UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA CURSO DE ENGENHARIA CIVIL

Maicom Jean Hilbig

PROJETO ESTRUTURAL DE SILO CILÍNDRICO DE CONCRETO PARA O ARMAZENAMENTO DE CLÍNQUER

Porto Alegre

Maio/2022

MAICOM JEAN HILBIG

PROJETO ESTRUTURAL DE SILO CILÍNDRICO DE CONCRETO PARA O ARMAZENAMENTO DE CLÍNQUER

Trabalho de Diplomação apresentado à Comissão de Graduação do Curso de Engenharia Civil da Escola de Engenharia da Universidade Federal do Rio Grande do Sul, como parte dos requisitos para obtenção do título de Engenheiro Civil

Orientador: Rubem Clécio Schwingel

Porto Alegre

Maio/2022

MAICOM JEAN HILBIG

PROJETO ESTRUTURAL DE SILO CILÍNDRICO DE CONCRETO PARA O ARMAZENAMENTO DE CLÍNQUER

Este Trabalho de Diplomação foi julgado adequado como pré-requisito para a obtenção do título de ENGENHEIRO CIVIL e aprovado em sua forma final pelo Professor Orientador e pela Comissão de Graduação (COMGRAD) do Curso de Engenharia Civil da Universidade Federal do Rio Grande do Sul.

Porto Alegre, maio de 2022

Prof. Rubem Clécio Schwingel Msc. pela Universidade Federal do Rio Grande do Sul Orientador

> Prof. Enio Carlos Mesacasa Júnior Dr. pela Universidade de São Paulo Coordenador

BANCA EXAMINADORA

Prof. Alexandre Rodrigues Pacheco (UFRGS)Ph.D. pela Pennsylvania State University

Prof. João Ricardo Masuero (UFRGS) Dr. pela Universidade Federal do Rio Grande do Sul

Prof. Rubem Clécio Schwingel (UFRGS)Msc. pela Universidade Federal do Rio Grande do Sul

RESUMO

O armazenamento de materiais granulares e líquidos é uma demanda crescente no cenário mundial. A estocagem de tais produtos em silos cilíndricos em diferentes alturas e diâmetros é uma prática usual, tomando vantagem das propriedades mecânicas da estrutura curva, a qual proporciona uma distribuição de esforços vantajosa com relação a recipientes prismáticos de poucas faces, e de sua relação altura/diâmetro e material definidos conforme demanda técnica e econômica do produto a ser acondicionado.

No setor do cimento, uma das demandas especiais é a armazenagem do clínquer, produto granular e rígido, obtido a partir da queima de matérias-primas refinadas em um forno rotativo a altas temperaturas e que após resfriado é estocado em silos a uma temperatura de entrada entre 100°C e 200°C.

Valendo-se da teoria e experiência adquirida nacional e internacionalmente, este trabalho busca conceber, analisar, dimensionar e detalhar a estrutura de um silo de concreto para o armazenamento de clínquer.

SUMÁRIO

1. INTRODUÇÃO	6
2. MEMÓRIA DE CÁLCULO	7
2.1. DIRETRIZES DO PROJETO	7
2.1.1. Objetivo	7
2.1.2. Método	7
2.1.3. Delimitação	8
2.2. PREMISSAS	9
2.2.1. Características da estrutura	9
2.2.2. Materiais empregados	11
2.3. CARREGAMENTOS E COMBINA	AÇÕES 13
2.3.1. Cargas de vento	13
2.3.1.1. Paredes verticais	13
2.3.1.2. Cobertura	16
2.3.2. Cargas dos equipamentos	17
2.3.3. Cargas de armazenamento	17
2.3.3.1. Pressões de armazenamen	to17
2.3.4. Carga térmica	25
2.3.5. Combinações de carregamen	tos26
2.4. MODELO ESTRUTURAL E ANÁ	L ISE 28
2.5. DIMENSIONAMENTO	33
2.5.1. Cobertura	33
2.5.2. Paredes verticais	38
2.5.3. Acesso lateral	47
2.5.4. Túnel de extração	48
2.5.5. Anel de fundações	49
3. CONSIDERAÇÕES FINAIS	51
3.1. Referências e bases teóricas	52
APÊNDICE A – Desenhos técnicos	53

1. INTRODUÇÃO

Estruturas especiais como silos para armazenamento de clínquer demandam conhecimentos teóricos e experimentais que não são abordados pelas normas brasileiras. A partir da adequabilidade dos referenciais da norma europeia, da norma americana e da norma brasileira, busca-se estabelecer as bases para o desenvolvimento de projetos especiais como silos de armazenamento de diferentes materiais.

No processo de armazenamento do clínquer em silos, são observados diferentes fenômenos relevantes para o desenvolvimento do projeto de tal estrutura, sendo os principais fenômenos a temperatura elevada do material armazenado, as características de carregamento e descarregamento do material, os requisitos para controle de fissuração e as ações de equipamentos mecânicos sobre o topo da estrutura. A grandeza e a natureza dos carregamentos, assim como as características de abrasividade do material armazenado, faz com que silos de concreto armado e protendido apresentem vantagem nesse tipo de estrutura, podendo ser moldado em diferentes formas e construídos de forma ágil com o emprego de técnicas construtivas como com formas deslizantes.

Seguindo essa abordagem, este trabalho tem por finalidade apresentar um projeto estrutural de um silo em concreto armado e protendido para o armazenamento de clínquer, de forma a englobar os requisitos e recomendações para o acondicionamento do material e segurança da estrutura.

2. MEMÓRIA DE CÁLCULO

2.1. DIRETRIZES DO PROJETO

2.1.1.Objetivo

O objetivo geral do trabalho é conceber, analisar, dimensionar e detalhar a estrutura de um silo para o armazenamento de clínquer, trazendo como referências normativas a norma americana, a norma brasileira e a norma europeia, para um silo construído em Porto Alegre, empregando-se o concreto armado e protendido com póstensão não aderente em sua estrutura, assim como o detalhamento para a aplicação da técnica construtiva de formas deslizantes nas paredes verticais.

Como objetivos específicos do trabalho temos:

- Estimar as ações do vento pela norma brasileira e por referenciais de ensaios de túnel de vento
- Estimar as ações de armazenamento pela norma europeia
- Estimar as ações da temperatura pela norma americana
- Elaborar a análise da estrutura da cobertura metálica do silo para referenciais de carregamento sobre o silo de concreto armado utilizando uma ferramenta computacional baseada em elementos finitos
- Elaborar a análise da estrutura de concreto e aço do silo utilizando uma ferramenta computacional baseada em elementos finitos
- Dimensionar a estrutura de concreto armado e protendido do silo
- Detalhar a estrutura de concreto armado e protendido do silo
- Dimensionar a estrutura metálica de cobertura do silo
- Detalhar a estrutura metálica de cobertura do silo

2.1.2.Método

O trabalho foi desenvolvido no formato de projeto de engenharia. Para a elaboração do trabalho a estrutura seguirá as informações geométricas da capacidade de armazenamento, altura e diâmetro pré-estabelecidas, sendo o projeto desenvolvido a partir de tais informações. Dados os parâmetros iniciais, será realizada a estimativa dos carregamentos pelas normas nacionais e internacionais, a concepção e o dimensionamento da estrutura com solução numérica por elementos finitos e o dimensionamento dos elementos de concreto conforme a ABNT NBR 6118/2014 e dos

elementos metálicos pela AISC 360-05/IBC 2006. Por fim, será realizado o detalhamento dos elementos estruturais analisados.

2.1.3. Delimitação

O trabalho se limita ao projeto estrutural do silo segundo uma análise elásticolinear-instantânea e ao dimensionamento estrutural do silo, da cobertura e das fundações, não contemplando o dimensionamento geotécnico das fundações, cujos parâmetros para o dimensionamento estrutural são fornecidos como dados iniciais do projeto. 2.2. PREMISSAS

O projeto do presente trabalho trata de um silo com características fornecidas

pelo Cliente A, apresentando premissas particulares para o caso específico, segundo sua

geometria e técnicas construtivas disponíveis.

2.2.1. Características da estrutura

As características pré-estabelecidas para o silo correspondem a sua capacidade

de armazenamento e condições geométricas ligadas aos projetos mecânicos como o de

esteiras transportadoras para a carga e a descarrega do silo, sistemas de filtros e layout da

indústria.

As condicionantes fornecidas pela Cliente A, são apresentadas na Figura 1 e na

Figura 2 e correspondem a:

• Capacidade máxima de armazenamento: aproximadamente 35.000 toneladas ou

23.330 m³

• Altura das paredes circulares de concreto: 30 metros

• Altura interna da cobertura cônica: 10 metros

• Diâmetro do anel central da cobertura cônica: 8 metros

• Dimensões do túnel de extração: largura de 4 metros e altura de 2,75 metros

• Dimensões do acesso lateral: largura de 4 metros e altura de 4,50 metros

Número de descargas de fundo: 5 unidades com abertura de 1,5x1,5 metros

Parâmetros do solo:

Tensão admissível: 4 kgf/cm²

o Coeficiente de recalque: 8 kgf/cm³

9

Figura 1 - Características geométricas básicas - Corte (unidades em centímetro)

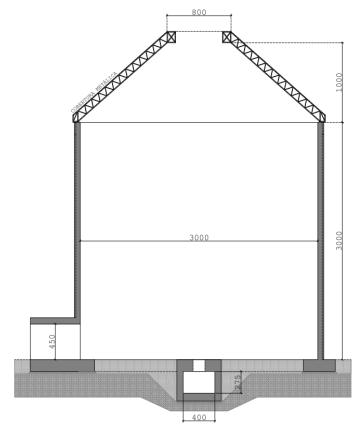
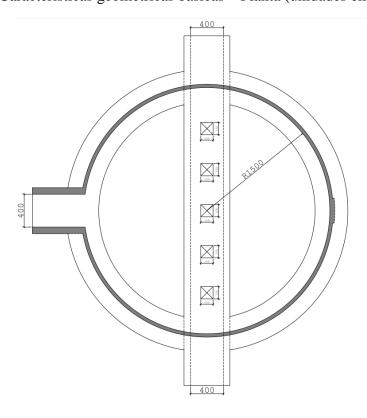



Figura 2 - Características geométricas básicas – Planta (unidades em centímetro)

2.2.2. Materiais empregados

Para a análise e dimensionamento da estrutura de concreto, com base nos valores mínimos para a classe de agressividade ambiental, CAA III, selecionou-se o concreto de classe C45 (45MPa), classe acima do mínimo recomendado. Os materiais empregados para o reforço do concreto foram o aço passivo CA-50 (500MPa) e o aço ativo em cordoalha engraxada CP-210RB (2100MPa). As características adicionais dos materiais foram calculadas com o auxílio da ferramenta SMath Studio e são apresentadas na Figura 3, na Figura 4 e na Figura 5.

Figura 3 - Características do concreto utilizado

$$\begin{split} &f_{ck} \coloneqq 45 \text{ MPa} \qquad \qquad \gamma_c \coloneqq 1,4 \\ &\alpha_E \coloneqq 1 \qquad \qquad \alpha_i \coloneqq 0,2 \cdot \frac{f_{ck}}{80} + 0,8 = 0,91 \\ &E_{ci} \coloneqq \alpha_E \cdot 5600 \cdot \sqrt{f_{ck}} \text{ MPa} = 3756,59 \ \frac{\text{kN}}{\text{cm}} \\ &E_{cs} \coloneqq \alpha_i \cdot E_{ci} = 3427,89 \ \frac{\text{kN}}{\text{cm}} \\ &f_{cj} \coloneqq 0,8 \cdot f_{ck} = 36 \text{ MPa} \\ &E_{co} \coloneqq E_{ci} \cdot \sqrt{\frac{f_{cj}}{f_{ck}}} = 3360 \ \frac{\text{kN}}{\text{cm}} \\ &E_{cs0} \coloneqq 0,87 \cdot E_{c0} = 2923,2 \ \frac{\text{kN}}{\text{cm}} \\ &\sigma_{cd} \coloneqq 0,85 \cdot \frac{f_{ck}}{\gamma_c} \text{ MPa} = 2,73 \ \frac{\text{kN}}{\text{cm}} \\ \end{split}$$

Figura 4 - Características dos aços utilizados

$$\begin{split} & \gamma_s \coloneqq 1,15 \\ & \frac{\text{Aço CP210-RB}}{\text{f}_{ptk}} \coloneqq 210 \, \frac{\text{kN}}{\text{cm}^2} \\ & \sigma_{p0} \coloneqq 0,8 \cdot f_{ptk} = 168 \, \frac{\text{kN}}{\text{cm}^2} \\ & f_{yd} \coloneqq \frac{f_{yk}}{\gamma_s} = 43,48 \, \frac{\text{kN}}{\text{cm}^2} \\ & f_{pyd} \coloneqq \frac{f_{yk}}{\gamma_s} = 43,48 \, \frac{\text{kN}}{\text{cm}^2} \\ & f_{pyk} \coloneqq 189 \, \frac{\text{kN}}{\text{cm}^2} \\ & f_{pyd} \coloneqq \frac{f_{pyk}}{\gamma_s} = 164,35 \, \frac{\text{kN}}{\text{cm}^2} \\ & \sigma_{pi} \coloneqq \min \left[\begin{bmatrix} 0,77 \cdot f_{ptk} \\ 0,85 \cdot f_{pyk} \end{bmatrix} \right] = 160,65 \, \frac{\text{kN}}{\text{cm}^2} \end{split}$$

Figura 5 - Limites de protensão

$$\begin{array}{lll} \underline{t} = \underline{t0} & \underline{t} = \underline{t} & \underline{\sigma} \\ & \underline{f}_{ctmj} \coloneqq 0, 3 \cdot f_{cj} & \underline{MPa} & f_{ctm} \coloneqq 0, 3 \cdot f_{ck} & \underline{MPa} \\ & \sigma_{ct0} \coloneqq 1, 2 \cdot f_{ctmj} = 3, 92 \; \underline{MPa} & \sigma_{cc} \coloneqq 1, 2 \cdot f_{ctm} = 4, 55 \; \underline{MPa} \\ & \sigma_{cc0} \coloneqq 0, 7 \cdot f_{cj} \; \underline{MPa} = 25, 2 \; \underline{MPa} & \sigma_{ccc} \coloneqq 0, 5 \cdot f_{ck} \; \underline{MPa} = 22, 5 \; \underline{MPa} \end{array}$$

Já para a análise e dimensionamento da estrutura de aço, selecionou-se o aço A572Gr50 cujas propriedades de mecânicas correspondem a:

- Resistência ao escoamento, f_y: 345 MPa
- Resistência a ruptura, f_u: 450 MPa
- Módulo de elasticidade, E: 200.000 MPa
- Coeficiente de Poisson, v: 0,3

2.3. CARREGAMENTOS E COMBINAÇÕES

Para a análise estrutural do silo, foram consideradas as ações provenientes do peso próprio da estrutura, do vento, dos equipamentos, do material armazenado e da temperatura. Tais estimativas de carregamento são abordadas nos tópicos seguintes, segundo as normativas e técnicas aplicáveis.

2.3.1. Cargas de vento

Para determinação dos carregamentos variáveis provenientes do vento, sendo essa ação variável importante no caso em que o silo se encontra vazio, subdividiu-se a estrutura em cobertura e paredes verticais do silo.

A estimativa das ações variáveis resultantes da ação do vento sobre as paredes verticais do silo, são realizadas segundo as considerações da NBR 6123: Forças devidas ao vento em edificações (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 1988). Já para a determinação das ações do vento sobre a cobertura do silo, visto que a geometria proposta não possui aplicação direta das considerações da NBR 6123: Forças devidas ao vento em edificações, tomou-se partido dos resultados experimentais obtidos por Andrade Junior (2002) em túnel de vento.

