %
Priced Faithful +N. +W. 6,632 0.12 0.38 26.16 57.36 2.91 4.56 8.29
Priced Enhanced +N. +W. 1,178 0.03 2.18 50.89 23.66 0.46 2.70 19.95
P. F. +N. +W. -Purge 6,766 0.11 0.37 26.00 57.03 2.81 5.12 8.45
P. E. +N. +W. -Purge 1,185 0.03 2.18 50.70 23.64 0.46 2.83 20.09

Time is the sum of all time (in seconds) spent in the 47 instances that finished all phases in
all four variants considered. These are the same 47 indicated in row Priced F. +N. +W. of
Table 4.3. From the 59 instances dataset, 4 had timeout (Hchl4s, Hchl7s, okp2, and okp3),
and 8 found an optimal solution inside pricing (3s, A1s, CU1, CU2, W, cgcut1, okp4, and
wang20). All remaining columns present percentages of the time spent in a specific phase:
E – enumeration of cuts and plates (and all reductions); H – restricted heuristic used to
warm-start the restricted priced model; RP – restricted pricing (not including the heuristic
time); IP – iterative pricing; FP – final pricing; LP – root node relaxation of the final
model; BB – branch-and-bound over the final model. Source: the author.

1. both BB and LP phases are slightly faster with purge as expected;

2. both E and H phases are almost negligible (at most 2% with H in enhanced);

3. together the RP and IP phases account for 74.5 ∼ 83.5%;

4. RP and IP swap percentages between enhanced and faithful;

5. faithful shows some overhead in all phases strongly affected by model size.

4.5 Evaluating enhanced against harder G2KP instances

The purposes of the experiment described in this section are: (i) to show the lim-

itations of the enhanced formulation against more challenging instances; (ii) to provide

better bounds and new proven optimal values for such instances.

Velasco and Uchoa (2019) proposes a set of 80 hard instances to test the limitations

of their bounding procedures; these instances are employed in this section. The instances

were artificially generated and are divided into four classes of 20 instances each. The

dataset focuses on two characteristics: (i) the area of the pieces is small compared to the

area of the original plate (the average ratio varies between 1.6% and 5%); (ii) each class is

defined by the shape of the original plate, and the likely shape of the randomly generated

pieces. The original plates of the first two classes have one dimension two or four times

larger than the other dimension. In the first class, the pieces are likely to be larger in the

same dimension the original plate is larger; in the second class, the pieces are likely to
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Table 4.5 – Summary table for the instances proposed in Velasco and Uchoa (2019)

C. Variant #m Avg. #v Avg. #p T. T. #s Avg. S. T.

1
Not Priced 20 1,787,864.55 22,316.50 172,574 5 2,114.85

Restricted Priced 13 467,692.15 17,139.00 180,051 5 3,610.29
Priced 5 264,315.80 11,978.40 196,733 3 4,377.77

2
Not Priced 20 1,533,490.70 18,638.50 167,973 5 1,194.68

Restricted Priced 20 453,159.70 18,638.30 155,184 8 3,198.11
Priced 8 394,613.88 9,735.50 178,812 4 1,503.01

3
Not Priced 20 2,895,300.75 33,249.40 171,155 5 1,831.11

Restricted Priced 10 431,913.00 15,895.80 174,569 5 2,513.80
Priced 5 372,597.00 13,287.80 179,712 4 1,728.08

4
Not Priced 20 3,201,374.45 35,197.10 167,776 7 3,910.89

Restricted Priced 10 497,802.20 17,011.00 197,047 2 1,323.65
Priced 2 211,093.00 14,227.00 199,477 2 2,538.79

Summary table for the instances proposed in (VELASCO; UCHOA, 2019). The columns
are: C. – instance class (described in (VELASCO; UCHOA, 2019), 20 instances each);
Variant – the solving method employed; #m (modeled) – number of instances in which the
model was built before timeout; Avg. #v and Avg. #p – the average number of variables
and plates in the #m instances that generated a final model for the respective variant; T.
T. (Total Time) – sum of the time spent in all instances in seconds, including timeouts; #s
(solved) – number of instances solved; Avg. S. T. (Avg. Solved Time) – as total time but
excludes timeouts and divides by #s. Averages were used instead of simple sums because
the very different number of generated and solved models made the sums misleading.
Source: the author.

be larger in the dimension the original plate is shorter. The original plates of the last two

classes are squares. The pieces of the third class have, on average, the same dimension

with double the size of the other; in the fourth class, half of the pieces follow the previous

distribution, and the other half invert the favoured dimension. More details can be found

in the Appendix.

Only two variants were executed for this experiment, the priced and non-priced

versions of enhanced with Cut-Position, normalise, and MIP-start enabled. The results

for the restricted priced variant are also presented because this variant is solved inside a

step of the priced variant (the same reductions apply to it). Table 4.5 presents a summary

of all runs, and Table 4.6 to 4.9 presents the improved bounds and solved instances.

For this experiment, Gurobi was allowed to use the 12 physical cores of the em-

ployed machine. Gurobi distributes the effort of the branch-and-bound (B&B) phase

equally among all cores. Solving an LP (as a root node relaxation, or not) calls bar-

rier, primal simplex, and dual simplex. Each of the simplex methods uses a single thread,

while barrier uses all remaining cores, and Gurobi stops when the first of them finishes.
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Concerning the data from Table 4.5, the author wants to highlight some unex-

pected results: (i) the total number of instances solved by the restricted priced was slightly

smaller than non-priced, even with non-priced solving the harder unrestricted problem;

(ii) many runs reached time limit without solving the continuous relaxation of the re-

stricted model (necessary for creating restricted priced model); (iii) non-priced solved

more instances than priced in all cases. It is worth noting that the priced variant could

have been considered the best configuration in the previous dataset, as its total time was

shorter than non-priced (both solved all instances). Ideally, the pricing procedure would

significantly reduce the size of the model and, consequently, the root node relaxation and

B&B phases would take much less time to solve. However, the gain in decreasing the

size of the (already reduced) enhanced model further does not seem to compensate for

the cost of solving hard LPs more than once. Also, previous sections have shown that

reducing the model size does not guarantee that the running time will be reduced by the

same magnitude.

The purpose of Table 4.6 to 4.9 is to allow querying the exact values for specific

instances. Even so, there are some gaps to fill. For the instances presented in Table 4.6

to 4.9, the min / mean / max gap between the heuristic lower bound and the final lower

bound were: 0.38 / 18.08 / 37.03 (non-priced); 0.68 / 20.62 / 37.29 (restricted priced);

9.17 / 19.38 / 32.24 (priced). In other words, no solution, or best bound, was given

by the heuristic, and most of the time, its solution was considerably improved. For the

reader convenience, it can be said that this experiment has: proved 22 unrestricted op-

timal values (5 already proven by Velasco and Uchoa (2019), confirming their results);

proved 22 position-only restricted optimal values (in an overlapping but distinct subset of

the instances); improved lower bounds for 25 instances; improved upper bounds for 58

instances.
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Table 4.6 – V&U instances either solved (restricted or unrestricted) or with improved bounds.
(PART I)

Instance Lower Bounds for Unrestricted RP UB Upper Bounds for Unr.
RP P NP V&U P NP V&U

P1_100_200_25_1 27,251 27,251 27,251 27,251 27,251 27,251 27,251 27,340
P1_100_200_25_2 25,090 25,090 25,090 24,870 25,090 25,403 25,389 25,522
P1_100_200_25_3 25,730 25,730 25,730 25,730 25,730 25,974 25,909 26,088
P1_100_200_25_4 26,732 26,896 26,896 26,769 26,732 26,896 26,896 27,051
P1_100_200_25_5 26,152 – 26,152 25,772 26,565 – 26,617 26,857
P1_100_200_50_1 28,388 – 28,440 28,388 28,504 – 28,440 28,558
P1_100_200_50_2 26,276 26,276 26,276 26,276 26,276 26,276 26,276 26,326
P1_100_200_50_3 27,192 – 27,192 27,165 27,536 – 27,483 27,679
P1_100_200_50_4 28,058 – 28,095 27,977 28,345 – 28,340 28,388
P1_100_200_50_5 27,722 – 27,722 27,603 27,930 – 27,722 28,009
P1_100_400_25_1 53,247 – 53,008 53,904 54,540 – 54,707 55,038
P1_100_400_25_2 – – 41,275 44,581 – – 47,091 47,097
P1_100_400_25_3 42,748 – 46,222 47,455 * – 49,371 49,473
P1_100_400_25_4 – – 38,567 40,517 – – 46,069 46,078
P1_100_400_25_5 44,482 – 53,220 53,205 * – 54,120 54,063
P1_100_400_50_1 – – 53,831 55,856 – – 56,897 57,074
P1_100_400_50_2 – – 40,440 48,373 – – 51,754 51,893
P1_100_400_50_4 – – 55,107 52,708 – – 55,654 55,661
P1_100_400_50_5 – – 53,749 53,502 – – 55,005 55,454

Instances solved (position-only restricted or unrestricted) or with improved bounds.
Lower and upper bounds that are valid for the unrestricted problem are grouped. Col-
umn RP UB (restricted priced upper bound) is kept separate as it is not a valid bound for
the unrestricted problem. Bold indicates the best unrestricted bounds for the instance. If
the LB and the UB are the same for the same instance and variant, both values are under-
lined. The instance names follow the pattern Class_L_W_n_seed. The sub-headers
mean: RP – Restricted Priced (solved inside P runs); P – Priced; NP – Not Priced; V&U
– obtained by Velasco and Uchoa in (VELASCO; UCHOA, 2019).
* These runs hit the time limit at the very start of the upper bound computation and, con-
sequently, they produced only large and irrelevant upper bounds, which the author chose
to omit to keep the table formatting.
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Table 4.7 – V&U instances either solved (restricted or unrestricted) or with improved bounds.
(PART II)

Instance Lower Bounds for Unrestricted RP UB Upper Bounds for Unr.
RP P NP V&U P NP V&U

P2_200_100_25_1 21,494 21,494 21,494 21,494 21,494 21,494 21,494 21,494
P2_200_100_25_2 25,244 25,413 25,413 25,413 25,244 25,413 25,413 25,648
P2_200_100_25_3 25,282 25,397 25,397 25,397 25,282 25,640 25,647 25,723
P2_200_100_25_4 25,729 – 25,734 25,437 26,181 – 26,239 26,898
P2_200_100_25_5 26,211 26,413 26,413 26,220 26,211 26,728 26,413 26,898
P2_200_100_50_1 25,679 – 25,626 25,627 26,233 – 26,282 26,447
P2_200_100_50_2 27,801 27,801 27,801 27,789 27,801 27,801 27,801 27,943
P2_200_100_50_3 27,435 27,453 27,453 27,453 27,435 27,584 27,579 27,596
P2_200_100_50_4 27,395 – 27,439 27,362 27,668 – 27,704 27,718
P2_200_100_50_5 29,386 29,386 29,386 29,386 29,386 29,386 29,386 29,386
P2_400_100_25_1 49,327 – 49,947 49,026 50,218 – 50,365 51,006
P2_400_100_25_2 48,312 – 48,542 47,773 49,268 – 49,315 49,908
P2_400_100_25_3 46,970 – 46,860 45,406 47,113 – 47,204 48,938
P2_400_100_25_4 51,051 – 49,847 49,521 51,526 – 51,600 52,229
P2_400_100_25_5 49,620 – 48,832 47,403 50,440 – 50,580 54,248
P2_400_100_50_1 54,550 54,550 54,679 52,890 54,550 54,981 54,916 55,629
P2_400_100_50_2 54,821 – 54,768 53,492 55,183 – 55,181 55,543
P2_400_100_50_3 54,141 – 54,747 54,216 55,537 – 55,709 56,065
P2_400_100_50_4 53,375 – 54,240 48,649 54,857 – 54,987 55,604
P2_400_100_50_5 53,763 – 53,541 50,047 54,893 – 54,918 55,471

Table organization is the same as Table 4.6. Source: the author.

Table 4.8 – V&U instances either solved (restricted or unrestricted) or with improved bounds.
(PART III)

Instance Lower Bounds for Unrestricted RP UB Upper Bounds for Unr.
RP P NP V&U P NP V&U

P3_150_150_25_1 29,896 29,989 29,989 29,896 29,896 29,989 29,989 30,005
P3_150_150_25_2 29,345 – 29,196 29,101 29,906 – 29,965 29,961
P3_150_150_25_3 30,286 30,286 30,286 30,286 30,286 30,286 30,286 30,327
P3_150_150_25_5 31,332 31,332 31,332 30,924 31,332 31,715 31,682 31,839
P3_150_150_50_1 31,377 31,701 31,701 31,701 31,377 31,701 31,701 31,892
P3_150_150_50_2 30,846 – 30,884 30,884 31,110 – 31,008 31,115
P3_150_150_50_3 32,037 32,121 32,121 32,050 32,037 32,121 32,121 32,240
P3_150_150_50_4 31,925 – 31,925 31,925 32,210 – 31,925 32,070
P3_150_150_50_5 31,631 – 31,521 31,448 31,857 – 31,896 31,901
P3_250_250_25_1 – – 51,027 58,480 – – 60,548 60,611
P3_250_250_25_2 – – 63,646 68,070 – – 73,316 73,339
P3_250_250_50_1 – – 59,072 67,603 – – 76,117 76,341
P3_250_250_50_2 – – 62,772 75,569 – – 82,644 82,666

Table organization is the same as Table 4.6. Source: the author.
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Table 4.9 – V&U instances either solved (restricted or unrestricted) or with improved bounds.
(PART IV)

Instance Lower Bounds for Unrestricted RP UB Upper Bounds for Unr.
RP P NP V&U P NP V&U

P4_150_150_25_1 30,870 – 30,923 30,923 31,094 – 30,923 31,130
P4_150_150_25_2 30,576 – 30,687 30,460 30,786 – 30,687 30,931
P4_150_150_25_3 30,257 – 30,352 30,352 30,501 – 30,352 30,352
P4_150_150_25_4 30,055 30,106 30,106 30,106 30,055 30,106 30,106 30,106
P4_150_150_25_5 30,582 – 30,102 30,582 30,952 – 31,228 31,286
P4_150_150_50_1 31,673 31,673 31,673 31,673 31,673 31,673 31,673 31,673
P4_150_150_50_2 32,302 – 32,317 32,317 32,434 – 32,317 32,423
P4_150_150_50_3 30,906 – 30,913 30,882 31,500 – 31,519 31,756
P4_150_150_50_4 31,912 – 31,961 31,912 32,206 – 31,961 32,140
P4_150_150_50_5 32,027 – 31,845 31,864 32,331 – 32,308 32,484
P4_250_250_25_4 – – 69,530 79,476 – – 81,634 81,839
P4_250_250_50_2 – – 67,675 77,206 – – 87,314 87,331
P4_250_250_50_4 – – 69,063 78,359 – – 86,941 87,069

Table organization is the same as Table 4.6. Source: the author.
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5 COMPARISON TO OTHER FORMULATIONS OF THE LITERATURE

This chapter compares the proposed formulation (BBA) to another five formula-

tions of the recent literature besides its immediate predecessor (FMT). A concise review

of these other formulations is given in Section 5.1. Differently from BBA and FMT, the

employed implementation of these formulations was written in C++ for the CPLEX solver

and not by the author of this thesis. To control differences between the implementations,

the design of the experiments is different from the other chapters: the implementations

are used only to generate and save the models into files (not to solve the models), and

both CPLEX and Gurobi are called from the command line to solve each of these saved

models. To avoid any doubts about the specific experiment setup and design, the same is

exhaustively described in Section 5.2 and Section 5.3. Besides the comparison between

the formulations in Section 5.5, a comparison between solvers is also presented (Sec-

tion 5.4), which allows us to dispel any doubts about the choice of solver favouring one

formulation over another.

Another relevant distinction is that these other formulation are, in general, more

compact and easier to implement in a GAMS-like framework. As it was seen in Sec-

tion 4.4, the time spent by FMT/BBA in the cut-and-plate enumeration is often negligible

(less than 0.2% for the FMT59 dataset), however implementing this enumeration correctly

and efficiently is no trivial task.

5.1 Concise review of the newly considered formulations

For the sake of explanation, the author chose to aggregate some of the formulations

in the same paragraph when they share similar modelling strategies. The author seeks to

highlight how the interpretation of solutions can lead to very different formulations.

The BCE formulation, proposed for the Guillotine Strip Packing Problem in Mes-

saoud, Chu and Espinouse (2008) and adapted for the G2KP in Martin et al. (2020b),

is based on a theorem that characterizes guillotine patterns and uses coordinates at which

items may be located. The theorem states that a pattern is of guillotine type if, and only if,

for any region (i.e., sub-rectangle) of the object, at least one of the following conditions is

satisfied: (i) this region contains only a single item; (ii) the segments of the piece length in

this region on the x-axis consist of at least two disjoint intervals; and, (iii) the segments of

the piece width in this region on the y-axis consist of at least two disjoint intervals. The
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formulation is compact in the numbers of variables and constraints with O(n4) for the

GSPP, where n is the number of pieces to be packed. This formulation seems to recall the

interval-graph approach of Fekete and Schepers (1997) for the non-guillotine Orthogonal

Packing Problem.

The MLB formulation, proposed in Martin et al. (2020b), assumes that each so-

lution can be represented by a sequence of horizontal and vertical guillotine cuts over a

two-dimensional grid interpretation of object L × W . It was inspired by a formulation

for the non-guillotine G2KP from Beasley (1985b). In a MLB model, a binary variable

xkij represents the allocation of the left-bottom corner of an piece type k ∈ {1, . . . ,m}

to a point (i, j) on the object, 0 ≤ i ≤ L− lk, 0 ≤ j ≤ W − wk. Taking into considera-

tion the constraints from Beasley (1985b), it ensures a constrained pattern and avoids the

overlap between any pair of allocated/cut pieces, which is related to a maximum clique

problem. Then it satisfies the guillotine cutting with binary variables for horizontal cuts

hii′j , 0 ≤ i < i′ ≤ L, 0 ≤ j ≤ W , vertical cuts vijj′, 0 ≤ i ≤ L, 0 ≤ j < j′ ≤ W ,

and enabled rectangles pi1i2j1j2 , 0 ≤ i1 < i2 ≤ L, 0 ≤ j1 < j2 ≤ W . The main concepts

involve associating: (i) the variables xkij , hijj′ and vii′j by prohibiting horizontal and ver-

tical cuts on allocated pieces and imposing the allocation of the pieces on cut corners; (ii)

the variables hii′j , vijj′ and pi1i2j1j2 by allowing only horizontal and vertical edge-to-edge

cuts in enabled rectangles. The formulation is pseudo-polynomial in the numbers of vari-

ables and constraints with O(mLW + L2W 2). As expected, one can reduce the number

of variables and constraints by using the discretization of normal sets or related ones Herz

(1972), Christofides and Whitlock (1977).

The MM1 and MM2 formulations, proposed in Martin, Morabito and Munari

(2020a), are inspired in the bottom-up strategy of successive horizontal and vertical builds

of the pieces. A build envelops two small rectangles to generate a larger rectangle. For

instance, as introduced in Wang (1983), the horizontal build of pieces l1×w1 and l2×w2

provides a larger rectangle of size (l1+ l2)×max{w1, w2}, and the vertical build provides

a larger rectangle of size max{l1,2 } × (w1 + w2). Defining an MM1 or MM2 model, it

requires to previously determine an upper bound n̄ to the maximum number of builds on

object L × W (e.g., n̄ =
∑

i∈I bi). The MM1 formulation is pseudo-polynomial as its

definition requires an explicit binary tree structure, which is generated by a procedure

that considers upper bound n̄ as an input. This binary tree structure is represented by a

set of triplets (j, j−, j+), where j− and j+ are the left and right child nodes of node j, re-

spectively; the root node j = 1 represents the object (i.e., the solution). Its main concepts
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involve ensuring: (i) each node j of the binary tree structure can represent either a copy

of an item type i ∈ I (binary variable zji), an horizontal build (binary variable xjh), a ver-

tical build (variable xjv), or it is not necessary in the solution; (ii) the solution represents

a guillotine pattern (i.e., a virtual binary tree) by linking the variables xjo, o ∈ {h, v}, of

each parent node j with the variables of its child nodes j− and j+; and, (iii) the variables

Lj and Wj are considered to represent, respectively, the length and width of a node j ac-

cording to the previous definition of horizontal and vertical builds, over variables zji and

xjo. The MM2 formulation, however, is compact as it considers the set of binary variables

yjk, j, k ∈ {1, . . . , n̄ − 1}, j < k, for representing implicitly the binary tree structure.

The MM1 and MM2 formulations were first proposed as integer non-linear programs, and

then they were linearized through the use of disjunctive inequalities of big-M type.

The MM3 formulation, proposed in Martin, Morabito and Munari (2020b), is in-

spired in the top-down strategy of successive cuts on the original and residual objects

towards the items. It makes use of the binary tree structure initially proposed for the

MM1 formulation. As a consequence, it presumes the same constraints for representing

a guillotine pattern (i.e., a virtual binary tree) by linking the variables xjo, o ∈ {h, v}, of

each parent node j with the variables of its child nodes j− and j+. However, its geometric

constraints are non-trivial. Since variables Lj and Wj are no longer in the formulation, the

sizes of the residual objects (i.e., nodes of the binary tree structure) are defined according

to the decisions taken in the previous residual objects. Alternatively stated, the decisions

of each node j take into consideration the previous decisions of all its ancestral nodes up

to the root node through disjunctive inequalities of big-M type.

