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Biodiversity can be represented by different dimensions. While many diversity metrics 
try to capture the variation of these dimensions they also lead to a ‘fragmentation’ 
of the concept of biodiversity itself. Developing a unified measure that integrates all 
the dimensions of biodiversity is a theoretical solution for this problem, however, it 
remains operationally impossible. Alternatively, understanding which dimensions bet-
ter represent the biodiversity of a set of communities can be a reliable way to integrate 
the different diversity metrics. Therefore, to achieve a holistic understand of biologi-
cal diversity, we explore the concept of dimensionality. We define dimensionality of 
diversity as the number of complementary components of biodiversity, represented by 
diversity metrics, needed to describe biodiversity in an unambiguously and effective 
way. We provide a solution that joins two components of dimensionality – correla-
tion and the variation – operationalized through two metrics, respectively: evenness 
of eigenvalues (EE) and importance values (IV). Through simulation we show that 
considering EE and IV together can provide information that is neglected when only 
EE is considered. We demonstrate how to apply this framework by investigating the 
dimensionality of South American small mammal communities. Our example evi-
denced that, for some representations of biological diversity, more attention is needed 
in the choice of diversity metrics necessary to effectively characterize biodiversity. We 
conclude by highlighting that this integrated framework provides a better understand-
ing of dimensionality than considering only the correlation component.

Keywords: biodiversity measurement, biodiversity metrics, communities, evenness of 
eigenvalues, importance values

Introduction

Biodiversity encompasses all variation present in life, from genetic material to popu-
lations, communities and higher levels of biological organization like entire ecosys-
tems (Wilson 1997). In addition to its broadness in scale and complexity, the central 
position of the concept of biodiversity in ecological studies justifies efforts to develop 
measures that properly operationalize the concept. These efforts are reflected in the 
immensurable number of diversity metrics that have appeared as attempts to encom-
pass all the variation in biodiversity. However, although these diversity metrics allow 
the description of different dimensions, as the number of them increases the concept 
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of biodiversity becomes operationalized in disparate ways 
that convey no precise information. This lack of consensus in 
operationalization of the concept of biodiversity led Hurlbert 
(1971) to propose the idea of the non-concept of species 
diversity, in which he advocated that the many metrics of 
biodiversity be summarized in only a few relevant ones that 
can be used to express adequately and unambiguously the 
concept of biodiversity.

Long since Hurlbert’s seminal work, there has been a 
pronounced increase in the number of metrics that quan-
tify characteristics of biological diversity other than the tra-
ditional taxonomic-based metrics, revealing that patterns of 
diversity for some communities can be best described using 
other components of biological diversity, such as functional 
and phylogenetic components (Graham and Fine 2008, 
Cisneros et al. 2014). However, these findings are not con-
sensual (Lamb  et  al. 2009), since some phylogenetic and 
functional metrics can be strongly correlated with traditional 
metrics (Tucker and Cadotte 2013, Tucker et al. 2018), deep-
ening the question of which metrics represent the fundamen-
tal components of biological diversity (Hurlbert 1971). A 
theoretical approach to searching for fundamental variation 
in biodiversity is to integrate the many sources of informa-
tion in a unique framework. This integration can be achieved 
by investigating the relationships among existing metrics. 
A previous work that proposed this integration based it on 
quantifying a characteristic of biodiversity known as dimen-
sionality (Stevens and Tello 2014).

Dimensionality can be defined, at the community scale of 
biological organization, as the amount of information needed 
to effectively characterize the variation presented in a given 
biodiversity representation, by means of diversity metrics. 
Communities with high dimensionality require more dimen-
sions to be effectively described than communities with low 
dimensionality (Stevens and Tello 2014). Quantifying the 
dimensionality of biodiversity currently involves searching 
for the degree of complementarity in spatial or temporal vari-
ation among multiple metrics of diversity, which is obtained 
mainly through a measure denominated eveness of eigenval-
ues (hereafter EE) (Stevens and Tello 2014).

Stevens and Tello’s EE metric is obtained by principal 
component analysis (PCA) of a matrix of diversity metrics 
(hereafter matrix M, sensu Ricotta 2005) for a set of commu-
nities, and calculating an evenness metric for the eigenvalues 
of the axes that represent this fundamental biodiversity space. 
The logic behind EE is that, if the diversity metrics used to 
characterize communities have low complementarity, almost 
all of the fundamental variation in biodiversity will be con-
centered in a few axes, producing a low EE. On the other 
hand, if diversity metrics are completely complementary with 
each other (variation in biodiversity will be equally distrib-
uted among axes) the EE of the communities will be 1.