2.3.1.1. Paredes verticais

Para a determinação das forças estáticas do vento sobre o silo segundo a NBR 6123, foram realizados os seguintes passos:

- determinação da velocidade básica do vento, V₀
- determinação do fator topográfico, S₁
- determinação do fator de rugosidade do terreno, dimensões da edificação e altura sobre o terreno, S₂
- determinação do fator estatísticos para grau de segurança e vida útil da edificação,
 S₃
- cálculo da velocidade característica do vento, V_k
- cálculo da pressão dinâmica do vento, q
- cálculo das componentes de força sobre a edificação, F

Para a cidade de Porto Alegre/RS, local de implantação da edificação e fator estatísticos para grau de segurança e vida útil da edificação, tem-se:

a. $V_0 = 45$ m/s, de acordo de acordo com a localização da edificação no mapa de isopletas da Norma (Figura 6)

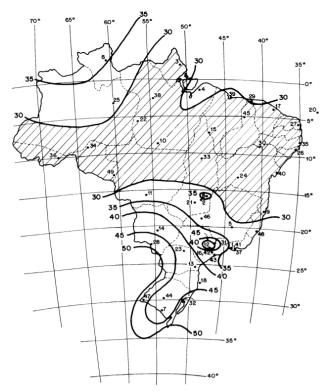


Figura 6 - Mapa de isopletas da velocidade básica V₀ (m/s)

Fonte: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 1988, p. 6

- b. $S_1 = 1$, para terreno plano
- c. S₂, para classificação III-B com terrenos de obstáculos esparsos e edificação com maior dimensão entre 20 e 50 metros, sendo os valores assumidos apresentados na Tabela 1

Tabela 1 – Fator S_2

Intervalos em Z (m)	S_2
0 a 3	0,76
3 a 6	0,85
6 a 9	0,90
9 a 12	0,93
12 a 15	0,96
15 a 18	0,98
18 a 21	0,99
21 a 24	1,00
24 a 27	1,02
27 a 30	1,03

- d. $S_3 = 0.95$, para edificações e instalações industriais com baixo fator de ocupação
- e. V_k é variável conforme altura considerada, sendo calculada a partir da fórmula abaixo, assumindo os valores da Tabela 2

$$V_k = V_0.S_1.S_2.S_3 \tag{1}$$

Tabela 2 - Velocidade característica, V_k

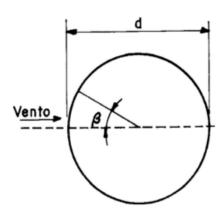
Intervalos em Z (m)	$V_k(m/s)$
0 a 3	32,37
3 a 6	36,21
6 a 9	38,21
9 a 12	39,58
12 a 15	40,64
15 a 18	41,51
18 a 21	42,24
21 a 24	42,88
24 a 27	43,45
27 a 30	43,96

f. q é variável conforme altura considerada, sendo calculada a partir da fórmula abaixo, assumindo os valores da Tabela 3

$$q = 0.613. V_k^2 \tag{2}$$

Tabela 3 – Pressão dinâmica do vento, q

Intervalos em Z (m)	$q (kN/m^2)$
0 a 3	0,638
3 a 6	0,804
6 a 9	0,895
9 a 12	0,96
12 a 15	1,01
15 a 18	1,06
18 a 21	1,09
21 a 24	1,13
24 a 27	1,16
27 a 30	1,18

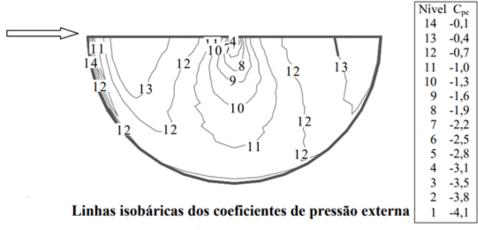

g. F é variável conforme altura e ângulo do corpo cilíndrico considerado, sendo calculada a partir da fórmula abaixo, assumindo os valores da e com incidência conforme Figura 7

$$F = q. C_{pe} \tag{3}$$

Tabela 4 – Força de arrasto resultante, F

	Força de arrasto resultante (kN/m²)											
ß	Intervalos em Z (m)											
12	0 a 3	3 a 6	6 a 9	9 a 12	12 a 15	15 a 18	18 a 21	21 a 24	24 a 27	27 a 30		
0 °	0,64	0,8	0,89	1,00	1,00	1,10	1,10	1,10	1,20	1,20		
10 °	0,57	0,72	0,81	0,86	0,91	1,00	1,00	1,00	1,00	1,10		
20 °	0,45	0,56	0,63	0,67	0,71	0,74	0,77	0,79	0,81	0,83		
30°	0,22	0,28	0,31	0,34	0,35	0,37	0,38	0,39	0,41	0,41		
40 °	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
50°	-0,32	-0,40	-0,45	-0,48	-0,51	-0,53	-0,55	-0,56	-0,58	-0,59		
60°	-0,67	-0,84	-0,94	-1,00	-1,10	-1,10	-1,10	-1,20	-1,20	-1,20		
70 °	-0,8	-1,00	-1,10	-1,20	-1,30	-1,30	-1,40	-1,40	-1,40	-1,50		
80°	-0,83	-1,00	-1,20	-1,20	-1,30	-1,40	-1,40	-1,50	-1,50	-1,50		
90°	-0,77	-1,00	-1,10	-1,20	-1,20	-1,30	-1,30	-1,40	-1,40	-1,40		
100°	-0,54	-0,68	-0,76	-0,82	-0,86	-0,9	-0,93	-1,00	-1,00	-1,00		
120°	-0,26	-0,32	-0,36	-0,38	-0,41	-0,42	-0,44	-0,45	-0,46	-0,47		
140°	-0,16	-0,20	-0,22	-0,24	-0,25	-0,26	-0,27	-0,28	-0,29	-0,30		
160°	-0,16	-0,20	-0,22	-0,24	-0,25	-0,26	-0,27	-0,28	-0,29	-0,30		
180°	-0,16	-0,20	-0,22	-0,24	-0,25	-0,26	-0,27	-0,28	-0,29	-0,30		

Figura 7 – Ângulo de incidência do vento


Fonte: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 1988, p. 19

2.3.1.2. Cobertura

Devido a não aplicabilidade da norma NBR 6123 para coberturas do tipo cônicas, tomou-se como referência para a determinação das ações variáveis devidas ao vento, os resultados obtidos por Andrade Junior (2002) em túnel de vento.

Os valores de coeficientes de pressão externa obtidos por Andrade Junior (2002) e adotados para o presente projeto são apresentados na Figura 8.

Figura 8 – Coeficientes de pressão externa para cobertura cônica

1,0 e superfície cônica lisa com inclinação 27º

Fonte: ANDRADE JUNIOR, L.J., 2002, p. 144

2.3.2. Cargas dos equipamentos

Os carregamentos provenientes dos equipamentos seguem o especificado pelo Cliente A, dos quais obteve-se os seguintes carregamentos sobre o anel central da cobertura metálica:

- Peso próprio do filtro de mangas: 115 kN
- Peso próprio do ventilador: 6 kN
- Máxima reação vertical total do transportador: 99 kN
- Máxima reação horizontal total em Y do transportador por ação do vento: 39 kN
- Máxima reação horizontal total em X do transportador por ação do vento: 8 kN
- Sobrecarga na área de operação: 5 kN/m²

2.3.3. Cargas de armazenamento

Com base nas características físicas do material armazenado e geométricas do silo, valendo-se das referências normativas nacionais e internacionais, os carregamentos sobre a estruturas foram calculados com o auxílio do programa matemático SMath Studio a partir de código elaborado pelo autor.

2.3.3.1. Pressões de armazenamento

A estimativa dos carregamentos sobre as superfícies internas do silo, provenientes do material armazenado, é realizada de acordo com a norma internacional EN1991-4/2006: Eurocode 1 – Actions on Structures – Part 4: Silos and Tanks (EUROPEAN COMMITTEE FOR STANDARIZATION, 2006).

Para a aplicação da norma EN 1991-4/2006:

- Determina-se as propriedades do material com base em ensaios de caracterização ou em bases de dados
- Classifica-se o silo quanto as suas propriedades geométricas
- Calcula-se as ações provenientes do armazenamento do material

Para as características do material armazenado, temos:

- Peso específico superior, $\gamma_u = 18 \text{ kN/m}^3$
- Peso específico inferior, γ_I = 15 kN/m³
- Ângulo de repouso, $\varphi_r = 33^{\circ}$ (Valor corrigido conforme BAEL-BPEL91)
- Ângulo de atrito interno, $\varphi_{im} = 40^{\circ}$
- Coeficiente, $a_{\varphi} = 1,2$
- Valor médio de pressões laterais, K_m = 0,38
- Relação de pressões laterais, $a_K = 1,31$
- Fator de amplificação da carga, $C_{op} = 0.7$
- Coeficiente de atrito com a parede, $\mu = 0.62$
- Coeficiente, $a_{\mu} = 1.07$

Para a classificação do silo, temos:

- Esbeltez: intermediária, com esbeltez $1 < h_c/d_c < 2$
- Capacidade de armazenamento: Classe 3, com armazenamento superior a 10.000 toneladas

Através das características do material armazenado, para o silo de Classe 3, calculou-se os limites superiores e inferiores das propriedades físicas do material e através das fórmulas apresentadas a seguir:

$$\varphi_{il} := \frac{\varphi_{im}}{a_{\varphi}} = 0,582 \tag{4}$$

$$\varphi_{iu} := \varphi_{im} \cdot a_{\varphi} = 0,838 \tag{5}$$

$$\mu_{1} := \frac{\mu}{a_{\mu}} = 0,579 \tag{6}$$

$$\mu_{u} := \mu \cdot a_{\mu} = 0,663$$
 (7)

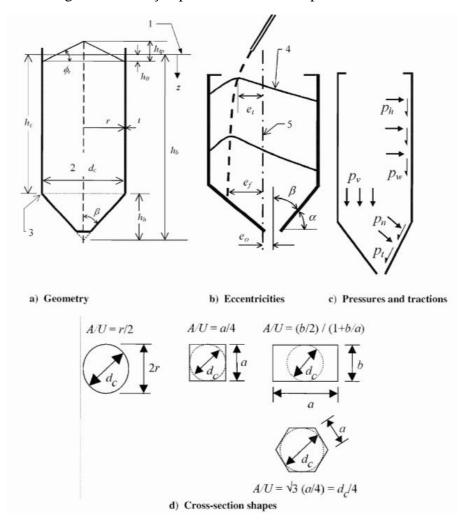
$$K_{I} := \frac{K_{m}}{a_{k}} = 0,290$$
 (8)

$$K_u := K_m \cdot a_k = 0,498$$
 (9)

- φ_{il} : valor inferior do ângulo de carga de atrito interno (em radianos)
- φ_{iu} : valor superior do ângulo de carga de atrito interno (em radianos)
- μ₁: valor inferior do coeficiente de atrito com a parede
- μ_u: valor superior do coeficiente de atrito com a parede
- K₁: valor inferior de pressões laterais
- K_u: valor superior de pressões laterais

Para as características geométricas do silo, temos:

- Diâmetro interno, $d_c = 30 \text{ m}$
- Altura do segmento de parede vertical, $h_c = 30 \text{ m}$
- Máxima excentricidade da pilha do material armazenado, $e_f = 5 \text{ m}$
- Altura total da pilha superior do material armazenado, h_{tp} = 10,10 m


Com base nas características geométricas do silo, calculou-se as propriedades geométricas adicionais do silo, que são apresentadas abaixo e ilustradas na Figura 9:

$$h_o := \frac{\frac{d_c}{2}}{3} \cdot \tan\left(\varphi_r\right) = 3,25 \tag{10}$$

$$h_c := 30 - 1 + h_o = 32, 2$$
 (11)

- h₀: profundidade abaixo da superfície equivalente (em metros)
- h_c: altura da superfície equivalente (em metros)

Figura 9 – Notação para as dimensões e pressões do silo

Fonte: EUROPEAN COMMITTEE FOR STANDARIZATION, 2006, p. 9

A partir das características geométricas do silo e das propriedades físicas do material armazenado, determinou-se o carregamento atuante sobre as paredes verticais e sobre o fundo do silo. Tais carregamento, subdividem-se em: pressão horizontal e atrito nas paredes verticais, e pressão vertical sobre o fundo, sendo distinguidos em carga e descarga do silo.

As pressões para a fase de carregamento são calculadas através da formulação abaixo para silos mediamente esbeltos e convenção ilustrada na Figura 9, sendo:

$$z_o := \frac{A}{K_u \cdot \mu \cdot U} \tag{12}$$

$$P_{ho} := Y_u \cdot K_u \cdot Z_o \tag{13}$$

$$n := -\left(1 + \tan\left(\varphi_r\right)\right) \cdot \left(1 - \frac{h_o}{z_o}\right) \tag{14}$$

$$Y_{R}(z) := \left[1 - \left[\left(\frac{z - h_{o}}{z_{o} - h_{o}}\right) + 1\right]^{n}\right]$$
(15)

$$z_{v}(z) := h_{o} - \frac{1}{(n+1)} \cdot \left[z_{o} - h_{o} - \frac{\left(z + z_{o} - 2 \cdot h_{o}\right)^{n} + 1}{\left(z_{o} - h_{o}\right)^{n}} \right]$$
(16)

$$p_{hf}(z) := p_{ho} \cdot Y_R(z) \tag{17}$$

$$P_{wf}(z) := \mu \cdot P_{ho} \cdot Y_R(z)$$
 (18)

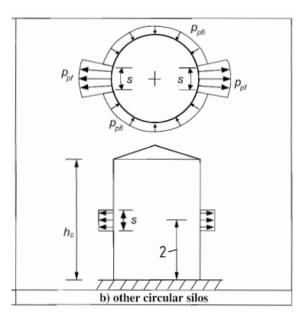
$$p_{vf}(z) := \gamma_1 \cdot z_v(z) \tag{19}$$

- z₀: profundidade característica de Janssen
- p_{ho}: pressão horizontal assintótica em grande profundidade devido ao sólido particulado armazenado
- n: relação de pressão no fundo
- $Y_{R(z)}$: função de variação de pressão na profundidade do silo
- $z_{v(z)}$: medida de profundidade para avaliação de estresse vertical no silo
- p_{hf(z)}: pressão horizontal no carregamento
- $p_{wf(z)}$: atrito na parede no carregamento
- p_{vf(z)}: pressão vertical no carregamento

Já as pressões de sobrecarga para a fase de carregamento são calculadas através da formulação abaixo para silos mediamente esbeltos e ilustradas na Figura 10.

$$E := 2 \cdot \frac{\mathsf{e}_f}{\mathsf{d}_c} \tag{20}$$

$$S := \frac{\mathbf{\pi} \cdot d_C}{16} \tag{21}$$


$$C_{pf} := 0,21 \cdot C_{op} \cdot \left[1 + 2 \cdot E^2\right] \cdot \left[1 - \exp\left[-1,5 \cdot \left[\frac{h_c}{d_c}\right] - 1\right]\right]$$
 (22)

$$p_{pf}(z) := C_{pf} \cdot p_{hf}(z) \tag{23}$$

$$P_{pfi}(z) := \frac{P_{pf}(z)}{7} \tag{24}$$

- E: excentricidade do canal de fluxo
- s: dimensão da zona afetada pela sobrecarga
- C_{pf}: fator de ampliação de carga
- $p_{pf(z)}$: sobrecarga horizontal no carregamento
- p_{pfi(z)}: sobrecarga complementar horizontal no carregamento

Figura 10 – Convenções para aplicação das sobrecargas

Fonte: EUROPEAN COMMITTEE FOR STANDARIZATION, 2006, p. 9

Os valores resultantes para as ações na fase de carregamento são apresentadas nos gráficos abaixo, sendo *phf* a pressão horizontal de carregamento, *pwf* o atrito vertical nas paredes e *ppf/ppfi* as pressões de sobrecarga. Para as pressões horizontais de

carregamento, comparou-se o valor com as pressões de Coulomb para a validação dos cálculos.