5.2 Experiments setup

Every experiment in this section used the following setup. The CPU was an

AMD® RyzenTM 9 3900X 12-Core Processor and 32GiB of RAM were available. The

operating system was Ubuntu 20.04 LTS (Linux 5.4.0). Two kernel parameters had

non-default values: overcommit_memory = 2 and overcommit_ratio = 95.

Hyper-Threading was disabled. Each run executed on a single thread, and no runs exe-

cuted simultaneously. The computer did not run any other CPU bound task during the

experiments.

The models for the BBA and FMT formulations were built using the Julia lan-

guage and the Gurobi solver. The models for the BCE, MLB, MM1, MM2, and MM3
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formulations were built using C++ and the CPLEX solver. To homogenize the experi-

ments, these implementations were used only to build the models and then save them to

MPS files. Each selected combination of formulation, rotation configuration, and instance

originated a single MPS file. A Julia script then executed each MPS file in four different

configurations: CPLEX/LP, CPLEX/MILP, Gurobi/LP, and Gurobi/MILP.

The implementation of BBA and FMT formulations is available at an online repos-

itory1. The scripts for (i) saving the BBA and FMT models as MPS and (ii) solving all

MPS files are also availables2. The implementations of all the other formulations, as well

as the script for generating the MPS files, are available upon request to Martin Pereira

Martin3 who graciously let the author borrow his implementations for the purpose of this

comparison. The same version of the compilers and solvers was used for the MPS gen-

eration and the MPS solving phases.Those are: Julia 1.5.3, g++ 9.3.0, CPLEX 20.1, and

Gurobi 9.1.1.

In both CPLEX and Gurobi some non-default configurations were used. The

solvers were configured to: employ a single thread; use a specified seed (CPX_PARAM_

RANDOMSEED, in CPLEX, and Seed, in Gurobi, were set to one); employ an integer

tolerance adequate for the instances; avoid finishing with suboptimal solutions for the se-

lected datasets (CPX_PARAM_EPGAP, in CPLEX, and MIPGap, in Gurobi, were set

to 10−6); and respect an one hour time-limit (CPX_PARAM_TILIM, in CPLEX, and

TimeLimit, in Gurobi, were set to 3600). For a more graceful handling of mem-

ory exhaustion, set CPLEX parameter CPXPARAM_MIP_Limits_TreeMemory is set

to 28672 (Gurobi does not seem to provide a similar parameter). Only when solving

the FMT and BBA formulations, the solver employs the barrier method for solving the

LP and for solving the root node relaxation (CPXPARAM_LPMethod and CPXPARAM_

MIP_Strategy_StartAlgorithm, in CPLEX, were both set to 4, and Method, in

Gurobi, was set to 2).

5.3 Outline of the experiments

A short description of the instance datasets used in this section follows. More

details about each dataset can be found in the Appendix.

1See <https://github.com/henriquebecker91/GuillotineModels.jl/tree/0.5.0>
2See <https://github.com/henriquebecker91/phd/tree/BMC-1>
3The ORCID of Martin Pereira Martin is 0000-0002-6722-7571. He is the main author of Martin et al.

(2020b), Martin, Morabito and Munari (2020a), and Martin, Morabito and Munari (2020b).

https://github.com/henriquebecker91/GuillotineModels.jl/tree/0.5.0
https://github.com/henriquebecker91/phd/tree/BMC-1
https://orcid.org/0000-0002-6722-7571
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CU/CW Datasets introduced by Fayard, Hifi and Zissimopoulos (1998). Their names

stand for Constrained (demand) and Unweighted/Weighted. They totalise 22 in-

stances: CU1–11 and CW1–11.

APT Dataset introduced by Alvarez-Valdés, Parajón and Tamarit (2002). The whole

dataset consists of 40 instances (APT10–49), however, only the second half (APT30–

49) is employed here, because the first half is for the unconstrained demand variant.

The APT30–39 are unweighted and APT40–49 are weighted.

FMT59 Group of instances assembled by (FURINI; MALAGUTI; THOMOPULOS,

2016) with instance subsets from previous datasets. Already employed in previ-

ous chapters.

Easy18 A subset of FMT59 defined by the author for this section. Its purpose is to

reduce the number of runs needed before discarding a formulation from further

consideration. The dataset contains: cgcut1–3, gcut1–12, OF1–2, and wang20.

The author selected these datasets because the prior work already employed them.

For the CU, CW, and APT datasets, with and without rotation, the best known lower

bounds from Velasco and Uchoa (2019) are used. For the FMT59 dataset, without rota-

tion, Furini, Malaguti and Thomopulos (2016) presents every optimal value4, but there

is no comprehensive source on the best known values for this dataset when rotation is

allowed.

Each run can be uniquely identified by a combination of instance, formulation, ro-

tation configuration (allow rotation or not), solve mode (MILP or LP), and solver (CPLEX

or Gurobi). The first three characteristics determine an MPS file; the last two determine

four distinct runs over the same MPS file.

The whole set of runs consists of:

1. The Easy18 instances combined with each of the seven considered formulations and

both rotation configurations, except by the BCE formulation with rotation enabled,

which was not implemented.

2. The CU, CW, and FMT59 instances combined with the BBA, MM3, hierachical,

and MM2 formulations and both rotation configurations.

4There is only one typo: the optimal value of the okp2 instance is 22502, not 22503.
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3. The APT instances combined with the four formulations mentioned above but only

with rotation disabled. No runs found optimality with rotation disabled and, there-

fore, the author decided to not spend computational effort in the rotation-enabled

counterparts.

5.4 Comparison between CPLEX and Gurobi

This section aims to answer two questions: (i) is one of the solvers superior in this

context? (ii) does a choice of solver benefit a specific formulation?

Table 5.1 answers the first question by revealing a small but consistent advantage

for the Gurobi solver. Nevertheless, Gurobi does not completely dominate CPLEX, as

each solver had some instances only solved by it.

Table 5.1 – Comparison amongst CPLEX and Gurobi results.
Solver Type #opt #u. opt #best #c. best Avg. T (s) Avg. S. T. (s)

CPLEX MILP 288 12 96 16 2435.86 455.21
Gurobi MILP 302 26 218 63 2339.84 353.62
CPLEX LP 704 4 194 6 379.17 40.62
Gurobi LP 720 20 530 24 297.79 31.78

The meaning of each column follow: #opt – number of runs finished by optimality;
#u. opt – number of optimal runs unique to the respective solver (i.e., other solver did
not reach optimality); #best – number of optimal runs in which the respective solver
finished before the other solver (counting the ones not finished by the other solver); #c.
best – number of clean best times, i.e., optimal runs that took at least one minute for
the respective solver and either were not solved by the other solver or it took double the
time to solve; Avg. T. (s) – mean run time in seconds (runs ended by timeout or memory
exhaustion are counted as taking one hour); Avg. S. T. (s) – mean run time of solved runs
in seconds.

Table 5.2 – Comparison amongst CPLEX and Gurobi results by formulation.
Measure BCE BBA FMT MLB MM1 MM2 MM3
Optimal 105.88 99.31 131.57 150.00 100.00 100.00 101.24
T. Time 85.45 101.75 74.71 58.61 45.09 27.68 67.60

Percentage of solved runs and total time spent by Gurobi in relation to CPLEX, broken
down by formulation, for all MILP runs. Runs ended by time or memory limit are counted
as taking one hour. Source: the author.

Table 5.2 answers the second question. In the first row, figures above 100% mean

Gurobi solved more runs than CPLEX and, in the second row, figures below 100% mean

Gurobi spent less time than CPLEX. Gurobi has better results for all formulations except
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the BBA formulation, in which the results are very similar (only slightly worse). The

choice of Gurobi as a solver improves the results for some formulations more than others,

but, in general, the formulations which solve fewer instances are the most beneficial.

Therefore, the author considers Gurobi a fair choice for the rest of the paper

5.5 Comparison between formulations

This section aims to provide empirical evidence for the choice of one formulation

over another and to identify the impact of allowing rotation over all formulations. Given

the number of considered formulations, Table 5.3 filters the considered formulations fur-

ther.

Table 5.3 – Filtering formulations with EASY18 dataset.
Fixed Rotation

Method #opt glb Avg. T. gub #f #opt glb Avg. T. gub #f

BCE 2 7.00 3341 7.31 0 – – – – –
BBA 18 0.00 < 1 1.74 0 18 0.00 < 1 0.63 0
FMT 13 27.78 1336 2.48 4 10 44.44 1723 0.71 7
MLB 10 33.62 1671 3.85 4 3 78.23 3002 3.22 9
MM1 16 0.08 750 7.31 0 14 0.31 1082 3.32 0
MM2 10 0.33 1684 7.31 0 9 0.45 1885 3.32 0
MM3 16 0.07 685 7.31 0 12 0.43 1297 3.32 0

The explanation of these columns follows: #opt – the number of runs finished by op-
timality; glb – the average percentage gap between the best lower bound found and the
best known lower bound (if the run finishes without a solution, as is the case of memory
exhaustion, it is assumed that a trivial empty solution was returned); Avg. T. – the average
total time spent by a run in seconds (both timeout and memory exhaustion count as one
hour); gub – the average percentage gap between the continuous relaxation and the best
known lower bound; #f – the number of runs finished by timeout or memory exhaustion
during the root node relaxation phase (these are excluded from gub). Source: the author.

Table 5.3 shows that, for the EASY18 dataset, BBA dominates all other formula-

tions. The MLB has the largest average lower bound gap. The model size often prevents

its runs from finishing solving the root node relaxation. The same problem is also seen in

FMT runs but to a smaller extent. BCE solves the least instances; its lower bound gap is

smaller than FMT and MLB but considerably above the rest of the instances. MM1 and

MM3 solve most instances and have very small lower bound gaps. Finally, MM2 solves

a number of instances comparable to FMT and MLB but, different from them, the root

node relaxation is always solved, and a good primal solution is delivered.
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Table 5.4 – Solving datasets CU and CW
CU

Fixed Rotation

Alg. #opt glb Avg. T. gub #opt glb Avg. T. gub

BBA 10 9.09 425 0.21 9 18.18 716 0.06
MM1 3 0.54 2928 1.45 0 0.68 3600 0.57
MM2 0 0.80 3600 1.45 0 0.88 3600 0.57
MM3 3 0.78 3021 1.45 2 0.97 3400 0.57

CW

Fixed Rotation

BBA 11 0.00 15 1.24 10 0.00 496 1.72
MM1 5 0.00 2560 11.13 3 0.01 3052 5.26
MM2 0 0.89 3600 11.13 0 0.51 3600 5.26
MM3 5 0.00 2602 11.13 2 0.80 3259 5.26

The columns are the same as of Table 5.3 except #f is ommited because no run was
interrupted in the middle of solving the root node. Source: the author.

Considering these results, the authors chose to remove BCE, MLB, and FMT from

further comparison. The rationale for these choices follows: BCE solves very few in-

stances leading to a great increase in experiment times; the model size of MLB leads to

memory problems, especially for runs allowing rotation; and FMT is similar to BBA but

without some additional enhancements.

In Table 5.4, it can be seen that two distinct behaviours emerge. The BBA (pseudo-

polynomial) starts to present a behaviour similar to FMT: either solving the instances

faster than the other formulations, or failing to solve the root node relaxation at all5. The

other three formulations have difficulty proving optimality; however, they always solve

the root node relaxation and provide primal solutions of good quality. The gub column in-

dicates that MM1, MM2, and MM3 have the same average upper bound gap. The reason

for this similarity is that the three formulations, while distinct, use the same additional

constraints to tighten the upper bound to a precomputed value. In all three formulations,

these constraints impose a tighter bound than the one imposed by the remainder of the

formulation, leading to this similarity. The problem becomes harder for all formulations

if rotation is allowed. The values in the gub column for MM1, MM2, and MM3 reduce

when rotation is allowed; however, this only happens because their upper bounds stay the

same while the best known solution increases in value.

5The table omits it but BBA fails to solve the root node relaxation one time for CU/Fixed and two times
for CU/Rotation.
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Table 5.5 – Solving datasets FMT59 and APT
FMT59

Fixed Rotation

Method #opt glb Avg. T. gub #f #opt glb Avg. T. gub #f

BBA 57 1.69 183 1.75 1 56 1.05 233 3.28 1
MM1 27 1.00 2387 4.89 0 20 -1.16 2657 4.66 0
MM2 10 1.40 3015 4.89 0 9 -1.04 3077 4.66 0
MM3 25 1.39 2328 4.89 0 13 -0.74 2837 4.66 0

APT

Fixed Rotation

BBA 0 100.00 3600 – 20 – – – – –
MM1 0 11.32 3601 1.86 0 – – – – –
MM2 0 3.10 3600 1.86 0 – – – – –
MM3 0 90.39 3509 1.90 9 – – – – –

The columns are the same as of Table 5.3.

Table 5.5 corroborates the findings of Table 5.4. BBA solves more FMT59 in-

stances but ends up with a larger glb than the other formulations because of the poor so-

lution quality in the few unsolved instances. For the FMT59 instances, MM1 has the

lowest glb but, for the APT instances MM2 surpasses it. The BBA cannot solve the

root node relaxation for any APT instances during the one-hour time limit. The col-

umn FMT59/Rotation/glb has negative values because, as mentioned in Section 5.3, the

author chose to use the known optima from fixed orientation for this particular dataset.
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6 HYBRIDISATION WITH THE RESTRICTED FORMULATION

This chapter proposes another symmetry-breaking change compatible with the

formulations considered in Section 3.3, this is, FMT and the proposed formulation (BBA).

This change further complicates the formulation, and the empirical results did not reveal

an improvement as large as the previously discussed enhancements. Therefore, the author

chose to keep this change self-contained in this chapter. The author is unaware of any

previous application of the proposed change to unrestricted 2D guillotine problems. The

Cut-Position enhancement from Furini, Malaguti and Thomopulos (2016) draws inspira-

tion from the same broad idea: to get closer to a formulation for the (simpler) restricted

problem while keeping optimality for the unrestricted problem. However, the proposed

change and the Cut-Position both approach this goal in distinct and complementary ways.

6.1 The restricted problem and piece-outlining cuts

A guillotine cutting problem is said to be restricted if (i) each horizontal (vertical)

guillotine cut must match the length (width) of a piece that fits into the plate, i.e., it

happens at a restricted cut position, and (ii) a piece of that length (width) is guaranteed

to be obtained from the first child plate. The concept of a restricted variant appears first

in the context of the three-staged guillotine cutting problem. The two-staged problem is

inherently restricted: a cut that does not match the outline of a piece, or a cut that does

not guarantee a piece extraction because it is not paired with a cut from the only other

stage, is a cut that will not help to obtain any pieces before the two stages are over. Only

when the number of stages is three or more that an optimal solution for the unrestricted

problem may require cuts without such immediate purposes. Applying the concept of

restricted to unlimited stages is not new, Furini, Malaguti and Thomopulos (2016) already

does it. Furini, Malaguti and Thomopulos (2016) also presents an intermediary variant

which respects (i) but not (ii), this variant can be referred to as position-only restricted

problem. The position-only restricted problem is the one solved by the restricted priced

in Chapter 4.

The restricted problem has at least two performance advantages over the unre-

stricted problem. The first advantage is related to the number of restricted cut positions:

the number of cuts positions in any plate is bounded by the number of pieces (i.e., linear

on the input) and not pseudo-polynomial (i.e., bounded by plate dimensions), even if the
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number of plates themselves is still pseudo-polynomial. The second advantage is related

to the piece extraction requirement. There is no optimality loss if, after a cut at a restricted

position related to a single piece, it is immediately determined that, if necessary, the first

child plate will be cut again in the next stage to obtain the respective piece. The possibility

of joining two decision variables together has led previous prior on the restricted problem,

as Silva, Alvelos and Carvalho (2010), to redefine cut to mean one or two guillotine cuts

associated a priori to a piece type and which outline and obtain a piece-sized plate that

cannot be further cut. The guillotine cuts considered until now may incidentally outline

and obtain a piece-sized plate as their child plates. However, they are not a priori associ-

ated with a single piece type, nor do they guarantee their first child plate (if piece-sized)

cannot be further cut. In this chapter, the text distinguishes between these two kinds of

cuts to avoid confusion. The single and unassociated cuts considered until now will be

referred to as basic guillotine cuts (or BGCs for short), and this new definition of cut will

be referred to as piece-outlining cuts (or POCs for short). Figure 6.1 may help to visualise

the piece-outlining cuts

Figure 6.1 – Piece-outlining cuts
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right
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Horizontal-first POC
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Single-cut POCs

Souce: the author.

While a POC constituted by two BGCs may be considered a single decision by a

solving method and may be seen as happening in succession, in practice, stage restrictions

may change the order a cutting machine performs them. However, these real-world details

do not impact the modelling and will not be discussed in this chapter. Essentially, each

piece type that fits into a plate has two POCs associated with it. One POC that does the

horizontal guillotine cut first and then obtains the piece from the first child plate through

a vertical cut (if necessary). This POC always leaves a top residual plate (second child

plate of the first cut) and often a right residual plate (second child plate of the second cut).

The other POC is the same, except that the vertical cut is done first (i.e., always leaving a

right residual and often a top residual plate). Finally, the piece-sized plate obtained by a
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POC is the first child plate of the second cut if the second cut exists; otherwise, just the

first child plate of the only cut. The piece-sized plate is either immediately regarded as an

obtained piece (already enforcing a rule of the restricted problem) or may be considered

waste (e.g., the cutting stock problem often allows piece overproduction). However, the

piece-sized plate is never treated as an intermediary plate that could be further cut.

A caveat of the coupled representation mentioned above is that, for some instances

of the restricted problem, the number of POCs may be larger than the number of restricted

cut positions. In general, each piece type that fits into a plate has two POCs1 (vertical-first

and horizontal-first). An horizontal (vertical) BGC at a restricted position is shared by all

piece types with the same length (width). However, the main advantage of the coupled

representation comes from breaking symmetries, not reducing the number of variables.

The POCs are a natural choice for the restricted problem but not for the unre-

stricted problem for mostly two main reasons. The first reason is that, in the restricted

problem, each horizontal (vertical) cutting position shares length (width) with at least one

piece. However, in the unrestricted problem, some cutting positions can only be reached

by combining many pieces. The second reason is that the definition of the restricted prob-

lem guarantees that employing only POCs cannot lead to optimality loss; the same is not

true for the unrestricted problem (see Figure 6.2).

Figure 6.2 – Distinctions between, restricted, position-only restricted, and unrestricted problems.

Restricted Position-only Restricted Unrestricted
The restricted problem cannot obtain the unrestricted optimal solution. If the first cut

happens at a restricted position, the child plates cannot fit the six pieces of the optimal
solution, regardless of the piece chosen to be obtained first from the original plate and the
orientation of the first cut employed. The position-only restricted problem can obtain the
unrestricted optimal solution if, by chance, there is an unpacked piece with a width that
matches the necessary vertical cut; otherwise, the solution is also out of reach. Source:
the author.

1The exception happens when the piece type shares the length or the width with the plate and, conse-
quently, both POCs are equivalent and can be considered the same.
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Silva, Alvelos and Carvalho (2010) proposes a mathematical formulation for the

two-stage and three-stage restricted cutting stock problems. The formulation was not

named by its authors; hence, in this text, it will be referred to as SAV (from the author’s

surname initials: Silva, Alvelos, and Valério). The SAV is very similar to the FMT, which

is examined in Section 3.2. In fact, the SAV may be seen as an FMT variant that uses

POCs instead of BGCs. The limitation to two- and three-stage problems comes from the

cut-and-plate enumeration. If the enumeration is not stopped at a specific stage, the SAV

immediately supports unlimited stages. Essentially, the proposed change is to: hybridise

the FMT with the SAV, replacing BGCs with POCs only when doing so cannot lead to

loss of optimality for the unrestricted problem.

6.2 Implementation details

As seen in the last section, a POC (piece-oulining cut) is prefered over a BGC

(basic guillotine cut) if it is guaranteed that replacing the latter by the former will not

cause loss of optimality. For the restricted problem, the typical set of horizontal (vertical)

cutting positions is just the set of unique values in li (wi) for every piece type i that fits

into the plate. Besides one corner case, each single guillotine cut at such positions may

be replaced by the corresponding POC. The corner case arises in cutting positions that

come from a length (or width) value shared by two or more pieces. In this case, a single

guillotine cut needs to be replaced by two or more POCs, depending on how many pieces

share the corresponding cutting position; otherwise, the model would lose the capability

to produce that piece type.

For the unrestricted problem, the exact set of cutting positions often varies be-

tween different solving methods. There are many discretisation procedures (see Sec-

tion 3.3) and reductions to be applied either after or during such discretisations. The

author will focus on the discretisations and reductions procedures employed by the for-

mulations of Chapter 4 (this is, the FMT and BBA formulations). The base discretisation

employed by both FMT and BBA is straightforward: q is an horizontal (vertical) cutting

position if, and only if, there is a demand-abiding linear combination of lengths (widths)

from pieces that fit into the respective plate. This cutting position set is a superset of the

restricted set (from the last paragraph) and will be referred to as the base unrestricted set.

Suppose a cutting position allows for the associated BGC to be replaced by (one or more)

POCs without loss of optimality for the unrestricted problem. In that case, the cutting
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position (and, by extension, the BGC) is said to be replaceable.