The EE metric represents, in a simple way, the degree of 
complementarity among the dimensions of biodiversity rep-
resented by diversity metrics, which comprises what we call 
here the correlation component of dimensionality (see also 

Lamb et al. 2009, Tucker and Cadotte 2013 for uses of cor-
relation component). However, EE ignores another source of 
information in dimensionality – the amount of variation, or 
importance, that each diversity metric presents in fundamen-
tal biodiversity space. This comprises what we call here the 
variation component of dimensionality.

Suppose a situation in which diversity metrics are highly 
correlated (Fig. 1A) and each metric accounts for a simi-
lar amount of variation in fundamental biodiversity space 
(Fig. 1B). This situation has low complementarity among 
dimensions of biodiversity and high redundancy in the 
amount of variation that each metric captures in fundamen-
tal biodiversity space (represented as the length of the arrows 
in 1B). Consequently, we could rely on any of these diversity 
metrics to effectively represent the variation in biodiversity of 
these communities. On the other hand, communities with 
low complementarity may present a situation in which one 
of the metrics captures almost all the variation in the funda-
mental biodiversity space (Metric 2 in Fig. 1C), indicating 
low redundancy of metrics. Following the current approach 
to measuring dimensionality, EE would indicate similar 
patterns of dimensionality for communities in 1B and 1C. 
However, the choice of metric in 1C is of greater importance 
than in 1B, in which the metrics are highly redundant regard-
ing the information captured. Therefore, considering only 
the correlation component does not provide enough evidence 
to support the decision of which diversity metrics to use to 
effectively characterize biological diversity for two communi-
ties with similar EE, because it disregards the variation com-
ponent inherent to dimensionality.
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Figure 1. (A) A set of communities described by two diversity met-
rics (Metric 1 and Metric 2) that are highly correlated. This pattern 
of correlation can be related to two diversity metrics that account 
for similar amounts of variation in the reduced biodiversity space 
(B, high redundancy), or be a situation in which one metric has 
disproportional importance for capturing variation in biodiversity 
space (C, low redundancy).
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Finding a measure that captures the variation compo-
nent of dimensionality is not an impediment for effectively 
characterizing dimensionality, since it can be operationalized 
by the metric importance values (hereafter IV) proposed by 
Wilsey  et  al. (2005). However, since the common way to 
quantify dimensionality (Stevens and Tello 2014) is limited 
to capturing only the correlation component, the develop-
ment of a unified framework that combines both correlation 
and variation components would provide a way to better rep-
resent the dimensionality of biodiversity.

Therefore, our aim was to update the concept of dimen-
sionality of biodiversity and its operationalization by integrat-
ing the correlation and variation components through EE and 
IV in a framework for quantification of dimensionality. To do 
this we show, through simulation, how EE and IV together can 
distinguish situations with different degrees of complementar-
ity of dimensions of diversity and redundancy of information 
that each metric captures. We then present an empirical exam-
ple of the investigation of dimensionality by applying the inte-
grated framework to communities of small mammals (cricetids 
and marsupials). Specifically, we evaluated the level of comple-
mentarity and redundancy for different sets of diversity metrics 
used to describe the biodiversity of cricetids and marsupials, 
highlighting how the proposed dimensionality framework 
facilitates the first step of biological assessment – the choice of 
metrics to be used for characterizing biodiversity.

Material and methods

Investigating the dimensionality of biodiversity: 
obtaining EE and IV

Our framework for investigating the dimensionality of bio-
diversity comprises three steps. The first step is to calculate 
matrix M, which, for the sake of simplicity, will contain three 
metrics of diversity for the simulation analysis: a measure of 
functional diversity (FD (Petchey and Gaston 2006)), a mea-
sure of phylogenetic diversity (PD (Faith 1992)) and rich-
ness. We chose a simplistic approach with only three metrics 
since our objective with the simulation analysis was to focus 
on showing how IV can reveal patterns that are not detected 
by using only EE. We were more interested in the patterns of 
correlation and variation of diversity metrics in biodiversity 
space than the particularity of the metrics themselves. We 
present a more realistic exploration of the integrated frame-
work in the section Assessing the dimensionality of biodiver-
sity in small mammal communities.

