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RESUMO  
 

A flexibilidade da manufatura é reconhecida como um fator competitivo essencial na 

estratégia operacional das empresas, como resposta a necessidades do mercado, 

especialmente diante de incertezas e turbulências. A Industria 4.0 surge como um novo 

paradigma industrial que permite atender esse tipo de necessidades das empresas 

manufatureiras, sendo seu foco a criação de um sistema inteligente ao longo de toda a 

cadeia de valor que possibilita a obtenção de processos flexíveis e adaptativos. Contudo, 

a literatura acadêmica ainda não tem apresentado evidências empíricas sobre a forma 

como cada tecnologia específica da Indústria 4.0 pode contribuir para os requisitos de 

flexibilidade operacional. Embora Industria 4.0 seja apresentada como uma solução para 

essa necessidade, é sabido que existem diferentes tipos de implementação da Indústria 

4.0 que dependem dos objetivos operacionais almejados e das características das 

empresas. Portanto, os conjuntos tecnológicos da Indústria 4.0 podem ter diferentes 

formas de contribuição para alcançar uma maior flexibilidade dos processos de produção. 

O objetivo desta tese é criar um framework para auxiliar as empresas na implementação 

de operações flexíveis no contexto da Indústria 4.0. O estudo seguiu uma abordagem 

mista, combinando métodos qualitativos e quantitativo. Em termos quantitativos, a tese 

apresenta duas pesquisas survey. A primeira foi conduzida com 94 empresas do setor de 

máquinas e equipamentos, através da qual se analisa o efeito que diferentes objetivos 

operacionais – dentre eles a flexibilidade – possuem sobre a definição de arranjos 

tecnológicos da Indústria 4.0. A segunda foi conduzida com 379 empresas, com objetivo 

de analisar como o conceito de smart supply chain contribui para a flexibilidade da cadeia 

de suprimento, principalmente no contexto de incertezas. Por outro lado, em termos 

qualitativos, a tese apresenta um estudo multicasos em 11 empresas de manufatura líderes 

na implantação de tecnologias 4.0, visando entender a forma como essas tecnologias são 

implementadas para alcançar diferentes requisitos de flexibilidade operacional. A 

presente tese demonstra que, de fato, as tecnologias 4.0 contribuem para a flexibilidade 

operacional, mas também explora as limitações e nuances dessas contribuições em 

diferentes situações. A principal contribuição deste estudo é fornecer evidências 

empíricas da efetividade de diferentes tecnologias utilizadas de forma combinada para 

incrementar a flexibilidade operacional nos seus diferentes níveis. 

Palavras Chaves: Flexibilidade da Manufatura, Flexibilidade da Cadeia de Suprimento, 

Industria 4.0, Tecnologias digitais  



ABSTRACT 
  

Manufacturing flexibility is recognized as an essential competitive factor in the 

company's operational strategy as a response to market uncertainties and turbulence. 

Industry 4.0 emerges as a new industrial paradigm that allows meeting these types of 

needs of manufacturing companies, focusing on the creation of an intelligent system along 

the entire value chain that allows the achievement of flexible and adaptive processes. 

However, the academic literature has not yet presented empirical evidence on how each 

specific Industry 4.0 technology can contribute to operational flexibility requirements. 

Although Industry 4.0 is treated as a solution to this need, it is known that there are 

different types of implementations of Industry 4.0 depending on the operational 

objectives pursued and the characteristics of the companies. Therefore, the technological 

sets of Industry 4.0 can have different forms of contribution to achieve greater flexibility 

in production processes. The aim of this thesis is to create a framework to help companies 

implement flexible operations in the context of Industry 4.0. The study followed a mixed 

approach, combining qualitative and quantitative methods. In quantitative terms, the 

thesis presents two survey research. The first was conducted with 94 companies in the 

machinery and equipment sector, through which the effect that different operational 

objectives – including flexibility – have on the definition of technological arrangements 

in Industry 4.0, is analyzed. The second was conducted with 379 companies, with the 

objective of analyzing how the smart supply chain concept contributes to the flexibility 

of the supply chain, especially in the context of uncertainties.. On the other hand, in 

qualitative terms, the thesis presents a multi-case study in 11 leading manufacturing 

companies in the implementation of 4.0 technologies, aiming to understand how these 

technologies are implemented to achieve different operational flexibility requirements. 

The present thesis demonstrates that, in fact, 4.0 technologies contribute to operational 

flexibility, but also explores the limitations and nuances of these contributions in different 

situations. The main contribution of this study is to provide empirical evidence of the 

effectiveness of different technologies used in a combined way to increase operational 

flexibility at its different levels. 

Keywords: Flexible Manufacturing, Supply Chain Flexibility Industry 4.0, Digital 

technologies 
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1. INTRODUCTION 

The proliferation of digital technologies and cyber-physical systems has brought a new 

revolution to manufacturing, commonly known as Industry 4.0 (KAGERMANN et al., 2016; 

WANG et al., 2016). Arising as an initiative of the German government to increase the 

competitiveness of organizations, Industry 4.0 (I4.0) has attracted the attention of the most 

recent academic studies (LU, 2017; PEREIRA; ROMERO, 2017) and is considered by many 

authors the fourth industrial revolution (LU, 2017; WANG et al., 2016; DALENOGARE et 

al., 2018). 

Industry 4.0 may be understood as the result of the increasing digitization of companies, 

especially regarding manufacturing processes (SANTOS et al., 2018; ISSA et al., 2018; LI et 

al., 2018). Several authors have related I4.0 with advanced digital technologies such as Internet 

of Things (IoT), cyber-physical system (CPS), information and communication technology 

(ICT), Enterprise Architecture (EA), Enterprise Integration (EI), Cloud Computing, and Big 

Data (WANG et al., 2015; LU, 2017; JESCHKE et al., 2017; GIUSTOZZIA et al., 2018). 

Nevertheless, the concept is much broader than the simple use of digital technologies 

(DALENOGARE et al., 2018). Frank et al. (2019) state that Industry 4.0 considers the 

integration of different dimensions of the business, such as smart products/services, smart 

supply chain, smart energy, and smart working, focusing mainly on smart manufacturing 

(LIAO et al., 2017; LU, 2017; DALENOGARE et al., 2018).  

Companies can take different paths to employing I4.0 technologies (AHMAD et al., 2018). In 

order to guide them through the implementation of digital technologies, studies have aimed to 

create models to measure the maturity level of Industry 4.0 (for example, SCHUMACHER et 

al., 2016; MITTAL et al., 2018) and to supply roadmaps for the implementation (for instance, 

GHOBAKHLO, 2018; LU; WENG, 2018). However, these studies do not consider operational 

performance objectives that companies seek to achieve, which are seen as one of the main 

factors that influence the adoption of technologies (WANG et al., 2010; ABOELMAGED, 

2014).  

In this sense, studies have associated the implementation of Industry 4.0 mainly with benefits 

related to increased productivity and quality (LEE; BAGHERI, 2015; ZHONG et al., 2017; 

DALENOGARE et al., 2018). Nonetheless, it is noteworthy that one of the main objectives of 

implementing these technologies is to achieve a highly customized supply, which reflects the 



15 

 

 

need for greater production flexibility (WANG et al., 2016; LONG et al., 2017; ZHONG et al., 

2017; ZHONG et al., 2017). 

Manufacturing flexibility is defined as the organization's ability to precipitate intentional 

changes and continually respond to unforeseen changes based on the reconfiguration of 

resources (PEREZ et al., 2016; EYERS et al., 2018). The literature has focused on various 

aspects of the topic such as the definitions of manufacturing flexibility, dimensions, 

classifications and taxonomies, the measurement of flexibility, the relationship between 

uncertainty, flexibility and performance, as well as the dimension of supply chain flexibility 

(BRETTEL et al., 2016). However, it is still a great challenge to design and optimize 

production systems to obtain a highly flexible and efficient production system (SREEDEVI; 

SARANGA, 2017; LONG et al., 2017).  

Sethi and Sethi (1990) described manufacturing flexibility as a complex and multidimensional 

concept that is difficult to synthesize, which makes its implementation difficult. Moreover, the 

study by Frank et al. (2019) on the adoption of Industry 4.0 technologies demonstrated that 

operational flexibility is one of the most difficult and lacking aspects in companies that 

implement concepts of Industry 4.0. Furthermore, at the industrial level, Dalenogare et al. 

(2018) point out that industries still have difficulty associating technologies that enable 

operational flexibility with benefits for the development of new products and for the 

operational performance. These studies show that in practice, although plant flexibility is 

preached in the context of I4.0 as one of the main objectives, managerial and strategic 

implications and their results are still challenging for many companies. Consequently, there is 

a need to understand flexibility in the context of Industry 4.0 in order to reduce the risk of 

failure and optimize the production system (BRETTEL et al., 2016; LONG et al., 2017). 

Traditionally, two types of manufacturing systems to ensure levels of flexibility are seen in the 

literature: Flexible manufacturing system (FMS) and reconfigurable manufacturing system 

(RMS) (BROWNE et al., 1984; GUPTA; SOMERS, 1992; JIMENEZ et al., 2015; GUPTA; 

SOMERS, 1992; JIMENEZ et al., 2015; HUETTEMANN et al., 2016). According to several 

authors, intelligent systems are necessary to effectively implement flexible production systems 

(ELMARAGHY, 2006; BALOGUN; POPPLEWELL, 2010; WANG et al., 2016; BRETTEL 

et al., 2016). Regarding the implementation of Industry 4.0, Qin et al. (2017) analyzed the stage 

of these manufacturing systems and others that already existed. The authors concluded that 

companies with flexible or reconfigurable manufacturing systems are a step closer to 

implementing Industry 4.0 technologies. Nevertheless, there is still much to be explored 
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regarding the real-time responsiveness, self-organization, and self-reconfiguration of these 

systems that could only be achieved with the implementation of I4.0 technologies (QIN et al., 

2017).  

Furthermore, flexibility has been studied mainly from the point of view of the internal 

manufacturing system (ZHANG et al., 2002; LIAO, 2020). Nowadays, however, it is not 

enough to be competitive as an individual company. Instead, competitiveness involves all 

channels in the supply chain (KUMAR et al., 2006). Consequently, the operational challenges 

associated with flexibility objectives depend heavily on the internal changes in the company, 

the mix and flexibility of new products, as well as on the flexibility of the supply chain 

(MALHOTRA; MACKELPRANG, 2012). All participants and functional areas of the chain 

must participate and share responsibility for achieving supply chain flexibility. In other words, 

the analysis of flexibility must be seen from the point of view of the theory of Complementarity 

(MALHOTRA; MACKELPRANG, 2012).  

According to Sanchez and Perez (2005), companies that considered flexibility from both 

internal and supply chain perspectives have a greater ability to be flexible and, therefore, 

increase the company's performance. Nonetheless, it is already complex to implement flexible 

manufacturing processes at the internal level, thus, achieving flexibility at the supply chain 

level is extremely difficult, for it is a complex system which is influenced by inherent internal 

and external uncertainties that arise from intra-and inter-organizational relationships 

(SEEBACHER; WINKLER, 2015). 

Considering the scenario described, the following research questions arise: (i) Which I4.0 

technologies can drive the implementation of flexible manufacturing? (ii) How does the 

implementation of I4.0 technologies influence a company's ability to become flexible at both 

internal and supply chain levels? 

 

1.1 DISSERTATION TOPIC AND OBJECTIVES 

The present study focuses on Operations and Technology Management. The general objective 

of this dissertation is to create a framework to assist companies in implementing flexible 

operations in the context of Industry 4.0. In order to achieve the general goal of this work, the 

following specific objectives are proposed: 

1. To analyze the specific Industry 4.0 technologies adopted by these companies when 

looking for productivity, quality and/or flexibility as operational goals; 
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2. To analyze the main strategies aiming to implement Industry 4.0 to obtain internal 

manufacturing flexibility; 

3.  To identify which Industry 4.0 technologies influence the supply chain flexibility. 

These objectives aim to develop a framework that can help decision-makers in the 

implementation of the I4.0 concept to make their production more flexible and increase offer 

customization. 

 

1.2 JUSTIFICATION OF THE TOPIC AND OBJECTIVES 

This dissertation is justified by the lack of theoretical and practical works. Regarding 

theoretical aspects, it is important because Industry 4.0 is a new paradigm and, therefore, brings 

different questions to be researched. In this sense, despite increasing academic studies on the 

subject in recent years, there are still gaps in the research on the implementation paths of 

Industry 4.0 and the impact of the use of these technologies in companies (KAMBLE et al., 

2018; BÜCHI, CUGNO; CASTAGNOLI, 2020). 

This study addresses specifically the implementation of I4.0 and its impact on manufacturing 

flexibility. Flexibility has been considered an important competitive capability for companies, 

especially those with mass customization and make-to-order production systems (DEY et al., 

2019). For this reason, manufacturing flexibility is a widely studied topic, and different 

technological systems such as FMS and RMS have been suggested to achieve it. However, the 

concept of flexibility is still considered complex to implement because it is multidimensional 

and depends on a large set of variables (SETHI; SETHI, 1990; DEY et at., 2019).  

Moreover, intelligence concepts, which are the main objective of the development of Industry 

4.0, are still difficult to enforce in flexible manufacturing systems, thus, being one of the main 

goals of research on the development of I4.0 (QIN et al., 2017). In this sense, according to 

several authors, there is a need to understand the role of Industry 4.0 in achieving different 

levels of flexibility (BRETTEL et al., 2016; EYERS et al., 2018; FRANK et al., 2019). 

From a practical point of view, although several studies claim that flexibility is one of the main 

objectives of Industry 4.0, it still seems to be far from reality for companies, especially in 

developing countries such as Brazil (DALENOGARE et al., 2018; LUTHRA; MANGLA, 

2018). Furthermore, achieving flexibility at both internal and supply chain levels still requires 

great effort (LONG et al., 2017; SEEBACHER; WINKLER, 2015). This may be due to the 

fact that companies still do not have enough knowledge to reach high levels of implementation 

of Industry 4.0 (FRANK et al., 2019). Another possibility is that they see flexibility as 



18 

 

 

something that requires a very advanced level of implementation, as it involves an expensive 

process and its benefits are difficult to perceive immediately (SREEDEVI; SARANGA, 2017).  

1.3 STUDY DESIGN 

In this topic, the research and work methodology for achieving general and specific objectives 

within the topic of implementing Industry 4.0 for manufacturing flexibility are detailed. 

1.3.1 Research Methodology 

According to the procedures, this can be classified as mixed-method research (CASTRO et al., 

2010). It presents both qualitative and quantitative stages, as there are mainly data from 

literature reviews and case studies and statistical analyzes of data collected through 

questionnaires and the literature. 

Each of the articles that make up the dissertation can be classified differently due to their 

research approach. Article 1 can be classified as deductive since it is based on hypotheses that 

were tested using statistical tools. On the other hand, Article 2 presents an inductive approach 

as it seeks to generalize results from the study of several cases (MARKONI; LAKATOS, 

2003). 

1.3.2 Work Methodology 

The work methodology is based on the theory building by Van de Ven (2007). This theory 

aims to construct conceptual models by combining theory and practice and includes four main 

steps that all research must have: (i) problem definition, (ii) theory building, (iii) definition of 

an explanatory model, and (iv) proposal of solutions from the results found (VAN DE VEN, 

2007).  

The problem definition was developed throughout this introduction. Therefore, the following 

sections focus on the theory-building stage. The subsequent stages, model definition and 

solution proposition, are not part of this work as the primary attention of this work was to the 

theory construction process. Therefore, this work is composed of three articles, each achieving 

a specific goal to meet the general objective of this study, as shown in Table 1. 
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Table 1. Work structure according to specific objectives. 

 
RESEARCH QUESTION AIM METHOD 

ARTICLE 1 

Which Industry 4.0 

technologies can be 

adopted by manufacturers 

to achieve specific 

production targets such as 

productivity, quality, and 

operational flexibility? 

To analyze the specific 

Industry 4.0 technologies 

adopted by these companies 

when looking for 

productivity, quality and/or 

flexibility as operational 

goals 

Quantitative Research 

Survey 

1. Exploratory factor 

analysis (EFA) 

2. Test-T 

ARTICLE 2 

How can Industry 4.0 

technologies enable 

internal manufacturing 

flexibility? 

To analyze how different 

Industry 4.0 technologies 

can contribute to reaching 

internal dimensions of the 

manufacturing flexibility 

concept 

Qualitative Research – 

Case Studies 

1. Interviews 

2. Technical Visits 

3. Document review 

ARTICLE 3 

How can the 

implementation of the 

Smart Supply Chain 

concept contribute to the 

external flexibility of the 

supply chain and 

companies' operational 

performance in the context 

of uncertainty? 

Understand how the 

implementation of Industry 

4.0 contributes to the 

external flexibility in the 

context of uncertainties 

Quantitative Research- 

Survey 

1. Confirmatory factor 

analysis (CFA) 

3. Linear regression with 

moderating and 

mediating effects test 

 

 

Article 1 - “Implementing Industry 4.0 for flexibility, quality, and productivity improvement: 

Technology arrangements for different purposes.” This article aimed to identify which 

Industry 4.0 technologies companies implement depending on their operational objectives. A 

quantitative approach to the subject was adopted because a survey was conducted. The data 

were analyzed through exploratory factor analysis for the development of constructs and using 

the t-test. 

 

Article 2 - “Industry 4.0 enabling manufacturing flexibility: technology contributions to 

individual resource and shop floor flexibility levels.” This stage analyzed case studies aiming 

to understand how Industry 4.0 technologies enable different internal levels of manufacturing 

flexibility. As the main result, this article presents a framework which explains how companies 

seek internal flexibility through the adoption of Industry 4.0 technologies and different 

contingency factors that influence the adoption of flexibility technologies. 

 

Article 3 - “Being digital and flexible to navigate the storm: How digital transformation 

enhances supply chain flexibility in turbulent environments.” This article focused on 
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understanding how the implementation of Industry 4.0 technologies contributes to flexibility 

at the supply chain level, aiming to reduce the effects of uncertainties that companies face on 

operational performance. In other words, it addresses aspects of external operational flexibility. 

This study is even more relevant in the current context in which companies and supply chains 

have been affected by COVID-19. A quantitative approach was used with the application of a 

survey and subsequent statistical data analysis. 

 

1.4 STUDY DEFINITION 

For the development of the research, the practical context of Brazil was considered, since 

developing countries often have difficulties in industrializing and gaining a competitive 

advantage over others. Thus, with the implementation of Industry 4.0 aimed at flexibility, the 

country can accelerate its development and digital transformation. However, other countries 

may have different contexts and levels of technological development. Therefore, the territorial 

space is considered a limitation of this work. 

Furthermore, this study does not intend to address all the technologies, but to consider the main 

ones cited in the literature as being the most used in practice. Nonetheless, companies may 

require different types of flexibility over time. In this sense, this research considers aspects that 

demand flexibility but does not follow companies to see changes in the profile of the need for 

flexibility. 

Finally, this study assumes that operational flexibility is a desired operational aspect to be 

achieved by companies but does not question whether the choice of flexibility is the best 

strategic option for the companies studied. In other words, the impacts of the operational 

flexibility on the company's financial performance are not considered and neither are more 

strategic levels of flexibility. 

1.5 STRUCTURE OF THE DISSERTATION 

This dissertation is organized in five chapters. This first chapter discussed the research 

problem, its objectives, and their respective justifications, in addition to the study methodology, 

structure, and definition. Subsequently, in chapters 2, 3, and 4, the articles on each of the 

specific objectives are presented, as detailed in Figure 1. Finally, the fifth chapter is dedicated 

to the conclusions and contributions of this dissertation. 
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2. IMPLEMENTING INDUSTRY 4.0 FOR FLEXIBILITY, QUALITY, 

AND PRODUCTIVITY IMPROVEMENT: TECHNOLOGY 

ARRANGEMENTS FOR DIFFERENT PURPOSES 
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Productivity, quality, and flexibility are key production targets pursued by companies that adopt Industry 

4.0. However, it is unclear how Industry 4.0 technologies can help achieve these different and sometimes 

competing targets. This study investigates this relationship through a survey of 92 manufacturers. The study 

employs Exploratory Factor Analysis to define four main technology arrangements based on 18 Industry 4.0 

technologies: Vertical Integration, Virtual Manufacturing, Advanced Manufacturing Processing 

Technologies, and Online Traceability. Then, independent samples tests were conducted to compare the 

implementation status of these arrangements when manufacturing flexibility, process quality, and 

productivity are (or are not) pursued as the main production targets. The results show that Vertical Integration 

is a general-purpose technology arrangement because it supports all targets. On the other hand, Virtual 

Manufacturing and Online Traceability are specific-purpose arrangements, adopted especially for flexibility 

and productivity targets, respectively. Advanced Manufacturing Processing Technologies, in turn, is an 

integrative-purpose technology arrangement since it is adopted when two competing targets are pursued: 

productivity and manufacturing flexibility. The study ends with a decision model to implement Industry 4.0 

based on the production targets a company may pursue. It shows the interconnection and trade-offs between 

these production targets and the Industry 4.0 technologies adopted. 

Keywords: Industry 4.0, production targets; smart manufacturing; technology adoption. 

2.1 INTRODUCTION 

Mass production and lean manufacturing are mainly concern with improving productivity and 

quality of production systems (MARODIN et al., 2017). On the other hand, production 

flexibility has often been considered an production target that odds with productivity. The 

trade-off between flexibility and productivity was depicted in Hayes and Wheelwright's (1979) 

Product-Process matrix, which shows that highly flexible systems operate with lower 

productivity. Thus, a reduction in flexibility is needed to increase productivity. For instance, 

universal machines, multitask workers, and a wider product mix – to the detriment of large-

scale production – will better cope with changes in the market and the supply chain (PÉREZ, 
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BEDIA, LÓPEZ, 2016). While these are different production targets, Industry 4.0 has been 

proposed as a new industrial maturity stage in which these targets can converge in the same 

system (MOEUF et al., 2017). Industry 4.0 considers the use of cutting-edge technologies 

supported by the Industrial Internet of Things (IIoT) to create smart manufacturing 

environments, also called cyber-physical systems (LI, 2018; ZHANG; CHEN, 2020; BUENO 

et al., 2020). According to a company's specific needs, these new environments will be based 

on different technology arrangements (BENITEZ et al., 2021). Such technology arrangements 

are expected to provide more productive and flexible manufacturing systems following high-

quality standards (SCHUH et al., 2020). 

Prior empirical studies have considered relationships between Industry 4.0 and operational 

performance (e.g., LEE, BAGHERI; KAO, 2015; BRETTEL, KLEIN; FRIEDERICHSEN, 

2016; ZHONG et al., 2017), or with production targets and expected benefits that drive the 

decision-making for investing in Industry 4.0 technologies (DALENOGARE et al., 2018; 

FRANK et al., 2019). A detailed description of these studies is provided in Appendix A. Most 

of these studies acknowledge that Industry 4.0 can make general contributions for production 

targets (GILLANI et al.,2020), while some studies suggest that different targets will be 

achieved with specific Industry 4.0 technologies (MOEUF et al., 2017; DALENOGARE et al., 

2018). However, when the literature considers Industry 4.0 technology adoption, it usually 

follows rigid technology roadmaps that do not consider the nuances of different production 

targets aimed with these sets of technologies. The priority among these technology sets must 

not necessarily follow a single roadmap but can be adopted differently according to the 

production target pursued. 

Moreover, when production targets are considered in the Industry 4.0 literature, the debate 

mainly concentrates on increasing productivity and quality, probably due to the legacy of mass 

production and lean manufacturing concerns (SCHUMACHER et al., 2016; 

ALEKSANDROVA, VASILIEV; ALEXANDROV, 2017; MITTAL et al., 2018; ASIF, 2020). 

Paradoxically, although the aim of obtaining more flexible operations has been at the core of 

the Industry 4.0 concept (SCHUH et al., 2020), few empirical studies have considered how 

companies adopt Industry 4.0 technologies to achieve this production target, which remains a 

theoretical gap in the literature (ENRIQUE et al., 2022; DALENOGARE et al., 2018). Flexible 

operations gained importance in turbulent environments when industries face uncertainties and 

need to respond quickly to changes in the market and supply chain (SREEDEVI; SARANGA, 

2017; KAMALAHMADI et al., 2021), but the answer on which specific Industry 4.0 

technologies can better support such flexibility is still open. In this context, more balanced 

https://www.tandfonline.com/author/Kamalahmadi%2C+Masoud
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analysis of productivity, flexibility, and quality becomes necessary for manufacturing 

companies to adopt Industry 4.0-related technologies to ensure a technology-target alignment 

and avoid a lack of effectiveness due to the wrong implementation of Industry 4.0 technologies. 

 Although it is well known that Industry 4.0 can help companies to achieve quality, 

productivity, and flexibility, there is a lack of understanding on which specific technologies 

are adopted when each of these three specific targets is pursued or when companies want to 

achieve some of them simultaneously. Thus, the study proposes the following research 

question: Which Industry 4.0 technologies can be adopted by manufacturers to achieve specific 

production targets such as productivity, quality, and operational flexibility? By answering this 

question, the contribution of this study relies on exploring the trade-offs between such targets 

when companies follow different Industry 4.0 technologies to achieve them. 

Thus, this study investigates which technologies of the Industry 4.0 concept are adopted by 

manufacturers when they pursued productivity, quality, or flexibility (or a mix of them) as the 

main production target. The aim is to identify sets of Industry 4.0 related technology 

(technology arrangements) that are organized and adopted around specific production targets 

to provide a better understanding of how Industry 4.0 is conceived when manufacturers look 

for different goals. To this aim, this study performed a quantitative survey with 92 

manufacturers from the machinery and equipment industry. The study analyses the specific 

Industry 4.0 technologies these companies adopt when they pursue productivity, quality, and/or 

flexibility as production targets. Exploratory Factor Analysis (EFA) was first used to define 

sets of technology arrangements that these companies implement together. These arrangements 

were categorized into four main groups: Vertical Integration technologies, Advanced 

Manufacturing Processing technologies, Virtual Manufacturing technologies, and Online 

Traceability technologies. Then, an independent sample test was used to assess the relationship 

between the production targets pursued by these companies and the Industry 4.0 technology 

arrangements adopted by them. The results show that these Industry 4.0 technology 

arrangements make different contributions to production targets. Some of them can be 

considered general-purpose technologies because they are adopted to achieve all of these three 

production targets; others can be considered specific-purpose technologies because they are 

adopted to increase productivity or flexibility targets; finally, another arrangement of Industry 

4.0 technologies was named as integrative-purpose technologies because these technologies 

are used to reconcile the productivity vs. flexibility trade-offs, helping to balance both 

production targets. The main contribution of this study is that it explores the trade-offs between 

production targets showing how different sets of Industry 4.0 technologies can contribute to 
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them either by supporting each of them or helping to balance such targets better. In this sense, 

this study advances the debate of driving Industry 4.0 adoption by production targets instead 

of considering a mandatory set of technologies that must be necessarily implemented step-by-

step independently of the target being pursued. The study shows that some Industry 4.0 

technologies are dependent on specific targets pursued, while others are always necessary as 

the initial ground of Industry 4.0 implementation. As a final contribution, the study proposes a 

decision model to implement Industry 4.0 technologies according to the expected production 

targets a company may pursue. The findings help operations managers understand which 

technology to adopt based on the operations strategy they want to follow. 

