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ABSTRACT

Asymmetric multi-cores (AMC) are an alternative to provide performance and energy

ef�ciency in the same chip. AMC designs have at least two types of processors, a high-

performance but power-hungry core and an energy-ef�cient but low-performance core.

AMC supports the same Instruction Set Architecture (ISA) and thus, can execute the

same binaries. Besides asymmetry, modern processors present modular ISA extensions

to enhance the CPU capabilities for niche applications. For example, ARM's NEON

extension features �oating-point (FP) and single instruction, multiple data (SIMD) capa-

bilities for ARM processors. In ARM's AMC design big.LITTLE, the NEON extension

is implemented with different hardware costs for both core types, the high-performance

big and the energy-ef�cient little. The big core implements two high-performance NEON

functional units (FU), whereas the little core implements a simpler NEON FU. Previous

works estimate that the area cost to implement both NEON FUs in big is equivalent to four

full little cores. However, the NEON extension may be underused in many applications,

leading to wasted expensive resources. When considering low NEON usage applications,

there is no need to use the high-performance NEON units in big. Instead, a better solution

would be to allow the big core to use the energy-ef�cient NEON unit in little. A common

strategy to deal with expensive resources used infrequently is to share them between mul-

tiple processors. However, typical FU sharing schemes share the FU at the execute stage

of the pipeline. The drawback of this coupled approach is that a processor must send the

instruction to the shared FU and wait until the result is ready. In this work, we propose

the decoupled of�oaderto allow the big core to use the energy-ef�cient NEON FU in

little without waiting for the instruction to complete. We power gate both NEON units in

big and use the of�oader to save energy. We also propose an arbiter to detect the current

application phase and fall back to use big's NEON units when NEON is used intensively.

Moreover, we use the decoupled of�oader to proposepartial cores with full ISA. We cre-

ate partial cores from big cores by removing its NEON units. We maintain the full ISA

capability by using the decoupled of�oader to execute the NEON instructions in a little

core. The partial cores have the same performance as the big cores for integer instructions

requiring a smaller area at the cost of limited NEON performance. We discuss how both

ideas can be implemented and their advantages and drawbacks.

Keywords: Asymmetric multi-core. FU sharing. instruction of�oading. ISA.



Aplicando Despacho de Instruções Desacoplado para Melhorar Multi-cores

Assimétricos

RESUMO

Multi-cores assimétricos (AMC) são uma alternativa para prover desempenho e e�ciência

energética no mesmo chip. AMCs têm pelo menos dois tipos de processadores: um de

alto desempenho, mas baixa e�ciência energética, e outro e�ciente energeticamente, mas

com baixo desempenho. AMCs suportam o mesmo ISA e, portanto, podem executar os

mesmos binários. Além da assimetria, processadores modernos apresentam extensões

modulares de ISA que permitem melhorar as capacidades de uma CPU em certos nichos

de aplicações. A extensão NEON adiciona operações de FP e SIMD para processadores

ARM. No caso do AMC big.LITTLE, da ARM, a extensão NEON é implementada com

custos diferentes de hardware para ambos os tipos de núcleo, obig e olittle. O núcleo big

implementa duas FUs NEON de alto desempenho, enquanto o little implementa apenas

uma FU mais simples. Trabalhos anteriores estimam que o custo de área para implementar

ambas unidades NEON do big é equivalente a 4 núcleos little completos. Contudo, a

extensão NEON pode ser pouco utilizada em muitas aplicações, levando à subutilização

de recursos. Quando considerando aplicações que usam levemente o NEON, não há a

necessidade de usar as unidades NEON de alto desempenho presentes no big. Ao invés

disso, uma solução melhor seria possibilitar o núcleo big usar a unidade NEON do little,

que é mais e�ciente energeticamente. Uma estratégia comum para lidar com recursos

caros que tendem a ser pouco utilizados é compartilhá-los entre múltiplos processadores.

Contudo, abordagens tradicionais de compartilhamento de FUs tendem a ser feitas a partir

do estágio de execução de um pipeline. A desvantagem dessa abordagem acoplada é que

o processador deve enviar a instrução para FU compartilhada e esperar até que o resultado

esteja pronto. Este trabalho propõe odespacho desacoplado de instruçõespara permitir

que o núcleo big use a unidade NEON do little sem esperar que instrução complete. Dessa

forma, é possível aplicar power gate em ambas unidades NEON do big e usar o despacho

de instruções para economizar energia. Além disso, o trabalho também propõe um árbitro

para detectar a atual fase da aplicação e desligar o despacho quando o NEON precisa ser

usado intensamente.