The second step involves performing a PCA of matrix M 
using a standardized correlation matrix. As will be shown 
next, the standardization method applied to matrix M prior 
to the PCA must differ between the calculation of EE and IV.

The third step is to calculate the dimensionality metrics EE 
and IV. We calculate EE using Camargo’s evenness index in 
Eq. 1, following the original proposition of Stevens and Tello 
(2014):

EE = − −
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Camargo’s evenness index (Camargo 1993) is calculated using 
the axes (A) and their respective eigenvalues (eih and ejh) from a 
PCA of the standardized matrix M, in which the metrics were 
scaled to have a mean of zero and equal variances. The higher 
the value of EE, the higher the complementarity the com-
munities have in relation to the dimensions of biodiversity 
represented in matrix M. On the other hand, lower EE values 
indicate lower complementarity in the dimensions used to 
characterize the communities. IV is calculated according to 
the method proposed by Wilsey et al. (2005), using a matrix 
(M) standardized by the maximum values of each diversity 
metric. This standardization removes the effect that the dif-
ferent units of each diversity metric have, without modifying 
their original variation. To obtain IV for each diversity metric 
in matrix M we apply Eq. 2, in which IVi represents the IV 
of diversity metric i, r2

ij is the squared correlation of diversity 
metric i with PCj, and R2

j is the amount of variation that PCj 
accounts for in ordination space (biodiversity space).

IVi ij jr R= ∑ ×2 2 	 (2)

PC varies from 1 to j and corresponds to the number of sig-
nificant eigenvectors in the PCA, evaluated by the Kaiser–
Gutmann criterion. The greater the IV the more variation 
the diversity metric accounts for in biodiversity space. IV 
approaches 1 when the diversity metric accounts for almost all 
the variation and approaches zero when the metric accounts 
for little variation. Sets of communities with highly uneven 
IV values for diversity metrics possess low redundancy in 
metric importance, while communities with highly even 
IV values possess high redundancy regarding the amount of 
information captured by each metric.

Testing the assessment of the dimensionality of 
diversity using EE and IV

To assess the effectiveness of EE and IV in acquiring informa-
tion regarding correlation and variation of dimensionality in 
matrix M, the following conditions must be met: EE values 
must not differ for set of communites simulated in scenarios 
with the same level of correlation among diversity metrics, 
and must differ among communities that have different lev-
els of correlation among diversity metrics; for scenarios with 
low and high correlation, IV must be similar among metrics 
that have similar variation in biodiversity space (Fig. 1B), and 
differ for scenarios in which variation in biodiversity space 
is mainly due to a single metric (e.g. situation represented 
Fig. 1C, Metric 2 must have a higher IV than Metric 1). We 
evaluate whether EE and IV can recover these patterns by 
simulating communities with varying degrees of correlation 
and variation for each metric in biodiversity space obtained 
from matrix M.
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The simulations were based on a pattern-oriented proce-
dure, producing diversity metrics with patterns of correlation 
and variation that represent four scenarios with the following 
characteristics: In the HiC/EqV (high correlation and equal 
variation) scenario the diversity metrics are highly correlated 
and have similar variation in biodiversity space. The HiC/
DifV (high correlation and different variation) scenario has 
diversity metrics that are highly correlated and vary in impor-
tance of each metric in biodiversity space. The LoC/EqV (low 
correlation and equal variation) scenario has diversity metrics 
with low correlation and similar importance in biodiversity 
space. Finally, the LoC/DifV (low correlation and different 
variation) scenario has diversity metrics with low correlation 
and dissimilar importance in biodiversity space.

