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ABSTRACT

Multicore electronic computing systems are incorporating more functionalities and new

technologies into their software stacks (i.e., kernels, drivers, and heavy applications). The

software stacks running on such architectures differ in terms of security, reliability, per-

formance, and power requirement. While supercomputer software development consid-

ers performance as primary criteria, software stacks embedded in cars must comply with

strict safety and reliability requirements, which are defined by specific standards such as

the ISO 26262 Road vehicles Functional Safety. Such systems are expected to integrate

artificial intelligence (AI) and machine learning (ML) techniques that will be just as com-

plex as those found in today’s data centers. Soft error mitigation techniques implemented

in software do not impact the manufacturing cost. Nonetheless, there are impacts regard-

ing the execution time, code size, and development effort to port to new architectures and

multiple programming languages. This can be time-consuming and not provide a good

trade-off on large projects. One solution to reduce the energy and performance overhead

is to apply selective hardening covering only the application’s critical parts. This work fo-

cuses on enhancing the SOFIA framework capability by including a soft error mitigation

module, which supports automatic code protection by applying different software-based

soft error mitigation techniques, also called software-implemented hardware fault toler-

ance (SIHFT). The proposed approach broadens SOFIA’s capabilities by making it the

first fully automated framework that supports fast and early soft error assessment, diag-

nosis, and susceptibility reduction evaluation. The developed mitigation module includes

partial and full TMR protection as well as a novel mitigation technique called RAT, which

allocates the critical kernel/application function to a specific pool of general-purpose pro-

cessor registers. Finally, an extensive framework validation is done with over a million

fault injections considering distinct Arm processors’ configurations. Experiments show

that bare metal applications without external dependencies present promising soft error re-

liability results, as we have access to most of the executed code. On the other hand, for the

majority of Linux applications, the code protection is not as effective. For the three eval-

uated ML algorithms, results show that partial TMR protection’s improvement is similar

to TMR and has up to 50% less performance penalty for all scenarios. The CNN applica-

tion results show that replication techniques might not be suitable for resource-constraints

platforms and that new and lightweight techniques must be investigated.



Keywords: Soft errors. Reliability. Fault injection. Fault tolerance. Virtual Platforms.

Microelectronics.



Um Framework Automatizado para Avaliação, Identificação e Mitigação de Erros

Transientes

RESUMO

Os sistemas de computação multicore estão incorporando mais funcionalidades e novas

tecnologias em suas pilhas de software (ou seja, kernels, drivers e aplicações pesadas).

As pilhas de software em execução nessas arquiteturas diferem em termos de segurança,

confiabilidade, desempenho e requisitos de energia. Enquanto o desenvolvimento de soft-

ware de supercomputador considera o desempenho como critério principal, as pilhas de

software embutidas em carros devem cumprir requisitos estritos de segurança e confiabi-

lidade, que são definidos por padrões específicos como a ISO 26262. Espera-se que esses

sistemas integrem inteligência artificial (IA) e técnicas de aprendizado de máquina (ML),

que serão tão complexas quanto as encontradas nos data centers atuais. As técnicas de

mitigação de erros transientes implementadas em software não afetam o custo de fabrica-

ção. No entanto, existem impactos em relação ao tempo de execução, tamanho do código

e esforço de desenvolvimento para portar para novas arquiteturas e várias linguagens de

programação. Isso pode consumir muito tempo e não oferecer uma boa compensação

em grandes projetos. Uma solução para reduzir o overhead de energia e desempenho é

aplicar proteção seletiva cobrindo apenas as partes mais críticas da aplicação. Este traba-

lho foca no aprimoramento da capacidade do framework SOFIA, através da inclusão de

um módulo de mitigação de erros, que oferece suporte à proteção automática de código

aplicando diferentes técnicas de mitigação de erros transientes baseadas em software. A

abordagem proposta amplia os recursos do SOFIA, tornando-o a primeira ferramenta to-

talmente automatizada que oferece suporte à avaliação rápida e precoce de soft errors,

diagnóstico e avaliação de redução de suscetibilidade. O módulo de mitigação desen-

volvido inclui proteção TMR parcial e total, bem como uma nova técnica de mitigação

chamada RAT, que aloca a função crítica do kernel/aplicação para um pool específico de

registradores. Finalmente, uma extensa validação do framework é feita com mais de um

milhão de injeções de falha considerando configurações de processadores Arm distintos.

Experimentos mostram que aplicações bare metal sem dependências externas apresentam

resultados promissores de confiabilidade de erros transientes, já que temos acesso à maior

parte do código executado. Por outro lado, para a maioria das aplicações Linux, a pro-

teção do código não é tão eficaz. Para os três algoritmos de ML, os resultados mostram



que a melhoria usando proteção parcial do TMR é semelhante ao TMR e tem até 50%

menos penalidade de desempenho para todos os cenários. Os resultados da avaliação da

aplicação CNN mostram que as técnicas de replicação podem não ser adequadas para

plataformas de restrição de recursos e que técnicas de mitigação novas e leves devem ser

investigadas.

Palavras-chave: Erros transientes, Confiabilidade, Injeção de falhas, Tolerância a falhas,

Plataformas virtuais, Microeletrônica.
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1 INTRODUCTION

Multicore electronic computing systems are incorporating more functionalities

and new technologies to their software stacks (i.e., kernels, drivers and heavy applica-

tions). The software stacks running on such architectures differ in terms of security, relia-

bility, performance and power requirement. While supercomputer software development

considers performance as main criteria, software stacks embedded in safety-critical appli-

cations (e.g., autonomous vehicles, avionics, medical) must comply with strict safety and

reliability requirements, which are defined by specific standards such as the ISO 26262

Road vehicles Functional Safety (ISO, 2011). Such standards will undoubtedly impose

more restrictions, mainly due to the advance of autonomous vehicles, which are going to

be making decisions that can put human lives at risk. Such systems are expected to inte-

grate artificial intelligence (AI) and machine learning (ML) techniques that will be just as

complex as those found in today’s data centers.

To deal with the excessively high complexity of such algorithms, researchers and

industry leaders are investigating more efficient instruction set architectures (CHEN et

al., 2019), ML inference processors (ARM. . . , 2020), and accelerators (REUTHER et

al., 2019). The majority of ML algorithms demand high computational power to per-

form massive and complicated calculations, which restricts their adoption in resource-

constrained devices. In this regard, software libraries and Application Programming In-

terfaces (APIs) are being proposed (LAI; SUDA; CHANDRA, 2018; CAPOTONDI et

al., 2020) to reduce the critical resource usage. Such software libraries/APIs provide

a set of functions and kernels devoted to optimize the performance and minimize the

memory footprint of deep learning algorithms, thus allowing their efficient execution on

low-resource devices (AMOH; ODAME, 2019). With the constant growth of software

stack code size and complexity, designing fast, flexible and cost-effective tools that enable

in-depth soft error susceptibility analysis of complex software stacks become of utmost

importance.

With this in mind, new alternatives, such as the use of virtual platform fault injec-

tion (FI) have been proposed (HARI et al., 2012; KALIORAKIS et al., 2015; TANIKELLA

et al., 2016). Such FI frameworks allow enormous productivity gains over the hardware-

based approaches, mostly at the cost of ignoring the impact of new technologies on soft

error rates. The majority of such FI frameworks are reasonable environments, which pro-

vide flexible and detailed soft error assessment and identification. However, to ensure
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the failsafe functionality of emerging electronic computing systems, designers should be

able to not only assess and identify, but also to promote efficient alternatives to mitigate

the occurrence of soft errors. Authors in (BANDEIRA et al., 2019) proposed SOFIA, a

framework developed on the basis of the OVP (Open Virtual Platforms) simulator (IM-

PERAS, 2019) which supports several non-intrusive fault injection techniques for early

soft error assessment and vulnerability analysis.

This work focuses on enhancing SOFIA capability by including a soft error miti-

gation module, which supports automatic code protection through the application of dif-

ferent mitigation techniques. The proposed approach broadens SOFIA’s capabilities by

making it the first fully automated framework that supports fast and early soft error as-

sessment, diagnosis and susceptibility reduction evaluation. Promoted extension moves

SOFIA beyond the classical toolsets, thereby furthering potential advantages that fill the

gap between the available tools and the industry requirements. The developed mitiga-

tion module includes partial and full TMR (Triple Module Redundancy) (LYONS; VAN-

DERKULK, 1962) protection as well as a novel mitigation technique called Register Al-

location Technique (RAT), which allocates the critical kernel/application function to a

specific pool of general-purpose processor registers.

1.1 Dissertation Goal

In order to address solutions to the problems mentioned above, the strategic goal

of this Dissertation is to combine well adopted and a novel fault mitigation technique into

a module and finally integrate them into the SOFIA framework aiming to enable early

soft error mitigation evaluation.

To accomplish the Dissertation goal, the following objectives should be fulfilled:

• Implement well-known state-of-the-art software-based fault mitigation techniques

using the LLVM compiler framework;

• Port of the LLVM passes to a most recent compiler version to make use of the last

optimizations introduced;

• Proposal and development of a novel soft error mitigation technique aiming to re-

duce the tradeoff between reliability and performance;

• Combine all these techniques in a mitigation module that can be used standalone or

integrated into the automated SOFIA flow.
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1.2 Original Contributions

Figure 1.1 illustrates the main contribution of this work, which is the development

and integration of a soft error mitigation module into the SOFIA framework (described in

Chapter 4 and Chapter 6).

The main contributions of this Dissertation are described as follows:

1.2.1 Fully Automated Soft Error Analysis Flow

Completely automated soft error analysis flow, which leverages the high simu-

lation performance of M*DEV (IMPERAS, 2019) to efficiently acquire representative

error/failure-related data considering state-of-the-art multicore processor architectures,

such as ARMv7, ARMv8. ML tools can also be used to correlate data and find some

particular application’s behavior when distinct parameters are set.

1.2.2 Automated Well-known Mitigation Techniques

Integration of soft error software-based mitigation techniques (e.g., TMR) from

literature, enabling susceptibility analyses of real soft stacks considering different config-

urations. The mitigation techniques are developed using the LLVM tooling, which relies

on modifying an architecture-independent intermediate code and later generating the de-

sired target machine code. The techniques were developed to provide partial protection

(i.e., P-TMR) at the function level in addition to the full application hardening. That is,

it is possible to protect only the more sensitive (or critical) functions in order to obtain a

result that is more energy-efficient.

1.2.3 Proposal of a Novel Mitigation Technique

Fault mitigation techniques involving redundancy are the most common and offer

good reliability improvement in general. However, in addition to the high cost in per-

formance and energy-efficiency, there are some limitations when a resource-constrained

architecture is chosen as a target. In this Dissertation, a novel mitigation technique called

Register Allocation Technique (RAT) is proposed. It consists of guiding the compiler reg-
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isters’ allocation phase by restricting the registers available to selected critical functions

of the target application (GAVA; REIS; OST, 2020).

Figure 1.1: Simplified framework view showing the main contribution of this work.

Source: Authors
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1.2.4 Extensive Validation

Extensive framework validation through more than 1300k fault injections consid-

ering distinct architecture, number of cores, OS, parallelization libraries. Different from

other works, the promoted framework uses a realistic software stack comprising multiple

unmodified operating systems (e.g., Linux 4.3, Linux 3.13) alongside parallelization li-

braries (e.g., OpenMP, MPI, Pthreads) and ML libraries (e.g., CMSIS NN). To reinforce

the experiments, some performance measurements are made using real microcontroller

boards.

1.3 Dissertation Outline

The rest of this work is organized as follows.

Chapter 2 - Background: presents basic concepts related to atmospheric radia-

tion environment, the classification of single-event effects, the fault tolerance taxonomy,

some well-known reliability metrics, and soft error mitigation techniques.

Chapter 3 - Related Works: presents related works in soft error early assessment

using virtual platform fault injection simulators, as well as fault mitigation capable tools

found in the literature.

Chapter 4 - SOFIA Framework: is devoted to describing how the adopted

framework is structured showing each module: Cross-Compilation module, Profiling

module, Fault Injection module, ML module, Analysis and Visualization module, and

finally the main contribution Hardening module.

Chapter 5 - SOFIA Workflow Validation: validates the framework and the entire

workflow using examples.

In Chapter 6 - Proposed Soft Error Mitigation Module: an overview of the

implemented software-based soft error mitigation techniques are made, as well as the

integration of such techniques into our framework.

In Chapter 7 - Soft Error Assessment: the mitigation techniques’ efficiency is

evaluated considering distinct software stacks and processor architectures. Two more case

studies are also explored regarding ML applications and the use of custom parameters for

the RAT mitigation technique.

Finally, Chapter 8 - Conclusions: summarizes this work contribution until this

point. Also, it describes the future works related to this Dissertation.
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2 BACKGROUND IN RADIATION EFFECTS AND FAULT MITIGATION TECH-

NIQUES

This chapter aims to introduce the basic concepts regarding radiation-induced er-

rors and their impact on electronic computing system devices. Also, soft error assessment

and mitigation literature are wide, requiring a taxonomy to classify the different fault out-

comes. Lastly, different forms of hardware and software fault tolerance techniques are

presented, as well as the metrics adopted to evaluate such approaches.

2.1 Radiation Environment

Although most people think the atmosphere is benign, the reality is different, even

concerning the ionizing radiation environment (NORMAND, 1996; VELAZCO; FOUIL-

LAT; REIS, 2007). In this section, the atmosphere will be described from the point of

view of its ionizing radiation components. The three main components of ionizing ra-

diation, neutrons, protons, and heavy ions, are described below for review purposes, as

shown in Figure 2.1.

Figure 2.1: Atmospheric Radiation Environment.

Source: (CIANI; CATELANI; VELTRONI, 2008)



20

2.1.1 Neutrons

Atmospheric neutrons are the main cause of single-event effects at high altitudes

(NORMAND, 1996) (Figure 2.1-A). Neutrons in the atmosphere are created by the in-

teraction of cosmic rays with the oxygen and nitrogen atoms in the air. Neutrons in the

atmosphere vary with altitude and latitude. The high energy neutron fluxes of interest

vary between 10 particles/cm2/h at sea level and about 103 particles/cm2/h at an altitude

of 30,000 feet with variation due to solar activity (LERAY, 2007; HESS; CANFIELD;

LINGENFELTER, 1961).

2.1.2 Protons

Neutrons are charged particles produced by the reaction of primary cosmic rays’

interaction with particles in the air (Figure 2.1-B). In general, the distribution of protons is

similar to that of neutrons, especially concerning energy and altitude. These two particles

can also cause SEEs in a very similar way (NORMAND, 1996).

2.1.3 Heavy Ions

Heavy-ion refers to a particle with one or more electric charge units and a mass

exceeding that of the alpha particle. The flow of heavy ions within the primary cosmic

rays is quickly attenuated with increasing atmospheric depth due to fragmentation (NOR-

MAND, 1996) (Figure 2.1-C).

2.2 Classification of Single Event Effects (SEE)

This discussion aims to give an idea of the types of radiation effects on CMOS

transistors. Soft errors are only a subset of the single event effects (SEE). They are any

measurable or observable change in the state or performance of a device, component,

subsystem, or microelectronic system (digital or analog) resulting from a single energy

particle strike. First, destructive SEEs, hard errors will be presented, followed by non-

destructive, soft errors (see Figure 2.2) (JEDEC, 2006).
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Figure 2.2: Classification of Single Event Effects (SEE).

Source: Adapted from (LADBURY, 2007).

2.2.1 Destructive SEE - Hard Errors

This type of SEE is an irreversible change in a circuit or device’s functioning.

This effect translates into permanent damage to one or more elements of the circuit or

device (rupture of the door oxide, destructive locking events). This type of error is called

hard error because there is a permanent loss of data, and the component no longer works

properly, even after a restart. The following are the different hard errors.

2.2.1.1 Single Event Latchup (SEL)

An SEL is a high current state in a device caused by the passage of an energetic

particle close to two neighboring PMOS and NMOS transistors. It can activate the par-

asitic PNPN thyristor structure (Figure 2.3) formed by the NMOS-PMOS pair by short-

ening the power to ground. This mechanism can amplify currents to the point where the

device fails due to thermal stress. If the effect is not permanent, turning off the power

supply disables the thyristor. The length of the channel and the epitaxial layer’s thickness

play a dominant role in SEL susceptibility. With the gradual decrease in the transistor’s

size, new technologies are more vulnerable to this effect. Also, there is an increase in

SELs at high temperatures (BRUGUIER; PALAU, 1996; JOHNSTON et al., 1991). In

some cases, where SEL does not provoke permanent damage, it could also be classified

as a soft error.
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Figure 2.3: Parasitic PNPN structure formed by an energetic particle during an SEL.

