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ABSTRACT

An antiproton plasma confined in a quasi-1D device is described in terms of a self-consistent fluid formulation using a variational approach.
Unlike previous treatments, the use of the time-dependent variational method allows to retain the thermal and Coulomb effects. A certain
Ansatz is proposed for the number density and fluid velocity fields, which reduces the problem essentially to ordinary nonlinear differential
equations. In adiabatic cooling, the frequency of the trap potential is slowly decreased. An adiabatic equation of state is assumed for closure.
The numerical simulation of the nonlinear dynamics is performed for realistic parameters.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053869

One of the goals of modern physics is the creation of large sam-
ples of cold antihydrogen (composed of an antiproton and a positron)
for studies on CPT invariance and gravitational influence on antimat-
ter.1 For this, the confinement and cooling of antiprotons is an impor-
tant step2 and the adiabatic cooling technique leads3 to temperatures
of 3K. In this Brief Communication, a non-relativistic antiproton
plasma confined in a one-dimensional trap is studied when thermal
and Coulomb effects are both relevant. For this purpose, a fluid formu-
lation and a time-dependent variational method are applied, allowing
us to assess the time-dependent dynamics by adopting a Gaussian
Ansatz. The limit cases, where the thermal or Coulomb interactions
can be neglected, were explored in Ref. 4, which uses a non-variational
approach. The Lagrangian variables with a linear velocity hypothesis in
the fluid frame lead to a local or a constant number density distribu-
tion, which restrain the results to the limit cases.5 By adopting a
Lagrangian density with a Gaussian Ansatz, this restriction is removed.

The confinement of single electrically charged particles is made
by cylindrical devices called Penning–Malmberg traps. In these traps,
the quadrupolar electrostatic field (originated by hyperbolic electrodes)
creates a potential well that confines the antiproton plasma in the axial
direction, and a homogeneous magnetic field confines it radially.6,7

The cooling of electrically charged particles is achieved by several
methods and techniques.8 After injected in the trap, the collisional
cooling is used for pre-cooling the antiprotons and is done with posi-
trons3 or electrons.9 This cooling process is based on the thermal equi-
librium reached after charged particles (with different temperatures)
collide with each other. After that, evaporative cooling or adiabatic

cooling is required to obtain temperatures of the order of a few
Kelvins.

In evaporative cooling, the elastic collisions scatter highly ener-
getic particles out of the potential well leading to a lower antiproton
density.10 On the other hand, in the adiabatic cooling, the external har-
monic confinement has a slowly decreasing frequency. For that reason,
the restoring force makes the plasma expand adiabatically, and the
temperature decreases. In this process, almost no losses are
observed.3,9 Moreover, the adiabatic cooling was also applied in atom
cooling by lowering the standing-wave intensity,11 in optical lattice by
lowering the lattice light intensity,12 and in electrically trapped polar
molecules.13

The study of one-component plasma dynamics is a traditional
field.14 The analysis of exact or approximate nonlinear structures
can be simplified using variational methods, as in Bose–Einstein
condensates15–21 and quantum electron gases.22–25 In this context,
our treatment consists of the minimization of the action functional,
reducing the problem to a set of coupled ordinary differential equa-
tions by adopting a trial function. In the hydrodynamic model, the
external time-dependent potential provides confinement, while ther-
mal and Coulomb effects tend to expand the gas. In the quasi-1D
model, collisional effects are not included in the model equations,
since a very collisional plasma would not keep its quasi-1D character
for a long time. Thermal effects are also considered, for the sake of
generality.

The hydrodynamic equations for the antiproton plasma trapped
in an one-dimensional time-dependent well are
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The system is composed of antiprotons (mass m and charge �e) with
a 1D number density n(z, t), a fluid velocity v(z, t), and a self-
consistent electrostatic potential /ðz; tÞ, where r? is the 2D number
density in the perpendicular plane and e0 is the vacuum permittivity.
Moreover, Vc is a time-dependent confining potential. Since the moti-
vation of this paper is about the adiabatic cooling of antiprotons, a
decreasing time-dependent harmonic potential will be adopted in the
form