The remaining sections are organized as follows. First, the study begins with a theoretical 

background section, where the conceptual framework and the proposed hypotheses are 

introduced. In Section 3, the data and the measurements used to test the hypotheses are 

described. In Section 4, the analysis and findings are presented. Finally, in Sections 5 and 6, 

theoretical implications and managerial insights are discussed, and future research directions 

are proposed. 

2.2 INDUSTRY 4.0 AND PRODUCTION TARGETS 

Industry 4.0 is considered a new industrial maturity stage represented by several technologies 

that consolidate cyber-physical systems based on the Industrial Internet of Thinks (FRANK et 

al., 2019). Industry 4.0 comprises several technology applications, including Smart 

Manufacturing, Smart Products and Services, Smart Supply Chain, and Smart Working 

(FRANK et al., 2019; MEINDL et al., 2021). This paper considers only the Smart 

Manufacturing dimension, which comprises the technologies associated with the 

manufacturing production system (MEINDL et al., 2021). Since the initial concept was 

developed in Germany and then disseminated worldwide, some authors have considered it an 

international technology diffusion-adoption process, in which countries and companies 

consolidate a set of technologies to increase performance and, consequently, their 

competitiveness (DALENOGARE et al., 2018). Such a view is based on the innovation 

diffusion theory proposed by Rogers (1995), which considers five main factors that influence 

the adoption of technological innovation: relative advantage, compatibility, complexity, 

reliability, and observability. The relative advantage is how new technology is considered 

beneficial for companies and can be measured in terms of costs, productivity, market 

opportunities, convenience, and satisfaction. This view has been addressed in different 

technology adoption studies that have shown that the expected targets to be achieved with 
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technology adoption are factors that impact the decision to adopt such technologies (WANG 

et al., 2010; ABOELMAGED, 2014). 

Studies in the Industry 4.0 literature have followed the diffusion-adoption view when 

considering the technology adoption process (ALMEIDA et al., 2022). For instance, 

Ghobakhloo and Ching (2019) showed that small companies are more prone to adopt smart 

manufacturing technologies when they realize potential gains in productivity, agility, and 

improve response. Dalenogare et al. (2018) identified which Industry 4.0 is most adopted in 

the Brazilian industry when companies want to increase operational goals based on 

productivity metrics. Moreover, Simões et al. (2020) investigated the main reasons companies 

adopt collaborative robots and showed the importance of speed in executing tasks and cost 

benefits as main determinants. These are some examples of studies that address adoption levels 

of the disseminated technologies based on targets that companies may want to achieve in the 

production system. As shown in these studies, managerial objectives and expectations are the 

driving force behind the adoption of Industry 4.0 technologies (HORVÁTH; SZABÓ, 2019). 

This study calls these objectives as production targets, representing the main goal the 

manufacturing system should achieve by implementing technologies and process execution 

(GRÖßLER; GRÜBNER, 2006).  

One of the most discussed concepts in the literature regarding production targets is the 

manufacturing trade-offs suggested by Skinner (1969). According to this concept, unless there 

is slack in the system, improving one of the generic capabilities (targets) is only possible at the 

expense of the others (DA SILVEIRA; SLACK, 2001; GRÖßLER; GRÜBNER, 2006). On the 

other hand, through the implementation of manufacturing methods and technologies, modern 

manufacturing systems should allow improvements in more than one production target 

simultaneously. This is known as the cumulative view, according to Ferdows and Meyer 

(1990). A cumulative view of production trade-offs focuses on continuous changes in 

performance. The cumulative view does not deny the trade-off challenge between production 

targets, but it suggests that companies could achieve a balance, maybe with lower but more 

balanced results.  

The literature review presented in Appendix A analyses how the Industry 4.0 literature has 

considered the adoption of Industry 4.0 technologies, targets that lead companies to adopt such 

technologies, and the performance that companies have achieved with such technologies. As it 

is possible to see, the literature has been more focused on performance measurement, which 

does not necessarily represent the main production target that triggers the technology adoption. 

Some authors have considered motivations, drivers, or expected benefits (e.g., BÜCHI et al., 
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2020; CUGNO et al., 2021), but when such aspects are considered, Industry 4.0 technologies 

are not differentiated. This present study aims to address such a gap in two different ways: 

firstly, by considering, through the innovation diffusion-adoption theory (ROGERS, 1995), the 

main production targets that trigger the adoption of different types of Industry 4.0 related 

technologies. This study hypothesizes that specific production targets will make companies 

more prone to invest in some sets of Industry 4.0 related technologies, creating different 

nuances of adoption patterns. Secondly, by considering the cumulative view of production 

targets trade-offs (FERDOWS; DE MEYER, 1990), this study acknowledges that some targets 

can be pursued simultaneously (or not) by adopting Industry 4.0 related technologies. 

2.2.1 Hypotheses development 

The hypotheses of this study are built around three production targets defended as the core of 

the Industry 4.0 implementation: productivity, quality, and operational flexibility (SCHUH et 

al., 2020). Although other production targets could be present, these three metrics are the most 

common alongside the Industry 4.0 literature (Appendix A). In this sense, this study follows 

Boyer and Lewis’ (2009) perspective on competitive priorities that define the operations 

strategy model, including the technology that should be implemented. According to them, the 

main competitive priorities (i.e., production targets) can be divided into cost, delivery, quality, 

and flexibility. Productivity can be used as an alternative to summarize costs and delivery since 

it represents the rate between total output (product delivery) and total input (cost reduction) 

(HUANG et al., 2010). Any other production target should derivate from these three essential 

priorities of manufacturing decision-making (BOYER; LEWIS, 2009). Next, the study 

provides evidence about the reasons for such connection and the hypotheses derived from such 

production targets. 

2.2.2 Industry 4.0 and Productivity  

Productivity is generally related to the effort necessary to produce goods using fewer resources 

(DE LA FUENTE-MELLA et al.,2019; KIRAN, 2019). Productivity gains can be associated 

with several resources, such as labor productivity, space utilization, inventory turnover, energy 

costs, and equipment utilization (BACKHAUS; NADARAJAH, 2019; DE LA FUENTE-

MELLA et al.,2019). Prior studies have shown that increased industrial computerization and 

automation have generated stable productivity growth in companies using fewer workers 

(AUTOR et al.,2020). Industry 4.0 thus considers a set of technologies aiming to increase 

resource consumption and autonomy to execute tasks and complete operation cycles, which 
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should result in productivity gains (SCHUH et al., 2020). Sensing capabilities help machines 

better utilize materials, combined with optimization algorithms and the intensive use of data to 

learn the best way to use production resources (DALENOGARE et al., 2018). Moreover, 

Industry 4.0 also considers smart production planning and control based on advanced 

technologies and real-time data, which helps the manufacturing system organize its schedule 

and save time (BUENO et al., 2020). Workers can also become more productive with the aid 

of smart devices supported by Augmented Reality (AR), Virtual Reality (VR), and other digital 

tools that can help them improve focus on their tasks or provide additional skills to support 

their decision-making processes (PEREIRA; ROMERO, 2017; REALYVÁSQUEZ-VARGAS 

et al., 2019; FARERI et al., 2020). 

The Industry 4.0 literature provides several examples of specific technologies that are 

suggested to increase productivity. For instance, intelligent systems can optimize 

manufacturing processes, especially in terms of resources and energy consumption, 

representing the second-highest production cost in many sectors (FATORACHIAN; KAZEMI, 

2018). Moreover, additive manufacturing maximizes the use of materials and the manufacture 

of a wide variety of parts, also permitting scalability (ALCÁCER; CRUZ-MACHADO, 2019). 

Adopting Manufacturing Execution Systems (MES) and other information systems with real-

time data collection can support process monitoring and production planning to better use 

production resources (CHIARINI; KUMAR, 2020; BÜCHI et al.,2020). Robots are another 

important technology in the Industry 4.0 context. They are associated with productivity gains, 

especially in highly repetitive tasks in the production environment, including processing, 

material handling, and inspection systems (FRANK et al., 2019; DALENOGARE et al., 2018). 

In sum, the Industry 4.0 literature mentions a wide range of technologies for productivity. 

However, many of them are only assumed to be important to this production target without the 

backing of empirical tests. Therefore, the following hypothesis is proposed: 

H1: Companies that pursue productivity as an important production target are more likely to 

have a higher level of use of some specific Industry 4.0 technologies than companies that do 

not. 

2.2.3 Industry 4.0 and Quality 

Quality of products and processes can become the main competitive target of the company. 

While product quality is associated with product design requirements, the quality of the process 

is related to the production system activities, which is the focus of this study.  This is a 
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production target related to how the manufacturing system should work to reduce process 

variability and non-conformities in the final product (FLYNN, SCHROEDER; 

SAKAKIBARA, 1994; GOYAL, AGRAWAL; SAHA, 2019). Process quality considers 

implementing best practices and technologies to standardize processes, improve and maintain 

equipment operation, and check for potential failures and non-conformities in the production 

line (FLYNN, SCHROEDER; SAKAKIBARA, 1994; ASIF, 2020). 

According to Dutta et al. (2021), the available literature on integrating quality practices 

in a digital environment is limited, deserving more attention in the Industry 4.0 domain. 

Nonetheless, some studies have mentioned how Industry 4.0 technologies can support process 

quality in different ways. According to Markulik, Sinay, and Pačaiová (2019), Industry 4.0 

technologies in three main areas of process quality: digital quality management, advanced 

process control, and statistical process control. The intensive adoption and use of sensors in the 

production line ensures better control of quality parameters, and machine connectivity allows 

monitoring such parameters in real-time (WANG et al., 2016; ALEKSANDROVA et al., 

2019). Sensing capabilities on the shop floor enable the tracking of materials, supporting 

product components' traceability to identify non-conformities (RAMADAN, AL-MAIMANI; 

NOCHE, 2016). An online check of equipment conditions is also an important maintenance 

tool, contributing to improvements in predictive models of equipment failure and preventive 

maintenance that will ensure process quality (SHIVAJEE, SINGH; RASTOGI, 2019). 

Moreover, the intensive use of automated machines and robots helps implement standardized 

processes that reduce potential quality problems due to high operations variability 

(DALENOGARE et al., 2018). On the other hand, when production tasks are manual-intensive, 

tools such as AR and VR can help better execute repetitive operations and reduce the chance 

of workers' mistakes. (ELIA, GNONI; LANZILOTTO, 2016; TZIMAS, VOSNIAKOS; 

MATSAS, 2019; URBAS, VRABIC; VUKASINOVIC, 2019). These technologies can also be 

useful in training workers to ensure a certain quality standard in their activities (ROLDÁN et 

al., 2019). Furthermore, according to the results of  Závadská and Závadský (2018), smart 

devices such as smartwatches and smart glasses have the greatest presence in processes such 

as non-compliance management, quality control, and change management, and visual 

management Quality managers and their future technological expectations related to Industry 

4.0. These are some examples of the use of Industry 4.0 technologies when companies have 

process quality as a main target of the manufacturing system. These are evidence reported in 

the literature suggesting that there are different arrangements of Industry 4.0 technologies that 

can improve process quality.  Therefore, the following hypothesis is proposed: 
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H2: Companies that pursue quality as an important production target are more likely to have 

a higher level of use of specific Industry 4.0 technologies than companies that do not. 

2.2.4 Industry 4.0 and Manufacturing Flexibility  

Flexibility can be developed at different levels in the company. The operations management 

literature has considered some levels, such as supply chain flexibility, organizational 

flexibility, and operational flexibility (PÉREZ-PÉREZ et al., 2018). This paper focuses on 

operational flexibility, which is the level of flexibility a company may pursue in the shop floor 

through adaptation of its manufacturing process and activities to different types of orders 

(KOSTE; MALHOTRA, 1999). This level of flexibility considers the production system's 

ability to handle changes in the product mix and production volumes, as well as dealing with 

uncertainties related to manufacturing resources, with a minimum impact in terms of time, 

costs, and performance (GERWIN, 1993; PEREZ et al., 2016). 

Operational flexibility has been identified as one of the main targets of Industry 4.0 (LONG, 

ZEILER; BERTSCHE, 2017; FATORACHIAN; KAZEMI, 2018). The Industry 4.0 literature 

highlights that cyber-physical systems can improve a company's ability to introduce new 

products rapidly and/or change its product mix, both key characteristics of manufacturing 

flexibility (PÉREZ-PÉREZ et al., 2018). In this sense, smart production planning and control 

systems are expected to be one of the main drivers for introducing flexibility in the production 

system because they can quickly reconfigure the production schedule (BUENO et al., 2020). 

However, this could also require the complement of flexible machines. Additive manufacturing 

is considered the extreme in this flexibility concept since such technology would ideally allow 

a company to produce any product component in the same machine (KIM, LIN; TSENG, 2018; 

HALEEM; JAVAID, 2019). Smart and reconfigurable machines facilitate new products, as 

they are much more flexible than fixed automatic systems (WANG et al., 2016). Assembly 

lines can also be benefited by the combination of the labor force and collaborative robots 

(cobots), which, when combined, can boost flexibility by allowing workers to focus on the 

most value-added and flexible work while a cobot handles the repetitive tasks previously 

performed by human workers (LIU; WANG, 2017; ZOLOTOVÁ et al.,2020). Other 

technologies, such as AR and VR systems, improve the information exchange process and train 

operators to quickly adapt to changes (MOURTZIS et al., 2017). In terms of product mix 

flexibility, Robots with Artificial Intelligence (AI), which are both adaptive and flexible, can 

more quickly learn how to produce new products, thus adding the flexibility component to the 

already known benefit of reducing production costs (ZHONG et al., 2017; ALCÁCER; CRUZ-
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MACHADO, 2019). In addition, process simulation tools and virtual commissioning can be 

used to view, analyse and control the state of a part or process and to build different scenarios 

before introducing real changes in the production system (MOURTZIS, ZOGOPOULOS; 

VLACHOU, 2017; CORONADO et al., 2018; SCHAMP et al.,2019; ZHUANG, GONG, LIU, 

2020). However, although several Industry 4.0 technologies are proposed to increase flexibility 

in the production system, Frank et al. (2019) and Dalenogare et al. (2018) showed that this is 

usually one of the biggest challenges of manufacturing companies. As they suggested, more 

research is needed to understand which technologies effectively contribute to this concept in 

companies' real environments. Therefore, the literature suggests this association, but it still 

lacks empirical evidence on what specific Industry 4.0 technologies are pursued when 

operational flexibility is the company's main target. Thus, the following hypothesis is proposed: 

H3: Companies that pursue flexibility as an important production target are more likely to 

have a higher level of use of specific Industry 4.0 technologies than companies that do not. 

2.2.5 Summary of the conceptual research model 

Figure 1 shows the conceptual research model that summarizes the three hypotheses proposed. 

As the figure shows, it is assumed that companies can pursue different production targets 

(Productivity, Process Quality, and Manufacturing Flexibility). Such targets may drive to the 

adoption of different Industry 4.0-related technologies to facilitate their achievement. 

However, since Industry 4.0 solutions can be represented by a combination of different 

technologies (technology arrangements), the study aims to define these arrangements to 

understand how they are adopted based on the production targets pursued.  
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Figure 1. Conceptual research model 

2.3 Research method 

2.3.1 Sample and Data Collection 

This study performed a cross-sectional survey of manufacturing companies associated with the 

southern chapter of the Brazilian Machinery and Equipment Builders’ Association (ABIMAQ-

Sul)1. This association was chosen due to its relevance in the Brazilian industry and for Industry 

4.0 in the country: it is one of the most representative manufacturing sectors in the country, 

and it is engaged with the Industry 4.0 platform promoted by the Brazilian Chamber of Industry 

4.0, which is part of the Brazilian Federal Ministry of Science and Technology. The 

questionnaire was sent by e-mail to the 143 companies that are member of ABIMAQ’s southern 

chapter and obtained a return of 92 useable questionnaires, representing a response rate of 

64.33%. The questionnaire was addressed to the CEOs or Operations Directors or equivalents 

with knowledge on the company’s operations management activities, including technology 

investments and performance metrics. The research obtained a high engagement rate among 

the target public because the industry association promoted the research in business seminars 

on Industry 4.0 and because the survey was distributed through the associations’ mailing 

channels. Therefore, although the absolute number of the sample size may not seem too large, 

it is focused on a single industry and represented by a high response rate (65% of the 

                                                
1 Other variables from this survey were used in Frank et al. (2019). This other study focused on investigating the 

implementation patterns of Industry 4.0 technologies through cluster analysis. Frank et al. (2019) did not consider 

production target variables. They focused on other “smart dimensions” like smart products, smart working, and 

smart supply chain complementary to smart manufacturing. In this sense, while this present study deepens the 

manufacturing technology variables and connects them with production targets (motivations), the one from Frank 

et al. (2019) has a broader scope and focuses on the breath of Industry 4.0 technologies complementary to the 

manufacturing technology variables. Therefore, both studies are complementary in their research focus. 
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representatives). The final sample was composed of 41% of small enterprises (<100 

employees), 37% of medium enterprises (100 to 500 employees), and 22% of large enterprises 

(>500 employees). The companies representing this industry sector serve a high diversity of 

markets, including the agricultural, chemical, furniture, and food industries. Table 2 shows the 

characteristics of the sample.  

Table 2. Demographic characteristics of the sample 

Sectors (%) Category Description (%) 

Agriculture 48% Company's 

size 

Small(<100 employees)  41% 

Biotechnology 1% 

Chemicals 24% Medium (100 - 500 

employees) 

37% 

Construction 10% 

Energy 15% Large (>500 employees)  22% 

Food products 29% 

Leather products 3% Respondent's 

profile 

Managers or directors 78% 

Mining 21% Supervisors 10% 

Furniture 10% 

Pharmaceutical 10% Analysts 4% 

Pulp and paper 16% 

Software and technology 17% Other 8% 

Steelworks 18%     

Transport 13%     

Metal products 34%       

Other manufacturing 24%       

 

2.3.2 Definition of the variables 

The questionnaire (see Appendix A) aimed to assess the level of adoption of a set of Industry 

4.0-related technologies and three production targets pursued by companies when the 

implement Industry 4.0 technologies and concepts. The list of technologies related to the 

Industry 4.0 concept was adapted from previous industry surveys on this topic conducted by 

the National Confederation of Industries (CNI, 2016), as well as by other previous studies from 

the literature (LU; WENG, 2018; FRANK et al., 2019). This survey also considered production 
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targets from which the three most representative ones were selected, namely productivity, 

manufacturing flexibility, and process quality. These three targets were included because most 

of the studies presents them as the key targets in the Industry 4.0 concept (DALENOGARE et 

al., 2018; TORTORELLA et al., 2019; SCHUH et al.,2020; SZÁSZ, et al., 2020) while other 

targets and performance metrics described in Appendix A, such as costs reduction, time-to-

market improvement, among others, can be directly or indirectly related to them 

(DALENOGARE et al., 2018). A five-point Likert scale was used for technology adoption 

varying from 1 - Very low implementation to 5- Advanced implementation. The production 

targets were assessed through the following question: “Which of the following production 

targets do you pursue with the implementation of Industry 4.0 technologies?”. A list of targets 

was provided with binary options: 0-Not a competitive priority or 1- competitive priority. The 

questionnaire was pretested and refined using interviews with 15 scholars and seven CEOs that 

compose the board of directors of ABIMAQ-Sul. The full questionnaire is provided in 

Appendix B. 

2.3.3 Sample and common method variance bias 

To check response bias, the t-test for equality of means and Levene’s test for equality of 

variance were used when early and late respondents are compared; 63 companies represented 

the early respondents, i.e., those that answered in the first wave of data collection. In 

comparison, 29 companies composed the group of late respondents that answered in the 

following rounds of data collection. None of the 18 technologies investigated showed statistical 

differences between these waves of respondents (<0.05), suggesting that there is no significant 

difference of populations between samples (ARMSTRONG; OVERTON, 1977). 

Some strategies proposed by Podsakoff et al. (2003) were adopted to deal with potential 

common method variance. Firstly, the procedure was to randomized the technologies list to 

avoid any intentional correlation between them by respondents. It was also highlighted in the 

questionnaire introduction that the answers were anonymous and free from judgment. The 

questionnaire was also sent to specific respondents, namely CEOs and Operations Directors, 

and explained that they should deeply understand technical issues pertaining to the operations 

of their companies. Furthermore, a statistical remedy was adopted by running Harman's single-

factor test (PODSAKOFF et al., 2003). This test with all variables resulted in a first factor that 

comprehended only 40% of the observed variance. Therefore, there was no single factor 

accounting for the majority of the variance in the model.  



36 

 

 

2.3.4 Data analysis 

Data analysis was performed in two main stages. Firstly, it was proceeded with the technology 

clustering in order to define subsets of Industry 4.0 technology arrangements. Therefore, 

Exploratory Factor Analysis (EFA) was used to summarize the 18 Industry 4.0 technologies in 

the technology arrangements, following Hair et al.'s (2009) procedures. The EFA technique is 

used when researchers need to find common underlying patterns between variables from 

exploratory analysis to synthesize new factors representing those variables with similar 

characteristics (Hair et al., 2009). A similar approach has been used in other studies in the 

operations management field when technologies or practices are grouped based on similar 

implementation profiles (e.g., MARODIN et al., 2017; DALENOGARE et al., 2018). This 

study adopted such an approach to group Industry 4.0 technologies in common groups of 

technologies with similar profiles of implementation, as previously done by Dalenogare et al. 

(2018). A qualitative analysis of the sample size was performed before conducting the EFA 

feasibility tests (reported in the Results Section). The common practice on the use of EFA 

technique recommends that (HAIR et al., 2009, p.101): a) there should be not used less than 

50 observations to conduct this technique; b) the sample must have more observations than 

variables, and c) a good minimum sample for EFA should use five or more observations per 

variable. This study used 92 observations, exceeding the criteria (a) and (b). Regarding criteria 

(c), the study analyses 18 variables (technologies) in the EFA model, which would demand a 

minimum size of 18 (variables) x 5 (minimum size per variable) = 90 observations. Therefore, 

based on these criteria, the sample used is above the minimum recommendation for a reliable 

EFA. 

The technology arrangements were defined based on those technologies with high factor 

loading on the same factor, which means that those technologies were usually implemented 

jointly. In this sense, the labels of the factors (technology arrangements) were defined by 

considering the technologies' main characteristics of the group and contrasting them with prior 

studies with similar arrangements (HAIR et al., 2009). The average of these technologies was 

used to represent the new constructs used as new dependent variables for the second stage of 

the analysis. The reliability of the constructs was also assessed using Cronbach's alpha with a 

required threshold higher than 0.7, as recommended in the literature (HAIR et al., 2009). Data 

validity was also assessed qualitatively, based on similar profiles of technology arrangements 

found in the literature. In this sense, the results did not define technologies arrangements that 
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present significant differences from those used in other studies (e.g., DALENOGARE et al., 

2018; FRANK et al., 2019). 

In the second stage of analysis, which aimed to test the hypotheses, a series of independent 

samples t-tests for two groups were conducted. Independent tests allow differentiating levels 

of adoption of the Industry 4.0 technology arrangements when different production targets are 

set as priority, a similar approach to the one used by Marodin et al. (2016) when they compared 

levels of implementation of lean practices. In this sense, the present study compared whether 

companies prioritizing each of the three production targets (productivity, process quality, or 

manufacturing flexibility) showed levels of implementation of each Industry 4.0 technology 

arrangement different from those of companies that did not prioritize the same target. For the 

comparison of means, Levene’s test was used to define whether the t-test should assume equal 

variance at p<0.05. 

 

2.4 RESULTS  

2.4.1 Industry 4.0 technology arrangements 

The data analysis synthesized 18 technologies in the main categories using an Exploratory 

Factor Analysis (EFA). The EFA technique allowed to obtain broader technologies 

implementation arrangements based on the partial contribution of different but correlated 

measures (HAIR et al., 2009). Based on Hair et al. (2009), the procedure was divided into two 

steps:  validation of EFA adequacy to the sample and reduction of variables using the EFA 

technique.  

For the EFA validation, the Kaiser-Meyer-Olkin (KMO) test was used to measure sampling 

adequacy and Bartlett’s test of sphericity. These tests allowed us to assess whether the EFA 

would suit this sample (HAIR et al., 2009). Both tests indicated that the dependent variables 

could be reduced using EFA: KMO’s test was 0.821 (i.e., much above the threshold value of 

0.5), and Barlett’s test of sphericity showed a p-value < 0.001 (i.e., lower than the suggested p 

< 0.05 significance level) (HAIR et al., 2009).  

The technology arrangements containing different Industry 4.0 technologies were defined 

using a Varimax orthogonal rotation factor solution for the EFA since it reduces ambiguities 

related to non-rotated analysis (HAIR et al., 2009). The optimal number of components was 

selected using the latent root criterion, which includes factors only when they show an 

eigenvalue higher than 1.0, and it was also supported by the percentage of variance criterion, 

which considers only factors that exceed 60% of the total variance (HAIR et al., 2009). The 
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results obtained four main factors that accounted for 64.37% of the total variance (Table 3). 

The four main factors were defined according to the variables with high factor loading (>0.5) 

represented in them. Only one item (AI for PPC) showed a slightly lower factor loading, but it 

was strongly distributed in two factors. It was accounted for it in the first factor (Virtual 

Manufacturing) because it is theoretically more strongly associated (BUENO et al., 2020). The 

average of the technologies with high factor loadings was used to represent each arrangement's 

final score in the independent sample tests. Table 3 also shows the reliability analysis for the 

three constructs using Cronbach's alpha, all above 0.75 (Hair et al., 2009).  

Table 3. Rotated Factor-Loading Matrix from EFA 

Industry 4.0 technologies 

Factor loadings (a)   

Digital 

Manuf. 

Vertical 

Integ. 

Advanced 

Manuf. 

Online 

traceability 

Commu

-nalities 

Process control (PLCs and sensors) 0.265 0.730 0.143 0.159 0.649 

SCADA 0.263 0.813 0.029 -0.042 0.733 

MES 0.325 0.556 0.355 0.336 0.654 

Real-time monitoring 0.307 0.706 0.216 0.141 0.581 

Virtual commissioning 0.674 0.336 0.044 0.111 0.566 

M2M communication  0.585 0.286 0.338 0.164 0.544 

AI for maintenance 0.582 0.373 0.259 0.000 0.543 

AI for PPC 0.444 0.455 0.219 0.301 0.514 

Process simulation 0.530 -0.005 0.382 0.295 0.635 

Automated failure detection 0.706 0.084 0.165 0.321 0.903 

Remote operation 0.687 0.261 0.134 -0.069 0.900 

AR for maintenance 0.655 0.341 0.266 -0.007 0.789 

AR for workers training 0.722 0.254 0.085 0.057 0.584 

Raw material online traceability 0.058 0.145 0.127 0.929 0.558 

Product online traceability 0.133 0.096 0.091 0.930 0.658 

Robots 0.107 0.292 0.815 0.170 0.563 

Collaborative robots 0.241 0.218 0.681 0.116 0.616 

3D printing 0.188 -0.003 0.723 0.012 0.596 

Eigenvalue 7.496 1.794 1.250 1.047  

% of variance (cumulative) 22.214 38.662 51.829 64.368  

Cronbach’s alpha 0.869 0.830 0.725 0.924  

(a)  High factorial loadings are represented in bold and underlined  

 

As a result, the four factors labels were defined based on the items representing them. The first 

factor, named Virtual Manufacturing, is the group with the largest number of technologies, 
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nine in total. This dimension includes a set of AI and simulation technologies designed for 

simulation, virtual validation, and system self-configuration. AI technologies enable 

companies to achieve intelligent functions at all stages of industrial value, from customer 

demand, R&D design, operations management, production and processing, and other activities 

(ZHANG et al., 2019). Within AI technologies, computer vision, machine learning, and AR 

are included. Furthermore, simulation technologies comprise a set of tools and technological 

methods to experiment and validate the design and configuration of products, processes, and 

systems (MOURTZIS, DOUKAS; BERNIDAKI, 2014) and the virtual validation of 

automation equipment through commissioning virtual.  

