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Abstract: In the early 1980s it was well established that Leray solutions of the unforced Navier–Stokes
equations in Rn decay in energy norm for large t. With the works of T. Miyakawa, M. Schonbek and
others it is now known that the energy decay rate cannot in general be any faster than t− (n+2)/4 and
is typically much slower. In contrast, we show in this note that, given an arbitrary Leray solution
u(·, t), the difference of any two Stokes approximations to the Navier–Stokes flow u(·, t) will always
decay at least as fast as t− (n+2)/4 , no matter how slow the decay of ‖u(·, t)‖L2(Rn) might be.
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1. Introduction

In this note, we derive an interesting new property regarding the large time behavior
of Stokes flows approximating Leray solutions (as constructed by J. Leray in [1]) of the
incompressible Navier–Stokes equations

ut + u ·∇u + ∇p = ν ∆u, ∇·u(·, t) = 0, (1)

u(·, 0) = u0 ∈ L2
σ(Rn), (2)

in dimension 2 ≤ n ≤ 4, where ν > 0 is constant and L2
σ(Rn) denotes the space of func-

tions u = (u1,..., un) ∈ L2(Rn) with ∇· u = 0 in the distributional sense. Leray solutions
to (1),(2) are mappings u(·, t) ∈ L∞((0, ∞), L2

σ(Rn)) ∩ L2((0, ∞), Ḣ1(Rn)) that are weakly
continuous in L2(Rn) for all t ≥ 0 and satisfy the Equation (1) in Rn× (0, ∞) as distribu-
tions. Moreover, they satisfy the energy estimate [1–6]

‖ u(·, t) ‖2
L2(Rn)

+ 2 ν
∫ t

0
‖Du(·, s) ‖2

L2(Rn)
ds ≤ ‖ u0 ‖2

L2(Rn)
(3)

(for all t ≥ 0), so that, in particular, ‖ u(·, t)− u0 ‖L2(Rn)→ 0 as t↘ 0. For n ≥ 3, their
uniqueness and exact regularity properties are still an open problem, but it is known that at
the very least they must be smooth for large t: for some t∗≥ 0 (depending on the solution)
we have u ∈ C∞(Rn× (t∗, ∞)), and, for each m ≥ 0,

u(·, t) ∈ C((t∗, ∞), Hm(Rn)), (4)

as shown by Leray ([1], p. 246). Actually, we have

t∗ ≤ 0.000465 ν− 5 ‖u0 ‖4
L2(R3)

(if n = 3) (5)

and
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t∗ ≤ 0.002728 ν− 3 ‖u0 ‖2
L2(R4)

(if n = 4) (6)

(see [7],THEOREM A), with t∗= 0 if n = 2. For more on solution properties, see e.g., [1–6,8–11].
Here, we are particularly interested in the behavior for t� 1: it is now well known that, for
every m ≥ 0,

lim
t→∞

tm/2 ‖Dm u(·, t)‖
L2(Rn)

= 0 (7)

(see e.g., [11–21]), where ‖Dm u(·, t)‖
L2(Rn)

denotes the norm of u(·, t) in Ḣm(Rn), that is,

‖u(·, t)‖2
L2(Rn)

= ‖u1(·, t)‖2
L2(Rn)

+ . . . + ‖un(·, t)‖2
L2(Rn)

(8)

if m = 0 and

‖Dmu(·, t)‖2
L2(Rn)

=
n

∑
i = 1

n

∑
j1= 1
· · ·

n

∑
jm= 1

∫
Rn

∣∣Dj1
· · ·Djm ui(x, t)

∣∣2 dx (9)

if m ≥ 1, where Dj = ∂/∂xj. For arbitrary initial values u0 ∈ L2
σ(Rn), the result (7) is all

that can be obtained, but stronger additional assumptions may give that, for some α > 0,
we actually have

‖Dmu(·, t)‖
L2(Rn)