Source: TORO (2014).

2.2.1.2 Single Event Burnout (SEB)

Mainly affecting high-powered MOS transistors, such as Vertical Diffused MOS

(VDMOS), a SEB occurs when an ion attack activates the parasitic BJT structure (Fig-

ure 2.4), usually in n-channel MOSFETs. The resulting breakage causes a high current

state and can cause the device’s thermal failure. These transistors are vulnerable to SEB

only when they are in the OFF state and only when the applied voltages (VDS and VGS)

are outside the region of regular and safe operation. When a particle hits, it can create

a high-density current. If the voltage decreases at the parasitic bipolar transistor’s base-

emitter junction, the transistor is turned on. This happens because of the avalanche current

of the BJT scavenger. This can create excessive heating at the junction, which can cause

the transistor to burn (WROBEL et al., 1985).

Figure 2.4: Parasitic BJT transistor structure formed by an energetic particle impact in a
power VDMOS transistor during an SEB.

Source: TORO (2014).
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2.2.1.3 Single Event Gate Rupture (SEGR)

Like SEB, SEGR mainly affects power MOSFETs. When an ion reaches close to

the gate’s Si / SiO2 interface, the ion attack holes accumulate under the gate (Figure 2.5).

The electric field through the oxide of the MOSFET gate is increased until its dielectric

break. The resulting leakage current can also cause a door oxide’s thermal failure (TITUS

et al., 1998).

Figure 2.5: Accumulation of charges during an SEGR under the gate of a VDMOS tran-
sistor.

Source: TORO (2014).

2.2.2 Non-destructive SEE - Soft Errors

Soft errors are non-destructive functional errors induced by attacks of energetic

ions. The transistor scale and the lower supply voltage led to lower noise margins and a

smaller amount of load, representing a little bit of information. This is expressed in terms

of Critical Load (DC), which is the amount of load required to change the logic state

when the voltage becomes equal to half the supply voltage. This scale trend increased

the susceptibility to soft errors. The stakes for protection against soft errors are high for

current and future technologies (DODD et al., 2010). Now, the different soft errors in

CMOS technologies will be presented.
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2.2.2.1 Single Event Transient (SET)

A Single Event Transient is a voltage spike in the drain of a MOS transistor caused

by the charge collection mechanism after a high energy particle creates an ionization track.

This affects the combinatorial logic circuits. As illustrated in Figure 2.6, the peak voltage

will propagate through logic. If the peak is important enough to avoid electrical masking,

it can reach a memory element (latch, flip-flop). However, nowadays, the effects of radia-

tion do not occur solely and exclusively in this way. Other effects appear with technology

scaling, such as charge sharing, which causes signal degradation by transferring charges

from one electronic domain to another (FERLET-CAVROIS; MASSENGILL; GOUKER,

2013). As the technology’s scalability has increased, CMOS circuits’ sensitivity to SETs

has become a significant problem (MAY; WOODS, 1978; DODD et al., 2010). Despite

that, FinFET nanotechnologies show improvements in terms of fault resilience.

Figure 2.6: Single Event Upset and Single Event Transient effects on a circuit.

Source: KASTENSMIDT (2007).

2.2.2.2 Single Event Upset (SEU)

The single event upset differs from SET in its affected target and its duration over

time. An SEU occurs in a memory element (e.g., latch, flip-flop, RAM cell, asynchronous

memory logic) as a result of latching a SET or an ionizing strike hitting the memory

element, as shown in Figure 2.6. As an SEU is stored in a memory element, the error is

no longer transient. It can remain several clock cycles for synchronous logic or until the

next transition of an input signal in asynchronous logic (TABER; NORMAND, 1993). As

in SEL, electrical masking can occur when the signal interference is not enough to change

the logic state; in SEU, logical masking can occur through an operation that overwrites

the value in the memory element.
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2.3 Fault Tolerance Taxonomy

This work considers the definitions from (AVIŽIENIS; LAPRIE; RANDELL, 2004)

for fault, error, and failure. A fault is an event that may cause the system’s internal state

to change, e.g., a radiation particle strike. When a fault affects the system’s internal state,

it becomes an error. If the error causes a deviation of the correct system behavior, it is

considered a failure.

Another important step to understanding fault tolerance is interpreting the data

from fault injection campaigns. The two most used and accepted classifications are

from (MUKHERJEE; EMER; REINHARDT, 2005) and (CHO et al., 2013). The former

classification for soft error assessment considers three classes: Silent Data Corruption

(SDC) occurs when the system does not detect a fault and the outcome of the applica-

tion is affected; In Detected Unrecoverable Error (DUE) on the other hand, the fault is

detected, and it is not possible to continue the execution (e.g., segmentation fault); and

Masked when the application outcome and the system state are the same as a faultless ex-

ecution. The latter classification has five fault classes, which increase the level of details

in the dataset for future soft error assessment w.r.t. other classifications from the literature,

as described in details in Table 2.1.

Table 2.1: Fault effects classification by CHO et al. 2013.

Class Description

Vanished No fault traces are left

Output Not Affected
(ONA)

The resulting memory is not modified; nevertheless, one
or more remaining bits of the architectural state is

incorrect

Output Memory
Mismatch (OMM)

The application terminates without any error indication;
however, the resulting memory is affected

Unexpected
Termination (UT)

The application terminates abnormally with an error
indication

Hang
The application does not finish, requiring a preemptive

removal after a threshold execution time
Source: (CHO et al., 2013)
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2.4 Reliability Metrics

The literature also presents many metrics that help better understand how reliable

an application is, and compare two versions of the same app. In this manner, the choice

of adequate reliability metrics is crucial to guide the experiments’ analysis.

In contrast to Mean Time to Failure (MTTF), the Mean Work To Failure (MWTF)

(REIS et al., 2005b) can indicate the reliability of hardware and software-based fault mit-

igation techniques considering the trade-off with performance. The MWTF is defined in

Equation (2.1), as the workload that a system can complete before failing. To calculate the

MWTF, we measured the applications’ runtimes using the gem5 simulator. In addition,

our framework uses the fault injection results to measure the Architectural Vulnerability

Factor (AVF). In general, the most critical vulnerability is presented by the occurrence of

OMM. For example, in safety-critical applications, such as autonomous cars, an OMM

error can alter the detection of an obstacle in front of the vehicle, which can lead to an

accident. For this reason, this work used the OMM-based AVF (AV FOMM ).

MWTF =
1

AV FOMM ∗ execution time
(2.1)

The Extrapolated Absolute Failure Counts (EAFC)(SCHIRMEIER; BORCHERT;

SPINCZYK, 2015) is a metric that considers the fault-space dimension (w) of each ap-

plication (Equation (2.2)). The fault-space is given by w = ∆t ∗ ∆m, where the ∆t

represents the application CPU cycles, and the amount of registers memory in bits ∆m

it uses. Fsampled indicates the number of failures found in the simulations and is defined

as the sum of OMM, UT, and Hang. The Nsampled is the total number of simulations.

The MWTF and EAFC complement each other. The former focuses on failures that alter

the application’s output without alarming the system which can result in a critical fail.

The second metric group all types of failures, including crashes and hangs, and gives an

overall vision on the reliability impact.

EAFC = w ∗ Fsampled

Nsampled

(2.2)

Also, another essential metric to present is fault coverage. This metric describes

the percentage of faults that are either detected or masked. It is represented as the ra-

tio of detected and masked faults (or vanished faults) to the total number of faults that

occurred, as shown in Equation (2.3). In this scenario, faults detected are defined as Un-
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expected Termination results. Faults undetected are expressed as the sum of ONA, Output

Mismatch and Hang results. We assume that hang is undetected because the real system

generally does not have a timeout service to detect.

Fcoverage =
Fdetected + Fmasked

Ftotal

= 1 − Fundetected

Ftotal

(2.3)

Typically, soft errors are not a concern for single-user commercial applications

while for safety-critical applications error correction and redundancy techniques are manda-

tory (BAUMANN, 2005). Different methods of soft error protection can be developed at

different levels of abstraction. The following are some existing solutions.

2.5 Mitigation Techniques

The search for methods to reduce the effects of radiation in electronic systems has

dramatically increased in recent years (KASTENSMIDT; CARRO; REIS, 2006). One of

the most utilized techniques to achieve high resiliency to radiation-induced errors is the

temporal redundancy. With temporal sampling, the same combinatorial logic is effectively

used at many separate times. In the other hand, with spatial redundancy, the computing

element is replicated many times (MAVIS; EATON, 2002), as shown in Figure 2.7.

Figure 2.7: Spatial (left) and temporal (right) triple modular redundancy.

Source: GOLDSTEIN; BUDIU (2003).
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The best-known mitigation techniques are those that involve modular redundancy.

While the Double Modular Redundancy (DMR) creates one copy of a module and can

detect that an error has occurred if the outputs are not identical, the Triple Modular Re-

dundancy (TMR) creates two copies, thus managing to recover the system in addition

to just detecting the error. Figure 2.7 shows two ways to apply the TMR, running the

modules in parallel or sequentially, respectively.

The occurrence of soft errors problems can be tackled both in hardware and soft-

ware. While hardware approaches lead to the area and power overhead, software tech-

niques are generally implemented on a per-application basis that usually incurs perfor-

mance penalties. Table 2.2 shows some pros and cons comparing these two approaches.

Following are some basics about hardware and software-implemented protection tech-

niques found in the literature.

Table 2.2: Hardware vs Software approaches to mitigate soft errors.
HARDWARE SOFTWARE

Pros performance and high reliability cheap and easy to deploy

Cons area and power penalties performance and power penalties

Examples Bit Parity, ECC, TMR EDDI, SWIFT, SWIFT-R, CFSS, SETA, S-SETA
Source: Authors.

2.5.1 Hardware-only

Designers frequently introduce redundant hardware to detect or recover from tran-

sient faults. Storage structures, such as caches and memory, typically include extra in-

formation in the form of parity or Error-Correcting Codes (ECC), which let these hard-

ware structures detect and recover from such faults. However, protecting all transistors

is difficult without significant area, power, and performance penalties (REIS; CHANG;

AUGUST, 2007). Hardware-based techniques can also be classified as intrusive (e.g.,

register bank redundancy) and non-intrusive (e.g., redundant multithreading).

A well-known hardware-based mitigation technique is the lockstepping (HORST;

HARRIS; JARDINE, 1990). It performs the computation on two different cores and

checks the outputs to detect errors (i.e., DMR). Although the fault coverage is very high,

the area and power-efficiency suffer considerably. Another famous technique is the Re-

dundant MultThreading (RMT) (REINHARDT; MUKHERJEE, 2000), which takes ad-

vantage of the multiple hardware contexts of SMT, thus making better use of available

system resources while reducing the validation overhead through the elimination of cache
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misses.

In (ABDULHAY et al., 2018), the authors proposed three versions of majority vot-

ers for quintuple modular redundancy (QMR). Their focus was in a fault-tolerant medical

imaging system. Its implementation in FPGA presents results of logic elements, delay and

energy dissipation comparable to the state-of-the-art. Authors in (WANG et al., 2021) ex-

plore the impact of single-event upsets (SEUs) on convolutional neural networks using a

Xilinx Zynq FPGA. They evaluate the soft error reliability when quantization and a TM-

Red version of ZynqNet were used. In addition to fault injections, neutron exposure was

also utilized in the experiments. Their results show that the quantized version presented a

better reliability improvement, with a circuit area reduction of about 44.76%, in contrast

with the 111.92% area increase of the TMRed version.

Work in (HUSSAIN; SHAFIQUE; HENKEL, 2019) presents a fine-grained and

power-efficient reliability management system that takes into account vulnerabilities and

power consumption during application execution. They achieved this power-efficient re-

liability through a Dual Modular redundancy with Re-Execution (DMR-RE) and Triple

Modular Redundancy (TMR) implemented for different architectural components that

can be controlled. Compared to the two state-of-the-art techniques, the proposed method

achieves significant reliability improvements up to 33% while reducing power up to 13%.

These results suggest that considerations of both vulnerability and power variations dur-

ing different phases of the application provide opportunities for fine-grained and power-

efficient reliability management.

2.5.2 Software-only

Software-only approaches to fault detection and recovery can significantly im-

prove reliability without requiring hardware modifications and are therefore cheaper and

easier to deploy. However, software-based techniques are generally implemented on a

per-application basis that usually incurs performance penalties. Deployment of redun-

dancy techniques in the field is essential, because designers might incorrectly estimate

the soft-error rate or the machine’s usage condition might change. Changes to the hard-

ware’s operating environment can noticeably affect reliability and require the deployment

of software redundancy techniques.

The software mitigation techniques can be classified into data-flow and control-

flow protection methods. All forms of protection aim to increase the reliability and
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fault tolerance of a program. However, they sacrifice performance and power-efficiency.

Whenever a program uses more memory or runs longer, the chance of a fault occurrence

increases. Data-flow techniques aim to detect or correct faults affecting the data, i.e., the

registers’ values, and the memory. In order to do so, such techniques duplicate (i.e., DMR)

or triplicate (i.e., TMR) the instructions, make copies of registers used by the application,

and later compare with its replicas. Control-flow protection ensures that the program ex-

ecutes all instructions in the correct flow. This type of technique is necessary because

the program counter, function return addresses, and branch instructions introduce single

points of failure that can not be mitigated using the data-flow approach. The control-flow

mitigation ensures that the transitions between code regions are legal and halt the system

if an unexpected or illegal change in the execution order occurs. These code regions are

referred to as basic blocks, which are defined to be sections of code with a single entry

and exit points.

To be able to limit the performance and energy penalties while maintaining good

fault coverage, some mitigation techniques are developed on a per-application basis. That

is the case of (LI et al., 2021), which presents two algorithmic-based fault tolerance

(ABFT) methods aiming to detect errors on deep learning recommendation systems. For

the general matrix multiplication (GEMM), results show more than 95% error detection

accuracy with a performance overhead of about 20%. And for the EmbeddingBag algo-

rithm, they achieved 99% detection accuracy with less than 26% performance overhead.

2.5.3 Hybrid

Hybrid methods aim to combine changes in the application code with some sort

of external hardware support. In general, it consists of a watchdog device that monitors

the hardware signals and informs the application running whenever an error is detected.

Following this approach, a mix of hardware and software techniques is used to achieve

a better tradeoff between reliability and involved costs (performance, area, and power-

efficiency penalties). These type of methods could be more flexible, by having the option

to chose either higher reliability or a lower overhead than those using software-only or

hardware-only hardening techniques (GOLOUBEVA et al., 2006).

For control-flow checking, the source code is divided into basic blocks at compile-

time, and a signature instruction is added into the block. The signature instruction has a

field that contains an identifying opcode and a field that contains the reference signature.
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The opcode could be a coprocessor opcode included in the processor’s instruction set, or

it could be a specific addition to the instruction set. During the runtime execution, the

watchdog observes the executed instructions and generates each basic blocks’ runtime

signature using dedicated hardware. For data hardening, the watchdog processor can be

used to execute assertions concurrently. The assertions are inserted at different program

points, stating what intends to be true for the variables. It can be written on the basis of

some algorithm property or specifications (GOLOUBEVA et al., 2006). For example, in

the inverse problem, if an integer variable is supposed to be positive, a negative check can

be used as an assertion.

Authors in (REIS et al., 2005a) proposed the Compiler-Assisted Fault Tolerance

(CRAFT), a hybrid hardware/software fault detection systems that capture existing sys-

tems’ features while reducing the overheads. CRAFT combines SWIFT (SoftWare Im-

plemented Fault Tolerance), a software-only technique, with lightweight hardware struc-

tures obtained from hardware-only techniques such as RMT. They implement and evalu-

ate three variations of such technique to demonstrate the potential of hybrid systems. The

first version, Checking Store Buffer (CSB), uses the hybrid method to take care of errors

affecting store instructions while SWIFT take care of errors affecting load instructions.