Pressão de carregamento Pressão de carregamento Pressão de carregamento pwf ppf ppfi Carga (kN/m²) Carga (kN/m²) Carga (kN/m²) 14 12 70 phf Coulomb 3 6 9 12 15 18 21 24 27 30 33 $0\ \ 3\ \ 6\ \ 9\ \ 12\ 15\ 18\ 21\ 24\ 27\ 30\ 33$ 0 3 6 9 12 15 18 21 24 27 30 33 Altura (m) Altura (m) Altura (m)

Gráficos 1 - Pressões de carregamento

As pressões para a fase de descarregamento são calculadas através da formulação abaixo para silos mediamente esbeltos e convenção ilustrada na Figura 9, sendo:

$$C_s := \frac{h_c}{d_c} - 1 \tag{25}$$

$$C_h := 1 + 0, 15 \cdot C_s$$
 (26)

$$C_{w} := 1 + 0, 1 \cdot C_{S}$$
 (27)

$$p_{he}(z) := C_h \cdot p_{hf}(z) \tag{28}$$

$$P_{We}(z) := C_{W} \cdot P_{Wf}(z) \tag{29}$$

Sendo:

• C_s: fator de ajuste de esbeltez

• Ch: fator de amplificação de pressão horizontal

• C_w: fator de amplificação de atrito

p_{he(z)}: pressão horizontal na descarga

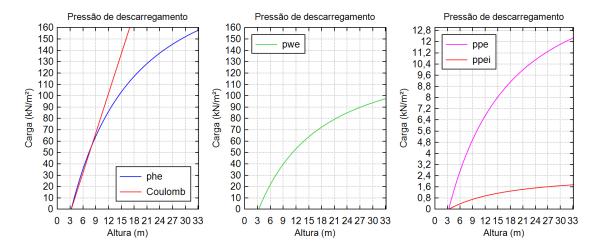
• p_{we(z)}: atrito na parede na descarga

Já as pressões de sobrecarga para a fase de descarregamento são calculadas através da formulação abaixo para silos mediamente esbeltos e ilustradas na Figura 10.

$$C_{pe} := 0,272 \cdot C_{op} \cdot \left[\frac{h_c}{d_c} - 1 + E \right]$$
 (30)

$$p_{pe}(z) := C_{pe} \cdot p_{he}(z) \tag{31}$$

$$P_{pei}(z) := \frac{P_{pe}(z)}{7} \tag{32}$$


• C_{pe}: fator ampliação de carga

p_{pe(z)}: sobrecarga horizontal na descarga

• p_{pei(z)}: sobrecarga complementar horizontal na descarga

Os valores resultantes para as ações na fase de descarregamento são apresentadas nos gráficos abaixo, sendo phe a pressão horizontal de carregamento, *pwe* o atrito vertical nas paredes e *ppe/ppei* as pressões de sobrecarga. Para as pressões horizontais de carregamento, comparou-se o valor com as pressões de Coulomb para a validação dos cálculos.

Gráfico 2 - Pressões de descarregamento

A pressão de fundo do silo é calculada através da formulação abaixo, sendo o valor resultante para a pressão de fundo do silo corresponde a 407 kN/m².

$$P_{vho} \coloneqq P_{vf} \begin{pmatrix} h_o \end{pmatrix} \tag{33}$$

$$C_b := 1, 2$$
 (34)

$$P_{vb} := C_b \cdot P_{vf} \left[h_c \right] \tag{35}$$

$$p_{vtp} := \gamma_u \cdot h_{tp} \tag{36}$$

$$\Delta p_{sq} := p_{vtp} - p_{vho} \tag{37}$$

$$p_{vsq} := p_{vb} + \Delta p_{sq} \cdot \left[\frac{2 - \frac{h_c}{d_c}}{2 - \frac{h_{tp}}{d_c}} \right]$$
 (38)

- p_{vho}: pressão vertical no fundo do silo sob o topo da pilha
- C_b: fator de ampliação de carga
- p_{vb}: pressão vertical avaliada na base do silo
- p_{vtp}: pressão vertical geostática na base do silo
- Δp_{sq}: diferença entre as pressões verticais avaliadas por dois métodos
- p_{vsq}: pressão vertical atuando no fundo plano de do silo

2.3.4. Carga térmica

A determinação das cargas térmicas sobre a estrutura de concreto, toma como base os dados de temperatura do material armazenado fornecidos pelo Cliente A, sendo de 120°C a temperatura média do material armazenado e de 50°C a temperatura da atmosfera interna.

Na determinação da ação térmica sobre a estrutura de concreto, a distribuição de temperatura para as estruturas com várias camadas é obtida a partir da relação do fluxo de calor, segundo o ACI 307 (1998). Essa distribuição baseia-se na condução térmica entre os materiais, suas respectivas espessura e iteração entre os diferentes meios, sendo expressa pela fórmula abaixo:

$$Q = \frac{(T_i - T_e)}{\sum \frac{1}{f} + \sum \frac{h}{k}} \tag{39}$$

$$t_e = \frac{h}{k} \cdot Q \tag{40}$$

• f: coeficiente de condutividade térmica da película de ar

• h: espessura de cada camada

• k: coeficiente de condutividade térmica da camada de concreto

• T_i: temperatura interna

• T_e: temperatura da atmosfera externa

• t_e: temperatura externa da parede

Com base no fluxo de calor estabelecido na estrutura e a obtenção da temperatura externa, o gradiente térmico a que a estrutura é submetida pela fórmula a seguir:

$$\nabla T = \frac{\Delta T}{\Delta Z}$$

Sendo:

• ∇T : gradiente térmico;

• ΔT : variação de temperatura no concreto

• ΔZ : variação de espessura do concreto

Dessa forma, através das fórmulas acima, obteve-se como temperatura externa o valor de 72,7°C e gradiente térmico de 118,3°C/m para as paredes verticais de 40 cm de espessura.

Já sobre a estrutura metálica, tomou-se uma distribuição uniforme de temperatura igual 50°C.

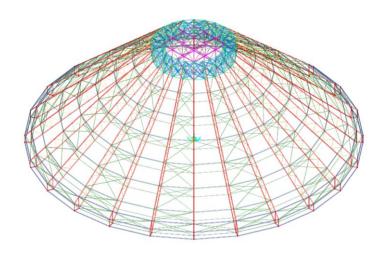
2.3.5.Combinações de carregamentos

A partir dos carregamentos, propriedades físicas e geométricas do silo, resolveuse o problema estrutural com o auxílio do SAP2000 v23. A partir das soluções individuais da estrutura para cada carregamento atuante, extraiu-se os resultados para as seções de interesse. As combinações foram realizadas manualmente a partir dos dados extraídos em planilha de cálculo para as combinações de estados-limites de serviço e estado-limite último considerado os coeficientes apresentados na *Tabela 5*.

Tabela 5 – Coeficientes de combinação e ponderação

A a ~ as	ELS-F	e ELS-D	ELU		
Ações	Ψ_1	Ψ2	Ponderação	Combinação	
Pesos próprios	1,0	1,0	1,0 - 1,4	-	
Sobrecarga	0,6	0,4	1,4	0,7	
Vento	0,3	0,0	1,4	0,6	
Armazenamento	0,6	0,4	1,4	0,7	
Temperatura	0,5	0,3	1,2	0,6	

2.4. MODELO ESTRUTURAL E ANÁLISE


Para a representação matemática da estrutura projetada, selecionou-se o software de elementos finitos SAP2000 v23. A modelagem foi realizada de forma integrada para as estruturas de concreto do silo e das fundações, sendo desacoplada ao modelo estrutural da cobertura. Para a integração dos modelos da cobertura metálica e da estrutura de concreto, a estrutura metálica foi concebida com vínculos perfeitamente rotulados sobre a estrutura de concreto e sem vinculação elástica entre as estruturas metálica e de concreto, sendo as reações calculadas e transportadas para o modelo integrado das estruturas de concreto. As renderizações dos modelos estruturais podem ser visualizadas nas figuras de Figura 11 à Figura 20.

Os elementos selecionados para a representação em elementos finitos, são:

- Estrutura da cobertura: elemento finito do tipo *frame*, possuindo formulação vigacoluna de Bathe e Wilson
- Estruturas de concreto: elemento finito do tipo shell com representação de placa grossa, possuindo como características três ou quatro nós por elemento e com formulação para coccecco.
- Cordoalhas de protensão: elemento finito do tipo tendon e integrado aos elementos do tipo shell.

A análise realizada foi do tipo linear, elástica e instantânea, não apresentando características não lineares dos tipos físicas e geométricas.

Figura 11 – Perspectiva do modelo estrutural da treliça espacial da cobertura metálica

 $Figura\ 12-Vista\ lateral\ do\ modelo\ estrutural\ da\ treliça\ espacial\ da\ cobertura\ metálica$

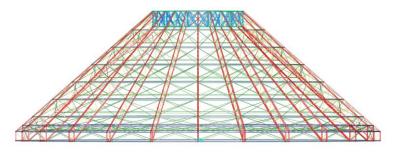


Figura 13 - Vista superior do modelo estrutural da treliça espacial da cobertura metálica

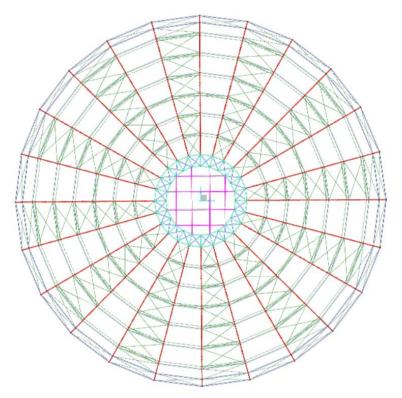


Figura 14 – Perspectiva isolada do modelo estrutural do anel de torção da estrutura metálica da cobertura

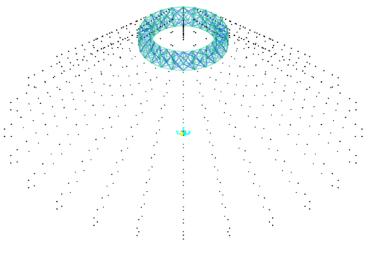


Figura 15 - Vista superior do modelo estrutural do anel de torção e estrutura de sustentação dos equipamentos sobre a cobertura

Fonte: AUTOR, 2022

Figura 16 - Vista lateral do modelo estrutural de treliças simétricas da cobertura metálica

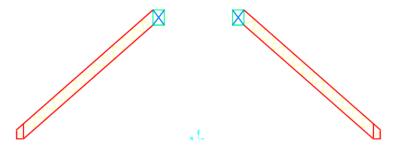


Figura 17 - Perspectiva do modelo estrutural das estruturas de concreto

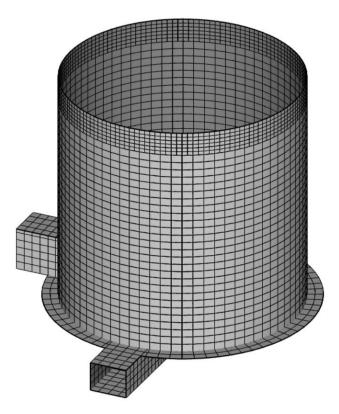


Figura 18 - Perspectiva do modelo estrutural das estruturas de concreto com diferenciação de regiões de interesse

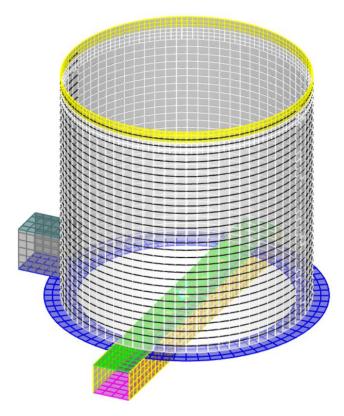


Figura 19 - Perspectiva do modelo estrutural das estruturas de concreto com diferenciação dos elementos finitos que representam as cordoalhas de protensão

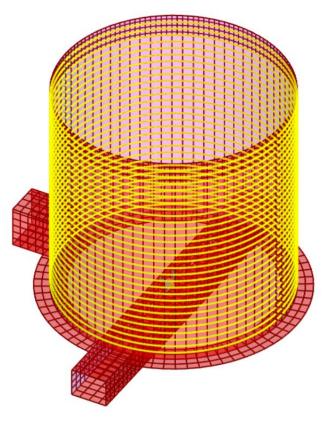
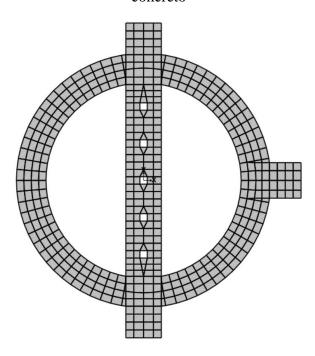



Figura 20 – Vista superior do modelo estrutural do anel inferior das estruturas de concreto

2.5. DIMENSIONAMENTO

2.5.1.Cobertura

Para do dimensionamento da cobertura metálica seguiu-se as diretrizes para verificação das seções de acordo com a ANSI/AISC 360-05/IBC 2006, com rotina integrada do software SAP2000. O procedimento adotado para o dimensionamento da estrutura baseou-se nos seguintes passos:

- Resolver o problema matemático para os diferentes casos de carga
- Combinar as solicitações para os estados limites
- Verificar as seções metálicas quanto as solicitações atuantes
- Coletar as reações da estrutura para dimensionamento das paredes de concreto do silo

Os resultados das verificações das seções mais solicitadas para cada tipo de perfil selecionado são apresentados nas figuras de Figura 21 à Figura 24.

Figura 21 - Verificação do perfil mais solicitados dos banzos das treliças

SAP2000

Jnits : KN, cm,	С			r Combo and St		
Frame : 2011 Length: 145,473 Loc : 0,	X Mid: -742 Y Mid: 1286 Z Mid: 47,9	,662 Combo: ,329 Shape: 71 Class:	EN1 TC-88,9 x Compact	7,57 Frame T Princpl	Type: Brace ype: SMF Rot: 0, deg	rees
Provision: LRFD D/C Limit=0,95 AlphaPr/Py=0,513	Analysis: Di 2nd Order: G AlphaPr/Pe=0	rect Analysi eneral 2nd O ,208 Tau_b=	s rder 0,999	Reduction: Ta EA factor=0,8	u-b Fixed EI fact	or=0,8
PhiB=0,9 PhiS=0,9	PhiC=0,9 PhiS-RI=1,	PhiTY= PhiST=	0,9	PhiTF=0,75		
A=9,647 J=175,8 E=19994,798 RLLF=1,	I33=87,899 I22=87,899 Fy=34,474 Fu=44,816	r33=3, r22=3, Ry=1,1	018 018	833=19,775 822=19,775 z33=26,209 z22=26,209	Av3=4,8: Av2=4,8:	29 29
HSS Welding: ERW	Reduce HSS T	hickness? No				
STRESS CHECK FORC Location 0,	ES & MOMENTS Pu -170,626	(Combo EN1) Mu33 -24,219	Мu22 -12,686	Vu2 -0,098	Vu3 -0,144	Tu 0,2
PMM DEMAND/CAPACI D/C Ratio:	0,705 = 0,67	6 + 0,026 +		(8/9) (Mr22/Mc	22)	
AXIAL FORCE & BIA	L	K1		B1	B2 1, 1,	Cn 1,
Major Bending Minor Bending	i,	i,	1,	1,	1,	0,579
LTB	Lltb 1,	Kltb 1,	Cb 1,154			
Axial	Pu Force -170,626	phi*Pnc Capacity 252,568	phi*Pnt Capacity 299,318			
Major Moment Minor Moment	Mu Moment -24,219 -12,686	phi*Mn Capacity 813,186 813,186	phi*Mn No LTB 813,186			
Torsion	Tu Moment 0,2	Tn Capacity 851,061	phi*Tn Capacity 765,955			
SHEAR CHECK				u phi*Vn	Stress	
tatus						Check
Major Shear Minor Shear	0,098 0,144	89,795 89,795	0,001	Capacity OK OK		
BRACE MAXIMUM AXI	AL LOADS	P				
Axial	Comp -170,626	Tens 3,246				