= O(t− α−m/2) (10)

as t → ∞, with the generic limitation α ≤ (n + 2)/4, see [8,22,23]. (For the exceptional
case of faster decaying solutions, see [8,22,24,25].) Another point of interest is the large
time behavior of the associated linear Stokes flows. In the case of (1), (2) these are given by
solutions v(·, t) ∈ L∞([ t0, ∞), L2

σ(Rn)) of the linear heat flow problems

vt = ν ∆v, t > t0, (11)

v(·, t0) = u(·, t0), (12)

for some given t0 ≥ 0 (arbitrary). The solution is given by v(·, t) = eν∆(t− t0)u(·, t0), where
eν∆τ, τ ≥ 0, is the heat semigroup. If α < (n + 2)/4, the error ‖ Dm(u − v)(·, t) ‖L2(Rn)
decays faster than the rate (10), so that the Stokes solutions (11), (12) give a useful approxi-
mation to the more complex Navier–Stokes flow u(·, t) defined by the Equation (1).

Our contribution in this note is to point out that, for arbitrary Navier–Stokes flows (i.e.,
for arbitrary initial values u0 ∈ L2

σ(Rn)), two distinct Stokes approximations v(·, t), ṽ(·, t)
to u(·, t) eventually become very closely similar in that we always have

‖Dm[ v(·, t)− ṽ(·, t) ]‖
L2(Rn)

= O( t− (n+2)/4−m/2) (13)

for large t. The precise statement reads as follows:

Theorem 1. Given 2 ≤ n ≤ 4 and u0 ∈ L2
σ(Rn), let u(·, t) ∈ L∞((0, ∞), L2

σ(Rn)) ∩ L2((0, ∞),
Ḣ1(Rn)) be any Leray solution to the Navier–Stokes equations (1). Then, for any 0 ≤ t0 < t̃0, we
have

‖ v(·, t)− ṽ(·, t)‖
L2(Rn)

≤ K ν− (n+2)/4 ‖u(·, 0)‖2
L2(Rn)

( t̃0 − t0) (t− t̃0)
− (n+2)/4 (14)

for all t > t̃0, where v(·, t) = eν∆(t−t0)u(·, t0) and ṽ(·, t) = eν∆(t−t̃0)u(·, t̃0) are the correspond-
ing Stokes flows associated with the time instants t0 and t̃0, respectively, and K = (4π)− n/4/

√
e .

Moreover, for any m ≥ 1, we have

‖Dm [v(·, t)− ṽ(·, t) ]‖
L2(Rn)

≤ K(m, n) ν− (n+2)/4−m/2 ‖u0‖2
L2(Rn)

( t̃0 − t0) (t− t̃0)
− (n+2)/4−m/2 (15)
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for all t > t̃0, where the constant K(m, n) depends only on m, n (and not on t0, t̃0, ν, u0 or
the solution u(·, t)).

Remark 1. In dimension n ≥ 3 it is not known whether Leray’s construction gives all (weak) solu-
tions in the class X = { u(·, t) ∈ L∞((0, ∞), L2

σ(Rn)) ∩ L2((0, ∞), Ḣ1
σ (Rn)) : (3) holds for all

t > 0}, the so-called Leray-Hopf solutions. In case it does not, it would be interesting to know if
THEOREM A remains valid for all Leray-Hopf solutions as well.

From (14), (15) and standard Sobolev imbeddings we obtain the following corollary
regarding supnorm estimates.

Theorem 2. Given 2 ≤ n ≤ 4 and u0 ∈ L2
σ(Rn), let u(·, t) ∈ L∞((0, ∞), L2

σ(Rn)) ∩ L2((0, ∞),
Ḣ1(Rn)) be any Leray solution to the Navier–Stokes equations (1). Then, for any 0 ≤ t0 < t̃0, we
have

‖Dm [v(·, t)− ṽ(·, t) ]‖
L∞(Rn)

≤ G(m, n) ν− (n+2)/4−m/2− n/4 ‖u(·, 0)‖2
L2(Rn)

( t̃0 − t0) (t− t̃0)
− (n+2)/4−m/2− n/4 (16)

for all t > t̃0 and every m ≥ 0, where v(·, t) = eν∆(t−t0)u(·, t0) and ṽ(·, t) = eν∆(t−t̃0)u(·, t̃0),
and where G(m, n) > 0 is some constant that depends only on (m, n).