The second version, Load Value Queue (LVQ), does the opposite by using SWIFT for

store instructions and the hybrid approach for load instructions. Finally, the third version,

CSB + LVQ, uses only the hybrid method. Their results indicate that the evaluated tech-

niques (hardware, software, or hybrid) present distinct behaviors depending on specific

application characteristics. Also, they discovered that adding or enhancing even a sin-

gle hardware structure can significantly improve system reliability, showing that partial

protection can be used to get a better tradeoff.

Some hybrid mechanisms integrate software and hardware mitigation aiming to

take advantage of both approaches. However, this work will focus only on software-

based techniques as it is cheaper and extendable. Further, in Chapter 3, a more in-depth

analysis is done regarding well-known mitigation techniques comparing with this work’s

approach.



32

3 RELATED WORKS

Given trends for ever-increasing application/kernel code size and complexity, cost-

effective tools to assess the soft error resilience of multicore-based systems become of ut-

most importance to identify the most unreliable system functionalities early in the design

phase.

Simulation-based fault injection approaches are proposed to enable complex soft

error resilience analysis regarding different system configurations at an acceptable time.

Simulation-based fault injection frameworks allow early evaluation of the system reliabil-

ity when only system components models are available. Although simulations performed

either at the register-level or gate-level provide more accurate results than instruction-

level, there are two main issues that reduce their relevance for performing fault injection

campaigns in complex multicore systems. Commercial processors are rarely available to

users in register-level or gate-level description, and required simulation time is extremely

high, even for relatively small processors, making the investigation of systems composed

of more complex processors impractical (Rosa et al., 2015).

More recently, researchers proposed extensions to virtual platform simulators aim-

ing to enable fault injection analysis at early design phases. Virtual platforms simplify

the development of fault injection modules and the subsequent analysis due to their de-

sign flexibility (e.g., several processor models available) and debugging capabilities (e.g.,

GDB support) (ROSA et al., 2019a; BANDEIRA et al., 2019).

3.1 Early Soft Error Assessment, Identification and Mitigation

Most of the frameworks available in the literature only provide support to soft

error assessment and identification. Table 3.1 shows a comparison of related works that

will be discussed next.

In (GEISSLER; KASTENSMIDT; SOUZA, 2014), the authors perform 8k fault

injections considering an x86 architecture and a Real-Time Operating System (RTEMS),

but use only four in-house applications. P-FSEFI (GUAN et al., 2016) framework focus

on performing fault injections on parallel applications. They use the NAS Benchmark

suite as a case study. However, their instrumentation can add 30× on top of the tenfold

overhead added by QEMU (GUAN et al., 2016). Further, QEMU has a small number of

supported architectures. While the approaches presented by (HARI et al., 2012; HARI et
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Table 3.1: Related works in soft error assessment, identification and mitigation frame-
works developed on the basis of virtual platforms (VPs).

Features
Works Virtual Platforms OS Multicore Profiling ML Mitigation

(HARI et al., 2012; HARI et al., 2014) Simics + GEMS OpenSolaris

(GEISSLER; KASTENSMIDT; SOUZA, 2014) QEMU RTEMS

(KALIORAKIS et al., 2015) MARSS + gem5 None

(TANIKELLA et al., 2016) gem5 None

(GUAN et al., 2016) gem5 Syscall Mode

(DIDEHBAN; SHRIVASTAVA, 2016) gem5 None

(KHOSROWJERDI; MEINKE; RASMUSSON, 2018) QEMU None 3

(ROSA et al., 2019a) M*DEV + gem5 Unmodified Linux 3 3 3

(BANDEIRA et al., 2019) M*DEV Unmodified Linux 3 3 3

This work M*DEV + gem5 Unmodified Linux 3 3 3 3

al., 2014) propose a hybrid simulation framework for SPARC core using Simics (MAG-

NUSSON et al., Feb./2002) and GEMS (MARTIN et al., 2005) simulators, remaining

works rely on a single virtual platform simulator.

In (KALIORAKIS et al., 2015), authors present two new fault injection tools

(MaFIN and GeFIN), one based on MARSS (x86) and the other on gem5 (x86/ARM).

For both frameworks, faults are random in time and can target the register bank, cache

control among other internal components. Nonetheless, the validation includes ten bare

metal applications from the MiBench suite (GUTHAUS et al., 2001). Similarly, authors

in (DIDEHBAN; SHRIVASTAVA, 2016) propose a framework based on gem5 capable of

targeting the register file, pipeline registers, functional units, and load-store queue. Also,

they offer a compilation framework to introduce fault detection mechanisms into the ap-

plications. However, the implementation is restricted to Arm assembly, and their analysis

employs only ten bare-metal applications. Likewise, (TANIKELLA et al., 2016) consid-

ers fault injection in instruction, load-store, and pipeline queue; reorder buffer; renaming

unit; and register file. They use two benchmark suites, MiBench and SPEC-Int 2006, for a

total of 33k fault injections. Both (KALIORAKIS et al., 2015; TANIKELLA et al., 2016)

fail to consider complex software stacks and operating systems. In (Rosa et al., 2015),

authors add a fault-injection module to the OVPsim simulator that can manage multiple

simulations in parallel. A case study with over 10B instructions running on a Real-Time

Operating System (FreeRTOS) and an Arm processor model was conducted. However,

the analysis is fixed with a single classification and fault injection configuration. The

toolset showed in (BANDEIRA et al., 2019) adds support for bespoke soft error classifi-

cation and analysis as well as new fault injection techniques. They validate it with the use

of a single application.

In (KHOSROWJERDI; MEINKE; RASMUSSON, 2018), authors introduced ML
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techniques aiming to reduce the number of fault injections required without increasing

the error margin. Two automotive applications were tested using the QEMU simulator to

validate their implementation. While this approach focuses on reducing the time needed

for the fault injection campaign, our approach aims to correlate large subsets of applica-

tion profiles and architecture characteristics with fault injection results to extract the most

relevant parameters on the target system. Further, authors report a slowdown of 3x to

simulate the application without FI and 35x, or more depending on the metrics extracted,

with FI. On the other hand, our approach an worst case of 4x slowdown with FI.

3.2 Software-based Soft Error Mitigation

The fault mitigation problem can be tackled both in hardware and software. Hard-

ware techniques led to area overhead, thus increasing the system cost. This cost prob-

lem can be alleviated by selectively replicating system components or using approximate

methods such as approximate-TMR (ATMR) (ALBANDES et al., 2018). On the other

hand, software-based techniques usually add execution time and memory overhead. Soft-

ware techniques can range from low-level (e.g., modifying or adding assembly code) to

high-level approaches (e.g., C/C++ libraries, function wrappers). The former may lead

to less overhead, but it is architecture and application dependent; while the latter is ap-

plication dependent. As mentioned in Section 2.5.2, the techniques can be classified in

data-flow or/and control-flow hardening. Table 3.2 show some details about well-known

software-based fault tolerance techniques.

3.2.1 Control-flow Hardening

Control-flow protection ensures that the program executes all instructions in the

correct flow. This type of technique is necessary because the program counter, function

return addresses, and branch instructions introduce single points of failure that can not

be mitigated using the data-flow approach. The control-flow mitigation ensures that the

transitions between code regions are legal and halt the system if an unexpected or illegal

change in the execution order occurs. These code regions are referred to as basic blocks,

which are defined to be sections of code with a single entry and exit points.

Control flow checking via software signatures (CFCSS) (OH; SHIRVANI; MC-
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Table 3.2: Related works in software-based soft error mitigation techniques.

Work Technique/Tool
Name Type Classification Hardening

Level

(BENSO et al., 2000) RECCO Error Recovery Data-flow C/C++

(OH; SHIRVANI;
MCCLUSKEY, 2002a)

CFCSS Error Detection Control-flow Assembly

(OH; SHIRVANI;
MCCLUSKEY, 2002b)

EDDI Error Detection Data-flow Assembly

(NICOLESCU;
VELAZCO, 2003)

C2C Translator Error Detection
Data-flow &
Control-flow

C/C++

(GOLOUBEVA et al.,
2003)

YACCA Error Detection Control-flow Assembly

(REIS et al., 2005b) SWIFT Error Detection
Data-flow &
Control-flow

Assembly

(REIS; CHANG;
AUGUST, 2007)

SWIFT-R Error Recovery
Data-flow &
Control-flow

Assembly

(FETZER; SCHIFFEL;
SÜSSKRAUT, 2009)

EC-AN Error Detection Data-flow LLVM

(FENG et al., 2010) Shoestring Error Detection
Data-flow &
Control-flow

LLVM

(FENG et al., 2011) Encore Error Recovery
Data-flow &
Control-flow

LLVM

(Azambuja et al., 2011) CFT
Error Detection

& Recovery
Data-flow &
Control-flow

Assembly

(VEMU; ABRAHAM,
2011)

CEDA Error Detection Control-flow Assembly

(ABDI et al., 2012) CBD Error Detection Data-flow Assembly

(DIDEHBAN;
SHRIVASTAVA, 2016)

nZDC Error Detection
Data-flow &
Control-flow

LLVM

(KUVAISKII et al., 2016) ELZAR Error Recovery
Data-flow &
Control-flow

LLVM

(Chielle et al., 2016) SETA Error Detection Control-flow Assembly

(DIDEHBAN;
SHRIVASTAVA;
LOKAM, 2017)

NEMESIS Error Recovery
Data-flow &
Control-flow

LLVM

(DIDEHBAN; LOKAM;
SHRIVASTAVA, 2017)

InCheck Error Recovery
Data-flow &
Control-flow

LLVM

(THATI et al., 2019) SDSC Error Detection Data-flow Assembly

(BOHMAN et al., 2018) COAST
Error Detection

& Recovery
Data-flow &
Control-flow

LLVM

(GAVA; REIS; OST,
2020)

RAT Error Mitigation - LLVM

Source: Authors
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CLUSKEY, 2002a) requires each basic block to have a unique signature value, assigned

in the compilation process. When the program is running, a register keeps track of the

current signature. Whenever a new basic block is entered, the signature tracker is checked

to match the basic block signature. If the signatures do not match, the program execu-

tion is then handed off to an user-defined error handler. But this method does not solve

the illegal short jumps into the same basic block, for example. In (GOLOUBEVA et

al., 2003), the authors presented Yet Another Control-Flow Checking using Assertions

(YACCA). The technique exploits the program Graph’s information to check if the basic

block is reached from a legal block during the program execution; if not, a control flow

error is detected. Its difference to CFCSS consists of the signature generation and control

check using the adopted technique. The experiments demonstrated higher fault coverage

than the one achieved considering the CFCSS and ECCA (ALKHALIFA et al., 1999)

approaches while maintaining similar memory and performance overheads. In (VEMU;

ABRAHAM, 2011), Control-Flow Error Detection Using Assertions (CEDA) was pro-

posed integrated into GCC compiler. Like the last technique, it statically analyzes a pro-

gram and inserts instructions to update and check a runtime signature. Also, they used a

set of rules for restricting the possible signature values, which reduces the performance

overhead associated with the method while still having a high error coverage. Table 3.3

shows a comparison between CFCSS, YACCA, and CEDA techniques while running five

SPEC2000 benchmark programs.

Table 3.3: Comparison of Percent Undetected Errors (UF) and Percent Performance Over-
head (PO) for control-flow Hardening Techniques

CFCSS YACCA CEDA

Benchmark %UF %PO %UF %PO %UF %PO

parser 4.6 14.36 1.0 33.9 1.1 13.79

gzip 3.4 57.7 0.7 84.32 0.6 57.8

ammp 4.7 4.45 0.3 78.97 0.2 3.15

twolf 2.8 7.5 0.6 39.8 0.6 9.8

equake 2.8 18.81 0.5 33.9 0.5 17.9

Source: Adopted from (VEMU; ABRAHAM, 2011).

SETA (Software-only Error-detection Technique using Assertions) (CHIELLE et

al., 2016) is another signature-based approach. It improves fault tolerance by giving

unique identifiers to not only each block individually but networks of basic blocks. SETA,

when combined with the VAR3+ data-flow technique, increases the mean work to failure
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by a significant amount. The same authors also developed a selective hardening approach

called S-SETA (CHIELLE et al., 2015). This technique ignores some small basic blocks

with a lower probability of being affected by a fault to reduce the performance and code

overhead. Results show a slight reduction in fault coverage but a better tradeoff between

reliability and performance.

3.2.2 Data-flow Hardening

Considering the high-level software-based approach, (BENSO et al., 2000) and (NICO-

LESCU; VELAZCO, 2003) tools that apply fault mitigation techniques in C/C++ appli-

cations are proposed. Supported transformations are architecture-independent, but the

language is fixed, and the compiler may remove redundant code during the optimization

phases. The focus of (NICOLESCU; VELAZCO, 2003) is on low-cost safety-critical

applications, where the high memory and speed overheads (about 3–4 times) are not es-

sential metrics. Another similar tool is the REliable Code COmpiler (RECCO) (BENSO

et al., 2000), which relies on code reordering and selective variable duplication. (SHIR-

VANI et al., 2000) propose a software implementation of EDAC, i.e., an independent task

executed periodically. Results show that their approach provides protection for code seg-

ments and can enhance the system reliability with a lower check-bit overhead w.r.t. other

techniques (e.g., Hamming, Parity).

In (SERRANO-CASES et al., 2019), authors use genetic algorithms to find a com-

bination of optimization parameters (i.e., compilation flags) that increase the final binary’s

reliability and present a reasonable trade-off in terms of performance, and memory size.

The proposed technique was evaluated considering an FPGA implementation that was

exposed to a proton irradiation test. In (RODRIGUES et al., 2016), the authors imple-

mented in C code two mitigation techniques: the Triple Modular Redundancy (TMR)

and the Conditional Modular Redundancy (CMR). Their results have shown that both

techniques do not provide reasonable protection to a complex system executing Linux

kernel. According to the authors, the OS itself is an enormous source of errors and need

to be protected if employed on safety-critical systems. (JAMES et al., 2019) extended the

COAST (COmpiler Assisted Software fault Tolerance) tool, which automatically inserts

redundancies (DMR and TMR) in the program code through an LLVM plugin. This latest

version added support for new processor platforms such as RISC-V and Xilinx SoC-based

products. Their mitigation tool is similar to ours, but the soft error evaluation is minimal;



38

with only two simple applications for the tests, it is difficult to predict what occurs when

a real application is deployed. In addition, some experiments were carried out to assess

the system’s reliability by changing cache memory configuration, which showed that dif-

ferent architectures have distinct behaviors. In (FETZER; SCHIFFEL; SÜSSKRAUT,

2009), AN-encoding is presented as a form of data protection using arithmetic codes.

First, each value is multiplied by a constant A. The data must be divisible by A, and the

variables must be periodically checked by testing if the datum is equal to zero modulus

A. This model relies heavily on correct arithmetic operations, which, if done improperly,

causes the application to fail. AN encoding shows a high fault coverage using 128-bit

instruction extensions and Streaming SIMD Extensions (SEE). However, AN-encoding

would be challenging to do on a low-cost system because of the overhead associated with

many modulus operations.

The downside of the approaches mentioned above is that parts of the protected

code (e.g., redundant functions) may be wrongly removed during the compiler optimiza-

tion. One solution to overcome such restriction relies on modifying the assembly code

after the compilation or building your own compiler. An option is EDDI (Error Detection

by Duplicated Instructions) (OH; SHIRVANI; MCCLUSKEY, 2002b), which is a well-

known data flow protection approach. EDDI applies fine-grained mitigation, duplicating

each computation instruction. The duplicates are periodically compared with the original

data to detect a mismatch. A detected error triggers some form of user-specified error

handler. The purpose is to detect SDC and then stop the processor. This approach is also

known as duplicate with compare (DWC).

The SWIFT (SoftWare Implemented Fault Tolerance) (REIS et al., 2005b) ob-

jective was to reduce the overhead associated with EDDI. They remove duplicate store

instructions, saving both memory and execution time. This approach was possible be-

cause they assumed that some error correction mechanism protected the system memory.