We generate scenarios HiC/EqV and HiC/DifV by start-
ing with a phylogeny that was simulated by a birth–death 
processes (function sim.bdtree from the package Geiger, 
Harmon  et  al. 2008) where a species, chosen randomly, 
initiates the procedure by colonizing a given community. 
Subsequent addition of species to the community depends 
on the species that are already present in that community. 
Communities at one extreme will only contain species 
that are phylogenetically closely related to each other (top 
10%), with the phylogenetic filter becoming less restrictive 
until communities do not have any phylogenetic filter that 
restricts coexistence of species (least restrictive condition). 
Since we simulated a continuous trait that was conserved 
over the phylogenetic tree – evolved according to a Brownian 
motion model, using the function rTraitCont (Paradis et al. 
2004) with the ρ [rho] parameter set to 3 – with the num-
ber of species in each community gradually increasing (less 
phylogenetic filter, more species), the procedure created a 
gradient of phylogenetic, functional and taxonomic diver-
sity metrics. In order to generate differences in variation of 
the diversity metrics, in scenario HiC/DifV we simulated a 
trait that evolves according to a regime of stabilizing selec-
tion (Ornstein–Uhlebeck model with the strength of selec-
tion set by the parameter α at 0.8) that restricts trait variation 
to within an optimal range (represented by a θ [theta] of 0). 
This allowed us to generate a set of communities in which the 
diversity metrics were highly correlated but variation of FD 
was much lower than that of richness and PD since the traits 
that were used in the calculation of FD were restricted by the 
selection process.

We generated the scenario LoC/DifV by following the 
same procedures described above for scenario HiC/EqV, how-
ever, the trait was simulated to have low phylogenetic signal 
and the phylogenetic tree used to calculate PD was modified 
to simulate a process of evolution in which most speciation 
occurs near the root (a star-like phylogeny). This procedure 
resulted in low correlation between PD and FD, since the 
relationship between phylogeny and traits was disrupted. 
Additionally, low variability for PD and richness metrics was 
obtained since we set the simulations to produce communi-
ties with the same number of species but with the phyloge-
netic filtering acting in community assembly. Consequently, 

most of the variation in this scenario is due to the FD metric. 
Finally, to generate scenario LoC/EqV we simulated commu-
nities in which all species in the phylogenetic tree had an 
equal probability of occurring in any community (no phy-
logenetic filtering acting on the assembly), and set the rich-
ness to be very similar for all communities. This procedure 
generated metacommunities with low correlation and similar 
amounts of variation for all diversity metrics.

We generated 999 sets of communities for each scenario 
described above, with the metacommunities of all scenarios 
being composed of 50 communities with a minimum of 20 
and a maximum of 200 species. The phylogenetic filter was set 
to act gradually on the communities, increasing by the order 
of 10% (start by selecting the top 10% most phylogenetically 
similar species, followed by the top 20% and so on until 90% 
of the species have been selected from the pool). Details and 
an illustration of the simulation procedures and scenarios are 
presented in the Supplementary material Appendix 1, along 
with a link to an interactive module that we produced to 
illustrate the simulation procedure used in this work.

Finally, we tested whether the values of EE and IV met 
our theoretical expectations. We checked if EE values dif-
fered between scenarios with low correlation and scenarios 
with high correlation (scenarios HiC/DifV and HiC/EqV 
versus scenarios LoC/EqV and LoC/DifV). To effectively 
capture the correlation component of dimensionality EE 
must be higher in scenarios with low correlation among 
diversity metrics than in scenarios with high correlation. To 
test for differences among IV values of each metric in the 
scenarios we used a graphical tool called profile of importance 
(Wilsey et al. 2005) and quantified differences in IV of each 
metric by calculating F values obtained from a linear model 
(Eq. 3). F values allow the IV values of the three dimensions 
(PD, FD and richness) to be compared and to determine 
if the IV values of the DifV scenarios (scenarios HiC/DifV 
and LoC/DifV) differed more from each than did the IV 
values calculated for the EqV scenarios (scenarios HiC/EqV 
and LoC/EqV). The simulation scenarios and the theoretical 
expectations regarding EE and IV follow the schematic repre-
sentation present in Fig. 2.

Assessing the dimensionality of biodiversity in small 
mammal communities

We illustrate the application of the dimensionality frame-
work with a database of small mammal communities (mar-
supial and cricetid mammals) distributed throughout the 
South American continent. We constructed matrix M for 
these communities by calculating eight diversity metrics that 
represent different dimensions of taxonomic, functional and 
phylogenetic components of biological diversity. The choice 
of metrics was based on the works of Tucker  et  al. (2017) 
and Scheiner (2019), which together represent the most 
complete compilation and classification of metrics of taxo-
nomic, functional (Scheiner 2019) and phylogenetic diver-
sity (Tucker  et  al. 2017). We chose at least one metric for 
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each of the richness, divergence and regularity dimensions 
of the three components of biodiversity considered here. The 
taxonomic component was represented by richness; the func-
tional component by FD (richness dimenson, Petchey and 
Gaston 2006), FEve (regularity dimension) and FDiv (diver-
gence dimension, Villéger et al. 2008); and the phylogenetic 
component by PD (richness dimension, Faith 1992), MNTD 
(divergence dimension, Webb et al. 2002), PSV (divergence 
dimension, Helmus et al. 2007) and PEve (regularity dimen-
sion, Villéger et al. 2014).