O despacho desacoplado é usado para propornúcleos parciais com ISA completo. Os nú-

cleos parciais são formados a partir de núcleos big removendo suas unidades NEON. Por



meio do despacho desacoplado é possível manter o suporte completo ao ISA despachando

instruções NEON para um núcleo little. Os núcleos parciais têm o mesmo desempenho

dos núcleos big para aplicações de inteiro, mas necessitam de menos área e apresentam

desempenho limitado com a extensão NEON. Ambas as ideias são discutidas acerca de

sua implementação, vantagens e desvantagens.

Palavras-chave:multi-core assimétrico. compartilhamento de FU. despacho de instru-

ção. ISA.
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1 INTRODUCTION

The always present demand for performance has pushed computer systems evo-

lution. Initially, the main optimization target was to increase sequential program execu-

tion, which was achieved by increasing the clock and novel microarchitectural solutions

(PATTERSON, 2010). The simple in-order (InO) processors gave space to complex out-

of-order (OoO) datapaths to exploit instruction-level parallelism (ILP). However, such

complex designs combined with high clock rates lead to high power consumption. To

solve the problem, the industry shifted the General Purpose Processor (GPP) design from

single-core to multi-core (PARKHURST et al., 2006). This new paradigm improves per-

formance by allowing multiple applications to run simultaneously, thus increasing the

thread-level parallelism (TLP) of the system.

Multi-core systems can be divided into homogeneous and heterogeneous. Ho-

mogeneous multi-cores consist of the same core replicated multiple times, which leads to

simpler designs since all cores are identical. On the other hand, heterogeneous multi-cores

can be further classi�ed into two categories: Single ISA and multiple ISA (KUMAR et al.,

2003), as depicted in Figure 1.1. Single-ISA multi-cores are also known as asymmetric

multi-cores (AMC) since all cores support the same binaries but have different capabili-

ties. The key advantage of such designs is to allow more ef�cient application execution

according to its requirements. It is also possible to design heterogeneous multi-cores with

different ISA, further increasing the diversity in the chip.

Commercial designs implement asymmetric multi-cores using at least two differ-

ent cores: A high-performance big and an energy-ef�cient little core, as shown in Figure

1.2. When considering ARM big.LITTLE (bigLITTLE, 2011), the big core is an A15

OoO processor that targets performance. In contrast, the little core is an A7 processor

Figure 1.1: Multi-cores classi�cation.

Source: The author.
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Figure 1.2: Example of symmetric and asymmetric multi-cores.

Source: The author.

which has a simple InO datapath to provide energy-ef�cient application execution. The

combination of both cores on the same chip allows each application to run on the right

core according to the current purpose of the system, i.e., performance or energy. More

recent commercial designs that also follow this strategy are AppleM1 (Apple, 2020) and

Intel Alder Lake (ROTEM et al., 2021). In such designs, the asymmetry lies only in pro-

cessors microarchitecture. Thus, all cores can execute the same instructions since they

maintain the same Instruction Set Architecture (ISA) support, allowing any application

to run on any type of core without restrictions. This key insight, combined with the ISA

compatibility to execute already existent binaries, permits the rapid adoption of asymmet-

ric systems.

Besides multi-core asymmetry, which lies only at the microarchitectural level,

many ISAs dispose of extensions targeting niche applications to improve performance.

Common examples are the Floating Point (FP) and the Single Instruction, Multiple Data

(SIMD) extensions. Unlike Single Instruction, Single Data (SISD), SIMD allows per-

forming computation on multiple pieces of data using a single instruction. The main

advantage of this approach over SISD is that it exposes the data-level parallelism (DLP)

to the programmer, as depicted in Figure 1.3. Moreover, it provides reduced instruction

and memory bandwidth. FP and SIMD instructions are frequently used in math-intensive

applications, e.g., scienti�c and multimedia, and can greatly enhance application execu-

tion time. However, supporting such ISA extensions comes with hardware costs. When

considering AMCs, the big and little cores usually implement ISA extensions differently.

That is the case for the ARM big.LITTLE with its A7 (little) and A15 (big) processors.