The SWIFT method showed a 14% speedup over EDDI when tested using an Intel Ita-

nium 2 without reducing the fault coverage. Authors in (DIDEHBAN; SHRIVASTAVA,

2016) improved SWIFT technique by checking the load instructions right after a store in-

struction and creating redundant load instructions in critical sections to achieve near-zero

SDC. A popular instruction-level mitigation technique introduced by (REIS; CHANG;

AUGUST, 2007) is the SWIFT-R, which implements TMR to recover from soft errors in

the register file. Instead of duplicating instructions, it triplicates, and change the checking

points to a voter mechanism.
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In (FENG et al., 2010), authors presented Shoestring. This technique exploits a

low-cost symptom-based error detection mechanism and focuses on applying instruction

duplication to protect only those code segments that are likely to result in user-visible

faults and do not exhibit symptomatic behavior. Results show that it can recover from an

additional 33.9% of soft errors that are undetected by a symptom-only approach. (FENG

et al., 2011) presents Encore, a software-based error recovery mechanism (paired with

other error detection technique) that combines program analysis, profile data, and simple

code transformations to create code portions that can recover from faults at a minimal

cost. The experimental results show that Encore can recover from 97% of transient faults

on average with 14% additional runtime overhead. In (ABDI et al., 2012), the Critical

Block Duplication (CBD) is presented. The technique replicates instructions and check

registers only in the critical basic block selected by the higher number of fan-outs aim-

ing to reduce faults’ propagation. The results show that CBD reduces the fault coverage

by about 28% with a 61% performance overhead compared to full duplication. Another

TMR’d technique developed by (KUVAISKII et al., 2016) is ELZAR. It triplicates arith-

metic and logical operations, and the voting mechanisms are inserted between register

operands of memory and control flow operations for recovery. To reduce the performance

overhead, they utilize Intel AVX extensions for vectorization. The experiments show that

the performance overhead is reasonable for CPU-intense applications with many floating-

point operations. However, for some case studies, the instruction-level parallelism was

inefficient, resulting in a performance penalty that surpassed the SWIFT-R technique.

The NEMESIS technique introduced by (DIDEHBAN; SHRIVASTAVA; LOKAM,

2017) is a duplication with recovery technique. It replicates instructions and checks the

results of memory write operations and branches’ direction. If an error is detected, it

then recovers to a valid state if possible; otherwise, a power restart is needed. The

results show that at least 97% of the detected errors were recoverable considering the

ten selected applications. Another error recovery technique is InCheck (DIDEHBAN;

LOKAM; SHRIVASTAVA, 2017), which is an extension of their older technique nZDC.

The mitigation technique has error detection, diagnosis, and recovery schemes. Unlike

SWIFT-R, InCheck protects the execution of error handling routines in addition to the

main program instructions. The authors claim that their technique offers complete error

coverage for the tested applications. In (THATI et al., 2019), the authors compare CBD

and nZDC against their error detection technique called Selective Duplication and Selec-

tive Comparison (SDSC). They follow the Vulnerable Path Duplication (VPD) strategy,
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which protects the longest path in a Control-flow Graph (CFG) because of the higher

probability of error occurrence in such a path. The results show that SDSC has a higher

error detection ratio than both techniques but has a higher execution time overhead.

Authors in (MARTINEZ-ALVAREZ et al., 2011) present a compiler-directed method-

ology that guides the early design of fault-tolerant systems. They developed a generic in-

termediate code needed for the hardening process and a compilation infrastructure (fron-

tend and backend) to transform the high-level code language to generic instructions (GI)

and later transform it to the target architecture code. Furthermore, a selective soft er-

ror mitigation technique based on SWIFT-R was evaluated using an 8-bit Picoblaze mi-

crocontroller. Although the idea is interesting, a considerable effort is necessary to add

support for a new processor architecture, limiting its usability. In this direction, authors

in (CHIELLE et al., 2012) proposed the CFT-tool, which is a framework that modifies

assembly code by applying different data-flow and control-flow protection techniques.

Although this approach does not suffer with compiler optimization, it is architecture-

dependent. The CFT-tool uses a configuration file to minimize this limitation, however,

this file needs to be hand-made for each new Instruction Set Architecture (ISA). The lower

level language tends to have higher efficiency in the reliability result, but the difficulty to

work at this level is not feasible when applied to complex soft stacks.

(HOFFMANN et al., 2014) developed the Combined Redundancy (CoRed) mit-

igation technique for selective protection of safety-critical applications. This technique

combines TMR with Arithmetic error coding schemes (AN codes) and engages between

application and operating system. The work focus on describing the challenges and pit-

falls using the AN codes and present an in-depth analysis of their protected majority voter

aiming to eliminate the single-points of failure. The voter reliability was validated by

running an extensive fault-injection campaign covering 100 per cent of the fault space for

1-bit and 2-bit errors. They show good results, but the code overhead of 38 to 92 machine

instructions for the enhanced voter can be very restrictive.

In general, software or hardware methods are based on redundancy (e.g., DMR,

TMR) (REIS et al., 2005b; REIS; CHANG; AUGUST, 2007; FENG et al., 2010; DIDE-

HBAN; SHRIVASTAVA; LOKAM, 2017). While hardware-based solutions incur in ex-

tra silicon area (e.g. use of sensors, monitoring infrastructures, replication of wires),

software-based solutions may be power and performance inefficient (e.g., time redun-

dancy). An alternative solution is the use of lightweight mitigation techniques that does

not involve redundancy such as RAT (GAVA; REIS; OST, 2020), a technique that allo-
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cates the critical kernel/application function to a specific pool of general-purpose proces-

sor registers aiming to reduce the register file vulnerabilities to soft errors.
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4 SOFIA FRAMEWORK

Rather than implementing a toolset from scratch, we have adopted SOFIA (BAN-

DEIRA et al., 2019) a flexible virtual platform (VP) that provides us with the necessary

means (i.e., simulator with processor and component models, full software behavior ob-

servability) to implement the proposed technique. The modular framework has a wide

range of features that can work independently or as part of a complex workflow (Fig-

ure 5.1, later explained in Chapter 5). The framework can generate an extensive and de-

tailed soft error analysis for a given application when all modules are enabled. Currently

available modules are described next.

4.1 Cross-Compilation Module

A cross compiler is a compiler capable of creating executable code for a plat-

form other than the one on which the compiler is running. Our framework supports both

GCC and Clang/LLVM1 for C/C++ based applications. While GCC is the default com-

piler available in most GNU/Linux distributions, the LLVM has many useful resources

to increase our tooling. LLVM aims to make program analysis and transformation avail-

able for arbitrary software, in a manner that is transparent to programmers (LATTNER;

ADVE, 2004). The framework support for these compilers is delivered by a set of scripts

and CMake files.

The proposed framework simulation module is based on two well-known simu-

lators: gem5 (BINKERT et al., 2011a) and the Multicore Developer (M*DEV) virtual

platform (IMPERAS, 2019). Each simulator brings its advantages and drawbacks. The

gem5 simulator provides a cycle-accurate simulation and many insightful metrics from

the underlying architecture at the cost of simulation turn-around. On the other hand,

M*DEV sacrifices cycle-accuracy in favor of speed by simulating instructions behaviors.

To achieve the best results for our workflow, we use them where appropriate. We leverage

the accuracy of gem5 to perform application and architecture profiling, while M*DEV

is better suited for massive campaigns of fault injection and soft error assessment. Note

that we achieve an apples-to-apples comparison by using the same application binary and

Linux kernel between the simulators.

1Note that the fault mitigation techniques integrated into our framework only works with code compiled
with LLVM
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4.2 Profiling Module

To gather more useful information about the soft error reliability of multicore sys-

tems, our framework has support for tracing and profiling an application’s behavior under

the presence of faults. The underlying toolset provides software engineers with crucial

information. For example, a detailed profile of executed instructions — the number of

each executed instruction by their opcode (add, bneq) or their class (e.g., arithmetic,

branch) — as well as the utilization percentage of processor registers, enabling the evalu-

ation of different instructions reliability and register criticality. To execute the target plat-

form binary in the host machine, the simulator (M*DEV) needs to translate the opcode

from the target machine into a host machine code. It uses a callback to perform this

translation. This callback is responsible for fetching an instruction, decoding it and then

calling the routines that describe its behavior. During the callback, a user-defined routine

changes the instruction’s behavior aiming to generate a bespoke profile.

4.3 Fault Injection Module

As shown in Figure4.1, fault injection can target register bank, main memory,

program variables, compiled source code saved in memory. Further, the framework is

also able to isolate a function and perform the above techniques, e.g., fault injection on

the register bank only when the isolated function is on the processor context. The fault

injection comprises four steps. First phase, Golden Execution, the target architecture is

simulated in the absence of faults to extract the system reference behavior (i.e., the context

of the registers and final memory state), while the second phase creates a list of target

faults (i.e., register, injection time, and bit position). In the third phase, the scenario under

test suffers the fault injection and a report is created with available information, e.g., final

processor context, number of executed instructions, memory values — this phase can be

executed multiple times, i.e., perform a fault injection campaign. The module has support

for distributed (multiple hosts within the same network) and parallel (multiple processors

and cores in the same host) fault injection simulations. Finally, fourth phase assembles

all individual reports to create a single fault injection results database.
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Figure 4.1: OVPSim-FIM Fault Injection Flow.

Source: ROSA et al. (2019b).

4.4 Machine-Learning Module

Converting fault injection explorations into actual system reliability improvements

is not straightforward. By extending the study in ROSA et al. (ROSA et al., 2019a), our

work deploys a cross-layer investigation toolset that uses machine learning techniques to

perform multi-variable and statistical analysis using the gem5 microarchitectural informa-

tion (e.g., memory usage, application instruction composition) along with other software

profiling tools (e.g., line coverage) that are combined with soft error vulnerability evalu-

ation results (i.e., fault injection campaigns using M*DEV). Underling toolset enables to

reduce the number of fault injection campaigns required during early design space explo-

ration by using software symptoms (e.g., execution time, number of branches) correlated

with soft error vulnerabilities to improve the target application reliability. The framework

also provides users with a flexible investigation, where several information sources can

be easily included, selected, and conformed to different machine learning investigation

techniques.

4.5 Analysis and Visualization Module

Decoupled from the fault injection module, we provide a module to perform anal-

ysis and the visualization of the data from the fault injection campaign. The framework

is capable of performing soft error analysis using the classifications from the literature
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(Section 2.3) or user-customized classifications. This module can generate all figures

showcasing the results of fault injection analysis and profiling present in this work. The

availability of this visualization feature can increase the productivity of application engi-

neers, making raw data easy to understand and find patterns.

4.6 Application Hardening Module

This framework module focuses on architecture-independent software-based pro-

tection by leveraging LLVM features to implement mitigation techniques on the basis of

COAST tool (BOHMAN et al., 2018). Thus, without modifying the original applica-

tion source code. The LLVM operation flow comprises the following steps: High-level

language to Intermediate code Representation (IR): a compiler driver (i.e., front end)

receives the high-level language source code (e.g., C/C++) and outputs LLVM IR instruc-

tions — which describes a program using an abstract RISC-like instruction set but with

essential higher-level information for effective analysis. Transformations: uses the IR to

apply optimizations (e.g., -O3) and other code modifications. Code Generator: the fi-

nal step is to transform the architecture-independent internal representation into assembly

code for a given target (e.g., x86, ARM, RISC-V). The mitigation techniques provided

with the framework take place (i.e., code transformations) at early code generator steps,

thus guaranteeing architecture independence. This mitigation module is described in more

details on Chapter 6.
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5 SOFIA WORKFLOW VALIDATION

In this chapter, a workflow using all available modules and features is proposed

to validate our framework. Further, we showcase the framework and the workflow with

a step-by-step example for an application. The proposed workflow comprises six phases

(Figure 5.1).

Figure 5.1: Framework modules (A–F) and proposed workflow (1-5): from source code
to hardened application.
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The first step is to set the framework configuration: choose the target platform,

fault injection campaign parameters (e.g., number of experiments, fault target), and cross-

compile the application source code (unhardened version) to the target platform. The

second step extracts performance metrics of the application using the available profiling

tools. In the third step, the unhardened binary goes through an initial soft error evalua-

tion. The data from the profiling and soft error evaluation is fed to the machine learning
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module, which is able to find correlations that can aid to choose the correct hardening

technique. If the constraints are not all met (e.g., the MWTF is below a threshold), the

framework tried to add or change the current hardening parameters in the fourth step and

repeats steps 2 and 3 with the new hardened binary. When all the constraints are met,

the workflow advances to the last step to combine all the fault injection reports from the

multiple evaluation loops and profiling data from the different binaries to generate graphs

and a final report.

To show in details each step of the workflow, we chose the OpenMP version of

application Integer Sort (IS) from NAS Parallel Benchmarks (NPB) (NASA, 2019).

5.1 Framework Setup and Configuration

The framework uses CMake configuration scripts to set compiler related ISA flags.

Then we introduce two function calls (i.e., INIT and EXIT) at the beginning and end of

the main function. These functions tell the fault injector module the interval time where

the application executes. After this initial setup the framework compiles the application

using the template CMake script with some optional specific compilation flags (e.g., -O2,

-mcpu, -mfloat-abi) passed through the command line.

5.2 Profiling

After creating the binary for the target platform, the framework simulates the ap-

plication without faults and does the profiling (Figure 5.2) using both gem5 and M*Dev.

Data from these initial simulations are used later for the ML analysis and the mitigation

techniques.

Taking a closer look at the function profile for the unhardened program version

running on a quad-core Arm Cortex-A72 system, Figure 5.2, we can see that the most

performed function is .omp_outlined.6, created by the OpenMP library. There are

dozens of functions in the “others” category, of which over 90% belong to the Linux rou-

tines. It is also worth to note that thread management routines (e.g., kmp_fork_barrier,

kmp_join_barrier, kmp_hyper_barrier) represent a large portion of the total

execution time. These thread synchronization functions are more sensitive to register

bit-flips. When increasing the execution time of other program functions by inserting
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Figure 5.2: Sub-figures (a-d) show the function profile for each core on a quad-core sys-
tem for the unhardened program version. Function A: .omp_outlined.6, B: randlc, C:
kmp_hyper_barrier, D: kmp_fork_barrier, E: kmp_join_barrier, F: kmp_barrier, G: oth-
ers.
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redundancies, the probability of errors in the operating system’s critical tasks is reduced.

Finally, the reason that makes Core 2’s profile different from other Cores is that it contains

the main thread, so it runs function A longer and has other specific tasks for synchronizing

threads (E, F).

5.3 Soft Error Evaluation

For an initial soft error evaluation, we perform three fault injection campaigns

varying only the number of processor cores (i.e., 1, 2, and 4). Each FI campaign injects

3.1k random bit-flips in the Cortex A72 processor general-purpose registers — 99% con-

fidence level and a 2.3% error margin according to (LEVEUGLE et al., 2009a). As the

number of cores increases, so does the operating system thread management routines,

thus Table 5.1 shows the increase in OMM and decreases in Vanished. MWTF is also

severely affected with a reduction of 19.40× from single-core to dual-core and a further

2.29× reduction from dual-core to quad-core. The same is true for EAFC (lower values
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are better), where a 2.81× increase from single-core to dual-core is observed and a further

1.56× addition from dual-core to quad-core.

Table 5.1: NAS Parallel Fault Injection Campaign Results.
Core Variant Van. ONA OMM UT Hang MWTF EAFC (106)

Single 91.45 0.03 1.32 7.10 0.10 88.45 5.34

Dual 79.16 0 9.35 11.35 0.13 4.56 15.00

Quad 74.68 0.29 13.42 11.35 0.26 1.99 23.43
Soft error values are in %.

Figure 5.3: Sub-figures (a-d) show ML analysis examples generated using a set of FI cam-
paigns. The circles are FI campaigns, and the lines are distinct ML regression techniques:
red, poly; green, linear; and, blue, rbf regression).

(a) Hang vs Branches (b) UT vs Register

(c) ONA vs ALU (d) OMM vs Register

The ML module combines data from the profile and soft error to speed up the anal-

ysis of the application’s behavior for different configurations and parameters. Figure 5.3

show four ML correlations generated for a set of FI campaigns for the same application,

varying some configurations (e.g., number of cores, compiler flags). (a) shows that the
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increase in the number of branch instructions is directly related to the rise in the system

Hangs. In (b) we see that the increase in the number of entries in the integer register

is related to the decrease in UT. In (c), we see that the rise in the number of accesses

to the ALU is associated with the reduction of ONA. Finally, in (d), we have a direct

relationship between the number of readings from control registers and the increase in

OMM.