Figura 22 - Verificação do perfil mais solicitados das diagonais das treliças

SAP2000

Frame : 1940 Length: 115,47 Loc : 57,735	X Mid: -742 Y Mid: 1286 Z Mid: 114,	,662 Combo: ,329 Shape: 488 Class:	EN1 TC-48,3 x Compact	Design T 4,86 Frame Ty Princpl	ype: Brace pe: SMF Rot: 0, deg:	rees
Provision: LRFD D/C Limit=0,95 AlphaPr/Py=0,145	Analysis: Di 2nd Order: G AlphaPr/Pe=0	rect Analysi eneral 2nd 0 ,139 Tau_b=	s rder 1,	Reduction: Tau EA factor=0,8	-b Fixed EI facto	or=0,8
PhiB=0,9 PhiS=0,9	PhiC=0,9 PhiS-RI=1,	PhiTY= PhiST=		PhiTF=0,75		
N=6,192 J=30,01 E=19994,798	I33=15,006 I22=15,006 Fy=34,474 Fu=44,816	r33=1,		S33=6,214 S22=6,214 z33=8,663 z22=8,663	Av3=3,1: Av2=3,1:	18 18
HSS Welding: ERW	Reduce HSS T	hickness? No				
STRESS CHECK FORC Location 57,735	ES & MOMENTS Pu 30,933	(Combo EN1) Mu33 0,94	Мu22 О,	Vu2 0,	Vu3 0,	Tu O,
PMM DEMAND/CAPACI D/C Ratio:	0,084 = 0,08			(Mr22/Mc22)		
XIAL FORCE & BIA	XIAL MOMENT D	ESIGN (H1.				
Factor Major Bending Minor Bending	1, 1,	1,	1, 1,	B1 1, 1,	B2 1, 1,	Cn 1, 1,
LTB	Lltb 1,	Kltb 1,	Cb 1,404			
Axial	Pu Force 30,933	phi*Pnc Capacity 128,486	phi*Pnt Capacity 192,118			
Major Moment Minor Moment	Mu Moment 0,94 0,	phi*Mn Capacity 268,793 268,793	phi*Mn No LTB 268,793			
Torsion	Moment 0,	Tn Capacity 280,492	phi*Tn Capacity 252,443			
SHEAR CHECK			11	u phi*Vn	Stress	
tatus				-	Ratio	Check
Major Shear Minor Shear	o, o,	57,635 57,635	0,	Capacity OK OK		

Figura 23 - Verificação do perfil mais solicitados das terças das treliças

SAP2000

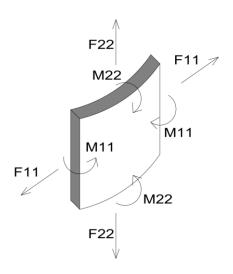
Frame: 2345 Length: 379,362 Loc: 189,681	X Mid: -188 Y Mid: 1428 Z Mid: 209,	,058 Combo: ,444 Shape: 188 Class:	EN1 TC-88,9 x Compact	Design T 8,38 Frame Ty Princpl	ype: Beam pe: SMF Rot: 0, deg	rees
Provision: LRFD D/C Limit=0,95 AlphaPr/Py=0,211						
PhiB=0,9 PhiS=0,9	PhiC=0,9 PhiS-RI=1,	PhiTY= PhiST=		PhiTF=0,75		
A=10,669 J=192,68 E=19994,798 RLLF=1,	I33=96,34 I22=96,34 Fy=34,474 Fu=44,816	r33=3, r22=3, Ry=1,1	005 005	\$33=21,674 \$22=21,674 \$33=28,853 \$22=28,853	Av3=5,3 Av2=5,3	42 42
HSS Welding: ERW	Reduce HSS T	hickness? No				
STRESS CHECK FORC Location 189,681	ES & MOMENTS Pu 77,507	(Combo EN1) Mu33 553,023	Mu22 -413,037	Vu2 0,	Vu3 0,	Tu O,
PMM DEMAND/CAPACI D/C Ratio:	0,92 = 0,23	4 + 0,549 +		(8/9) (Mr22/Mc2	2)	
AXIAL FORCE & BIA	XIAL MOMENT D	ESIGN (H1.	2,H1-1a)			
Factor Major Bending	1,	K1 1,	K2	B1 1,	B2 1,	Cm 1,
Minor Bending	1,	1,	1,	1,	1,	1,
LTB	Lltb 1,	Kltb 1,	Cb 1,431			
Axial	Pu Force 77,507	phi*Pnc Capacity 104,27	phi*Pnt Capacity 331,016			
Major Moment Minor Moment	Mu Moment 553,023 -413,037	phi*Mn Capacity 895,217 895,217	phi*Mn No LTB 895,217			
	Tu	Tn	phi*Tn			
Torsion	Moment 0,	In Capacity 936,776	Capacity 843,098			
SHEAR CHECK			17	u phi*Vn	Stress	
tatus				_	Ratio	Charle
Major Shear Minor Shear	0, 0,	99,305 99,305	0,	Capacity OK OK	RACIO	CHECK
CONNECTION SHEAR	VMajor Left	VMajor Right				
Major (V2)	5,831	5,831				

Figura 24 -Verificação do perfil mais solicitados dos tirantes de contraventamento

hits : KN, cm,		ON CHECK	(Summary fo	r Combo and Stat	tion)	
Frame: 305 Length: 350,646 Loc: 175,323	X Mid: 1246 Y Mid: 165, Z Mid: 304,	,53 Combo: 593 Shape: 874 Class:	EN1 TC-38,1 x Compact	Design Ty 3,36 Frame Typ Princpl I	ype: Brace pe: SMF Rot: 0, degr	ees
Provision: LRFD D/C Limit=0,95 AlphaPr/Py=0,031	Analysis: Dis 2nd Order: Ge AlphaPr/Pe=0	rect Analysi eneral 2nd 0 ,446 Tau_b=	s rder 1,	Reduction: Tau- EA factor=0,8	-b Fixed EI facto	or=0,8
PhiB=0,9 PhiS=0,9	PhiC=0,9 PhiS-RI=1,	PhiTY= PhiST=	0,9 0,9	PhiTF=0,75		
A=4,285 J=12,63 E=19994,798 RLLF=1,	I33=6,314 I22=6,314 Fy=34,474 Fu=44,816	r33=1, r22=1, Ry=1,1	214 214	\$33=3,315 \$22=3,315 \$33=4,673 \$22=4,673	Av3=2,16 Av2=2,16	52 52
HSS Welding: ERW	Reduce HSS Ti	hickness? No				
DESIGN MESSAGES Warning: kl/	r > 200 (AISC	E2)				
STRESS CHECK FORC Location 175,323	ES & MOMENTS Pu 4,525	(Combo EN1) Mu33 5,997	Mu22 0,	Vu2 0,	Vu3	Tu O,
PMM DEMAND/CAPACI D/C Ratio:	0,058 = 0,01	1.2,H1-1b) 7 + 0,041 + (Pr/Pc) + (M		(Mr22/Mc22)		
AXIAL FORCE & BIA	XIAL MOMENT D	ESIGN (H1.	2,H1-1b) K2	В1	в2	Cm
Factor Major Bending Minor Bending	1,	1,	1,	1,	1,	1,
LTB	Lltb 1,	Kltb 1,	Cb 1,581			
Axial	Fu Force 4,525	phi*Pnc Capacity 7,999	phi*Pnt Capacity 132,952			
Major Moment Minor Moment	Mu Moment 5,997 0,	phi*Mn Capacity 144,973 144,973	phi*Mn No LTB 144,973			
Torsion	Tu Moment 0,	Capacity 151,122	phi*Tn Capacity 136,01			
SHEAR CHECK			17	u phi*Vn	Chross	
tatus				Capacity		Check
Major Shear Minor Shear	0,	39,886 39,886		OK OK	NUCLO	CHOCK

Fonte: AUTOR, 2022

2.5.2. Paredes verticais


Para o dimensionamento e verificação das estruturas de concreto das paredes verticais, seguiu-se o Método dos Estados Limites com as diretrizes estabelecidas na ANBT NBR 6118. O procedimento adotado para o dimensionamento da estrutura baseouse nos seguintes passos:

- Resolver o problema matemático para os diferentes casos de carga
- Combinar as solicitações para os estados limites
- Pré-dimensionar a estrutura de concreto protendido das paredes verticais
- Revisar o modelo matemático inserindo os elementos finitos que representam a protensão
- Verificar se os estados limites de serviço permanecem respeitados segundo o prédimensionamento da estrutura
- Verificar e dimensionar as estruturas quanto aos estados limites últimos de utilização

Os estados limites associados ao dimensionamento e verificação foram escolhidos quanto ao nível limitado de protensão, seguindo-se para a verificação e dimensionamento das estruturas de concreto quanto o Estado-limite de formação de fissuras (ELS-F) — estado em que se inicia a formação de fissuras em combinação frequente — e Estado-limite de descompressão (ELS-D) — estado com pontos da seção com tensão normal nula, não havendo tração no restante da seção em combinação quase permanente.

As solicitações obtidas através do software SAP2000 foram extraídas para as seções de interesse, sendo pós-processadas de forma a regularizar os valores obtidos de metro em metro. Na Tabela 6 e na Tabela 7 são apresentadas as solicitações nas paredes verticais para cada carregamento aplicado sobre a estrutura, segundo as convenções da Figura 25.

Figura 25 - Convenção de esforços

Fonte: AUTOR, 2022

Tabela 6 - Solicitações nas paredes verticais segundo carregamentos da cobertura

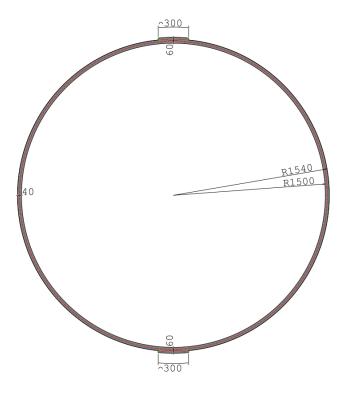

	Cobert	ura (Peso p	oróprio)			Cober	tura (Sobre	ecarga)			Cobert	ura (Temp	eratura)	
Z	F11	F22	M11	M22	Z	F11	F22	M11	M22	Z	F11	F22	M11	M22
(m)	KN/m	KN/m	KN-m/m	KN-m/m	(m)	KN/m	KN/m	KN-m/m	KN-m/m	(m)	KN/m	KN/m	KN-m/m	KN-m/m
1	-1,1	-6,7	0,1	0,3	1	-1,7	-10,0	0,1	0,4	1	0,0	0,0	0,0	0,0
2	-1,2	-6,6	0,0	0,1	2	-1,8	-9,9	0,0	0,1	2	0,0	0,0	0,0	0,0
3	-0,8	-6,5	0,0	0,0	3	-1,2	-9,7	0,0	-0,1	3	0,0	0,0	0,0	0,0
4	-0,3	-6,4	0,0	-0,1	4	-0,5	-9,6	-0,1	-0,1	4	0,0	0,0	0,0	0,0
5	-0,1	-6,4	-0,1	-0,1	5	-0,1	-9,5	-0,1	-0,1	5	0,0	0,0	0,0	0,0
6	0,1	-6,3	-0,1	-0,1	6	0,1	-9,5	-0,1	-0,1	6	0,0	0,0	0,0	0,0
7	0,1	-6,4	-0,1	-0,1	7	0,1	-9,6	-0,1	-0,1	7	0,0	0,0	0,0	0,0
8	0,1	-6,5	-0,1	-0,1	8	0,1	-9,7	-0,2	-0,1	8	0,0	0,0	0,0	0,0
9	0,0	-6,6	-0,1	-0,1	9	0,0	-10,0	-0,2	-0,1	9	0,0	0,0	0,0	0,0
10	-0,1	-6,8	-0,1	-0,1	10	-0,1	-10,2	-0,2	-0,1	10	0,0	0,0	0,0	0,0
11	-0,1	-7,0	-0,2	-0,1	11	-0,2	-10,6	-0,2	-0,1	11	0,0	0,0	0,0	0,0
12	-0,2	-7,3	-0,2	-0,1	12	-0,3	-10,9	-0,3	-0,1	12	0,0	0,0	0,0	0,0
13	-0,2	-7,5	-0,2	-0,1	13	-0,3	-11,2	-0,3	-0,1	13	0,0	0,1	0,0	0,0
14	-0,3	-7,7	-0,2	-0,1	14	-0,4	-11,5	-0,3	-0,1	14	0,0	0,1	0,0	0,0
15	-0,3	-7,9	-0,2	0,0	15	-0,4	-11,9	-0,3	-0,1	15	0,0	0,1	0,0	0,0
16	-0,3	-8,1	-0,2	0,0	16	-0,4	-12,1	-0,3	-0,1	16	0,0	0,1	0,0	0,0
17	-0,2	-8,3	-0,2	0,0	17	-0,3	-12,4	-0,3	-0,1	17	0,1	0,1	0,0	0,0
18	-0,1	-8,4	-0,2	0,0	18	-0,2	-12,7	-0,3	-0,1	18	0,2	0,1	0,0	0,0
19	0,0	-8,6	-0,2	0,0	19	-0,1	-12,9	-0,3	-0,1	19	0,3	0,1	0,0	0,0
20	0,1	-8,7	-0,2	-0,1	20	0,0	-13,1	-0,3	-0,1	20	0,4	0,0	0,0	0,0
21	0,1	-8,9	-0,2	-0,1	21	0,0	-13,3	-0,3	-0,1	21	0,4	0,0	0,0	-0,1
22	-0,3	-9,0	-0,2	-0,2	22	-0,4	-13,4	-0,3	-0,2	22	-0,1	0,0	0,0	-0,2
23	-1,2	-9,1	-0,2	-0,2	23	-1,5	-13,6	-0,3	-0,2	23	-1,3	0,0	0,0	-0,2
24	-2,8	-9,2	-0,2	-0,2	24	-3,4	-13,7	-0,3	-0,2	24	-3,5	0,0	0,0	-0,2
25	-4,9	-9,2	-0,2	0,0	25	-6,1	-13,8	-0,2	0,0	25	-6,5	0,0	0,0	0,1
26	-6,5	-9,3	-0,1	0,6	26	-8,0	-13,9	-0,1	0,7	26	-8,6	-0,1	0,2	0,8
27	-5,1	-9,5	0,1	1,5	27	-6,2	-14,1	0,1	1,8	27	-6,6	-0,1	0,4	2,1
28	-0,6	-9,4	0,3	2,4	28	-0,8	-14,1	0,3	2,9	28	-0,3	0,0	0,7	3,3
29	16,4	-9,2	0,5	3,5	29	19,8	-13,7	0,6	4,3	29	23,5	0,1	1,0	4,8
30	66,7	-5,7	0,4	3,0	30	80,2	-8,7	0,3	3,7	30	96,6	0,4	1,3	4,1

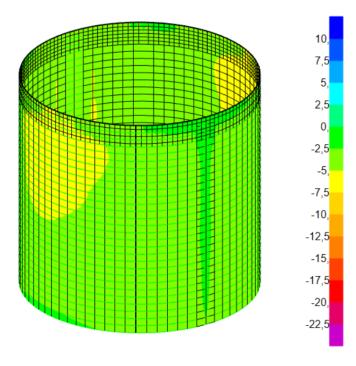
Tabela 7 - Solicitações nas paredes verticais segundo carregamentos do silo