A cutting position must meet two conditions to be deemed replaceable. The first

condition is that a cutting position of the same orientation for the same plate exists in the

restricted set. This first condition is necessary because, otherwise, the cut is not outlining

a piece, i.e., there is no corresponding piece type to be extracted from the first child

plate. The second condition is that such horizontal (vertical) cutting positions cannot be

obtainable by a demand-abiding linear combination of two or more piece lengths (widths),

considering only the pieces that fit into the respective plate. This second condition is

necessary because, otherwise, the replaced cut could be necessary for the only optimal

cutting pattern of an instance of the unrestricted problem. An example of this situation

can be seen in Figure 6.2 (the middle pattern, i.e., Position-only Restricted). The middle

vertical cut matches a piece width (i.e., it satisfied the first condition); however, if it were

replaced by a POC associated with the square piece, it would be impossible to obtain the

unrestricted optimal solution (that needs a BGC at the same position).

The two reductions proposed in Furini, Malaguti and Thomopulos (2016), Cut-

Position and Redundant-Cut, cause little change to the replaceable cutting positions. Both

reductions are briefly described at the start of Section 3.3.2. The only cutting positions

removed by Cut-Position are the ones not in the restricted set and, therefore, not replace-

able. Moreover, if the cutting position set of a plate is reduced by Cut-Position and the

kept positions are all replaced with POCs, then that plate and any plate strictly smaller

than it will, in fact, be solved by the SAV formulation instead of the FMT formulation.

Redundant-Cut may remove a replaceable cutting position. However, the predicted alter-

native cutting position from a larger plate will always be replaceable too, and replacing it

with one or more POCs never requires adding back the cuts removed by Redundant-Cut.

Also, the BBA formulation never has trim cuts like those removed by Redundant-Cut (see

Section 3.3), so this enhancement is superseded by it.

BBA adds extraction variables and reduces the base unrestricted set to only the

cutting positions up to the midplate. The extraction variables can be seen as POCs in

which both top and right residual plates are guaranteed to be waste; therefore, extractions

are not subject to be replaced by POCs. BBA requires us to differentiate between binding

and non-binding POCs. A POC is non-binding if the piece-sized plate it obtains may be

regarded as waste; conversely, if the piece-sized plate must be sold as a piece, then the

POC is binding. A binding POC cannot be employed if an extra copy of the associated

piece type would lead to disrespecting the demand constraint. If replaceable cuts in the
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BBA formulation are replaced by binding POCs, then there are cases in which loss of

optimality occurs. The cause of this loss of optimality is that, in BBA, a replaceable cut

may be required by an optimal solution even if there is no demand for the associated piece.

These seemingly unnecessary cuts aim to reduce the plate size until a large piece can be

obtained from the plate through an extraction variable. A complete example follows.

Example 6.1 (Hybridised BBA with binding cuts loses optimality.) Consider the fol-

lowing G2KP instance: L = 100, W = 100, l = [100, 100], w = [1, 51], u = [1, 1],

and p = [1, 1]. The optimal solution clearly must contain the only available copy of each

of the two piece types. In BBA, there is no cut after the midplate; consequently, a verti-

cal cut at position 51 is ruled out. The only possibility is a vertical cut at position 1 for

which the first child plate could be immediately sold as the single copy of the first piece

type. The second child plate (100x99) also does not have an extraction variable for the

immediate extraction of the second piece type (100x51). The BBA determines that for an

extraction variable to exist “[...] the plate cannot fit an extra piece (of any type).” and the

first piece type fits together with the second in the 100x99 plate. Again, a vertical cut at

position 51 is unavailable because it happens after midplate. Consequently, BBA forces

the optimal solution to create 50 plates of size 100x1, one of which will be sold as a piece,

and the rest considered waste. The second child of the 50th (and last) cut has size 100x50,

and it can be sold as the second piece type because an extraction variable is now available

(i.e., the previously quoted condition does not apply anymore). The adoption of binding

POCs makes it impossible for BBA to obtain an optimal solution for this example. The

reason is that there are not 50 copies of the first piece type, but these would be needed

by the 50 binding piece-outlining cuts necessary to obtain an optimal solution. The same

problem does not arise if the POCs are not binding.

The corner case of two or more pieces sharing the same length/width needs to

be considered in the unrestricted problem too, but with a subtle distinction. In the re-

stricted problem, replacing every single guillotine cut by POCs also brings the advantage

of not needing an additional mechanism to enforce the problem definition (i.e., to guar-

antee piece extractions from the first child plates). However, in the unrestricted prob-

lem, the choice between replacing a single guillotine cut by multiple POCs, or keeping

it as a guillotine cut, is just a trade-off between model size and model symmetry. There-

fore, this work further distinguishes between two implementations of hybridisation. The

conservative hybridisation substitutes each replaceable horizontal (vertical) BGC with
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one horizontal-first (vertical-first) POC that is associated with the single piece type that

matches the length (width) of the cutting position (and that fits into the respective plate).

If two or more fitting piece types match the cutting position, the conservative hybridisa-

tion leaves the BGC unchanged. The aggressive hybridisation substitutes each replaceable

horizontal (vertical) BGC with one horizontal-first (vertical-first) POC for each piece type

that matches its length (width) (and that fits into the respective plate).

The author believes it is excessive to present the full formulation and imple-

mentation details for every combination of the FMT/BBA formulation with conserva-

tive/aggressive hybridisation and binding/non-binding POCs. The experiments in the

next section only consider the BBA with conservative/aggressive hybridisation and non-

binding POCs. The distinction between conservative and aggressive hybridisation is

mostly made at the cut and plate enumeration; however, because of an unfortunate no-

tation detail explained further, it is less troublesome to present an accurate formulation of

the conservative hybridisation than the aggressive hybridisation. In light of this, the au-

thor chose to fully present the conservative hybridised BBA formulation with non-binding

POCs. The main differences in implementing other combinations are briefly discussed

shortly after.

The conservative hybridised BBA formulation with non-binding POCs requires a

new set of variables, a new set of constraints, a new parameter, and some minor changes to

the objective function and some of the existing constraints. Both the new set of variables

and the new set of constraints are bounded by |J̄ | and, therefore, cause only a small

relative increase to the model size of a non-trivial instance. The notation for the new

variable and parameter set follows:

si ∀i ∈ J̄ – Integer variable. Indicates how many piece-sized plates obtained by POCs

associated with piece type i were sold as pieces of type i. By sold the author means

they contributed to the objective function and were accounted for by the demand

constraint.

ho
qji ∀o ∈ O, j ∈ J, q ∈ Qjo, i ∈ J̄ – Binary parameter. Byproduct of the cut and plate

enumeration. It has value one if cut xo
qj is a POC that produces a piece-sized plate

corresponding to piece i; zero otherwise.

Some variables, parameters, and constraints need just a little reinterpretation or

no change at all. The already established parameter aoqkj is exactly the same for BGCs

and has a slightly different meaning for POCs. The difference is that the j (obtained
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child plate) is always either the top or right residual (i.e., the POC version of the first

and second child) and that both o (orientation) and q (cutting position) refer only to the

first constituting cut of a POC; the meaning of k (parent plate) is left unchanged. The

set of variables representing cuts (xo
qj) also does not need change, as ho

qji fills the need

to identify POCs and their associated piece types. Consequently, the constraints (3.10)

and (3.11) presented below are the same as the non-hybridised formulation.

The constraint (6.2) guarantees each piece-sized plate available (si) comes from an

actual POC. The remaining changes consist into adding si to the demand constraint (6.3)

(which avoids overproduction without prohibiting the POCs themselves) and to the ob-

jective function (6.1) (which allows piece-sized plates to be sold).

max.
∑

(i,j)∈E

pieij +
∑
i∈J̄

pisi (6.1)

s.t.
∑
o∈O

∑
q∈Qjo

xo
qj +

∑
i∈E∗j

eij ≤
∑
k∈J

∑
o∈O

∑
q∈Qko

aoqkjx
o
qk ∀j ∈ J, j ̸= 0, (3.10)

∑
o∈O

∑
q∈Q0o

xo
q0 +

∑
i∈E∗0

ei0 ≤ 1 , (3.11)

si ≤
∑
j∈J

∑
o∈O

∑
q∈Qjo

ho
qjix

o
qj ∀i ∈ J̄ , (6.2)

si +
∑
j∈Ei∗

eij ≤ ui ∀i ∈ J̄ , (6.3)

xo
qj ∈ N0 ∀j ∈ J, o ∈ O, q ∈ Qjo, (3.13)

eij ∈ N0 ∀(i, j) ∈ E (3.14)

si ∈ N0 ∀i ∈ J̄ . (6.4)

The aforementioned unfortunate notation detail is the incapability of denoting two

or more different cuts xo
qj with the same orientation o and the same cutting position q over

the same plate j. Therefore, if the aggressive hybridisation replaces a BGC with two or

more POCs, then the notation does not allow us to differentiate between them.The aoqkj

parameter also needs to change, as it suffers from the same problem. The aggressive

hybridisation code deals with this problem by having unique single indexes for each cut

and reverse indexes from each cut property (like orientation or cutting position) to the

cuts themselves; this way, the cuts are not limited to the uniqueness of some property

combination.

A trivial way to change the presented formulation to use binding cuts is to change
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the constraint set (6.2) to require equality. However, the binding cuts can also be imple-

mented without the new variable and constraint sets. The term si could just be replaced

by
∑

j∈J
∑

o∈O
∑

q∈Qjo
ho
qjix

o
qj in both the objective function and the demand constraint.

Both mentioned ways to implement binding cuts work on the FMT formulation, which

does not have the same loss of optimality problem as the BBA.

6.3 Experimental results

In these experiments, for reasons explained further ahead, each instance was solved

ten times with ten distinct solver seeds. The BBA configuration included all applicable

reductions previously discussed (i.e., Cut-Position and Plate-Size Normalisation) but ex-

cluded initialisation with a primal heuristic and pricing. The barrier algorithm was used

to solve the root node as usual. Only the Gurobi solver is used in these experiments.

No runs ended in timeout. The computer setup, as well as the Julia and Gurobi ver-

sions/parameters, are the same as described in Section 5.2, but the model was built and

solved in the same process (i.e., there was no writing and reading from MPS file), and

no time limit was enforced. Three variants are scrutinised: no hybridisation (N. H.),

conservative hybridisation (C. H., avoids increasing model size), and aggressive hybridi-

sation (A. H., always hybridise, even if it leads to an increase of the model size). The

first dataset considered is FMT59 (solved as G2KP), and the second is CJCM (solved as

G2OPP); more details on these datasets can be found in appendix A.

Table 6.1 shows that both C. H. and A. H. had a similar impact on the total solving

time (i.e., a reduction of ≈20%). A. H. had slightly better timings despite the considerable

increase in the number of cuts. C. H. slightly reduces the number of cuts. Both C. H.

and A. H. have almost no effect on the number of plates (or extractions variables). The

percentage of hybridised cuts (h %) and hybridised cuts with just one residual (k %) show

that the new reductions changed a very significant part of the models. The number of

instances with the lowest averages shows that N. H. is the best option for most instances.

A closer look into the data, see Table 6.2, reveals that most time difference comes

from a few hard instances. In fact, the instance Hchl4s alone is responsible for most of

the difference, with okp2 having about half its relevance and the rest of the instances

considerably less impact. The number of variables hybridised (H columns) does not seem

a good indicator of how impacted the solving times will be. However, if N. H. spends

most of the time solving the root node (low Non-Root %), C. H. and A. H. generally
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Table 6.1 – Summary of hybridisation impact over BBA formulation and FMT59 dataset.

Variant T. T. ∆ B. T. #b #extr. #cuts h % k % #plates
N. H. 6,681 1,703 27 186,536 2,498,801 – – 113,822
C. H. 5,468 489 22 184,067 2,496,421 41 18 113,373
A. H. 5,447 469 10 184,050 3,021,911 67 28 113,366

T. T. (Total Time) – sum of the mean time of all instances, in seconds; ∆ B. T. (Distance
from the Best Time) – sum of the difference in mean time between the respective variant
and the variant with the lowest mean time for the same instance, in seconds, i.e., if all
variants ran in parallel and had average time, how much time the runs of the respective
variant would spend after another thread already finished; #b (best) – number of instances
in which the respective variant had the lowest (best) average time among the variants;
#extr. – total number of extraction variables (considering one model per instance); #cuts.
– total number of cut variables (considering one model per instance); h % – percentage
of #cuts that were hybridised; k % – percentage of #cuts that were not only hybridised
but also discarded the second child of the second constituting cut as waste, i.e., the POC
resulted in the piece-sized plate and one other plate; #plates – total number of plates
(considering one model per instance). Source: the author.

do not bring great time improvements. As the most significant reductions often occur

in instances that spend less than 1% of the time in the root node, the time distribution

does not change significantly. An exception is CHL1s which shows that C. H. seems to

impact not the time at the root node but the time at the B&B, as expected from a symmetry

breaking-enhancement.

The coefficient of variation of the analysed instances reveals the reason for mul-

tiple runs with distinct seeds: the difference between two runs of the same variant but

distinct seeds is often larger than the difference between the means of two distinct vari-

ants. Intuitively, breaking symmetries should reduce the variance of the timings. By

cutting symmetric branches, there is less opportunity for a solver seed to traverse multi-

ple equivalent branches with a good relaxation (but bad primal) before finding a primal

solution that cuts all such branches. In fact, when C. H. and A. H. achieve a considerable

(20% or more) reduction of the mean time, the coefficient of variation (which is relative

to the mean time) generally shows a reduction. However, a more general effect, i.e., a

higher percentage of model hybridisation (H%) leading to lower CV (or mean time), is

not observed. Exactly which variables were hybridised probably have more impact than

how many variables. Finally, the reduction of variance, while positive if the objective is to

compare solution methods, may be unwanted when solving the same problem in parallel.

For example, if two methods have similar mean times, the method with the most variance

will probably have a thread find the optimal solution first.
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Table 6.2 – Impact of BBA hybridisation in FMT59 instances taking more than 10s.

H (%) Mean Time (s/%) CV (%) Non-Root (%)

Inst. C A N (s) C (%) A (%) N C A N C A
Hchl4s 46 57 3,657 80 69 76 35 25 >99 >99 >99
okp2 22 22 1,844 77 88 21 19 44 >99 >99 >99
Hchl7s 50 77 428 100 134 18 26 19 25 36 44
okp3 33 49 209 113 122 29 38 35 >99 >99 >99
Hchl8s 17 35 253 68 48 73 45 44 >99 >99 >99
Hchl3s 46 57 39 93 130 11 21 85 80 82 87
Hchl2 25 77 45 89 144 5 8 18 49 50 65
CHL6 45 68 39 91 98 13 15 14 48 46 44
CHL7 23 78 30 105 116 8 8 5 26 27 44
Hchl6s 51 80 36 103 103 3 5 3 14 18 27
CHL1 32 64 26 115 120 14 16 14 68 71 72
CHL1s 32 64 21 75 121 14 13 6 62 39 61
okp5 11 12 12 97 99 1 2 2 19 21 21

H (%) – the percentage of all variables (i.e., cut and extraction) that were hybridised for
C. H. and A. H.; Mean Time (s/%) – mean time spent to solve the instance, in seconds for
N. H., and in a percentage relative to N. H. for both C. H. and A. H.; CV – coefficient of
variation (also known as relative standard deviation) is the standard deviation for N. H., C.
H., and A. H., divided by their respective means (CV is always a percentage); Non-Root
(%) – the percentage of the total time which was not spent solving the root node. Source:
the author.

The Clautiaux42 dataset has two traits that make it a worst-case scenario for both

C. H. and A. H.: most instances are small instances, and the number of pieces sharing

the same length, or width, is high. For the sake of comparison, let us define rrl (rrw)

as the repeat ratio of the length (width) values of pieces. For a given set of piece types,

the rrl (rrw) is a fraction with the difference between the set cardinality and the number

of distinct length (width) values as the numerator, and the set cardinality minus one as

the denominator. Zero means there is no repetition, and one means that all pieces share

the same value in the respective dimension. The FMT59 dataset has rrl ≈ 0.178 and

rrw ≈ 0.155, while the Clautiaux42 has rrl ≈ 0.465 and rrw ≈ 0.402. The metric is a

good baseline, even if it does not account for some important details. For example, small

piece types sharing a small length, or width, cause more hybridisation than large pieces

sharing a large length (or width). This last observation is especially true for the BBA

formulation, which has no cuts after the midplate.

Table 6.3 shows that C. H. hybridises only ≈5% of the variables and has minimal

impact, while A. H. hybridises ≈55% of the variables but causes a large increase in both
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time to solve and the number of cut variables. Table 6.3 reveals that for many instances,

C. H. has less than 0.5% of hybridised variables, and the mean and CV show they behave

basically the same as N. H. for most instances. In fact, the slight advantage of C. H.

comes from the fact that the two hardest instances have no hybridisation and, therefore,

the same mean time as N. H. But the third-hardest instance reaps a few seconds from the

hybridisation of 9% of the variables. The extra variables from the A. H. have a strong

negative effect on the mean time for all instances. For some instances (such as E05F18

and E00X23), the mean time is more than ten times longer than N. H. Finally, if rotation

is allowed, then rrl and rrw become a single metric that can only be greater than or equal

to both previous values; consequently, the gap in behaviour between C. H. and A. H. can

only increase by allowing rotation.

Table 6.3 – Summary of hybridisation impact over BBA formulation and Clautiaux42 dataset.

Variant T. T. ∆ B. T. #b #extr. #cuts h % k % #plates
N. H. 255.10 11.30 32 1,205 109,369 0.00 0.00 12,642
C. H. 251.58 7.78 10 1,205 109,369 5.50 2.11 12,642
A. H. 858.30 614.50 0 1,205 160,650 55.23 10.78 12,642

The description of the columns can be found in Table 6.1. Source: the author.

In general, for both datasets, C. H. either had a negligible difference from N. H. or

provided some considerable benefit (especially for instances with longer running times).

For solving mostly small instances, or instances with high rrl or rrw, the extra complexity

brought to the formulation may not be worthwhile, but the change does not bring much

risk of worsening the results. The A. H. has the best reduction of mean time and CV for

both Hchl4s and Hchl8s (FMT59 dataset), but it has a consistently bad performance for

small instances with high rrl and rrw. There is no clear class of instances for which it can

consistently outperform C. H. (or N. H.).
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Table 6.4 – Details of hybridisation impact over BBA formulation and Clautiaux42 dataset.

H (%) Mean Time (s/%) CV (%) Non-Root (%)

Inst. C A N (s) C (%) A (%) N C A N C A
E02F20 0 58 83.70 100 350 62 62 70 >99 >99 >99
E20F15 0 54 68.26 101 212 51 49 67 >99 >99 >99
E04F19 9 57 26.59 64 183 117 118 156 >99 >99 >99
E05F18 0 57 8.52 111 1,172 21 17 51 >99 >99 >99
E10X15 15 55 7.62 124 292 64 28 96 99 >99 >99
E08F15 0 51 5.05 115 424 34 33 63 99 99 >99
E04F17 0 54 4.50 100 730 16 16 7 99 99 >99
E02N20 0 55 4.23 100 721 17 17 45 99 99 >99
E05X15 9 51 3.46 92 213 25 25 31 99 99 99
E02F17 2 54 3.43 111 239 26 17 20 99 99 >99
E07F15 2 59 3.27 121 418 23 28 26 99 99 >99
E04F20 2 53 2.95 76 469 53 43 145 99 98 >99
E15N15 12 55 2.78 123 159 83 77 87 99 99 99
E07X15 0 51 2.55 99 300 17 18 45 99 98 99
E00X23 0 55 2.26 100 1,237 11 11 100 97 97 >99
E03X18 0 56 2.26 86 310 28 19 40 98 97 99
E04N17 9 49 1.99 128 234 40 35 31 98 98 99
E03N17 2 57 1.98 115 236 13 10 18 98 98 99
E04F15 1 49 1.94 101 182 14 9 13 98 98 99
E03N16 1 55 1.78 110 337 21 12 19 98 98 99
E02F22 4 54 1.72 101 321 41 38 55 98 98 99
E04N18 0 55 1.62 86 743 32 25 48 98 98 >99
E05F20 10 55 1.36 113 243 33 41 45 97 97 98
E00N23 0 49 1.33 96 215 12 15 22 96 96 98
E08N15 8 61 1.19 106 436 18 15 29 97 98 99
E05N17 0 53 1.17 112 364 18 15 52 97 97 99
E05F15 11 53 1.10 107 386 9 15 24 96 97 99
E15N10 13 53 1.09 88 236 20 30 24 97 97 98
E03N15 9 61 1.09 109 249 10 10 22 96 97 98
E05N15 1 55 0.72 113 200 33 15 21 96 95 97
E20X15 0 55 0.71 105 531 25 25 45 94 95 99
E07N15 8 63 0.58 116 313 44 46 105 97 97 98
E04N15 19 57 0.48 111 350 12 13 20 93 94 97
E13X15 0 57 0.48 93 205 19 18 19 94 91 96
E13N10 13 52 0.37 112 164 13 18 14 92 93 95
E00N15 1 53 0.25 104 134 8 8 11 76 77 83
E13N15 5 56 0.24 113 787 8 10 25 84 85 97
E07N10 32 59 0.16 119 158 37 22 13 87 89 88
E10N10 21 62 0.14 117 218 44 38 15 86 83 90
E10N15 29 52 0.08 117 148 11 9 8 66 67 73
E03N10 11 51 0.08 95 166 9 6 8 34 28 76
E00N10 31 61 0.04 132 199 4 2 109 15 22 61

The description of the columns can be found in Table 6.2. Source: the author.
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7 RELATED PROBLEMS

The primary motivation for using a mathematical formulation as the solving method

is flexibility. The possibility of adapting a formulation for other problems or variants often

stays theoretical and occasionally is materialised and empirically examined. This chapter

describes the changes necessary to adapt the proposed formulation (BBA) to the Guil-

lotine 2D version of three other problems from the cutting and packing literature (the

hybridisation from last chapter is not considered there). It also presents empirical results

of these adaptations over suitable datasets and, in the last section, a proof of a generation

mistake found in literature instances during preliminary experiments. As far as the author

knows, the closest work to this thesis regarding this aspect is Bezerra et al. (2020) which

adapts two MILP models from the literature to the ‘two-dimensional level strip packing

problem’ (as they call it). Considering solving methods that are not formulations, there

is also Fontan and Libralesso (2020) which adapts their anytime procedure for the two-

and three-staged G2KP (exact and inexact variants) to the Guillotined 2D Bin Packing

Problem and the Strip Packing Problem.

