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a b s t r a c t

This paper presents a new, robust and very efficient metaheuristic optimization algorithm, called
Circle Inspired Optimization Algorithm (CIOA), for solving constrained and unconstrained engineering
optimization problems. The inspiration for the proposed algorithm consists of well-known formulations
of the trigonometric circle. CIOA is compared with five other very famous algorithms in ten benchmark
function optimization problems, five real-world engineering constrained optimization problems, and
also four structural optimization problems for plane and spatial trusses subjected to multiple and
different types of constraints. The results obtained demonstrate that the proposed algorithm is more
efficient than other famous algorithms, contributing to the accurate and fast solution of complex
optimization problems.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

The classic optimization algorithms are generally determin-
stic and gradient-based. These algorithms are very efficient in
he optimization of unimodal functions and without disconti-
uities. However, most engineering optimization problems are
on-linear, involve complex multimodal functions and have nu-
erous restrictions that need to be addressed simultaneously.
etaheuristic algorithms are efficient in solving these problems
ecause they are stochastic algorithms in which the optimization
rocess occurs through an exchange between diversification and
ntensification [1].

Numerous metaheuristic algorithms have been developed in
ecent decades. Among the main ones are Simulated Annealing

∗ Corresponding author.
E-mail addresses: otavio.souza@ufrgs.br (Otávio Augusto Peter de Souza),

etffm@ufrgs.br (Letícia Fleck Fadel Miguel).

(SA) [2], Particle Swarm Optimization (PSO) [3], Differential Evo-
lution (DE) [4], Harmony Search (HS) [5], Artificial Bee Colony
(ABC) [6,7], Ant Colony Optimization (ACO) [8], Firefly Algorithm
(FA) [9,10], Gravitational Search Algorithm (GSA) [11], Cuckoo
Search (CS) [12], Bat Algorithm (BA) [13], Flower Pollination Algo-
rithm (FPA) [14], Krill Herd (KH) [15], Backtracking Search Opti-
mization Algorithm (BSA) [16], Grey Wolf Optimizer (GWO) [17],
Search Group Algorithm (SGA) [18], Whale Optimization Algo-
rithm (WOA) [19], Spotted Hyena Optimizer (SHO) [20], Emperor
Penguin Optimizer (EPO) [21], Butterfly Optimization Algorithm
(BOA) [22], Sooty Tern Optimization Algorithm (STOA) [23], Seag-
ull Optimization Algorithm (SOA) [24], Multi-Operator Differ-
ential Evolution (EnMODE) [25], Self-Adaptive Spherical Search
(SASS) [26], Tunicate Swarm Algorithm (TSA) [27], Multi Leader
Optimizer (MLO) [28], Darts Game Optimizer (DGO) [29], Spring
Search Algorithm (SSA) [30] and Rat Swarm Optimizer (RSO) [31].
Binary versions and hybrid versions of existing algorithms have
ttps://doi.org/10.1016/j.softx.2022.101192
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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lso been released recently, including: BOSA [32], BEPO [33],
SA [34], HGOANM [35], HTSSA [36], CLFD [37] and EOBL-GOA
38].

The use of metaheuristic algorithms is recurrent in many areas
f knowledge, such as in research related to safety, health, AI,
ulticore Systems, among others [39–44]. In Engineering, several
uthors have used metaheuristics to solve complex optimization
roblems that involve numerous constraints that need to be con-
idered simultaneously [45–61]. Since no metaheuristic algorithm
an be considered the best for all possible optimization problems,
he development of algorithms that accurately and quickly solve
pecific problems in a given area becomes relevant [62].
Thus, this paper presents the proposal and formulation of a

ew, robust and very efficient metaheuristic optimization algo-
ithm called the Circle-Inspired Optimization Algorithm (CIOA) to
ptimize engineering problems. The CIOA is formulated through
ome well-known properties of the trigonometric circle. The algo-
ithm’s search agents describe arc trajectories and are governed
y two specific parameters: a user-defined angle and a radius
f the circumference that varies with each iteration depending
n the evaluation of each search agent. The CIOA’s robustness
nd efficiency are evaluated in ten benchmark functions well
nown in the literature where the CIOA’s performance is com-
ared with five other famous algorithms. In addition, the CIOA is
pplied to five real-world optimization problems provided for the
CEC2020 One Goal Restricted Optimization Competition in the
eal World’ [63] and also four Truss optimization problems sub-
ect to multiple constraints. Thus, the main contribution of this
aper is to propose and validate a new and effective optimization
ool for engineering problems.