	Silo	(Peso próp	orio)			Si	lo (Empux	0)				Silo (Atrito)			Silo	(Temperat	tura)	
Z	F11	F22	M11	M22	Z	F11	F22	M11	M22	Z	F11	F22	M11	M22	Z	F11	F22	M11	M22
(m)	KN/m	KN/m	KN-m/m	KN-m/m	(m)	KN/m	KN/m	KN-m/m	KN-m/m	(m)	KN/m	KN/m	KN-m/m	KN-m/m	(m)	KN/m	KN/m	KN-m/m	KN-m/m
1	-50,9	-311,7	0,7	3,5	1	361,2	35,1	23,1	125,5	1	-227,2	-1339,6	10,8	53,6	1	41,9	18,0	203,3	179,6
2	-35,1	-299,7	0,0	-0,1	2	986,1	58,7	-3,5	-8,2	2	-241,1	-1228,5	1,5	14,5	2	94,0	15,0	206,3	195,7
3	-17,7	-287,6	-0,2	-1,4	3	1629,0	79,3	-11,9	-53,5	3	-157,0	-1116,9	-5,4	-7,2	3	80,0	10,7	208,5	205,9
4	-5,7	-275,6	-0,2	-1,5	4	2052,1	95,3	-11,5	-52,3	4	-69,7	-1009,5	-10,7	-15,9	4	48,0	5,5	209,7	210,6
5	0,6	-263,8	-0,2	-1,1	5	2245,5	108,1	-8,6	-35,5	5	-12,4	-910,2	-14,8	-18,3	5	20,2	0,3	210,1	212,0
6	2,6	-252,4	-0,1	-0,7	6	2278,1	115,1	-6,4	-19,4	6	14,1	-820,1	-18,7	-17,6	6	3,0	-4,3	210,1	211,6
7	2,5	-241,5	-0,1	-0,5	7	2230,0	118,7	-5,6	-8,0	7	18,3	-743,1	-22,3	-16,6	7	-5,2	-7,7	209,9	210,9
8	1,5	-231,0	-0,2	-0,3	8	2154,1	116,6	-6,3	-3,3	8	10,7	-678,5	-26,1	-15,5	8	-7,7	-10,2	209,8	210,1
9	0,3	-221,0	-0,2	-0,2	9	2080,2	111,2	-7,5	-1,8	9	-1,9	-623,3	-29,9	-14,7	9	-7,3	-12,0	209,7	209,6
10	-0,6	-211,4	-0,3	-0,2	10	2015,7	102,2	-8,8	-1,8	10	-15,0	-577,1	-33,2	-14,1	10	-6,2	-13,4	209,7	209,3
11	-1,3	-201,9	-0,4	-0,2	11	1962,0	91,5	-10,1	-2,9	11	-27,2	-538,2	-36,5	-13,5	11	-5,1	-14,6	209,7	209,2
12	-1,6	-192,6	-0,4	-0,2	12	1913,3	79,9	-11,0	-3,9	12	-36,2	-501,1	-38,9	-13,0	12	-4,3	-15,9	209,7	209,2
13	-1,8	-183,3	-0,5	-0,1	13	1864,7	68,2	-11,3	-3,5	13	-42,8	-467,5	-41,0	-12,5	13	-3,8	-17,2	209,8	209,2
14	-1,8	-174,0	-0,5	-0,1	14	1815,5	57,2	-11,5	-3,8	14	-46,9	-435,7	-42,3	-12,0	14	-3,5	-18,6	209,8	209,3
15	-1,7	-164,5	-0,5	-0,1	15	1762,6	47,0	-11,5	-3,9	15	-48,4	-401,8	-43,3	-11,5	15	-3,2	-19,8	209,9	209,3
16	-1,6	-154,8	-0,4	-0,1	16	1705,1	38,1	-11,2	-3,2	16	-48,7	-369,0	-43,7	-11,0	16	-3,2	-20,9	210,0	209,3
17	-1,4	-145,1	-0,4	0,0	17	1643,7	30,3	-11,0	-3,5	17	-48,0	-336,8	-43,8	-10,5	17	-3,7	-21,6	210,1	209,2
18	-1,2	-135,2	-0,3	0,0	18	1576,9	23,7	-10,7	-3,7	18	-46,2	-301,6	-43,6	-10,0	18	-5,3	-22,0	210,1	209,1
19	-1,0	-125,3	-0,3	0,0	19	1503,2	18,0	-10,1	-2,7	19	-44,3	-267,8	-43,2	-9,5	19	-8,7	-21,9	210,2	209,1
20	-0,8	-115,2	-0,2	0,0	20	1425,0	13,4	-9,9	-3,3	20	-42,6	-235,7	-42,6	-9,1	20	-14,0	-21,4	210,4	209,3
21	-0,7	-105,1	-0,2	0,0	21	1339,6	9,5	-9,6	-3,7	21	-40,2	-200,6	-42,0	-8,6	21	-19,9	-20,4	210,7	210,2
22	-0,5	-94,9	-0,1	0,0	22	1245,4	6,4	-9,0	-2,9	22	-38,2	-168,7	-41,4	-8,3	22	-21,9	-19,0	211,2	212,0
23	-0,4	-84,6	-0,1	0,0	23	1143,6	3,9	-8,9	-4,0	23	-36,8	-140,1	-40,7	-8,0	23	-11,1	-17,2	212,0	214,9
24	-0,3	-74,3	-0,1	0,0	24	1030,3	2,0	-8,6	-4,8	24	-35,1	-109,1	-40,0	-7,8	24	25,7	-15,2	212,9	218,0
25	-0,2	-64,0	0,0	0,0	25	902,3	0,5	-8,1	-3,6	25	-35,1	-83,4	-39,4	-7,6	25	101,3	-12,9	213,4	218,6
26	-0,2	-53,7	0,0	0,0	26	762,3	-0,5	-7,8	-4,2	26	-37,6	-63,0	-38,7	-7,4	26	215,5	-10,5	212,4	211,8
27	-0,3	-43,4	0,0	0,0	27	609,0	-1,1	-7,3	-3,2	27	-41,4	-40,3	-38,0	-6,9	27	331,3	-7,9	208,5	190,4
28	-0,3	-35,6	0,1	0,0	28	487,2	-0,7	-6,8	0,6	28	-45,1	-26,0	-36,0	-5,8	28	381,0	-5,1	203,2	162,8
29	-0,5	-25,3	0,1	0,1	29	333,1	-0,7	-5,6	4,2	29	-50,0	-18,9	-35,7	-4,0	29	221,9	-2,7	191,4	102,5
30	1,8	-11,3	0,4	0,1	30	300,3	-0,3	-20,8	2,2	30	-66,6	-9,0	-117,6	-1,7	30	-648,1	-0,6	432,1	31,0

Para o cálculo da armadura de protensão, com base na classe de agressividade ambiental, CAAIII, utilizou-se a protensão limitada. O pré-dimensionamento foi realizado com base nos estados limites de serviço quanto a formação de fissuras e descompressão. Para organização do arranjo estrutural a ser projetado, as cordoalhas engraxadas foram reunidas em feixes de 4 cordoalhas com Ø15,2mm e aço CP-210RB, posicionadas no centro geométrico da seção das paredes verticais do silo. Para a disposição das cordoalhas ao longo dos 360°, dividiu-se a seção em dois trechos com caminhamento de 180°, nos quais a protensão se dá por suas duas extremidades, conforme Figura 26. A partir das equações clássicas de resistência dos materiais, determinou-se a força de protensão mínima a atender os estados limites recomendados na ABNT NBR 6118, quanto as tensões na seção. Calculados tais valores, são apresentados na Tabela 8 os resultados do pré-dimensionamento da protensão.

Figura 26 – Traçado da protensão

Fonte: AUTOR, 2022


Tabela 8 – Pré-dimensionamento da protensão não aderente sobre as paredes verticais do silo

	ı	ré-dimens	ionamento)	
Z	F min	Min	Adot	F prot	Feixes
(m)	(kN)	un	un	(kN)	un/m
1	1765	7,3	8	1538	2,00
2	2184	9,1	9	1730	2,25
3	2606	10,8	11	2114	2,75
4	2882	12,0	12	2306	3,00
5	3006	12,5	12	2306	3,00
6	3027	12,6	12	2306	3,00
7	2995	12,5	12	2306	3,00
8	2946	12,3	12	2306	3,00
9	2899	12,1	12	2306	3,00
10	2858	11,9	12	2306	3,00
11	2824	11,8	12	2306	3,00
12	2795	11,6	12	2306	3,00
13	2766	11,5	12	2306	3,00
14	2738	11,4	11	2114	2,75
15	2708	11,3	11	2114	2,75
16	2675	11,1	11	2114	2,75
17	2641	11,0	11	2114	2,75
18	2603	10,8	11	2114	2,75
19	2561	10,7	11	2114	2,75
20	2518	10,5	11	2114	2,75
21	2473	10,3	10	1922	2,50
22	2428	10,1	10	1922	2,50
23	2382	9,9	10	1922	2,50
24	2331	9,7	10	1922	2,50
25	2264	9,4	9	1730	2,25
26	2162	9,0	9	1730	2,25
27	1999	8,3	8	1538	2,00
28	1826	7,6	8	1538	2,00
29	1513	6,3	8	1538	2,00
30	6012	25,0	8	1538	2,00

Com base nos dados do pré-dimensionamento da protensão para as paredes verticais, atualizou-se o modelo estrutural em elementos finitos com a adição do elemento do tipo *tendon*, Os resultados para verificação dos estados limites de serviço para

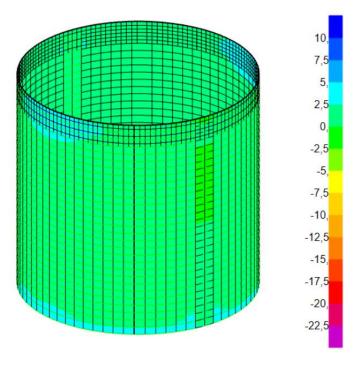

protensão limitada aliadas ao efeito hiperestático podem ser visualizados na Figura 27 e na Figura 28, sendo os estados limites respeitados para o nível de protensão selecionado.

Figura 27 - Tensões na face externa no tempo infinito (N/mm²)

Fonte: AUTOR, 2022

Figura 28 - Tensões na face interna no tempo infinito (N/mm²)

Fonte: AUTOR, 2022

Para o dimensionamento da protensão foram considerados as seguintes quantidades na consideração das perdas:

- Cravação da ancoragem, δ: 6mm
- Coeficiente de atrito entre a bainha de polipropileno engraxada e a cordoalha, μ: 0,05
- Coeficiente de perdas provocadas pela curvatura n\u00e3o intencional da cordoalha, k: 0.005 m⁻¹

As variações das tensões em um cabo posicionado na altura média do silo podem ser visualizadas da Figura 29.

Tendon Response Plot

Stress in Tendon Object "34" - Load Pattern "Prot t0""

Load Case "Prot t0" - Max Value = 151,637 Min Value = 144,8718

Figura 29 - Tensões em uma cordoalha posicionados na altura média do silo

Fonte: AUTOR, 2022

Verificada as condições da estrutura quanto aos seus estados limites de serviço, dimensionou-se a estrutura das paredes verticais quanto ao seu estado limite último. Para a realização do dimensionamento, utilizou-se o programa matemático SMath Studio, com o qual foi elaborado um código para a verificação das seções de interesse. A seguir é apresentada a rotina para a determinação do momento resistente da seção em sua direção circunferencial.

Momento resistente da seções de concreto (ELU-tinf):

Materiais:

Coeficientes:

$$Y_c := 1, 4$$
 $Y_s := 1, 15$ $r_0 := 0, 92$

Concreto:

$$f_{ci} := 45 \text{ MPa}$$

$$\mathbf{f}_{cd} \coloneqq \frac{\mathbf{f}_{cj}}{\mathbf{Y}_c} \qquad \qquad \boldsymbol{\varepsilon}_{c2} \coloneqq \mathbf{2,0} \ \% \qquad \qquad \boldsymbol{\varepsilon}_{cu} \coloneqq \mathbf{3,5} \ \%$$

Aço CA-50:

$$\boldsymbol{f}_{yk} \coloneqq \texttt{500 MPa} \qquad \boldsymbol{E}_{s} \coloneqq \texttt{210 GPa}$$

$$f_{yd} \coloneqq \frac{f_{yk}}{Y_s} \hspace{1cm} \varepsilon_{yd} \coloneqq \frac{f_{yd}}{E_s} \hspace{1cm} \varepsilon_{yu} \coloneqq 10 \ \%$$

Aço CP210RB:

$$f_{yp} := 2100 \text{ MPa}$$

Seção (S0):

$$\begin{array}{lll} & & & \\ b_w \coloneqq 100 \text{ cm} & & h \coloneqq 40 \text{ cm} & & A_p \coloneqq \left(3 \cdot 4 \cdot 1, 43 \text{ cm}^2\right) = 17,16 \text{ cm}^2 \\ & A'_s \coloneqq 15,71 \text{ cm}^2 & & A_s \coloneqq 15,71 \text{ cm}^2 & & d_p \coloneqq \frac{h}{2} = 20 \text{ cm} \\ & & d' \coloneqq 4 \text{ cm} & & d_s \coloneqq h - 4 \text{ cm} & & \rho_p \coloneqq \frac{A_p}{b_w \cdot d_p} = 0,00858 \end{array}$$

 $N := 1, 4 \cdot 1762 \text{ kN}$

Limites:

$$Condição_{inicial} := \begin{cases} x := 0,01 \text{ cm} \\ \Sigma F := -10000 \end{cases}$$

$$\mathbf{x}_{2a,b} \coloneqq \frac{\varepsilon_{c2}}{\varepsilon_{yu} + \varepsilon_{c2}} \cdot d_s = 6 \text{ cm}$$

$$\mathbf{x}_{23} \coloneqq \frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{vu}} \cdot \mathbf{d}_s = 9,33 \text{ cm}$$

$$x_{lim} := 0,45 \cdot d_s = 16,2 \text{ cm}$$

$$\mathbf{x}_{31im} \coloneqq \frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{yd}} \cdot d_s = 22,6~\mathrm{cm}$$

Iterações:

while
$$\Sigma F \leq 0$$

$$\varepsilon_1 \coloneqq \text{if } x \leq x_{23}$$

$$\varepsilon_{yu}$$

$$\text{else}$$

$$\varepsilon_{cu} \cdot \frac{(d_s - x)}{x}$$

$$\varepsilon_2 \coloneqq \text{if } x \leq x_{23}$$

$$\varepsilon_{yu} \cdot \frac{(x - d')}{(d_s - x)}$$

$$\text{else}$$

$$\varepsilon_{cu} \cdot \frac{(x - d')}{x}$$

$$\varepsilon_c \coloneqq \text{if } x \leq x_{23}$$

$$\varepsilon_{yu} \cdot \frac{x}{(d_s - x)}$$

$$\text{else}$$

$$\varepsilon_{cu}$$

$$\sigma_s \coloneqq f_{yd}$$

$$\sigma'_s \coloneqq \text{if } \varepsilon_2 < \varepsilon_{yd}$$

$$\varepsilon_2 \cdot E_s$$

$$\text{else}$$

$$f_{yd}$$

$$\sigma_c \coloneqq \text{if } \varepsilon_c < \varepsilon_{c2}$$

$$0,85 \cdot f_{cd} \cdot \left(1 - \left(1 - \frac{\varepsilon_c}{\varepsilon_{c2}}\right)^2\right)$$

$$\text{else}$$

$$0,85 \cdot f_{cd}$$

$$\Delta_p \coloneqq \text{if } A_p > 0$$

$$70 \text{ MPa} + \frac{f_{cj}}{100 \cdot \rho_p}$$

$$\text{else}$$

$$0$$

$$\sigma_{pd} \coloneqq 0,8 \cdot f_{yp} \cdot r_0 + \Delta_p$$

$$R_{cc} \coloneqq (b_w \cdot 0,8 \cdot x) \cdot (\sigma_c)$$

$$R_{sc} \coloneqq A'_s \cdot \sigma'_s$$

$$R_{pt} \coloneqq (A_p \cdot \sigma_{pd}) - N$$

$$\Sigma F \coloneqq R_{cc} + R_{sc} - R_{st} - R_{pt}$$

$$x \coloneqq x + 0,01 \text{ cm}$$

Resultados:

$$\begin{split} &\sigma_c = 25,9 \, \text{MPa} & R_{cc} = 996 \, \text{kN} & \varepsilon_c = 1,5 \, \text{\%} \\ &\sigma'_s = 54,5 \, \text{MPa} & R_{sc} = 85,7 \, \text{kN} & \varepsilon_1 = 10 \, \text{\%} \\ &\sigma_{pd} = 1670 \, \text{MPa} & R_{st} = 683 \, \text{kN} & \varepsilon_2 = 0,26 \, \text{\%} & \Sigma F = 3 \, \text{kN} & \text{(erro estimado)} \\ &\Delta_p = 122 \, \text{MPa} & (<210 \, \text{MPa}) & R_{pt} = 396 \, \text{kN} & x = 4,82 \, \text{cm} \\ &M_{Rd} := -\left(R_{cc} \cdot \left(x - 0,4 \cdot x\right) + R_{sc} \cdot \left(x - d'\right) - R_{st} \cdot \left(d_s - x\right) - R_{pt} \cdot \left(d_p - x\right)\right) = 244 \, \text{kN m} \end{split}$$

Para o dimensionamento da seção das paredes verticais quanto as solicitações na direção vertical, empregou-se o software FCN Ret, desenvolvido pelo Departamento de Engenharia Civil da Universidade Federal do Rio Grande do Sul, cuja interface é demonstrada na Figura 30 e os resultados para as diferentes seções analisadas é apresentado na Tabela 9.