Traits used to calculate functional metrics comprised 
life-history attributes – weight, head–body length, diet and 
form of locomotion. Species were categorized according to 
their diet as insectivores, herbivores, granivores, omnivores, 
frugivores, piscivores, seed predators and leaf predators, and 
according to their modes of locomotion as terrestrial, semi-
fossorial, semiaquatic, arboreal and scansorial. Some species 
were allocated to more than one diet and locomotion cate-
gory. All calculated diversity metrics require a distance matrix 
or a functional dendrogram obtained from a distance matrix. 
Therefore, to obtain the functional distance matrix we used 
Gower distance (Pavoine et al. 2009) for traits that have dif-
ferent statistical characteristics (numerical and categorical).

The phylogenetic hypothesis used to calculate phyloge-
netic indices was obtained from the mammalian phylogenies 
of Bininda-Emonds  et  al. (2007) and Fabre  et  al. (2012), 
the latter of which was used to improve the phylogenetic 
resolution to species level. Seven species present in our data 

were not included in the phylogeny Fabre et al. (2012), so 
we included these species as polytomies within their respec-
tive genera. Divergence times for our phylogeny were esti-
mated in millions of years by equally distributing the ages of 
undated nodes, based on the know ages present in Bininda-
Emonds  et  al. (2007) and Fabre  et  al. (2012), using the 
BLADJ algorithm of Phylocom software (Webb et al. 2008). 
The phylogenetic hypothesis and the original references com-
piled to assemble the community data used in this work are 
provided in the Supplementary material Appendix 2 Fig. A2, 
Table A1.

The metrics EE and IV were calculated as previously 
described, with the number of axes used in IV calculation 
being determined by the Kaiser–Gutmann stop criterion. 
We also compared the observed values of EE with a null dis-
tribution of 999 EE values generated by a null model that 
randomizes a species incidence matrix while preserving dif-
ferences in richness among sites and mixing species frequency 
(performed with the sim3 function from the EcoSimR pack-
age, Gotelli and Ellison 2013). Using this null model we 
tested the null hypothesis that observed EE values do not 
differ from expected EE values according to variation in 
richness. We implemented a function called dimensionality 
to calculate EE values from matrix M. The function allows 
the user to choose the evenness method that will be used 
in the calculation. It can be accessed at https://github.com/
GabrielNakamura/dimensionality_function.

We calculated IV for the small-mammal metacommuni-
ties according to Eq. 2, applying ImportanceVal – the R code 
for the IV function (the function can be accessed at <https://
github.com/GabrielNakamura/IV_function>). We used the 
Kaiser–Gutmann stop criterion and a bootstrap procedure 
that re-sampled matrix M 999 times and recalculated IV for 
each metric so that we generated confidence intervals for the 
IV value of each diversity metric. We performed all calcula-
tions with a standardized matrix M (scaled to a mean of zero 
and unit variance for the calculation of EE values and stan-
dardized by the maximum values of each metric for the calcu-
lation of IV values). Bootstrapped IV values were submitted 
to an ordinary least square (OLS) linear model to test for 
differences in the importance of the components of diversity 
that assemble matrix M:

IV dimensioni i i= + × +α β ε 	 (3)

Equation 3 represents the effects parametrization model in 
which IVi represents the predicted value of IV for the diver-
sity metric i, β the effect of a given dimension over another 
and εi the error term associated with the residuals, which fol-
low a Gaussian distribution. Each value of IV was classified 
as belonging to the phylogenetic (PD, PEve, PSV and mntd), 
the functional (FD, FDis and FDiv) or the taxonomic (rich-
ness) dimension. Through this model we aimed to determine 
if any of the components of diversity (functional, phyloge-
netic or taxonomic) captures a greater amount of information 
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Figure  2. Schematic representation of simulated scenarios and 
expected outcomes for EE and IV. The abscissa represents the varia-
tion component of dimensionality. Metacommunities were simu-
lated to show similar values of variation among metrics (lower left 
quadrant) or different values of variation among metrics (lower 
right quadrant), so that, respectively, similar and different IV values 
among diversity metrics are expected. The ordinate represents the 
correlation component of dimensionality. Metacommunities were 
simulated that had metrics with high (upper right panel) and low 
correlation, so that, respectively, low and high EE values are 
expected.
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from biodiversity space. Additionally, we performed another 
linear OLS model using the same set of data but consider-
ing each metric as the explanatory variable, in order to assess 
differences in importance among diversity metrics. For both 
models we performed a Tukey test to assess pairwise differ-
ences in importance among dimensions and metrics.