Figure 5.4: Example of the TMR applied in an operation inside IS application. From (1)
C code, to (2) LLVM IR code, then (3) LLVM IR with TMR, and finally the (4) protected
Aarch64 assembly.

5.4 Application Hardening

In this step, the mitigation technique is selected. The initial analysis considers

TMR and P-TMR mitigation techniques. Figure 5.4 shows the transformation of a block

of C code to LLVM IR, then to protected LLVM IR, and finally to the aarch64 assembly

code. Note that the TMR majority voter has two instructions in the LLVM IR code and

four instructions in the ARMv8-A. Later on, we show that an application with a large

number of majority voters can increase susceptibility to soft errors due to the increase in

the single points of failure, indicating that the use of a selective protection technique may

be more appropriate depending on the application.



51

5.5 Results Comparison

With the data from the unhardened binary and the two hardened versions (TMR and

P-TMR), Software engineers can use the visualization module to compare the reliability

vs performance trade-off and then define which protection strategy is best suited for the

chosen application.

Figure 5.5: Comparison between mitigation techniques, values are normalized by unhard-
ened version.
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Figure 5.5 shows the results regarding system reliability and the overhead for run-

time and code size. This data set considers two different mitigation techniques and three

core variants, with all values normalized by the unhardened version. The program code

size has a 44% increase when applying TMR against 16% in P-TMR, showing an inter-

esting finding for memory-constrained projects. Considering the reliability metrics, there

is a significant impact on the normalized MWTF and EAFC for the single-core platform.

The MWTF for TMR and P-TMR has a reduction of 79% and 66% (respectively), while

EAFC increases by 2.1× and 1.7× — thus, showing that the memory errors mitigation

was inefficient. In contrast, the reliability regarding overall errors (OMM + UT + Hang),

represented by the EAFC, was positively impacted. The reason for this behavior is that
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the application already has a natural high fault-masking rate (90%+), and our tool cannot

reach external functions and OS routines that use the most susceptible registers. However,

the normalized reliability improves with the number of system cores. This effect occurs

because we have a significant increase in the execution of OpenMP functions and other

thread management routines, making the protection worth in this case. The MWTF gain

is ∼16% for the dual-core P-TMR, and ∼13% for the quad-core TMR.

Overall, the majority of applications uses a small fraction of the 31 available

general-purpose registers in the ARMv8 ISA, while the operating system handles them

more evenly. Thus, a fault that occurs inside an application’s scope can remain in the reg-

ister after the program’s execution and affect external functions, libraries, and the kernel

subroutines.

Figure 5.6 presents results with the feature of RAT enable. Data points con-

sider three processor model variants (single-core, dual-core, quad-core), the unhardened

version with custom register allocation (RAT) and two different mitigation techniques

(TMR(+RAT), P-TMR(+RAT)). All the scenarios presented are normalized by the un-

hardened application (Ref).

Figure 5.6: Results applying RAT for unhardened, TMR, and P-TMR versions. All data
points are normalized with unhardened version without RAT.
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The first notable case we can see is the unhardened version with RAT. With mini-

mal addition of runtime or code size overhead, there is an increase in MWTF — 2%, 16%,

and 8% for single-core, dual-core, and quad-core respectively — and a decrease of EAFC

— 8.83%, 20.37%, and 17.91%. When we apply TMR technique, a massive increase in

MWTF gain can be observed — about 2.54× and 2.75× for dual-core and quad-core,

respectively. This effect occurs due to the more significant number of registers used by

the program since all their functions have redundant code. In this way, it is possible to

distribute the use of registers more evenly. However, we do not see a significant effect on

P-TMR(+RAT), meaning that choosing the least used registers strategy does not work in

all cases.
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6 PROPOSED SOFT ERROR MITIGATION MODULE

A processor-based system can be affected by two main types of soft errors: control-

flow and data-flow. A control-flow error occurs when the error causes deviation from the

correct program flow (e.g., incorrect branch). The data-flow error refers to the soft error

caused by a bit-flip in a storage device, such as a register or memory element. They can

affect the output of the program, but not its execution.

This work focus on software mitigation techniques based on data-flow protection.

This approach was chosen because, in general, the majority of soft errors affect data-flow

rather than control-flow, and the protection in software added by the control-flow meth-

ods alone are sometimes questionable as discussed in (RHISHEEKESAN; JEYAPAUL;

SHRIVASTAVA, 2019).

6.1 TMR (Triple Module Redundancy)

The first fault mitigation technique implemented was TMR, a method widely used

at the hardware level (LYONS; VANDERKULK, 1962). It creates two replicas of a com-

ponent and then checks the outputs through a majority voting mechanism to mask the

error. However, when analyzed at the software-level, the performance penalty is often

quite significant, so it is necessary to evaluate it on a case-by-case basis. The following

subsections describe all the rules that define how the implemented technique works and

how they are inserted in the application’s compilation flow to allow automated protection.

6.1.1 Data-Flow Rules

Authors in (CHIELLE; KASTENSMIDT; CUENCA-ASENSI, 2016) describe a

set of rules for data-flow techniques that aim to detect faults affecting values stored in the

register bank and memory devices (Table 6.1). To provide soft error recovery instead of

just detection, this work uses triplication instead of duplication.
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Table 6.1: Data-Flow Rules.

Global Rules (valid for all techniques)
G1 Each used register has a replica

Duplication Rules (same operation on the register’s replica)
D1 All instructions except branches
D2 All instructions, except branches and stores

Checking Rules (compare the value of a register with its replica)
C1 Before each read on the register (except load, store, branch)
C2 After each write on the register
C3 Before loads, on the register that contains the address
C4 Before stores, on the register that contains the data
C5 Before stores, on the register that contains the address
C6 Before branches

Source: CHIELLE; KASTENSMIDT; CUENCA-ASENSI (2016).

6.1.2 LLVM Compiler Infrastructure

The LLVM aims to make program analysis and transformation available for ar-

bitrary software, in a manner that is transparent to programmers (LATTNER; ADVE,

2004).

Figure 6.1: LLVM Operation Flow.

Source: Authors.

The LLVM operation flow, shown in Figure 6.1, comprises the following modules:

(1) Front-end. is the compiler driver that outputs LLVM IR code, the most mature of these

is Clang (CLANG, 2019). Clang is used in production to build performance-critical soft-

ware like Chrome or Firefox, for example. Figure 6.1a shows a simple example of a C
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function that takes two integer values as input and returns the sum of these elements. (2)

Typed SSA IR. The LLVM intermediate code representation describes a program using

an abstract RISC-like instruction set but with essential higher-level information for effec-

tive analysis. Figure 6.1b shows the transformation of the C example in LLVM IR code.

(3) Optimizations/Transformations uses an intermediate code representation to describe

the program. Through the so-called passes, this representation is traversed to collect in-

formation or perform transformations to the code. This is the core of the LLVM project.

Figure 6.1c shows the IR code that results from the TMR technique applied to the first

IR example code. (4) Code Generator transforms the architecture-independent internal

representation into assembly code for a given target (e.g., x86, ARM, RISC-V). The reg-

ister allocation, which is one of the explored features of this work, is done at this point.

Figure 6.1d shows the protected Aarch64 assembly code generated.

Figure 6.2: Sub-figures (a,b,c,d) show an example for the LLVM steps.
(a) C code (b) LLVM IR

(c) LLVM IR with TMR (d) Aarch64 assembly

Source: Authors.

6.1.3 Automated Software-Based Fault Mitigation

Our framework presents two selective TMR variants based on the VAR3+ tech-

nique from (Azambuja et al., 2011), as shown in Table 6.2. These techniques were chosen

for their capability of increasing reliability while maintaining a low overhead. The first
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version has the original VAR3+ definition, all instructions, except for branches and stores,

are replicated (rules G1, D2). The replicas are checked before every load, store, or branch

instruction (rules C3, C4, C5, C6). In the second version, VAR3+ technique can be

applied selectively on one or more specific functions (e.g., critical tasks) instead of the

entire application code. This approach can considerably reduce code size and execution

time while maintaining similar reliability. For simplicity, we call these versions just TMR

and P-TMR, respectively. These techniques can be activated with custom flags added to

the Clang frontend, thus hardening applications with minimal effort.

Table 6.2: Techniques and Rules.

Technique Duplication Rule Checking Rules

VAR3+ D2 C3, C4, C5, C6

Source: CHIELLE; KASTENSMIDT; CUENCA-ASENSI (2016).

6.2 RAT - Register Allocation Technique

Register Allocation is executed during the Code Generation phase. It consists

of mapping a program with an unlimited number of virtual registers (like in the LLVM

IR) to a program that contains a limited number of physical registers of some particular

architecture. Each target architecture has a different number of physical registers. If the

number of physical registers is not enough to accommodate all the virtual registers, some

of them will have to be mapped into memory. These virtual registers are called spilled

virtuals.

The LLVM has several different register allocators, and by default, the Fast version

is used most of the time. This allocator is called a local register allocator, which has

the most straightforward strategy when compared with the others. It scans the program

linearly and assigns virtual registers to physical registers at the basic blocks level, as

shown in Figure 6.3.

In this work, the Fast register allocator was used as a basis to introduce the desired

functionalities. When mapping virtual to physical registers, a function is called to search

for a free register among all registers compatible with a particular type of value (for ex-

ample, int32). At this point, a new condition is imposed. If the basic block being mapped

belongs to the specific function passed as a parameter, the mapping can only be done us-

ing the register pool provided to the compiler. With this modification, the allocator will
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Figure 6.3: Register allocation example – LLVM IR to Aarch64 assembly

Source: Authors

be forced to use only the registers available in the defined pool. However, it is essential

to note that if an inadequate number of registers or invalid registers names are set, the

compilation process can be aborted. For this reason, an automated process was built to

handle the analysis of dynamic and static registers’ usage and finally apply the allocation

technique.

In the first step, the disassembler code is analyzed to extract the number of general-

purpose registers utilized by the defined critical function. With this information, it is pos-

sible to set the size of the desired customized register pool. In the second step, dynamic

register profiling is done aiming to capture the application’s most and least used registers.

Different strategies can guide the selection of the pool. Figure 6.5 shows an ex-

ample of general-purpose aarch64 registers’ profile of an application after a normal com-

pilation process, and the Figure 6.6 shows the registers’ profile of the same application

using a custom register allocation targeting the critical function with the register pool set

to X18-X28, as expressed in the command line in Figure 6.4. The x-axis of the plots

shows the 31 general-purpose 64bit registers from Armv8 ISA. The y-axis shows how of-

ten each register was referenced as a source or destiny in the entire application execution.

When the technique is applied in the critical function (i.e., most executed by default),

there are a usage reduction in the intermediary registers (X8-X17) and an increase in the
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last registers’ usage (X18-X28).

Figure 6.4: Clang/LLVM command-line example to apply the custom register allocation.

Source: Authors

Figure 6.5: Register’s references for default register allocation in log scale.

Source: Authors.

Figure 6.6: Register’s references after applying RAT in log scale.

Source: Authors.



60

The left-hand of Figure 6.7 shows an example of a C language function that takes

three integer parameters as input, performs arithmetic operations, and returns an integer

value. The resulting 64-bit ARM (Aarch64) assembly code is shown in the right-hand of

fig. 6.7, where at the top the default register allocation is shown. In turn, at the bottom

right-hand of Figure 6.7 the RAT technique is applied, limiting the function register pool

to “W21, W22, W23”. As mentioned before, RAT is a compiler-based mitigating tech-

nique, thus it can be associate with other techniques as well. Such capacity is explored in

the Chapter 7.

Figure 6.7: Example of C code (left) conversion to Aarch64 assembly without (top right)
and with (bottom right) RAT flags compilation.

Source: Authors

6.2.1 RAT Custom Parameters

To be able to provide more flexibility to engineers, RAT enables some fine-grained

customization to be applied in the target application through command-line parameters.

As shown in Figure 6.8, the first parameter that can be modified manually is the registers’

sets (pools) that restrict the application register allocation. These register pools need to

be composed of registers available in the target architecture, and the minimum size of

each pool needs to follow the application restriction. For example, some Arm standard

instructions such as ADD R0, R1, R2 need three registers to work. If a pool is set

to {R0, R1}, the compiler will throw an error. Moreover, note that even when the
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compiler compiles the code correctly, the more you restrict the pool’s size, the more the

allocator needs to spill registers values to memory, which could significantly reduce the

application’s performance.

Figure 6.8: Custom parameters configuration flow for RAT.

Source: Authors

The second parameter that can be set is the list of application functions (e.g.,

the critical ones) that the engineer wants to harden. This parameter is also passed by

command-line to the LLVM static compiler (LLC). The functions are limited to those

available in the program source code; that is, functions from external libraries do not suf-

fer any effect as they are already in the machine code format. A functionality that was not

introduced yet is the assignment of particular register pools to specific functions. After

setting the parameters, the LLC produces the assembly code, and finally, the binary is

generated by any linker compatible (e.g., LLD, GOLD, GNU LD).

6.3 Integration of Mitigation Techniques in the Proposed Framework

To apply the P-TMR technique of selective protection automatically, a series of

steps must be followed (Figure 6.9): (a) Default Compilation: configure software stack

and compile the application using any frontend compiler compatible with LLVM (e.g., Clang).

(b) Function Profile: run the profiling tool with the trace flag enabled, this will capture

the execution time of each of the application’s function and determine which is the criti-

cal one. Note that the software engineer can either determine the most critical application

function or use our toolset’s default option, which selects the most executed one. (c)

Compilation TMR: with the information provided by the profile, the framework auto-

matically re-compiles the application with the required flags — i.e., applying the fault
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mitigation technique to the target function(̇s). One limitation of this approach is that its

source code must be available and under the application’s own scope to protect the func-

tion. This limitation can drastically affect the efficiency of the mitigation techniques and

will be discussed in more details on Chapter 7. (d) Register Profile: since the last step

changed the binary, it is needed to profile the application again to extract register’s usage.

(e) Compilation with Register Allocation Technique (RAT): In this step, a new compi-

lation is performed taking into account the critical function and a register pool (i.e., least

used registers). The underlying compilation uses a modified version of the LLVM Fast

Register Allocator, which considers arguments (i.e., restrictions) that are passed to LLC

(LLVM Static Compiler) through a command line, as shown in Figure 6.7. (f) Hardened

Binary: Finally, the resulting hardened binary is generated by the LLD linker.

Figure 6.9: Framework cross compilation flow for application hardening. Blue box shows
steps executed by Clang or LLVM, while grey box by profiling tools.

Source: Authors
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7 SOFT ERROR MITIGATION MODULE VALIDATION

This Chapter evaluates the effectiveness of the developed soft error mitigation

module and techniques considering different case studies: (i) Bare metal vs. OpenMP

linux applications (Section 7.1) . (ii) ARMv7-A vs. ARMv8-A (Section 7.2). (iii)

ML in resource-constrained devices (Section 7.3). (iv) RAT customization analysis (Sec-

tion 7.4).

7.1 Case Study I - Considering Distinct Software Stacks

This Case study considers two different sets of benchmarks (WCET (GUSTAFS-

SON et al., 2010) and Rodinia (Che et al., 2009)) using two reliability metrics (MWTF

and EAFC). To showcase the proposed framework’s range, we select benchmarks with

different characteristics. WCET benchmark do not consider an operating system, single-

core processor, and the applications are relatively small w.r.t. the other benchmark; how-

ever simple each application is, they comprise the basis for more complex applications

— for example, matrix multiplication and linear equation solver are the basis for many

machine learning routines. On the other hand, Rodinia benchmark leverage the use of

external libraries to manage multicore processing in parallel, thus adding a new layer of

complexity as well as a Linux operating system.

Table 7.1 shows the experimental setup; with 3.1k fault injections per campaign,

our data has a 99% confidence level and a 2.3% error margin according to (LEVEUGLE

et al., 2009a). This work assumes that an error-correcting code protects the main memory,

thus the targets for fault injection are the general-purpose registers X0-X30.