According to (SOUZA et al., 2020), both NEON units in the big core occupy more area

than 4 little cores. This area difference comes not only from the OoO engine present in

big, but also from the different Functional Units (FU) implemented. For example, the

big core provides two FUs to support the NEON extension, which features FP and SIMD

capabilities to the ARM ISA. Each big's NEON FU occupies the area of a fully capable

little.
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Figure 1.3: Example of SISD and SIMD instructions.

(a) Single Instruction, Single Data (SISD) (b) Single Instruction, Multiple Data (SIMD)

Source: The author.

Figure 1.4: Percentage of NEON instructions in different classes of applications.

Source: The author.

However, such expensive hardware resources may not be used in all applications.

We evaluate the percentage of NEON instructions in different application classes, as

shown in Figure 1.4. Although some applications use NEON intensively, as in the linear

algebra programlu (lower-upper decomposition), the majority of the evaluated programs

have less than 10% of NEON instructions. Thus, this observation opens room for im-

provements considering the low NEON utilization. In the next sections, we present our

ideas explored in this work to optimize the NEON usage in asymmetric systems with a

single ISA considering an ARM big.LITTLE inspired system.

1.1 Decoupled Of�oader

Since NEON instructions are expensive and not used in all applications, their ex-

ecution units may be underutilized for a long time, wasting power and increasing energy

consumption. In symmetric designs, a common solution to deal with such units is to

share them between multiple processors. In the conventional approach, two processors
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Figure 1.5: Example of FU utilization in big and little cores.

Source: The author.

share a FU at the execution stage of the pipeline. Each core issues its instruction into the

shared FU, and the result is returned to resume its passage through the following stages.

The main problem arises when the shared execution unit takes too long to �nish since it

may hinder the processor's performance. Thiscoupledstrategy is used in designs as the

Bulldozer (BUTLER et al., 2011) and the UltraSPARC T1 (Sun Microsystems, 2008).

In asymmetric multi-cores with the same ISA, all cores support the same instruc-

tions but with different microarchitectural costs. Since NEON tends to be underutilized

in some applications (Figure 1.4), the best sharing strategy is to let the big core use the

energy-ef�cient but slow unit present in the little core when the current application does

not use NEON intensively. However, a coupled sharing may hinder big's performance

since it has to wait for the instruction completion. In the ideal scenario, the big core

would only schedule its instructions to execute in the shared FU and resume its compu-

tation without waiting for the instruction to complete. As an example, let us suppose a

simple array addition program that uses the NEON extension to sum two arrays, A and B,

to form a new array C. As shown in Figure 1.5, executing this sum on the big core results

in low execution time since big dispose of two fast NEON FUs, whereas little has just

a single and slow unit. In either case, both computations �nish before the deadline, i.e.,

before the results are actually needed by the program. Thus, this case allows the big core

to use the energy-ef�cient FU in little without waiting for the instruction to complete.

Therefore, in this work, we introduce thedecoupled of�oader, a solution to allow

the big core only to schedule its NEON instructions to be executed in the energy-ef�cient

little's FU and resume its computation without waiting for the of�oaded instruction to

complete. This strategy can be implemented with ISA extensions that behave as copro-

cessors, which is the case of NEON. In such extensions, the architectural state of the base

ISA is extended with new registers that are used by the extension instructions.

The main state, de�ned by the base ISA, comprises the General Purpose Registers

(GPR) and the control registers, e.g., the Program Counter (PC) and �ags, and dictates the

control �ow. The coprocessor state adds new registers and instructions to access them.

The communication between both states is done by speci�c move instructions or through
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Figure 1.6: We form partial cores from big cores by removing their NEON units. The
full-ISA support is maintained by of�oading NEON instructions to little cores.

Source: The author.

memory. Therefore, the main state can dictate instructions to its coprocessor state as long

as the data movements between both states are kept. We use this observation to enable

the decoupled of�oader, as further discussed in Section 3.1.

1.2 Partial Cores with Full ISA

Since NEON instructions may be underused or not even used in many applications

(as discussed in Section 1), we propose creating Partial Cores with Full ISA by completely

removing the NEON units of big cores and equipping them with the decoupled of�oader,

as depicted in Figure 1.6. The namepartial corestems from the fact that now the cores

do not implement the necessary hardware structures to support the entire ISA and thus,

should overcome this problem with the decoupled of�oader. This idea adds a new level

of heterogeneity to the system in a multi-core scenario: the big, the partial, and the little.