7.1 Problems definitions

The three related problems this chapter considers are the Guillotine 2D version of

the Multiple Knapsack Problem (MKP), the Orthogonal Packing Problem (OPP), and the

Cutting Stock Problem (CSP). The CSP is closely related to the Bin Packing Problem,

BPP; the distinctions are discussed further ahead. Both the G2MKP and the G2CSP

consider multiple original plates and, therefore, have homogeneous and heterogeneous

variants. The G2MKP (or the G2CSP) is homogeneous if its multiple original plates

share the same dimensions. It is heterogeneous if the original plates may come in distinct

sizes (which may have a different cost associated with each). This work covers only the

adaptation to the homogeneous variant, which is the simpler of the two options.

The (homogeneous) G2MKP is the generalization of the G2KP in which, instead

of having a single copy of the original plate available, there are m copies of the original

plate available. Nevertheless, both G2KP and the homogeneous G2MKP have only one

original plate type, i.e., all the m original plate copies share the same dimensions (LxW ).

G2MKP instances only differ from G2KP instances by this extra parameter (m). Adapta-

tion of G2KP instances to the G2MKP by an unmindful increase of m may lead to trivial
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instances because it may become trivial to pack every piece.

The G2OPP is the decision problem that inquires if a specific set of pieces can

be packed into a plate of specific dimensions using only guillotine cuts. Compared to

G2KP, the main differences of G2OPP instances are that (i) there are no piece profits, (ii)

the piece demand is not an upper bound but a lower bound, and (iii) any instance with a

summed piece area greater than the original plate area is trivially false and, therefore, not

interesting. Piece profits may be dropped, and the demand may be reinterpreted, but the

third distinction makes most instances of the G2KP uninteresting for the G2OPP.

The (homogeneous) G2CSP consists of minimizing the number of copies of the

single original plate type while packing every copy of every piece type. The main dif-

ferences between G2CSP and G2KP instances are that, in G2CSP instances: (i) there are

no piece profits, (ii) the piece demand is not an upper bound but a lower bound, and (iii)

trivial instances usually have the summed area of all pieces slightly larger than the closest

multiple of the original plate area; such trait is not uncommon for G2KP instances. For

example, if the area of the original plate type is 100, and the summed area of all pieces is

301, then there is a good chance of the optimal solution value to be 4 (i.e., the trivial area

lower bound). The optimal solution cannot be less than four original plates. To need five

or more original plates, the piece multiset would need to be designed to cause an uncom-

monly high waste ratio (i.e., greater than 25%). Moreover, there will probably exist not

only one but many (nonsymmetrical) solutions able to pack all pieces into four original

plates. This variety will make it easier for the solver to find an upper bound that matches

the trivial lower bound.

Neither G2MKP nor G2CSP can be solved exactly by successively applying G2KP

to the multiset of pieces yet unpacked. Figure 7.1 proves this statement and helps visu-

alise the differences between these three problems. For the G2OPP, the example instance

is trivially false.

The original one-dimensional Bin Packing Problem (BPP) and the one-dimensional

CSP differ only in the expected diversity of the piece types in their respective instances.

CSP instances typically have fewer piece types with a larger demand each, while BPP

instances typically have more piece types with unitary (or very small) demand each. Of-

ten a method that can solve the CSP can also solve the BPP and vice-versa, albeit it

may be more effective at a specific level of piece type diversity. The guillotine 2D vari-

ants of both problems are the same way, and, as such, the adapted formulation can solve

both problems with low and high piece type diversity. A priori, the BBA formulation
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Figure 7.1 – Visual proof G2KP cannot be iteratively used to solve G2MKP/G2CSP.
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The original plate dimensions and the piece multiset are the same for the three problems:
L = W = 12, l = [4, 7, 8], w = [12, 12, 6], u = [3, 2, 1], and profits equivalent to their
respective areas. For G2MKP, m = 2. G2CSP ignores the profits and consider u to be a
lower bound. The only optimal solution for G2KP is a pattern that cannot pertain to any
optimal solution of either of the other two problems. Souce: the author.

does not favour one problem variant over the other. The density of the cutting position

discretization (and, therefore, size of the model) is not directly correlated to piece type di-

versity; it has more to do with the number of pieces with small dimensions and how many

linear combinations of the piece dimensions give the same value. The G2CSP is also

considered ‘a generalization of the 2D-BPP in which equivalent items are grouped into

demands’ (<http://or.dei.unibo.it/library/2dpacklib>). If the definition above is adopted,

our method solves the G2CSP, as it groups identical pieces into a single piece type with a

demand value. For simplicity, the author chose to adopt G2CSP to refer to the problem to

which the formulation was adapted. However, the experiments include instances of piece

diversity on both sides of the spectrum, examining the impact of piece type diversity.

7.2 NP-hardness and NP-completenes of the related problems

This section discusses the NP-hardness and the NP-completeness of the related

problems, and the G2KP is also mentioned. The homogeneous G2MKP and G2CSP are

strongly NP-hard for similar reasons. The homogeneous one-dimensional MKP is the

special case of the homogeneous G2MKP in which W = w1 = w2 = · · · = wn, i.e.,

the special case in which the second dimension is irrelevant. The analogue is valid for

the homogeneous one-dimensional BPP and the G2BPP. (The G2CSP is equivalent to

the G2BPP for the purpose of establishing NP-hardness.) The decision problem vari-

ant of the one-dimensional BPP is established as strongly NP-complete in Garey and

Johnson (1979); consequently, the optimization version is strongly NP-hard, and its gen-

eralization, the G2BPP, is also strongly NP-hard. The one-dimensional MKP is strongly

http://or.dei.unibo.it/library/2dpacklib
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NP-hard because it is a generalization of the Multiple Subset-Sum Problem with Identical

Capacities, which is an optimization version of the strongly NP-complete 3-partition prob-

lem (MARTELLO; TOTH, 1990; KELLERER; PFERSCHY; PISINGER, 2010). There

is a proof of the strong NP-completeness of the 3-partition problem in Garey and Johnson

(1979) which is related to a previous proof from the same authors in Garey and Johnson

(1975).

The 1D-BPP decision variant mentioned above is also a special case of the ‘rect-

angle packing problem’ (KORF, 2003). The G2OPP is the guillotined version of what

was referred as the ‘rectangle packing problem’ in the past. The original proof holds for

the G2OPP too because the guillotine constraint does not invalidate the proof. A summary

of the proof follows. Given any instance of the 1D-BPP, the bin capacity B becomes W ,

and the upper bound on the number of bins necessary/available K becomes L, and each

item becomes a piece of unitary length and width equal to the weight of the item. To

solve this instance of the G2OPP is to solve the 1D-BPP variant mentioned. If, and only

if, the G2OPP instance is unfeasible, the 1D-BPP variant is unfeasible. If the G2OPP in-

stance is feasible, then the vertical position of the packed piece indicates the bin to which

the piece was assigned, and the width of the original plate guarantees that the capacity

of every bin (which is the same for all of them) is respected. As mentioned above, this

1D-BPP decision variant is strongly NP-complete, and therefore, G2OPP is also strongly

NP-complete. The main problem studied in this work, the G2KP, is an optimization vari-

ant of the G2OPP and, therefore, is strongly NP-hard. The unconstrained G2KP is not

strongly NP-hard because it allows for a piece to be obtained as many times as possible

and, therefore, it cannot be used to solve the G2OPP. The unconstrained G2KP is a gen-

eralization of the Unbounded Knapsack Problem (UKP) which is also weakly NP-hard;

the UKP is referred to as ‘Integer Knapsack’ in Garey and Johnson (1979, MP10).

7.3 BBA formulation adaptations

For the reader’s convenience, the BBA formulation for the G2KP is replicated be-

low1 accompanied by a refresher on how it works and its notation. For consistency, the

author chose to keep as much notation as possible. This choice means the input param-

eter u, which comes from upper bound, was kept in the adaptation of the formulation to

G2OPP and G2CSP, even if in these problems it indicates a lower bound instead.

1The formulation kept the same numbering from its original appearance.
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The sets employed here are the same as before and keep their usual meaning:

J̄ – the set of piece types, J ⊇ J̄ – the set of all plate types, O = {h, v} – the set

of cut orientations (horizontal and vertical), Qjo – the sets of positions for which there

is a cut of orientation o over plate j and, finally, E – the set of piece extractions. The

following notation allow for easy access to pieces and plates related to the extractions:

Ei∗ = {j : ∃ (i, j) ∈ E} (which plates may have a copy of i extracted from them) and

E∗j = {i : ∃ (i, j) ∈ E} (which pieces may be extracted from a plate j).

max.
∑

(i,j)∈E

pieij (3.9)

s.t.
∑
o∈O

∑
q∈Qjo

xo
qj +

∑
i∈E∗j

eij ≤
∑
k∈J

∑
o∈O

∑
q∈Qko

aoqkjx
o
qk ∀j ∈ J, j ̸= 0, (3.10)

∑
o∈O

∑
q∈Q0o

xo
q0 +

∑
i∈E∗0

ei0 ≤ 1 , (3.11)

∑
j∈Ei∗

eij ≤ ui ∀i ∈ J̄ , (3.12)

xo
qj ∈ N0 ∀j ∈ J, o ∈ O, q ∈ Qjo, (3.13)

eij ∈ N0 ∀(i, j) ∈ E. (3.14)

The domain of all variables is the non-negative integers (3.13)-(3.14). The value

of a variable eij indicates the number of times a piece i was extracted from a plate j. An

extraction only occurs if it respects the piece demand (3.12) (pi is the profit of piece i) and,

consequently, every extracted piece is taken into account by the objective function (3.9)

which maximises the total profit (ui is the demand of piece i).

The value of a variable xo
qj indicates the number of times (distinct instances of) a

plate j were cut at position q by a cut with orientation o. Both (3.11) and (3.10) handle

which plates are available and, therefore, may be further cut or have pieces extracted from

them. The only purpose of (3.11) is to make available one copy of the original plate (i.e.,

plate zero). For each other plate type j, (3.10) guarantees that, for each copy of j utilised

for cutting or piece extraction, a copy of j was previously obtained from a larger plate.

The number of plate j copies obtained by a cut at position q and orientation o over plate k

is given by aoqkj , this listing is a byproduct of the plate enumeration.

Each of the following inner sections considers a different problem. For brevity,

the adaptations do not replicate the necessary changes to allow piece rotation, but these
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changes are the same as those described for G2KP in Section 3.5.

7.3.1 Adaptation to Multiple Knapsack Problem

To adapt the formulation for the G2KP to the (homogeneous) G2MKP, the only

modification necessary is to replace the right-hand side of

∑
o∈O

∑
q∈Q0o

xo
q0 +

∑
i∈E∗0

ei0 ≤ 1 (3.11)

with the number of available original plates.

7.3.2 Adaptation to the homogeneous Cutting Stock Problem

To adapt the formulation for the G2KP to the homogeneous G2CSP, it is enough

to introduce a new integer variable b and make the following changes to the formulation:

1. Replace the objective function (3.9) by min. b.

2. Replace the literal 1 in the right-hand side of (3.11) by b.

3. reverse the sense of the demand constraint, i.e., eq. (3.12), from ≤ to ≥.

Formulations for CSP variants often need an extra constraint set to avoid a specific

kind of solution symmetry. This class of symmetric solutions appears when the formula-

tion numbers the bins and uses them as an index in some formulation variables. In such

cases, each bin has a packing assigned to it; however, the choice of assigning packing a

to bin 1 and packing b to bin 2 is, in fact, arbitrary: packing b could as well be assigned

to bin 2 and packing a to bin 1. This is, two solutions may have the same number of bins

and the same set of packings (piece multisets, or a tree of cuts) but, in the solution repre-

sentation, the bins are ordered differently in relation to each other; even if such ordering

is irrelevant for the problem. The FMT and BBA formulations do not manifest this issue

and do not need an extra constraint set to fix it. In the FMT and BBA formulations, the

bins are not represented by an index in any variables but by the value that flows into the

variables from the right-hand side of (3.11). This representation does not allow for the

discussed class of symmetric solutions: a solution with b bins and some specific set of
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packings has only a single possible representation. The formulation also does not need to

compute an upper bound on b, i.e., the number of bins necessary, but it makes it easy to

provide one if available.

7.3.3 Adaptation to the Orthogonal Packing Problem

The employed adaptation of the formulation from the G2KP to the G2OPP con-

sists only of two small changes. The first change consists in reversing the sense of the

demand constraint, i.e., eq. (3.12), from ≤ to ≥, as done in the adaptation for the G2CSP.

The second change consists in dropping the objective function. If the model is feasible,

the solution to the decision problem is true; otherwise, it is false.

The adaptation for the G2OPP is not strictly necessary but an optimization. The

G2KP formulation could be directly applied to suitable G2OPP instances. If absent, the

piece type profit value may be set to be any positive value. If the optimal solution value

for the G2KP is equal to
∑

i∈J̄ uipi, then the answer to the decision problem (G2OPP)

is true; otherwise, it is false. The issue with this approach is that the solver may waste

time maximizing the profit after the upper bound has already lowered from
∑

i∈J̄ uipi but

the lower bound did not yet match the upper bound. In this situation, the upper bound

shows the solver already knows it is impossible to pack every piece (i.e., the answer to

G2OPP is false), but this does not stop the solver; only proving which is the best profit

value will stop it. This problem may be solved by passing a cutoff parameter to the solver

or adding an extra constraint to the formulation (which forces the profit value to be equal

to
∑

i∈J̄ uipi). However, the author chose to change the demand constraint and drop the

objective function for the experiments, as this adaptation better expresses the problem

semantics to the solver.

7.4 Chosen datasets and experiment results

The author chose to use existing datasets from the literature when they were avail-

able and suitable to maximize the possibility of future direct or indirect comparisons. For

the G2OPP and the G2CSP, suitable datasets were selected from the literature. The au-

thor did not find suitable datasets for the G2MKP in the literature and adapted previous

instances from the literature to fill the gap. The computer setup and the Julia and Gurobi
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versions/parameters are the same as described in Section 5.2, but the model was built and

solved in the same process (i.e., there was no writing and reading from MPS file).

7.4.1 G2MKP

The G2MKP is the least studied of the three problems discussed in this chapter.

As far as the author knows, the closest related work is Cui, Gu and Hu (2008) which

proposes an exact algorithm for a special case of the three-staged G2MKP. The special

case disallow the cuts of the third stage to generate two or more piece types from the same

intermediary plate. The paper employs a subset of the FMT59 dataset adapted to have two

or three original plates, i.e., m ∈ {2, 3}, most of them solved in less than half a second.

The author of this thesis decided to not use these instances and, instead, adapted the A

and CW datasets from the literature. A is an unweighted real-world dataset with high-

demand piece types from Macedo, Alves and Carvalho (2010) which is also employed

in the G2CSP experiments of this chapter. CW is a weighted artificial dataset with low-

demand piece types from Fayard, Hifi and Zissimopoulos (1998) which is also employed

in other G2KP experiments of this thesis. The adopted criteria for allowing an instance

to have m ∈ {2, 4, 8} is that the summed area of the original plates is at most half the

summed piece area. This way, the selection aspect of the problem is retained.

Generally, for the adapted CW dataset, increasing the number of original plates

available increases the time to solve, and allowing rotation (with the mirror plate enhance-

ment) has a similar effect. These effects can be seen in Table 7.1. Increasing the number

of original plates changes only a single right-hand side value, but allowing rotation causes

a considerable increase in the model size, ranging from the ≈ 2.8 times of CW08_* to

the ≈ 7.5 times of CW05_*. Both changes increase the search space, but this does not

always translate directly to a larger gap between lower and upper bounds or a larger num-

ber of nodes needed to close it. In most cases, the time spent in the root node relaxation

is relatively small, especially in the runs that end in timeout, as seen in Figure 7.5.

The time increase caused by rotation has a single exception, CW09_M2. For

CW09_M2, the barrier times with and without rotation are, respectively, 45 and 3 seconds;

the optimal solution, with and without rotation, are found, respectively, at 61 seconds

(1.21% of gap) and 6 seconds (0.36% of gap); despite that, in 3864 nodes (206 seconds)

the run allowing rotation closes the gap, while the run without rotation takes 317502

nodes (1525 seconds) to do the same. So, there is no other factor at play for this particular
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Table 7.1 – Results for CW_M dataset (G2MKP) with and without rotation.

No Rotation R. & Mirror Plates

Inst. BKV #nz T. (s) BKV #nz T. (s)
CW01_M2 12085 54,403 4.68 12227 150,308 254.11
CW01_M4 20093 " >3600 20422 " >3600
CW02_M2 10519 56,140 2.11 10943 143,098 16.81
CW02_M4 17384 " >3600 17680 " >3600
CW03_M2 10648 121,581 3.75 10877 491,790 69.33
CW03_M4 19113 " 10.38 19577 " 25.77
CW04_M2 11591 71,221 0.61 12412 497,740 23.66
CW04_M4 18104 " 57.29 19443 " >3600
CW05_M2 21469 93,269 0.86 21657 700,304 835.05
CW05_M4 34358 " 43.38 35199 " 48.27
CW06_M2 23379 525,199 >3600 23639 2,872,208 >3600
CW06_M4 35407 " >3600 35803 " >3600
CW06_M8 52046 " >3600 52674 " >3600
CW07_M2 18834 123,851 3.28 19755 784,086 73.13
CW07_M4 33519 " >3600 35007 " >3600
CW07_M8 53631 " >3600 54835 " >3600
CW08_M2 8923 408,428 10.33 8985 1,174,315 >3600
CW08_M4 15074 " 684.15 15448 " >3600
CW08_M8 24909 " >3600 25241 " >3600
CW09_M2 18712 204,212 1,525.83 19758 917,729 207.43
CW09_M4 30182 " 171.65 31174 " >3600
CW09_M8 46695 " >3600 47259 " >3600
CW10_M2 12441 383,575 8.37 13047 2,714,389 98.02
CW10_M4 23065 " >3600 24088 " >3600
CW10_M8 37827 " >3600 38655 " >3600
CW11_M2 12078 384,237 7.16 12437 2,710,188 621.13
CW11_M4 22752 " 286.38 23419 " >3600
CW11_M8 36691 " 96.72 37191 " >3600

The best known value (BKV) is optimal if the run did not finish because timeout (in-
dicated by >3600). #nz stands for number of nonzeros (which is always the same for
instances adapted from the same original instance). The background color of the rows
indicates the number of original plates.

instance except the branching needing fewer nodes to tighten the upper bound enough to

close the gap.

The other set of exceptions (related to the change of m) has a behaviour similar

to the case reported above. These exceptions are CW03_M2,4 (rotation), CW05_M2,4

(rotation), CW09_M2,4 (no rotation), and CW11_M4,8 (no rotation). In these cases, the

time spent solving the root node is similar (respectively, 10s vs 9s, 17s vs 14s, 3s vs 2s,

and 3s vs 3s), and the larger m takes the same or more time to find the optimal solution

(respectively, 21s vs 22s, 27s vs 43s, 6s vs 15s, and 14s vs 49s). However, the percentage
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Figure 7.2 – Impact of solving the root node in CW_M dataset (G2MKP).
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The histogram has 10 bins, each bin aggregates the runs spending (x, x + 10]% of their
time solving the root node (x ∈ [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]). Souce: the author.

gap when the solver finds the optimal solution is either similar or lower (1.56 vs 0.35,

2.66 vs 0.23, 0.36 vs 0.33, and 0.58 vs 0.22 gap), which seems to result in lower total

times (69s vs 26s, 830s vs 45s, 1525s vs 171s, 285s vs 95s). In most cases, the solver

finds the optimal solution before starting branching (by employing heuristics). Therefore,

the reported gap is against the root node relaxation (solved with any extra cuts added by

the solver).

Considering only the instances for which both runs obtained an optimal solution

(11 out of 28), the profit gap between optimal solution allowing and not allowing rotation

ranges between 0.87% and 7.08% increase.

A final observation about the CW dataset is that CW10 and CW11 are very simi-

lar. They just have slightly different original plate dimensions (respectively, 992x970 vs

982x967), and their piece types have the same l, w, and p, i.e., just the demand u has

different values. However, the timings of CW10 and CW11 are considerably distinct,

showing how much depends on the specific values of an instance.