. Software description

This section presents a description of the developed algorithm:
IOA. Initially, an overview of the code’s architecture is presented,
hen details of its implementation and, finally, aspects of the
lgorithm’s functionality.

.1. Software architecture

The CIOA is an optimization algorithm programmed in MAT-
AB, composed of two files: Main_Program_CIOA.m and Objec-
ive_Function_CIOA.m

Main_Program_CIOA.m is the main file, in which the algorithm
ormulation is programmed. It is in this file that the user must
djust the algorithm parameters and inform details about the op-
imization problem. The Objective_Function_CIOA.m is a function
ile in which the user must implement the objective function he
ants to optimize. In this file, inequality and equality constraints
if any) and the penalty adopted will also be programmed.

.2. Software implementation

In this section, a brief description of the formulation and
mplementation of the CIOA is given.

.2.1. Initialization of the CIOA
In the CIOA, each search agent moves along arcs governed

y two main parameters: An angle θ defined by the user and
radius r calculated by the algorithm, whose value depends on

he evaluation of the objective function: the better the evaluation
f the objective function performed by a given search agent, the
ower the value of r for this agent in the next iteration.

The CIOA is initialized generating a vector r⃗ in which the value
f each element rj is calculated by Eq. (1).

j =
cr .j2

, 1 ≤ j ≤ Nag (1)

Fig. 1. Changing radius and updating the center of the circle: (a) the search
agent improves its classification by reducing the radius size, (b) the search agent
worsens its classification by increasing the radius size.

in which Nag is the number of search agents and cr is a constant
determined using Eq. (2). In this way, the elements of the radius
vector are ordered in ascending order, in which the first element
corresponds to r1 = cr/Nag and the last element is given by
rNag = cr .Nag .

cr =

√
Ub − Lb
Nag

(2)

in which Ub and Lb are the upper and lower bounds of each
variable, respectively.

After each search agent assigns random values to the design
variables in the first solution, an evaluation of the objective
function is carried out and then each search agent is classified in
a ranking according to the quality of the solution that it obtained.

2.2.2. CIOA main loop
Throughout the iterations, each search agent will have its

coordinates in the next iteration defined by the classification
performed in the previous iteration. The best-classified agents,
i.e., those who obtained the best solutions will make shorter
movements (using smaller radii of the vector r⃗) while the agents
that occupy the worst classifications will make longer move-
ments. A search agent classified as the jth best solution in an
iteration k will have its new coordinates in the iteration k + 1
calculated using Eqs. (3) and (4).

x2i (k + 1) = x2i (k) − rand1.rj. sin (k.θ) + rand2.rj. sin((k + 1) .θ )
(3)

x2i−1 (k + 1) = x2i−1 (k) − rand3.rj. cos (k.θ)

+ rand4.rj. cos((k + 1) .θ ) (4)

in which 2i and 2i−1 refer to even and odd numbers, respectively.
Therefore Eq. (3) updates the x⃗ = [x2; x4; x6; . . .] coordinates
while Eq. (4) updates the x⃗ = [x1; x3; x5; . . .] coordinates; rand
variables are random numbers with a uniform distribution be-
tween zero and 1; the angle θ is a parameter provided by the
user; the variable rj corresponds to the jth element of the vector
r⃗ , i.e., the jth smallest radius.

The process of changing radii and updating the center of
the circle is outlined below: In a hypothetical case in which all
random variables have the same value, it is assumed that in an
iteration a search agent departs from point 1 to point 2 in a
movement governed by angle θ and radius r1,2 with center at
O1,2. In the next iteration, the agent leaves point 2 and moves
to point 3 maintaining the angle θ , the movement is governed
by a radius r2,3 and has a center at O2,3. Two possible distinct
cases of this process are illustrated in Fig. 1: The first in (a), in
which the agent improves its classification by reducing the radius
size, i.e., r2,3 < r1,2; the second illustrated in (b), in which the
Nag search agent worsens its classification by increasing the radius

2
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Fig. 2. Behavior of a search agent in extreme situations: (a) Case 1, (b) Case 2, (c) Case 3. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

size, i.e., r2,3 > r1,2. To facilitate understanding, the action of
andom variables was not considered in Fig. 1.