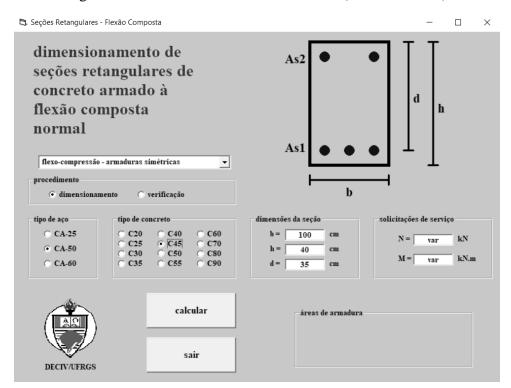


Figura 30 - Interface do software FCN Ret (Deciv/UFRGS)

Tabela 9 -Resultados de armadura vertical para as diferentes seções analisadas das paredes verticais do silo

		ELU		
Seção	F22	M22	As	Adotado
-	KN/m	KN-m/m	cm²/m	Auotauo
1	-1624	273	1,59	
2	-1479	104	0	
3	-1223	284	5,05	
4	-213	176	6,83	
5	-212	96	6,15	ø 20 c/20
6	-181	178	7,98	Ø 20 C/20
7	-177	98	12,78	
8	-152	180	13,5	
9	-146	96	14,18	
10	-126	176	14,21	

O dimensionamento das regiões de ancoragem da protensão foram dimensionadas segundo Fusco (2013), valendo-se da teoria básica de blocos parcialmente carregados. Os resultados obtidos são apresentados na Tabela 10.

Tabela 10 - Dimensionamento da zona de regularização

Dimensionamento da zona de regularização					
Forças	cm²/m				
Fissuração superficial	2,62				
Fendilhamento	6,84				
Equilíbrio transversal	14,43				

2.5.3. Acesso lateral

Para o dimensionamento e verificação das estruturas de concreto do acesso lateral, seguiu-se o Método dos Estados Limites com as diretrizes estabelecidas na ANBT NBR 6118. O procedimento adotado para o dimensionamento da estrutura baseou-se nos seguintes passos:

- Resolver o problema matemático para os diferentes casos de carga
- Combinar as solicitações para os estados limites
- Pré-dimensionar a estrutura de concreto do acesso lateral
- Revisar o modelo matemático com os valores de rigidez das seções correspondentes
- Dimensionar as estruturas quanto aos estados limites últimos de utilização

Para o dimensionamento da seção das paredes do acesso lateral quanto as solicitações nas deferentes direções, também se empregou o software FCN Ret, cujos resultados são apresentados na Tabela 11.

Tabela 11 - Resultados de armaduras para as diferentes seções das paredes do acesso lateral

					ELU1 k					
El	F11	F22	M11	M22	V13	V23	AS,x	Adotado	As,y	Adotado
el	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	cm²/m	Auotauo	cm²/m	Auotauo
1	311	-38	-142	-38	-125	290				
2	696	37	-132	250	89	128	As 11,69	As,min	As 11,69	As,min
3	696	35	-132	249	90	-128	As'	ø 20 c/15	As'	ø 20 c/15
4	308	-43	-143	-40	-125	-291	0,10	Ø 20 C/13	0,10	Ø 20 C/13
5	-182	-342	8	-220	24	136				
6	50	-471	-25	-192	-10	-52				
7	-776	-779	2	-92	-52	-23		As,min		As,min
8	-1013	-984	30	-68	-60	2	As 0	ø 20 c/15	As 0	ø 20 c/15
9	-1052	-849	40	-84	-55	36		w 20 C/13		y 20 C/13
10	-690	-487	22	-142	-32	84				

2.5.4. Túnel de extração

Para o dimensionamento e verificação das estruturas de concreto do túnel extração, seguiu-se o Método dos Estados Limites com as diretrizes estabelecidas na ANBT NBR 6118. O procedimento adotado para o dimensionamento da estrutura baseouse nos seguintes passos:

- Resolver o problema matemático para os diferentes casos de carga
- Combinar as solicitações para os estados limites
- Pré-dimensionar a estrutura de concreto do túnel de extração
- Revisar o modelo matemático com os valores de rigidez das seções correspondentes
- Verificar as tensões sob o solo
- Dimensionar as estruturas quanto aos estados limites últimos de utilização

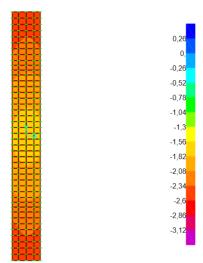

Para o dimensionamento da seção das paredes do túnel de extração quanto as solicitações nas deferentes direções, também se empregou o software FCN Ret, cujos resultados são apresentados na Tabela 12.

Tabela 12 - Resultados de armaduras para as diferentes seções das paredes do túnel de extração

					ELU1 k					
El	F11	F22	M11	M22	V13	V23	AS,x	Adotado	As,y	Adotado
el	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	cm²/m	Auotauo	cm²/m	Auotauo
1	51	3353	137	-435	28	4	As'	As,min	As'	As,min
2	51	3285	149	-434	-15	2	13,36	ø 20 c/15	13,36	ø 20 c/15
3	95	4032	86	-503	-70	0	As 13,36	As,min	Ac 12.26	As,min
4	99	4204	56	-506	82	0	AS 13,30	ø 20 c/15	As 13,36	ø 20 c/15

A verificação das tensões sob a laje de fundações foi realizada de acordo com as premissas iniciais para o coeficiente de mola vertical e das tensões admissíveis do solo, os valores obtidos na análise são apresentados na Figura 31, e correspondem a valores aceitáveis quanto as tensões admissíveis previstas para o terreno.

Figura 31 - Tensões admissíveis no solo sob a estrutura de fundações do túnel. (kgf/cm²)

2.5.5. Anel de fundações

Para o dimensionamento e verificação das estruturas de concreto do anel de fundações, seguiu-se o Método dos Estados Limites com as diretrizes estabelecidas na ANBT NBR 6118. O procedimento adotado para o dimensionamento da estrutura baseouse nos seguintes passos:

- Resolver o problema matemático para os diferentes casos de carga
- Combinar as solicitações para os estados limites
- Pré-dimensionar a estrutura de concreto do anel de fundações
- Revisar o modelo matemático com os valores de rigidez das seções correspondentes
- Verificar as tensões sob o solo
- Dimensionar as estruturas quanto aos estados limites últimos de utilização

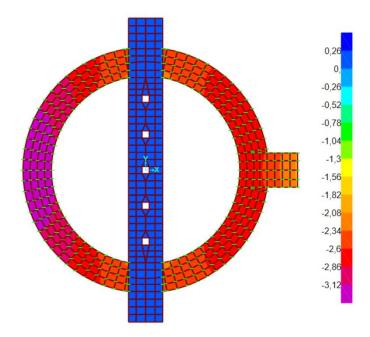

Para o dimensionamento da seção do anel de fundações quanto as solicitações nas deferentes direções, também se empregou o software FCN Ret, cujos resultados são apresentados na Tabela 13.

Tabela 13 - Resultados de armaduras para as diferentes seções das paredes do anel de fundações

	ELU1 k										
El	F11	F22	M11	M22	V13	V23	AS,r	Adotado	As,t	Adotado	
el	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	cm²/m	Auotauo	cm²/m	Auotauo	
1	72	1469	101	-4	296	-33	2,33		As'	As,min	
2	203	1337	567	180	903	-56	13,27	As,min	14,94	ø 25 c/15	
3	-160	1129	959	344	-1073	-145	22,72	ø 25 c/15	As 24.35	As,min	
4	-34	944	181	241	-344	-61	4,19		AS 24,33	ø 25 c/15	

A verificação das tensões sob a estrutura de fundações foi realizada de acordo com as premissas iniciais para o coeficiente de mola vertical e das tensões admissíveis do solo, os valores obtidos na análise são apresentados na Figura 32, e correspondem a valores aceitáveis quanto as tensões admissíveis previstas para o terreno.

Figura 32 – Tensões no solo sob a estrutura de fundações. (kgf/cm²)

Fonte: AUTOR, 2022

3. CONSIDERAÇÕES FINAIS

Este relatório contém 52 páginas e refere-se à memória de cálculo das estruturas de um silo a ser construído na cidade de Porto Alegre – RS.

3.1. Referências e bases teóricas

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118**: Projeto e execução de estruturas de concreto Armado – Procedimento. Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6123**: Forças devidas ao vento em edificações. Rio de Janeiro, 1988.

EUROPEAN COMMITEE FOR STANDARIZATION. **EM 1991-4**: Eurocode 1 – Actions on structures – Part 4: Silos and tanks. Brussels, 2006.

AMERICAN CONCRETE INSTITUTE. **ACI 307-98:** Design and Construction of Reinforced Concrete Chimneys. 1998.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION. **ANSI/AISC 360-05**: Specification for Structural Steel Buildings. 2005.

INSTITUT SUPÉRIEUR DU BÂTIMENT ET DES TRAVAUX PUBLI. **BAEL-BPEL91**: Calcul et Dimensionnement des Silos en Béton Armé et en Béton Précontraint. 2007.

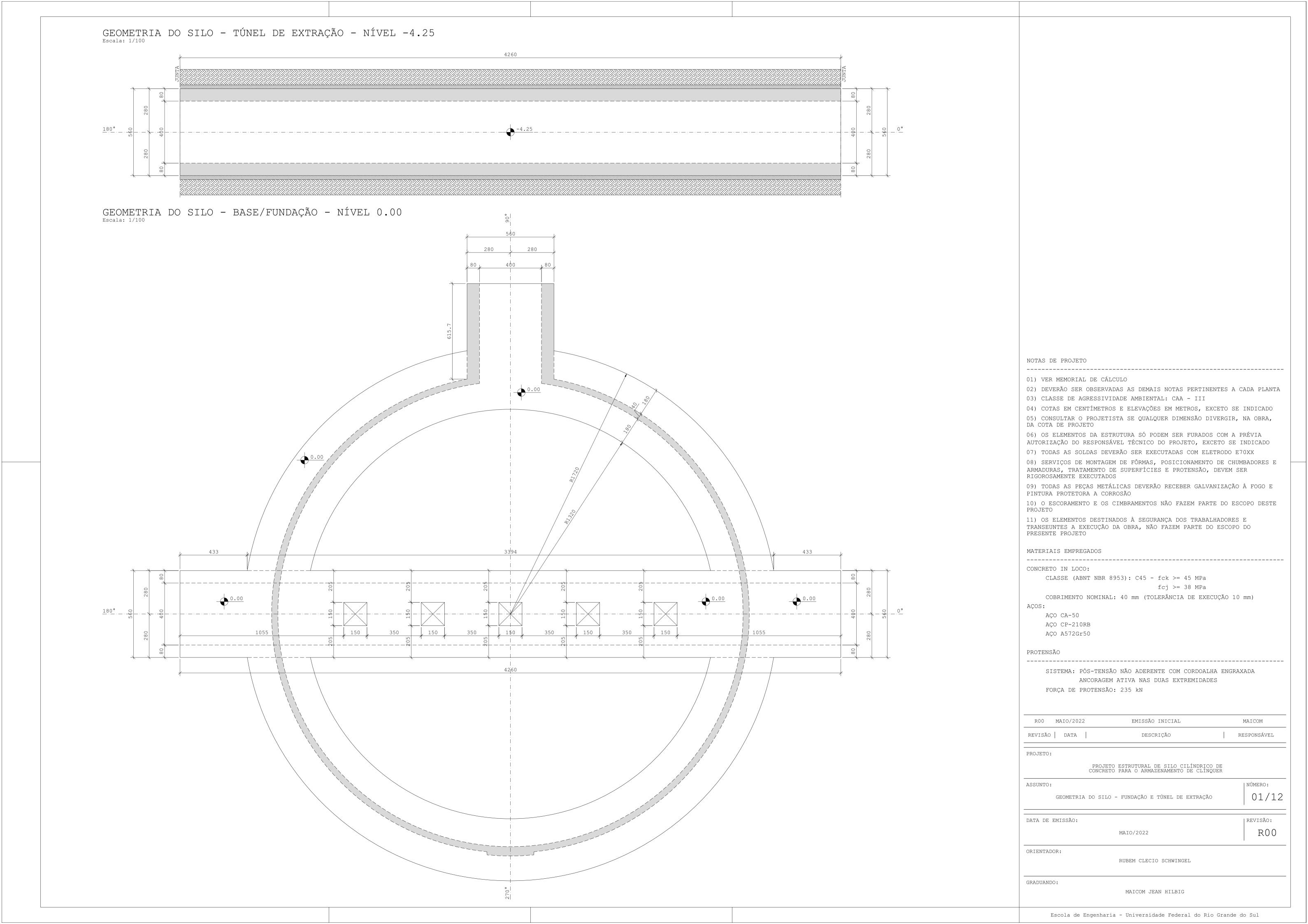
GHALI, A., 2000. Circular Storage Tanks and silos. E & FN Spon. 1nd ed., 3-37. London: Taylor & Francis Routledge.