The second factor, technologies for Vertical Integration, comprises the set of technologies used 

in the Industry 4.0 context to integrate several information layers in the company. This begins 

at the machines with process control through PLCs and sensors, then the collection of data 

through Supervisory Control and Data Acquisition (SCADA), and this being integrated from 

different work stations in the Manufacturing Execution System (MES), which finally provides 

real-time monitoring of the production system (DALENOGARE et al., 20218). These real-

time monitoring systems include tools for quick production (re)scheduling, helping to define 

production routes and redistribution of activities according to the current situation of the factory 

and equipment (BUENO et al., 2020; TABIM et al., 2021). In this sense, the technologies 

included under this label have been broadly considered as components of the vertical 

integration process necessary in the Industry 4.0 domain (DOTOLI et al., 2018).   

The third factor was named Advanced Manufacturing Processing Technologies and integrates 

robots, cobots, and additive manufacturing (3D printing) as a single construct focused on 

manufacturing processing. This name was given because the technologies included only 

comprise hardware tools that are part of the Industry 4.0 domain and used for manufacturing 

processing purposes. This refers to the creation of interconnected and modular processing 

systems that guarantee automated industrial plans. These technologies include automatic 

material-moving systems and advanced robotics, the latter of which are now on the market as 

“cobots” (collaborative robots) or automated guided vehicles (BUCHI et al., 2020). They are 

processing tools because in the case of robots and collaborative robots (cobots), they can 

execute processing activities like welding, machining, handling or packing (LEE; MURRAY, 

2019; COHEN et al., 2021), and 3D printers can print products components through additive 

manufacturing (MANI et al.,2017). Several studies consider such tools as part of the Industry 

4.0 context, even robots, because they are becoming more usual and integrated with data and 
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machine-to-machine communication, to operate in an integrated process in the factory 

(FRANK et al., 2019). 

The final factor is Online Traceability, which refers to automatic identification technologies 

that can track raw material and products, and components along the value chain, enabling and 

transferring data with limited human intervention (USTUNDAG; CEVIKCAN, 2017; 

SCHUITEMAKER; XU, 2020, EICHSTÄDT et al., 2021). Online Traceability in the Industry 

4.0 context is mainly based on RFID solutions applied in materials and products to better track 

them in the factory (MEINDL et al., 2021).  

2.4.2 Production targets and Industry 4.0 technologies 

Table 4 provides the correlation matrix for the final variables used in the second stage of 

analysis, including means, standard deviation, and normality checks using the Skewness and 

Kurtosis of the data. 

Table 4. Correlation matrix and descriptive analysis 

  Mean S.D. Skewness Kurtosis 1 2 3 4 5 6 

1- Vertical_integration 2.984 .999 0.202 -0.897 --      

2-Digital_manufacturing 2.278 .705 1.170 1.747 .709*** --     

3- Online Traceability 3.076 1.183 0.114 -1.347 .332*** .336*** --    

4-Advanced manuf. 2.359 .924 0.607 -0.160 .486*** .555*** .294*** --   

5-Manuf.flexibility 2.315 1.157 0.789 -0.246 -.053 -.087 -.090 -.097 --  

6-Produtivity 4.217 .767 -0.842 0.548 -.189** -.169* .054 -.003 .206** -- 

7-Product quality  4.250 .909 -1.506 2.619 -.165* -.083 -.018 .071 .091 .488*** 

*p < 0.1; **p<0.05; ***p<0.01 

 

Table 5 presents the independent samples t-test for comparison of means. The means 

differences were compared between the technology arrangements when each of the three 

production targets was or was not a priority. 

For productivity as a production target (H1, Model 1), it was found that Vertical Integration (t= 

-3.557, p=002), Online Traceability (t= -1.922, p= 0.058), and Advanced Manufacturing 

Processing Technologies (t= -2.436, p=0.017) were statistically significant as technology 

arrangements adopted for this target, supporting H1. Regarding H2, which considers process 

quality targets and its relationship with Industry 4.0 (Model 2), the results showed statistical 

support for Vertical Integration (t= -2.311, p=0.023) presented a significant difference between 

groups, supporting the hypothesis, but only for one of the technology arrangements. Finally, 

for manufacturing flexibility (H3, Model 3), the results indicate that companies pursuing this 

target are more likely to have increased adoption of Vertical Integration (t= -4.238, p<0.001), 
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Virtual Manufacturing (t= -2.246, p=0.025) and Advanced Manufacturing Processing 

Technologies (t= -2.082, p= 0.05). Consequently, the results support the three hypotheses and 

provide further refinement, showing that different technology arrangements are adopted 

depending on the specific production target pursued. As shown in this table, although the 

results support all the three hypotheses, several nuances are shown in these results that deserve 

more exploration, especially those related to technologies that attend to production targets that 

compete in a trade-off, as explained in the theoretical section. Therefore, such differences are 

discussed in the next section. 

Table 5. Independent Samples T-Test for comparison of means 

Industry 4.0 

technology 

arrangements 

Model 3 Model 2 Model 1 

Technology adoption levels 

(Mean±S.D) for 
Productivity 

Technology adoption levels 

(Mean±S.D) for 
Process Quality 

Technology adoption levels 

(Mean±S.D) for 
Manufacturing Flexibility 

Target 

is a 
low 

priority 

Target is 

a high 

priority 

t-test+ 
(dF) 

Target 

is a 
low 

priority 

Target is 

a high 

priority 

t-test+ 
(dF) 

Target is 

a low 

priority 

Target 

is a high 

priority 

t-test+ 
(dF) 

Vertical 

Integration 

2.21 

(0.822) 

3.11 

(0.972) 

-3.557*** 

(18.01) 

2.40 

(1.023) 

3.08 

(0.969) 

-3.311** 

(90) 

2.78 

(0.922) 

3.80 

(0.883) 

-4.238*** 

(90) 

Virtual 

Manufacturing 

2.14 

(0.552) 

2.30 

(0.728) 

-0.776 

(90) 

2.03 

(0.655) 

2.31 

(0.710) 

-1.349 

(90) 

2.16 

(0.603) 

2.72 

(0.920) 

-2.426** 

(20.69) 

Online 
Traceability 

2.50 
(1.080) 

3.17 
(1.179) 

-1.922*** 

(90) 
2.846 
(1.297) 

3.11 
(1.168) 

-0.754 
(90) 

3.00 
(1.170) 

3.38 
(1.219) 

-1.254 
(90) 

Advanced 

Manufacturing 
Processing 

Technologies 

1.79 
(0.701) 

2.45 
(0.928) 

-2.436*** 

(90) 
2.10 
(1.074) 

2.40 
(0.898) 

-1.079 
(90) 

2.22 
(0.770) 

2.88 
(1.288) 

-2.082** 

(20.05) 

 

Subsamples (n) 13 79  13 79  74 18  

*p<0.1, **p<0.05, ***p<0.01, + underlined values report equal variances not assumed (i.e. Levene’s test p<0.05) 

 

2.5 DISCUSSIONS 

The discussions are divided into two main sections. First, a conceptual discussion about the 

findings is provided, explaining the reasons why Industry 4.0 technology arrangements from 

the findings are connected to the production targets observed. Then, the second part of the 

discussion shows how these technology arrangements can be organized in a decision model 

that can enable manufacturers to choose and adopt Industry 4.0 technologies that would serve 

their strategic needs the most. 

Connecting Industry 4.0 technology arrangements to production targets 

The main empirical findings are summarized in the conceptual framework of Figure 2. This 

framework represents the relationships between the three production targets and the main 

Industry 4.0 technology arrangements adopted to achieve such targets. Results indicate that 

companies implement complementary technologies that configurate clusters or technology 

arrangements, as previously suggested also by other studies (e.g., DALENOGARE et al., 2018; 
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FRANK et al., 2019). Four main arrangements were identified: Vertical Integration, Advanced 

Manufacturing Processing Technologies, Virtual Manufacturing, and Online Traceability. 

Although they have a primary objective (e.g., online traceability is to track components and 

materials, or vertical integration is to integrate information layers to provide real-time data 

flow), the results showed that the adoption of these arrangements depends on the type of 

production target pursued. This means that instead of pursuing the full implementation of 

Industry 4.0-related technologies, as usually presented in some Industry 4.0 technology 

roadmap models (e.g., FRANK et al., 2019), companies should first consider which production 

target they want to improve to then adopt the most appropriate technology arrangement. In this 

sense, the innovation diffusion-adoption view of Industry 4.0, which was adopted as theory 

lens of this study, needs to be based on production targets that companies aim to achieve rather 

than on prescriptive linear models of technology diffusion and adoption in which technologies 

are proposed to be implemented in a prescriptive order independently of the production target 

pursued.  

 

Figure 2. Conceptual framework of the empirical findings 

The study also helps to explore the trade-offs between these three production targets. The 

findings showed that some technologies are implemented for specific targets, and others are 

adopted in more than one of the production targets. In this sense, if there are technologies 

adopted by companies independently of the target pursued, although such targets can compete 

with each other, such technologies should contribute to the cumulative view of production 

trade-offs explored in the theoretical background (FERDOWS; MEYER, 1990). In this sense, 

the conceptual framework of the results evidence which technologies contribute to the 
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cumulative view of the targets helping the pursued goals achieve a balance, maybe with lower 

but more balanced results between such targets with specific technologies (FERDOWS; 

MEYER, 1990). Next, it is explained how the different technology arrangements are adopted 

according to trade-offs and complement between production targets shown in Figure 2. 

Regarding Vertical Integration, the results show that this is a general-purpose 

technology arrangement (Figure 2) because it is adopted by companies independently on the 

production target pursued. This means that Vertical Integration is a primary focus of 

companies when adopting an Industry 4.0 approach, being always present in the Industry 4.0 

journey. Vertical Integration helps to achieve the first objective of Industry 4.0, which is the 

visibility and transparency of the manufacturing processes (TABIM et al, 2021; SCHUH et al., 

2020). Visibility means that decision-makers will be able to ‘realize' what is happening in 

different stages of the process, while transparency means that they will be able to ‘understand’ 

relationships between different process parameters (SCHUH et al., 2020). Although it is known 

that such objectives are only achieved when information layers supported by PLCs, SCADA, 

MES, and other systems are integrated (TABIM et al., 2021), the results provide empirical 

evidence that the basic integration of information provided by this technology arrangement is 

necessary for all these production targets. This result also clarifies why Dalenogare et al. (2018) 

did not find support for a positive association between Vertical Integration and the expected 

benefits they can produce for operational performance. In that study, the authors considered a 

single construct for operational benefits in which many other production targets were also 

included (and may not be correlated to these technologies). By deploying expected operational 

benefits in only three main production targets, the results showed that there is, in fact, a strong 

association of the three targets investigated with Vertical Integration adoption. Therefore, the 

lack of analysis on trade-offs by Dalenogare et al. (2018) might confound this correlation. 

Moreover, the results showed that Vertical Integration is the only technology 

arrangement highly adopted when companies pursued process quality as the main production 

target (Table 3). Vertical Integration allows one to visualize and analyse what is happening in 

the different stages of the production process (CHIARINI, 2020). Consequently, decision-

makers can quickly detect and correct non-conformities and improve process parameters based 

on the resulting analysis of the data (MISHRA et al., 2018; SOUZA et al., 2020). Furthermore, 

the theoretical view adopted in this study on cumulative production targets argues that 

companies can pursue some complementary targets (FERDOWS; MEYER, 1990). In this 

sense, manufacturing studies have shown that quality and productivity, or quality and 

flexibility are complementary targets in production systems (MARODIN et al., 2019). 
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Consequently, process quality and Vertical Integration are shown in the results as highly 

correlated contributing for the whole Industry 4.0 system, independently whether the company 

may pursue additional manufacturing flexibility or productivity, as represented in Figure 2.  

The findings suggest that two technology arrangements – Virtual 

Manufacturing and Online Traceability – are specific purposes technologies because they are 

adopted when two different competing targets are pursued (DA SILVEIRA; SLACK, 2001; 

GRÖßLER; GRÜBNER, 2006). The findings show that when companies pursue productivity 

as the main production target, besides implementing Vertical Integration, they also implement 

Online Traceability. This latter helps companies track raw materials and product components 

on the shop floor using technologies such as RFID, allowing them to reduce the time of 

supporting material handling activities (such as material identification, product allocation, 

production routing of material inputs, etc.) and, consequently, reduce process inefficiencies 

(GUO et al.,2014; RAMADAN et al., 2016). The combination of Online Traceability with 

Vertical Integration should allow companies to achieve a fully integrated, real-time data flow 

in the manufacturing activity, one of the advantages proposed by the Internet of Things concept 

to increase productivity (WANG et al., 2016; TAO et al., 2018). The real-time data flow helps 

companies understand and make decisions to improve manufacturing indicators such as overall 

equipment efficiency (OEE), take times, or downtimes (LEE et al., 2015; ROSIN et al., 2019).  

On the other hand, when companies pursue manufacturing flexibility as the main 

production target, the findings show that they implement Virtual Manufacturing, 

besides Vertical Integration. The literature has acknowledged that digital tools such as 

simulation, virtual commissioning, and augmented reality help operations managers to make 

complex decisions before taking the risks of physical changes in the manufacturing layout or 

production scheduling (BAYKASOGLU; GORKEMLI, 2017; TAO et al., 2019; BUENO et 

al., 2020). Advanced applications of the Industry 4.0 domain comprehend the creation of cyber-

physical systems by combining Virtual Manufacturing with Vertical Integration, which allows 

simulating changes in real-time based on the information collected from the integrated systems 

from vertical integration (DALENOGARE et al., 2018). Consequently, the findings show that 

Virtual Manufacturing is not mainly adopted when companies aim for productivity as a 

production target but when they look for flexibility. The literature has usually included Virtual 

Manufacturing as a contribution to productivity (AUTOR et al.,2020; BUCHI et al., 2020), but 

this is because such studies have not addressed trade-offs between targets as different main 

options that decision-makers can take when adopting Industry 4.0.  
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The results also show that, while there are two specific-purpose technologies for the competing 

targets, there is also a technology arrangement that should be considered integrative-

purpose because it is adopted for the two competing targets (productivity vs. flexibility). This 

is the case with Advanced Manufacturing Processing Technologies. This arrangement allows 

reconciling two trade-offs. Thus, it is useful to balance manufacturing flexibility and 

productivity, i.e., contribute to the cumulative production targets view of Ferdows and Meyer 

(1990). From a practical perspective, this means that EFA results pointed out that robots, 

collaborative robots, and 3D printing are more prone to be implemented by the same type of 

companies and that such companies are pursuing both competing production targets together. 

In this sense, the literature has acknowledged that 3D printing is still limited for high 

productivity, but it contributes to high flexibility (MELLOR et al., 2013; NIAKI; NONINO, 

2016) and that robots may sometimes be too ‘rigid’ for flexible operations, but help for 

productivity (AUTOR et al., 2020). Nevertheless, manufacturing processes using a technology 

arrangement that combines these characteristics can help achieve an integrative purpose of such 

targets. For example, the literature has reported factories with high join adoption of different 

advanced hardware for Industry 4.0, including robots, collaborative robots, and additive 

manufacturing (3D printing). Such factories would be those pursuing a better balance for a 

cumulative perspective of production targets (SZÁSZ et al., 2020). 

Organizing the Industry 4.0 technology arrangements in a decision model towards 

different production targets aimed  

Considering the discussions on the conceptual framework of Figure 2, the last step to 

understanding the Industry 4.0 technology arrangements obtained is organizing the different 

technologies into a decision path that connects such technologies with the production targets 

they can contribute to. This is represented in the decision model in Figure 3. The model 

describes three main decision paths based on the production target aimed. In the horizontal 

axis, the implementation steps between the different technology arrangements are represented. 

In the vertical axis, the implementation steps within each technology arrangement are 

represented. Next, the rationale behind these steps is explained.  
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Figure 3. Decision model to implement Industry 4.0 technologies according to the expected production targets 

 

First, the model (Figure 3) shows that companies could start with Vertical Integration, as 

usually considered in the maturity models. This start points out visibility and transparency (i.e., 

characteristics of vertical integration) as the first aims (SCHUMACHER et al., 2016; MITTAL 

et al., 2018; SANTOS; MARTINHO, 2019) since this is a general-purpose technology 

arrangement useful to any target. Considering previous studies on Vertical Integration (e.g., 

DALENOGARE et al., 2018; TABIM et al., 2021), it is well established that such 

implementation should start with the usage of sensors and PLCs at the manufacturing stations. 

This will be followed by adopting a SCADA to integrate the data and then adopting an MES 

that allows organizing the activities based on the information flow from the manufacturing 

stations (TABIM et al., 2021). Finally, this will enable achieving a real-time monitoring system 

that can provide scheduling, i.e., an advanced planning and scheduling (APS) based on 

(quasi)real-time operations (BUENO et al., 2020). 

As discussed in the previous subsection, the next step will depend on the specific target 

pursued. Therefore, different paths will be followed depending on each company’s needs 

(Figure 3). The decision model shows that there are no necessary further technology 

arrangements for the Quality target to be adopted. Quality can be controlled through data 

acquisition and monitoring, which is already comprised in Vertical Integration. Still, other 

technologies can serve specific quality purposes, such as using collaborative robots to execute 

quality measures (DORNELLES et al., 2021). In this sense, the model only describes the main 

functions to which such technologies can contribute. On the other hand, 
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for Productivity and Flexibility targets, further steps of implementation must be considered. 

Therefore, Quality is represented as a primary target with a shorter process of implementation 

that will create the base for the other two targets, as represented in Figure 3 with the shorter 

arrow in the horizontal axis. 

The model of Figure 3 shows that when Productivity is the target, Online Traceability should 

be the next step of implementation, following Vertical Integration. This is because it requires 

data acquisition from sensors and data distribution from information systems provided by the 

technologies involved in the first step (ENRIQUE et al., 2022). Regarding the steps 

within Online Traceability, the model emphasizes that raw material traceability would be the 

first necessary step to be monitored to increase shop floor productivity, followed by the finished 

products that will be sent to the inventories. Besides, Advanced Manufacturing can be 

implemented concurrently with Online Traceability, but the model highlights that these are 

more complex technologies that will require greater changes and adaptations of the 

manufacturing production line, being, therefore, one of the last steps of implementation, as 

previously demonstrated by Dalenogare et al. (2018) and Frank et al. (2019). A similar 

sequence of steps is proposed when companies aim for Flexibility (Figure 3). In such a 

case, Vertical Integration is followed by Virtual Manufacturing because the virtualization of 

the manufacturing (e.g., virtual commissioning, simulation, etc.) requires first visibility and 

transparency of the process through the integration of systems (SCHUH et al., 2020). Again, 

Advances in Manufacturing can be implemented concurrently. Still, the benefits should be 

better when there is a virtualization of the factory that allows simulation and organization of 

the way robots and 3D printers will operate (ENRIQUE et al., 2022). Thus, as previously 

discussed, Advanced Manufacturing technologies can be used either for Productivity, 

Flexibility, or even for both combined. This will depend on how such technologies are 

configurated, which demands higher complexity of the implementation (FRANK et al., 2019; 

DALENOGARE et al., 2018). 

2.6 CONCLUSIONS 

This study investigated the relationship between Industry 4.0 technology adoption and 

production targets. The study surveyed 92 manufacturers and analysed which Industry 4.0 

technologies they adopted when pursuing three different targets: productivity, manufacturing 

flexibility, and process quality. It was shown that manufacturers tend to adopt 18 technologies 

analysed in four different arrangements represented by technology clusters: Vertical 
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Integration, Virtual Manufacturing, Advanced Manufacturing Processing Technologies, and 

Online Traceability.  

Theoretical contribution 

Industry 4.0 has been presented as a concept that should be implemented to achieve several 

performance metrics such as productivity, quality, and flexibility (see Appendix A). This 

present study shows that the concept needs to consider different technology arrangements 

according to the different production targets that are aimed to achieve. This study opens a new 

perspective for Industry 4.0 theory by showing the interconnection between specific targets 

and technologies. Firstly, scholars should study the variety of Industry 4.0 technology 

roadmaps that can be implemented based on specific production targets. The message of the 

findings is that Industry 4.0 technologies should be configurated according to the production 

targets pursued by the companies. Therefore, generic models can fail when they do not consider 

the variety of production targets pursued. Secondly, this study showed that production targets 

could compete or be complementary. Therefore, Industry 4.0 arrangements can also be 

combined and configurated to different multi-target approaches. A third theoretical 

contribution of this study is that it provides evidence of how each technology arrangement is 

associated with the pursued production targets. In this sense, Vertical Integration acts as 

a general-purpose technology arrangement for companies to implement any of the production 

targets investigated. On the other hand, Virtual Manufacturing and Online 

Traceability are specific-purpose technology arrangements adopted when companies aim for 

flexibility or productivity. Advanced Manufacturing Processing Technologies (robots, cobots, 

and 3D printing) are useful as an integrative-purpose technology arrangement since they are 

adopted for two competing targets, either for manufacturing flexibility or productivity. Such 

understanding is important for the advance of theory. For instance, flexible operations have 

become the main requisite in companies due to the pandemic impacts (LIU et al., 2021). In 

such a case, the present findings enlighten which technologies are seen as more promising in 

Industry 4.0 adoption to achieve such flexible operations. Scholars can find in these results a 

starting point for investigation of the detailed implementation of such technologies to attend 

the pursued production targets. 

Practical implications 

The decision model proposed (Figure 3) helps operations and technology managers to 

understand which technology arrangement they should choose based on the production target 
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pursued. The main message to practitioners is that they need to consider the production targets 

they aim with the implementation of Industry 4.0 technologies because this will guide the 

adoption of different types of technology arrangements. Practitioners need to question such 

targets to look at the broad picture of Industry 4.0 technologies before adopting specific 

technologies. Then, technologies can be grouped around targets, as shown in the conceptual 

framework that summarizes the findings (Figure 2). From a practical perspective, the study 

shows what technologies are more prone to be implemented together and to attend to the 

specific target expected. This can provide insights for managers that aim to develop their 

Industry 4.0 journey of their factories. 

Limitations and future research 

The research method presented some limitations that should be considered for the reading of 

the obtained findings. Firstly, this study analysed a single industry sector with particularities. 

This sector is mainly focused on lower volumes and high added value. However, the study 

lacks an analysis of manufacturing sectors with large economies of scale, such as the 

automotive or fashion industries. In such sectors, the considered technologies can present other 

behaviour than those considered here.  

Second, the study only considered what we call the first generation of technologies in the 

Industry 4.0 domain, which are focused on obtaining a smart and interconnected factory. 

Recent literature has emphasized the social aspects of the factory, showing that workers should 

be better integrated and enhanced by the Industry 4.0 technologies (MARCON et al., 2021; 

MEINDL et al., 2021). In this vein, Dornelles et al. (2022) showed that AI and AR technologies 

should also be applied to workers’ manufacturing activities like assembly or processing, which 

were not included in our study. As Industry 4.0 technologies and their focus are constantly 

evolving in this emerging field, future studies should address other new technologies in this 

field. 

A third aspect is that the study only considers independent samples t-tests, presenting 

limitations for deeper conclusions. Larger samples would allow other multivariate techniques 

such as regression models that would help obtain explanatory power on the targets pursued 

when different technologies are adopted. The used method helps to detect differences between 

groups but not to know how much each target explains the technologies adopted. Future studies 

could advance in such a direction. 

Regarding future opportunities for research, this study discussed the relationship between 

technology and production targets, which allows understanding why companies implement 
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some specific types of Industry 4.0 technologies. However, this study did not consider 

performance metrics from such technology adoption. Future studies can advance in this 

direction by applying regression models to analyse how the combination of such arrangements 

may increase the different production targets. To this aim, future research should ideally 

consider longitudinal data to verify effects during a longer period since technology adoption 

can require time to become effective. Moreover, the study did not consider the necessary 

investments for the different technology arrangements analysed. Prior research has considered 

technology investment frameworks (e.g., FRANK et al., 2013; ALMEIDA et al., 2022). Such 

studies could be adapted to investigate how companies prioritize their investments in the set of 

technologies that comprise each technology arrangement. For instance, adopting Advanced 

Manufacturing Processing Technologies to integrate flexibility with productivity requires 

investments in robots, cobots, and 3D printing. Thus, a financial appraisal is necessary to 

ensure that such investments are feasible. Besides, technology adoption is a complex process 

that depends of a large number of contingency factors such as company size, demand 

characteristics, corporate strategy, among others (MARCON et al., 2021; ENRIQUE et al., 

2022) that must be analyzed in future studies.  
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digitalization affect 

Industry 4.0 adoption 

by the firms. The 

paper also evaluates 

how these barriers 

influence the linkage 

Structural 

Equation 

Modeling 

Sample 

Size: 143  

Industry 4.0 Adoption Construct:  

-Digital automation but no sensors  

-Sensors in place for process 

control 

 -Remote monitoring with 

production control 

-Sensors for identification of 

operating conditions, products, and 

flexible production lines 

Operational 

Performance: 

-Decrease in 

operating costs, 

-Decrease in time 

required for creating 

and delivery of new 

products,  
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between digitalization 

and the firm's 

Performance regarding 

its supply chain 

competency and 

operational 

Performance. 

  

-Integrated engineering systems 

for development and production 

-Additive manufacturing and 

rapid-prototyping 

-Designing and commissioning by 

simulations and analysis of virtual 

models 

 -Gathering and analysing huge 

datasets (big data) 

-Linking product to cloud and 

using cloud services 

 -Incorporating digital services 

such as IoT in products 

-Successful launches 

of new products,  

-Improvement in the 

quality of products,  

-Rise in product 

innovativeness 

Improvement in 

product capability and 

Performance 

  

Stentoft et 

al., 2020 

This study aimed to 

investigate the drivers 

and barriers for 

Industry 4.0 readiness 

and practice among 

Danish small and 

medium-sized 

manufacturers. 