The author chose to exclude from Table 7.2 every instance for which both runs

(with and without rotation) did not obtain a solution or obtained the trivial (i.e., empty)

solution. Most of these runs failed due to memory exhaustion and did not even provide

the number of nonzeros (i.e., failed before Gurobi loaded the model). Except by A21_M2,

if an adapted instance was excluded for the reason above, then all the adapted instances
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Table 7.2 – Results for A_M dataset (G2MKP) with and without rotation.
No Rotation R. & Mirror Plates

Inst. BKV #nz T. (s) BKV #nz T. (s)
A03_M2 4,201,018 27 0.00 4,201,018 60 0.02
A17_M2 10,336,720 10,123 0.29 10,639,320 223,328 9.80
A26_M2 0 9,692,187 >3600 – – OOM
A31_M2 0 4,184,736 >3600 – 89,405,895 OOM
A34_M2 10,350,034 390,377 138.87 0 10,434,707 >3600
A36_M2 10,078,104 273,536 50.65 0 6,914,749 >3600
A37_M2 10,368,156 31,225 0.76 10,535,478 1,027,417 201.73
A42_M2 5,060,407 155 0.03 5,954,727 981 0.30
A43_M2 5,837,348 9,244 0.12 6,293,486 207,767 8.14
A05_M2 10,134,040 104,146 2.66 10,199,480 2,289,561 1,268.31
A05_M4 19,967,032 " 2.93 20,373,040 " 1,392.24
A07_M2 5,759,424 428 0.02 6,338,432 5,247 0.05
A07_M4 10,992,036 " 0.02 12,518,720 " 0.04
A12_M2 9,238,568 89 0.66 9,925,676 337 0.30
A12_M4 18,472,968 " 0.01 19,847,184 " 0.31
A13_M2 10,595,594 1,773,362 496.74 – – OOM
A13_M4 21,010,004 " 492.58 – " OOM
A23_M2 10,492,334 155,995 6.12 0 5,209,384 >3600
A23_M4 20,975,576 " 6.44 0 " >3600
A40_M2 6,645,196 315,554 37.00 6,656,196 3,981,752 2,209.75
A40_M4 13,252,696 " 41.63 13,277,288 " >3600
A41_M2 6,576,896 1,244,457 193.32 – 31,283,337 OOM
A41_M4 13,061,346 " 163.99 – " OOM
A02_M2 4,671,806 81 0.28 4,671,806 666 0.04
A02_M4 9,079,396 " 0.01 9,079,396 " 0.02
A02_M8 17,894,576 " 0.01 17,894,576 " 0.02
A15_M2 10,431,108 84,144 1.31 10,591,164 1,905,324 241.80
A15_M4 20,821,776 " 1.16 21,112,992 " 245.26
A15_M8 41,359,738 " 2.44 42,058,060 " 291.12
A20_M2 10,481,602 499,945 42.26 – 32,487,621 OOM
A20_M4 20,888,454 " 46.32 – " OOM
A20_M8 41,474,893 " >3600 – " OOM
A21_M2 10,607,622 5,937,528 3,512.46 – – OOM
A21_M4 0 " >3600 – " OOM
A21_M8 0 " >3600 – " OOM

The columns are the same as of Table 7.1. OOM means out of memory. The instances
are grouped by the number of adaptations, i.e., first, the instances that only have m = 2,
then the ones with m ∈ {2, 4}; and then the ones with m ∈ {2, 4, 8}. Inside each group,
the instances are sorted by name. Source: the author.
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Figure 7.3 – Impact of solving the root node in A_M dataset (G2MKP).
(Only runs that did not suffer memory exhaustion.)
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The histogram has 10 bins, each bin aggregates the runs spending (x, x + 10]% of their
time solving the root node (x ∈ [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]). Souce: the author.

sharing the same original instance (i.e., sharing the name before the underline) were also

excluded for the same reason. This detail indicates that, in general, what determined if

an instance was hard to solve were the other instance characteristics besides the m. The

full list of adapted instances can be found in appendix A (under item A-*_M2, A-*_M4,

A-_M8).

The A_M dataset behaves differently from the previous CW_M dataset. In the

A_M runs, increasing m often has little effect on the solving times. Also, the time spent

solving the root node is more significant, as shown in Figure 7.5. A more detailed exami-

nation of A13_M2,4 (no rotation) shows that almost all time is spent solving the root node

(respectively, 457s and 419s); the optimal solutions are found shortly after (respectively,

by the 484s and the 479s) with a very small gap (0.03% and 0.06%) which is soon closed.

One explanation for the similar timings, is that, given the instances are unweighted

and have a high piece demand, the problem with m = 2 is not very distinct from the

problem with m = 4. The optimal solutions found for A13_M2,4 corroborate this

explanation: the original instance had u = [10, 12, 120, 40, 80, 10, 8, 24], and the solu-

tions for the m ∈ {2, 4} instances employ the following numbers of pieces, respectively,

[0, 0, 16, 18, 16, 4, 8, 18] and [0, 0, 34, 34, 40, 10, 8, 24], i.e., the demand for the last two

piece types are the only ones low enough impede the m = 4 solutions to be just a repeti-
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Figure 7.4 – Cutting patterns present in optimal solutions of A13_M{2,4} (G2MKP).
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The numbers indicate the piece type index. The optimal solution of A13_M2 is two

copies of pattern (a). The optimal solution of A13_M4 is two copies of pattern (b) plus a
copy of (c) and another of (d). Souce: the author.

tion of the same pattern used in both plates of the m = 2 optimal solution. For reference,

the patterns present in both solutions are presented in Figure 7.4.

The models from dataset A display a larger increase in the number of nonzeros

if rotation is allowed (compared to the CW dataset). Another consequence of the large

number of piece types with high demand. The smallest relative (and absolute) increase is

of 2.22 times (from 27 to 60) from A03_M2; the largest relative increase is of 64.98 times

(from ≈500,000 variables to ≈32,500,000) from A20_M{2,4,8}. The highest absolute

increase does not figure in the table (from 4,184,736 to 89,405,895) because it pertains

to instance A31_M2 runs, excluded for not obtaining any non-trivial solutions. Consid-

ering only the instances for which both runs obtained an optimal solution (18, all present

in Table 7.2), it is possible to examine the profit gap between optimal solution allowing

and not allowing rotation. Half (i.e., nine) of the instances presented an increase smaller

than 1.7% (four of these had no increase); the largest increase was 17.67% by A42_M2,

which is a small instance (eight piece types and 13 pieces total).
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7.4.2 G2CSP

In this section, the following two datasets from the literature are employed. A is

a real-world dataset with high-demand piece types from Macedo, Alves and Carvalho

(2010) which the author of this thesis has also adapted for the G2MKP experiments

(see the previous section). CLASS is an artificial dataset with low-demand piece types

from both Berkey and Wang (1987) (first six classes) and Fayard, Hifi and Zissimopou-

los (1998) (four last classes) which is not used in any other experiments of this thesis.

The goal of choosing these two very distinct datasets is to test BBA over both G2CSP

(represented by dataset A) and G2BPP (represented by dataset CLASS).

Table 7.3 presents a summary of other uses of dataset CLASS in the literature

for the variant employed here and the non-exact three-staged variant. The author avoided

usages of the dataset that did not include the guillotine constraint, solved the Strip Packing

Problem, or focused entirely on heuristic results. The comparison is muddled by many

factors: the exact problem variant, the machine, the solving method, the time limit, and

how optimality is assessed. However, it seems clear that BBA (without any warm-start

or given external bound) is not the most suitable solution method. The reasons for this

inadequacy are made clear in the rest of the section, but they can be mostly summarised

to: risk of memory exhaustion from the pseudo-polynomial model size; too much effort

spent on an unnecessarily tight lower bound; closing the gap is mostly up to Gurobi

internal primal heuristics. However, the BBA (with the mirror plate enhancement) had

better results for the problem variant that allowed rotation than for the no-rotation variant.

The author only found two uses of dataset A in the literature that are relevant for

the context of this thesis: Macedo, Alves and Carvalho (2010) (the dataset origin) and

Mrad, Meftahi and Haouari (2013). In both works, the problem considered is the non-

exact two-staged G2CSP without rotation, the method proposed is exact (respectively,

MILP and branch-and-price), and the time limit is 7200 seconds. In Macedo, Alves and

Carvalho (2010), their proposed MILP solves all instances within the time limit. The ex-

periments of Mrad, Meftahi and Haouari (2013) show better performance of their branch-

and-price compared to the aforementioned MILP; however, in their setup, the final results

had both methods failing to solve all instances, i.e., worse results for the MILP than those

reported in ist original wok.

The results found here cannot be directly compared to these previous results mainly

because the search space of the non-exact two-staged variant is considerably smaller than
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Table 7.3 – Known uses in the literature: dataset CLASS (G2CSP, no rotation)

Work Problem TL (s) Machine Method LB UB #o

Alvelos et
al. (2009)

non-exact
three-staged

G2CSP
7200

Intel Core 2
@ 2.13 GHz

Pseudo-
polynomial

MILP
(CPLEX 11)

– – 385

Fontan
and Li-
bralesso
(2020)

non-exact
three-staged

G2CSP
60

Intel Core i5-
8500 CPU @
3.00GHz

Anytime
Tree Search

– 7278 –

Pietrobuoni
(2015)

G2CSP 1800
Intel Xeon
E3-1220V2
@ 3.1 GHz

Heuristic (C) 7173 7281 393a

Pisinger
and Sig-
urd (2007)

G2CSP 3600
Intel Pen-
tium IV-3.0

Column
Generation
(Cplex 7)

7191 7266b 373–
380c

This work G2CSP 3600
AMD Ryzen
9 3900X @
3.8 GHz

Pseudo-
polynomial

MILP
(Gurobi 9.1)

– – 344

a The method is heuristic and the optimality seem to be assessed by comparison of the
obtained upper bound with a lower bound of external origin. b The exact source of lower
bounds is not clear and can be a combination of distinct sources. c The number comes
from an average multiplied by the number of groups. This work (as well some other
works) do not have a LB or an UB value because the solving method failed for some
instances without leaving either. Source: the author.

the one from the unlimited stages variant. The BBA solves only 24 instances (less than

the other methods, even in the most disfavoring setup). Some failures are due to memory

exhaustion, which does not deliver an LB or a UB. The MILP model from Macedo, Alves

and Carvalho (2010) is also pseudo-polynomial, but memory exhaustion does not happen

in their experiments because their problem variant is more manageable than ours. How-

ever, as the problem variant considered here allows for better packings, for some instances

BBA found an optimal solution value that is better than the optimal solution value for the

non-exact two-staged variant; these cases are: A-1 – 3 (4), A-7 – 13 (14), A-10 – 2 (3),

A-13 – 13 (14), A-20 – 25 (27), A-23 – 13 (14), A-26 – 32 (35), A-39 – 3 (4), A-40 – 16

(17), and A-41 – 18 (19). The experiments demonstrate that BBA is more suitable for the

G2BPP than the G2CSP.

The size of the models for dataset A increases by orders of magnitude when ro-

tation is allowed. The exact amount is hard to estimate because this often leads to the

model exhausting memory before it is fully loaded into Gurobi. Dataset A has a few
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Table 7.4 – Results for dataset A (G2CSP) with and without rotation.

No Rotation R. & Mirror Plates

Inst. b #nz T. (s) b #nz T. (s)
A-1 3 119 0.01 3 669 0.03
A-2 36 82 0.00 36 667 0.01
A-3 8 28 0.00 8 61 0.02
A-4 3 654 0.01 3 35,938 0.33
A-5 13 104,147 13.23 – – –
A-6 2 62 0.01 2 377 0.02
A-7 13 429 0.03 – – –
A-8 2 71 0.00 1 830 0.02
A-10 2 37,813 18.65 – – –
A-11 – 16,590,748 – – – –
A-12 14 90 0.02 – – –
A-13 13 1,773,363 1,188.58 – – –
A-14 – 37,634,326 – – – –
A-15 39 84,145 3.46 – – –
A-16 – 42,650,403 – – – –
A-17 5 10,124 1.18 – – –
A-18 282 8,190,735 >3600 – – –
A-19 – 81,245,113 – – – –
A-20 25 499,946 55.39 – – –
A-21 168 5,937,529 >3600 – – –
A-22 3 40 0.01 3 97 0.01
A-23 13 155,996 12.91 – – –
A-26 32 9,692,188 >3600 – – –
A-28 – 97,102,532 – – – –
A-30 25 6,225,705 >3600 – – –
A-31 40 4,184,737 >3600 – – –
A-32 – 141,455,917 – – – –
A-34 6 390,378 88.03 – – –
A-35 – 64,388,101 – – – –
A-36 9 273,537 42.70 – – –
A-37 5 31,226 0.88 – – –
A-38 – 16,957,817 – – – –
A-39 3 72,837 2.65 10 4,900,972 >3600
A-40 16 315,555 57.29 – – –
A-41 18 1,244,458 327.83 – – –
A-42 8 156 0.29 7 982 0.32
A-43 7 9,245 0.14 6 207,768 6.88

The instances in which both runs exhausted memory before the number of nonzeros was
obtained are omitted. The description of the columns follows: b – value of variable b
(i.e., the number of bins, the objective function) by the end of the optimization, which is
optimal if the run time is smaller than the time limit (3600 seconds); #nz – number of
nonzeros in the model; T. (s) – total time spent by the run in seconds. The dash indicates
data disregarded because the run ended in memory exhaustion. Source: the author.
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piece types, each with high demand, so often, a piece width did not exist as a piece length

before rotation (and vice-versa). Consequently, allowing rotation may lead to doubling

the number of distinct widths (lengths), each one of them associated with a piece with

demand probably close to (or higher than) ⌊W/wi⌋ (⌊L/li⌊). The result is a much denser

discretization and, therefore, a larger model.

The solver did not solve the no-rotation A31 model with 4,184,737 nonzeros

within an hour, nor any model with more nonzeros. The solver suffered memory ex-

haustion in the no-rotation A11 model with 16,590,748 nonzeros and every model with

more nonzeros. All runs that broke the time limit did not finish the root node relaxation

and did not bring the lower bound up from zero; heuristics found the respective primal

solutions during the solution of the root node.

Classes I to V present the opposite behaviour (compared to dataset A) when rota-

tion is allowed: the number of nonzeros and the time to solve generally decrease. This

behaviour can be explained by the small range from which the piece lengths and widths

are sampled (respectively, [1, 10], [1, 10], [1, 35], [1, 35], and [1, 100]) and the small size

of the original plate dimensions (squares of 10, 30, 40, 100, and again 100 units). With a

small range of possible values, increasing the total number of pieces will quickly increase

the number of values that appear both as a length and a width. Consequently, there is not

a large difference between the discretization using only lengths and only widths (model

without rotation) and the one with both sets combined for both dimensions (model with

rotation). As the mirror plate enhancement can potentially reduce the number of nonze-

ros to one-fourth (after the increase caused by the denser discretization), the final result

is often a model with rotation smaller than the respective model without rotation. This

mechanism also explains why the exceptions to this behaviour appear only in the lower

values of
∑

ui (i.e., 20 and 40): if the length/width range is not yet saturated, combining

lengths and widths increases the model size by more than the mirror plate can reduce it.

The shrinkage of the model size discussed in the last paragraph does not account

alone for the decrease in the average time to solve. Allowing rotation may increase the

number of distinct solutions sharing the optimal solution value or even allow for a better

optimal solution (compared to the case without rotation). This behaviour helps close the

gap because the initial lower bound often does not get looser; it often stays the same

or goes down a single unit which matches the optimal value. One such example is the

group of class V with 20 pieces: the model size increases by about 2.6 times, but the

average time to solve decreases by about six times. Looking into the raw data, most of the
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Table 7.5 – Results for CLASS I to VI (G2CSP) with and without rotation.

No Rotation R. & Mirror Plates

C
∑

ui #opt Avg. #nz Avg. T (s) #opt Avg. #nz Avg. T (s)
I 20 10 960 0.07 10 672 0.05
I 40 10 1,299 0.04 10 796 0.04
I 60 10 1,348 0.06 10 820 0.03
I 80 10 1,420 0.04 10 834 0.03
I 100 10 1,491 0.06 10 854 0.03
II 20 10 35,015 17.71 10 19,440 2.47
II 40 9 38,110 9.85 10 20,214 38.40
II 60 10 38,512 369.48 10 20,351 4.68
II 80 10 39,009 336.69 10 20,410 5.51
II 100 10 39,333 236.37 10 20,504 3.36
III 20 9 25,268 2.91 10 28,858 2.66
III 40 10 56,433 51.62 10 38,586 10.70
III 60 10 66,973 32.99 10 40,679 8.48
III 80 10 73,336 39.47 10 42,638 17.43
III 100 10 81,817 48.33 10 45,454 13.32
IV 20 7 1,028,785 1,836.98 9 640,680 1,164.56
IV 40 1 1,206,419 2,455.82 8 700,044 1,587.77
IV 60 0 – – 3 727,716 1,989.13
IV 80 0 – – 0 – –
IV 100 0 – – 3 734,838 2,179.76
V 20 9 95,331 115.80 10 252,312 18.43
V 40 10 448,653 513.98 10 457,204 176.21
V 60 7 596,699 313.21 9 474,356 158.92
V 80 8 779,755 857.55 10 566,326 582.90
V 100 4 949,798 1,016.19 10 630,620 540.01

The classes I to VI come from Berkey and Wang (1987). Class VI was suppressed
because none of its associated runs was finished by optimality. Each line indicates ten
runs. The #opt indicate how many runs found a solution and proved its optimality before
the time limit. The average number of nonzeros (Avg. #nz) and the average time in
seconds (Avg. T (s)) sum the respective characteristics of such runs and divide by #opt.
The interrupted runs are not considered in the average because some were interrupted by
timeout and others by memory exhaustion. Source: the author.

difference comes from instance cl_05_020_05 which takes 27 seconds to solve with

rotation and 885 without. The optimal solution of both runs is five bins, and both runs get

the optimal lower bound from the root node relaxation, so it is just a matter of finding a

matching primal solution.

All runs over instances of class VI failed to finish by optimality. The pieces em-

ployed in class VI are drawn from the same distribution as class V, but the original plate is

nine times larger in terms of area (i.e., 100x100 vs 300x300). This increase in the original

plate dimensions does not only mean a denser discretization and a larger search space, but
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Table 7.6 – Results for CLASS VII to X (G2CSP) with and without rotation.

No Rotation R. & Mirror Plates

C
∑

ui #opt Avg. #nz Avg. T (s) #opt Avg. #nz Avg. T (s)
VII 20 10 31,155 96.22 10 98,189 10.33
VII 40 10 137,484 173.15 10 209,091 92.09
VII 60 10 198,334 597.51 10 277,052 231.71
VII 80 8 340,022 632.82 9 417,089 605.08
VII 100 4 540,266 1,316.47 7 465,485 861.68
VIII 20 10 14,089 5.46 10 99,028 7.50
VIII 40 10 113,393 77.37 10 205,848 51.61
VIII 60 9 197,823 328.11 10 280,897 397.35
VIII 80 7 353,320 440.39 8 429,091 440.19
VIII 100 6 427,341 987.87 9 460,246 516.39
IX 20 10 3,836 0.03 10 24,619 0.47
IX 40 10 47,227 1.33 10 105,356 3.61
IX 60 10 86,205 2.74 10 173,368 7.20
IX 80 10 269,340 19.69 10 362,968 19.87
IX 100 10 385,172 37.45 10 404,727 27.65
X 20 9 428,588 310.67 10 458,851 385.11
X 40 5 907,437 950.43 9 617,916 650.96
X 60 1 894,726 437.59 8 651,835 633.70
X 80 1 1,206,174 524.34 4 700,092 442.85
X 100 0 – – 3 707,366 875.02

Classes VII to X come from Martello and Vigo (1998). See Table 7.5 for the description
of the table layout. Source: the author.

it also means there are no more pieces equal to or larger than half a dimension (common

in class V). These large pieces were easier to deal with than their smaller counterparts.

For classes VII to X, the effect of the mirror plate enhancement is less significant

than in the previous classes: only class VII with 100 pieces and class X with more than 20

pieces show a reduction of the average model size when rotation is allowed. Nevertheless,

there are many groups in which the models with rotation are larger on average, but the

number of instances solved is higher and the average time to solve is lower than the

models without rotation. The already mentioned advantage of models with rotation in

obtaining good primal solutions explains such results. In fact, classes VII to VIII have

length and width sampled from ranges with no intersection, which may hinder models

without rotation, but it is not much relevant when the pieces are allowed rotation.

Classes VII to X share the same original plate dimensions (100x100); what changes

is the distribution of the dimensions from which most of the pieces are sampled. Each in-

stance of class IX has 70% or more of the pieces with both dimensions at least as large

as half the original plate. Most of the solve time of such instances is spent at an easy but
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large root node and with the solver unsuccessfully trying to improve the lower bound2.

Each instance of class X has 70% or more of the pieces with both dimensions at most as

large as half the original plate. The model can deal with such instances while the number

of pieces is small; the problem is not the model size but finding a good primal solution

(which is easier when rotation is allowed).

Considering only the instances of the whole CLASS dataset in which both the

run with and without rotation finished by optimality, the total number of bins with and

without rotation are, respectively, 5653 and 5846; this means rotation was able to reduce

the number of bins needed by about 3.3%.

Figure 7.5 – Impact of solving the root node in A/CLASS dataset (G2CSP).
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The histogram has 10 bins, each bin aggregates the runs spending (x, x + 10]% of their
time solving the root node (x ∈ [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]). The percentages do
not sum up to 100% because runs killed by memory exhaustion count towards the total
but are not assigned to any bin. Souce: the author.

All runs from both datasets that spent 90~100% of total time in barrier finished

because of the time limit. Considering the behaviour of the rest of the runs, if enough time

was given for the run to finish, then these runs would probably not stay in the 90~100%

bin. This is, after finishing the barrier phase, the remainder of the run would probably take

2The author believes setting the Gurobi parameter DegenMoves to zero would reduce the time spent
to solve class IX. However, the author deemed this too specific to have its own set of experiments.
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about the same amount of time already spent in the barrier phase or more. All runs from

both A and CLASS datasets that spent 90~100% of total time in barrier stopped because

of the time limit. Considering the behaviour of the rest of the runs, if enough time for the

run to the finish were given, then these runs would probably not stay in the 90~100% bin.