Vc ¼
mx2ðtÞz2

2
; xðtÞ ¼ x0

ð1þ XtÞb
; (4)

where x0;X, and b are positive constants. For slowly varying angular
frequency, one has j _xj=x� x, or bX� x0ð1þ XtÞ1�b, which
holds9 for all times t � 0 provided b � 1 and bX� x0. Under these
conditions, the energy of the system remains approximately constant
in a period of an appropriate timescale. Additionally, the pressure
p(z, t) must be related to the antiprotons density to closure the set of
fluid equations. Since the energy barely changes in time, an adiabatic
equation of state is assumed. In the present case,

p ¼ n0jBT0
n
n0

� �3

(5)

is the isentropic equation of state with adiabatic index c ¼ ðd þ 2Þ=d
¼ 3 for the dimensionality d¼ 1, where n0 is reference number den-
sity (that will be better defined later) and T0 is a reference temperature
(jB is the Boltzmann constant). The number density n is assumed to
satisfy decaying boundary conditions, in view of the confinement. The
velocity field and the scalar potential have more free boundary condi-
tions, as long as they are consistently determined from the continuity
and Poisson equations, given the number density.

The problem of solving the set of Eqs. (1)–(3) can be reinterpreted
as a variational problem corresponding to the minimization of the
action functional S ¼

Ð
dt dzL, specified by the Lagrangian density
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where the independent fields are the velocity potential h ¼ hðz; tÞ, so
that v ¼ @h=@z, the number density n, and the self-consistent electro-
static potential /. Indeed, it can be easily shown that the minimization
of the respective Lagrangian density corresponding to Eq. (6), with
respect to the fields h, n, and /, respectively, yields the continuity,
momentum, and Poisson equations.

A normalized Gaussian Ansatz is adopted,

nðz; tÞ ¼ A
a
exp � q2

2

� �
; (7)

where the constant A ¼ N=
ffiffiffiffiffi
2p
p

A?r?
� �

is related to the total num-
ber of trapped antiprotons, N ¼ A?r?

Ð1
�1 nðz; tÞdz is the number of

confined antiprotons, A? is the occupied area in the perpendicular
plane and

q ¼ qðz; tÞ ¼ z � dðtÞ
aðtÞ : (8)

The Gaussian form reflects the plasma confinement and is amenable
for analytic treatment. The time-dependent coordinates d(t) and aðtÞ,
respectively, give the position of the center of mass (dipole) and the
width of the atomic cloud in the z direction. In addition, define the ref-
erence number density as n0 ¼ N=

ffiffiffiffiffi
2p
p

a0A?r?
� �

, where a0 ¼ að0Þ.
Direct substitution of the Ansatz in the continuity equation leads

to an exact solution for the velocity field, given by

v ¼ _a
a
ðz � dÞ þ _d; (9)

ignoring for simplicity an additive arbitrary function of time only.
Since v ¼ @h=@z, the velocity potential h in the Lagrangian density
can be written as

h ¼ _a
2a
ðz � dÞ2 þ _dðz � dÞ; (10)

where an extra irrelevant gauge function of time only was ignored.
In addition, by direct the integration of Eq. (3), one yields
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where ErfðsÞ ¼ 2=
ffiffiffi
p
p� � Ð s

0 e
�s02ds0 denotes the error function of a

generic argument s. To determine the functions c1;2ðtÞ, we follow the
trend of Ref. 25 choosing /ð6DÞ ¼ 0 where D is the size of the sys-
tem, eventually set to infinity at the end of the calculation. This yields
c1ðtÞ ¼ 0 and allows to write
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with a vanishing surface term and assuming Poisson’s equation to be
valid. Therefore, the electric field is given by

E ¼ � @/
@z
¼ � Ne

2A?e0
Erf

qffiffiffi
2
p
� �

: (13)

In order to derive the dynamical behavior of the new coordinates,
the Lagrangian is computed. After the substitution of Eqs. (7), (10),
and (11) into Eq. (6), one has

Lðd; _d ; a; _aÞ ¼ �A?r?
mN

ð
Ldz

¼ 1
2
ð _d2 þ _a2Þ � Ud � Ua; (14)

where

Ud ¼
x2ðtÞ
2

d2; (15)
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and

Ua ¼
x2ðtÞ
2

a2 þ a
2
1
a2
� ba; (16)

which are, respectively, the pseudo-potentials corresponding to the
dipole and oscillating width modes, where the constants a ¼ jBT0N2=
2
ffiffiffi
3
p

pmn20A
2
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and b ¼ Ne2= 2

ffiffiffi
p
p
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are introduced. The
Lagrangian in Eq. (14) only depends on two degrees of freedom,
namely, the dipole and the width. Also, in Eq. (16), the term �x2ðtÞ is
related to the time-dependent harmonic confinement, the term�b cor-
responds to the self-consistent electrostatic potential and the term�a is
due to the adiabatic pressure. To evaluate the electrostatic part of the
Lagrangian, Eq. (12) was used. The resulting integral is divergent, but
with a divergence not depending on the dynamical variables d; a and
therefore ignorable.25 Moreover, a total time derivative term was
discarded.