The dimensionality framework was applied to four dif-
ferent configurations of matrix M: all metrics; a combina-
tion of phylogenetic metrics and richness; a combination of 
functional metrics and richness; and a combination of func-
tional and phylogenetic metrics. We performed these analy-
ses to show how dimensionality can change depending on 
the components of diversity used in matrix M, and what the 
implications of different values of EE and different similari-
ties among metrics IV (represented as Camargo’s evenness of 
IV metrics) are on the choice of diversity metrics to be used 
to represent the biodiversity. For these analysis we also com-
puted EE as the mean value calculated from a bootstrap pro-
cedure equivalent to that used for the IV metric, in order to 
generate confidence intervals.

Results

Simulated data

Our simulation revealed that EE and IV, when used together, 
acquire information regarding two aspects of dimensionality: 
correlation among metrics and the variation that each met-
ric accounts for in biodiversity space. This complementary 
information that IV brings to the analysis of dimensionality 
is evidenced in Fig. 3. Thus, different patterns of redundancy 

in information captured by the metrics can be obtained for a 
given level of correlation, with greater differences among IV 
values in scenarios HiC/DifV and LoC/DifV (right side of 
Fig. 3) than in HiC/EqV and LoC/EqV (left side of Fig. 3).

The differences in EE between scenarios of high and low 
correlation (Fig. 1, comparison between EE of upper and 
lower graphics), but not between scenarios of different and 
equal variation (Fig. 1, comparison between EE bars in the 
same row) support our argument that this metric captures 
only the correlation component of dimensionality.

The ability of IV to capture the degree of redundancy 
in biodiversity information of the metrics was clear mainly 
for the HiC/DifV scenario, in which the attribute used to 
generate communities exhibited low variation (OU model) 
and, consequently, the FD metric presented lower IV than 
richness and PD metrics. It is worth noting that differences 
among the IV of metrics was greater in scenario LoC/EqV 
than in scenario HiC/EqV (Fig. 1, lower right graphic), 
since it is not possible to obtain high redundancy in metric 
information (indicated by similar IV values among metrics) 
along with high values of complementarity (indicated by 
high EE). High redundancy in the importance of metrics 
is only possible for communities with low EE (low com-
plementarity of dimensions), as demonstrated by scenario 
HiC/EqV. The magnitude of the differences in IV among 
metrics for each scenario is shown in Supplementary mate-
rial Appendix 3 Fig. A3.

Small mammal communities

We obtained a moderate value for complementarity for the 
small mammal communities, as indicated by an EE of 0.49 
for matrix M calculated with all eight diversity metrics. The 
correlation component of dimensionality, at least for the 
three analyzed components of diversity (functional, phyloge-
netic and taxonomic), may be a consequence of spatial gradi-
ents of species richness, as evidenced by comparing observed 
EE with that expected by the null model distribution of EE 
(Supplementary material Appendix 3 Fig. A3).

Only two axes of the PCA were significant according 
Kaiser–Guttman criterion (representing 70% of all the 
variation in matrix M), and composed the fundamental 
biodiversity space in which IV was calculated. Observed 
IV values for the eight diversity metrics ranged from 0.19 
for PSV (27% of all the variation in biodiversity space) to 
0.003 to FDiv (0.3% of all the variation in biodiversity 
space). Bootstrap means and confidence intervals for IV for 
all metrics are illustrated in Fig. 4 through the IV profile 
(sensu Willig and Hollander 1995), evidencing PSV as the 
metric capturing most of the variation in biodiversity space, 
followed by richness.