After finishing the barrier phase, the remainder of the run would probably take even more

time before proving optimality.

7.4.3 G2OPP

Two datasets are exclusively employed in this section: the CJCM from Clautiaux,

Carlier and Moukrim (2007) and the dataset C (C1-p1 to C7-p3) from Hopper and Turton

(2001). Both datasets are artificial and were generated for problems without the guillotine

constraint, respectively, the Orthogonal Packing Problem (without rotation) and the Strip

Packing Problem (with rotation). For the Orthogonal Packing Problem (OPP, i.e., G2OPP

without the guillotine constraint), the feasibility status of each instance of both datasets

is known: for CJCM, instances with ‘F’ in the name are feasible, instances with ‘N’ are

not feasible, and instances with an ‘X’ have the same feasibility status than the instance

of the row above them in Table 7.7; for C, all instances are feasible. Instances of CJCM

also differ in their guaranteed percentage of waste, i.e., the relative difference between the

summed piece area and the original plate area, which is indicated in the instance name by

the first two digits after the letter ‘E’. On the other hand, any feasible solution for the C

instances needs a perfect fit, i.e., the summed piece area is the same as the original plate

area. Finally, the CJCM instances are small and homogeneous (the total number of pieces

is between 10 and 23, and all plates have 20x20 dimensions). In contrast, the number of

pieces and plate dimensions of C instances increase with its category (the total number of

pieces goes from 16 to 197 and original plate sizes from 20x20 to 160x240, see appendix

for details).

Considering the OPP, the number of feasible instances in the CJCM is 14. Ta-

ble 7.7 shows that with the guillotine restriction (but no rotation), this figure goes down

to four, but then allowing rotation increases it to 40. To prove unfeasibility, the solver

needs to exclude the whole search space from further consideration; on the other hand,

to prove feasibility, the solver only needs to find a feasible solution. These particularities

lead to the decrease in the average time to solve when rotation is allowed (without the

mirror plate enhancement), even when this allowing rotation causes an increase in the
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Table 7.7 – Results for dataset CJCM (G2OPP) with and without rotation.

No Rotation Rotation R. +M.P.

Inst. F #nz T (s) F #nz T (s) #nz T (s)
E00N10 N 3,330 0.32 N 7,040 0.39 3,759 0.44
E00N15 N 8,350 1.15 F 11,010 1.42 5,795 1.87
E00N23 N 9,052 2.33 F 11,316 3.99 5,949 1.16
E00X23 N 9,228 7.30 F 11,544 2.36 6,063 0.79
E02F17 N 8,197 9.26 F 10,820 3.79 5,699 3.42
E02F20 N 9,224 197.90 F 11,370 3.46 5,976 1.72
E02F22 F 8,768 3.44 F 11,396 9.18 5,989 1.20
E02N20 N 8,865 13.89 F 11,394 6.95 5,989 1.49
E03N10 N 5,729 0.10 N 9,862 3.62 5,211 0.86
E03N15 N 7,455 2.56 F 11,000 12.27 5,786 2.05
E03N16 N 7,072 5.88 F 9,842 5.11 5,204 3.26
E03N17 N 8,151 4.24 F 11,126 4.87 5,850 1.05
E03X18 N 9,057 4.53 F 11,410 13.06 5,998 2.04
E04F15 N 8,419 6.46 F 10,990 5.05 5,784 0.61
E04F17 N 9,050 10.89 F 11,218 3.17 5,901 0.28
E04F19 F 8,981 62.43 F 11,520 3.02 6,051 0.79
E04F20 F 9,090 10.73 F 11,256 2.68 5,919 1.32
E04N15 N 6,594 1.21 F 9,982 4.79 5,268 1.98
E04N17 N 8,847 8.50 F 11,378 2.54 5,979 1.93
E04N18 N 8,887 0.97 F 11,416 1.79 5,998 0.24
E05F15 N 8,571 4.94 F 11,412 1.68 5,996 0.13
E05F18 N 9,031 19.11 F 11,390 1.92 5,986 0.76
E05F20 F 9,080 5.85 F 11,454 2.53 6,018 0.31
E05N15 N 6,120 1.49 F 10,976 9.78 5,778 4.70
E05N17 N 8,885 2.57 F 11,328 31.84 5,955 0.96
E05X15 N 8,719 7.48 F 11,424 0.53 6,002 0.41
E07F15 N 6,657 5.70 F 10,896 3.88 5,734 1.01
E07N10 N 3,587 0.36 F 7,698 0.63 4,096 0.60
E07N15 N 4,947 1.73 F 10,310 1.74 5,432 2.63
E07X15 N 8,718 5.64 F 11,196 2.50 5,889 0.55
E08F15 N 8,281 12.65 F 10,886 2.26 5,734 0.18
E08N15 N 6,890 2.35 F 11,008 1.53 5,791 0.14
E10N10 N 3,732 0.34 F 9,346 1.03 4,950 0.33
E10N15 N 5,349 0.79 F 9,090 1.94 4,802 0.50
E10X15 N 7,490 43.90 F 10,602 2.10 5,583 0.28
E13N10 N 4,853 0.76 F 9,736 2.74 5,154 0.72
E13N15 N 8,496 0.42 F 11,356 1.36 5,968 0.45
E13X15 N 6,959 0.34 F 11,358 1.47 5,970 0.07
E15N10 N 5,563 2.21 F 10,458 1.57 5,512 0.85
E15N15 N 6,253 6.07 F 11,278 1.78 5,929 0.17
E20F15 N 8,923 62.95 F 11,126 0.83 5,852 0.11
E20X15 N 9,045 0.68 F 11,184 0.32 5,884 0.06

4 7,583 12.91 40 10,771 4.04 5,671 1.05
F – feasible (F) or not feasible (N); #nz – number of nonzeros in the model; T. (s) – total
time spent by the run in seconds. F is ommited in R. +M.P. (i.e., rotation with the mirror
plate enhancement) because its is the same as F in Rotation. Source: the author.
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Table 7.8 – Results for dataset C (G2OPP) with and without rotation.

No Rotation R. +Mirror Plates

Inst. F #nz T. (s) F #nz T. (s)
c1-p1 F 5,787 0.40 F 4,031 0.68
c1-p2 N 9,728 0.72 F 5,419 0.95
c1-p3 F 6,879 0.12 F 3,985 0.44
c2-p1 F 19,154 10.95 F 20,755 2.33
c2-p2 N 22,332 267.73 F 20,495 16.50
c2-p3 F 17,860 9.47 F 20,863 9.81
c3-p1 F 87,001 235.73 F 81,168 139.34
c3-p2 N 109,977 2,865.11 F 95,354 1,742.43
c3-p3 F 102,175 29.41 F 95,355 140.72
c4-p1 X 273,229 >3600 X 141,522 >3600
c4-p2 X 307,507 >3600 F 159,145 2,938.40
c4-p3 X 291,911 >3600 X 159,475 >3600
c5-p1 X 561,197 >3600 X 438,745 >3600
c5-p2 X 584,310 >3600 X 439,306 >3600
c5-p3 X 584,032 >3600 X 435,995 >3600
c6-p1 X 1,259,079 >3600 X 976,512 >3600
c6-p2 X 1,403,995 >3600 X 1,044,021 >3600
c6-p3 X 1,297,746 >3600 X 1,034,700 >3600
c7-p1 X 10,908,645 >3600 X 8,083,056 >3600
c7-p2 X 11,376,814 >3600 X 8,389,704 >3600
c7-p3 X 11,154,288 >3600 X 8,362,393 >3600

Same columns as Table 7.7; ‘X’ indicates the run finished before proving either feasibility
or unfeasibility. Source: the author.

model size. The halving of the average model size caused by enabling the mirror plate

enhancement reduces the average time to solve even further.

The same behaviour observed in dataset CJCM can be observed in dataset C but

to a smaller degree. Less dataset C instances are unfeasible without rotation (only three

observed), and the mirror plate enhancement can only keep the models about the same

size or at most about 25% lower. As of Category 4, the instances already have 49 pieces

and 60x60 original plates, and only one instance is solved within the time limit. The gen-

eration method is the same for all categories, and the trend indicates that most instances

are feasible (even more if rotation is enabled). Therefore, most instances from Category

4 and up fail because finding a single feasible solution is time-consuming.

Solving the root node relaxation (with the barrier method) takes more than 12.5%

of the total time only in 12.5% of all the runs (i.e., merging both datasets) and, therefore,

it is not a significant bottleneck.

Most papers that employ the two datasets considered in this section focus on a
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method to solve the Strip Packing Problem, or the method is heuristic, or the method

does not constrain the cuts to be guillotined, or any combination of these characteristics.

This way, as far as the author knows, for contextualizing the results of the experiments,

the most suitable works are Clautiaux, Jouglet and Moukrim (2011) and Fleszar (2016).

Clautiaux, Jouglet and Moukrim (2011) proposes a new class of graphs called guillo-

tine graphs which they use as the base for a constraint programming model that solves

G2OPP instances through the ILOG solver. Fleszar (2016) propose a bottom-up pattern

enumeration algorithm for the G2OPP, which takes advantage of dominance relations,

enumeration order, and a heuristic look-ahead.

Unfortunately, while the two methods mentioned above are explicitly designed for

the G2OPP, the instances of both datasets are solved as Strip Packing Problem instances

by repeated solving them as G2OPP instances. The outer procedure consists of a loop

that starts from either the upper or the lower bound (on the instance height), fixes the

height, solves G2OPP as a subproblem, and either stops or iterates to the next height

value. The difference between upper and lower bounds is often a few units, and in some

cases (especially when rotation is allowed), the lower bound is the optimal solution value.

Even so, a direct comparison with their result would be unfair to them. That said, the

author will give a rough contextualization of results found here compared to theirs.

Clautiaux, Jouglet and Moukrim (2011) only solves the CJCM (without rotation)

and names the instances differently from the names adopted in this work while missing

instance E15N10 in the process. Fleszar (2016) reproduces the results from Clautiaux,

Jouglet and Moukrim (2011), renaming the instances to the same standard used by us

and will be used as reference. In Clautiaux, Jouglet and Moukrim (2011), three instances

(E02F22, E04F19, and E04F20) match the lower bound adopted by them and, therefore,

their method IGGlb only solves G2OPP a single time. For these three instances, the tim-

ings of BBA and IGGlb are, respectively, 3.44 vs 539.03, 10.73 vs 2.07, and 62.43 and

106.45. For the rest of the instances, there are many cases in which the IGGlb solves for

k distinct height values, and the time taken is 10k to 100k higher than the time taken

by BBA to solve a single instance. There are hardly any cases in the opposite direction,

i.e., BBA taking orders of magnitude more time than the mean time IGGlb would take

for a single G2OPP instance. However, run times can vary considerably even by chang-

ing one height unit, which makes such a comparison fragile. If anything, the evidence at

least shows that the method to solve G2OPP proposed in Clautiaux, Jouglet and Moukrim

(2011) does not dominate BBA.
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The method of Fleszar (2016) takes at most 0.14 seconds to solve any instance in

CJCM for the Strip Packing Problem and, consequently, dominates BBA in such dataset.

For the C dataset, Fleszar (2016) solves the instances both with and without rotation

(as done in this work too). When solving the instances without allowing rotation, their

method hits the one-hour time limit in the same instances BBA also hits the time limit.

However, when rotation is allowed, their method solves four more instances. When their

method starts by the lower bound, which always matches the height adopted in the in-

stances employed in this thesis, all runs that hit the time limit did not solve the G2OPP

for the first height, i.e., the comparison between instances that hit the time limits is fair.

For the C instances solved in both experiments, the timings of Fleszar (2016) are generally

under a second and are better than ours. That said, as already mentioned, most instances

that BBA failed to solve were also not solved in Fleszar (2016). One last observation is

that Fleszar (2016) method has a worst-case memory requirement of 2(min{W,L}2n)2

which is not directly comparable to BBA in which the worst-case the number of nonzeros

is about 3/2(L + W ) × L × W and the solver is free to explore the B&B tree different

ways depending on the available memory. The size of the BBA model is not significantly

affected by the number of piece types n, at least not directly, but it is significantly affected

by the discretization on L and W and the number of unique values in l and w.

7.5 Other related problems

This section briefly discusses formulation adaptations for other related problem

and variants. No implementation or experiments are provided for the additional adapta-

tions discussed there.

7.5.1 Multiple Knapsack Problem (heterogeneous variant)

The adaptation of the BBA formulation from the G2KP to the heterogeneous

G2MKP is not as straightforward as the adaptation to the homogeneous variant. First,

the notation needs to be changed to account for multiple differently-sized original plates.

In the previous notation, the only references to the original plate are to its length L, its

width W , and to the fact it is the plate zero in J . For the sake of simplicity, let us assume

plate-size normalization is enabled. Consider a set K ⊆ J for representing the size-
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normalized original plates and, for each k ∈ K, its (normalized) length Lk, (normalized)

width Wk, and number of copies available Uk.

It is possible to avoid modifying the plate enumeration procedure by setting L =

max{Lk : k ∈ K}, W = max{Wk : k ∈ K}, and plate zero to (L,W ) (i.e., the

enumeration is the same as before, but with the new dummy values). With the notation

and plate enumeration procedure out of the way, the changes to the formulation boil down

to replacing (3.11) by the following constraint set:

∑
o∈O

∑
q∈Qko

xo
qk +

∑
i∈E∗k

eik ≤ Uk ∀k ∈ K (7.1)

A specialized cut-and-plate enumeration procedure may have better performance

but often the enumeration is not the performance bottleneck. Also, reduction procedures

(or the solver itself) often will remove the unnecessary cuts and plates enumerated in this

simplified fashion.

7.5.2 Strip Packing Problem

Differently from the other mentioned problems, the G2SPP does not define a W

value a priori, as the problem searches the minimum W in which it is possible to pack all

pieces. First, let us set W to a suitable upper bound, and then define our original plate

(i.e., plate zero) as usual.

One straightforward adaptation, which does not directly alter plate enumeration,

consists of the following steps: (i) add dummy pieces of width W and every normalized

length, (ii) have the dummy pieces share the same one-unit demand (i.e., only one of

these dummy pieces may be used in a solution), (iii) change the objective function to

maximize the length of the selected dummy piece and, finally, (iv) change the demand

constraint of all non-dummy pieces to be an equality. However, this adaptation is not

ideal. For example, it introduces symmetries, as the dummy pieces, which simulate the

unused width, may appear in the top, bottom, or middle of the pattern. Therefore, a better

but not so straightforward adaptation, based on Furini, Malaguti and Thomopulos (2016),

consists of the following changes:

1. L is set to be one unit greater than a suitable upper bound instead.
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2. The original plate is not vertically discretized (Q0v = ∅).

3. The original plate is horizontally discretized on its full extension.

4. The second child of every horizontal cut over the original plate is waste.

5. The demand constraint (3.12) becomes an equality, i.e., pieces are required.

6. Avoid direct extraction from the original plate, i.e., omit
∑

i∈E∗0
ei0 from (3.11).

7. The objective function changes from:

max.
∑

(i,j)∈E

pieij (3.9)

to:

min.
∑
q∈Q0h

qxh
q0 (7.2)

In other words, the dummy original plate serves only to be horizontally cut (the

chosen cut defines the objective function value), and the only child plate generated by the

cut behaves as the original plate in the BBA formulation for the G2OPP.

7.5.3 The k-staged variant and the variant with defects

The author believes that adapting the BBA (or the FMT) formulations to either the

variant with a limited number of stages, or the variants with defects in the original plate,

is bound to be a not very fruitful endeavor. The reasoning behind this belief is that both

variants prevent the formulation from disregarding the exact origin of each subplate and,

therefore, break many reductions employed by the formulations.

In the case of the k-stage formulation, the formulation considers just one cut per

plate at a time and do not group the set of cuts that could be done under a same guillotine

stage together. It can be assumed that every horizontal (vertical) cut over a plate with

width W (length L) can only pertain to the first stage; however, the children plates of the

first cut of the second stage have lost all information that can help determine in which

stage they were obtained. In fact, all plates of the same dimensions are conflated into a

single number of plates available of some plate type, but each individual plate can have
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been obtained at a different cutting stage. One of the strenghts of these formulations

is exactly the model size reduction obtained by this conflation, which would need to be

reconsidered to allow for an arbitrary k-stage limitation.

A variation of the same problem happens when plates with defects are considered.

Now, it is not enough anymore for the plates to have the same size to be conflated into a

single plate type, they need to have defects on the same exact spots. If there are few small

defects, the model can work around this by generating extra plates types with defects and,

once a subplate has no defects on it, from that subplate down the enumeration/model is the

same as for the problem without defects. However, even if the defects are few and small,

the plates with defects break some basic assumptions that allowed for many reductions in

the enumeration. For an example, an horizontal cut at position q′ of a plate of length l′

cannot be assumed to yield the same results than a cut at position l′ − q′ (i.e., its perfect

symmetry) because the defects will be in different positions in each pair of child plates.

This basic reduction is employed by both FMT and BBA formulations.

7.6 About the T instances from Hopper (2000)

In a preliminary experiments phase, the author considered the instances of the

datasets N and T from Hopper (2000). Each dataset has 35 instances and was generated

by recursively cutting a 200x200 plate.

Hopper (2000) distinguishes between N and T solely by the cutting rules employed

to generate each dataset. In N, a plate randomly selected to be further cut is divided into

five subplates which follow the classic non-guillotinable pattern (see the pieces 12, 13,

14, 15, and 16 in Figure 7.6 for an example of such pattern). In T, single (vertical or

horizontal) guillotine cuts should have been used instead. When the number of plates

reaches the desired number, the process stops, and each plate is considered a piece for

the generated instance. The process discards no plate; therefore, an optimal solution that

packs every piece into a 200x200 plate must exist. However, only the process described

for the T instances guarantees that optimal solutions can be obtained using only guillotine

cuts.

Even with a three-hour time limit, only eight instances of dataset T (T1a, T1b,

T1c, T1d, T1e, T2c, T2e, T3a) were solved optimally. However, in each of these eight

runs, the solver returned an optimal pattern with less than all pieces of the respective

instance. This unexpected result led us to manual analysis of the instances, which revealed
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a mistake in their generation. The instances of the T dataset seem to have been generated

using the same generator used for the N instances. Consequently, there is no guarantee of

a wasteless solution using only guillotine cuts. In fact, for the first instance of the dataset

T (T1a), the author can provide proof that it is impossible to obtain a guillotine packing

of all pieces.

Figure 7.6 – A non-guillotinable optimal solution for instance T1a.
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Souce: the author.

Proposition 7.1 The entire piece set of the instance T1a cannot be packed into a space

of 200x200 using only guillotine cuts.

Proof: The desired pattern can only be wasteless, as the summed area of the pieces equals to the

available area. Therefore, any guillotine cut that leads to some waste cannot lead to the desired

pattern. Some piece (or piece subset) has to be positioned below and/or above piece 7 (52x178)

for a pattern to have no waste. The only piece of length 22 is piece 3 (81x22), and no subset of

pieces sums up length 22. As no other pieces sum up exactly length 22, the starting cut cannot be

an horizontal cut separating pieces 7 and 3: the space by the sides of piece 3 would have some

waste.

The only remaining option is a vertical cut separating pieces 7 and 3 from the rest of the

plate. This cut must create a plate of width 81, so piece 3 can be obtained through a subsequent

horizontal cut with no waste. Consequently, the desired pattern must have a subpattern of size

81x179 consisting of piece 7 and any other pieces (except piece 3) and with no waste. Such a
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subpattern is impossible to obtain. The pieces able to fit by piece 7 sides are: 6 (29x55) and 11

(29x86), both with the exact width, and also the combination of pieces 4 (16x25) and 15 (13x40),

that side-by-side sum width 29. Other pieces of small width (e.g., 5 and 12) cannot combine in

a way that sum width 29. These pieces are insufficient to fill the gap. Therefore, there is no

guillotinable pattern able to pack the entire piece set within the available area.

⊓⊔

As far as the author knows, no previous paper has made this claim. Recently,
Júnior et al. (2018) mentioned datasets N and T and their difference in generation; so the
author believes this mistake is not widely known. The closest claim the author could find
was from Wei et al. (2014) which says:

“The set T consists of 70 instances whose known perfect packing follow guillotine-
cut constraint. However, when we follow the method described by Hopper
(2000) to restore the known perfect packing for T instances, we found the
known perfect packing clearly does not follow the guillotine-cut constraint.”

Unfortunately, this claim gets the number of instances wrong, so the author is not

sure if they mixed T and N instances together or if they just committed a typo. Much of the

prior work that solved instances from the T dataset focused either on heuristic methods or

exact non-guillotine methods. Examples of such works areAlvarez-Valdes, Parreño and

Tamarit (2008) (non-guillotine heuristic founds optimal solution for smaller T instances)

and Wei et al. (2011) (non-guillotine heuristic). The author believes this explains why this

discrepancy was not noticed sooner.

Some works may have been impacted by the mistake in the dataset generation.

Bortfeldt and Jungmann (2012) proposes a tree-search algorithm that respects the guil-

lotine constraint. The work compares optimality gaps of the proposed method and other

non-guillotine methods. The work assumes all methods could reach the best values for

such instances, which is not true. Consequently, the optimality gaps are wrong and un-

fair to the proposed method. Fortunately, the work does not use only the T dataset, so

the problem is mitigated. Other works that appear to be in the same circumstances are

Thomas and Chaudhari (2014) and Shang, Pan and Pan (2020).