  

A mixed-

method 

approach 

that 

combines 

elements of 

quantitative 

and 

qualitative 

research 

approaches 

Quantitative 

Approach:  

Mediation 

test  

Sample 

Size: 308 

Industry 4.0 implementation was 

measured using 12 technologies 

grouped into five sub-categories:  

(1) Data, computational power, 

and connectivity (Big Data and 

Analytics, IoT, Cloud Computing, 

Horizontal and Vertical System 

Integration, Mobile Technologies 

and RFID and RTLS systems); (2) 

Analytics and intelligence 

(Artificial Intelligence and 

Simulation); (3) Human-machine 

interaction (Augmented Reality); 

(4) Digital-to-physical conversion 

(Autonomous Robots and Additive 

Manufacturing) and (5) 

Cybersecurity (Cybersecurity).  

  

Performance 

variables as drivers 

for Industry 4.0: 

-To meet the 

Customer 

requirements 

 -To reduce costs  

-To improve time-to-

market  

  

Lia et al., 

2020 

How digital 

technologies influence 

economic and 

environmental 

Performance in the 

new era of Industry 

4.0. 

  

OLS 

regression-

(Mediation 

test) 

Sample 

Size: 188 

Digital technologies Construct:  

-Cloud computing,  

-Big data,  

-Analytics, 

-Internet of Things 

  

  

Economic 

Performance 

Construct: Growth in 

return on sales, 

Growth in profit 

Growth in return on 

investment, Growth 

in sales, Growth in 

market share 

Environmental 

performance 

Construct: 

Reduction of air 

emission, Reduction 

of wastewater, 

Reduction of solid 

wastes, Improvement 

of the firm’s 

environmental 

situation 

  

Gillani et 

al., 2020 

 

This paper studied the 

role played by 

technological context, 

organizational context, 

and environmental 

Structural 

equation 

modelling 

Sample 

Sizes: 931 

DMT construct:  

-Use of advanced processes, such as 

laser and water cutting, 3D printing, 

high precision technologies    

Operational 

Performance 

Construct:  
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context of firms in the 

implementation of the 

digital manufacturing 

technologies (DMT) 

 

-Development towards “the factory 

of the future” (e.g., smart/digital 

factory, adaptive manufacturing 

systems, scalable Manufacturing) 

-Engaging in process automation 

programs (e.g., automated machine 

tools and handling/transportation 

equipment, robots) 

-Engaging in product/part tracking 

and tracing programs (bar codes, 

RFID)  

Flexibility: Mix 

Flexibility, Volume 

Flexibility  

Delivery: Delivery 

Speed Delivery 

Reliability  

Design: New Product 

Introduction Ability 

Product 

Customization Ability  

Quality: Product 

Quality, Conformance 

Quality  

 

Cugno et 

al., 2021 

This paper explores 

the impact of barriers 

and incentives on the 

relationship between 

openness to Industry 

4.0 and Performance.  

  

Mixed-

Method: 

Qualitative 

and 

quantitative 

approach  

  

Quantitative 

Approach: 

OLS 

regression 

Sample 

Size: 500 

The breadth of Industry 4.0: This 

indicator was measured by the 

sums of 10 Industry 4.0 enabling 

technologies. Each technology is a 

dummy variable, coded as zero to 

indicate these were not 

implemented, while one indicates 

these were implemented.  

  

The performance 

variable is a single 

indicator measured by 

the sum of seven 

variables, where each 

is a dummy variable 

coded as 1 to indicate 

perceived 

opportunities. 

-Production 

Flexibility,  

-Speed of serial 

prototypes,  

-Greater output 

capacity, 

-Reduced set-up 

costs,  

-Fewer errors and 

shorter machine 

downtimes, 

-Higher product 

quality and fewer 

rejected products, 

-Customers’ 

improved opinion of 

products,  

-Improved 

productivity of human 

resources  

 

APPENDIX B - QUESTIONNAIRE  

1. Indicate which of the following production targets your company want to achieve with the adopted Industry 

4.0 technologies: 

• Productivity 

• Process quality 

• Manufacturing flexibility 

2. Indicate the degree of implementation of the following technologies from Industry 4.0 in your company. 

Likert scale varying from 1-Not implemented to 5-Advanced Implementation 
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• Process control (PLCs and sensors) 

• Supervisory Control and Data Acquisition (SCADA) systems 

• Manufacturing Execution Systems (MES) 

• Real-time monitoring tools 

• Virtual commissioning tools 

• Machine-to-Machine (M2M) communication systems 

• Artificial Intelligence tools for maintenance 

• Artificial Intelligence tools for Production Planning and Control 

• Process simulation tools 

• Automated failure detection systems 

• Remote operation systems 

• Augmented Reality tools for maintenance 

• Augmented Reality tools for workers training 

• Raw material online traceability in the shop floor 

• Product online traceability in the shop floor 

• Robots for processing activities 

• Collaborative robots 

• 3D printing (additive manufacturing) 
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3. INDUSTRY 4.0 ENABLING MANUFACTURING FLEXIBILITY: 

TECHNOLOGY CONTRIBUTIONS TO INDIVIDUAL RESOURCE 

AND SHOP FLOOR FLEXIBILITY 

 

Daisy Valle Enrique, Erico Marcon, Fernando Charrua Santos, Alejandro Germán Frank 

 

This article has been published in the Journal of Manufacturing Technology Management (JCR:7,457)  

https://doi.org/10.1108/JMTM-08-2021-0312  

 

This paper focuses on understanding the contribution of Industry 4.0 technologies to manufacturing flexibility. A 

multiple-case study was conducted through interviews and complementary data from 12 adopters of Industry 4.0 

technologies from the industrial sector. To enable a broad perspective, cases from 5 industry sectors with different 

technological intensity levels were studied. The findings show that Industry 4.0 technologies are mostly used to 

improve machine flexibility since there is a major focus on technological approaches rather than on wider 

flexibility. The results also showed that cloud services, IoT, and data analytics provide the basis for flexible 

operation, and collaborative robots, ERP/MES/PLM, AGVs, and traceability devices are the most commonly 

implemented technologies for flexibility. However, inherent contingency factors such as production complexity 

and product life cycle need to be considered. This article expands the research on manufacturing flexibility, 

considering new capabilities introduced by Industry 4.0.  

Key Words: Digital Technologies, Industry 4.0, Manufacturing Flexibility, Production Flexibility; Smart 

Manufacturing 

 

3.1 INTRODUCTION 

Industry 4.0 has been leveraged by the exponential growth of digital technologies based on the 

industrial internet of things (IIoT) and other emerging technologies that constitute cyber-

physical systems (CPS) (MEINDL et al., 2021; DALENOGARE et al., 2018). These 

technologies enable manufacturing systems to monitor physical processes and make smart 

decisions through real-time communication and cooperation with humans, machines, and 

sensors (ZHONG et al., 2017). They also help to offer more customized products through an 

advanced and intelligent system, capable of adapting shop floor operations for fluctuating 

demands, producing a different mix of products, and responding to unexpected events (LU; 

WENG, 2018). This often implies a need for more flexible production lines, capable of 

adapting to changes in demand and customer specifications (i.e., customization and change of 

production mix) without compromising productivity (BRETTEL et al., 2016). However, even 

though manufacturing flexibility is considered one of the pillars of the Industry 4.0 concept 

(BRETTEL et al., 2016; LONG et al., 2017), the empirical results of Dalenogare et al. (2018), 

https://doi.org/10.1108/JMTM-08-2021-0312
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at the industry level, and (FRANK et al., 2019b), at the firm level, have shown that companies 

struggle to set up a flexible production system when implementing Industry 4.0 technologies.  

Although flexibility has been widely recognized as a vital competitive priority in 

manufacturing strategy, even before the Industry 4.0 concept was coined, the meaning and 

actual implementation of flexibility remain diffuse, especially when the Industry 4.0 context is 

considered (LONG et al., 2017; PÉREZ-PÉREZ et al., 2018). As compared to traditional 

technologies, Industry 4.0 brings new reconfiguration features, providing new possibilities for 

more flexible manufacturing. Therefore, exploratory studies are needed to better understand 

how companies can take advantage of Industry 4.0 technologies, as well as the best ways of 

implementing and managing these technologies according to their needs (DALENOGARE et 

al., 2018). Additionally, internal and external contingency factors such as product type, size, 

variety, production volume, product complexity, local legislation, and union demands can 

impact how technologies may drive performance and flexibility within a company 

(LUCIANETTI et al., 2018; MARCON et al., 2021).  Thus, the contingency view considers 

the impact of such inherent factors on how the company’s strategy is implemented. It states 

that there is no better way to organize and manage an organization because strategy depends 

on contingency factors (DONALDSON, 2001). This is also expected for flexibility strategies; 

thus, this article also considers these factors in the analysis due to the need to understand their 

relationship with technological and non-technological resources to achieve flexibility (PEREZ 

et al., 2018). 

In this sense, some studies have focused on implementing Industry 4.0 technologies as a 

strategy to increase flexibility (BRETTEL et al., 2016; EYER et al., 2018). Nevertheless, these 

are not in-depth studies, nor do they focus on specific dimensions of flexibility. Thus, this study 

addresses the following research question: How do Industry 4.0 technologies enable internal 

flexibility in manufacturing firms? Aiming to answer the research question, this article employs 

multiple-case studies with twelve technology adopters of these technologies. Different 

concepts of manufacturing flexibility are considered through the analyses of the two main 

levels of internal flexibility, namely individual resource, and shop floor flexibility.  

 

3.2 THEORETICAL BACKGROUND 
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3.2.1 Manufacturing Flexibility – conceptualization and types 

The concept of flexibility has been traditionally seen as the organizational capability to adapt 

to changing circumstances or instability in the environment (EYERS et al., 2018; MISHRA, 

2020). This capability focuses on reconfiguring manufacturing resources and processes using 

minimum time, effort, and resources (URTASUN-ALONSO et al., 2014).  In general, 

manufacturing flexibility is considered a complex, multidimensional concept that is difficult to 

synthesize (SETHI; SETHI, 1990) because it can exist in several different forms in a 

manufacturing firm (KOSTE; MALHOTRA, 1999).   

The various concepts describing flexible manufacturing result in overlaps, duplications, and, 

sometimes, contradictions between studies (EYERS et al., 2018;  PÉREZ-PÉREZ et al., 2018). 

Nevertheless, several authors have tried to reach a consensus on some classifications for 

flexibility (e.g., SETHI; SETHI, 1990; JAIN et al., 2013), which are generally classified from 

two different perspectives: strategic and hierarchical (PEREZ-PEREZ et al., 2016). The 

strategic perspective refers to the relationship between company and environment, and how 

customers perceive its capabilities. It classifies flexibility into two types, internal and external. 

In general, internal flexibility is understood as the competences of the production system to 

deal with resources and production management uncertainties (MENDES; MACHADO, 2015; 

EYER et al., 2018). On the other hand, external flexibility is related to customers' perception 

of a company and comprises market uncertainties and external aspects that directly affect the 

company's strategic positioning (SUAREZ et al., 1996; MENDES; MACHADO, 2015). From 

this point of view, this article focuses on internal flexibility since it addresses technology 

adoption and the competences of the manufacturing line and their impacts on the shop floor 

level. In contrast, external flexibility addresses the capabilities that are achieved due to internal 

flexibility (EYERS et al., 2018). Proposed by Koste and Malhotra (1999), the hierarchical 

perspective states that flexibility is composed of layers, hierarchically organized from the most 

basic individual resource and shop floor levels up to the highest flexibility levels, such as plant 

flexibility. This perspective implies a necessary “flexibility path”, organized from individual 

resources up to a broad, business unit flexibility. Since the focus is on internal flexibility from 

the strategic perspective, this article considers only the individual resource and shop floor 

flexibility levels in the hierarchical perspective. We use these two dimensions, strategic and 

hierarchical, to summarize the most relevant flexibility types cited in the literature and 

discussed next, as shown in Table I. 
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Table 6. Manufacturing Flexibility types 

 Strategic Dimensions Hierarchical Dimensions Flexibility Type 

Internal Flexibility 
Individual Resource Level 

Machine Flexibility 

Material Handling Flexibility 

Labor Flexibility 

Shop Floor Level 
Operation Flexibility 

  Routing Flexibility 

External Flexibility Plant Level 

Process Flexibility 

Product Flexibility 

Volume Flexibility 

Expansion Flexibility 

 

(i) Machine Flexibility refers to a machine's capability to execute various operations without 

incurring high effort from one operation to another or great changes in performance outcomes 

to produce a given set of parts (KOSTE; MALHOTRA, 1999). This type of flexibility depends 

on the existing hardware in the manufacturing line, and it is measured by the number of 

operations that a workstation performs and the changeover time needed to switch from one 

operation to another (JAIN et al., 2013).  

(ii) Material Handling Flexibility is the capability of moving different materials effectively 

through the manufacturing facility, including the loading and unloading of parts, inter-machine 

transport, and storage of parts under various conditions in the manufacturing facility (SETHI;  

SETHI, 1990; EYERS et al., 2018; PÉREZ-PÉREZ et al., 2018). Material Handling flexibility 

also includes the number of possible routes within the factory to transport the parts (EL 

MARAGHY, 2006).  

(iii) Labor flexibility is related to the number and heterogeneity of the tasks that workers can 

perform (KOSTE; MALHOTRA, 1999). According to Tsourveloudis and Phillis (1998), two 

variables influence labor flexibility: level of training, in which flexibility can be achieved 

through education and cross-training programs, and job rotation.  
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(iv) Routing Flexibility is an inherent property of the manufacturing system to produce 

products through alternative routes without incurring high transition penalties or expressive 

changes in performance outcomes (KOSTE; MALHOTRA, 1999; PÉREZ-PÉREZ et al., 

2018). The number of potential routes and the backup machinery during breakdowns 

determines this type of flexibility (TSOURVELOUDIS; PHILLIS, 1998).  

(v) Operation Flexibility is related to the number of potential production plans for the same 

product (KOSTE; MALHOTRA, 1999; EL MARAGHY, 2006). It means that a part can be 

produced using alternative process plans, i.e., different sequences of operations to produce the 

same part. An alternative process plan may be obtained by exchanging or replacing certain 

operations with others (SETHI; SETHI, 1990).  

3.2.2 The link between Industry 4.0 and flexible production systems 

In general, prior studies have proposed production technologies as the driving factor to achieve 

manufacturing flexibility (URTASUN-ALONSO et al., 2014; PÉREZ-PÉREZ et al., 2018). 

Although the literature relating production technologies to manufacturing flexibility concepts 

is large, the emerging concept of Industry 4.0 has intensified the discussion on how to achieve 

manufacturing flexibility when this set of emerging digital technologies is considered 

(DALENOGARE et al., 2018; FRANK et al., 2019).  Industry 4.0 is related in many studies 

with manufacturing technologies that are autonomous, capable of self-controlling and self-

configuring in response to different situations, sensor-equipped and spatially dispersed, and 

that also incorporate the relevant planning and management systems to enhance production 

based on data analytics (LU; WENG, 2018).  

Industry 4.0 considers three main principles that should contribute by implementing digital 

technologies to flexible production systems. First, vertical integration considers the integration 

of the different information layers of the shopfloor and corporate environments, allowing real-

time decision making (TABIM et al., 2021). In this environment, technologies should help 

connect and integrate machines, materials, production planning and control activities (BUENO 

et al., 2020). Second, horizontal integration refers to the capability of cooperating with other 

entities, companies, suppliers, and customers, creating an ecosystem through the use of digital 

technologies (DOS SANTOS et al., 2021; BENITEZ et al., 2020). Technologies for integration 

with external actors should provide more flexibility regarding the plant and supply chain 

activities (BENITEZ et al., 2021). Third, end-to-end engineering integration is associated with 

all activities that add value to a product during the development phase, integrating different 
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functional activities of the company related to the manufacturing system (WANG et al., 

2016a). Industry 4.0 technologies should allow for on-time verification and quick incorporation 

of design decisions into engineering and production processes through end-to-end transparency 

and visibility of required design elements (DALENOGARE et al., 2018). 

These three principles provide capabilities that can enhance integration and collaboration 

between different businesses and manufacturing processes and improve responsiveness and 

decision-making. Moreover, according to several authors, operators are the most flexible 

component of a manufacturing system (EL MARAGHY, 2006; MENDES; MACHADO, 2015; 

DORNELLES et al., 2021). In this sense, different Industry 4.0 technologies can support the 

work of operators (smart working) (FLORES et al., 2020). Dornelles et al. (2021) conducted a 

comprehensive analysis on Industry 4.0 technologies and showed how 18 different 

technologies could provide workers with enhanced capabilities to make their tasks more 

productive and flexible.  

3.3 RESEARCH METHOD 

A multiple-case study approach based on collecting and analyzing qualitative data from 

manufacturing companies utilizing Industry 4.0 technologies was adopted. This research 

approach is useful for building theories based on deep field analysis when researchers need to 

understand how a specific phenomenon happens (YIN, 2009). The guideline proposed by Voss 

et al. (2002) was employed, which is divided into the following main steps discussed next. 

3.3.1 Research Design 

The research was designed following the categories of analysis presented in Table I and 

described in detail in Section 2.1. Manufacturing contingency factors and other challenging 

factors that may affect the contribution of Industry 4.0 technologies to the flexibility concepts 

studied were considered. According to Perez et al., 2018, studies that analyze the relationship 

between contextual variables and technological and non-technological resources are necessary 

to achieve flexibility. Therefore, this aspect was also considered in this article since some 

recent studies on the adoption of advanced manufacturing tools have demonstrated the impact 

of contingency factors on the adoption of advanced technologies and their impact on 

performance (MARCON et al., 2021).  Thus, this broad approach allowed for consideration of 

the complex and broad impacts that Industry 4.0 technologies may have on flexibility.  
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3.3.2 Research sampling 

Considering that flexibility could vary by uncertain factors (YU et al., 2015), a multiple-case 

study approach was followed to understand different manufacturing firm contexts and the 

factors that lead them to invest in different flexibility strategies. Using a multiple-case approach 

allowed to increase external validity and reduce bias from potential observers (VOSS et al., 

2002). For sample selection, leading companies in the implementation of Industry 4.0 concepts 

were chosen. To that end, the researchers asked representatives of the Brazilian Federation of 

Industries to list such companies and their respective contacts. These industry representatives 

work in the Brazilian Chamber of Industry 4.0 and follow most of the initiatives for Industry 

4.0 technology adoption in companies. From an initial list of 60 companies, researchers refined 

the selection to those aiming at manufacturing flexibility as one of their operational targets, 

which resulted in a final sample of 12 companies. These procedures are aligned with those 

suggested when a theoretical sample is selected (YIN, 2009).  The companies studied were all 

large companies. Table II presents more details about the cases. A sample of companies from 

different sectors was selected in order to enable a broader view of manufacturing. Relevant 

features such as market characteristics and production system are also presented to better 

characterize the companies. As shown in this table, the cases present a maximum variance 

approach, which means that the study aims to investigate differences in the selected cases. 

Table 7. Case study description 

Description Sector/ Market  Data Source 

1. American vehicle manufacturer, and provider 

of financial services 

Automotive/ 

Multinational 

Engineering Manager 

2. American company that manufactures 

automotive seating and automotive electrical 

systems 

Automotive/ 

Multinational 

Process Engineer 

3. German company in automotive technology, 

steel and tube production, and engineering 

Automotive/ 

Multinational 

Plant Operation Manager 

4.Swedish manufacturer of commercial vehicles 

(heavy lorries and buses) 

Automotive/ 

Multinational 

Executive Manager 

5. Swiss food and drink processing conglomerate 
Foods/ 

Multinational 

Continuous Improvement 

Coordinator 

6.  Brewing company 
Foods/ 

Multinational 

Industrial Manager 

7. Manufacturer and marketer of home appliances 

Electric 

Machinery/ 

Multinational 

Process Engineer 
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8.  Technology company that sells personal 

computers, tablet, smartphones, servers, and 

storage devices 

Electric 

Machinery/ 

Multinational 

Engineering Manager 

9. German manufacturer of chainsaws, trimmers, 

blowers and other handheld equipment 

Metal-

Mechanical/ 

Multinational 

Vice President of 

Operations 

10. Brazilian conglomerate in the transport 

solutionssector 

Metal-

Mechanical/ 

National 

Process Engineer 

11. Brazilian textile company of adult’s clothing Textile/ National Industrial Manager 

12. Brazilian textile company of children's 

clothing 
Textile/ National 

Continuous Improvement 

Coordinator 

 

Table 8. Manufacturing characteristics of the selected cases 

Case Production Characteristics Industry 4.0 Technologies Flexibility dimensions 

1 

Volume: High   

Product mix: Medium 

New Products: Low 

Robots and AGVs 

Vertical Integration (sensors, MES 

System, ERP System) 

Traceability Technologies (RFID) 

Simulation Technologies 

Machine Flexibility 

Routing Flexibility 

Material Flexibility 

 

2 

Volume: Low  

Production mix: Low 

New Product: Low 

Virtual Guide Systems 

Virtual Training Room 
Labor Flexibility 

3 

Volume: Low  

Production mix: Low 

New Product: Low 

Augmented Reality 

Traceability technologies (RFID) 

to guide workers 

Labor Flexibility 

4 

Volume: High  

Production mix: High 

New Product: Low 

Vertical Integration 

Autonomous Robots 

Machine learning, IoT, and sensors 

Machine Flexibility 

5 

Volume: High  

Production mix: Medium 

New Product: Medium 

Collaboratives Robots and AGVs 

Vertical Integration 

Drones for smart logistic 

Machine Flexibility 

Material Flexibility 

6 

Volume: High   

Production mix: Low 

New Product: Low 

Vertical Integration for machine 

connection and flexibility 

Mobile application to guide 

workers for task variation 

Machine Flexibility 

Labor Flexibility 

7 

Volume: High  

Production mix: High 

New Product: Medium 

Robots, Collaborative Robots and 

AGVs 

Vertical Integration 

Cloud Computing 

Machine Flexibility 

Material Flexibility 

Routing Flexibility 

8 
Volume: Low  

Production mix: High 

Robots and AGVs 

Vertical Integration 

Machine Flexibility 

Material Flexibility 
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New Product: Medium Labor Flexibility 

9 

Volume: High  

Production mix: Low 

New Product: Low 

Virtual Reality 

Robot 

Vertical Integration 

Machine Flexibility 

Labor Flexibility 

Material Flexibility 

10 

Volume: Low  

Production mix: Low 

New Product: Low 

Vertical Integration 

Cloud Computing 

Machine Flexibility 

Routing Flexibility 

11 

Volume: High    

Production mix: High 

New Product: High 

Machine to Machine 

Vertical Integration 

PLM 

Machine flexibility 

12 

Volume: High    

Production mix: High 

New Product: High 

Augmented Reality 

Cloud Computing, Vertical 

Integration and PLM 

AIV 

3D Printing 

Labor Flexibility 

Material Flexibility 

3.3.4 Data collection 

An interview guideline was developed based on the manufacturing flexibility and Industry 4.0 

literature (see Appendix A).  The instrument was composed of open questions addressing the 

types of internal flexibility cited in the literature and the Industry 4.0 technologies defined by 

Frank et al. (2019). The instrument was designed to explore the organizational context, 

technology adoption criteria, flexibility results, manufacturing strategies, successful actions to 

enhance flexibility and identify adoption problems. Data collection was then performed by 

semi-structured interviews with the participation of two researchers. Interviews 

were conducted by videoconference, and the average time of each meeting was 45 minutes. 

3.3.5 Data Analysis – Validity, Reliability and Interpretation 

To ensure reliability and construct validity, multiple sources of evidence were consulted as 

secondary data (VOSS et al.,  2002). Thus, chains of evidence from data provided in the 

interviews were established with other means.  Results were validated by a fellow researcher 

who did not participate in the interviews to avoid bias and misinterpretations and were 

presented in a research seminar with other researchers from the operations management and 

Industry 4.0 field, which allowed to validate the coherence of results according to an external 

perspective. Reliability was also ensured by a study protocol validated in a meeting with other 

researchers and tested before case collection (see Appendix A) (YIN, 2009). 
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For data organization, first, the theoretical basis for the categories was chosen, which served 

as input for coding. Second, coding rules were defined for each category. In this stage, it was 

defined that information on Industry 4.0 technologies should be grouped according to the types 

of flexibility achieved. After these definition phases, data was compiled and organized in the 

relevant categories. Finally, the blocks of information regarding each type of flexibility, the 

technologies related to them, the company’s contingency factors, and challenges for 

implementation were analyzed. Then, the categories and codes to ensure data reliability and 

validity were reviewed, as the constructs needed to be different from each other (VOSS et al., 

2002).  

3.4 RESULTS 

3.4.1 Industry 4.0 enabling Individual Resource Flexibility    

Machine Flexibility   

The results show that the implementation of Industry 4.0 technologies related to machine 

flexibility has the main objective to reduce setup times and enable the manufacturing of a 

greater variety of products. Companies with high production volumes and a smaller variety and 

variability of products, such as Company 1, tend to see robots as an important strategy because 

they allow for greater repeatability and low setup times, producing more units of each type. In 

such a case, the interviewees highlighted that flexibility is not expressed in a high variation of 

items produced but rather by a quick setup when changes are needed. As explained by the 

interviewee, “advanced robots allow for changing the painting system much faster than we 

were able to do manually years ago, and this has given us more flexibility to introduce more 

options in the production line”. However, in the case of Companies 11 and 12 – where soft 

materials are used, the variety of products is wide, and the introduction of new products is 

frequent –, the implementation of robots is not considered viable. As the interviewee from 

Company 12 described: “We produce a huge variety of products. The machines would need to 

learn how to make 10,000 new products every 3 to 4 months. Automation works best when the 

product is not malleable, when it is less variable, and has longer life cycles”. Therefore, the 

use of advanced robots for flexibility is highly dependent on the type of production system and 

its requirements. In high-volume production systems, it can facilitate some operations, 

introducing some levels of flexibility, but this is not the type required when more customization 

and adaptation is needed.  
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Moreover, companies have invested in collaborative robots for two main reasons: ergonomic 

aspects and replacing manual activities that do not add value to the process. According to the 

interviewees, collaborative robots bring flexibility as they can perform various actions and are 

easy to be reconfigured. In addition, the interviewee from Company 6 stated that, through 

hybrid (human-machine) work, manufacturing lines achieve a higher quality of process while 

keeping flexibility. However, the interviewee affirmed that collaborative robots are still 

expensive and challenging to use because they frequently stop due to safety triggers. The 

execution of tasks is slow, causing problems in other indicators, including productivity.  

Companies have also invested in other technologies such as Additive Manufacturing and 

Modular Machines to achieve higher machine flexibility. Additive Manufacturing technologies 

offer a great variety of products and low manufacturing costs. However, its application is still 

limited to the manufacture of spare parts and prototypes because manufacturing large volumes 

of parts using this technology is still difficult, given its production throughput. Besides, a 

contingency factor associated with its adoption is the rather high price of acquiring the 

equipment, and most companies still lack the necessary knowledge to operate them.  Company 

7 avoided facing these problems by implementing machine flexibility through modularity with 

flexible mold machines that automatically change the molds according to the product through 

PLC. This approach guarantees fast setup times, as described by the interviewee from 

Company 7: “We decided to have a machine capable of producing 100% of the models 

requiring no configuration time, with total flexibility and with a quality verification system 

provided by the machine”.  