Remark 2. Earlier versions of (14) and (16) for m = 0 were given in [26,27], but, as the results
and analysis there were neither as sharp nor as complete as in the present discussion, they have now
become obsolete.

The proof of Theorem 1 is developed in the next section, along with some necessary
mathematical preliminaries. We end the discussion with some brief considerations in
Section 3.

2. Proof of Theorem 1

We first recall Leray’s construction [1], as it will be needed in the proof of Theorem 1 if
n ≥ 3. (If n = 2, the proof can be done directly from (1) by easily adapting the argument
below.) For the construction of his solutions, Leray used an ingenious regularization proce-
dure which we now review. Taking (any) G ∈ C∞

0 (Rn) nonnegative with
∫
Rn G(x) dx = 1

and setting ū0, δ
(·) ∈ C∞(Rn) by convolving u0(·) with G

δ
(x) = δ− n G(x/δ), δ > 0, one

defines u
δ
, p

δ
∈ C∞(Rn× [ 0, ∞)) as the (unique, globally defined) classical L2 solutions of

the regularized equations

∂

∂ t
u

δ
+ ū

δ
(·, t) ·∇u

δ
+ ∇p

δ
= ∆u

δ
, ∇·u

δ
(·, t) = 0, (17)

u
δ
(·, 0) = ū0, δ

:= G
δ
∗ u0 ∈

∞⋂
m= 1

Hm(Rn), (18)

where ū
δ
(·, t) := G

δ
∗ u

δ
(·, t). As shown by Leray, there is some sequence δ ′→ 0 for which

we have the weak convergence

u
δ ′
(·, t) ⇀ u(·, t) as δ ′→ 0, ∀ t ≥ 0, (19)

that is, u
δ ′
(·, t) → u(·, t) weakly in L2(Rn), for every t ≥ 0 (see [1], p. 237). This gives

u(·, t) ∈ L∞((0, ∞), L2
σ(Rn)) ∩ L2((0, ∞), Ḣ1(Rn)) ∩ C0

w([0, ∞), L2(Rn)), with u(·, t) con-
tinuous in L2 at t = 0 and solving the Navier–Stokes Equations (1) in distributional sense.
Moreover, the energy inequality (3) is satisfied for all t ≥ 0, so that, in particular,∫ ∞

0
‖Du(·, t) ‖2

L2(Rn)
dt ≤ 1

2ν
‖ u0 ‖2

L2(Rn)
. (20)
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A similar estimate for the regularized solutions u
δ
(·, t) is also valid, since we have, from

(17), (18) above, that

‖ u
δ
(·, t) ‖2

L2(Rn)
+ 2 ν

∫ t

0
‖Du

δ
(·, s) ‖2

L2(Rn)
ds ≤ ‖ u0 ‖2

L2(Rn)
(21)

for all t > 0 (and δ > 0 arbitrary). Another property shown in [1] is that u ∈ C∞(Rn× (t∗, ∞))
for some t∗ ≥ 0, with Dmu(·, t) ∈ C((t∗, ∞), L2(Rn)) for each m ≥ 1, cf. (4). The following
result considers the Helmholtz projection of − u(·, t) ·∇u(·, t) into L2

σ(Rn), that is, the
divergence-free field Q(·, t) ∈ L2

σ(Rn) given by

Q(·, t) := − u(·, t) ·∇u(·, t) − ∇p(·, t), a.e. t > 0. (22)

Of similar interest is the quantity Q
δ
(·, t) := − ū

δ
(·, t) ·∇u

δ
(·, t) −∇p

δ
(·, t), which will be

important in Theorem 4 below.