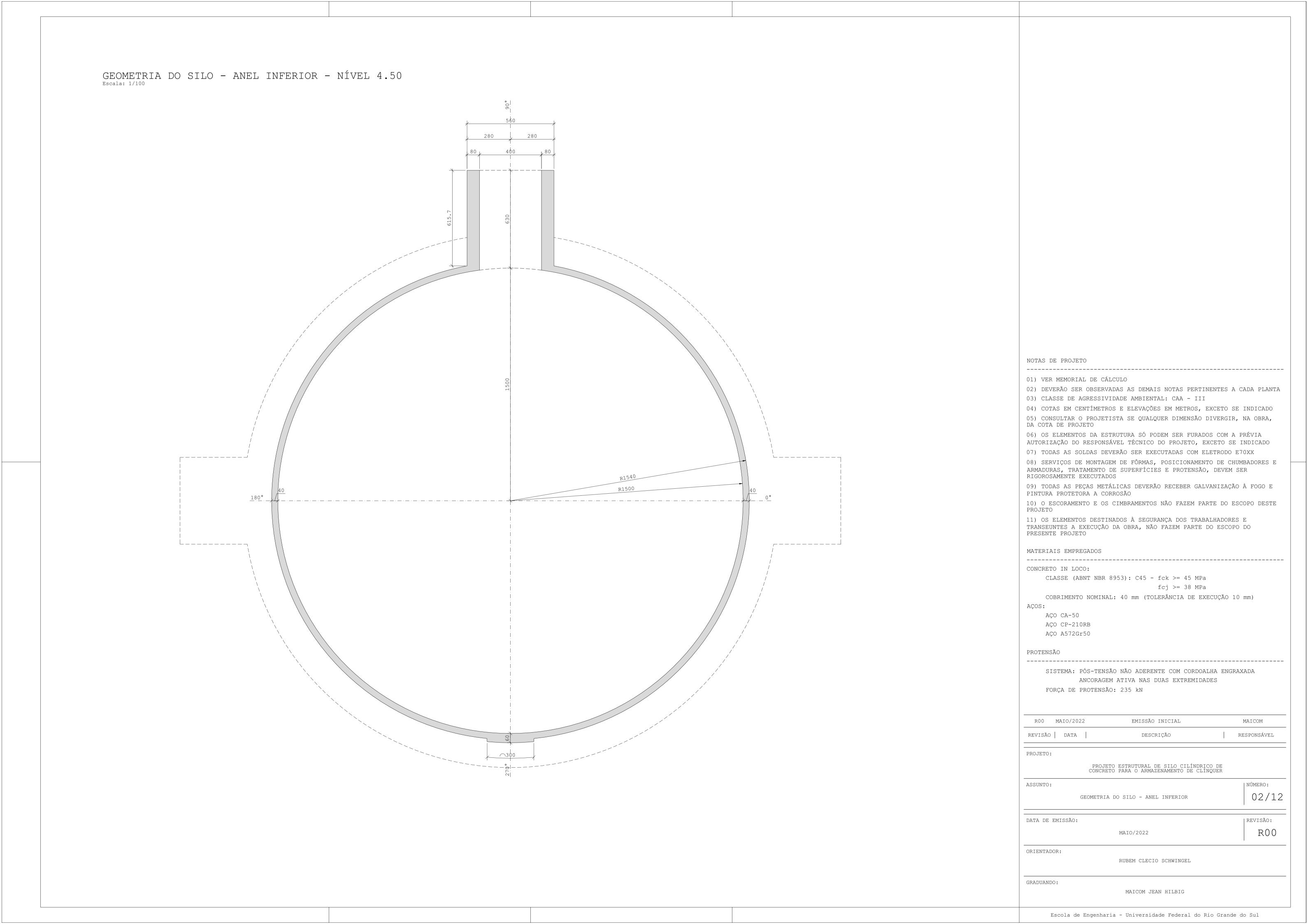
GHALI, A. & ELLIOTT, E., 1992. Serviceability of Circular Prestressed Concrete Tanks. ACI Structural Journal, vol.89, 345–355.

HAHN, J., 1972. Vigas continuas, porticos, placas y vigas flotantes sobre lecho elástico. Editorial Gustavo Gili, 2ª edición. Barcelona.

FUSCO, P. B., 2013. **Técnicas de armar as estruturas de concreto**. Pini, 2. ed.. São Paulo.

EMERICK, A. A., 2005. **Projeto e execução de lajes protendidas**. Interciência, 1. ed.. Rio de Janeiro.

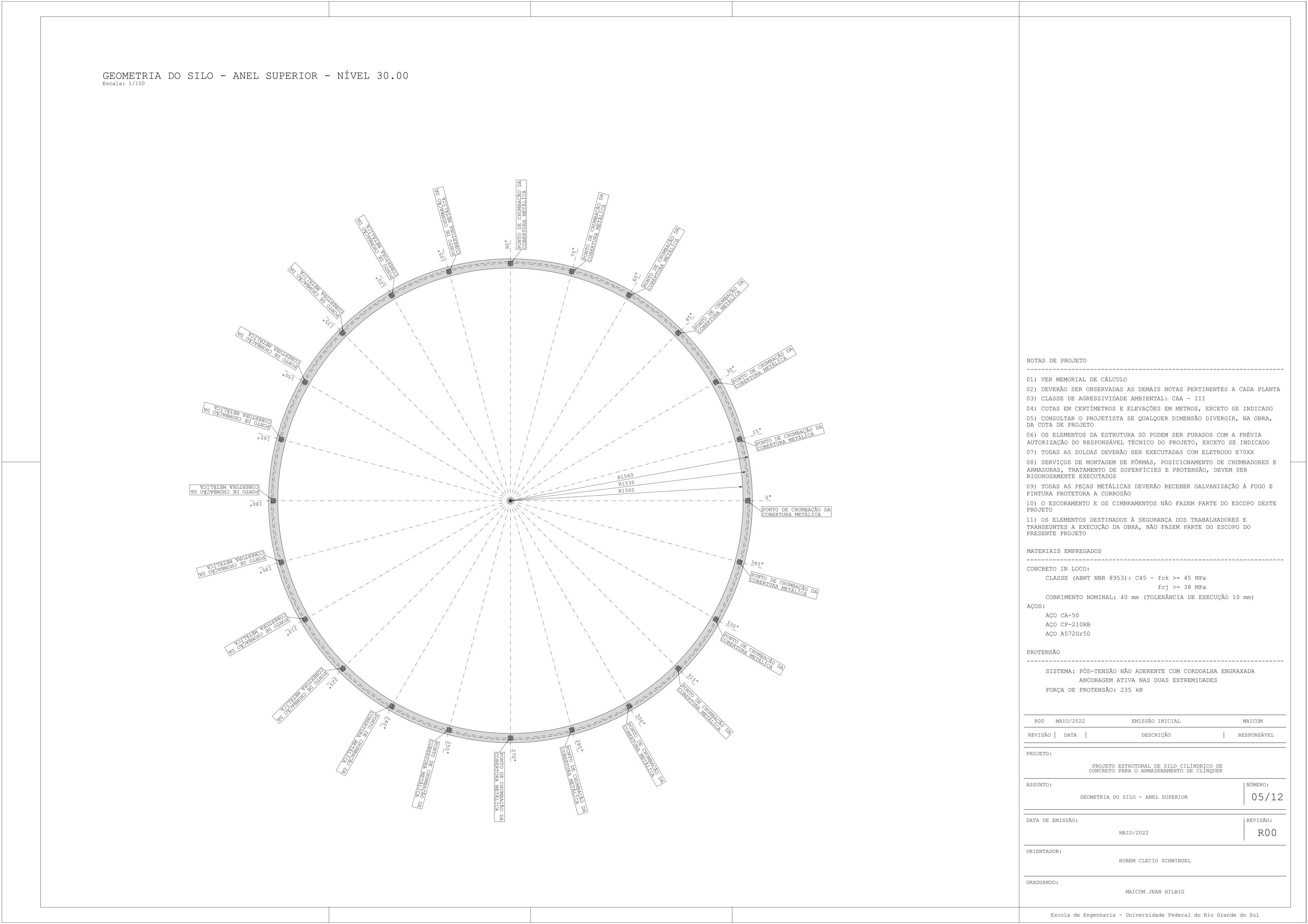

LEONHARDT, F. & MONNING, E., 2008. **Construções de concreto**. Interciência, vol 1-5. Rio de Janeiro.

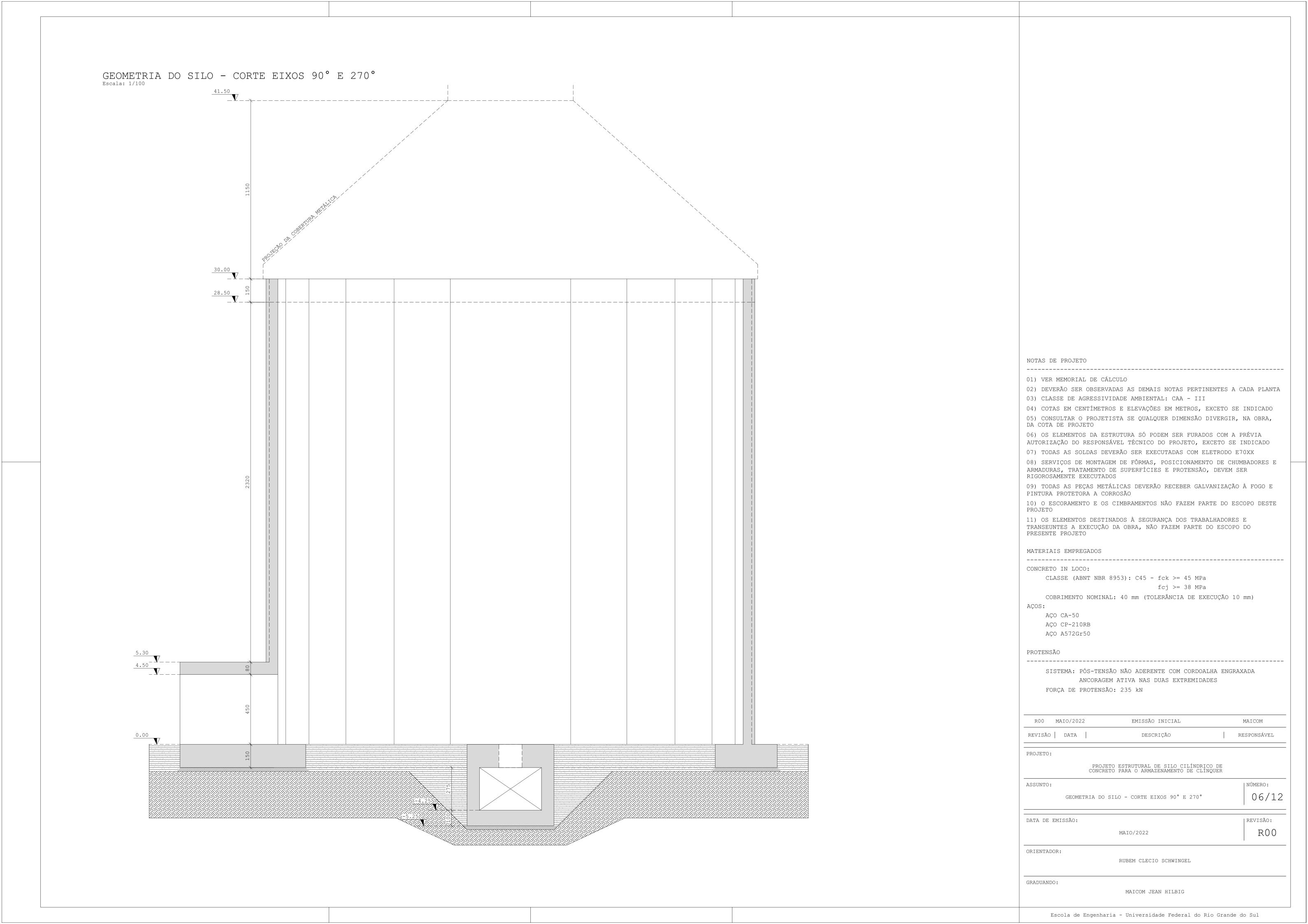

CARMONA, T. G.. Esforços Circunferenciais em Tanques de Concreto Armado com Seção Circular Tensões Originadas Por Gradiente Térmico. 2005. Dissertação de mestrado — Universidade Estadual de Campinas.

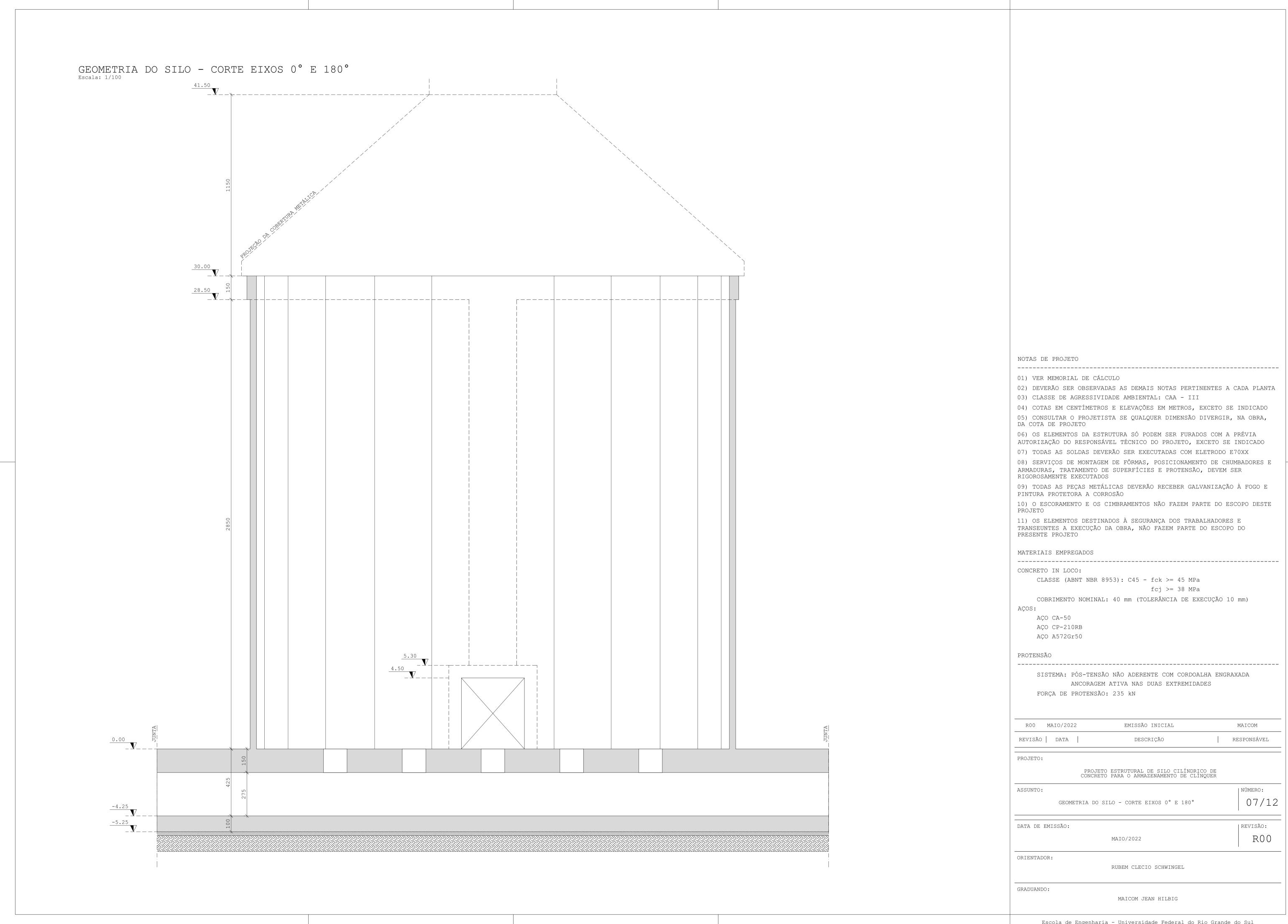
ANDRADE JUNIOR, L.J. A ação do vento em silos cilíndricos de baixa relação altura/diâmetro. 2002. Tese de doutorado — Universidade de São Paulo.