Over consecutive iterations, each agent is likely to alternate
heir performance at random in the ranking of the best positions.
ut three hypothetical cases of behavior can occur:

a) In the first case, a search agent always worsens its classifica-
ion, increasing the radius that governs its movement along with
he iterations;

b) In the second case, a search agent always improves its clas-
ification, reducing the radius that governs its movement along
ith the iterations;

c) In the third case, a search agent always presents the same
lassification among the group of agents, keeping their radius
onstant.
Fig. 2 illustrates the behavior of a search agent in each of

he hypothetical extreme situations applied to a two-dimensional
roblem: in (a) the behavior presented in Case 1 is described,
n (b) the behavior exposed in Case 2 and in (c) the behavior
escribed in Case 3. In each frame of Fig. 2, the agent starts
ts journey in position 1. The blue line represents the agent’s
rajectory without including randomization while the yellow line
epresents one of the possible trajectories when randomization
s considered (variables rand in Eqs. (3) and (4)). In this way, the
gent ends its journey in position 2 when randomization is not
onsidered and in position 2’ when considering random variables.
wo examples are presented for each extreme case, in which, in
ach case, it is observed that without randomization the behavior
f a given agent is the same in both examples, whereas when
onsidering random variables, the behavior tends to change each
xecution.
In the hypothesis that in a given iteration a variable xi has a

alue greater than Ub or less than Lb this variable will receive the
alue corresponding to the variable xi of the search agent who
btained the best solution in the most recent iteration.
Whenever after k iterations the search agents complete a

omplete lap, that is, whenever k.θ exceeds a multiple of 360◦

n update of the vector r⃗ is calculated using Eq. (5), to accelerate
the convergence of the algorithm.

rnew = r⃗.0.99 (5)

in which r⃗ is the new radii vector after the update.

2.2.3. Local search phase
The main loop of the CIOA formulated in the previous section

promotes global and local searches simultaneously. This is be-
cause the agents that produce the best solutions describe small
movements corresponding to a local search while the agents with
the worst solutions describe large movements corresponding to
a global search. However, it is important that the algorithm
dedicates some iterations only to local search, in which all agents
are restricted to the most promising areas of the search space.
A parameter GlobIt that represents the proportion of iterations
before the exclusively local search is inserted in the algorithm
and its value can vary freely in the interval (0, 1]. However, the
use of 0.75 ≤ GlobIt ≤ 0.95 is recommended.

The exclusively local search will start at iteration k when the
ratio between k and the total number of iterations is greater than
GlobIt . At this moment, all search agents are restarted assuming
the coordinates that produced the best solution so far. In addition,
a change is made to the upper and lower bounds of each variable
so that the new limits are given by Ub1i and Lb1i , calculated using
Eqs. (6) and (7).

Ub1i = xibest +
Ub − Lb
10000

(6)

Lb1i = xibest −
Ub − Lb
10000

(7)

in which xibest is the variable in dimension i that produced the
best solution so far.

After initializing, this local search step is governed by the same
equations as the main loop described in Section 2.2.2, replacing
Ub with Ub1i and Lb with Lb1i . In this way, the search space for
agents is restricted, forcing the values for the design variables
to be close to the values that generated the best solution in the
main loop. For the specific cases in which Lb1i < Lb or Ub1i > Ub,
whenever the value of a design variable is in the ranges Lb1i <

xi < Lb or Ub1i > xi > Ub, its value will be automatically updated
to, respectively, xi = Lb or xi = Ub.

2.2.4. User information and pseudocode
In this section, the most important information that should

be taken into account by CIOA users is added, to take the best
advantage of the proposed algorithm. The suggested values for
new

3
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the CIOA parameters were obtained through sensitivity analysis
of the algorithm.

(a) Define 0.75 < GlobIt < 0.95. To promote a good balance
etween accuracy and computational time GlobIt = 0.85 is rec-
mmended. Larger values can reduce computational time while
maller values tend to increase accuracy.

b) Although θ can take on any value between 0◦ and 360◦, tests
arried out on several problems show that, for better perfor-
ance, θ should not be a 360◦ divider. Relatively low θ values,

such as θ = 13◦, θ = 17◦ or θ = 19◦, produced good results
in different types of problems, with different numbers of agents
and iterations considered. High values of θ produce excellent
results only in specific cases, presenting inferior performance in
structural optimization problems, for example.

(c) The algorithm performs better when the number of itera-
tions is 2 to 5 times greater than the number of search agents.
Preferably use more than 100 search agents.