7.1.1 WCET

The applications selected for this section comes from the real-time benchmark

suite WCET. In Table 7.2 we have a brief description of each one. They are concise

applications with distinct behaviours (e.g., loop, recursion, arrays), and no external library

dependencies (e.g., string.h, math.h). Due to the lack of operating system and

external calls, our framework has access to 100% of the code that is executed, which

ensures a fine grain control over the flow and fault mitigation techniques for soft error
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Table 7.1: Experimental Setup
Framework Setup

Processor Arm Cortex A72
Compiler Clang/LLVM 6.0

Fault Model Random Single Bit-Flip
Fault Injection per Scenario 3100

WCET Benchmark
Core Variants Single-Core

OS None
Mitigation Techniques TMR, P-TMR

Number of Applications 25
Rodinia Benchmark

Core Variants Single, Dual and Quad-Core
OS Linux (kernel 4.3)

Mitigation Techniques RAT, TMR(+RAT), P-TMR(+RAT)
Number of Applications 13

Source: Authors

protection.

Table 7.2: Reference Baremetal Benchmarks
# Benchmark Description Exec. Instr. (x103)

1 adpcm Adaptive pulse code modulation algorithm. 292.37
2 binary_search Binary search for an array of integer elements. 174.03
3 bit_manipulation Complex embedded code. 365.82
4 blowfish Encryption algorithm. 1008.40
5 bubble Bubblesort program. 261.23
6 compress Data compression program. 320.18
7 counts Counts non-negative numbers in a matrix. 243.04
8 crc Cyclic redundancy check computation. 253.36
9 edn Finite Impulse Response (FIR) filter calculations. 171.28
10 expint Series expansion for computing an integral function. 346.00
11 factorial Calculates the factorial function. 347.88
12 fdct Fast Discrete Cosine Transform. 474.53
13 fibonacci Simple iterative Fibonacci calculation. 324.52
14 hanoi Tower of Hanoi puzzle game. 704.68
15 harm Harmonic calculations with recursive calls. 321.89
16 insert_sort Insertion sort on a reversed array. 271.16
17 jfdct_int Discrete-cosine transformation. 224.04
18 matrix_mult Matrix Multiplication 20x20. 345.05
19 mdc Calculates the greatest common divisor. 176.35
20 peakspeed Memory bounded program. 20.59
21 petri_net Simulate an extended Petri Net. 233.15
22 prime Calculates whether numbers are prime. 712.79
23 switch_cases Control bounded program. 5339.43
24 ud Linear Equations by LU Decomposition. 509.87
25 usqrt Sqrt calculation without multiplications or divisions. 257.98

Source: Authors.

Table A.1 shows all results for unhardened binary (R) and with the mitigation tech-

niques (P-TMR and TMR). Although TMR generally offers a better MWTF and EAFC, the

difference to the P-TMR results is minimal in the majority of cases. The average normal-
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ized runtime, code size, MWTF, and EAFC is about 2.76×, 1.24×, 5.97×, and 1.32×,

respectively for TMR; and 2.51×, 1.16×, 4.76×, and 1.33× for P-TMR. However, on a

few applications (highlighted in blue), protecting only the critical function (P-TMR) has

better reliability vs performance trade-off than TMR. Also, applications 6, 11, (highlighted

in grey) and 14 (in blue) had worse results in terms of MWTF and EAFC on both mitiga-

tion techniques. These results indicate that adding protection can also create new points

of failure. The TMR majority voters implementation for the ARMv8-A ISA uses four

instructions, making the application more vulnerable if there are a significant number of

voters in the code.

Analyzing the average of all normalized results gives an overview of the effective-

ness of the implemented mitigation techniques. Comparing the P-TMR technique with

TMR, we observed a 9% increase in MWTF, 7.5% in code size, and 10.5% in runtime.

Although the average difference in code size seems small, note that some applications are

so simple that they have only a main function, or the main just calling another function.

This characteristic of some benchmarks ends up diluting this gain, which is quite signif-

icant in some cases. For example, the adpcm benchmark which has code size overhead

equals to 2% and 21.2%, for P-TMR and TMR respectively.

Table 7.3: Summary of aggregated fault injection effect results, for the bare metal appli-
cations.

Reference TMR P-TMR
# Van ONA OMM UT Hang Van ONA OMM UT Hang Van ONA OMM UT Hang

Max 99.25 8.67 27.00 22.00 3.38 99.62 1.43 16.93 10.38 5.38 99.62 1.78 18.38 13.54 4.38
Min 50.83 0.00 0.00 0.00 0.00 79.42 0.00 0.00 0.00 0.00 72.79 0.00 0.00 0.00 0.00
Avg 85.58 1.98 6.90 5.20 0.34 93.83 0.42 3.10 2.38 0.28 93.22 0.47 3.39 2.62 0.30
Std 13.20 2.62 9.20 6.54 0.84 5.81 0.41 4.52 2.79 1.08 6.80 0.57 5.07 3.29 0.93

Source: Authors.

Looking at Table 7.3, we have an aggregate of the fault injection effect results

for all unprotected and protected bare metal benchmarks. The most important points of

this table are the values of Van and OMM (which include the SDC). While in the refer-

ence version R, we have an application with a minimum fault-masking rate of 50.83%,

in versions TMR and P-TMR, we have a minimum of 79.49% and 72.79% respectively.

Comparing the OMM values, we observe that the average and maximum values are 6.90%

and 27.00%, respectively, for the Reference version. And for TMR and P-TMR, there is

an abrupt decrease in the number of errors that propagate until the end of the application—

the average and maximum values are around 3% and 17%, respectively, for both protec-
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tion techniques.

In (CHIELLE; KASTENSMIDT; CUENCA-ASENSI, 2016), different software

mitigation techniques were applied to benchmarks running on an Arm Cortex-A9 CPU

system. Fault injections were made by simulation and heavy-ion radiation testing. Their

results showed that there is a significant impact on system reliability due to cache memory

that is not modelled on simulators like OVP, for example. Yet they conclude that the use

of simulation is acceptable for comparing mitigation techniques.

7.1.2 Rodinia

There are many benchmark suites for parallel computing on general-purpose ar-

chitectures. Rodinia targets heterogeneous computing infrastructures with support to mul-

ticore architectures, thus adding complexity when compared to WCET applications. The

applications run on top of a Linux operating system and use the OpenMP paralleliza-

tion library. Table 7.4 shows the domain and the average number of instruction for each

application/kernel compiled with O0 optimization flag on single-core platform.

Table 7.4: Reference Rodinia Benchmarks

# Application Domain
Average Executed

Instructions (106)

A Backprop Pattern Recognition 32.24
B BFS Graph Algorithms 66.02
C HeartWall Medical Imaging 81.34
D HotSpot Physics Simulation 69.15
E HotSpot3D Physics Simulation 164.37
F Kmeans Data Mining 40.28
G LUD Linear Algebra 43.28
H Myocyte Biological Simulation 31.77
I NN Data Mining 96.03
J ParticleFilter Medical Imaging 60.73
K PathFinder Grid Traversal 47.35
L SradV1 Image Processing 200.16
M SradV2 Image Processing 47.88

Source: Authors.

Figures 7.1 and 7.2 show the normalised runtime, MWTF, and EAFC for the

two mitigation techniques considering single-core, dual-core, and quad-core platforms.

Comparing the normalised average runtime results (1.11× vs 1.04×), MWTF (1.08× vs

1.07×) and EAFC (1.01× vs 0.97×) between the TMR and the P-TMR, we see a small
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difference, but when we observe isolated cases, some discrepancies appear. For example,

in the application F running on quad-core, we have a normalised MWTF and EAFC of

1.82× and 0.77× for TMR, and of 0.90× and 1.09× for P-TMR. This behaviour shows that

protecting only the most performed function is insufficient in some applications. How-

ever, observing the application K in single-core, we have a normalised MWTF and EAFC

of 1.36× and 0.77× for TMR, and of 1.67× and 0.72× for P-TMR. Thus, different miti-

gation techniques need to be tested to ensure which one best fits to each case.

Figure 7.1: TMR reliability comparison with reference.
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Another point to note here is that in some cases (D, H), the protected program’s

execution time is less than the execution time of the reference version. This behaviour oc-

curs as each FI campaign uses a different binary, thus the scheduling may also be different.

In these specific cases, almost 100% of the execution time was dedicated to function calls

from libraries responsible for I/O communication and related to physics (math functions).

That is, the TMR was applied to something that runs less than 1% of the time, making the

protection ineffective.

Figure 7.3 shows the code size increase comparison that highlights one of the main

differences between these two techniques evaluated. In the Rodinia benchmark, the trade-

off between reliability and code size is evident. For instance, application K has the highest

reliability gain overall. Its code size increases by only 14.15% when applying the P-TMR

technique in a single-core processor while TMR has a similar reliability gain, but a code

size increase of 35.23%. Similar behaviour occurs for all benchmark applications, thus
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Figure 7.2: P-TMR reliability comparison with reference.
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P-TMR technique has a better trade-off between reliability and code size.

Figure 7.3: Comparison between Rodinia’s applications code size increase for each miti-
gation technique.
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When comparing the WCET and Rodinia reliability results, a massive reduction
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can be seen in the average normalised MWTF gain from 5.97× (WCET) to 1.08× (Ro-

dinia). This effect occurs due to a large number of calls to external functions in more

complex applications (e.g., math/physics libraries). The presented mitigation techniques

cover only the functions inside the application’s scope. There are two possible solutions to

this problem. Our tool allows function calls replication; however, aside from the consid-

erable performance overhead, there are many possible collateral damages to this approach

(e.g., modifying the same data structure multiple times). The other solution would be to

compile the library using our mitigation techniques; however, library hardening falls out

of this work scope.

7.1.2.1 RAT Performance Overhead

To provide relevant overhead measures, the performance figures were obtained

from the gem5 full system simulator (BINKERT et al., 2011b). Results in Figure 7.4

show that the use of the TMR can lead to up to 38.5% and 50% of performance penalty

(benchmark C) when running on dual and quad-core ARM Cortex A72 processors. The

reason why there is an increase in the execution time in the quad-core when compared to

the dual-core is due to the increasing execution of OS thread synchronization routines that

is not linear with the number of cores. Note that the additional execution time of TMR is

small for a technique that triples instructions and inserts voters into the code. This is justi-

fied by the fact that only instructions inside the application’s scope are replicated, and the

majority of Rodinia applications rely on external library calls. One possible solution to

this problem implies replicating function calls; however, there are possible collateral dam-

ages inherent to this approach (e.g., modifying the same data structure multiple times).

7.1.2.2 RAT Soft Error Reliability Evaluation

Figures 7.5 and 7.6 show the reliability comparison between the three mitigation

techniques. In terms of MWTF on Figure 7.5, the TMR implementation provides higher

reliability in 5 out of 13 cases (C, D, F, I, K), while the RAT in 4 cases (A, E, J, L),

and the TMR+RAT in the other 4 cases (B, G, H, M). Results show that RAT can also

provide reliability improvements of up to 40% in some cases w.r.t. TMR. Results also

show that, depending on the application nature, TMR+RAT is an appropriated combination

to improve system reliability. For instance, taking the benchmarks B and K as examples,

it is possible to identify a considerable difference in the MWTF gain when comparing
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Figure 7.4: Performance overhead for dual (b) and quad-core (c) ARM Cortex-A72 pro-
cessor when comparing the impact of the mitigation techniques w.r.t. the original refer-
ence benchmark (–Ref).
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(b) Quad-core performance overhead
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the two TMR implementations. While benchmark B showed a reliability improvement of

40% for TMR+RAT, the use of TMR provides an improvement of 51% for K.

Figure 7.5: Normalized reliability comparison between each technique considering the
original benchmark code as reference (–Ref) for a dual-core ARM Cortex-A72.
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Figure 7.6 shows a significant increase in the FCI average compared to the results

in the dual-core processor, 5.47% versus 1.48%. Note that all reliability metrics have
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Figure 7.6: Normalized reliability comparison between each technique considering the
original benchmark code as reference (–Ref) for a quad-core ARM Cortex-A72.
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been reduced from dual-core to quad-core, the increase was only about the reference

benchmark. This behavior occurs precisely due to the rise in the execution of thread

management tasks, which have a higher susceptibility to soft errors, as mentioned earlier.

The TMR technique obtained better reliability results in 6 of the 13 benchmarks (C, E, F,

J, K, L), RAT was better in 2 cases (D, H), and TMR+RAT was better in 5 cases (A, B,

G, I, M). Note that the applications’ reliability varies from one mitigation technique to

another. For that reason, we claim that engineers can use our toolset to analyze the impact

of different mitigation techniques at the system-level, so they might be able to identify

the most suitable one considering their application/system’s constraints. Further, a more

in-depth analysis is carried out, verifying the results of the fault injections in each register

for a specific case study.

7.1.2.3 Register Criticality Analysis

Figure 7.7 shows how the 64-bit ARM (AArch64) calling convention works. The

X0-X7 registers are used for input parameters and return functions; the X8 is used to hold

an indirect return location address; the X9-X15 are used to hold local variables (caller

saved); the X16 and the X17 are the Intra-Procedure-call scratch registers; the X18 can
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be used for some OS-specific purpose; the X19-X28 are callee-saved registers; the X29 is

the frame pointer; while the X30 is the link register, used to return from subroutines. To

better explain the RAT benefits, we chose the particlefilter benchmark (J) as as case study.

Figure 7.7: Allocation of the general-purpose registers following the AArch64 calling
convention. (ARM, 2020)

Source: Authors

The results show that half of the registers (X0-X16) do not suffer significantly

from soft errors (Figure 7.8), when the particlefilter benchmark (J) is executed on a dual-

core ARM Cortex-A72 processor. In contrast, the rest of the registers strongly suffers

from the injected faults. Especially the callee-saved category that are used to hold long-

lived values that must be preserved across calls and are used by the Linux kernel. That

is, theoretically, they are registers that take a longer time to get written, but they are

continuously read. However, as shown in Figure 7.9, the fault masking increases when we

apply the RAT technique and limit the number of registers that will be used to execute the

most performed function. In general, this effect occurs because when entering the critical

function, the callee-saved registers are saved in memory and return to their original values

at the end of the execution. In practice, this behavior ends up reducing the lifetime of these

registers, making them more resilient to soft errors. The best examples are from the X17

and X19 registers. For the X17, we have a fault-masking rate of 70% in the reference

application, and 98% when using the RAT mitigation technique. For the X19 register, we

have a fault-masking rate of 36.67% in the reference application, and 58% when using the

RAT technique.

Results demonstrated that RAT reduces the code size and performance overheads

while providing reliability improvement when considering a state-of-the-art 64-bits pro-

cessor, which has a large register pool (i.e., 32 general-purpose registers). Researchers and

industrial leaders are also developing optimized machine-learning algorithms (ABICH et

al., 2020), aiming to enable their execution in resource-constrained devices. The resulting
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Figure 7.8: Registers criticality for the Reference particlefilter benchmark running on a
dual-core ARM Cortex-A72.
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Figure 7.9: Registers criticality for the RAT version of particlefilter benchmark running
on a dual-core ARM Cortex-A72.
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scenario calls for lightweight soft error mitigation techniques such as the one proposed

here. The next Section investigates the RAT efficiency when applied to a more resource-

constrained architecture.

7.2 Case Study II - Considering Distinct Processor Architectures

To assess the impact of the processor architecture on RAT efficiency, this Section

considers the ARMv7-A 32-bit and the ARMv8-A 64-bit instruction set architectures.

7.2.1 ARMv7-A General-purpose Registers

The ARMv7-A has 16 registers (R0-R15) with 32 data bits each. Removing the

special use registers (IP, SP, LR, PC), there are only 12 extra registers that RAT can use

to allocate the application critical function. As explained in the Section 7.1.2.3, there

is also a particular ARMv7-A calling convention. As shown in Figure 7.10, the initial

registers (R0-R3) are used to pass input and function return parameters, the R4-R11 are

used for local variables, and the R12-R15 are special registers responsible for managing

stack, function return address, and jumps during the application execution.

Figure 7.10: Register usage for ARMv7 architecture.

Source: Authors

For example, if a routine has more than four arguments, besides using R0-R3, the

stack will need to be used to store the extra parameters. Moreover, if R4-R11 are not

sufficient, R0-R3 and R12 can be used, and even LR when there are no other subroutine

calls.
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7.2.2 Soft Error Reliability Assessment for the ARMv7-A considering different Mit-

igation Techniques

In order to understand how limiting the number of available registers affects the

soft error reliability results, the experiments consider a subset of seven applications of

the Rodinia Benchmark Suite executing in dual-core and quad-core Arm Cortex-A9 pro-

cessors. For each scenario, 1600 SEU fault injections were performed targeting the 16

general-purpose registers. Based on the equation defined in (LEVEUGLE et al., 2009a),

our results have a margin of error of 2.45% with a 95% confidence level.