One of the most commonly implemented initiatives is systems and devices that allow for 

traceability, vertical integration, and artificial intelligence applications. These technologies 

are essential to achieve machine intelligence, as they can identify products and materials, adjust 

machine parameters, and allow automatic intelligent configuration. Some companies employed 

them as a first stage in the implementation of Industry 4.0 to make equipment more intelligent 

and flexible. Companies 5 and 6 (both from the food sector) have implemented software to 

monitor machine parameters and adjust processes and operations depending on the product. 

The interviewees from Companies 4 and 11 emphasized the importance of systems such as 

ERP: “we can have two families of products (and their variations) at the same time; thus, ERP 

is an essential tool to organize production”.   

In addition to the aspects of ERP use, automation linked to data collection was also considered 

important, as it enables machine adaptations without which the systems might become more 



75 

 

 

rigid rather than flexible (Company 10). The interviewee from Company 4 noted that these 

technologies contribute to vertical integration since: “the ERP sends the orders, then MES 

manages the execution of the manufacture. Supervising systems report what is happening on 

the line, and this whole system is enabled by equipment connected using IoT”. Company 10’s 

sensing strategy started with IoT technologies such as RFID and beacons, aiming to reach a 

stage of automatic machine adaptation based on Artificial Intelligence that would allow for 

faster and easier exchange between products. According to the interviewee: “instead of having 

a specific oven for painted products, an adaptation of this oven could automatically 

‘understand’ the product being manufactured and, based on its characteristics, select the 

appropriate paint, temperature, etc.”. Complementarily, some companies have opted for a 

cloud computing service to operate the ERP and MES systems. Even though they do not reckon 

the cloud itself to be a direct driver of flexibility, it does enable higher system availability, 

ensuring that it is constantly operational, and thus resulting in faster response times, visibility, 

and lower costs, as the server is not inside the company (Company 10). 

On the other hand, contingency factors hinder the adoption of cloud and ERP systems. 

Company 1 finds cloud storage too susceptible to data security concerns, which has led them 

to adopt internal servers instead of cloud servers. Also, some companies do not implement or 

use the MES system because they face very high product variation that makes the system hard 

to adapt to the process flow (Company 5). As stated by one of the interviewees, “the production 

flow needs a minimum standard of production sequence for the current MES systems; 

otherwise, the system is not able to provide new configurations for each order that 

manufacturing receives”.  

Furthermore, interviews have shown that machine flexibility is closely related to labor 

flexibility. According to the interviewees, investments in digital technologies focusing on 

machine flexibility bring additional challenges related to worker adaptability. In this context, 

Company 7 reports difficulty in using technologies such as collaborative robots and machine 

vision due to worker knowledge gaps leading to technology underutilization. According to the 

interviewee from Company 9, automation initiatives that aim to support workers with a robot 

require workers trained to program the robot. Thus, it is necessary to change the operators’ 

mindset and develop new digital capabilities to adapt to new ways of working with digital 

technologies, which is not a common capability to be found. Thus, we propose: 
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Proposition 1.1:  Machine flexibility can be supported by technologies that ensure fast setup 

times and easy machine reconfiguration, including advanced robotics, additive manufacturing, 

and vertical integration.  

Besides this technical proposition related to Industry 4.0 technologies, the exploratory 

qualitative approach allowed to identify contingency factors related to each company’s 

production characteristics, as explained above. Thus, a complementary proposition is also 

proposed: 

Proposition 1.2: The implementation of smart machines for flexibility depends on some 

contingency factors such as product variety, product variability, production volume. For 

example, the implementation of robots is a challenge for companies with production systems 

characterized by high variability and short product life cycles due to 

the necessary reprogramming, which is time-consuming and costly.   

Proposition 1.3: The adoption and use of machine flexibility technologies demand workers’ 

flexibility to acquire new digital skills.  

Labor Flexibility  

Regarding Labor Flexibility, the results show that assembly processes in manufacturing are 

generally labor-intensive due to the complexity of these tasks. In the automated stages, labor 

intensity decreases, and operators mainly supervise the machines, making a few interventions 

and reprogramming the equipment. Production volume was also an important factor driving 

companies to invest in labor flexibility or automation. In this sense, companies with lower 

production volumes usually rely on manual activities, mainly due to the cost of investing in 

hard automation, which demands constant reprogramming and setup, implying a longer return 

on investment.   

Some interviewees mentioned focusing on Industry 4.0 technologies that will assist in training 

workers and supporting their tasks, mainly for human error reduction. Interviewer 11, said: “In 

terms of people, a lot of training is needed for workers to be able to manufacture a high variety 

of products with the same productivity.” Company 12 has been researching Augmented Reality 

to improve worker training processes and enable employees to produce more types of clothes. 

A similar approach has been adopted by Company 3, a supplier of axles for the automotive 

sector. According to the company, this technology allows “(…) to identify defects in the 

production cell, and improve operator selection based on their compliance with safety, quality, 

and delivery standards. And we can see the ones who will have more difficulties”. Thus, by 
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understanding operators’ skills and profiles, the company can select the best operators to 

perform complex tasks and build the capacities of those that cannot yet meet the standards. 

Company 2 is similar to Company 3 in production characteristics, and it has invested in 

implementing Augmented Reality software for quality inspection and visual workflow, with an 

operator-controlled camera that maps the product. The company is also planning to implement 

a virtual training room. These initiatives aim at building operators’ skills and adding more 

flexibility to the workforce through the adoption of advanced technologies. This is the case of 

Company 7, which has a project for using smart technologies in maintenance activities. In this 

case, the technology acts as a personal assistant in complex activities. 

Nevertheless, for operational tasks, the use of Augmented Reality and Virtual Reality still seems 

rather limited. The interviewee from Company 9 explained these technologies are still not fully 

adapted for shop floor use, needing some enhancements in their design: “We did some tests 

with Augmented Reality on the production line, and we did not adopt it because the glasses are 

not comfortable, and workers did not get used to them. I think it is still a technology for training 

only. In our company, it is used for product development.” Traceability Systems are also used 

in combination with other tools such as automated poka-yoke devices to avoid problems in 

product assembly. According to Company 3, the just-in-time system combined with 

traceability supports worker flexibility since the company manufactures several models of 

different parts, and this technology allows workers to identify the product being manufactured 

in real-time.  

Proposition 2.1: Advanced technologies for training (e.g., Augmented Reality and Virtual 

Reality) and digital technologies that support workers’ activities allow for labor flexibility 

since they enable operators to adapt to new tasks more quickly and easily. 

Proposition 2.2: The development of more ergonomic technologies, adapted for use in 

production, is an important factor for the work of operators. Thus, these technologies can have 

their use extended from training to other manufacturing areas as well.  

The analysis of technologies adopted for labor flexibility revealed complementary aspects in 

terms of the contingency factors required to supplement them. This is especially true for 

companies with low production volumes and products comprising several parts and requiring 

numerous assembly processes. These companies require great labor flexibility, which can be 

achieved by training workers and also by the adoptions of technologies to support them in the 

production line. For instance, these companies could focus on technologies such as Augmented 
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Reality for a better visualization of processes and activities in training sessions. Besides, they 

can invest in technologies such as pick-by-light, cobots, and tablets to assist workers in 

assembly activities. On the other hand, companies with high production volumes should focus 

more on robotics, as explained in the previous section. 

Proposition 2.3: Labor flexibility can provide better results in low-volume production systems 

demanding numerous assembly processes and several parts. This type of flexibility makes it 

easier to switch between products and processes and can be supported by cobots and smart 

devices.   

Material Flexibility  

Material flexibility is considered a fundamental capacity of systems because, when the product 

mix changes, material transport systems need to guarantee the provision of the right inputs to 

each workstation. According to the interviewee from Company 6, current investments in 

Industry 4.0 technologies for logistics will enable high material flexibility. In fact, Companies 

1, 8, and 11 have invested in technologies to automate material transportation, including AGVs 

(automated guided vehicles), traceability systems, as well as material management using 

production management systems. The interviewee from Company 2 describes the importance 

of AGVs in logistical processes: “AGVs take finished products to a specific storage unit along 

an assigned path. They know in which position to place them due to the identification tag in 

each batch”. The interviewees from Companies 2 and 8 state that investments in AGVs are not 

necessarily linked to flexibility, but rather to a reduction in labor and energy costs due to the 

reconfigurability of these technologies. However, they also offer a level of flexibility in the 

transport of materials. In fact, Company 11 also tested an AIV (automated intelligent vehicle) 

which does not require markings on the factory floor since it defines optimal transport routes. 

However, the company’s products were heavier than the AIV’s maximum load capacity.  

Finally, companies emphasize the use of production management systems, such as ERP 

systems and traceability systems for material management. Company 9 implemented an 

electronic Kanban system connected to the ERP system. While defining the routes, the ERP 

system is fed back and notifies the logistics sector on how much material is missing in a certain 

workstation. In the case of Company 1, material programming and supply chain are also linked 

in the ERP system. The integration of suppliers into the company's system ensures that 

production orders are automatically sent to the suppliers’ systems, which will then manufacture 

and supply the auto parts in the same order as needed by the assembler.  According to the 

interviewees from Companies 1 and 3, nowadays, variations in companies’ production 
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planning considerably impact the whole supply chain, especially when the company-supplier 

relationship is closer. Thus, companies need to have greater horizontal digital integration for 

more efficient material and service provision. 

Proposition 3.1: The use of advanced technologies to transport materials, as well as vertical 

and horizontal integration, supports material flexibility as they all optimize operations and 

automate logistics. 

Proposition 3.2: As customer-supplier relationships become more closely connected, 

companies should invest in technologies that provide the horizontal integration required to 

improve flexibility in material supply. 

Besides the technological aspects described in the two propositions above, contingency 

elements were also identified, as described in the following proposition: 

Proposition 3.3: Contingency factors related to physical restrictions of a product (e.g., weight, 

rigidity, volume) can pose difficulties to transportation technologies linked to material 

flexibility.  

3.4.2 Industry 4.0 enabling Shop Floor Flexibility   

Operation flexibility 

Operation flexibility refers to the number of different production plans for the same product. 

According to the interviewees, one of the main tools used to define their sequencing plans is 

simulation software, as it allows to digitally test different sequencing plans without having to 

change the production line. In addition, other technologies assist in expediting product design. 

Company 7 uses 3D printing for rapid prototyping, which helps quickly test new components 

and parts that need to be assembled in the plants. Moreover, Company 9 reported the use of 

PLM systems to support the integration between product development and manufacturing, with 

real-time data making integration between the two functional activities faster and more 

effective. 

By asking the interviewees about the characteristics of technologies that will enable operation 

flexibility, we also identified product design as a contingency factor deeply interrelated with 

Industry 4.0 technologies. First, this type of flexibility will depend on product design, i.e., 

whether the products are designed to be flexibly manufactured or not. Even if the company has 

a high level of flexibility in terms of resources, it will find difficulties changing the sequence 

of operations if the product follows a rigid manufacturing process. According to the 
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interviewees from Companies 1 and 10, the production sequence is usually specified based on 

the technical structuring requirements of products and on the resources necessary for their 

production. In this sense, the interviewee emphasizes the importance of design for 

manufacturing, that is, a reduction in product complexity leading to a reduction in setup times. 

As argued by one interviewee: “Digital technologies will not significantly impact sequence 

flexibility if the products were not designed considering flexibility aspects, such as modularity. 

Thus, we must think more systemically and consider product design together with the 

manufacturing technology”.  

Product modularity was highlighted as another key contingency factor in product design. 

Modularity aims at designing more products with fewer components, by using “modules” that 

can be integrated into several different products. Such an approach contributes to better use of 

Industry 4.0 technologies in processing a high mix of components. For instance, an interviewee 

from Company 11 explained that “major retailers in the textile sector standardize the shape of 

each piece of clothing, which is then distributed to all suppliers. This concept of modularization 

should be explored, as our collections are becoming more complex, and variety is increasing”. 

Company 10 works with the make-to-order system for truck production, and the company has 

worked to increase customer proximity to better understand its increasingly complex and varied 

demands. Thus, the company has had to use modular systems for product customization, given 

its need to deal with so many different part numbers in the same place.  To meet such a level 

of customization, Company 4 has designed a whole new factory focused on product traceability 

and pulled production tools in combination with information systems. 

Proposition 4.1: The use of product development technologies such as 3D printing for 

prototyping, PLM, and simulation tools for planning contributes to operation flexibility as they 

expedite any necessary adjustments between product design and manufacturing and the choice 

of plant for production. 

Our exploratory approach allowed us to identify not only characteristics of the Industry 4.0 

technologies but also complementary product design elements that are contingency factors to 

the implementation of such technologies, as described above and summarized in the following 

proposition: 

Proposition 4.2: Flexible design approaches such as modularization and design for 

manufacturing play a contingency role in implementing operation flexibility. The use of 

Industry 4.0 technologies should be combined with such product design approaches to improve 

flexibility. 
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Routing flexibility 

Regarding routing flexibility, the interviewee from Company 2 explained that all machines are 

connected to an Andon system, which automatically notifies which machine is the source of 

the problem in case of failure through. If a robot stops in the body shop and paint shop stations, 

the line stops, but the plant manages to continue production due to intermediate buffers defined 

in the process design steps. This is an example of a vertical integration system in which 

different layers of information are interconnected to execute the operations. Moreover, for 

Company 10, the visibility of production offered by vertical integration affords flexibility to 

make changes in the line: “in low demand, we change the products in the line to achieve better 

resource utilization. This is possible because we have visibility from the factory to tell if 

production is going as planned”. However, the interviewee from Company 7 remarks that 

differences in technological levels between manufacturing lines make such changes 

difficult.  Also, vertical integration plays an important role in both routing and operation 

flexibility, since managing a flexible sequence of operations and routes requires an integrated 

system, and vertical integration allows to send information about the next production mix to 

all workstations automatically when a quick change in production is necessary. 

Furthermore, the interviewees highlighted that this type of flexibility is also closely associated 

with process design. According to interviewees 1, 4, and 9, the process of designing new 

sequencing plans and new line layouts needs the support of simulation tools that will allow 

visualizing the line design and virtually simulating all line parameters, equipment, and buffer 

sizes. This tool brings flexibility gains because it improves layout changes, as noted by the 

interviewee from Company 4: “We can implement product changes more quickly through 

simulation, so we do not need to stop production for testing, and consequently, the 

implementation of changes is more accurate”. 

Proposition 5.1:  Vertical integration provides greater visibility of the company's production 

lines, which supports the reconfiguration of system routes. 

Proposition 5.2:  The impact of Industry 4.0 technologies on Routing Flexibility is limited by 

how processes were designed. 

3.4.3 Summary of the findings 

The findings and propositions are summarized in Table III. This table shows the main 

technology dimensions and specific technologies related to each type of flexibility. The table 
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explains how these technologies contribute to them. The table also summarizes the contingency 

factors identified for each specific type of flexibility, as described above in the results. 
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Table 9. Summary of the findings 

Dimension Technology Machine Labor Material Operation Routing 

Base 

Technologies 

Cloud Computing Availability and remote access of management information and control systems 

Data Analytic, Big Data, AI  Analysis and data collection allowing to monitor the behavior of the equipment and maintain the availability of the machine, reduce downtime, optimize setup times 

Traceability System (IoT, RFID, 

GPS) 
Automated identification and tracking of production items (raw material, components, products, etc.) 

  

Vertical 

Integration 
Sensor, MES, SCADA, ERP  

Production control, machine connection and 

reprogramming, according to changes in 

product mix and volume 

 

Control of availability and supply of 

materials and reconfiguration of the 

material handling system 

Integration with suppliers to improve the 

flexibility of material supply 

Control and configuration of re-

sequencing  

Visibility of 

production and 

readjustment of 

sequencing and routes 

Multi-purpose 

Machine and 

Robots  

 

Collaborative robots, Smart and 

Self-programmable machines, CNC  

Equipment intelligence allows greater 

adaptability. 

Automatic reprogramming of machines 

according to product mix 

       

3D Printing 

Production of a wide variety of three-

dimensional objects. It is used in the 

manufacture of spare parts for faster 

maintenance and to avoid line stoppages 

    

AGVs e AIV for moving inventory 

or work in progress 
  

Transport and allocation of raw 

materials according to scheduled 

operations and routes 

  

Modelling or 

simulation for 

production and 

operations 

Simulation, Digital Twin       
Simulation in designing processes, 

sequencing, routes, buffers, etc 

Simulation in 

designing processes, 

sequencing, routes, 

buffers, etc. 

 

Worker 

enhancement 

tools 

Augmented reality, Virtual reality, 

Digital Guide Systems, Mobile 

Applications. 

 

Augmented and virtual reality technologies are used 

as training support tools, for more efficient training, 

multitasking preparation, and improving safety and 

quality indicators. 

Support for workers' tasks: Mobile applications and 

inspection systems guide worker in daily tasks 

 

 

 

 

 

 

  

 
 

Product 

Development 

Tools 

Simulation modelling for product 

design (Virtual Reallity e 

Augmented Reallity, simulation) 

   

Technologies support design for 

manufacturing, which influence the 

design of more flexible sequences 

 

 PLM system      

 Digital prototype (3D)    

Prototype validation associated with 

design tools for 3D visualization that 

can allow for faster product 

development and simulate various 

manufacturing sequences 

 

Contingency factors identified 

Product variety, product variability, production 

volume 
Friendly and ergonomic technologies 

Product’s physical restrictions (e.g., 

weight, rigidity, volume). 

Flexible design approaches such as 

modularization and design for 

manufacturing 

Process characteristics 

Flexibility from workers to acquire new digital 

skills. 
Low-volume production systems    
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3.5 DISCUSSIONS  

Complementarily to the findings summarized in Table III, the framework represented in 

Figure 1 proposes a conceptual understanding of Industry 4.0 technologies, their 

interconnections, and contributions to the different types of manufacturing flexibility. 

This framework explains how companies pursue internal flexibility by adopting Industry 

4.0 technologies. As depicted in the framework, companies perceive Industry 4.0 

technologies as enablers of different internal manufacturing flexibility strategies. In this 

sense, findings show that Cloud Computing, Big Data, IoT, and Data Analytics (including 

AI techniques) impact all dimensions of flexibility. Therefore, they can be treated as 

general-purpose or base technologies to support manufacturing flexibility capabilities 

(FRANK et al., 2019). These technologies alone do not ensure flexibility, but they allow 

for the identification and traceability of products, machines, and materials and provide 

real-time data on the operation, enabling faster decision-making.  

The findings also showed that specific technologies are necessary to ensure flexibility 

requirements for the individual-resource and shop floor levels, as illustrated in the 

framework (Figure 1). Figure 1 also shows that as the results and other studies indicate, 

achieving different dimensions of flexibility highly depends on contextual factors such as 

the company’s production volume, type of process, product variety, life cycle, and 

complexity (ANDERSEN et al., 2018).  
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Figure 4. Conceptual framework summarizing the empirical finding 

 

The results showed that companies seek flexibility mainly through investments in 

equipment (i.e., based on individual resources for manufacturing). Meanwhile, they pay 

little attention to broader flexibility approaches, such as developing new routines and 

processes. Such a lack of attention to flexibility has been highlighted by Dalenogare et al. 

(2018) when they explained some of the reasons why industries do not achieve 

operational flexibility as one of their main benefits from Industry 4.0. As they explain, 

factory preconditions bias Industry 4.0 investments, limiting what companies can 

implement for flexible production lines (DALENOGARE et al., 2018). Thus, the need 

for investments to improve company infrastructure is one of the biggest challenges for 

the achievement of flexibility (CONTADOR et al., 2020). The literature corroborates this 

view, showing that flexible production lines are one of the least implemented paths due 

to previous factory arrangement limitations (FRANK et al., 2019). Therefore, the 

proposed framework highlights the importance of broader conditions and factors that 

managers should consider. In this sense, as depicted in the framework, the multiple 

sources of flexibility (people, technology, processes, etc.), their interrelationships, and 

the existence of contingency factors should be analyzed (YU et al., 2015).    

The results showed that companies give greater attention to machine flexibility. To this 

end, cobots, additive manufacturing, modular machines, and machines with AI are the 

most commonly employed technologies. They provide machines with connectivity and 

intelligence capabilities, allowing easier reconfigurability, faster setup, and better system 

and machine interconnectivity. Moreover, the results analyzed show that vertical 

integration technologies (i.e., integration of ERP, MES, and PLM) are necessary 

preconditions for flexibility, enabling greater information exchange to support the 

operation of flexible lines (FRANK et al., 2019; TABIM et al., 2021). This is in line with 

previous literature that found that through Industry 4.0 technologies, companies expect to 

improve production planning and control, increase the company’s global 

competitiveness, and the quality of production lines (CONTADOR et al., 2020). 

The results showed that in companies with high product variety and short life cycles, the 

implementation of advanced technologies such as robots is difficult because they must be 

reprogrammed frequently, increasing production times and costs. In such cases, 

technologies enhancing labor productivity and flexibility are much more useful since 
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workers are still the most flexible part of the manufacturing system (DORNELLES et al., 

2021). On the other hand, companies with high-volume, low-variety production 

environments seem to require highly automatized special-purpose machines to achieve 

market competitiveness. This productivity/flexibility trade-off is in line with mass 

manufacturing premises, as illustrated by the problems with collaborative robots, which 

are highly flexible but constantly stop operating.  Similarly, multipurpose machines can 

manufacture several products, but setup times usually reduce their productivity. Thus, 

even though Industry 4.0 focuses precisely on overcoming this problem, developing 

highly automated machines that are easy to reprogram, flexible, and highly productive 

still seems to be a challenge. 

Worker adaptation to Industry 4.0 technologies was the most frequently mentioned 

challenge for flexibility since workers currently lack the necessary knowledge and 

training to operate the technologies (DORNELLES et al., 2021). Industry 4.0 requires a 

different type of worker, capable of performing cognitive work, including data 

processing, interpreting information, and decision making (ORTT et al., 2020). This is 

also true for flexibility purposes. Besides, operators can participate in design and 

decision-making, providing operational information for greater work flexibility. 

Although these technologies are important, their design is still a limitation for wider use. 

A more ergonomic and flexible design allows for better configuration processes and helps 

operators with more complex tasks (LONGO et al., 2017). Despite the potential of these 

technologies to assist workers, their use is still limited, and only a few companies employ 

them in dedicated production applications, such as maintenance and quality inspection 

(HOLM, 2018).  

Material flexibility offers opportunities to manufacture products by different routes, 

increasing machine utilization and reducing flow time.  Traditionally, automated material 

handling systems are not designed to be reconfigurable, and changes in layouts and 

material flow directions often require significant downtime for physical modifications 

and rescheduling. As the framework shows, with Industry 4.0 technologies, new 

opportunities arise to create flexible material handling systems, production management 

systems (ERP, MES), and material traceability systems, which are recognized as basic 

and essential technologies to enable the management of many materials within the 

factory.   Moreover, autonomous vehicles such as AGVS enhance flexibility in terms of 

ease of programming and automatic reconfiguration of transport routes. However, their 
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use is still limited by physical aspects of the product, such as the size and volume of 

transported materials.  

The results also pointed to the importance of integrating suppliers through systems to 

better manage the materials that enter the line, as also stated. Supply chain flexibility is 

normally considered a key solution to reduce risks related to market uncertainties. 

Therefore, the literature points out that manufacturing flexibility requires hierarchical 

analysis within the company and horizontal integration with the supply chain (YU et al., 

2015).  

Companies face serious difficulties in obtaining shop floor (i.e., Operation and Routing) 

flexibility. This is mainly because these two types of flexibility largely depend on the 

efforts necessary for flexible planning and process and product design, such as design for 

manufacturing techniques. In this sense, companies define their sequencing of operations 

and routes to optimize production times and process quality, which restricts the flexibility 

of the lines. In the case of routing flexibility, this may be because it requires high 

availability of alternative resources (EYERS et al., 2018), which does not seem to be part 

of the flexibility strategy of the companies studied, probably because their targets were 

restricted to resource efficiency. This is in line with the flexibility and capital efficiency 

trade-off reported by Chan (2006). 

Additionally, the companies studied primarily focus on increasing quality and 

productivity; thus, they invest in dedicated resources and equipment for each type of 

product, limiting routing flexibility (EYERS et al., 2018). On the other hand, the digital 

transformation of the factory floor could allow for greater line visibility, which can be 

helpful if companies need to manufacture a certain product in another line. To this end, 

simulation technologies can be an important tool for managers to define new route plans 

(CHAN, 2006). 

In Operation Flexibility, companies indicated that changes in operation sequencing are 

still a major barrier. Companies tend to define the production sequence according to the 

product's technical requirements or to optimize the line, making sequencing changes 

difficult to affect.  As Figure 1 depicts, simulation tools can support Operation Flexibility 

as they enable process modeling and analysis to seek alternative operations sequencing. 

According to the results, a solution to this may be an approximation between product 

design and manufacturing to design products focusing on manufacturing and thus 
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achieving operation flexibility. Thus, PLM and CAD systems are useful tools to translate 

knowledge between the areas.   

The results also evidenced the importance of other concepts which are contingency 

factors to the Industry 4.0 technologies analyzed, such as modularity (mentioned by 

Company 7). These systems can be integrated with the CPS to manage complex, 

customized manufacturing processes and quickly adjust production capacity and 

functionality over time (MORGAN et al., 2021). Also, lean tools, ERP, and MES are 

expected to help flexibility when combined with Industry 4.0 technologies (MARCON et 

al., 2021). Andon systems combined with IoT allow equipment to react to error alerts, 

stop work, or change product routes (ROSIN et al., 2019). Electronic Kanbans can 

automatically detect their inventory levels and order parts, enabling a more diverse 

configuration for different product designs (MARCON et al., 2021). Furthermore, IoT 

can ensure that the right products go to the right workstations and automatically redirect 

products in case of errors, which is part of the Jidoka principle. The complementarity of 

these concepts to the firm’s contingency factors is crucial for flexibility and productivity.  

 

3.6 CONCLUSIONS 

This article addresses a research gap by analyzing empirical data on the relationship 

between Industry 4.0 technologies and different types of internal flexibility. Although 

flexibility has been widely researched, Industry 4.0 brings a new perspective to this 

concept with technologies that enable connecting machines, visualizing production, and 

diminishing setup times to augment flexibility on the shop floor. This study contributes 

to the flexibility literature by discussing the necessity of Industry 4.0 base technologies 

to achieve more flexibility since they enable vertical integration, equipment connectivity, 

and information on the shop floor to allow product identification, increasing workers’ 

skills. Moreover, systems such as MES, SCADA, and ERP enable flexibility given their 

capability to provide real-time information directly to the shop floor. Based on these 

empirical findings, a framework is proposed describing the link between the different 

types of flexibility and the Industry 4.0 technologies associated with them, and the 

contingency factors that influence Industry 4.0 technologies for flexibility. 
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Managerial Implications 

The findings show that managers must consider flexibility systemically rather than take 

an isolated perspective. The concept demands design efforts, changes in the production 

line layout, workers’ adaptation, and technologies to enable it. Besides, contingency and 

environmental factors that enable flexibility should be analyzed. In this sense, this article 

provides insights to managers on how internal contingency factors (those related to 

market and manufacturing contexts) and external contingency factors (investments, 

educational level, and product/technological innovation) impact technology 

implementation. While a comprehensive analysis of these factors should be considered, 

practitioners are recommended to focus on product design aspects, market variety 

demand, and the necessary investments initially.  