The CIOA pseudocode is presented in Algorithm 1.

2.3. Software functionalities

In the Main_Program_CIOA.m file, the user will have to define
the θ angle, in degrees, and the GlobIt parameter (ThetaAngle
and GlobIt in the code, as shown in Fig. 3(a). In addition, the
following must be informed: The number of variables in the
problem (Nvar ); the number of search agents and iterations to be
considered (Nag and Nit ) and the upper and lower limits for the
design variables (Ub and Lb). In the Objective_Function_CIOA.m
file, the user will describe the objective function (obj) and the
number of equality and inequality constraints (nug and nuh). If
there are no restrictions, the number informed will be zero. Then,
the restrictions must be implemented, as well as the weight value
of the penalty to be considered, as shown in Fig. 3(b). For use, the
code must be executed in the Main_Program_CIOA.m.

3. Illustrative examples

In this section, the Circle-Inspired Optimization Algorithm
(CIOA) is validated through an experimental analysis involv-
ing the optimization of ten benchmark functions known from
the literature. Then, the CIOA is applied in the solution of five

real-world problems used in CEC 2020 and also in engineer-
ing problems related to structural optimization well known in
the literature. Finally, statistical and convergence analyses are
performed.

In all analyses, the performance of the CIOA is compared to
that of five famous algorithms: PSO [3], HS [5], FA [9,10], SGA [18]
and WOA [19]. The algorithms are implemented according to
their original papers in Matlab using the following computing
platform: Windows 10, 8th generation Core i5 processor and 8 GB
of memory. In all simulations, the parameters used for the CIOA
take into account the instructions presented in Section 2.2.4that
were obtained through sensitivity analyses. Therefore, it was
adopted for the CIOA θ = 17◦ and GlobIt = 0.85.

3.1. Experimental analysis through benchmark functions

Ten functions are used to validate the CIOA, which are pre-
sented in Table 1. These functions are part of a well-known
set of benchmark test functions used to validate metaheuristic
algorithms [17,19–24,27–32,34]. These functions are divided into
three groups. The functions of the first group, f1 to f3, are uni-
modal and evaluate the exploitation capacity of the algorithm.
The functions of the second and third groups determine the ex-
ploration capability of the algorithm. The second group contains
multimodal functions (f4 and f5), while the third group is formed
by multimodal functions with fixed dimensions (f6 to f10).

For each problem, 50 independent runs were performed. In
each run, 200,000 objective function evaluations were executed,
consisting of 250 research agents and 800 iterations. The results
obtained, shown in Table 2, are the best value for the global
optimum, the mean value for the global optimum, the standard
deviation between runs and the average computational time for
each run (in seconds).

As can be seen in Table 2, for the optimal value of the objective
function, the CIOA presented the best result in one multimodal
function (f5) and in all five multimodal functions with fixed
dimensions (f6 to f10). For the results in terms of mean value, CIOA
performed best on a unimodal function (f2), a multimodal func-
tion (f5) and all five multimodal functions with fixed dimensions
(f6 to f10). Regarding computational time, the CIOA presented the
second best performance in all functions. More detailed statistical

analyses are presented in Section 3.3.

4
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Fig. 3. CIOA functionalities.

Table 1
Benchmark test functions: D is the number of design variables and fmin is the optimal value.
Group Function D Range fmin

Unimodal
f1 (x) =

D∑
i=1

|xi| +

D∏
i=1

|xi| 10 [−10, 10] 0

f2(x) =

D−1∑
i=1

[100
(
xi+1 − x2i

)2
+ (xi − 1)2] 10 [−30, 30] 0

f3(x) =

D∑
i=1

(|xi + 0.5|)2 10 [−100, 100] 0

Multimodal f4(x) =

D∑
i=1

[
x2i − 10cos (2πxi) + 10

]
10 [−5.12, 5.12] 0

f5 (x) =
1

4000

D∑
i=1

x2i −

D∏
i=1

cos
(

xi
√
i

)
+ 1 10 [−600, 600] 0

Multimodal with fixed dimensions

f6 (x) =

11∑
i=1

⌈
ai −

x1(b2i + bix2)
b2i + bix3 + x4

⌉2

4 [−5, 5] 0.00030

f7 (x) = −

4∑
i=1

ci exp

⎛⎝−

6∑
j=1

aij
(
xj − pij

)2⎞⎠ 6 [0, 1] −3.32

f8 (x) = −

5∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] −10.1532

f9 (x) = −

7∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] −10.4028

f10 (x) = −

10∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] −10.536
5
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c