The partial core provides the same performance as the big core for integer applications

since both have an OoO engine at the cost of slower support for NEON instructions.

Since the NEON units in the big core are equivalent to 4 little cores, the freed space

provided by partial cores can be used to improve the overall system's TLP by adding

new little cores. Another option is to improve the system's performance by including

accelerators. This idea is summarized in Figure 1.7. We discuss the trade-offs of partial

cores with full-ISA in Section 3.3.

1.3 Structure of this Thesis

The structure of this work is organized as follows. Chapter 2 explains the nec-

essary background and presents the related work. We discuss studies and commercial
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Figure 1.7: The freed area due to partial cores can be used to incorporate accelerators or
little cores into the system.

Source: The author.

designs in different areas: AMC, ISA extensions, resource sharing in multi-cores, and

power gating. Chapter 3 introduces the proposed work. First, we explain the decoupled

of�oader and how it can be implemented considering coprocessors like ISAs such as the

NEON extension. Subsequently, we explain how it can be used to enable partial cores

with full ISA. Chapter 4 presents the simulation tools used to evaluate this work and the

methodology. Chapter 5 presents simulated results of the decoupled of�oader and partial

cores with full ISA. Finally, chapter 6 compiles the conclusions of this work.
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2 BACKGROUND AND RELATED WORK

In this chapter, we present the necessary background and discuss the related work.

In Section 2.1 we discuss asymmetric multi-cores and their importance in providing per-

formance and energy ef�ciency on the same chip. Section 2.2 brings a discussion on ISA

extensions and their advantages and disadvantages on moderns processors. Section 2.3

presents works related to power-gating and its capabilities to provide power and energy

ef�ciency.

2.1 Heterogeneous Multi-core

In (KUMAR et al., 2003), the authors introduce heterogeneous multi-core with

a single ISA as an alternative to reduce power consumption in processor designs. The

paper presents a multi-core architecture with the same ISA across all processors but with

different microarchitectures. The authors evaluate 4 different types of Alpha cores: EV4

(Alpha 21064), EV5 (Alpha 21164), EV6 (Alpha 21264), and a single-threaded version of

the EV8 (Alpha 21464). Figure 2.1a. shows the relative size of each core. The motivation

behind this idea is that applications may have different amount of instruction-level paral-

lelism (ILP), which should be exploited by the right core. When this is not the case, a low

ILP application on a high ILP core leads to wasted power and minimal performance gains,

whereas a high ILP app on low ILP core results in low performance. Figure 2.1b shows

the instructions committed per second (IPS) of an application evaluated in the work. The

EV8 core can execute much more instructions than EV4 in some applications phases, but

in others, the difference between both cores is low. The work concludes that having at

least two distinct cores in the system is enough to achieve most of the possible energy

gains without dramatic performance losses.

Therefore, AMC systems depend on a clever utilization of each core to obtain

gains. This can be achieved by using thread migration at the hardware or operating system

(OS) scheduler levels. The latter approach may take a long time to happen due to the

OS intervention granularity. Thus, leading to migrations at coarse-grained intervals. In

(LUKEFAHR et al., 2012), the authors tackle this problem by proposing Composite Cores

(Figure 2.2). The idea is to integrate OoO and InO pipelines into the same processor

to share common structures such as L1 caches and translation lookaside buffers (TLB).

This sharing amortizes the migration overhead because only the register state needs to be
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Figure 2.1: Relative core size (a) and performance (b).

(a) (b)

Source: (KUMAR et al., 2003)

Figure 2.2: Composite cores microarchitecture.

Source: (LUKEFAHR et al., 2012).

moved between the execution units. Furthermore, the process can be handled entirely at

the microarchitectural level without the costly OS migrations. This way, it is possible to

perform the core switching at �ne granularity, enabling better utilization of the energy-

ef�cient core whenever possible.

In (PADMANABHA et al., 2015), the authors use the observation that an InO

core can achieve similar OoO performance using less energy if provided with an OoO

instruction schedule. To leverage this, the authors propose the DynaMOS architecture.