Also, information systems allow technologies to work in an integrated way, while specific 

technologies provide and receive directions from them. This is not the usual perspective 

adopted by companies, as they tend to firstly adopt a flexibility-enabling technology, 

isolated from the rest of the system, while the bigger picture is considered only as an 

afterthought. The results show that this is a problematic approach since it tends to create 

isolated flexibility spots whereas the shop floor remains optimized for mass 

manufacturing. To avoid this problem, managers must develop the foundations of a 

flexible system by adopting base technologies, integrating the data generated by them 

with information systems, and rethinking product design and manufacturing processes 

jointly.  

Limitations and Future Research  

This study has some limitations that bring opportunities for future research. The study 

focused on companies in the Brazilian context; however, it is important to analyze 

companies in the context of other countries. Also, internal and external contingency 

factors that influence the adoption of technologies for flexibility should be studied in more 

detail, especially in smaller companies and companies with specific manufacturing 

contexts, such as lean companies or companies with a highly integrated supply chain. 

Another limitation is that this study does not intend to be prescriptive on how to 

implement manufacturing flexibility. As shown in the findings, several contingency 

factors can limit and shape the way technologies are implemented for flexibility. 

Therefore, this paper introduced the main variables that practitioners need to consider, 
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which were introduced as main propositions. Future research can develop quantitative 

studies with large samples to further expand the insights generated in this article and find 

potential implementation patterns to establish prescriptive models. Still regarding future 

research, studies analyzing how Industry 4.0 technologies influence supply chain 

flexibility could bring important insights, as this article’s results demonstrate that the 

integration of suppliers is an important aspect of flexibility, and these technologies are 

important drivers of integration. Moreover, quantitative studies evaluating the impact and 

problems of organizational, social, and product-related contingency factors on Industry 

4.0-enabled flexibility are expected to complement this article’s results.  
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APPENDIX A. GUIDE TO THE INTERVIEW EXAMPLE 

a. Please provide a brief explanation of your company, its market, main products, 

operations, production system, etc. 

b. What criteria does your company focus on when investing in technologies? 

(Productivity, Costs, Flexibility). Is flexibility an important criterion for your 

company? 

c.  Explain what types of flexibility your company is looking for and why.  

d. Describe which processes allow your company to be more flexible and its 

manufacturing strategies. 

e. What types of Industry 4.0 technologies are important in your company to 

achieve such flexibility? What factors are considered before investing in these 

technologies for flexibility?  

f. What were the most successful actions taken by your company during the 

adoption of these technologies for flexibility? And what were the most difficult 

problems? 

g. What is your company’s expected future investment to achieve the desired 

flexibility? 
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The growing environmental business uncertainties have forced companies to focus on developing more 

flexible supply chains. Digital transformation has been considered a key mean to achieve such flexibility, 

but the literature lacks empirical evidence about how digital technologies effectively contributes to it. Thus, 

this study aims to analyze how Smart Supply Chain (i.e., a supply chain enabled by digital transformation) 

contributes to supply chain flexibility and operational performance in environments surrounded by 

customer and supplier uncertainty. We adopt the organizational information-processing theory to explain 

the fit between information needs to reduce these uncertainties through more supply chain flexibility 

(sourcing, delivery, and manufacturing) and information capabilities provided by three main dimensions of 

the Smart Supply Chain (digital transformation strategy, digital base technologies, and digital front-end 

technologies). We relate these information-processing fit between Smart Supply Chain and flexibility with 

the boundary conditions of environmental uncertainty and operational performance improvements. Such 

relationships are analyzed through moderation and mediation regression tests based on 379 manufacturing 

companies surveyed. Our findings show that Smart Supply Chain has significant effect on operational 

performance through the sequential mediating role of the three supply chain flexibility dimensions. We also 

found that environments with high customer uncertainty increase the use of base technologies (IoT, cloud, 

big data, AI, and blockchain) to reach delivery flexibility and support manufacturing flexibility. When 

companies face a high supplier uncertainty, they use front-end technologies (i.e., robotics, 3D printing, 

simulation, and augmented reality) to increase sourcing flexibility. We show new advances in the field of 

supply chain flexibility through digital transformation. 

 

Key Words: Digital Transformation, Industry 4.0; Business Uncertainties, Smart Supply Chain, Supply 

Chain Flexibility. 

 

4.1 INTRODUCTION 

For several decades, global value chains focused on building stable operations alongside 

the supply chains based on long-term inter-organizational relationships and cost 

efficiency through countries' specialization (BERGER et al., 2005). However, this 

scenario has dramatically changed recently due to several market uncertainties provoked 

by situations like international commercial trade conflicts, the COVID-19 pandemic, or 

regional wars (EL BAS; RUEL, 2020). Additionally, the growing proliferation of 

emerging technologies has also created technological uncertainties (FRANK et al., 2022). 

Therefore, increasing operational flexibility has become a key priority for companies to 
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deal with uncertain conditions in this new global scenario (SREEDEVI; SARANGA, 

2017; ENRIQUE et al., 2022). This flexibility is recognized as the ability of companies 

to react to changing environments by adapting necessary processes quickly and with 

minimum use of resources (SCHNEEWEISS; SCHNEIDER, 1999; PÉREZ et al., 2016). 

Flexibility is not only limited to the company boundaries; rather, it is a multidimensional 

concept that comprises the whole operations from the internal production to the external 

supply chain activities (SETHI; SETHI, 1990; KUMAR et al., 2006). However, achieving 

such flexibility is extremely difficult because the supply chain is a complex system 

configurated by intra-organizational and inter-organizational relationships that take time 

to react and adapt to changing situations (SEEBACHER; WINKLER, 2015).    

With the advent of the 4th Industrial Revolution, new opportunities have been envisioned 

to increase supply chain flexibility (DOLGUI et al., 2020). Some scholars have proposed 

that companies can develop Supply Chain 4.0 or Smart Supply Chains, i.e., a supply chain 

enabled by digital transformation to improve information flows and operations activities 

(MEINDL et al., 2021; FRANK et al., 2019). The literature has highlighted digital tools 

like the Internet of Things (IoT), Artificial Intelligence (AI) that can help to integrate 

different tiers of the supply chain through real-time data flow (BÜYÜKÖZKAN; 

GÖÇER, 2018; LIU et al., 2022). Such tools can also help to automate and anticipate 

decision-making (SHARMA et al., 2022), and they enable hardware applications like 3D 

printing for quick provision of spare parts (CHAN et al., 2018; DELIC; EYERS, 2020) 

and advanced robotics for transportation and distribution (MEINDL et al., 2021). These 

are only some of the examples provided by the literature about how a Smart Supply Chain 

can use emerging technologies to be more flexible. However, most of the studies that 

focus on the Smart Supply Chain and operational flexibility do not consider the several 

different dimensions that represent a Smart Supply Chain (MEINDL et al., 2021). Since 

Smart Supply Chain comprises both strategic and technological aspects of the digital 

transformation (NASIRI et al., 2020), more evidence is still necessary about an 

integrative and holistic perspective of its contribution to increasing the required 

flexibility. 

Furthermore, although the literature has defended the relevance of digital technologies 

implementation and more flexibility in the supply chain activities (e.g., HARTLEY; 

SAWAYA, 2019), there is a lack of empirical evidence of what happens with the firm's 

operational performance when these two perspectives are combined. Prior studies have 
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considered how information technologies contribute to supply chain integration and 

flexibility (e.g., SWAFFORD et al., 2008; JIN et al., 2014; HUG et al., 2017). However, 

when digital tools such as IoT, big data, AI, or blockchain are considered, the literature 

is still incipient about their contribution to supply chain flexibility and their combination 

to increase operational performance. This is important because prior results have also 

shown that, in some cases, when information systems in the Industry 4.0 are integrated, 

they can become less flexible to adapt to different situations (TABIM et al., 2021). 

Although the literature has demonstrated that Smart Supply Chain can positively affect 

performance (LIU et al., 2022), supply chain flexibility can also help performance under 

uncertainties (MERSCHMANN; THONEMANN, 2011), little is known about their 

combination to increase performance. Thus, what happens when these different elements 

are combined, especially in turbulent contexts of high uncertainty? Can Smart Supply 

Chain support supply chain flexibility and, therefore, increase operational performance 

when companies face uncertain environments?  

We aim to explore the role of Digital Transformation in supply chain operations – what 

we call Smart Supply Chain – to support supply chain flexibility when facing uncertainty 

in upstream and downstream relationships. We also aim to analyze how a combination of 

Smart Supply Chain and flexibility contributes to operational performance. We explore 

the organizational information process theory (OIPT) to address the proposed questions. 

This theory affirms that firms facing uncertain environments will require to process more 

information which can be supported by the development of information processing 

capacity (FAN et al., 2016; SRINIVASAN; SWINK, 2018; WONG et al., 2020). We 

argue that Smart Supply Chain is a form of information-processing capacity that can help 

overcome such uncertainties and increase supply chain flexibility and operational 

performance. We test these relationships through a quantitative survey with 379 

companies which was analyzed through regression and bootstrapping techniques. Our 

results show how the three dimensions of Smart Supply Chain, namely digital 

transformation strategy, base, and front-end digital technologies, are associated with three 

types of supply chain flexibility, i.e., sourcing, manufacturing, and delivery flexibility. 

We show complete and partial mediating effects of these three supply chain dimensions 

between Smart Supply Chain and operational performance, which enlightens the 

mechanisms through which companies increase performance when dealing with market 

and technological uncertainties as boundary conditions. Our results contribute to the 
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debate on digital transformation in supply chains, showing how Smart Supply Chain can 

be effective for the uncertain contexts in which more flexibility is required. 

4.2 THEORETICAL BACKGROUND 

4.2.1 Supply Chain Flexibility and new opportunities in the Digital Transformation 

era 

Supply chain flexibility is considered as the ability of companies to react to changing 

environments by adapting necessary supply chain processes quickly and with minimum 

use of resources (SCHNEEWEISS; SCHNEIDER, 1999; PÉREZ et al., 2016). Flexibility 

has been one of the main concerns of the operations management literature for several 

decades (SANCHEZ; PÉREZ, 2005; STEVENSON; SPRING, 2007). Seminal papers 

proposed the main dimensions of flexibility (DUCLOS et al., 2003; KUMAR et al., 2006) 

and forms of configurations of the flexible supply chain (GARAVELLI, 2003; KUMAR 

et al., 2008). Although the concept remains the same over the time, how to achieve and 

the results produced change because new technologies, practices, and contextual factors 

emerge, creating new conditions to study it (YU et al., 2015).  

Completing 250 volumes, the International Journal of Production Economics (IJPE) has 

made important contributions to this field, one of the main operations management 

journals studying supply chain flexibility. Different studies from this journal have 

contributed to understand several antecedents of internal and external flexibility sources 

(e.g., TANG; TOMLIN, 2008; BLOME et al., 2014; SEEBACHER; WINKLER, 2015). 

Other ones have been focused on the conditions and risks for such implementation 

flexibility (e.g., KESSEN et al., 2010; SEEBACHER; WINKER, 2015; SREEDEVI; 

SARANGA, 2017) and contributions when supply chain flexibility is achieved (e.g., 

TANG; TOMLIN, 2008; FRANCAS et al.,2009; GOSLIN et al.,2010; WAGNER et 

al.,2018; SHEKARIAN et al., 2020). Also, the IJPE literature has presented important 

literature reviews on this topic, such as Yu et al. (2015) and Kamalahmadi and Melat 

(2016), that showed how vast this topic has been for researchers in the whole operations 

management community, including also other top-tier journals of the field, and also 

special issues like the one from Chang and Lin (2010) that covered new opportunities in 

the field.   

Regarding our proposed research problem, two streams deserve more careful attention. 

The first one is that previous studies have already acknowledged the role of supply chain 
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flexibility under uncertainty, demonstrating the importance of it as a boundary condition 

(DAS; ABDEL-MALEK, 2003; MERSCHMANN; THONEMANN, 2011; JAFARI et 

al., 2020). This has been addressed not only by the IJPE community but also in studies 

published in other field journals (e.g., MANDERS et al.,2017; ROJO et al.,2017). Such 

studies recognized that supply chain flexibility is highly required when the business 

environment becomes more turbulent and companies face uncertain conditions. On the 

other hand, prior literature has addressed the role of information technologies integration 

in the supply chain to support more flexible supply chains (e.g., SWAFFORD et al., 2008; 

JIN et al.,2014; HUG et al.,2017). In general, such studies argue that integrating 

information technologies from the supply chain partners will be important for the supply 

chain to anticipate disruptions and become more agile in adapting the supply chain to 

changing scenarios.  

Thus, why should we consider the contribution of digital transformation (Smart Supply 

Chain) to supply chain flexibility when information technologies have already been 

addressed in this field? The first answer is that digital technologies should not be treated 

simply as information technologies. While information technologies consider the 

background for digital transformation, as they enable computerization of the information 

processing, providing software and hardware, and information exchange between sources 

and recipients, digital transformation goes a step forward (SCHUH et al., 2020). Digital 

transformation comprises at least four base technologies: IoT, Big Data, Cloud 

Computing, and AI (FRANK et al., 2019; MEINDL et al., 2021). In the case of supply 

chains (Smart Supply Chain), it is also extended to the adoption of blockchain 

technologies (ESMAEILIAN et al., 2020; AGI; JHA, 2022). Such technologies bring a 

different perspective into the supply chain field because they enable a real-time 

information flow and the massive amount of data that can be processed to increase 

prediction capacity (BÜYÜKÖZKAN; GÖÇER, 2018). For instance, Agrawal et al. 

(2018) provide an example of Amazon, which improves prediction capacity based on Big 

Data and AI in the supply chain to change in the future from a business model based on 

buying-then-shipping to shipping-then-buying. As argued by the authors, this was not 

possible with information technologies integration, but now it becomes more feasible 

with Big Data and AI mechanisms. Such situations are examples in which digital 

transformation can become a new factor to enhance supply chain flexibility. 
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Furthermore, digital transformation in the supply chain (Smart Supply Chain) is also 

represented by new front-end technologies like collaborative robots, 3D printing, or 

augmented and virtual reality, which can also be useful in the supply chains (MEINDL et 

al., 2021). Such technologies are enhanced by base technologies like IoT, cloud, or AI 

and can become a competitive factor in achieving flexibility. Therefore, this new context 

creates new conditions for the study of supply chain flexibility, as previously 

demonstrated by Enrique et al. (2022) in the manufacturing context, where flexibility has 

also been investigated for a long time. Still, now Industry 4.0 has created new conditions. 

4.2.2 Organizational Information-Processing Theory (OIPT) 

Smart Supply Chain is enabled by the base technologies that promote digital 

transformation (IoT, Cloud Computing, Big Data, AI, and Blockchain) (MEINDL et al., 

2021). Even when such technologies can be present in front-end applications (FRANK et 

al., 2019), the main background of them is that they enhance the information processing 

capacity of firms through new forms and velocity of analysis that for innovation of the 

supply chain activities (YU et al., 2021). Therefore, we propose to analyze this digital 

transformation process from the Organizational Information-Processing Theory (OIPT) 

perspective (GALBRAITH, 1974). This theory considers that companies have 

information-processing needs to perform their activities. Such needs should be attended 

to through the information-processing capability. The organizational information-

processing fit that a company should meet when information needs and capability are 

matched will help increase organizational performance (PREMKUMAR et al., 2005).  

According to Premkumar et al. (2005), information processing is needed to reduce 

contextual uncertainties that companies face, and technologies can provide the 

information-processing capability to support such needs. Therefore, we follow this theory 

as it represents well our aim to investigate Smart Supply Chain and supply chain 

flexibility under uncertainty. First, Smart Supply Chain should provide the information-

processing capability, as it comprises digital strategies and technologies that create the 

firm's conditions to process a high amount of information and data through decision-

making processes (e.g., the anticipation of demands, pricing definition, etc.) and 

operational activities (e.g., a cobot can process data from the environment to react and 

response as required) (FRANK et al., 2019; MEINDL et al., 2021). Second, the 

achievement of operational flexibility under turbulent conditions will depend on how the 

company processes the information needed to make the right decisions (SWAFFORD et 
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al., 2008; BLOME et al., 2014). In recent studies, this view about the organizational 

information-processing fit between digital technologies and flexibility through the OIPT 

has also been considered. For instance, Yu et al. (2021) analyzed the role of big data 

analytics to create information-processing capability and attend operational flexibility in 

hospitals, while Srinivasan and Swink (2015, 2018) associated supply chain integration 

and visibility with planning comprehensiveness and analytic capabilities under 

organizational flexibility. Such studies provide a robust background to support the 

adoption of this view in our empirical investigation. 

4.2.3 Hypotheses development 

We use the OIPT theory to propose the conceptual research model represented in Figure 

1. We investigate the effects of Smart Supply Chain on supply chain flexibility as a form 

of organizational information-processing fit between the information-processing 

capacity and the information-processing need to achieve supply chain flexibility. We also 

argue that supply chain flexibility enhances operational performance (H2), mediating 

between Smart Supply Chain and operational performance (H2). This hypothesis is 

divided into two sub-hypotheses H2a and H2b, since we argue that source and delivery 

flexibility are antecedents of manufacturing flexibility. Finally, we propose that supply 

chain uncertainties act as a moderator in both relationships, between Smart Supply Chain 

and flexibility (H3) and between flexibility and operational performance (H4).  

To consider our hypotheses, we follow the holistic view of supply chain flexibility 

proposed by Koste and Malhotra (1999) and Kumar et al. (2006). According to this view, 

supply chain flexibility covers both internal and external dimensions. The internal 

dimension is related to the manufacturing flexibility, i.e., the company's ability to respond 

to environmental uncertainty by adjusting the operational process to deliver the requested 

volume and mix of products and introduce and modify products (KUMAR et al., 2006). 

On the other hand, external flexibility is related to network-oriented flexibility. It refers 

to a company's ability to respond to environmental uncertainty by configuring the supply 

chain and adjusting the flow of materials and information through sourcing flexibility and 

delivery flexibility (STEVENSON; SPRING, 2007; FANTAZY et al., 2009). Sourcing 

flexibility refers to maintaining a flexible supply base through efficient supplier 

relationship management by developing collaborative approaches with key suppliers and 

making joint decisions (SREEDEVI; SARANGA, 2018). Delivery Flexibility, in turn, is 
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related to the development of a flexible delivery strategy, adopting different kinds of 

transportation modes, and the capacity to change the warehouse layout and material and 

product handling (MAQUEIRA et al., 2020). Next, we detail the proposed hypotheses 

represented in Figure 5 that connect Smart Supply Chain, uncertainties, and operational 

performance with these three forms of supply chain flexibility. 

 

Figure 5. Conceptual research model 

4.2.4 Smart Supply Chain enabling Flexible Supply Chain in the context of 

environmental uncertainty   

Smart Supply Chain can be defined through two main dimensions, the strategic 

perspective of the supply chain digital integration and the technology perspective of 

digital solutions for supply chain operations (MEINDL et al., 2021). Moreover, the 

technology perspective can be divided into base and front-end technologies, Frank et al. 

(2019) proposed for Industry 4.0 technologies. Base technologies are cross-cutting digital 

technologies focused on real-time data integration across the supply chain, and digital 

solutions run by IoT, big data, cloud computing, and AI (MANAVALAN; 

JAYAKRISHNA, 2018; Shao et al., 2021). Besides, blockchain technologies are also a 

key base technology in supply chain operations (ESMAEILIAN et al., 2020; AGI; JHA, 

2022). On the other hand, front-end technologies comprise hardware technologies runed 

by digital base technologies that aims to provide solutions to the supply chain operations, 

like 3D printing (DELIC; EYERS, 2020), robotics (REALYVÁSQUEZ- VARGAS et al., 

2019), simulation tools and augmented and virtual reality tools (REJEB et al., 2021; 

DORNELLES et al., 2022). We argue that these three dimensions (digital transformation 
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strategy, base technologies, and front-end technologies) contribute increasing supply 

chain flexibility. 

Regarding the digital transformation strategy, this dimension considers all the 

organizational efforts that the company makes to facilitate the implementation of digital 

technologies (NASIRI et al.,2020). This dimension also considers the openness that 

companies have to integrate data with external partners of the supply chain and how 

companies integrate supply partners to become more digitalized (BENITEZ et al.,2022). 

Consequently, this dimension is a keystone to becoming more flexible in the supply chain 

operations since the digital transformation strategy will define the way companies aim to 

develop their flexibility through digital solutions (HOLMSTRÖM et al., 2019; 

ENRIQUE et al., 2022). For instance, the supply chain will need to have more integrated 

data in centralized cloud solutions to become more flexible. This will be only feasible if 

companies are more open to sharing and integrating strategic information of their 

operations instead of behaving opportunistically with access to information from other 

partners (SON et al., 2021). Without a strategic orientation toward digital transformation, 

companies tend to be technology 'fashionistas' but not leaders that provide an agile 

organization to the changing environment (WESTERMAN et al., 2014) 

From the technology perspective, base technologies allow the capture, analysis, and 

dissemination of large amounts of data to develop a smart supply chain (MANAVALAN; 

JAYAKRISHNA, 2018; SHAO et al., 2021). When supported by AI tools, such 

technologies can make better predictions and anticipate supply chain demands (OH; 

JEONG, 2019; TOORAJIPOUR et al., 2021). They also facilitate the synchronization of 

internal operations based on more proactive production planning and control processes 

(BUENO et al.,2020) and better visualization of the different layers of the supply chain 

(WANG et al.,2016). Moreover, real-time visibility of the supply chain is one of the 

starting points of a flexible supply chain that can adapt quickly to different changes. It is 

only possible when the various supply chain partners are integrated through IoT solutions 

run on cloud systems (DALENOGARE et al.,2018; DOS SANTOS et al., 2020). Thus, 

base technologies should also be an antecedent of supply chain flexibility. 

Finally, the front-end technologies are responsible for executing operational activities of 

the supply chain management based on the use of collected and analyzed data by base 

technologies. For instance, computer simulation can improve supply chain flexibility by 

simulating if forecasting could improve product routes and change production volume 
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(TERZI; CAVALIERI, 2004). Furthermore, some employees' use of augmented reality 

could also change warehouse space by guiding employees in more efficient ways to 

organize and structure the storage (REJEB et al.,2021; DORNELLES et al.,2022). The 

collaborative robots also improve flexibility given by the direct participation of 

employees in the most complex work and control phases and by eliminating the structural 

and technological limitations of automatic and fixed systems (REALYVÁSQUEZ-

VARGAS et al.,2019). As shown qualitatively by Enrique et al. (2022), these are essential 

tools to increase the internal operational flexibility of Industry 4.0-oriented companies. 

As argued by these authors, these tools tend to be more flexible when the systems need 

to reconfigure routes and types of products to be produced. Some preliminary studies 

have also shown the usefulness of these tools alongside the supply chain. For instance, 

Delic and Eyer (2020) showed the benefit of 3D printing of flexible spare parts 

repositioned alongside the supply chain. Meindl et al. (2021) have also argued that 

simulation and virtual tools could also be useful for supply workers to reschedule and 

readapt quicker for their distribution or internal logistics activities. These are some 

examples that indicate that front-end digital technologies should support the supply chain 

flexibility of companies.  

Based on our arguments regarding the above three dimensions of Smart Supply Chain, 

we argue that they should support the whole supply chain flexibility, as stated in the 

following hypotheses.  

H1: Smart Supply Chain (i.e., digital transformation, base digital technologies, and front-

end digital technologies) is positively associated with higher levels of supply chain 

flexibility (source, manufacturing, and delivery flexibility).   

4.2.5 Smart and Flexible Supply Chain to increase operational performance in the 

context of environmental uncertainty  

Several authors have widely recognized the impact of Smart Supply Chain on operational 

performance in the digital transformation field (e.g., BUCHI et al., 2020; CHAUHAN et 

al., 2020). For example, IoT and Big Data analytic tools allow the collection and analysis 

of data about supply chain operations and product performance, which can improve 

logistics operations and manufacturing practices (PORTER; HEPPELMANN, 2014; 

BUCHI et al., 2020). Also, new digital technologies enable a closer approach to the 

customer and, consequently, the development of more customized solutions (BENITEZ 
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et al., 2022). Thus, the adoption of Smart Supply Chain tools should help companies 

improve their response to market demands, elevating the supply chain operational 

performance.  

However, as Enrique et al. (2022) argued, digital technologies may have little 

contribution when they are not oriented before to support the structure of the company. 

These authors show that Industry 4.0 technologies can increase organizational flexibility, 

which will result in higher firm performance. Such results were evidenced by Enrique et 

al. (2022) in internal manufacturing activities, which we extend to the external supply 

chain operations. A company will be able to meet customer demands for product delivery 

better if the products can be flexibly manufactured or assembled and also if the incoming 

materials are also flexibly supplied (ZHANG et al., 2005; MAQUEIRA et al., 2020). 

Thus, the smart supply chain could potentialize the supply chain flexibility to improve 

operational performance. For example, companies can use machine learning to deepen 

the understanding about their operations and predict future customer behavior, so they 

can improve delivery time and reduce logistics costs (TOORAJIPOUR et al., 2021). At 

the same time, they also need to create good coordination between suppliers and 

distributors to ensure material and product flow according to the machine learning 

predictions. In this sense, front-end technologies such as robots are recognized for 

guaranteeing great machine flexibility that allows to produce a large variety of products 

in the same production line to respond the customer demand (ZHONG et al., 2017; 

ALCÁCER; CRUZ-MACHADO, 2019). However, the impact of robots is limited 

because the process and product need to be designed in a flexible way to facilitate the 

manufacturing of several products (DALENOGARE et al., 2018; ENRIQUE et al., 2022). 

In that way, companies will improve their operational performance efficiently because 

the adoption of digital technologies will impact on supply chain flexibility and operational 

performance. Therefore, manufacturing companies will be taking better advantage of the 

use of technologies, enhancing its use through flexibility, and achieving their desired 

operational performance goals.  

H2: Supply Chain Flexibility mediates the relationship between Smart Supply Chain and 

operational performance.  

However, the literature also argues that sourcing and delivery flexibility are necessary for 

manufacturing flexibility (DUCLOS et al., 2003; MALHOTRA; MACKELPRANG, 

2012, LIAO, 2020). For instance, in lean production, flexible management of the 
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relationship with suppliers and quick adaptation to the customer demands are essential 

elements to increase the agility and response of the internal production system 

(MARODIN et al., 2017). This means that upstream and downstream supply chain 

behaviors are antecedents of how manufacturing will be configured. This is especially 

important in the Industry 4.0 context, where data collected from products and from the 

suppliers' activities will help to organize the manufacturing production and planning 

based on integrated data from these external sources (FRANK et al., 2019b; BUENO et 

al., 2020). Therefore, we subdivide hypothesis H2 on the mediating role of supply chain 

flexibility between Smart Supply Chain and operational performance as follows: 

H2a: Sourcing flexibility is an antecedent of manufacturing flexibility in the mediating 

role of supply chain flexibility between Smart Supply Chain and operational performance. 