Table 2
Results for the benchmark functions.
F CIOA WOA SGA FA HS PSO

f1 best 2.74E−05 0.00E+00 1.10E−03 6.86E−02 1.73E−04 0.00E+00
mean 1.77E−04 0.00E+00 1.39E−03 8.31E−02 2.26E−04 0.00E+00
std 1.32E−04 0.00E+00 1.86E−04 1.04E−02 6.12E−05 0.00E+00
time 3.19E+00 5.63E+00 2.00E+00 7.09E+00 1.10E+01 9.60E+00

f2 best 5.48E−03 1.87E−03 1.11E+00 3.59E+00 7.87E−02 3.05E−01
mean 2.81E+00 4.65E+00 3.13E+00 8.50E+00 5.91E+00 2.86E+00
std 1.74E+00 9.74E+00 6.46E−01 3.11E+00 6.33E+00 1.77E+00
time 3.32E+00 5.86E+00 2.28E+00 7.46E+00 1.11E+01 1.01E+01

f3 best 6.67E−10 0.00E+00 1.97E−05 4.63E−02 4.93E−09 0.00E+00
mean 4.01E−09 0.00E+00 2.90E−05 6.39E−02 7.94E−09 0.00E+00
std 2.64E−09 0.00E+00 8.42E−06 1.05E−02 3.59E−09 0.00E+00
time 3.07E+00 5.59E+00 2.00E+00 7.12E+00 1.09E+01 9.40E+00

f4 best 1.61E−06 0.00E+00 1.15E−05 2.91E+00 9.09E−07 3.98E+00
mean 3.45E−01 6.53E+00 1.69E+00 9.00E+00 1.42E−06 1.06E+01
std 4.68E−01 7.15E+00 1.03E+00 3.64E+00 3.23E−07 4.33E+00
time 3.27E+00 5.76E+00 2.17E+00 7.27E+00 1.11E+01 9.47E+00

f5 best 1.41E−07 7.58E−02 9.13E−05 1.82E−01 4.18E−02 4.18E−02
mean 5.39E−07 2.00E−01 1.59E−03 3.58E−01 7.52E−02 8.89E−02
std 7.89E−07 1.12E−01 6.56E−03 7.03E−02 2.22E−02 5.02E−02
time 3.42E+00 5.73E+00 2.33E+00 7.52E+00 1.09E+01 9.52E+00

f6 best 3.07E−04 3.07E−04 3.32E−04 3.08E−04 3.07E−04 3.07E−04
mean 3.16E−04 6.55E−04 6.00E−04 3.40E−04 4.62E−04 4.21E−04
std 5.95E−06 4.49E−04 1.19E−04 7.78E−05 3.53E−04 3.12E−04
time 3.59E+00 4.53E+00 3.27E+00 2.01E+01 9.74E+00 1.24E+01

f7 best −3.3220 −3.3220 −3.3220 −3.3220 −3.3220 −3.3220
mean −3.3220 −3.2315 −3.2055 −3.2744 −3.2792 −3.2578
std 2.91E−09 5.67E−02 1.68E−02 5.88E−02 5.76E−02 5.99E−02
time 4.75E+00 5.43E+00 3.44E+00 2.02E+01 1.04E+01 1.12E+01

f8 best −10.1532 −10.1532 −10.1532 −10.1529 −10.1532 −10.1532
mean −10.1532 −9.8473 −10.1532 −10.1518 −4.1063 −6.2816
std 5.59E−09 1.22E+00 1.92E−07 5.81E−04 2.76E+00 3.21E+00
time 4.67E+00 5.54E+00 4.39E+00 2.16E+01 1.07E+01 1.34E+01

f9 best −10.4029 −10.4029 −10.4029 −10.4028 −10.4029 −10.4029
mean −10.4029 −9.6588 −10.4029 −10.4017 −5.8754 −8.9268
std 5.87E−09 1.86E+00 1.73E−07 6.61E−04 3.63E+00 2.72E+00
time 5.07E+00 5.83E+00 4.64E+00 2.12E+01 1.12E+01 1.41E+01

f10 best −10.5364 −10.5364 −10.5364 −10.5360 −10.5364 −10.5364
mean −10.5364 −10.1038 −10.5364 −10.5352 −6.9520 −8.5055
std 5.46E−09 1.48E+00 2.40E−07 5.19E−04 3.79E+00 3.33E+00
time 5.84E+00 6.65E+00 5.40E+00 2.20E+01 1.17E+01 1.45E+01