Since the Lagrangian is obtained, one can apply the
Euler–Lagrange equations for each variational parameter, thus deriv-
ing the equations of motion. The dynamics of the center of mass is
given by

€d þ x2ðtÞd ¼ 0; (17)

which, as can directly be seen, is decoupled to the width equations
showing time-dependent oscillations around the origin. Furthermore,
this motion is linear and independent of the number of atoms. The
solution of this equation can be mapped in terms of Bessel functions
for 0 < b < 1 [when Eq. (4) is valid] or in terms of approximate
WKB (Wentzel–Kramers–Brillouin) solutions for slowly varying
frequency.4

The equation of motion for the oscillating width in normalized
variables �a ¼ a=a0 and s ¼ x0t is

€�a þ �x2ðsÞ�a ¼ 1
x2

0

x2
T
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2
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or
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where �xðsÞ ¼ ð1þ X=x0 sÞ�b and U is the pseudo-potential defined
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p
are the

plasma frequencies, which are, respectively, related to thermal and
self-consistent (Coulomb) effects.

The confining potential Vc manifests itself in the harmonic forces
on the left-hand side of both Eqs. (17) and (18). As expected, the equa-
tions for d and a decouple for purely harmonic confinement. From
Eq. (18), the oscillating width is described by a forced Pinney equation.
Similar equations were obtained for a many-electron dynamics in a
semiconductor quantum well25 using a self-consistent quantum
hydrodynamic model (QHM) and for a trapped non-neutral plasma,26

except that Eq. (18) has a time-dependent confining potential. The

non-linearity comes from the repulsive interactions due to the pressure
and self-consistent interaction terms. From the shape of the pseudo-
potential (Fig. 1), one has that a will always execute time-dependent
oscillations around the minimum that grows as the frequency
decreases in time.

Equation (19) can be numerically solved for realistic and accessi-
ble antiproton plasmas parameters,27,28 namely, jbT0 ¼ 30 eV and
a0 ¼ 5 cm. Supposing N ¼ 105 confined antiprotons with a circular
cross section of radius 2mm yields a number density n0r? ¼ 6:3
�1010 m�3 so that xT=2p ¼ 1:5� 105 Hz and xp=2p ¼ 5:3
�104 Hz. In addition, the trap frequency, Eq. (4), is considered, with b
¼ 1, X ¼ 0:02x0, and x0=2p ¼ 100 kHz. The resulting nonlinear
oscillation is shown in Fig. 2. The oscillation amplitude grows in time
showing the expansion of the plasma as the frequency is slowly
decreased in time.

In this Brief Communication, confined antiproton plasmas in a
quasi-1D geometry have been studied. The main result is the nonlinear
analysis of an antiproton plasmas in a time-dependent trap with a
slowly decreasing frequency. This trap provides the adiabatic cooling
of the trapped non-neutral plasma. When thermal and Coulomb

FIG. 1. Pseudo-potential from Eq. (20). Parameters are indicated in the text.

FIG. 2. Numerical solution of Eq. (19). Parameters are indicated in the text. Initial
conditions: a ¼ 1 and _a0 ¼ 0.
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effects are both relevant, the basic equations for the quasi-1D varia-
tional description under arbitrary confinement are reducible to a
forced Pinney equation. For this purpose, the starting point was a
hydrodynamic set of equations reinterpreted in terms of the minimiza-
tion of an action functional, adopting a Gaussian Ansatz. The time-
dependent variational method with an adiabatic equation of state
retains both the thermal and electrostatic effects. Moreover, the results
have been applied to nonlinear oscillations compatible with typical
experiments. The results will be relevant for trapped non-neutral plas-
mas under time-varying harmonic potentials and are also relevant for
the experimental creation of antihydrogen atoms. In addition, the pre-
sent approach can be directly adapted to damped non-neutral con-
fined plasmas, where the damping mechanism can be traced back to
collisions with neutrals or to adiabatic cooling of neutral atoms by low-
ering the current intensity in the anti-Helmholtz coils.
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