Figure 7.11 shows the MWTF results normalized by the reference application ver-

sion indicated on the left y-axis. Each bar in the graph indicates a mitigation technique,

and each group of three bars refers to a different application. The right y-axis shows

the increase/decrease in the fault coverage for each case, which are indicated by the red

dots. Following the same format adopted in the previous Section, results consider dual-

core and quad-core processor architectures and the three soft error mitigating techniques

(i.e., TMR, TMR-RAT and RAT). For the dual-core results (Figure 7.10a), it is possible

to observe a low soft error reliability improvement when applying the mitigation tech-

niques (see MWTF and FC values). While TMR presents the higher MWTF factor for the

kmeans application (19% ), RAT shows the best FCI factor for the same application (9%).

The application of RAT leads to a low reliability improvement (MWTF factor

equal to 7% - best case) at a low extra code overhead. The low reliability improvement

is expected; since the number of available registers is low, the registers’ allocation can be

precisely the same as the reference version if the function defined as critical already uses

all possible registers.

Quad-core soft error reliability results (Figure 7.10b) provide a lower MWTF and

FCI average w.r.t. the dual-core configuration. The more cores the higher is the proba-

bility of a fault happen during the operating system execution. In this case, the operating

system puts more pressure on the registers, leading to more spilling to store temporary

values in memory, thus requiring an increase in the proportional time slice of the applica-

tion’s total execution. This reduces the chance of a fault being masked within one of the

hardened functions. For instance, the best achieved FCI factor is only 4% when RAT is

applied to the backprop application. In turn, the higher MWTF factor of 13% is achieved

when TMR is applied for the same application.
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Figure 7.11: Reliability improvement for dual (a) and quad-core (b) Arm Cortex-A9 pro-
cessor when comparing the impact of the mitigation techniques w.r.t. the original refer-
ence benchmark (–Ref).
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(b) Quad-core reliability results
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7.2.3 RAT Efficiency Comparison: ARMv7-A vs ARMv8-A

The purpose of this section is to make a more detailed comparison of the reliability

results when applying TMR, TMR-RAT and RAT techniques to seven Rodinia applica-

tions running on different processor architectures.

The Figure 7.12 shows the normalized MWTF of each application (i.e., unpro-

tected and protected versions) obtained from the fault injection campaigns considering

the Arm Cortex-A72 and the Arm Cortex-A9. Each bar in the 4-bar structure of the graph

indicates a different version of each application.

Analyzing Figure 7.11a, we see that the ARM Cortex-A72 dual-core provides

a significant MWTF improvement in all applications. The minimum increase is 1.93×

(pathfinder - R), and the maximum 4.33× (backprop - TMR). Results show RAT can

benefit from processors with a larger number of registers. Results obtained from the

quad-core processor scenarios (Figure 7.11b), show a reasonable reduction in the MWTF

improvement. The minimum reliability improvement of 0.92× is achieved when applying

RAT to the hotspot application. In turn, the use of TMR+RAT incurs in an improvement of

3.11× for the kmeans application. Therefore, the increase of system resource utilization

leads to a decrease of more than 70% in the normalized MWTF in some cases (i.e., hotspot

and myocyte ).

7.3 Case Study III - Considering Machine Learning Applications

The number of products integrating Machine Learning (ML) algorithms is con-

tinuously increasing. With this in mind, researchers have started to investigate the im-

pact of radiation-induced soft errors on the reliability of ML algorithms. For example,

(LI; HARI et al., 2017) examined soft error effects on an accelerator for a CNN, while

(SANTOS; PIMENTA et al., 2018) assessed the reliability of a CNN on a Graphics Pro-

cessing Unit (GPU). (Da Rosa et al., 2019) investigated the impact of soft errors in an

automotive vehicle application based on a CNN. Results showed that the occurrence of

soft errors affects a vehicle’s travel and must be mitigated. In turn, (REAGEN et al.,

2018) proposed a framework used to demonstrate that the soft error reliability varies

across Deep Neural Networks (DNNs). The findings are built upon several fault injec-

tions performed at specific DNN design points, including weights, activation functions,

and hidden states. (TRINDADE; COELHO et al., 2019) assessed the soft error reliabil-
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Figure 7.12: Reliability mismatch for dual (a) and quad-core (b) Arm Cortex-A72 pro-
cessor when comparing with Arm Cortex-A9.

(a) Dual-core reliability mismatch results

ba
ck

pr
op

ho
ts

po
t

km
ea

ns

m
yo

cy
te

pa
th

fin
de

r
sr

ad
_V

1

sr
ad

_V
2

0

1

2

3

4

5

M
W

TF
 Im

pr
ov

em
en

t

3.
96

2.
93

4.
06

3.
16

1.
93

2.
78

3.
2

4.
33

2.
96 3.

25

3.
1

2.
54

3.
22

2.
93

3.
35 3.

48

4.
07

3.
02

2.
74

3.
18

2.
96

3.
45

3.
25

3.
78

3.
31

1.
97

3.
36

3.
3

R TMR RAT TMR+RAT
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ity of an FPGA-implemented Support Vector Machine (SVM) under neutron irradiation,

and (KHOSHAVI; BROYLES; BI, 2020) examined the effects of soft errors on the lay-

ers of a Binarized Neural Network (BNN) running on an FPGA. (Libano et al., 2018)
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investigated the reliability of Feed-forward Neural Networks (FNN) by performing fault

injection campaigns by simulation and heavy-ions irradiation. To the best of our knowl-

edge, the only work that explores the use of mitigation techniques is (Libano et al., 2019),

where selective hardening approaches are applied to improve the soft error reliability of

FNNs and CNNs.

7.3.1 Simple ML Algorithms

The literature on supervised ML classification algorithms is abundant and features

countless algorithm variations, making it challenging to define the most distinguished and

suitable ones to run on resource-constrained processors. To cover as many ML algorithms

as possible, we chose three families, i.e., algorithms with different behaviors, where each

representative of the family is based on its popularity and applicability. Aiming to cover

the three mains groups, we have implemented the following three ML algorithms: SVM

from the group based on statistical methods; Random Forest (RF) from the group based

on decision trees; and Artificial Neural Network (ANN) from the group based on neural

networks. Each algorithm is described as follows:

Support Vector Machines were first introduced as binary classifiers (CORTES;

VAPNIK, 1995), i.e., a classifier for problems that have two possible classes as output.

During the training phase, it generates an optimal linear classifier in the following format:

score(~x) = b+
N∑

n=1

[ynαn( ~xṅ~x)] (7.1)

where ~x is the unknown input sample. Parameters ~xn, yn, αn, N and b are found during

training time. To overcome the limitation of accepting only binary datasets, we have used

the One-vs-One technique (HSU; LIN, 2002), in which an SVM is trained for each pair

of classes. In the end, a majority voting algorithm decides the final class.

Artificial Neural Networks, unlike SVM, inherently support multiclass problems.

The Neural Network classifier is a layered structure, where each layer is composed of a set

of “neurons”. Each of these neurons comprises a set of weights and an activation function.

A neuron receives neurons’ results in the previous layer as input, weighs them, evaluates

the result in its activation function, and sends them to neurons in the next layer. Each

neuron in the final layer represents one class of the dataset. Therefore, the final class is

inferred from the class represented by the neurons in the last layer with the highest value.
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Random Forest was introduced as a technique to counter the tendency of Binary

Decision Trees (BDTs) to overfit (BREIMAN, 2001). It is composed of multiple BDT

nodes, where each one divides the dataset in two, based on a given logical condition. For

example, let us consider a Flower dataset where the class separation condition is the sepal

length < 1.5. The goal is to separate samples from different classes, using the training

dataset to validate the chosen conditions. In this process, the left child node continues

separating samples for those with sepal length < 1.5, while the right child node does for

those with sepal length >= 1.5. Eventually, if the tree grows deep enough, the leaves will

contain only the same class samples. To classify a new sample, the tree must be traversed,

evaluating the conditions in the incoming sample until a leaf is reached, which reveals

the final class of the sample. Depending on the parameters, a BDT can become very

deep, overfitting the data. To overcome this problem, the Random Forest algorithm trains

multiple BDTs, each with a subset of the training dataset. As each BDT within the forest

will produce a class, potentially different from each other, a majority voting algorithm is

used to infer the final class.

7.3.1.1 Experimental Setup

Table 7.5 shows our experimental setup. Fault analyses are obtained by inject-

ing random bit flips in the general-purpose and floating-point register files of an ARM

Cortex-M4F. Conducted experiments include more than 150K fault injections in a bare-

metal system, considering three ML algorithms running with and without protection (ref-

erence results). To ensure the results’ statistical significance, this work injects 17k faults

per campaign, which generates a margin of error of 1% with a 99% confidence level,

according to (LEVEUGLE et al., 2009b).

The cross-compiler chosen to generate the binaries was Clang/LLVM 6.0.1 using

the O2 optimization flag, which has already shown reliability results superior to GCC in

several applications (GAVA et al., 2019a).

7.3.1.2 Soft Error Analysis

Figure 7.13 shows the fault effects for three ML algorithms (Section 7.3.1) with

no protection (none), full protection (TMR), and partial protection (P-TMR). Concerning

the reliability improvements brought by the TMR technique, it is possible to see an in-

crease in Vanishes in all ML algorithms. In addition, the number of ONA results remain
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Table 7.5: Experimental Setup.

Processor Arm Cortex-M4F

Software Stack Bare metal

Compiler Clang 6.0.1

Optimization Flag O2

Number of ML algorithms 3

Mitigation Technique TMR, P-TMR

Fault Injections per Scenario 17000

Number of Scenarios 9

Total Fault Injections 153,000
Source: Authors

quite significant for Neural Net and Random Forest. In general, this effect occurs due

to faults that hit registers not used by the program. The Cortex-M4F has sixteen 32-bit

general-purpose registers and another thirty-two 32-bit floating point registers. The SVM

has more floating-point operations w.r.t. the other two algorithms, which leads to extra

utilization of registers resulting in less ONA occurrence.

Moreover, as ONA does not affect the memory, this work assumes that the correct

output is the sum of Vanishes + ONAs. In this sense, the TMR technique’s increase in

reliability regarding the correct outputs is 17.82%, 20.48%, and 47.33% for Neural Net,

Random Forest, and SVM, respectively. However, such reliability improvements can be

misleading when compared to other hardening techniques. Although Cho’s classification

Figure 7.13: Fault effects and normalized MWTF (red dots) for 3 ML algorithms with no
protection (none), TMR, and P-TMR.
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offers a useful metric for classifying soft error effects, it does not express the trade-off

correctly between reliability increase and performance degradation. In other words, when

hardening a program code by inserting additional instructions, it also increases its expo-

sure to faults, thus decreasing its reliability. Therefore, it must consider the decrease in

critical faults and the additional execution time inherent to the hardening technique’s extra

instructions. For this reason, this work uses the Mean Workload to Failure (MWTF) fac-

tor (REIS; CHANG et al., 2005) in conjunction with Cho’s classification. The MWTF is

defined in Eq. 2.1, as the workload that a system can complete before failing. To calculate

the MWTF, we measured the applications’ runtimes on an STM32F407VGT microcon-

troller, which uses an Arm Cortex-M4F processor running at 168Mhz. In addition, the

SOFIA framework uses the fault injection results to measure the Architectural Vulnera-

bility Factor (AVF). For ML algorithms, the most critical vulnerability is presented by

the occurrence of OMM. For example, in safety-critical applications, such as autonomous

cars, an OMM error can alter the detection of an obstacle in front of the vehicle, which can

lead to an accident. For this reason, this work used the OMM-based AVF (AV FOMM ).

The resulting MWTF is used to compare both hardening techniques when applied

to the three ML algorithms. For the Neural Net algorithm, the defined critical function

was exp, a kernel that calculates the exponential of a value used in the activation layer.

While the predict function was defined as critical for the Random Forest application,

and the classify function was set as critical for the SVM application.

Figure 7.13 shows that the correct output improvement for the P-TMR was 20.10%,

22.22%, and 38.58% for Neural Net, Random Forest, and SVM, respectively. Regarding

Cho’s classification, the aforementioned results represent a greater soft error susceptibil-

ity compared to the full TMR. However, when considering the normalized MWTF, the

P-TMR presents the best ratio between the increased reliability and performance degra-

dation. This behavior occurs due to the significant performance overhead resulting from

TMR’s redundant code execution (up to 4.5 times - Table 7.6). On average, it has an

increase of 2.60× in the number of executed instructions for P-TMR, which represents

35.78% less overhead than TMR.

It is essential to highlight that, in some cases (i.e., Neural Net and Random Forest),

the P-TMR presents better reliability, with significantly less overhead with respect to the

full TMR. This is because P-TMR is applied to a specific function/layer, thus reducing

the replication cost and the register pressure. As these ML algorithms already use a few

registers, the probability of a fault reaching an unused register increases when compared
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Table 7.6: Executed instructions and execution time (Cortex-M4F).

Application
Mitigation
technique

Executed instructions
(×103)

Execution
time (ms)

none 357 5.68
Neural Net TMR 1,619 (4.53×) 23.11 (4.06×)

P-TMR 1,260 (3.53×) 17.39 (3.06×)

Random
Forest

none 40 1.06
TMR 153 (3.83×) 2.41 (2.27×)

P-TMR 102 (2.55×) 1.68 (1.58×)

none 28 0.76
SVM TMR 106 (3.78×) 1.79 (2.75×)

P-TMR 48 (1.71×) 0.92 (1.21×)
Source: Authors

to TMR, which usually has more ONA occurrences. Results show a significant reduction

of OMM, which is a critical fault for most ML applications when either TMR technique

is applied. When applying the full TMR, it is possible to observe an OMM decrease of

73.74% for the Neural Net, 73.23% for the Random Forest, and 74.72% for the SVM. For

P-TMR, the OMM reduction achieves 86.21% for the Neural Net, 81.26% for the Random

Forest, and 64.22% for the SVM. Therefore, for critical systems where the performance

loss is not restrictive, TMR can still be an acceptable option. However, results indicate

that bespoke and partial protection obtained through the use of P-TMR is the best option

for resource-constrained systems.

7.3.2 CNN Application

An additional ML application is also used to validate the proposed mitigation flow.

This case study includes a CNN application (CMSIS-NN kernel (LAI; SUDA; CHAN-

DRA, 2018)) trained with the CIFAR-10 dataset (KRIZHEVSKY; HINTON et al., 2009),

which consists of 60k 32x32 color images divided into ten output classes. The adopted

CNN topology consists of convolution layers interspersed with non-linear activation lay-

ers, pooling layers, and a fully-connected layer. Unlike classic CNNs, the CMSIS-NN

kernel uses low-precision fixed-point representation, making it suitable for execution on

resource-constrained processors that support SIMD instructions, such as the adopted Arm

Cortex-M4 processor.
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7.3.2.1 Experimental Setup

Table 7.7 shows the adopted experimental setup. Each fault injection considers a

single input image for one CNN execution, thus not considering the fault propagation to

the subsequent executions. Also, this CNN implementation does not use floating-point;

that is, fault injections are only performed in general-purpose registers (i.e., R0-R15,

including SP, LR, PC). Lastly, we maintain the same number of fault injection campaigns

to ensure the results’ statistical significance.

Table 7.7: Experimental Setup.

Processor Arm Cortex-M4

Mitigation Technique
(executed instructions)

none (32 millions), TMR (118 millions), P-TMR (84
millions)

Software Stack CMSIS-NN Kernel

Dataset CIFAR-10

CNN Topology 3 Convolution, 3 ReLU Activations, 3 Max Pooling,
1 Fully-Connected, 1 Softmax

Injections per Scenario 17,000

Number of Scenarios 36

Total Fault Injections 612,000
Source: Authors

Complementary to Cho’s classification, this work adopts a second classification to

evaluate the impact of soft errors on the target CNN’s output probabilities. This classi-

fication identifies the output results as correct output, effective faults, critical faults, and

tolerable faults. Correct outputs are the scenarios where the output probabilities are the

same as faultless execution. Effective faults consider all non-masked faults (i.e., OMM,

UT, and Hang). The Critical faults consider only the OMM faults that affect the output

with incorrect probabilities and no predictions. The remaining OMMs are the tolerable

faults, which have the same top-ranked classification of the fault-free execution.