Table 3
Real-World and Structural Engineering Optimization Problems: D is the number of variables, ng the number of inequality constraints, and nh the number of equality
onstraints.
Problem Name or Description D ng nh

R1 Reactor Network Design (RND) [63] 6 1 4
R2 Two-reactor Problem [63] 7 4 4
R3 Tension/compression spring design [63] 3 3 0
R4 Pressure vessel design [63] 4 4 0
R5 Planetary gear train design optimization problem [63] 9 10 1
S1 Size optimization of a 25-bar space truss with stress and displacement constraints [46,49,53,54] 8 124 0
S2 Shape and size optimization of an 18-bar plane truss with stress and buckling constraints [47,49,53] 12 54 0
S3 Shape and size optimization of a 52-bar space truss with multiple natural frequency constraints [48,50–53] 13 2 0
S4 Size optimization of a realistic transmission tower of a 163-bar with stress, displacement, buckling and

fundamental natural frequency constraints [53]
11 810 0
6
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Table 4
Results obtained for the Real-World Problems and Structural Engineering Problems.
Prob. CIOA WOA SGA FA HS PSO

R1 BV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
best −0.375348 −0.335389 −0.012813 −0.270118 −0.369001 −0.367176
MV 2.48E−07 1.23E−04 0.00E+00 9.84E−05 0.00E+00 1.18E−06
mean −0.337139 −0.153401 −0.004673 −0.248812 −0.334576 −0.311166
std 1.66E−02 1.68E−01 3.15E−03 9.65E−02 2.58E−02 5.65E−02
time 1.84 2.49 1.48 9.73 5.28 5.90

R2 BV 0.00E+00 0.00E+00 0.00E+00 7.66E−04 1.70E−08 1.25E−01
best 100.0198 100.2392 100.1649 99.2610 103.5389 136.8535
MV 2.00E−02 7.07E−02 7.50E−02 1.20E−01 1.10E−01 1.27E−01
mean 118.3750 137.9467 132.6793 145.6808 151.0005 151.6865
std 8.89E+00 2.62E+01 2.77E+01 1.79E+01 2.38E+01 1.49E+01
time 2.05 2.79 1.45 9.59 4.74 5.05

R3 BV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
best 0.0126654 0.0126679 0.0127192 0.0126914 0.0126673 0.0126688
MV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
mean 0.0126966 0.0128988 0.0127197 0.0127583 0.0155228 0.0133129
std 2.56E−05 3.02E−04 4.17E−07 7.24E−05 2.09E−03 5.15E−04
time 1.46 1.63 1.26 9.72 3.62 4.96

R4 BV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
best 6059.713 6060.718 6059.975 6060.814 6059.715 6090.526
MV 0.00E+00 2.35E−07 9.65E−09 0.00E+00 0.00E+00 0.00E+00
mean 6118.333 6217.558 6150.204 6248.245 6990.840 6380.185
std 1.02E+02 3.50E+02 1.25E+02 1.95E+02 4.15E+02 2.55E+02
time 1.69 1.92 1.35 10.57 4.22 5.31

R5 BV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
best 0.523250 0.525730 0.526281 0.526281 0.530000 0.529296
MV 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
mean 0.529220 0.534866 0.530465 0.530287 0.560294 0.535737
std 2.58E−03 5.26E−03 3.14E−03 4.02E−03 2.93E−02 5.97E−03
time 3.46 3.33 1.70 7.61 6.30 5.66

S1 best 247.294 247.409 247.275 247.440 247.953 247.387
mean 247.315 247.632 247.281 248.465 248.713 247.748
std 2.45E−02 1.90E−01 6.89E−03 1.21E+00 6.64E−01 3.97E−01
time 82.82 87.88 79.83 108.38 98.74 103.59

S2 best 2075.366 2083.760 2062.459 2118.526 2109.862 2156.886
mean 2146.280 2138.049 2092.427 2269.436 2233.645 2244.520
std 38.273 53.986 33.868 100.388 106.119 64.468
time 240.72 243.62 218.70 246.71 257.88 263.29