H2b: Delivery flexibility is an antecedent of manufacturing flexibility in the mediating 

role of supply chain flexibility between Smart Supply Chain and operational performance. 

4.2.6 Supply chain uncertainties as boundary conditions between Smart Supply 

Chain and flexibility 

Turbulent business environments create uncertainties in the companies' structure that 

require a response, reinforcing companies' decisions on technology investment or 

triggering some new implementations (FRANK et al., 2022). The literature has shown 

that turbulent environments interact with digital transformation by reinforcing digital 

technologies' relevance to achieve organizational goals (CHEN; TIAN, 2022; LI, 2022). 

We use the OIPT to argue that this is because under uncertain conditions, in which 

companies have more information-processing needs to be able to make the right 

decisions. They will focus on increasing information-processing capability to fit such 

needs, which can be achieved through digital technologies like Smart Supply Chain 

(SRINIVASAN; SWINK, 2018; YU et al., 2021). Such supply chain uncertainties can be 

rooted in two different sources: upstream uncertainties provoked by supplier's disruptions 

and changes, and downstream uncertainties caused by the customers' rapid demand 

changes (MERSCHMANN; THONEMANN, 2011). Thus, we propose the following 

hypotheses H3: 

H3: Supply Chain uncertainties positively moderate the relationship between Smart 

Supply Chain and supply chain flexibility.  
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At the same time, the literature has also demonstrated that environmental uncertainty acts 

as a moderator between supply chain flexibility and firm performance (MERSCHMANN; 

THONENMANN, 2011). Supply chain flexibility is more pursued when companies face 

turbulent environments and need to adapt quickly to changing organizational contexts in 

order to keep competitiveness (CANDANCE et al., 2011; SHEKARIAN et al., 2019). A 

good practical example of this was during the pandemic of COVID19, when global 

manufacturers started to change their focus toward more flexible factories that can 

quickly change their production features in order to reset any disruption in the supply 

chain (EL BAZ; RUEL, 2020; BELHADI et al., 2021). Following the OIPT view, 

achieving higher flexibility because of the increase of information-processing capability 

through its antecedent (i.e., Smart Supply Chain, as hypothesized in H1) will help to fit 

to the information-processing need to be able to reconfigure the organizational processes 

quickly in uncertain environments (i.e., flexibility required, as hypothesized in H2 and 

H3), which should help to obtain better organizational performance (PREMKUMAR et 

al., 2005). Therefore, flexibility will increase when supply chain uncertainties are present, 

and Smart Supply Chain supports such flexibility. Thus, we propose the following 

hypothesis: 

H4: Supply Chain uncertainties positively moderate the relationship between supply 

chain flexibility and operational performance. 

4.3 RESEARCH METHOD 

4.3.1 Sampling 

Our research was carried out through a cross-industry survey with experts in the supply 

chain and operations management fields. The target respondents were top executives, 

directors, and managers, especially from large manufacturing firms operating in Brazil 

(location of the survey) with mass production models on their shop floors. This was 

necessary since firms that develop or aim to develop flexible systems usually are large 

firms with a vast product portfolio and a volatile market demand (market-push trajectory) 

(CASTELLACI et al., 2008). To validate our questionnaire, we sent a preliminary version 

to executives from the supply chain and operations management field and obtained 27 

feedbacks regarding our survey. Then, our questionnaire was sent three times to our target 

population via email through SurveyMonkey platform from the beginning of October till 

the end of November 2021. We obtained a total of 399 answers with a total of 379 useful 
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answers to our analysis. Because our survey was designed for supply chain and operations 

management field, we asked about the enterprise’s supply tier, which was represented by 

67.81% in tier 1, 23.75% in tier 2, and 8.44% in tier 3. As expected, most of the 

respondents were from large companies representing a total of 83.91% of our sample 

population. To measure this, we followed the IBGE’s (2015) classification which defines 

500 or more employees as large companies. The overall respondent profile was essentially 

composed by directors (42.48%), managers (34.04%), and coordinators or supervisors 

(15.56%). Table 10 shows our population composition and further details described in 

this section. 

Table 10. Population description and composition 

Description (%) Category Description (%) 

Automotive 19.79% 
Company size 

Small and medium 

companies 
16.09% 

Non-durable consumer goods 19.79% Large companies 83.91% 

Durable consumer goods 10.29% 

Supply chain's 

tier 

Tier 1 67.81% 

Electronics 6.33% Tier 2 23.75% 

Construction 6.33% Tier 3 8.44% 

Chemicals and Petrochemicals 6.33% 

Respondent's 

profile 

Director 42.48% 

Agribusiness 6.07% Manager 34.04% 

Energy 4.49% Coordinator or Supervisor 15.56% 

Mining 3.43% President/Vice/CEO 5.28% 

Steel Industry 3.43% Owner/Partner owner 2.64% 

Capital goods 3.17%    

Pharmaceutical 2.37%    

Paper And Cellulose 1.58%    

Digital industry 1.06%    

Agriculture production 1.06%    

Transport 0.53%    

Others 3.96%       

4.3.2 Survey instrumentation 

The survey instrumentation was based on pre-formatted constructs retrieved from the 

literature on flexibility, digital transformation, supply chain, and operations management. 

To this study we utilised five blocks of questions: (i) sample composition; (ii) digital 

transformation; (iii) flexibility; (iv) supply chain uncertainty; and (v) supply chain 

performance. Our utilised items are presented in Appendix A, which highlights our main 

statistical results regarding item grouping. For Smart Supply Chain, we utilised three 

constructs namely [FRONT-END], [DT_STRATEGY], and [BASE]. These constructs 
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were retrieved from previous studies of Frank et al. (2019), Nasiri et al. (2020), and 

Meindl et al. (2021) about digital transformation in manufacturing. The first, known as 

[DT_STRATEGY], we retrieved from Nasiris et al. (2020) study and formed a four-item 

scale construct that comprises the strategical aspects and goals regarding digital 

transformation implementation in supply chains. This construct considers aspects like 

digitize all supply chain, data collection from different sources, the creation of a stronger 

communication network between different sectors, and improvement of the interface with 

customers through digitization (NASIRI et al., 2020). For the constructs related to 

Industry 4.0 technologies, we adopted a composite measure for them. In other words, 

because the different nature and purpose of Industry 4.0 technologies (e.g., IoT connect 

systems, while AI give decentralized decision to flexible systems), our approach was a 

formative construct (i.e., the sum of indexes) rather than a reflexive construct normally 

deployed by techniques like Confirmatory Factor Analysis (CFA).  

For front-end technologies [FRONT-END] we considered a four-scale formative scale 

including simulation, augmented reality, 3D printing, and robotics. According to Frank 

et al. (2019) these technologies are considered front-end technologies in Industry 4.0 

because they enable the four ‘smart’ dimensions (MEINDL et al.,2021) which are 

concerned with operational and market needs. Therefore, they have an end-application 

purpose for the companies to enable Smart Supply Chain. For base technologies [BASE], 

a five-item formative scale composed by Internet of Things, Cloud Computing, Big Data, 

Artificial Intelligence, and Blockchain was formed. Four of these technologies (IoT, 

cloud, big data, and AI) are considered base in Industry 4.0 because they are necessary to 

allow companies digital transformation process (Frank et al., 2019). Moreover, 

blockchain is also considered a base technology in supply chain management literature 

(FREDERICO et al., 2019; QUEIROZ; WAMBA, 2019; MEINDL et al., 2021) since it 

is a paramount for secure transactions and relationships alongside supply chain’s ties. 

For supply chain flexibility, we considered three major types of flexibility used in 

literature: sourcing flexibility [SOUR_FLEX], delivery flexibility [DEL_FLEX], and 

manufacturing flexibility [MAN_FLEX]. According to Kumar et al. (2006) and Sreedevi 

and Saranga (2017) sourcing flexibility is defined as the extent of responsive ability 

through the use of supplier-specific capabilities and the use of interorganizational 

collaborative capabilities in upstream relationships. Thus, SOUR_FLEX is a four-item 

scale composed by features as quick new supplier identification, easiness to add or 
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remove suppliers, openness and easiness to make contractual adjustments with suppliers, 

and mutual decision with main suppliers about product/project/process design 

modifications. On the other hand, delivery flexibility is the ability of a firm to quickly 

and effectively adjust the inventory, packaging, warehousing, and transportation of 

physical products to meet customer needs (JIN et al., 2014; SREEDEVI; SARANGA, 

2017). DEL_FLEX is a four-item scale construct which considers the easiness to add or 

remove carriers or distributors, easiness to change warehouse space and load capacity, 

easiness to change merchandise delivery schedule, and the existence of a defined and 

flexible delivery strategy. Finally, manufacturing flexibility refers to the ability of the 

organization to manage production resources and uncertainty to meet various customer 

requests (ROJO et al., 2017; SREEDEVI; SARANGA, 2017; MAQUEIRA et al.,2020). 

MAN_FLEX has five-item scales which correspond to the ability to operate with various 

production volumes and different service levels, the efficiency to change production 

volumes and/or services, the ability to produce various combinations of products, the 

capability to develop new products and/or services every year, and the ability to change 

the mix of products and/or services efficiently.  

In the case of supply chain uncertainty, we used two constructs: supplier uncertainty 

[SUPPLIER_UN] and customer uncertainty [CUSTOM_UN] mostly used in supply 

chain literature to measure supply chain relationships uncertainty (JAWORSKI; KOHLI, 

1993; MERSCHMANN; THONEMANN, 2011; QI et al., 2011; SREEDEVI; 

SARANGA, 2017; ZHOU et al., 2019). For SUPPLY_UN we measured this construct 

by including a three-item scale of uncertainties related to materials and components prices 

bought by the company, dependence on suppliers’ materials for production, and frequent 

supplier material delays handling. For CUSTOM_UN we also measured this construct 

with a three-item scale by considering uncertainties related to customers preference 

frequent change, frequent product and service demands from new customers, and new 

customers with different needs than the current customers. Finally, for performance we 

measured two constructs, one for our original model (Operational Performance) and 

another one for our robustness check (Financial Performance). OPER_PERF was 

measured with a three-item scale including improvement in the last two years in delivery 

reliability over customer orders, lead time, and order time reduction (MERSCHMANN;  

THONEMANN, 2011; YU et al., 2018; MAQUEIRA et al., 2020). While FINAN_PERF 

(FLYNN et al., 2010; JAYARAMAN et al., 2013; ASARE et al., 2013; YU, 2015; 
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SAEED et al., 2019; AMOAKO-GYAMPAH et al., 2020) was measured with a three-

item scale construct: sales grown, profit on sales increasement, and market share grown 

in the last two years. 

Finally, regarding our control variables, we controlled the firm size and supply chain tiers, 

since it can affect how firms make their processes more flexible and digital (THOMÉ et 

al., 2014; GLIGOR, 2018, DELIC; EYERS, 2020).  We used one dummy for size [large 

= 1; 0 = small or medium], and two dummies for three level of supply chain tiers (tier 1 

– B2C; tier 2 – B2B of finalized goods and solutions; tier 3 – B2B of raw-material and 

basic components).  

4.3.3 Construct definition and variable handling 

To build our constructs, we used confirmatory factor analysis (CFA) approach to 

ascertain unidimensionality of our metrics. Overall, our constructs showed goodness of 

fit, since our reference values for the Comparative Fit Index (CFI), Root Mean Square 

Error of Approximation (RMSEA), Average Variance Extracted (AVE), Composite 

Reliability (CR), and Cronbach’s Alpha fell in the acceptable values (HAIR et al., 2018), 

as shown in our Appendix A. In respect to our factor loadings reference values, all items 

showed a good or high factor value, which explain their aggregation in the referred 

construct. Moreover, as previously explained, for technology constructs (BASE and 

FRONT-END) we adopted a formative approach by summing the scales from the 

respondents. This was necessary since the technologies are in essence different, however, 

we reported some indexes like Alpha’s Cronbach and factor loadings to evidence their 

consistency. Lastly, we measured the final and complete model including all constructs 

and our model showed a goodness of fit (RMSEA = 0.060; CFI = 0.884; Δχ2: 1231.27). 

As recommended by Hair et al. (2018), we also checked discriminant validity by using a 

series of two-factor model estimations among the constructs. Since our model has 7 

independent constructs, we performed a factorial (k-1) approach, totalizing 21 tests for 

discriminant validity. As recommended by Cable and DeRue (2002), we performed 

pairwise comparisons between CFA models for each construct, looking for their 

respective goodness of fit. In the first step the correlation between the two constructs was 

restricted to a unit. In the second step the model restriction was freed, and we calculated 

the goodness of fit for the original constructs. In this test, all the results showed 

discriminant validity (Δχ2 > 3.84, p-value p < 0.01), evidencing our constructs are 

measured with theoretically different concepts (BAGOZZI et al., 1991). As a final test, 



111 

 

 

we assessed the normality of our data by examining the skewness and kurtosis values. 

The results suggest that our variables for the general model are normally distributed since 

all values fall between the thresholds of ±2.58 (α = 0.01) (HAIR et al., 2018). We also 

analyzed the means, standard deviations and the correlations for our constructs and 

control variables incorporated in the model. Appendix B summarizes all descriptive 

statistics, as well as normality and correlations. 

4.3.2 Response bias and common method variance  

Because bias can be a potential issue in survey design, we employed a series of procedures 

and statistical medicines to attenuate it as recommended by Podsakoff et al. (2012). 

Firstly, because our survey is composed by single respondents, common method variance 

(CMV) can be a potential concern. As initial procedure, we pre-validated the 

questionnaire with 27 executives from supply chain and operations management field to 

better clarity our utilised instruments. We randomized the order of the questionnaire 

blocks to prevent potential associations between the variables to avoid social desirability 

bias. For the magnitude of CMW, we employed the Harman’s single factor test in which 

a single factor loads on all measured items from our model. This test suggests if the total 

variance extracted by one factor exceeds 50%, common method bias is present in your 

study (PODSAKOFF et al., 2012). The single factor explained 25.51% of the total 

variance indicating CMV is not a concern in our study. However, since other authors 

(WILLIAMS et al., 2010; SIMMERING et al., 2015) recommend other approaches to 

measure CMV, especially for single respondents, we also performed the marker variable 

technique. 

The marker variable technique considers adding a variable to the survey, which is 

expected to be theoretically unrelated to the substantive variables measured in the model 

(LINDELL; WHITNEY, 2001). We used “use of human resources from external partners 

to develop digital transformation in the supply chain” as a marker, since our model was 

oriented to internally development of digital transformation and not outsourcing. When 

added to our models the marker variable did not perform a significant change in the 

models (i.e., most of sigma from F-change were above the threshold of 0.1 or the model 

did not suffer a significant influence from the addition of this variable). This item was 

added in all estimations necessary for hypothesis testing and the results were compared 

with the outputs without markers. The results remained stable with the adding of a marker 
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variable, which means that there were no significant changes in the models. Hence, we 

concluded that response bias should not be a concern in this dataset. 

4.3.3 Data analysis 

For data analysis, we performed a set of hierarchical OLS regression models to test our 

hypotheses. To this end, we first standardised all independent variables using a mean-

centring Z-score. Overall, we tested four OLS models, where the first stage of each 

hierarchical regression was a model only with the control variables. Depending on the 

model, the hierarchical set from the following stages was different. For instance, for 

DEL_FLEX and SOUR_FLEX the second stage was the inclusion of digital 

transformation constructs (DT_STRATEGY, FRONT-END, BASE), while the third 

stage was uncertainty constructs and the fourth stage the moderation effects from 

uncertainty. For MAN_FLEX, the second stage was the inclusion of digital 

transformation constructs and the third stage the inclusion of DEL_FLEX and 

SOUR_FLEX constructs. Finally, for OPER_PERF, the second stage was the inclusion 

of flexibility constructs, the third stage was the inclusion of uncertainty constructs, and 

the fourth stage the moderation effect of uncertainty constructs. For mediation effect, we 

performed the PROCESS macro from Hayes (2017). To assess mediation effects, we 

calculated the indirect effects of the relationships as suggested by Preacher and Hayes 

(2008). PROCESS analysis allows for a bootstrapping procedure to examine the 

conditional indirect effects, a more powerful procedure than Sobel's z test to test for 

mediation effects (Zhao et al., 2010). We set up 5,000 bootstrap samples as suggested by 

Preacher and Hayes (2008). Our final model contains three control variables (size, tier1, 

and tier2), eight independent variables (FRONT-END, DT_STRATEGY, BASE, 

DEL_FLEX, SOUR_FLEX, MAN_FLEX, CUSTOM_UN, and SUPPLIER_UN) which 

some (flexibility) are considered dependent in some models, and one dependent variable 

(OPER_PERF). 

Furthermore, to start our regression models some assumptions like linearity, 

homoscedasticity, normality, multicollinearity, and power design must be checked 

(COHEN, 1992; HAIR et al.,2018). We analyzed collinearity by plotting the partial 

regressions for the independent variables, while homoscedasticity was visually examined 

in plots of standardized residuals against a predicted value. All these requirements were 

met in our dataset for regression analysis. Normality we also checked as previously 

explained by assessing the skewness and kurtosis parameters. For multicollinearity we 
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checked the variance inflation factor (VIF) to ascertain our regression estimates are not 

unstable and have high standard errors. Our results indicate a low VIF (< 3.5) for all 

variables, far below the threshold of 10 (HAIR et al., 2018). Finally, for power design, 

we used g-power analysis with a reference value of 0.80 and effect size of 0.15 as 

suggested by Cohen (1992), to verify the feasibility of using an OLS approach with the 

proposed sample size (n = 379). We tested all models (DEL_FLEX, SOUR_FLEX, 

MAN_FLEX, and OPER_PERF) using the main variables as predictors to check for the 

minimum sample size to perform the regression. The minimum necessary to achieve a 

statistical power significance level was the threshold of 109 observations. Since our 

sample is far away the minimum necessary, this analysis suggests we have a sample size 

large enough to proceed with the OLS statistical analyses. 

4.4 RESULTS 

Our results report four independent models in a hierarchical structure for each model. We 

also present a different structure for our mediation analysis, following Hayes (2017) 

approach, who suggests the calculation of the indirect effects as a post-hoc analysis. For 

the OLS procedure, we present Table 11 which highlights our main results from 

regression analysis. As shown in Table 11, all final stage models (i.e., Models 3 or 4) 

were significant at p < 0.001. As a result, for the final step of each model we had: 

SOUR_FLEX (F = 4.815, p = .000), DEL_FLEX (F = 5.584, p = .000), MAN_FLEX (F 

= 24.510, p = .000), and OPER_PERF (F = 4.886, p = .000). Unstandardized coefficients 

are reported in Table 11 since all scales were standardized with Z-scores because they 

represent a standardized effect (Goldsby et al., 2013). 

Regarding our H1 (Smart Supply Chain on Supply Chain Flexibility) we have statistical 

support from DT_STRATEGY for all flexibility constructs. However, we did not have 

statistical support for BASE. FRONT-END was only statistically associated to 

DEL_FLEX (B = .181, p = .006). For hypotheses H3 (Environmental Uncertainty 

moderating the relationship between Smart Supply Chain and Supply Chain Flexibility), 

we only found statistical evidence for CUSTOM_UN x DT_STRATEGY on 

SOUR_FLEX (B = .162, p = .009) and SUPPLIER_UN x BASE on DEL_FLEX (B = 

.133, p = .058). For hypotheses H4 (Environmental Uncertainty moderating the 

relationship between Supply Chain Flexibility and Operational Performance), we found 

support for CUSTOM_UN x MAN_FLEX on OPER_PERF (B = .103, p = .079).  
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Regarding the mediation analysis proposed in hypothesis H2, we used Hayes’ (2017) 

bootstrapping approach (Table 12). The iterative process allowed us to assess the direct 

effect of Smart Supply Chain constructs on OPER_PERF. In this case, DT_STRATEGY 

and BASE have a significant and direct association with OPER_PERF. Moreover, we 

also tested these effects individually, and FRONT-END also showed a positive 

association with OPER_PERF (B = .154, p = .045), supporting the full direct effects of 

Smart Supply Chain on operational performance. We also tested the hypothesis on the 

mediation role of supply chain flexibility (H2, H2a, H2b) in a sequential procedure in 

which Smart Supply Chain constructs were considered the direct effects, while 

DEL_FLEX and SOUR_FLEX were set as mediators, between Smart Supply Chain and 

MAN_FLEX (H2a, H2b), and, finally, all the supply chain flexibility constructs 

mediating between Smart Supply Chain and OPER_PERF (H2). These results are 

summarized in Table 3. The results support a complete mediation effect of DEL_FLEX 

and SOUR_FLEX between FRONT-END and MAN_FLEX and then with OPER_FLEX, 

and partial mediation when we tested the similar paths for DT_STRATEGY and BASE. 

Therefore, our findings support hypothesis H2 regarding the mediating role of supply 

chain flexibility (Figure 5) and the intermediate role of sourcing and delivery flexibility 

as antecedents of manufacturing flexibility (H2a, H2b).  

After our results, we also assessed the statistical power of our models by analysing our 

regression models through Cohen’s f2 estimation (COHEN et al., 2003, p.95). By 

calculating the population effect size from all the four final models in the last stage of our 

OLS hierarchical procedure, we obtained a statistical power of ≈ 0.95 at α = 0.01 for all 

models. Therefore, this suggests our results are in accordance with the minimum 

statistical power necessary for regression models (COHEN et al., 2003). 

4.4.1 Robustness checks 

We performed a series of robustness checks to ensure our results previously presented are 

stable and consistent. We explored how the results of our regressions analyses might vary 

using three distinct approaches: (i) inclusion of a new construct; (ii) individual analysis 

from predictors; and (iii) inclusion of a competing model. For the first (i) approach, we 

included a new construct, namely “own digital resources” [OWN_DIG_RES]. We 

assume that when a company focuses on resources to enable digital transformation, these 

resources do not directly impact flexibility. Basically, we argue this construct is an 

antecedent to enable digital transformation, which can support a supply chain’s 
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flexibility. Therefore, there is no direct association to these types of resources on 

flexibility constructs. To this end, we measured [OWN_DIG_RES] with CFA approach 

(RMSEA = 0.051; CFI = 0.994; AVE = 0.55; Cronbach = 0.85; CR = 0.98) in a five-item 

scale construct composed by: necessary information to develop digital transformation in 

the supply chain (0.79); sufficient human resources to develop the digital transformation 

in the supply chain (0.63); the necessary technological resources to develop the digital 

transformation in the supply chain (0.89); the necessary financial resources to develop 

the digital transformation in the supply chain (0.72); and the organizational culture 

necessary to develop digital transformation in the supply chain (0.65). Our assumption 

was confirmed when we added this construct in models where [DEL_FLEX; 

SOUR_FLEX; and MAN_FLEX] were the dependent variables, showing that 

[OWN_DIG_RES] was not statistically significant in all models. For the second approach 

(ii), we analyzed the individual effect of each construct in our models, and overall, we 

found consistency with our main findings presented in Table 11. In addition, we also 

confirmed [FRONT-END] has a significant and positive effect on [OPER_PERF], which 

validate our H3, as previously discussed when we presented mediation results. Finally, 

for approach (iii), we utilized a financial performance construct (see Appendix A) as a 

competing model. Our assumption is that this performance metric will not suffer a direct 

and positive effect from these relationships were since all constructs in our model have 

the primary goal to improve operational aspects of the supply chain and not corporate 

performance aspects. As expected, this competing model was not supported, while our 

main model showed robust results reported above. In addition, the R² from the competing 

model showed a low value (i.e., below 0.100), and we did not find similar results to our 

main model [OPER_PERF]. Therefore, these procedures suggest our models are not 

overfitted, and we have consistency in our analysis. 
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Table 11. Results of the regression analysis(a) 

  SOUR_FLEX DEL_FLEX MAN_FLEX OPER_PERF 

  Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 4 

Firm size .082 .014 .000 -.025 -.119 -.172 -.156 
-.198*     

(p=.098) 
.055 -.005 .069 

-.329** 

(p=.013) 

-.333***  

(p=.007) 

-.316**  

(p=.011) 

-.340***  

(p=.007) 

Tier1 -.175 
-.341**  

(p=.024) 

-.327** 

(p=.031) 

-.291*  

(p=.056) 
-.151 

-.368**    

(p=.019) 

-.382**    

(p=.015) 

-.362**   

(p=.023) 
.085 -.115 .069 

-.177 -.168 -.209 -.197 

Tier2 
.299* 

(p=.084) 
-.324** 
(p=.050) 

-.284* 
(p=.089) 

-.235 
-.339*  

(p=.064) 
-.423**            
(p=.014) 

-.465***  
(p=.008) 

-.437**   
(p=.013) 

.001 -.058 .149 
-.374*    

(p=.051) 
-.315*  

(p=.085) 
-.394**  
(p=.033) 

-.384**  
(p=.039) 

DT_STRATEGY  .204*** 

(p=.000) 

.211*** 

(p=.000) 

.194***  

(p=.001) 
 .277***  

(p=.000) 

.270***   

(p=.000) 

.264***  

(p=.000) 
 .256***      

(p=.000) 

.120**   

(p=.014)     

BASE  .055 .059 .088  -.114 
-.120*             

(p=.098) 
-.086  .162*** 

(p=.007) 
.060 

    

FRONT-END   .075 .083 .032   
.223***  
(p=.000) 

.216***  
(p=.001) 

.181***   
(p=.006) 

  -.046 .000 
        

CUSTOM_UN     -.066 -.068     .071 .056       
    

.127**  

(p=.010) 

.118**  

(p=.019) 
SUPPLIER_UN     .017 .016     -.024 -.020           -.032 -.046 

SOUR_FLEX                     .059   .054 .068 .052 

DEL_FLEX             .388***  
(p=.000)  

.104*  
(p=.081) .094 

.101* 
(p=.093) 

MAN_FLEX                       
  

.199*** 

(p=.000) 

.170*** 

(p=.003) 

.197*** 

(p=.001) 
CUSTOM_UN x 

DT_STRATEGY 
      -.055       .010       

        

CUSTOM_UN x BASE    -.055    -.057         

CUSTOM_UN x FRONT-END    .162***  

(p=.009) 
   .062     

    
SUPPLIER_UN x 
DT_STRATEGY 

   -.025    -.035     
    

SUPPLIER_UN x BASE    .109    .133*   

(p=.058) 
    

    
SUPPLIER_UN x FRONT-END       -.044       -.029               

CUSTOM_UN x SOUR_FLEX                             .004 

CUSTOM_UN x DEL_FLEX                  .001 

CUSTOM_UN x MAN_FLEX 
                 

.103* 

(p=.079) 

SUPPLIER_UN x SOUR_FLEX                  -.014 

SUPPLIER_UN x DEL_FLEX                  -.019 

SUPPLIER_UN x MAN_FLEX                             .027 

F-Value 1.275 8.782*** 6.868*** 4.815*** 1.762 11.631*** 9.035*** 5.584*** 0.340 10.346*** 24.510*** 3.615** 9.225*** 7.832*** 4.886*** 

R² .010 .124 .129 .156 .014 .158 .163 .177 .003 .143 .346 .028 .13 .145 .158 
Adj.R² .002 .110 .11 .124 .006 .144 .145 .145 -.005 .129 .332 .020 .115 .126 .126 

R Square Change .010 .114*** .005 .026* .014 .144*** .005 .013 .003 .124*** .203*** .028** .101*** .015** .013 

(a) Unstandardized beta coefficients are reported since the main variables were standardized before regression. n = 379. *** < 0.01, ** < 0.05, * < 0.10. 
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Table 12. Indirect effects (bootstrapping outcome) 

Interactions 

Direct effect Indirect effect Total Effect 

Conclusion 
Effect 

95% confidence interval  
Sig.  Effect 

95% confidence interval  
Effect 

95% confidence interval  
Sig.  