Theorem 3. For almost every s > 0 (and every s ≥ t∗, with t∗ given in (4) above), one has

‖ eν∆(t− s)Q(·, s) ‖
L2(Rn)

≤ K1(n) ν− n/4 (t− s)− n/4 ‖ u(·, s) ‖
L2(Rn)

‖Du(·, s) ‖
L2(Rn)

(23)

and
‖ eν∆ (t− s)Q(·, s) ‖

L2(Rn)
≤ K2(n) ν− (n+2)/4 (t− s)− (n+2)/4 ‖ u(·, s) ‖2

L2(Rn)
(24)

for all t > s, where K1(n) = (8π)− n/4 and K2(n) = (4π)− n/4/
√

e .

Proof. This is shown in [14], p. 236, using the Fourier transform. Here we give an al-
ternative, direct argument in physical space: Let P be the Helmholtz projection. Since,
by definition, P is an orthogonal projection in the Hilbert space of vector fields in L2, we
have ‖ P f ‖L2 ≤ ‖ f ‖L2 for any vector field in L2. Hence we have ‖ eν∆(t−s)Q(·, s) ‖L2 =

‖ eν∆(t−s) P [ u(·, s) · ∇u(·, s) ] ‖L2 = ‖ P [ eν ∆(t−s)(u(·, s) · ∇u(·, s)) ]‖L2 ≤ ‖ eν∆(t−s)(u(·, s)
·∇u(·, s)) ‖L2 ≤ ‖ Γ(t− s) ‖L2 ‖ u(·, s) · ∇u(·, s) ‖L1, where Γ denotes the heat kernel, so
that ‖ eν∆(t−s)Q(·, s) ‖L2 ≤ ‖ Γ(t− s) ‖L2 ‖ u(·, s) ‖L2 ‖∇u(·, s) ‖L2 . This is (23). Similarly,
‖ eν ∆(t−s)Q(·, s) ‖L2 ≤ ∑n

j= 1 ‖ Γ(t − s) ∗ Dj [ uj(·, s) u(·, s) ] ‖L2 = ∑n
j= 1 ‖ Dj Γ(t − s) ∗

[ uj(·, s) u(·, s) ] ‖L2 ≤ ∑n
j= 1 ‖ Dj Γ(t − s) ‖L2‖ uj(·, s) u(·, s) ‖L1 ≤ ∑n

j= 1 ‖ Dj Γ(t −
s)‖L2‖uj(·, s)‖L2 ‖u(·, s)‖L2 , which gives (24), as claimed.

In a completely similar way, considering the solutions of the regularized Navier–
Stokes Equations (17) and (18), one obtains

‖ eν∆(t− s) Q
δ
(·, s) ‖

L2(Rn)
≤ K1(n) ν− n/4 (t− s)− n/4 ‖ u

δ
(·, s) ‖

L2(Rn)
‖Du

δ
(·, s) ‖

L2(Rn)
(25)

and

‖ eν∆(t− s) Q
δ
(·, s) ‖

L2(Rn)
≤ K2(n) ν− (n+2)/4 (t− s)− (n+2)/4 ‖ u

δ
(·, s) ‖2

L2(Rn)
(26)

for all t > s > 0, where the constants K1 (n), K2 (n) are given in Theorem 3 and
Q

δ
(·, s) = − ū

δ
(·, s) ·∇u

δ
(·, s) −∇p

δ
(·, s).

Theorem 4. Let u(·, t), t > 0, be any particular Leray solution to (1). Given any pair of starting
times t̃0 > t0 ≥ 0, one has

‖ v(·, t) − ṽ(·, t)‖
L2(Rn)

≤ K2(n) ν− (n+2)/4 ‖ u(·, 0)‖2

L2(Rn)
(t̃0− t0) (t− t̃0)

− (n+2)/4 (27)

for all t > t̃0, where v(·, t) = eν∆(t− t0)u(·, t0), ṽ(·, t) = eν ∆(t− t̃0)u(·, t̃0) are the corresponding
Stokes flows associated with t0, t̃0, respectively, and K2(n) is given in Theorem 3 above, that is,
K2(n) = (4π)− n/4/