S3 best 195.429 198.459 192.776 199.535 200.105 202.131
mean 196.857 201.455 199.507 202.976 204.241 207.010
std 1.574 2.208 3.257 3.918 3.321 5.503
time 584.91 603.38 563.97 635.08 630.97 722.98

S4 best 17485.043 17530.890 17495.760 17506.285 17509.516 17531.429
mean 17521.203 17625.222 17580.862 17657.104 17576.885 17610.460
std 25.413 68.463 86.463 212.133 57.747 56.191
time 2379.09 2238.69 2230.02 2473.72 2441.72 2413.71

3.2. Application in real-world problems and also in structural engi-
neering problems

In this section, the CIOA is applied to solve real-life optimiza-
ion problems. The problems addressed are presented in Table 3
nd are divided into two groups: Real-world optimization prob-
ems provided for the ’CEC2020 One Goal Restricted Optimization
ompetition in the Real World’ (Problems R1 to R5) and Structural

optimization problems for trusses subject to multiple constraints
(Problems S1 to S4).

Details on the implementation of real-world problems (R1

o R5) can be seen in [63]. Some of these problems also have
quality constraints in addition to inequality constraints. In real-
orld problems, due to their high complexity, it is common for

constraints to be violated during the optimization process. In
these cases, the algorithm comparison is as follows:

(a) For each run, a constraint violation rate and the corresponding
objective function value linked to this rate are calculated. Eq. (8)
presents the calculation of the violation rate according to the
inequality gi and equality hj constraints.

Viol =

∑ng
i=1 max (gi (x) , 0) +

∑nh
j=1 max

(⏐⏐hj (x)
⏐⏐ − 0.0001, 0

)
ng + nh

(8)

(b) The best result of the objective function is obtained in the run
that generated the lowest violation rate (BV ). If all runs generate
equal violation rates, the best result is obtained by the lowest
objective function value.
7
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Fig. 4. Problem S4: Realistic Tower (dimensions in meters).

c) The mean result for the objective function value is linked to
he mean of the violations of each execution (MV ), according
o Eq. (9), in which Violk is the violation of each execution and
runs is the number of executions.

V =

∑nruns
k=1 Violk
nruns

(9)

(d) One algorithm is better than another whenever its con-
straint violation rates are lower. If two algorithms have the same

rates, the best algorithm is the one with the lowest value for the
objective function.

Three of the four truss optimization problems (S1 to S3) are
well-known in the literature and have already been studied
by several authors [46–54]. The S4 optimization problem ad-
dresses the design of a real structure of an 82m-high transmission
line tower which was damaged during a typhoon in Japan in
1991 [64]. Thus, the proposed optimization problem consists of
minimizing the mass of the structure considering the wind effects
8
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Table 5
Results of the Wilcoxon Signed-Rank Test for the benchmark functions.
F CIOA × WOA CIOA × SGA CIOA × FA CIOA × HS CIOA × PSO

f1 T+ 0 1275 1275 918 0
T− 1275 0 0 357 1275
winner WOA CIOA CIOA CIOA PSO

f2 T+ 763 756 1273 903 650
T− 512 519 1 372 625
winner CIOA CIOA CIOA CIOA CIOA

f3 T+ 0 1275 1275 1225.5 0
T− 1275 0 0 49.5 1275
winner WOA CIOA CIOA CIOA PSO

f4 T+ 1044 1182 1275 0 1275
T− 231 93 0 1275 0
winner CIOA CIOA CIOA HS CIOA

f5 T+ 1275 1275 1275 1275 1275
T− 0 0 0 0 0
winner CIOA CIOA CIOA CIOA CIOA

f6 T+ 779 1275 490 405 329
T− 496 0 785 820 946
winner CIOA CIOA FA CIOA PSO

f7 T+ 1184 1274 1275 1275 999
T− 91 1 0 0 276
winner CIOA CIOA CIOA CIOA CIOA

f8 T+ 147 1275 1275 1255 1085
T− 1128 0 0 20 190
winner WOA CIOA CIOA CIOA CIOA

f9 T+ 329 1275 1275 1024.5 534
T− 946 0 0 151.5 741
winner WOA CIOA CIOA CIOA PSO

f10 T+ 194 1275 1275 908 609
T− 1081 0 0 317 666
winner WOA CIOA CIOA CIOA PSO

as constraints. Details about the implementation can be seen
in [53]. In Fig. 4, the realistic structure of the tower is shown.