The linear OLS model showed significant variation in IV 
among diversity metrics (F-value = 3.428; p < 0.05), while the 
Tukey test revealed that the greatest difference in importance 
was between taxonomic and functional components of biodi-
versity followed by the difference between phylogenetic and 
functional components (difference between observed means 
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Figure 3. Bar plots showing IV and EE calculated for metacommu-
nities simulated according different scenarios (HiC/EqV, HiC/
DifV, LoC/EqV and LoC/DifV) using PD, FD and richness met-
rics in matrix M. For each of these scenarios situations were pre-
sented in which the metrics contribute similarly or unequally in 
biodiversity space (variation in ordinate axis) and are highly or lowly 
correlated (variation in abscissa axis).
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of 0.092 and 0.064, respectively; Supplementary material 
Appendix 3 Fig. A5). This finding highlights the importance 
of considering the taxonomic and phylogenetic dimensions 
in characterizing the biodiversity of communities of cricetids 
and marsupials.

Analysis of dimensionality for matrix M containing 
functional metrics and richness had the highest comple-
mentarity (highest EE) and lowest redundancy in metric 
importance (biodiversity representation with similar values 
of IV, as indicated by a lower evenness of IV than obtained 
for other sets of metrics) (Fig. 5). PSV was the metric that 
captured the most information in matrix M containing 

phylogenetic metrics and richness (30% of all the variation 
in biodiversity space) and phylogenetic and functional met-
rics (31% of all the variation in biodiversity space), as well 
as for matrix M containing all metrics (24% and of all the 
variation in biodiversity space). For matrix M that consid-
ered only functional metrics and richness, richness captured 
most of variation (47% of all the variation in biodiversity 
space). Despite the high variability, as indicated by the con-
fidence intervals of IV and EE evenness, it is worth noting 
that IV evenness remains constant for different mean values 
of EE, with the greatest IV evenness being for the set of 
metrics that had the lowest EE value (matrix M with phylo-
genetic metrics and richness).

Discussion

Our results with simulated data evidence the need for a 
dimensionality framework that integrates both EE and IV 
in order to effectively characterize dimensionality by con-
sidering its two components – correlation and variation in 
biodiversity space. Operationalizing these two components 
through EE and IV reveals their complementarity (by means 
of EE) and, given some level of complementarity, the degree 
of redundancy in information captured by the metrics used 
to express these dimensions (through IV). Therefore, our 
proposed dimensionality framework represents a step beyond 
the current approach to operationalizing dimensionality, as 
proposed by Stevens and Tello (2014) by distinguishing the 
degree of redundancy in information that each diversity met-
ric captures.

Our integrated dimensionality framework joins other 
propositions in helping to choose metrics for the biological 
characterization of communities. We are aware that the main 
guide for choosing diversity metrics must be the objectives of 
the work. However, regardless of the objective, it is desirable 
to use diversity metrics that encompass complementary com-
ponents of biological diversity and account for a satisfactory 
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amount of the information present in the biodiversity com-
ponent being investigated (Ricotta 2005). In this respect, 
Saito  et  al. (2015) showed that phylogenetic, functional 
and traditional taxonomic indices present complementary 
information and should be used to adequately characterize 
and monitor biodiversity of stream macroinvertebrate com-
munities. Ouchi-Melo et al. (2018) performed an integrated 
assessment to identify areas of conservation interest in the 
Cerrado biome, and evidenced the importance of consid-
ering traditional together with functional and phyloge-
netic metrics. Although both of these works considered the 
complementarity component by accounting for correlation 
among metrics, they did not account for redundancy in the 
amount of variation that each metric captures in biodiversity 
space, thus facing the same problem presented by using the 
EE metric alone. The dimensionality framework presented 
here, therefore, represents the most general and complete 
framework to date for guiding researchers in their choice of 
metrics to be used for biological assessment by considering 
both complementarity among biological dimensions and the 
amount of information that metrics can capture.

It is worth pointing out that the dimensionality of diver-
sity can be investigated at any spatial and temporal scale, 
and using any configuration of matrix M. Even for works 
that focus on only one component of biodiversity, the inves-
tigation of dimensionality can be important for knowing 
which aspects of biodiversity are worthy of being included 
in biological assessment. Tucker  et  al. (2017) identified 
three complementary components of the phylogenetic com-
ponent: richness, divergence and regularity. Thus, research 
focused on phylogenetic diversity can address whether 
these three components are complementary dimensions in 
the analyzed communities and which metrics are the most 
important to measure in order to best represent variation 
in these dimensions. As we showed in our empirical exam-
ple with small mammal communities, dimensionality will 
depend on the representation of biological diversity used 
in matrix M, which influences practical decisions regard-
ing which metrics are the most important for characterizing 
biodiversity.