√
e .
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Proof. The following argument combines the Leray’s construction reviewed above with
the usual strategy of handling nonlinear terms as a Duhamel-type correction. We begin
by writing v(·, t) = eν∆( t− t0) [ u(·, t0)− u

δ
(·, t0) ] + eν∆( t− t0) u

δ
(·, t0), t > t0, with u

δ
(·, t)

given in (17), (18), δ > 0. Because

u
δ
(·, t0) = eν∆t0 ū0,δ +

∫ t0

0
eν∆( t0− s) Q

δ
(·, s) ds,

where ū0, δ
= G

δ
∗ u0 and Q

δ
(·, s) = − ū

δ
(·, s) ·∇u

δ
(·, s) −∇p

δ
(·, s), we get

v(·, t) = eν∆( t− t0) [ u(·, t0)− u
δ
(·, t0) ] + eν∆t ū0,δ +

∫ t0

0
eν∆( t− s) Q

δ
(·, s) ds,

for t > t0. A similar expression holds for ṽ(·, t) as well, giving

ṽ(·, t) − v(·, t) = eν∆( t− t̃0) [ u(·, t̃0)− u
δ
(·, t̃0) ] − eν∆( t− t0) [ u(·, t0)− u

δ
(·, t0) ] +

∫ t̃0

t0

eν∆( t− s) Q
δ
(·, s) ds

for t > t̃0. Therefore, given any K ⊂ Rn compact, we get, for each t > t̃0, δ > 0:

‖ ṽ(·, t) − v(·, t) ‖
L2(K)

≤ J
δ
(t) +

∫ t̃0

t0

‖ eν∆( t− s) Q
δ
(·, s) ‖

L2(K)
ds

≤ J
δ
(t) + K2(n) ν− (n+2)/4

∫ t̃0

t0

(t− s)− (n+2)/4 ‖ u
δ
(·, s) ‖2

L2(Rn)
ds

≤ J
δ
(t) + K2(n) ν− (n+2)/4 ‖ u0 ‖

2

L2(Rn)
( t̃0− t0) (t− t̃0)

− (n+2)/4

by (21) and (26), where K2(n) = (4π)−n/4/
√

e and

J
δ
(t) = ‖ eν∆( t− t̃0) [ u(·, t̃0)− u

δ
(·, t̃0) ] ‖L2(K)+ ‖ eν∆( t− t0) [ u(·, t0)− u

δ
(·, t0) ] ‖L2(K).

Taking δ = δ′→ 0 according to (19), we get J
δ
(t)→ 0, since, by Lebesgue’s Dominated Con-

vergence Theorem and (19), we have, for any σ, τ > 0: ‖ eν∆τ [ u(·, σ)− u
δ′
(·, σ) ] ‖

L2(K)
→ 0

as δ′→ 0. This gives (27), as claimed.

In particular, we obtained (14). This, in turn, gives (15) using well known estimates of
the heat operator, or, alternatively, by applying to (14) the direct method introduced in [28]
to derive upper estimates in the spaces Ḣm(Rn). This completes the proof of Theorem 1.

3. Concluding Remarks

The main results of this note (namely, Theorems 1 and 2) show the somewhat surpris-
ing fact that the difference of any two Stokes approximations to an arbitrarily given Leray
solution of the Navier–Stokes system (1), (2) will always decay as t → ∞ at least as fast
as the fastest decaying Leray flows in general, no matter how slow the particular Leray
solution at hand might be decaying. This is an interesting theoretical finding about Stokes
flows in Rn, which are important approximations for Navier–Stokes flows. On the more
practical side, it sheds some additional light on the quality of these approximations. For
example, it shows that M. Wiegner’s estimates ([20], THEOREM (c), p. 305) on the large time
size of the error ‖ u(·, t)− eν∆tu0 ‖L2(Rn) apply more generally to the error of any Stokes
approximation of u(·, t), and so forth.
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