For problems R1 to R5, 25 independent runs were performed:
n each round, 100,000 objective function evaluations were con-
idered, formed through 400 iterations and 250 search agents.
or problems S1 to S4, 10 independent runs were considered: In

problems S1 and S4, 200,000 objective function evaluations were
onsidered in each algorithm. In problems S2 and S3, with shape
ptimization, 400,000 and 600,000 objective function evaluations
ere considered, respectively. Results are presented in Table 4.
Table 4 shows the excellent performance of the CIOA for real-

ife optimization problems. In Engineering problems R1 to R5,
IOA always presented the best optimal result and did not violate
he constraints in the best run (i.e., BV = 0). In addition, CIOA
as the best mean in four of the five problems and the best
tandard deviation in three. In the structural optimization prob-
ems of trusses, the CIOA presented the best mean and the best
tandard deviation in 2 problems (S3 and S4), in addition, CIOA
resented the best optimal design in the problem S4, proving to

be very competitive for solving problems with a high number of
constraints.

3.3. Statistical and convergence analysis

In this section, statistical and convergence analyses of the CIOA
algorithm are presented for the different types of optimization
problems analyzed in this paper.

In many cases of comparison of algorithms, simple statistical
tests such as mean and standard deviation of the results obtained

by several simulations do not fully reveal which of the algorithms
is the most effective. An advanced form of analysis can be done by
pairwise comparison using the Wilcoxon Signed-Rank Test [16].
The detailed procedure for running the Wilcoxon Signed-Rank
Test can be found in [65]. Thus, the Wilcoxon Signed-Rank Test
was used to compare the CIOA with each of the other algorithms
in benchmark functions analyzed in Section 3.1. The results are
presented in Table 5, in which the performance of the CIOA is
superior to that of the algorithm with which it was compared
whenever T+ > T−.

As can be seen in Table 5, the CIOA performed better than the
other algorithms in 38 of the 50 comparisons, proving the CIOA’s
competitiveness against rival algorithms.

Fig. 5 shows boxplots referring to the results of some problems
solved in this paper. Different types of problems were selected:
Functions f1 and f2 (unimodal), functions f4 and f5 (multimodal),
functions f7 and f9 (multimodal with fixed dimensions), prob-
lems R3 and R5 (real-world problems for CEC 2020) and problem
S3 (Shape and size optimization of a 52-bar space truss). The
presented results demonstrate the robustness of the CIOA in
the analyzed optimization problems, when compared with other
algorithms.

Fig. 6 shows the CIOA convergence curves for different types
of optimization problems: unimodal functions (f1 and f3), mul-
timodal functions (f4 and f5), multimodal functions with fixed
dimensions (f6 and f8), real-world problems of CEC 2020 (R1
and R4) and structural optimization problems of trusses (S1 and
S ). It is noticed that for the different types of problems the
4

9
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Fig. 5. Boxplots for some of the different optimization problems.

IOA presents different convergence behaviors. In general, it is
bserved that the CIOA presents rapid convergence in all ana-
yzed problems. The behavior in Problem R1 is highlighted, which
resents equality constraints that are violated at some point in
he optimization process, so in later iterations there may be an
ncrease in the objective function as long as there is a reduction
n the violation rates, calculated by the CIOA.

. Impact and conclusions

The new metaheuristic optimization algorithm presented in
his paper, called Circle-Inspired Optimization Algorithm (CIOA),
roved to be a powerful tool for solving complex optimization
roblems such as benchmark function optimization, real-world
ptimization problems and structural truss optimization. In direct
omparisons with other algorithms, the CIOA presented the best
esult for global optimization in 7 of the 10 benchmark functions

analyzed and in 6 of the 9 proposed application problems. Statis-
tical analysis through Wilcoxon Signed-Rank Test and Boxplots
demonstrated the superiority and robustness of the CIOA in most
of the optimization problems in which it was tested. In addition,
the CIOA has the advantages of fast convergence and the reduced
number of parameters that must be defined by the user: only the
θ angle and the GlobIt parameter. The limitations or disadvantages
of the CIOA are the high number of objective function evaluations
and the number of search agents that must be used, a recurring
fact in several metaheuristic algorithms. However, the CIOA’s
low computational operating time allows it to perform numerous
operations quickly. Although the examples discussed in this paper
are mainly directed to engineering optimization problems, using
the CIOA to solve optimization problems in other areas of study
can be promising.
10
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Fig. 6. CIOA convergence curves.
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