7.3.2.2 Reliability Analysis

Figure 7.14 shows the correct output classification and the normalized MWTF for

the customized fault injection campaigns applied to the CNN application. The x-axis has

three bars for each CNN layer, representing the application with no protection (λ), full

TMR (γ), and P-TMR (β), respectively. The y-axis shows the percentage of soft errors
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gathered from the fault injection campaigns. The results in the first three bars (All -

Figure 7.14) refer to campaigns that consider the injection of a single flipped bit in a

single register during the application execution time. Results show a greater amount of

critical errors in the activation layers (ReLu), reaching 5× more than the average for all

layers. This is due to the fact that the ReLu layers are implemented with a single loop

that iterates over all the elements, which access the memory all the time. This behavior

increases the possibility of fault to propagate to the memory and generate a critical error.

On the other hand, ReLu performs faster than the other layers. When combined, the three

ReLu layers correspond to ∼0.5% of the overall execution time, as shown in Figure 7.15.

Thus, the probability of a fault affecting these three layers is lower w.r.t. other layers.

Figure 7.14: Fault classification and normalized MWTF results comparing no protection
(λ), with TMR (γ), and P-TMR (β) mitigation techniques.
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Figure 7.15: CNN execution timeline for None, TMR, and P-TMR.
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Source: Authors

Figure 7.14 shows the reliability improvement of the CNN application when both

mitigation techniques are used. Both mitigation techniques show similar soft error re-
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liability improvement in terms of correct outputs (i.e., 17% - All) with respect to the

unprotected application. However, the full TMR presents an overhead of 3.7× in terms of

executed instructions, as shown in Table 7.7. This is due to the high pressure on the regis-

ter bank. The full TMR technique is applied at an intermediate code level, where we have

an unlimited number of registers. However, when the register assigner (which has only

13 available registers) is performed, the compiler is forced to spill the variables to mem-

ory, which incurs in extra execution time. In addition, the spilling creates new load/store

instructions that are unprotected, thus increasing the CNN application’s vulnerability. In

turn, the overhead presented by the P-TMR is 2.6×, which leads to an improvement in

the MWTF factor, as shown in Figure 7.14.

However, the achieved reliability improvement is at the cost of an excessive in-

crease in the execution time, thus leading to a worse MWTF with respect to the unhard-

ened version (i.e., 0.52 for TMR and 0.73 for P-TMR, as shown in Figure 7.14). The

reason for that is mainly due to the high pressure on the register bank, which increases

execution time and introduces points of failure due to memory spilling. One possible way

to solve the underlying problem is the use of an assembly-level selective mitigation tech-

nique, which can be applied after the register allocation, targeting the code with the lower

granularity.

7.3.2.3 Registers Criticality Analysis

To understand the register bank’s influence, we analyze the results of fault injec-

tion in each register. Figure 7.16 shows the percentage of correct outputs for each register

(i.e., R0-R12, SP, LR, PC). The x-axis presents three bars that inform the result for None

(gray), TMR (light blue), and P-TMR (dodger blue), respectively.

Figure 7.16 shows that the full TMR presents a higher number of correct outputs

in most cases (i.e., R0, R1, R3-R6, R8, R12, SP). On the other hand, the P-TMR wins in

three cases (i.e., R7, R10, PC), and the version without mitigation technique shows better

results in four cases (i.e., R2, R9, R11, LR).

Registers without protection and showing reliability improvements have a low uti-

lization and short exposure time. As the adopted mitigation techniques introduce overhead

in the application execution time, their reliability does not compensate for the exposure

time suffered by these less-used registers, which have little effect on application reliability

due to their low usage.

The R7 presents a very particular behavior when comparing the mitigation tech-
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Figure 7.16: Comparison of the correct output classifications considering the CNN execu-
tion with None, TMR, and P-TMR mitigation technique for each general-purpose register.
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niques. Such register is responsible for storing the base address that is used to access the

variables stored in memory due to the spilling. This register is written at the beginning

of each function call and only read at the end of the function’s execution. Therefore, the

interval at which this register is vulnerable is exceptionally high.

The code protected with P-TMR presents less spilling when compared to full

TMR. It also creates a time window in which R7 is not vulnerable to faults. This be-

havior shows that full code replication may not always give the best result in terms of

reliability. In this regard, software engineers must have a flexible flow to assess case by

case and decide the mitigation technique that would cover the majority of the reliability

requirements of each ML application.

7.4 Case Study IV - Considering RAT Custom Parameters

A series of tests was carried out to investigate these parameter customization’

impact. The functions list was defined in the same way as the previous experiments, just

selecting the application’s function that runs most of the time. This parameter has not
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been explored as much as it would increase the number of simulations exponentially, and

the main focus is, in fact, on register sets. As shown in Table 7.8, six sets of registers

have been defined. The first two (S1, S2) are limited to the registers in the lower and

upper half of the Arm Cortex-A72 processor’s general-purpose register bank. Next, the

registers were divided into four parts and defined for each of the other sets (S3-S6). The

reason for dividing the registers into these sets was to explore how applications behave

when the compiler forces a configuration other than the default calling convention. The

question is how do these parameters impact the application’s reliability?

Table 7.8: Defined register pools for RAT.
Name Register Pool
S1 X0-X14
S2 X15-X29
S3 X0-X6
S4 X7-X13
S5 X14-X20
S6 X21-X27

Source: Authors

Figure 7.17 shows the average normalized MWTF results for each mitigation tech-

nique grouped by CPU core configuration. Each bar is an average of the 13 applications

of the Rodinia benchmark. The RAT-s2 mitigation technique is the one that stands out

the most on the graph, showing results superior to all other techniques. This behavior

reinforces what was seen in Section 7.1.2.2, indicating that the top register (x15-x29) is

more susceptible to soft errors in general. It is also possible to notice that the RAT-s3

generates results significantly inferior to the other techniques, indicating that allocating

the X0-X6 registers to the most performed function is a bad idea in general. The overall

TMR reliability results were lower, but it was expected since all applications have many

unhardened external libraries. However, some particular cases differ widely.

Figure 7.18 show Kmeans and Pathfinder applications’ MWTF results in more

depth. For the first application, it is possible to observe that single-core and quad-core re-

sults are similar, while for dual-core, there are notable differences. This behavior comes

from the operating system managing the threads in the two processing cores differently

from the other configurations. Another point to be investigated is that the MWTF val-

ues for the TMR and TMR+RAT techniques differ significantly from the general average

of the applications. For single-core, an improvement can be observed in the normalized

MWTF of 1.87× and 1.44× for TMR+RAT and RAT-s2, respectively — and of 1.86×

and 1.79× for quad-core. However, the results are quite different from the previous one,
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Figure 7.17: Average normalized MWTF results per CPU core configuration for the Ro-
dinia benchmark.
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for the Pathfinder application. For this case, the configuration of CPU cores does not sig-

nificantly affect the system’s reliability. The partial mitigation (P-TMR) of the application

is more effective than the others techniques, showing an increase of 1.67×, 1.73×, 1.57×

in MWTF normalized to single-core, dual-core, and quad-core, respectively. Another cu-

riosity in this example is that it was not possible to compile the application limited to

the initial registers (RAT-s3). This problem may have occurred due to architectural re-

strictions, which specify that particular instructions can only use specific sets of registers.

Therefore, as in the previous analyses, each application needs to be evaluated individually

by testing different mitigation options to select the technique that best fits the project’s re-

quirements.
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Figure 7.18: Sub-figures a and b show the MWTF normalized with the unhardened ver-
sion for 11 mitigation techniques for two specific Rodinia applications (Kmeans and
Pathfinder) grouped by CPU core configuration.
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8 CONCLUSIONS

Soft error mitigation techniques implemented in software do not impact the man-

ufacturing cost. Nonetheless, there are impacts regarding the execution time, code size,

and development effort to port to new architectures and multiple programming languages.

This can be time-consuming and not provide a good trade-off on large projects. One solu-

tion is to apply selective hardening in the most critical routines of the program. This work

proposes a complete framework where software engineers can evaluate and improve the

soft error reliability of applications during the early design stages.

Experiments show that bare metal applications without external dependencies present

promising soft error reliability results, as we have access to most of the code executed.

On the other hand, for the majority of Rodinia’s applications, the code protection is not

as effective. These applications rely on the OpenMP library, thus increases the number of

OS function calls and reduces the scope that our techniques can be used. In other words,

the most effective way to protect this kind of application is to improve or use a more reli-

able library. This trend is reversed as we increase the number of cores, and the proportion

of time consumed by functions with redundant code is improved.

This work promotes an early and automated soft error mitigation flow to boost

the design space exploration and reduce the development effort, enabling susceptibility

reduction evaluation through the full or partial application of TMR. Some analyses are

made for a new mitigation technique called RAT throughout this work, considering the

Rodinia Suite and NAS Parallel benchmarks. This technique guides the registers allo-

cation based on static and dynamic profile data. The results showed that its use could

improve reliability with minimal code size and runtime overhead. Further, a more de-

tailed analysis is made showing the use of each ARMv8-A general-purpose register for

a specific application. A soft error evaluation was also conducted to show RAT custom

parameters efficiency. The results revealed that limiting the critical function register allo-

cation to X15-X29 registers generates, in general, a hardened application with higher soft

error resiliency.

For the three ML algorithms evaluated, experiments show that P-TMR protection’s

improvement is very similar to TMR and has up to 50% less performance penalty for all

scenarios. The CNN application results show that replication techniques might not be

suitable for resource-constraints platforms and that new and lightweight techniques must

be investigated. Conducted investigations and results also demonstrate the importance
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of providing engineers with appropriate means to identify not only the occurrence but

also the characteristics of ML-based applications that contribute more to the event of soft

errors. Authors also believe that the high statistical significance presented gives this work

the potential to be a reference for other studies with concerns about the soft error resilience

of ML-based application executing on resource-constraint Arm processors.

8.1 Future Works

Several ideas have emerged as possible future works, including some that are cur-

rently underway.

• Port the current LLVM mitigation tool from LLVM 6.0 to newer versions (9.0+),

including updates to newer processor architectures support (e.g., RISC-V).

• Introduce new well-known data-flow and control-flow mitigation techniques into

the application hardening module.

• Create a novel mitigation technique based on the Machine Learning module output

information to guide the mitigation techniques and improve the tradeoff between

reliability and performance.

• Assess the soft error reliability of other ML-based applications but considering ar-

chitectures with more resources available.

• Explore the soft error reliability of new architectures and more complex applica-

tions.

• Radiation experiments to validate the simulation results.

• Implement a novel software-based mitigation technique in a lower code-level to

surpass some limitations of LLVM IR.
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ANNEX A — WCET RESULTS TABLE

Table A.1: WCET benchmark results for runtime, code-size, MWTF, and EAFC nor-
malised with the Reference application.

# Runtime CodeSize MWTF EAFC
P-TMR TMR P-TMR TMR P-TMR TMR P-TMR TMR

1 2.33 2.93 1.02 1.21 5.08 3.63 0.69 0.94
2 2.67 2.78 1.10 1.12 4.66 6.90 1.02 0.89
3 2.28 2.33 1.12 1.21 0.56 0.74 1.90 1.78
4 2.02 2.70 1.03 1.16 1.47 1.95 1.25 1.26
5 2.31 2.31 1.09 1.12 12.97 14.43 0.43 0.43
6 2.50 2.88 1.03 1.30 0.33 0.33 2.86 2.92
7 1.83 2.50 1.08 1.13 5.04 1.97 0.60 1.02
8 3.00 3.85 1.09 1.24 0.60 1.02 1.88 1.87
9 1.67 2.67 1.02 1.40 2.50 2.36 0.92 1.15
10 3.41 3.41 1.29 1.32 7.15 8.55 0.68 0.69
11 2.55 2.65 1.03 1.09 0.18 0.18 4.67 3.42
12 2.75 2.75 1.45 1.46 0.60 0.67 2.13 2.00
13 3.69 3.69 1.08 1.08 5.82 5.82 0.76 0.76
14 1.62 1.62 1.01 1.07 0.31 0.21 2.61 3.12
15 2.22 2.28 1.03 1.10 2.38 1.78 0.92 0.98
16 2.64 2.64 1.09 1.09 5.29 5.12 0.76 0.82
17 3.00 3.00 1.43 1.47 0.57 0.66 2.30 2.13
18 2.24 2.35 1.06 1.11 2.76 3.10 0.90 0.90
19 2.00 2.20 1.03 1.12 3.26 2.64 0.83 1.06
20 4.00 4.00 1.19 1.19 1.95 2.11 1.39 1.30
21 3.42 3.42 1.99 1.99 26.66 29.13 0.63 0.58
22 2.28 2.94 1.09 1.17 19.26 33.71 0.35 0.30
23 1.08 1.13 1.27 1.46 1.33 0.89 0.90 1.13
24 2.16 2.68 1.28 1.37 2.48 2.00 1.08 1.08
25 3.15 3.31 1.09 1.13 5.79 16.43 0.73 0.46

Avg 2.51 2.76 1.16 1.24 4.76 5.97 1.33 1.32
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ANNEX B — LIST OF PUBLICATIONS

Appendix B shows the main works published during the journey taken in the sci-

entific environment until reaching this point. The first task involved studying the suscep-

tibility to soft errors of OpenMP applications compiled using different cross-compilers

and different code optimization levels. This work was named "Evaluation of Compilers

Effects on OpenMP Soft Error Resiliency" and generated a publication at the 2019 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI) (GAVA et al., 2019b). After

completing this project, I started to work with software-based fault mitigation techniques

(e.g., full and partial TMR) for multi-core and multi-processed systems. This second

project’s main focus was on developing and evaluating a new lightweight fault tolerance

technique called RAT comparing it to the well-known TMR technique. This work was

called "RAT: A Lightweight System-level Soft Error Mitigation Technique" and gener-

ated a publication in the 2020 IFIP/IEEE 28th International Conference on Very Large

Scale Integration (VLSI-SOC) (GAVA; REIS; OST, 2020). Meanwhile, other projects

were also carried out in partnership with colleagues. In "Soft Error Reliability Assess-

ment of Neural Networks on Resource-constrained IoT Devices", I assisted in analyzing

the results and writing the text. In "Evaluation of the soft error assessment consistency

of a JIT - based virtual platform simulator", I was responsible for part of the experiments

compiling applications using different compilers and optimization flags, as well as doing

most of the fault injection simulations.

Publications:

• J. Gava, R. Reis and L. Ost, "RAT: A Lightweight System-level Soft Error Miti-

gation Technique," 2020 IFIP/IEEE 28th International Conference on Very Large

Scale Integration (VLSI-SOC), Salt Lake City, UT, USA, 2020, pp. 165-170,

<https://doi.org/10.1109/VLSI-SOC46417.2020.9344080>

• G. Abich, J. Gava, R. Reis and L. Ost, "Soft Error Reliability Assessment of Neu-

ral Networks on Resource-constrained IoT Devices," 2020 27th IEEE International

Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 2020, pp.

1-4, <https://doi.org/10.1109/ICECS49266.2020.9294951>

• J. Gava, V. Bandeira, R. Reis and L. Ost, "Evaluation of Compilers Effects on

OpenMP Soft Error Resiliency," 2019 IEEE Computer Society Annual Symposium

https://doi.org/10.1109/VLSI-SOC46417.2020.9344080
https://doi.org/10.1109/ICECS49266.2020.9294951
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on VLSI (ISVLSI), Miami, FL, USA, 2019, pp. 259-264, <https://doi.org/10.1109/

ISVLSI.2019.00055>

• Abich, G., Garibotti, R., Bandeira, V., da Rosa, F., Gava, J., Bortolon, F., Medeiros,

G., Moraes, F.G., Reis, R. and Ost, L. (2021), Evaluation of the soft error assess-

ment consistency of a JIT-based virtual platform simulator. IET Comput. Digit.

Tech. <https://doi.org/10.1049/cdt2.12017>

• Gava, J., Reis, R., Ost, L. (2021) RAT: A Lightweight Architecture Independent

System-level Soft Error Mitigation Technique. In: AICT 621: VLSI-SoC. Springer

Nature [Prelo]
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