The idea is to integrate a big (OoO) core tightly with an equally provisioned little (InO)

core. The OoO engine produces instructions schedules that are saved in a schedule-trace

cache so that the InO engine can use it. (PADMANABHA et al., 2017) present Mirage

Cores, which extends that concept to a multicore scenario with multiple InO cores and

one OoO core. The goal is to use the OoO engine as a shared resource to produce traces

to the multiple InO cores. Therefore, the InO cores have performance similar to the OoO.

AMC systems can provide great improvements in parallel applications, which
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Figure 2.3: TUNE of�oader. The NEON units of the A7 cores are shared with the A15
core.

Source: (SOUZA et al., 2020).

have serial and parallel regions. The big cores are well suited for serial regions since

they can execute them in a burst. In contrast, the little cores can execute the parallel re-

gions, which bene�t from high TLP, more energy ef�cient. In (SOUZA et al., 2020), the

authors observe that serial regions contain few NEON instructions, whereas parallel re-

gions tend to use NEON frequently. Therefore, the authors propose to remove the NEON

units from the big A15 core to open space for little cores. This approach uses the big

core in the serial regions and the little cores in the parallel regions. With the same area

budget, the authors can signi�cantly improve the performance and energy ef�ciency of

parallel applications. To cope with the absence of NEON units in the big core, the authors

propose thetightly coupled instruction of�oader (TUNE), depicted in Figure 2.3. This

mechanism allows the big core to of�oad any NEON instruction found when executing

the serial region to a little core. The instruction is of�oaded at the execute stage of the big

core, which must wait until the result is ready before moving on. Thus, the big core still

maintains its full-ISA compatibility.

When considering heterogeneous multi-cores withheterogeneous ISAs, Venkat

and Tullsen (VENKAT; TULLSEN, 2014) investigate how different instruction sets can

improve application execution. The work evaluates three ISAs: ARM's Thumb, x86, and

Alpha. Each ISA is better appropriated to a speci�c task. For example, Thumb provides

high code density since its instructions are 16-bit, but it does not feature FP/SIMD instruc-

tions. On the other hand, x86 provides FP/SIMD instructions with a good code density.

Alpha de�nes a large architectural state, Thus, having a high number of registers available

to the programmer. The authors conclude that having multiple ISAs in a multi-core design

can signi�cantly increase the performance and energy ef�ciency since applications tend

to have multiple phases, and each one can be better suited to a given ISA.

The previous work is extended in Composite-ISA cores (VENKAT; BASAVARAJ;
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Figure 2.4: ARM big.LITTLE organization.

Source: The author.

TULLSEN, 2019). As in the previous work, the goal is to enable multi-ISA heterogene-

ity. However, this work considers a single ISA instead of the previous approach, which

considers three commercial ISAs. The authors propose an ISA based on the x86 that also

has features present in Thumb and Alpha. The proposed ISA can be derived in multiple

cores, each implementing an instruction set feature. Thus, it is possible to isolate the spe-

ci�c ISA features that improve the single thread performance. Another advantage over

the previous work is that different proprietary ISAs are no longer necessary, reducing li-

censing, legal, and veri�cation costs. Moreover, the process migration between cores is

simpli�ed since they share the same application-binary interface (ABI).

Commercial designs

ARM big.LITTLE (bigLITTLE, 2011) is an industry implementation of the single-

ISA heterogeneous multi-core. The system is composed ofbig (OoO, larger, high perfor-

mance) andLITTLE (InO, smaller, energy-ef�cient) cores. Figure 2.4 shows an example

of a big.LITTLE system with two clusters. Each cluster contains two cores of each type,

big and little, and an L2 cache. Both clusters are connected by a Cache Coherent Inter-

connect (CCI). This interconnection allows cache coherence between both clusters' L2

caches and reduces the thread migration impact since the data does not need to be moved

through memory.

The big.LITTLE allows three working modes divided into two execution models:

Migration and Global Task Scheduler (GTS). Figure 2.5 shows all modes available.

� Migration: The migration model comprises two types,cluster migrationandCPU

migration, and is a natural extension of power-performance management techniques

such as Dynamic Voltage Frequency Scaling (DVFS).

� Cluster Migration: Only one cluster must be active at a time. If high per-
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Figure 2.5: big.LITTLE working modes.