At least for the cricetid and marsupial communities ana-
lyzed here, characterizing diversity through functional and 
taxonomic components requires great care in the choice of 
diversity metrics to be used. This is because this situation has 
the highest complementarity regarding diversity dimensions 
(highest EE value), indicating the need to rely on different 
components of diversity to effectively describe biodiversity, 
and a moderate level of redundancy in metrics, indicating 
that some metrics account for disproportionately more infor-
mation than others. In this example, richness accounted for 
more information than the other metrics, but consideration 
of other components that represent functional information is 
also important for effectively characterizing biological diver-
sity. This functional component can be represented by FDiv 
or FEve, which are very redundant in information. On the 

other hand, if the characterization of small mammal com-
munities was focused on phylogenetic and taxonomic com-
ponents, the choice of metrics to be used would require less 
caution since complementarity among dimensions is lower 
and redundancy of information is greater, indicating that all 
the metrics capture similar amounts of information of biodi-
versity space.

When considering matrix M with all eight diversity met-
rics, applying the dimensionality framework to small mam-
mal communities revealed that cricetids and marsupials 
possess intermediate to low levels of complementarity (mean 
EE of 0.51 ± 0.025). Together with low complementarity, 
low levels of redundancy among the metrics was found when 
considering the three components of biodiversity together 
(mean IV evenness of 0.63 ± 0.082). Consequently, we sug-
gest that the choice of diversity metrics to effectively represent 
these communities must encompass the three components of 
diversity – choosing the PSV metric, which accounts for the 
highest IV, and two other complementary metrics to repre-
sent taxonomic (richness) and functional components (FD 
that has the highest IV among functional metrics, as shown 
in Fig. 5).

The patterns of IV values for small mammal communi-
ties contrasted with the findings of Wilsey et al. (2005) and 
Lyashevska and Farnsworth (2012), who concluded that 
richness was the least important diversity metric for rep-
resenting variation in community structure (grassland and 
marine benthic communities, respectively). Although we 
did not considered abundance-based metrics, as these stud-
ies did, we point out that patterns of complementarity and 
redundancy can differ depending on the taxonomic group 
being investigated and the metrics being used (as already 
emphasized by our empirical application of the IV frame-
work with different configurations of matrix M). This find-
ing highlights the need to understand contingencies in the 
correlation and variation components of the dimensionality 
of different communities.

We only used metrics that capture three sources of infor-
mation from biodiversity (phylogenetic, functional and 
taxonomic), since they are the main assessed components of 
diversity and represent important metrics for capturing dif-
ferent dimensions of these components (Tucker et al. 2017). 
Despite the limited number of metrics presented in this work, 
the dimensionality framework used here is highly flexible in 
the sense that it can be applied to a matrix M that contains 
many more dimensions (Ricotta 2005). Therefore, we could 
represent diversity in a much more complete manner, with 
metrics that capture other quantifiable components such as 
genomic (Nei 1978), proteomic (Gotelli et al. 2012) or any 
other dimension that can be quantified.

Conclusion and future directions

This work represents an upgrade of the operationalization of 
the concept of dimensionality presented by previous works. 
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We demonstrate that including the correlation component of 
dimensionality with the variation component, through the 
use of EE and IV, in the same framework more effectively 
characterizes the dimensionality of biodiversity.

Besides conceptual and operational advances, the 
dimensionality framework proposed here provides evidence 
regarding practical situations in which the choice of diver-
sity metrics is more critical for effectively characterizing 
biodiversity. The use of this dimensionality framework can 
help identify these different situations and assist in choos-
ing metrics.

Since the evidence presented in the literature regarding 
characterization of dimensionality is limited (Lyashevska and 
Farnsworth 2012, Stevens and Tello 2014, 2018, Stevens 
and Gavilanez 2015), and based only on specific groups of 
organisms, some questions still need to be addressed to pro-
vide a more complete understanding and generalization of 
the role that some factors play in the dimensionality of eco-
logical communities. For instance, one might wonder if some 
dimensions of diversity are consistently more informative 
than others when describing diversity patterns among differ-
ent taxa, or if distinct factors (historical, evolutionary and/
or ecological) generate predictably higher or lower levels of 
dimensionality across communities.
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