LLCI ULCI LLCI ULCI LLCI ULCI 

DT_STRATEGY-SOUR_FLEX-

MAN_FLEX-OPER_PERF 
  .1946    .0977    .2914   .0001   .0162  .0056  .0313 .2761 .1855 .3666 .000 Partial  

DT_STRATEGY-DEL_FLEX -

MAN_FLEX -OPER_FLEX 
   .1877  .0920   .2835 .0001  .0243   .0041  .0488 .2761 .1855 .3666 .000 Partial  

FRONT-END-SOUR_FLEX-

MAN_FLEX- OPER_PERF 
   .0753  -.0198 .1705    .1204   .0160   .0064    .0291    .1586   .0652 .2520   .000 Complete 

FRONT-END-DEL_FLEX-MANF_FLEX 

-OPER_PERF 
.0685 -.0264 .1634 .1565 .0261 .0079 .0483    .1586   .0652 .2520  .000 Complete 

BASE-SOUR_FLEX-

MAN_FLEX_OPER_PERF 
.1634 .0689 .258 .0007 .0176 .0067 .0332 .2367 .145 .3284 .000 Partial  

BASE-DEL_FLEX-MAN_FLEX -

OPER_PERF 
.1625  .0698        .2552       .0006      .0199       .0045 .0407   .2367       .145 .3284  .000    Partial  
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4.5 DISCUSSIONS 

We summarized our results and their connections with the OIPT in the framework of 

Figure 6. This framework shows that the digital transformation strategy is on the top of 

the structure because it directly affects all supply chain flexibility dimensions. When 

associated with operational performance, it is also partially mediated by supply chain 

flexibility dimensions. Therefore, the results indicate that the digital transformation 

strategy provides the complete organizational view to implement digital transformation 

and support the increase of flexibility. From the OIPT perspective, this represents the 

requirement of creating a strategic alignment for organizational information-processing 

fit (GALBRIATH, 1974), as represented in Figure 6. In other words, companies need to 

develop a digital transformation strategy that supports all the dimensions of the supply 

chain flexibility structure in order to create information-processing capability that fits the 

information processing needs (PREMKUMAR et al., 2005). Our results showed that this 

is the basic requirement for Smart Supply Chain in turbulent environments to achieve 

higher flexibility and operational performance. 

Considering sourcing flexibility, one could be surprised with a first look at the results, 

where base digital technologies did not show significant associations with it, while front-

end technologies did when moderated by customer uncertainty. We expected that 

technologies like IoT, Big Data or Cloud Computing should provide more flexibility 

(FRANK et al., 2019). However, by investigating the elements of sourcing flexibility, it 

is important to notice that they consider the ability of the company to easily switch the 

source of supply (JIN et al., 2014; ROJO et al., 2017; SREEDEVI; SARANGA, 2017). 

Since IoT-based solutions as those presented in the base digital technologies, require an 

end-to-end horizontal integration between the focal company and the suppliers (WANG 

et al., 2016). The results could suggest that such solutions will not enhance flexibility (or 

maybe be even negative, as suggested by the negative sign in the interaction with 

customer uncertainty reported in Table 10, although without statistical significance). On 

the other hand, front-end digital technologies consider tools that can be helpful to select 

easily new sources of supply, especially when the company cannot stabilize the sources 

of supply due to the high dynamism of the market (moderating effect of customer 

uncertainty). For instance, simulation tools can help analyze which new source of supply 

can respond faster to each demand (TERZI; CAVALIERI, 2004, VIEIRA et al.,2019). 

Augmented reality and robotics can help automate the reception and quality control of 
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the new type of raw material supplied (DORNELLES et al., 2022), and 3D printing can 

reduce the dependence of the supply of some very specific components required by the 

company (DELIC; EYER, 2020; HOHN; DURACH, 2021).  

From the OIPT point of view of sourcing flexibility, such front-end technologies are 

supported by information-processing capability because they need a large amount of data 

and interconnectivity to operate these solutions (e.g., pieces are manufactured in 3D 

printers based on AI models of generative design that analyze and create the best solution 

for broken components). However, they go beyond by providing not only information but 

also a real solution, either by a digital image like in augmented reality and simulation or 

printed components. We call this expanded information-processing capability, which is 

intended to create cyber-physical solutions (i.e., solutions like virtual models or physical 

elements) that fit what we call as an information-dependent objective need (in this case, 

the need of switching quickly from one source of supply to another). The expanded 

information-processing capability occurs under customer uncertainty, which is an 

information boundary condition about the market behavior due to rapid changes in 

product and customer demands. We represent these concepts from OIPT in our 

framework of Figure 6. 

Second, we found that delivery is more flexible when companies collect and analyze more 

data in the context of suppliers' uncertainty (i.e., moderating the role of supplier 

uncertainty between base technologies and delivery flexibility). Supplier uncertainty 

represents the risk of increasing input prices, suffering supply delays or even supply 

disruption (SREEDEVI; SARANGA, 2017). From the OIPT perspective, supplier 

uncertainty also represents an information boundary condition because the lack of 

information about supplier behavior creates an uncertain condition that moderates this 

relationship (ZHU et al., 2018). This affects the capacity of planning the delivery and 

ensures that customers will receive their products as agreed with the company, 

independently of the problems the company can suffer in the supply chain. Therefore, the 

results suggest that companies enhance their information-processing capability by 

adopting digital technologies like IoT, Cloud, Big Data, Blockchain, and AI, which are 

oriented to increase the real-time data collection and processing in order to improve the 

decision-making process based on useful and updated information (ZHU et al., 2018). 

Such technologies can help to predict risks and problems with the supply and, based on 

this, anticipate deliveries, or reschedule such deliveries before disruptions may happen 
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(SRINIVASAN; SWINK, 2015). Therefore, this allows to create of an organizational 

information-processing fit between the information needs represented by the information 

required to adapt the delivery system quickly and the information-processing capability 

represented by the base technologies operating as monitoring and prediction systems of 

the supply behavior under an information boundary condition.  

At the same time, front-end digital technologies are directly associated with delivery 

flexibility but did not show statistical significance in the moderation with uncertainties. 

In this sense, our results evidence the usefulness of such tools to support delivery 

flexibility, as hypothesized, but independently on facing or not uncertainties. Front-end 

technologies like augmented reality, collaborative robots, simulation, and 3D printing 

applications are increasing in the downstream of supply chain management (DELIC; 

EYERS, 2020; MEINDL et al., 2021). They are a form of increasing flexibility, like in 

the case of train spare parts, printed in 3D printers to quickly respond to maintenance 

demands near the customer (DELIC; EYERS, 2020; CHAN et al., 2018). This 

significantly increases the service level offered to the customer in the delivery system and 

represents an expanded information-processing capability to fit information-dependent 

objective needs, as explained above.  

Finally, our results showed that the information-processing fit between Smart Supply 

Chain and supply chain flexibility can, in general, act as a reaction to uncertain conditions 

and help to improve supply chain operational performance. This is achieved when 

manufacturing flexibility is in the structure's core, as shown in Figure 6. This is in line 

with previous findings from Enrique et al. (2022). The authors showed that Industry 4.0 

technologies can be organized to support manufacturing flexibility as the central 

dimension of the industrial digital transformation. They showed that digital technologies 

and manufacturing flexibility depend on several companies' internal and external factors. 

Thus, in this present study, we show that such external and internal conditions are 

essentially those related to the information-processing requirements achieved through 

Smart Supply Chain and supply chain flexibility. Therefore, this present study provides a 

zoom-out of the external structure that connects digital transformation with 

manufacturing flexibility to increase operational performance. Complementarily, Enrique 

et al. (2022) made a zoom in into the manufacturing flexibility conditions. Thus, both 

studies provide complementary findings that expand the view of Industry 4.0 and 

flexibility in operations management. 
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Figure 6. Framework representing the findings and their relationship with OIPT 

 

4.6 CONCLUSIONS  

Our results contribute to the theory by showing the connections between Smart Supply 

Chain and Supply Chain Flexibility and how they are important to better deal with 

uncertainty based on the OIPT. We also contribute to advancing OIPT from the supply 

chain perspective since we showed that there is a general mediation effect of supply chain 

flexibility between Smart Supply Chain and operational performance. This could lead 

companies to rethink how they would organize the adoption of digital base and front-end 

technologies based on their digital strategy and how they would change their supply chain 

operations to become more flexible, mainly focusing on supply flexibility, distribution 

flexibility, and sourcing flexibility. For this transition from a supply chain flexibility 

using digital technologies, the company needs to analyze the uncertainties of both 

consumers and suppliers. Therefore, the OIPT argues that information processing can 

reduce uncertainty, and our study demonstrates that smart supply chain and supply chain 
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flexibility can support companies to fit such information-processing needs with new 

information-processing capability.  

Against a current and growing context of high uncertainties, our results and discussions 

provide a foundation for the future implementation of digital transformation by proposing 

the consolidation of Smart and Flexible Supply Chains. As a key contribution, we show 

how combining these two concepts can provide more capability for companies to deal 

with rapidly changing environments. Also, by applying this OIPT to Smart Supply Chain, 

we provide a new view of the supply chain flexibility literature, especially in the context 

of the volume 250 of IJPE. Our study presented a historical perspective on the studies 

developed over the last decades and the new frontier in this subject when considering new 

turbulent conditions and digital transformation opportunities. 

Practical implications 

We provide the following recommendations to supply chain practitioners based on our 

findings. First, managers need to set a digital transformation strategy that will drive the 

implementation of Smart Supply Chain technologies to achieve supply chain flexibility. 

Such strategy should be focused on the required fit between these technologies and 

specific types of supply chain flexibility (i.e., sourcing, delivery, or manufacturing). 

Front-end technologies can be used in both sourcing and delivery, while base digital 

technologies are proven to be useful for delivery flexibility when supplier uncertainty is 

a threat. Second, managers should structure sourcing and deliver flexibility to support 

manufacturing flexibility and not the contrary. Our study showed that these two external 

dimensions are antecedent of the manufacturing flexibility and mediate the contribution 

of digital technologies. Third, practitioners should take care of manufacturing flexibility 

as the heard of the supply chain flexibility that will help increase operational performance. 

As argued in the Industry 4.0 literature (DALENOGARE et al., 2018; FRANK et al., 

2019), manufacturing should be the core of an Industry 4.0 oriented structure, while the 

external support of digital technologies will help manufacturing to achieve its goal of 

producing according to the market requirements and demands. Finally, practitioners can 

find a set of technologies from Industry 4.0 that they can use in practice to support supply 

chain activities.   
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Limitations and future research 

Recent studies have shown that manufacturing flexibility in the Industry 4.0 context can 

be deployed in several dimensions and can be supported by different manufacturing 

digital technologies (ENRIQUE et al.,2022). We did not include such a level of detail. 

Rather, we remained in the macro-structure of the supply chain. Therefore, future studies 

should advance in the connection between these micro-elements that were assumed as a 

black box in our study. Moreover, the recent literature has argued that Industry 4.0 and 

digital transformation should be considered as a socio-technical system for its 

implementation (MARCON et al., 2022). This is an important limitation of our study 

because we only focused on a technological and organizational perspective, while the 

social elements that involve supply chain workers has not been considered in this study. 

Therefore, future studies need to advance our research to the field of the social elements 

by analyzing how smart workers can support flexibility as they do in manufacturing 

(DORNELLES et al., 2022). As demonstrated by Meindl et al. (2021) in an analysis of 

more than 5,000 studies from the ten years of Industry 4.0, the integration of studies 

between social and workers elements with Smart Supply Chain is one of the greatest gaps 

in the nowadays literature on digital transformation and Industry 4.0 in the operations 

management field. Thus, future opportunities can arise from the integration of our 

findings with this social perspective of supply chains (CHEN et al., 2017). Finally, the 

role of sustainability in supply chain management should also be considered because the 

current turbulent environments and uncertain scenarios have raised more concern about 

how digital transformation and supply chains can also contribute to sustainable operations 

(LIU et al.,2019). Our study did not include such an element, but future studies can 

integrate our findings with this subject and provide advances in this direction. 
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APPENDIX A: QUESTIONNAIRE 

Questionnaire items to assess Digital Transformation Strategy (DT_STRATEGY) (Adapted from 

Nasiri et al., 2020). Concordance Likert scale: 1 - strongly disagree to 5 - strongly agree. RMSEA = 0.049; 

CFI = 0.998; AVE = 0.63; Cronbach = 0.87; CR = 0.87. Factor loadings are shown in parentheses.  

a. We aim to digitalize everything possible in the supply chain (0.84). 

b. We aim to collect large amounts of data from different sources in the supply chain (0.83). 

c. We aim to create a stronger communication network between different sectors of the supply 

chain with digital technologies (0.85). 

d. We aim to improve the interface with customers with digitization efficiently (0.63). 

 

Questionnaire items to assess Front-End Technologies (FRONT-END) (Adapted from Frank et al., 

2019). Concordance Likert scale: 1 - strongly disagree to 5 - strongly agree. We only reported Cronbach 

of this construct because we performed a formative approach. Cronbach = 0.80. Factor loadings are shown 

in parentheses.  

a. We use robotics in our company processes and in the supply chain (0.69). 

b. We use computer simulation in supply chain processes (0.66). 

c. We use augmented reality in supply chain processes (0.73). 

d. We use 3D printing in supply chain processes (0.76). 

 

Questionnaire items to assess Base Technologies (BASE) (Adapted from Frank et al., 2019; 

Narayanamurthy and Tortorella, 2021). Concordance Likert scale: 1 - strongly disagree to 5 - strongly 

agree. We only reported Cronbach of this construct because we performed a formative approach. Cronbach 

= 0.90. Factor loadings are shown in parentheses.  

a. We use Internet of Things in our supply chain processes (0.81). 

b. We use Cloud Computing in our supply chain processes (0.75).  

c. We use Big Data Analytics in our company processes and in the supply chain (0.84). 

d. We use Artificial Intelligence in supply chain processes (0.81).  

e. We use Blockchain in the supply chain processes (0.78). 

 

Questionnaire items to assess Sourcing flexibility (SOUR_FLEX)  (Adapted from Jin et al., 2014; 

Rojo et al., 2017; Sreedevi and Saranga, 2017; Maqueira et al., 2020). Concordance Likert scale: 1 - 

strongly disagree to 5 - strongly agree. RMSEA = 0.085; CFI = 0.977; AVE = 0.36; Cronbach = 0.69; 

CR = 0.69. Factor loadings are shown in parentheses. 

a. Our company can quickly identify a new supplier when needed (0.60). 

b. Our company can easily add and remove suppliers when needed (0.70). 
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c. Our company is able to make contractual adjustments in the relationship with suppliers with ease (0.63). 

d. Our company makes decisions together with the main suppliers (in relation to design/product 

modifications, project/process modifications, etc (0.46). 

 

Questionnaire items to assess Delivery Flexibility (DEL_FLEX) (Adapted from Jin et al., 2014; Rojo 

et al., 2017; Sreedevi and Saranga, 2017; Maqueira et al., 2020). Concordance Likert scale: 1 - strongly 

disagree to 5 - strongly agree. RMSEA = 0.050; CFI = 0.994; AVE = 0.42; Cronbach = 0.74; CR = 0.74. 

Factor loadings are shown in parentheses. 

a. Our company can easily add or remove carriers or distributors (0.57). 

b. Our company can easily change warehouse space and/or load capacity (0.68). 

c. Our company is able to change merchandise delivery schedules with ease (0.67). 

d. Our company has a defined and flexible delivery strategy (0.67). 

 

Questionnaire items to assess Manufacturing Flexibility (MAN_FLEX) (Adapted from Jin et al., 

2014; Rojo et al., 2017; Sreedevi and Saranga, 2017; Maqueira et al., 2020). Concordance Likert scale: 1 

- strongly disagree to 5 - strongly agree. RMSEA = 0.073; CFI = 0.989; AVE = 0.52; Cronbach = 0.83; 

CR = 0.84. Factor loadings are shown in parentheses. 

a. Our company is able to operate with various production volumes and/or with different service levels 

(0.75). 

b. Our company can change production volumes and/or services efficiently (0.79). 

c. Our company is able to produce various combinations of products (0.60). 

d. Our company manages to develop new products and/or services every year (0.66). 

e. Our company has the ability to change the mix of products and/or services efficiently (0.79). 

 

Questionnaire items to assess Supply Chain Uncertainty (including customer uncertainty and 

supplier uncertainty) Concordance Likert scale: 1 - strongly disagree to 5 - strongly agree. RMSEA = 

0.084; CFI = 0.970; AVE = 0.59; Cronbach = 0.80; CR = 0.85. Factor loadings are shown in 

parentheses.  

Customer Uncertainty [CUSTOM_UN] (Adapted from Zhou et al., 2019; Jaworski and Kohli, 1993; 

Merschmann and Thonemann, 2011; Sreedevi and Saranga, 2017; Qi et al., 2011). 

a. Our customers' preferences change frequently (0.87). 

b. Our company frequently receives demand for products and services from new customers (0.54). 

c. Our company's new customers have different needs than current customers (0.62). 

Supplier Uncertainty [SUPPLIER_UN] (Adapted from Zhou et al., 2019; Jaworski and Kohli, 1993; 

Merschmann and Thonemann, 2011; Sreedevi and Saranga, 2017; Qi et al., 2011). 

a. The price of raw materials and components that our company buys changes frequently (0.65). 

b. Our company is highly dependent on suppliers to acquire the materials needed for production (0.62). 

c. Our company must deal with supplier delays in material deliveries frequently (0.52). 

 

Questionnaire items to assess Performance (including operational performance and financial 

performance) Concordance Likert scale: 1 - strongly disagree to 5 - strongly agree. RMSEA = 0.047; 

CFI = 0.991; AVE = 0.54; Cronbach = 0.65; CR = 0.87. Factor loadings are shown in parentheses.  

Operational Performance [OPER_PERF] (adapted from Merschmann & Thonemann, 2011 ; Yu et al., 

2018; Maqueira et al., 2020). 

a. Our company has improved the delivery reliability of customer orders over the past two years (0.81). 

b. Our company has improved the lead time for delivering customer orders over the past two years 

(0.87). 

c. Our company has reduced customer order time over the past two years (0.83).  

 

Financial Performance [FINAN_PERF] (adapted from Amoako-gyampah et al., 2020; Asare et al., 

2013; Flynn et al., 2010; Jayaraman et al., 2013; Saeed et al., 2019; Yu, 2015).  

a. Our company's sales have grown in the last two years (0.70). 

b. Profit on sales has increased in the last two years (0.51). 
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c. Market share has grown over the past two years (0.65).  

 

Questionnaire items for control variables  

a. Please inform the size of your company in the number of employees (based in IBGE - Instituto Brasileiro 

de Geografia e Estatística, 2015) 

b. Please inform the position of your company in the supply chain (two dummies):  

Tier 1 - Supplier of products/services to the final consumer; 

Tier 2 - Provider of products or solutions to other companies; 

Tier 3 - Suppliers of Raw Materials and Basic Inputs to other companies. 
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Appendix B: Bivariate correlation matrix 

 SOUR_FLEX DEL_FLEX MAN_FLEX DT_STRATEGY BASE 
FRONT-

END 
CUSTOM_UN SUPPLIER_UN OPER_PERF Size Tier1 Tier2  

SOUR_FLEX 1             

DEL_FLEX .496** 1            

MAN_FLEX .354** .553** 1           

DT_STRATEGY .316** .336** .347** 1          

BASE .279** .242** .272** .648** 1         

FRONT-END .236** .285** .286** .469** .724** 1        

CUSTOM_UN -.012 .133** .256** .155** .171** .222** 1       

SUPPLIER_UN -.017 -.004 .116* -.056 -.046 .073 .273** 1      

OPER_PERF .192** .273** .293** .295** .253** .169** .172** .018 1     

Firm size .040 -.046 .024 .062 .128* .073 -.054 .022 -.125* 1    

Tier1 .025 .052 .046 .225** .208** .153** -.043 .039 .048 .006 1   

Tier2 -.073 -.097 -.038 -.183** -.177** -.075 .134** -.015 -.095 -.026 -.810** 1  

Mean 3.501 3.321 3.830 3.697 13.192 8.926 3.554 3.901 .161 .839 .678 .237  

S.D. .84 .89 .848 .924 5.953 4.363 .917 .762 .368 .368 .468 .426  

Skewness -.448 -.333 -.86 -.612 .231 .808 -.415 -1.018 1.853 -1.853 -.765 1239  

Kurtosis -.28 -.585 .4 -.18 -1204 -.252 -.487 1.441 1.440 1.440 -1.422 -.468  

**. Correlation is significant at the 0.01 level (2-tailed).          
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5. CONCLUSIONS  

 

This work presented three articles, each corresponding to a specific objective of this 

dissertation. Figure 7 presents the relationship between the three articles of the dissertation. 

While Article 1 addresses which technologies companies tend to implement when they seek to 

achieve flexibility as an operational objective, Articles 2 and 3 seek to show how different 

levels of flexibility can be achieved with I4.0 technologies at both the shop floor and the supply 

chain levels. 

 

Figure 7. Articles relationship 

Article 1 presented a quantitative analysis of a survey conducted in 92 companies to determine 

which Industry 4.0 technologies companies adopt when pursuing three different goals: 

productivity, manufacturing flexibility, and process quality. It was found that manufacturing 

companies tend to adopt 18 technologies grouped in four different arrangements represented 

by technology clusters: Vertical integration, digital manufacturing, advanced manufacturing, 

and online traceability. From the flexibility point of view, the results showed that companies 

that aim to achieve manufacturing flexibility implement technologies related to vertical 

integration, digital manufacturing, and advanced manufacturing. 

Article 2 presented a qualitative analysis of 11 case studies to demonstrate how Industry 4.0 

technologies allow for internal flexibility in companies. Flexibility was analyzed specifically 

regarding individual and shop floor resources. Moreover, the technologies implemented for the 

different types of flexibility desired were identified. The results demonstrate that technologies 

Industry 4.0 implementation to achieve

different dimensions of internal

flexibility (Article 2)

Industry 4.0 implementation to achieve

supply chain flexibility (Article 3) 

Quality

Flexibility

Productivity

Industry 4.0 implementation 

according operational targets 

(Article 1)  
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can improve flexibility at both levels. However, companies focus primarily on machine 

flexibility, and broader aspects of this concept are also needed. 

Finally, Article 3, based on organizational information processing theory (OIPT), analyzed the 

impact of digital transformation on the supply chain to achieve supply chain flexibility and 

increase operational performance in the context of uncertainties. The results showed that 

flexibility mediates the relationship between the smart supply chain dimensions and 

operational benefits. Furthermore, according to the results of the moderation tests, companies 

adopt certain technologies depending on the type of uncertainty they face. 

The three articles that make up this dissertation intend to form a theoretical framework that 

makes it possible to understand the implementation strategy of Industry 4.0 technologies to 

achieve flexibility, as seen in Figure 8.  

  

 

 

Figure 8. Conceptual framework to implement Industry 4. technologies to achieve operational flexibility 

5.1 CONTRIBUTIONS  

This study adds to the literature on operational flexibility and provides a new perspective for 

Industry 4.0 theory, showing the interconnection between different aspects of flexibility and 

technologies, as shown in Figure 8. The results showed that I4.0 technologies must be adjusted 
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to meet companies’ production goals. Moreover, this study demonstrated that production goals 

should not be seen individually but as complementary and/or competing. Therefore, Industry 

4.0 arrangements can also be combined and adapted for different multi-target approaches. 

These results can be a starting point for investigating the detailed implementation of such 

technologies to reach the desired production goals. 

Regarding flexibility, results show the need to implement the base technologies of Industry 4.0 

to reach internal flexibility in manufacturing, as they would allow for vertical integration and 

equipment and information connectivity at the shop floor, thus, enabling product identification 

and increasing workers’ qualification. In addition, there are also specific technologies for each 

type of internal flexibility, such as robots that facilitate machine flexibility or augmented reality 

that affects operators' flexibility. As a result, internal manufacturing flexibility, to respond to 

variations in demand and supply of materials, has an impact on the flexibility of volume and 

on the flexibility of the introduction of new products and product mix flexibility.  

Nevertheless, investing in technologies for internal flexibility is not enough to achieve high 

flexibility at the plant level. Mainly in the context of uncertainties, it is necessary to invest in 

the digital transformation of the supply chain, aiming to provide flexibility to the supply of raw 

materials and distribution to meet the changes in the volume and mix of products. In this 

respect, the results added to the theory by illustrating the connections between smart supply 

chain and supply chain flexibility and how they are important to better deal with uncertainty. 

They also contributed to the advancement of the OIPT from a supply chain perspective, as there 

is a positive sequential effect in which supply chain flexibility mediates the relationship 

between smart supply chain and operational performance. 

Furthermore, the results found may also help managers in their digital transformation 

strategies, especially in the current context of high uncertainties. Strategically, to be able to 

support the various dimensions of flexibility, companies should start creating an investment 

plan for technologies and operational management. In this regard, manufacturing companies 

should start developing an internal transformation strategy by investing in digital technologies 

that have an impact on the flexibility of resources, routes, and operations, as well as on the 

design of more flexible processes and products. Subsequently, they should encourage the 

adoption of digital-based and front-end technologies. Thus, according to their digital strategy 

together with suppliers, they should be able to change supply chain operations, making these 

more flexible, especially concerning the flexibility of supply and distribution. 
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In addition, companies should consider the context in which they are inserted and adjust their 

strategies according to the contingency factors shown in the results. The context should not be 

seen as static, because these factors change over time. Therefore, longitudinal studies should 

be carried out to understand the ongoing digital transformation process and how it affects 

flexibility and operations in supply chains. Moreover, these studies should also focus on 

understanding the mechanism used by manufacturing companies to drive digital transformation 

toward internal and supply chain flexibility.  

5.2 LIMITATIONS AND FUTURE RESEARCH  

The study also has has several limitations. First, our study focuses on Brazilian companies, 

which have particular characteristics of culture, laws, among others. For this reason, studies 

with companies from other countries and sectors are necessary. In addition, we adopt a 

primarily a technological approach. In this sense, a socio-technical approach could better 

explain the relationship between the concepts studied. Furthermore, given that response time 

and sustainability are among the main indicators that companies look nowadays, future studies 

could focus on how companies could adopt flexible technologies and processes to achieve 

greater results in relation to these two indicators.  

 

 

 

 