(a) Cluster Migration (b) CPU Migration (c) Global Task Scheduling

Source: The author.

formance is required, then the big cluster is used. When this is not the case,

the big cluster is turned off, and the little cluster is used. This model does not

cope well with unbalanced software workloads since a heavily loaded core

will require a cluster migration to the big cluster even if the other cores are

lightly loaded, resulting in big cluster underutilization.

� CPU Migration: In this model, each big core is paired with a little core,

but only one type of processor can be active at a time. The working core is

chosen according to the DVFS. Thus, the little core is used if a lightly loaded

application is being executed. If the application load increases, the system

switches the application to the big core and turns off the little core. This

model requires the same number of cores on each cluster.

� Global Task Scheduler:The main difference of this mode is that the OS is aware

of the microarchitectural difference between the cores, and it is responsible for the

job assignment. Moreover, all cores can be active simultaneously, and the system

can have a different number of big and little cores.

ARM's DynamIQ (DynamIQ, 2017) extends the big.LITTLE features by joining

different cores into the same cluster, as depicted in Figure 2.6. In DynamIQ, big and little

cores share a Last-Level Cache (LLC). This allows for faster thread migrations between

the cores. Thus, improving the support for GTS from the previous big.LITTLE. The

system also features a CCI to keep data coherency between the cluster and other SoC

components such as the GPU and accelerators.

NVidia's project Kal-El (NVIDIA, 2011) is an asymmetric design that implements

a Variable Symmetric Multiprocessing (vSMP) technology. The chip contains 5 ARM's

A9 CPUs in a 4+1 con�guration, i.e., 4 cores for high performance and 1 core for energy

ef�ciency. The energy-ef�cient core is namedcompanion coreand is built using a low-

power silicon process to reduce leakage consumption. Moreover, it runs on a limited
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Figure 2.6: ARM DynamIQ organization.

Source: The author.

Figure 2.7: The CPU management is based on the workload. Either the companion core
or the high-performance core can be active at a time.

Source: (NVIDIA, 2011).

frequency of 500 MHz. The companion core is OS transparent, and its management is

performed by a hardware/software NVidia's technology. The management is based on

the current workload, as shown in Figure 2.7. If lightly loaded, the companion core is

used. Kal-El turns off the companion core at a suf�cient workload level and switches

the application to a fast core. The other cores are awakened proportionally to the current

workload. Thus, either the companion core or the fast cores are active at a time. All

cores share a common LLC that provides the same access time to all cores to enable fast

application migration. However, the companion core accesses it in fewer cycles since it

operates at lower frequencies.

Alder Lake (ROTEM et al., 2021) is the �rst Intel AMC design. The high-

performance and the energy-ef�cient cores are namedP-CoresandE-Cores, respectively.

The microarchitecture allows different processor con�gurations, ranging from mobile to

desktops. Thus, mobile con�gurations can have more E-cores, whereas desktop chips can
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Figure 2.8: The hardware maintains a table in memory with hints to the OS scheduler for
different classes of applications.

Source: (RUKMABHATLA et al., 2021).

feature a high number of P-cores. The thread migration model is managed by the OS

scheduler, similar to the GTS execution model in big.LITTLE. Since scheduling applica-

tions is dif�cult, Intel provides the Intel Thread Director technology. This technology is

a hardware solution that monitors the instructions in applications running in all cores and

provides hints to the OS scheduler, helping it make the best decision in thread allocation.

Intel's Hardware Feedback Interface (HFI) (INTEL, 2021b) enables the hints be-

hind Thread Director. The interface exposes a table (Figure 2.8) in memory, which is

continuously updated by the processor. Each table entry represents a Logical Processor

(LP) due to Simultaneous Multithreading (SMT). Each entry is divided into four appli-

cation class �elds, numbered from 0 to 3, and each class exposes the Energy Ef�ciency

(EE), and the Performance (Perf) capabilities of the LP, i.e., how capable is the LP of

providing performance or energy ef�ciency the application class. The application classes

are divided into four groups:

� Class 0:Applications that perform similarly on P- and E- cores.

� Class 1: Applications that use ISA extensions such as AVX2 or FP32, which are

more performant on P-cores than on E-cores.

� Class 2: Indicates emerging applications (e.g., AI), which are better suited on P-

cores.

� Class 3:Represent applications that does not scale on high performance cores, e.g.,

applications that depend heavily on busy loops or I/O operations.

Figure 2.9 shows the P- to E- core IPC ratio, i.e., the IPC increment of the P-core
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