Finally, even if the hypothesis about the generation mistake is correct, the author

cannot claim that every instance in dataset T cannot have all their pieces extracted from

a 200x200 plate using only guillotine cuts. The first iteration of the generation process

divides the original plate into a guaranteedly non-guillotinable pattern. However, further

cuts throw away the guarantee that the whole pattern cannot be rearranged in a guillotin-

able pattern. Intuitively, if the process continues for enough iterations, the pieces will be

small enough to be rearranged into a guillotinable pattern without difficulty. For a trivial
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example, any pattern with a non-guillotinable subpattern may be rearranged into a guil-

lotinable pattern if (i) the length (or width) of the whole pattern is larger than the sum of

the lengths (or widths) of each piece in the non-guillotinable subpattern and (ii) all the

other pieces are of unitary size (1x1). Consequently, the generation process only makes it

very likely but does not guarantee that the whole piece set cannot be packed back into the

original plate with guillotine cuts alone.
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8 CONCLUSIONS

The present work advances the state of the art on MILP formulations for the G2KP

and related problems. This work proposes a (re-)formulation that improves the perfor-

mance of one of the most competitive MILP formulations for the G2KP by at least one

order of magnitude. The enhanced formulation dominates the original formulation in the

instance set selected by the original formulation. Concerning other formulations for the

problem in the literature, the proposed formulation has shorter run times, and it proves the

optimality of more instances (in all datasets in which any of the considered formulations

can prove the optimality of at least one instance). The weakness of the proposed formu-

lation is that in harder datasets (like APT) it will either be unable to solve the root node

under the time limit or fail by memory exhaustion. The other formulations cannot prove

the optimality of instances of this dataset either, but they are able to return good solutions

at least.

The proposed formulation and the plate-size normalisation are enhancements prac-

tically exempt from drawbacks except for the extra complexity of implementation, which

is still lower than the pricing procedure they mostly supersede. The proposed hybridisa-

tion also does not add too much complexity to the implementation. However, it achieves

moderate success only in runs where most time is spent after solving the root node, and

its aggressive variant risks a large increase to run time for easier instances.

The flexibility advantage of formulations allows for easy adaptation for the rota-

tion variant and changing the problem to G2MKP, G2OPP, and G2CSP. G2MKP is not

deeply studied by the literature, and this thesis gives a starting point for future practition-

ers. For the G2CSP, as it is common in many CSP variants, a simple formulation has

difficulty keeping with the state of the art. The relaxation upper bound is often optimal,

but good upper and lower bounds methods can often prove optimality without needing a

systematic framework for exploring the search space. The formulation can be a tool for

scanning through the search space when these bounds cannot close the gap by themselves,

but it is not competitive by itself. For the G2OPP, the proposed formulation seems com-

petitive against a similar approach (a constraint programming model), but it is orders of

magnitude slower than the state-of-the-art bottom-up pattern enumeration (which has the

disadvantage of needing even more memory than the proposed formulation).

In the experiments, some elementary inferences were already discussed, such as

the impact on the performance caused by the LP-solving algorithm, the specific changes
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made, MIP-starting the models, some procedures proposed together with the original

model (i.e., pricing and some preprocessing reductions), allowing rotation, and choice

of the solver. The author deemed these too specific to be discussed here and better con-

textualised in their respective experiment sections.

The author believes symmetry-breaking plays a significant part in the success of

the proposed formulation. In the experiments, the text focuses on the significant reduction

of the model size because it is easier to measure. However, in Section 4.4, by compar-

ing formulations with and without the purge procedure, it can be seen that a significant

reduction of the model size does not always lead to a significant reduction in running

times. In the case of the variables removed by the purge procedure (which could never

assume a nonzero value), it seems clear the solver was able to disregard them without

the need for the explicit removal by purge. The same does not apply to the variables re-

moved by the enhanced model , the plate-size normalisation, the hybridisation, or even

the (rotation-specific) mirror-plate enhancement), which could assume nonzero values

and compose symmetric solutions. Each of these enhancements either removes redun-

dant variables which could assume non-zero values or change the variables to further

restrict the search space (without losing the guarantee of optimality). The enhanced for-

mulation did not present consistent gains in the LP relaxation for them to be responsible

for the observed improvement in performance. The author also believes the results sug-

gest that clever dominance rules may considerably improve pseudo-polynomial models

(which often have tight bounds but large formulations) before resorting to more compli-

cated techniques (as the pricing procedure proposed in Furini, Malaguti and Thomopulos

(2016), and described in Section 3.7, or column generation techniques).

The author believes it would be fruitful to pursue the following subjects in fu-

ture research: applying the hybridisation to G2OPP (especially infeasible instances) as

these are negatively impacted by the symmetries that hybridisation removes; any further

reductions that may help to tackle large instances of the literature (as gcut13); and

matheuristics that work without adaptation over any problems the formulation can solve

and help to avoid the worst-case of the pseudo-polynomial formulations (i.e., providing

no primal solution before the time limit if the root relaxation is hard to solve).
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APPENDIX A — DETAILS ON MENTIONED DATASETS

The following is a list of every dataset that provided at least one of the instances

used in this thesis experiments, as well as the N and T datasets, discussed in Section 7.6.

The list is sorted by the year of the work that proposed the first (if not all) instances of the

dataset.

HH Proposed in: Herz (1972) and Hifi (1997) (see details below) for the unweighted un-

constrained (and, after, constrained) G2KP, and the first known reference to the

name adopted in this work is Cung, Hifi and Cun (2000). Other names: the

proposing paper does not name the unconstrained version and Hifi (1997) call the

constrained version of H. Characteristics: “[...], we have considered another in-

stance (denoted H), derived from the instance of Herz (1972), by adding an upper

bound for each piece. The instance is described by (L,W ) = (127, 98), n = 5,

b = (5, 4, 2, 1, 6), ci = li × wi and (li, wi), for i = 1 . . . 5, are given by (21, 13),

(36, 17), (54, 20), (24, 27) and (18, 65), respectively.” (HIFI, 1997). Their b is re-

ferred to as u in this thesis (i.e., piece demand), the analogue is valid for c and p

(i.e., piece profit).

cgcut1 to cgcut3 Proposed in Christofides and Whitlock (1977) for the G2KP, and the

first known reference to the name adopted in this work here is Martello and Vigo

(1998). Other names: the instances were numbered as 1–3 by the proposing pa-

per, which is a common approach but often not considered a name, in this case,

however, other papers (e.g., Hifi (1997)) and instance repositories (e.g., <ftp://

cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting>) adopted the numbers as

names; also, Fayard, Hifi and Zissimopoulos (1998) refers to cgcut1–2 as CHW1–2,

Tschöke and Holthöfer (1995) proposes a four-instance unnamed dataset in which

instances 1 and 3 are cgcut1 and cgcut3, consequently, cgcut1 and cgcut3 are also

called STS1 and STS3 by PackLib2 (<https://www.ibr.cs.tu-bs.de/alg/packlib/xml/

b-autdg-85-xml.shtml>); Velasco and Uchoa (2019) mention a CW4 instance from

Christofides and Whitlock (1977), however, the author believes they wanted to refer

to the CW4 instance from Fayard, Hifi and Zissimopoulos (1998) instead. Charac-

teristics: The cgcut1–3 are part of a larger semi-artificially generated dataset, but

they were the only ones fully described in the body of the original paper and the

most commonly adopted by later works. The authors selected the number of pieces

(7, 10, and 20, respectively) and the original plate dimensions (15x10, 40x70, and

ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting
ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting
https://www.ibr.cs.tu-bs.de/alg/packlib/xml/b-autdg-85-xml.shtml
https://www.ibr.cs.tu-bs.de/alg/packlib/xml/b-autdg-85-xml.shtml
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40x70, respectively). The piece dimensions were obtained by defining selecting a

random value in [1, 0.25 × L × W ] to be the piece area, then selecting a random

integer value between one and the piece area to be the piece length and, finally,

determined the piece width in base of the already defined piece length and the pro-

visional area (rounding the width up, if necessary, i.e., allowing the area to grow

instead of shrink). The profit values were obtained by multiplying the area by a

random real number between 1 and 3. Finally, the demand vector was handpicked

by the authors to best suit their purposes.

wang20 Proposed in: Wang (1983) for the unweighted G2KP, i.e., waste minization

variant, the paper also cover the G2CSP but the instance does not seem to be used

for this purpose, and the first known reference to the name adopted in this work

is Fekete and Schepers (1997). Other names: the instance is also referred as W

by Fayard, Hifi and Zissimopoulos (1998), however, in <ftp://cermsem.univ-paris1.

fr/pub/CERMSEM/hifi/2Dcutting/>, W has a different demand vector (which does

not seem to affect the optimal objective value). Characteristics: The instance is,

according to the author, “a variation of an example presented by Christofides and

Whitlock (1977)”. The instance is fully described in the proposing paper and re-

produced here: L = 70, W = 40, l = [11, 12, 14, 17, 18, 21, 23, 24, 24, 25, 27, 32,

34, 35, 36, 37, 38, 39, 41, 43], w = [19, 21, 23, 9, 29, 31, 33, 15, 15, 16, 17, 22, 24,

25, 26, 27, 28, 29, 30, 31], u = [4, 3, 4, 1, 3, 3, 3, 1, 2, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1].

gcut1 to gcut13 Proposed in Beasley (1985a) for the unconstrained G2KP with both a

limited and an unlimited number of stages, and the first known reference to the name

adopted in this work here is Martello and Vigo (1998). Other names: gcut13 is also

referred to as B by Fekete and Schepers (1997). Characteristics: The profit of each

piece is set to their area, as in the unweighted variant, and the demand of each piece

was left undefined, as they were developed for an unconstrained variant. In their

experiments, Furini, Malaguti and Thomopulos (2016) set the demand of each piece

to one, and the same is done here (i.e., in the experiments of this work), to allow the

comparison with their results. The gcut1–12 instances are artificially generated: the

number of sampled pieces is [10, 20, 30, 50] for the first four, middle four, and last

four instances; L = W and they are 250 for the first four, 500 for the middle four,

and 1000 for the last four; both piece length and width are sampled from an integer

uniform distribution [L/4, 3L/4]. The gcut13 instance is a real-world instance of

ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/
ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/
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32 pieces and an original plate of size 3000x3000, fully described in the Table

2 of the original paper. This assimetry is probably the cause many papers select

only the gcut1–12 for their experiments. Online repositories: PackLib2 <https://

www.ibr.cs.tu-bs.de/alg/packlib/xml/b-autdg-85-xml.shtml>, and ESICUP <https:

//www.euro-online.org/websites/esicup/data-sets/>.

cl_* (a.k.a. CLASS) Proposed in: Berkey and Wang (1987) (first 6 classes with 50 in-

stances each) and Martello and Vigo (1998) (last 4 classes with 50 instances each)

for the two-dimensional BPP (non-guillotine) and the first known reference to the

name adopted in this work is hard to pinpoint, Martello and Vigo (1998) refer to

each new set of 50 instances they propose as classes, and Boschetti and Mingozzi

(2003) echoes this when they merge some instance sets from the two previous works

together into a single dataset divided into 10 classes, but the name CLASS (also

adopted by 2DPackLib) seems clearly accidental. Other names: in (ALVELOS et

al., 2009), the initials of the authors are used for each part of the dataset (BW for

the first six classes, and MV for the four last classes), but other names are also

possible, as the instance groups were just numbered (using roman numerals) and

the individual instances are referred just by their attributes (i.e., cl_class_n_seed,

where n is the total number of pieces). Characteristics: each class has 50 in-

stances, these instances can be further divided into five groups, each group has 10

instances sharing the same n ∈ {20, 40, 60, 80, 100}, all instances inside a group

have exactly the same generation parameters except by the random seed. For the

first six classes, both the length and the width of the pieces is sampled from an in-

teger uniform distribution [1, 10] (classes I and II), [1, 35] (classes III and IV), and

[1, 100] (classes V and VI), and the original plates are squares of, respectively, 10,

30, 40, 100, 100 (again), and 300 units; for the last 4 classes all original plates are

100x100, and the piece dimensions are drawn from four types of piece size distri-

bution. Each piece from the class (originally referred to as) k ∈ {I, II, III, V }

has 70% chance of being sampled from the distribution of type k, and 10% chance

from being sampled from each of the other three types. The four types of distri-

bution are uniformily random integers. The length (width) range for the types of

distribution I to IV are, respectively, [1, 50] ([66, 100]), [66, 100] ([1, 50]), [50, 100]

([50, 100]), and [1, 50] ([1, 50]). Possible sources of confusion: In Berkey and Wang

(1987), the term ‘two-dimensional bin-packing problem’ is used to describe what

is now commonly referred to as Strip Packing Problem (i.e., packing into an strip

https://www.ibr.cs.tu-bs.de/alg/packlib/xml/b-autdg-85-xml.shtml
https://www.ibr.cs.tu-bs.de/alg/packlib/xml/b-autdg-85-xml.shtml
https://www.euro-online.org/websites/esicup/data-sets/
https://www.euro-online.org/websites/esicup/data-sets/
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that is open ended in one dimension), the term is then adopted for ‘a special case of

packing into finite bins’ which is the current meaning of the two-dimensional BPP.

Also, in Martello and Vigo (1998), seven new classes are proposed, however, for

this combined dataset only the first four classes (referred to as I, II, III, and IV in

that work) are taken and they are referred to as classes VII, VIII, IX, and X in the

context of this dataset of 10 classes (because the first six come from Berkey and

Wang (1987)). The author believes this can be a source of confusion, as class VII

in Martello and Vigo (1998) is not the class VII in the CLASS dataset.

OF1 and OF2 Proposed in: Oliveira and Ferreira (1990) for the unweighted G2KP (i.e.,

waste minization variant), and the first known reference to the name adopted in

this work is Hifi and Roucairol (2001). Other names: not known, but possible, as

the instances were just numbered in the proposing paper. Characteristics: The

OF1–2 are part of a larger artificially generated dataset, but they were the only ones

fully described in the body of the original paper and, as far as the author knows,

the only ones adopted by later works. The generation procedure is clever but more

complex than usual. Considering this thesis only employs two instances, the au-

thor do believe it is better just reproduce them than to describe the whole gener-

ation process. Both instances have L = 40, W = 70, and n = 10. The profit

of each piece is set to their area. OF1 have l = [5, 39, 9, 15, 16, 21, 14, 19, 36, 4],

w = [29, 9, 55, 31, 11, 23, 29, 16, 9, 22], and u = [1, 4, 1, 1, 2, 3, 4, 3, 2, 2]. OF2 have

l = [18, 10, 27, 18, 8, 4, 9, 19, 16, 16], w = [22, 40, 13, 23, 29, 16, 47, 19, 13, 36],

and u = [2, 1, 3, 2, 4, 1, 1, 4, 2, 4].

STS1 to STS4 Proposed in: Tschöke and Holthöfer (1995) for the no-rotation and ro-

tation G2KP, and the first known reference to the name adopted in this work is

Alvarez-Valdés, Parajón and Tamarit (2002) (STS2 and STS4) and PackLib2 (STS1

and STS3). Other names: the instances STS1 and STS3 are, in fact, cgcut1 and cg-

cut2 from Christofides and Whitlock (1977), the instances STS2 and STS4 (which

were proposed by Tschöke and Holthöfer (1995)) are also called TH1 and TH2

by Fayard, Hifi and Zissimopoulos (1998). Characteristics: As STS1 and STS3

are cgcut1 and cgcut3 (both already described), this entry will focus exclusively

on STS2 and STS4. Tschöke and Holthöfer (1995) mention the instances are ar-

tifical and fully specified in their appendix, but give no details of the generation

procedure. The L, W , and n of the STS2 and STS4 are, respectively, [55, 99],
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[85, 99], and [30, 20]. Online repositories: PackLib2 <https://www.ibr.cs.tu-bs.de/

alg/packlib/instances_problem_type.shtml>.

okp1 to okp5 Proposed in: Fekete and Schepers (1997) for the 2KP (i.e., non-guillotine

G2KP), and the first known reference to the name adopted in this work is the propos-

ing paper. Other names: not known and improbable (the instances were named by

the proposing paper). Characteristics: the instances were artificially generated

using the same schema than Beasley (1985b) “after applying initial reduction”. The

“initial reduction” seems to consist on a set of rules for reducing the pieces de-

mand to the smallest value which does not affect the optimal objective value. The

instances were fully described in the proposing paper. The original plate of all in-

stances is 100x100, and the number of piece types in the five instances are 15, 30,

30, 33, and 29, respectively. The schema is the same as the one described in this list

for the cgcut1–3 instances except that (i) the length is picked from [1, L] (instead of

the provisory piece area) and (ii) the demand vector was not handpicked but a ran-

dom integer among 1, 2, and 3 (which may be changed by the “initial reduction”,

as mentioned above).

A1 to A5 Proposed in: Hifi (1997) for the weighted and unweighted G2KP (which is re-

ferred to as ‘constrained two-dimensional cutting stock problem’ in the paper), and

the first known reference to the name adopted in this work is the proposing paper.

Other names: not known and improbable (the instances were named by the propos-

ing papers; but note the similarly named instances A-1 to A-43 from Macedo, Alves

and Carvalho (2010) have no relation to these instances. Characteristics: The in-

stances are fully described in the paper, and their origin (real-world or artificial) is

not mentioned. The instances A1 and A2 have arbitrary profits associated to the

pieces, the A3, A4, and A5 do not (i.e., the piece area is used). The original plates

range from 50x60 to 132x100, the piece demands range from 1 to 4, the average

piece area of the first four instances is 699 (i.e., 26x27) and, for the fifth instance,

1107 (33x33).

CW1 to CW11 and CU1 to CU11 Proposed in: Fayard, Hifi and Zissimopoulos (1998)

for the weighted and unweighted G2KP (CW means constrained weighted and CU

mean constrained unweighted), and the first known reference to the name adopted in

this work is the proposing paper. Other names: not known and improbable (the in-

stances were named by the proposing paper). Characteristics: The CWi and CUi,

https://www.ibr.cs.tu-bs.de/alg/packlib/instances_problem_type.shtml
https://www.ibr.cs.tu-bs.de/alg/packlib/instances_problem_type.shtml
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for i = 1, . . . , 11, share L, W , l, w, and u; only p is distinct: in the CU instances

pi = li ×wi, and in the CW instances pi is a random integer in [100, 1000]; “the di-

mensions of the initial plate, the dimensions of the pieces and the number of pieces

to cut m are uniformly taken in the integer intervals [100, 1000], [0.1×L, 0.7×W ]

and [25, 60] respectively.” (FAYARD; HIFI; ZISSIMOPOULOS, 1998). The pieces

demand ui were sampled using max{1,min{10, random(0, ⌊L/li⌋ × ⌊W/wi⌋)}}.

Online repositories: 2DPackLIB <http://or.dei.unibo.it/library/2dpacklib-2-dimensional-packing-problems-library>,

<ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/>.

CHL1 to CHL7 Proposed in: Cung, Hifi and Cun (2000) for the G2KP, and the first

known reference to the name adopted in this work is the proposing paper. Other

names: not known and improbable (the instances were named by the proposing pa-

per). Characteristics: “[. . . ] the dimensions li and wi of pieces to cut are taken uni-

formly from the intervals [0.1L, 0.75L] and [0.1W, 0.75W ] respectively. The weight

associated to a piece i is computed by ci = ⌈ρlipi⌉, where ρ = 1 for the unweighted

case and ρ ∈ [0.25, 0.75] for the weighted case. The constraints bi, for i = 1, . . . , n,

have been chosen such that bi = min{ρ1, ρ2}, where ρ1 = ⌊L/li⌋⌊W/wi⌋ and

ρ2 is a number randomly generated in the interval [1, 10]” (CUNG; HIFI; CUN,

2000). Their ci is what is referred to as pi in this thesis (i.e., piece profit), the

same can be said for bi and ui (i.e., piece demand). The L, W , and n must be

provided, and for CHL1–7 they are [132, 62, 157, 207, 20, 130, 130], [100, 55,

121, 231, 20, 130, 130] and [30, 10, 15, 15, 10, 30, 35], respectively. Online reposi-

tories: PackLib2 <https://www.ibr.cs.tu-bs.de/alg/packlib/instances_problem_type.

shtml>, <ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/>.

Hchl1, Hchl2, Hchl9, and Hchl3s to Hchl8s Proposed in: Cung, Hifi and Cun (2000)

for the weighted and unweighted G2KP, and the first known reference to the name

adopted in this work is the proposing paper. Other names: not known and improb-

able (the instances were named by the proposing paper). Characteristics: The

generation procedure is the same described in item CHL1–CHL7. The suffix ‘s’ is

used to indicate that the pieces have a profit value equal to their area (as in A1s, A2s,

2s, . . . ). However, differently of the other suffixed instances, which had an earlier

version without the suffix and with an arbitrary profit vector, there does not seem

to exist instances Hchl3–Hchl8. The L, W , n for the instances (in the order they

are numbered) are [130, 130, 127, 127, 205, 253, 263, 49, 65], [130, 130, 98, 98,

http://or.dei.unibo.it/library/2dpacklib-2-dimensional-packing-problems-library
ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/
https://www.ibr.cs.tu-bs.de/alg/packlib/instances_problem_type.shtml
https://www.ibr.cs.tu-bs.de/alg/packlib/instances_problem_type.shtml
ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/


128

223, 244, 241, 20, 76], and [30, 35, 10, 10, 25, 22, 40, 10, 35], respectively. Online

repositories: <ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/>.

A1s, A2s, 2s, 3s, STS2s, STS4s, and CHL1s to CHL4s Proposed in: Cung, Hifi and Cun

(2000) for the unweighted G2KP, and the first known reference to the name adopted

in this work is the proposing paper. Other names: not known and improbable (the

instances were named by the proposing papers), however, in the text pf the original

paper there was a single space separating the instance name from the ‘s’ which was

supressed by all subsequent works. Characteristics: “The instances 2 s–3 s, A1

s–A2 s, STS2 s–STS4 s and CHL1 s–CHL4 s represent exactly the instances 2–3

, A1–A2, STS2–STS4 and CHL1–CHL4, respectively for which the profit of each

piece is represented by its area.”. (CUNG; HIFI; CUN, 2000) The original version

of each instance (i.e., without the ‘s’) is described by other items of this list. The

instances 2 and 3 refer to the alternative name to for the cgcut2 and cgcut3.

T1a to T7e and N1a to N7e Proposed in: Hopper (2000) for the Strip Packing Problem

with the guillotine constraint (T instances, but see below) and without the guillo-

tine constraint (N instances), and the first known reference to the name adopted in

this work is the proposing thesis. Other names: not known and improbable (the

instances were named by the proposing paper). Characteristics: All instances of

both datasets have a strip width of 200, and a (supposedly) known optimal height

of 200 (with no waste). Each dataset has 35 instances which are divided into cate-

gories 1 to 7, each category has five distinct instances indicated by the last character

of the instance name: a, b, c, d, e; and these five instances differ from each other

only because the seed given to the random number generator. Each category define

the same total number of pieces in both datasets, respectively: 17, 25, 29, 49 73,

97, 199. All instances are fully described in the appendix of Hopper (2000). The

generation procedure is also described by the proposing thesis and consists mostly

of starting with a 200x200 plate, and recursively making guillotine cuts to the plates

(T instances), or recursively dividing the plates into the five plates of the basic non-

guillotinable pattern (N instances). In Section 7.6, a proof by exhaustion shows that

T1a is impossible to pack into a guillotine pattern of 200x200, and there is strong

evidence empirical evidence of this impossibility for other T instances. The au-

thor believes that both dataset T and N were created using the procedure to create

non-guillotinable patterns.

ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/


129

C1-p1 to C7-p3 Proposed in: Hopper and Turton (2001) for the Strip Packing Prob-

lem (without the guillotine constraint and allowing piece rotation) and the first

known reference to the name adopted in this work is the proposing paper. Other

names: while the instances were named by the proposing paper, some papers re-

fer to them by ‘HT’ followed by a number or another identifier(GRANDCOLAS;

PINTO, 2010; FLESZAR, 2016). Characteristics: The dataset of 21 instances is

divided into categories 1 to 7 (the C comes from category) each with problems 1 to

3 (the p comes from problem). Each category defines the total number of pieces,

a strip width, and the optimal height (known at generation). The number of pieces

are 16 or 17 (C1), 25, 28 or 29, 49, 72 or 73, 97, and 196 or 197 (C7). The strip

widths are: 20, 40, 60, 60, 60, 80 and 160. The optimal heights are: 20, 15, 30,

60, 90, 120, and 240. Each of the 21 instances is described in its entirety inside

the proposing paper. The optimal solution is always a pattern with no waste, and

it “ is achieved by packing the rectangles in the order they are stated in the tables

using the BLF routine.” (HOPPER; TURTON, 2001). The proposing paper does

not give details of the generation process. In this thesis, the experiments show that,

for some instances, it is impossible to obtain the known optimal solution while en-

forcing guillotine cuts and disallowing rotation; however, when rotation is allowed,

the optimal solution was found for every instance which the runs did not timeout.

APT10 to APT49 Proposed in: Alvarez-Valdés, Parajón and Tamarit (2002) for the G2KP

(unconstrained unweighted and weighted, and constrained weighted and unweighted)

and the Other names: not known and improbable (the instances were named by the

proposing paper). Characteristics: The instances APT10 to APT29 are uncon-

strained, L and W are sampled from [1500, 3000] and the number of pieces types is

sampled from [30, 60]. The instances APT30 to APT49 are constrained, L and W

are sampled from [100, 1000], the number of pieces types is sampled from [25, 60],

and the demand of each piece i comes from minu1
i , u

2
i where u1

i = ⌊L/li⌋×⌊W/wi⌋

and u2
i is sampled from [1, 10]. For all intances, the piece lengths are sampled

from [0.05L, 0.4L], and the piece widths are sampled from [0.05W, 0.4W ]. The

instances APT10 to APT19 (unconstrained), as well as APT30 to APT39 (con-

strained), are unweighted, this is, the profit of each piece is equal to its area. The

instances APT20 to APT29, as well as APT40 to APT49, are weighted, and the

profit of each piece i is sampled from [0.25liwi, 0.75liwi].
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CJCM Proposed in: Clautiaux, Carlier and Moukrim (2007), but sometimes misatribut-

ted to Clautiaux et al. (2008), for the ortogonal packing problem (this is, the non-

guillotined G2OPP) and the first known reference to the name adopted in this work

is Côté and Iori (2018) which explicitly refer to the dataset as CJCM, some citation

styles abbreviate the authors as ‘CJCM’, so there is a previous work that referred to

the instances as ‘the instances from [CJCM08]’ (BELOV; ROHLING, 2009). Other

names: the author is also aware of the name ‘CCM’ employed by (FLESZAR,

2016); as the dataset was not named by its authors and the instances were iden-

tified by their three unique attributes (see below) it is possible other names exist.

Characteristics: Unfortunately, Clautiaux, Carlier and Moukrim (2007) points to

Hopper and Turton (2002) for details on the instance generation method and the

author was not able to find a copy of the latter. Besides that reference, the propos-

ing paper tell us that “The idea is to obtain both feasible and non-feasible problem

instances. The first step of the algorithm consists in randomly generating a set of

values whose sum is equal to (1− ϵ)WH . These values are the areas of the items in

the created instance. Then the values are factorized to get the width and the height

of the items.” (CLAUTIAUX; CARLIER; MOUKRIM, 2007). In this thesis, the

name of individual instances follow the pattern Eϵfn, in which ϵ are two digits in-

dicating (LW −
∑

i∈J̄ liwiui)/100 (i.e., guaranteed waste percentage if feasible),

f is the feasibility status as determined by the methods employed in the proposing

paper (‘F’ for feasible, ‘N’ for unfeasible, and ‘X’ for not solved by any of the

three methods employed within the time limit of 15 minutes for each), and n is the

total number of pieces (
∑

i∈J̄ ui). ). The selection criteria for the 42 instances of

the dataset is not entirely clear: the distribution of n in the range [10, 23] seems

arbitrary, and instances with the same ϵ and n only exist if f (assessed by the exper-

iments) is distinct. Consequently, it seems like a larger dataset was first generated,

and then 42 instances were selected from it based on the results of the experiments.

The original plate dimensions are always 20x20, and the piece types are heteroge-

neous (ui = 1 for the vast majority of the piece types, going up to ui = 4 for five

piece types in four distinct instances).

A-1 to A-43 Proposed in: Macedo, Alves and Carvalho (2010) for the two-staged G2CSP

and the first known reference to the name adopted in this work is the proposing

paper. Other names: not known and improbable (the instances were named by the

proposing paper); but note the similarly named instances A1 to A5 from Hifi (1997)
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have no relation to these instances. Characteristics: “[...], two sets of real instances

from the furniture industry, set A and [...]” (MACEDO; ALVES; CARVALHO,

2010, p. 7). The instances are highly heterogeneous, and their numbering seem to

have no relation with any of their characteristics. The most consistent characteristic

are the dimensions of the original plates, which are either 2550x2100 (31 instances),

2750x1220 (11 instances), or 2470x2080 (1 instance). A table summarising their

characteristics can be found in the proposing paper. Online repositories: 2DPack-

Lib <http://or.dei.unibo.it/library/2dpacklib>.

P1_*, P2_*, P3_*, and P4_* Proposed in: Velasco and Uchoa (2019) for the rotation

and no-rotation G2KP, and the first known reference to the name adopted in this

work is the proposing paper. Other names: not known and improbable (the in-

stances were named by the proposing papers). Characteristics: There is a total

of 80 instances, each combination of i ∈ {1, 2, . . . , 5} (random number generator

seed) and n ∈ {25, 50} for each of the following 8 triples of class, L, and W :

(1, 100, 200), (1, 100, 400), (2, 200, 100), (2, 400, 100), (3, 150, 150), (3, 250, 250),

(4, 150, 150), (4, 250, 250). The instance names follow the pattern Pclass_L_W_n_i.

The pieces of instances with n = 25 are a subset of the pieces in instances with

n = 50 (i.e., the ‘first half’). The piece demands are randomly picked from the

integer uniform distribution [1, 9], and the piece profits are the piece area multi-

plied by a real number randomly picked from the continuous distribution between

0.5 and 1.5. The classes 1–3 have piece lenghts randomly picked from the inte-

ger uniform distribution [5, 40], and piece widths from [10, 80]. In class 4, half

the pieces have their length and width defined in the same way as classes 1–3,

and the other half uses [10, 80] for length, and [5, 40] for width, i.e., the distribu-

tions are switched between dimensions. Online repositories: 2DPackLIB <http:

//or.dei.unibo.it/library/2dpacklib-2-dimensional-packing-problems-library>.

CW*_M2, 4, 8 Proposed in: this thesis (but it is a direct adaptation of the CW1–CW11

instances from Fayard, Hifi and Zissimopoulos (1998)) for the G2MKP and the

first known reference to the name adopted in this work is this thesis (the dataset as

a whole may be referred to as CW_M). Other names: none. Characteristics: each

instance CWk_Mm is exactly the same as the original CWk instance except it has

m original plates available instead of just one. To retain the selection aspect of the

problem (i.e., which pieces will be packed, not only how they will be packed), the

http://or.dei.unibo.it/library/2dpacklib
http://or.dei.unibo.it/library/2dpacklib-2-dimensional-packing-problems-library
http://or.dei.unibo.it/library/2dpacklib-2-dimensional-packing-problems-library
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author chose to only have a CWk_Mm instance if (
∑

i∈J̄ liwiui) ≥ 2mLW . This

is the reason CW1_M8 to CW5_M8 do not exist: each instance from CW1 to CW5

has a summed area of their pieces lower than the summed area of 2 × 8 copies of

their respective original plates.

A-*_M2, A-*_M4, A-_M8 Proposed in: this thesis (but it is a direct adaptation of the

A-1 to A-43 instances from Macedo, Alves and Carvalho (2010)) for the G2MKP

and the first known reference to the name adopted in this work is this thesis. Other

names: none. Characteristics: each instance A-k_Mm is exactly the same as the

original A-k instance except it has m original plates available instead of just one.

To retain the selection aspect of the problem (i.e., which pieces will be packed, not

only how they will be packed), the author chose to only have a A-k_Mm instance if

(
∑

i∈J̄ liwiui) ≥ 2mLW . The set of instances A-1 to A-43 is very heterogeneous,

and the numbering seem to be arbitrary, so this leads to an equally arbitrary subset

of them respecting the criteria for m ∈ {2, 4, 8}. For the sake of completeness,

the numbers of the original instances that have m = 2 counterparts are: 2, 3, 5, 7,

9, 11–21, 23–29, 31–38, and 40–43 (i.e., 35 of the original 43 instances); of these

the following 26 original instances have m = 4 counterparts, they are: 2, 5, 7, 9,

11–16, 18–21, 23–25, 27–29, 32, 33, 35, 38, 40, and 41; and, finally, of these the

following 16 original instances have m = 8 counterparts: 2, 9, 11, 14–16, 18–21,

24, 27, 29, 32, 33, and 38. This totalises 35 + 26 + 16 = 77 instances in this new

dataset.

FMT59 Proposed in: Furini, Malaguti and Thomopulos (2016) (no instance is new

so it was not proposed but grouped) for the weighted, unweighted, constrained,

and unconstrained G2KP and the first known reference to the name adopted in

this work is this thesis. Other names: none. Characteristics: the dataset con-

tains 37 unweighted instances and 22 weighted instances (59 in total) and com-

prises the entirety of some literature datasets as well as subsets of others. Ev-

ery instance come from another dataset described in this list. The unweighted in-

stances are: W, wang20 (WANG, 1983), gcut1 to gcut12 (BEASLEY, 1985a), OF1,

OF2 (OLIVEIRA; FERREIRA, 1990), A3 to A5 (HIFI, 1997), CU1, CU2 (FA-

YARD; HIFI; ZISSIMOPOULOS, 1998), 2s, 3s, A1s, A2s, STS2s, STS4s, CHL1s,

CHL2s, CHL5, CHL6, CHL7, Hchl3s, Hchl4s, Hchl6s, Hchl7s, Hchl8s(CUNG;

HIFI; CUN, 2000). The weighted instances are: cgcut1 to cgcut3 (CHRISTOFIDES;
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WHITLOCK, 1977), okp1 to okp5 (FEKETE; SCHEPERS, 1997), HH (HIFI, 1997),

2, 3 (CHRISTOFIDES; WHITLOCK, 1977), A1, A2 (HIFI, 1997), STS2, STS4,

CHL1, CHL2, CW1 to CW3, Hchl2 and Hchl9 (CUNG; HIFI; CUN, 2000). The

dataset was assembled from an assortment of datasets from the OR library (wang20,

gcut1 to gcut12, cgcut1 to cgcut3, okp1 to okp5) and the already mixed dataset em-

ployed in Hifi and Roucairol (2001) (all the remaining instances). The author do

not suggest employing this dataset as it is in future works, unless a comparison with

a work that has already employed it is needed. The reason for this recommendation

is that, because the literature adopted different names for the same instances, some

instances of the dataset are just duplicates with different names. This is the case for

instances 2 and 3 which are the same as cgcut2 and cgcut3. Taking into account the

literature wang20 and W should be the same instance but the instances obtained by

the author have distinct demand values for some of the pieces (all the remaining in-

stance characteristics are the same for all pieces). The weighted instances A1, A2,

2, 3, STS2, STS4, CHL1, and CHL2 have an unweighted version of themselves in

the same dataset; the unweighted alternatives have the same name but are suffixed

with an ‘s’.

Easy18 A subset of the dataset FMT59 defined in this work. Its purpose is to reduce the

number of runs needed before discarding a formulation from further consideration.

The dataset contains: cgcut1 to cgcut3, gcut1 to gcut12, OF1, OF2, and wang20.

See FMT59 for the origin of each instance, and the rest of the list for a description

of their characteristics.
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APPENDIX B — RESUMO EXPANDIDO

O problema principal desse trabalho é o Problema da Mochila 2D Guilhotinada

com cortes ortogonais (e irrestritos), demanda limitada, estágios ilimitados, e sem rotação.

Essa variante específica é referida doravante como PM2G. O PM2G é um problema forte-

mente NP-difícil (KORF, 2003; DOLATABADI; LODI; MONACI, 2012). Esse trabalho

também examina um tipo específico de corte restrito, três problemas distintos relaciona-

dos ao PM2G, e a variante que permite a rotação das peças (em todos problemas estu-

dados). Os três problemas distintos mencionados acima são o Problema das Múltiplas

Mochilas (PMM), o Problema de Empacotamento Ortogonal (PEO), e o Problema de

Corte de Estoque (PCE). Esse trabalho foca na obtenção de soluções ótimas para esse

problema através de Programação Linear Inteira Mista (PLIM).

Uma instância do PM2G consiste de: um retângulo de comprimento L e largura W

(aqui chamada de placa original); um conjunto de retângulos J̄ (doravante chamados de

peças) onde cada retângulo i ∈ J̄ tem um comprimento li, uma largura wi, um lucro pi,

e uma demand ui. O PM2G procura maximizar o lucro das peças obtidas pelo corte da

placa original. O termo guillotinado significa que cada corte sempre vai de um lado da

placa até o lado oposto da mesma; um corte nunca para ou começa no meio de uma placa.

Problemas de corte guilhotinado são de interesse da indústria, especialmente da

indústria da madeira (YANASSE; MORABITO, 2008; MORABITO; BELLUZZO, 2007)

e do vidro (CLAUTIAUX et al., 2019; PARREÑO; ALONSO; ALVAREZ-VALDES,

2020), em geral devido a limitações do maquinário. Existe uma literatura vasta e em

crescimento no assunto como é evidenciado por Iori et al. (2020) e por Russo et al. (2020).

Esse trabalho foca em PLIM como método de solução (ao invés de métodos ad

hoc) porque a adaptabilidade amplifica o valor de quaisquer melhoramentos descobertos.

Uma formulação PLIM melhor significa: um método de solução melhor para os vários

(já mencionados) problemas relacionados; uma melhor relaxação contínua para computar

um chute otimista do valor da função objetivo de todas essas variantes (alguns algorit-

mos ad hoc usam solucionadores PLIM para computar esses limites); não somente um

melhor método exato mas também uma base melhor para heurísticas e procedimentos

que suportam interrupção a qualquer momento; a capacidade automática de se beneficiar

de paralelização, decomposição automática de problemas, e heurísticas do solucionador;

e, finalmente, melhor envelhecimento do método através dos anos por meio da tendên-

cia atual de processadores de múltiplos núcles e o constante avanço na performance dos



135

solucionadores.

As contribuições dessa tese incluem:

• uma formulação PLIM baseada em uma formulação prévia do estado da arte, a

prova da sua corretude, e evidência empírica do melhoramento da performance;

• uma nova forma de empregar uma propriedade já conhecida (normalização do tamanho

da placa) para tanto a formulação original quanto a formulação melhorada, e ev-

idência empírica do impacto positivo deste uso original na performance de ambas

formulações;

• novos limitantes inferiores e superiores, assim como novos valores ótimos, para

várias das instâncias difíceis propostas recentemente Velasco and Uchoa (2019);

• uma comparação direta com formulações recentes da literatura enfatizando os pon-

tos fracos e fortes de cada;

• uma adaptação da formulação proposta para três problemas (PMM2G, PEO, e PCE2G)

e resultados empíricos sobre conjuntos de dados da literatura para servir como uma

base para futuras comparações entre formulações;

• a hibridização da formulação proposta (com a formulação de Silva, Alvelos and

Carvalho (2010)) que tem sucesso moderado em reduzir ainda mais o tempo de

execução para instâncias em que a maior parte to tempo é dispendida na fase de

B&B (branch and bound) por meio da proibição de certas simetrias.

Para tal, o autor reimplementou uma formulação do estado da arte e um procedimento de

precificação usado por ela.

A primeira formulação PLIM feita especificamente para o PM2G foi proposta

por Furini, Malaguti and Thomopulos (2016). A formulação é classificada como uma ex-

tensão da formulação one-cut de Dyckhoff (1981) para o Problema de Corte de Estoque

unidimensional. Entretanto, a formulação de Silva, Alvelos and Carvalho (2010) pode

ser vista como uma etapa intermediária entre essas duas: esta já havia estendido a formu-

lação one-cut para duas dimensões mas não havia alterado o problema do PCE2G para

o PM2G e era limitada a dois estágios ou três estágios restritos. Uma versão estendida

de Furini, Malaguti and Thomopulos (2016) aparece em Thomopulos (2016) (uma tese

de doutorado), e um prelúdio a ela aparece em Furini and Malaguti (2016). A formulação

tem tamanho pseudo-polinomial, O((L+W )×L×W ) variáveis e O(L×W restrições,



136

além da sua relaxação prover limitantes melhores que a formulação em Messaoud, Chu

and Espinouse (2008).

Nesse trabalhi, o autor propõe uma formulação melhorada baseada na formulação

de Furini, Malaguti and Thomopulos (2016) mencionada acima. Uma vantagem signi-

ficativa desse melhoramento é evitar a enumeração de quaisquer cortes depois da metade

de uma placa. Essa vantagem aparece em muitos trabalhos desde Herz (1972).

Considerando as 59 instâncias usadas nos experimentos da formulação em que

o autor se inspirou, e somando os valores para todos os modelos gerados, a formulação

proposta tem apenas uma pequena fração das variáveis e restrições do modelo original

(respectivamente, 3.07% e 8.35%). A formulação melhorada soluciona todas as 59 in-

stâncias em cerca de 4 horas enquanto a formulação original soluciona 53 em 12 horas

(as outras 6 instâncias não são solucionadas dentro do limite de 3 horas por instância).

Nós integramos, em ambas formulações, uma estrutura de precificação proposta para a

formulação original; a formulação melhorada mantém uma vantagem significativa nessa

situação. Em um conjunto de 80 instâncias difíceis recentemente proposto, a formulação

melhorada (com e sem a estrutura de precificação) encontrou: 22 soluções ótimas para

o problema com cortes irrestritos (5 já conhecidas, 17 novas); 22 soluções ótimas para o

problema com cortes restritos (todas novas para o problema e nenhuma é a mesma que do

problema de cortes irrestritos); melhores limitantes inferiores para 25 instâncias; melhores

limitantes superiores para 58 instâncias. Considerando outras formulações para o prob-

lema na literatura, a formulação proposta apresenta tempos de execução menores, e prova

a otimalidade para mais instâncias. Somente nos conjuntos de instâncias em que nenhuma

formulação solucionou instância alguma é que a formulação proposta falhou em encon-

trar boas soluções primais enquanto outras formulações obtiveram êxito. A formulação

proposta somente falhou em obter soluções de boa qualidade nos conjuntos de instâncias

em que nenhuma formulação conseguiu solucionar instância alguma. Nesses conjuntos

de dados, outras formulações obtiveram boas soluções primais mesmo não sendo capazes

de solucionar instância alguma.
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