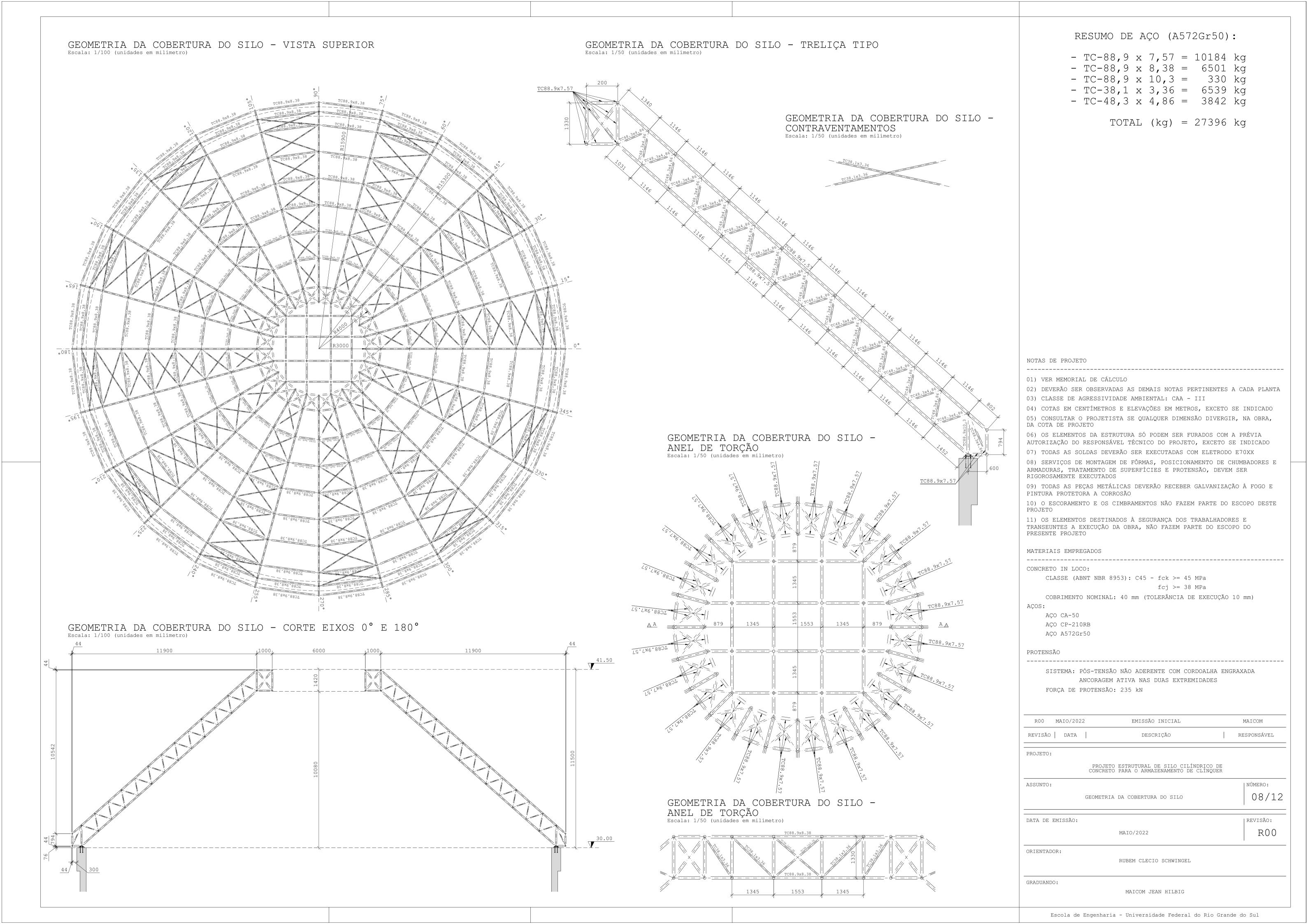
COMPUTERS & STRUCTURES, INC. CSI Analysis Reference Manual For SAP2000®, ETABS®, SAFE® and CSiBridge. United States of America, 2017.

APÊNDICE A – Desenhos técnicos

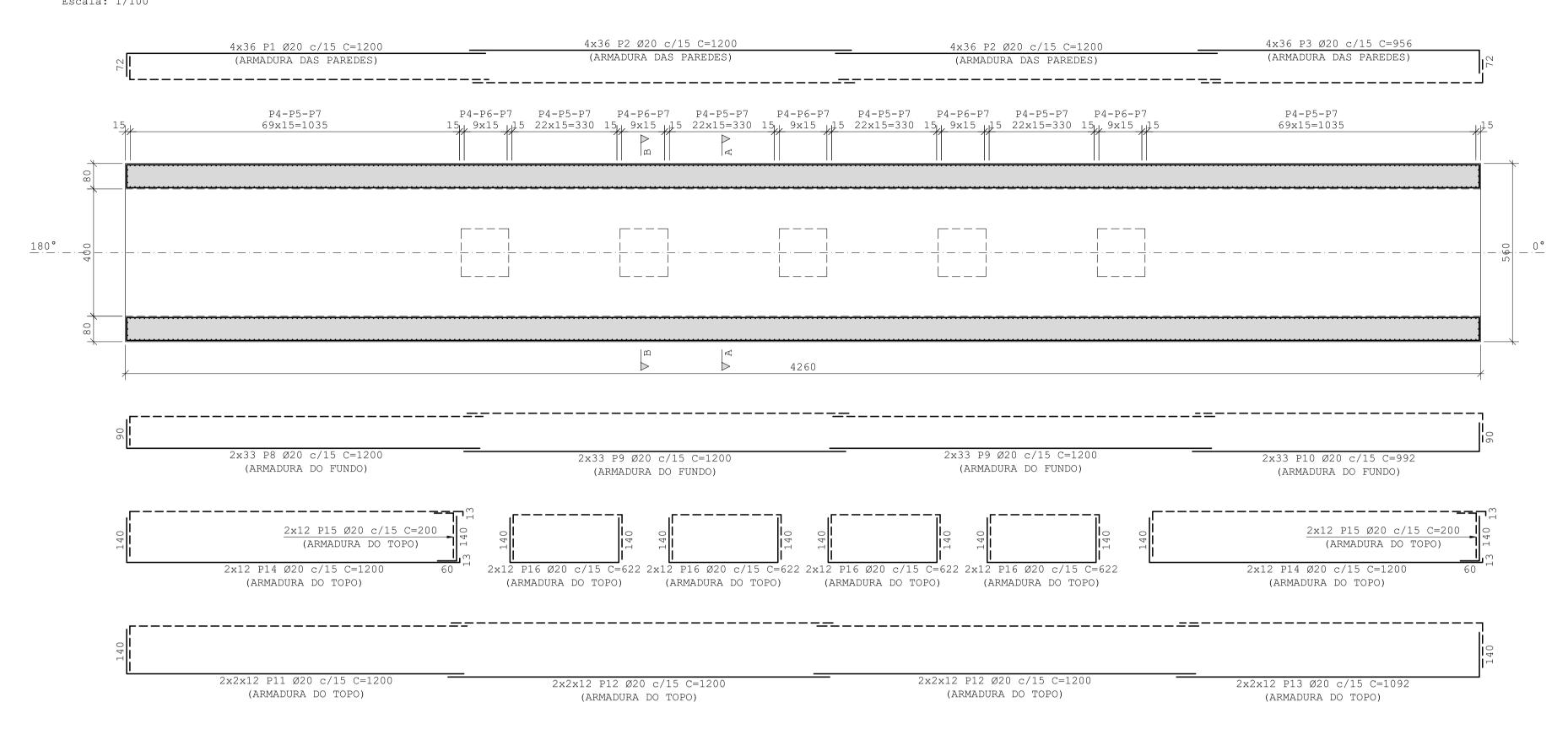


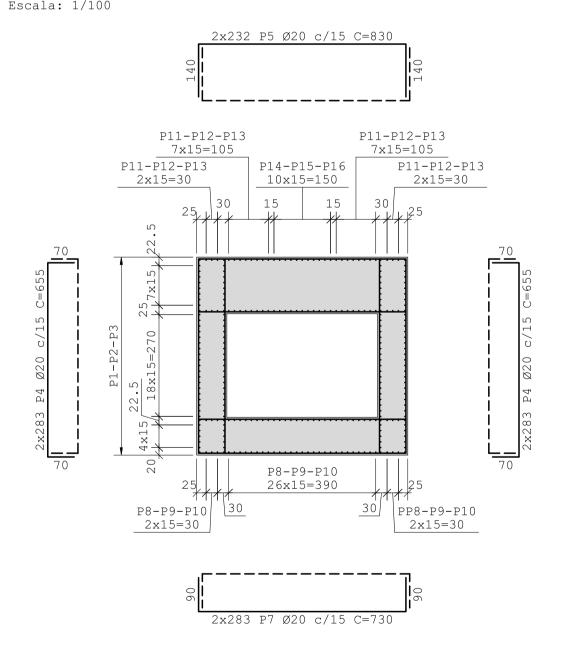

GEOMETRIA DO SILO - COBERTURA DO TÚNEL DE ACESSO - 5.30
Escala: 1/100 NOTAS DE PROJETO ______ 01) VER MEMORIAL DE CÁLCULO 02) DEVERÃO SER OBSERVADAS AS DEMAIS NOTAS PERTINENTES A CADA PLANTA 03) CLASSE DE AGRESSIVIDADE AMBIENTAL: CAA - III 04) COTAS EM CENTÍMETROS E ELEVAÇÕES EM METROS, EXCETO SE INDICADO 05) CONSULTAR O PROJETISTA SE QUALQUER DIMENSÃO DIVERGIR, NA OBRA, DA COTA DE PROJETO 06) OS ELEMENTOS DA ESTRUTURA SÓ PODEM SER FURADOS COM A PRÉVIA AUTORIZAÇÃO DO RESPONSÁVEL TÉCNICO DO PROJETO, EXCETO SE INDICADO 07) TODAS AS SOLDAS DEVERÃO SER EXECUTADAS COM ELETRODO E70XX 08) SERVIÇOS DE MONTAGEM DE FÔRMAS, POSICIONAMENTO DE CHUMBADORES E ARMADURAS, TRATAMENTO DE SUPERFÍCIES E PROTENSÃO, DEVEM SER RIGOROSAMENTE EXECUTADOS 09) TODAS AS PEÇAS METÁLICAS DEVERÃO RECEBER GALVANIZAÇÃO À FOGO E PINTURA PROTETORA A CORROSÃO 10) O ESCORAMENTO E OS CIMBRAMENTOS NÃO FAZEM PARTE DO ESCOPO DESTE 11) OS ELEMENTOS DESTINADOS À SEGURANÇA DOS TRABALHADORES E TRANSEUNTES A EXECUÇÃO DA OBRA, NÃO FAZEM PARTE DO ESCOPO DO PRESENTE PROJETO MATERIAIS EMPREGADOS CONCRETO IN LOCO: CLASSE (ABNT NBR 8953): C45 - fck \geq 45 MPa COBRIMENTO NOMINAL: 40 mm (TOLERÂNCIA DE EXECUÇÃO 10 mm) AÇO CA-50 AÇO CP-210RB AÇO A572Gr50 PROTENSÃO ______ SISTEMA: PÓS-TENSÃO NÃO ADERENTE COM CORDOALHA ENGRAXADA ANCORAGEM ATIVA NAS DUAS EXTREMIDADES FORÇA DE PROTENSÃO: 235 kN EMISSÃO INICIAL R00 MAIO/2022 MAICOM REVISÃO DATA DESCRIÇÃO RESPONSÁVEL PROJETO: PROJETO ESTRUTURAL DE SILO CILÍNDRICO DE CONCRETO PARA O ARMAZENAMENTO DE CLÍNQUER | NÚMERO: ASSUNTO: 03/12 GEOMETRIA DO SILO - ANEL INFERIOR E COBERTURA ACESSO SUPERIOR DATA DE EMISSÃO: | REVISÃO: R00 MAIO/2022 ORIENTADOR: RUBEM CLECIO SCHWINGEL GRADUANDO: MAICOM JEAN HILBIG

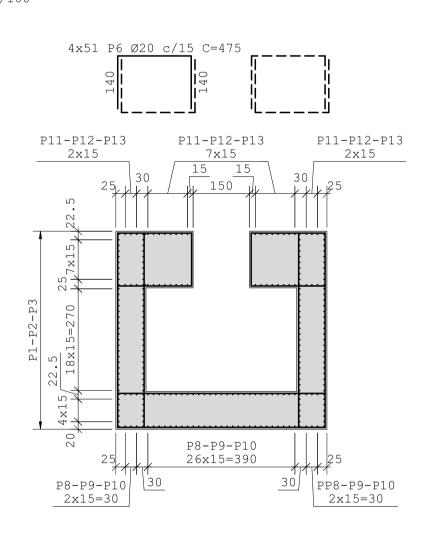

GEOMETRIA DO SILO - ANEL INTERMEDIÁRIO - NÍVEL 5.30 À 28.50 NOTAS DE PROJETO _____ 01) VER MEMORIAL DE CÁLCULO 02) DEVERÃO SER OBSERVADAS AS DEMAIS NOTAS PERTINENTES A CADA PLANTA 03) CLASSE DE AGRESSIVIDADE AMBIENTAL: CAA - III 04) COTAS EM CENTÍMETROS E ELEVAÇÕES EM METROS, EXCETO SE INDICADO 05) CONSULTAR O PROJETISTA SE QUALQUER DIMENSÃO DIVERGIR, NA OBRA, DA COTA DE PROJETO 06) OS ELEMENTOS DA ESTRUTURA SÓ PODEM SER FURADOS COM A PRÉVIA AUTORIZAÇÃO DO RESPONSÁVEL TÉCNICO DO PROJETO, EXCETO SE INDICADO 07) TODAS AS SOLDAS DEVERÃO SER EXECUTADAS COM ELETRODO E70XX 08) SERVIÇOS DE MONTAGEM DE FÔRMAS, POSICIONAMENTO DE CHUMBADORES E ARMADURAS, TRATAMENTO DE SUPERFÍCIES E PROTENSÃO, DEVEM SER RIGOROSAMENTE EXECUTADOS 09) TODAS AS PEÇAS METÁLICAS DEVERÃO RECEBER GALVANIZAÇÃO À FOGO E PINTURA PROTETORA A CORROSÃO 10) O ESCORAMENTO E OS CIMBRAMENTOS NÃO FAZEM PARTE DO ESCOPO DESTE 11) OS ELEMENTOS DESTINADOS À SEGURANÇA DOS TRABALHADORES E TRANSEUNTES A EXECUÇÃO DA OBRA, NÃO FAZEM PARTE DO ESCOPO DO PRESENTE PROJETO MATERIAIS EMPREGADOS CONCRETO IN LOCO: CLASSE (ABNT NBR 8953): C45 - fck \geq 45 MPa COBRIMENTO NOMINAL: 40 mm (TOLERÂNCIA DE EXECUÇÃO 10 mm) AÇO CA-50 AÇO CP-210RB AÇO A572Gr50 PROTENSÃO ______ SISTEMA: PÓS-TENSÃO NÃO ADERENTE COM CORDOALHA ENGRAXADA ANCORAGEM ATIVA NAS DUAS EXTREMIDADES FORÇA DE PROTENSÃO: 235 kN EMISSÃO INICIAL R00 MAIO/2022 MAICOM REVISÃO DATA DESCRIÇÃO RESPONSÁVEL PROJETO: PROJETO ESTRUTURAL DE SILO CILÍNDRICO DE CONCRETO PARA O ARMAZENAMENTO DE CLÍNQUER | NÚMERO: ASSUNTO: 04/12 GEOMETRIA DO SILO - ANEL INTERMEDIÁRIO DATA DE EMISSÃO: | REVISÃO: R00 MAIO/2022 ORIENTADOR: RUBEM CLECIO SCHWINGEL GRADUANDO:


Escola de Engenharia - Universidade Federal do Rio Grande do Sul

MAICOM JEAN HILBIG






ARMADURAS DO TÚNEL DE EXTRAÇÃO - PAREDES, FUNDO E TOPO

ARMADURAS DO TÚNEL DE EXTRAÇÃO - CORTE A-A

ARMADURAS DO TÚNEL DE EXTRAÇÃO - CORTE B-B

RELAÇÃO DO AÇO

ET EMENIO	7.00	ΝT	DIAM.	OTT 7 NITT	C. UNIT	C.TOTAL
ELEMENTO	AÇO	N	(mm)	QUANT.	(cm)	(cm)
TÚNEL DE	CA50	1	20	144	1200	172800
EXTRAÇÃO	CA50	2	20	288	1200	345600
	CA50	3	20	144	956	13766
	CA50	4	20	1132	655	741460
	CA50	5	20	464	830	385120
	CA50	6	20	204	475	9690
	CA50	7	20	566	730	41318
	CA50	8	20	66	1200	7920
	CA50	9	20	132	1200	15840
	CA50	10	20	66	992	6547
	CA50	11	20	48	1200	5760
	CA50	12	20	96	1200	11520
	CA50	13	20	48	1092	5241
	CA50	14	20	48	1200	5760
	CA50	15	20	48	200	960
	CA50	16	20	96	622	59712

RESUMO DO AÇO

7.00	DIAM.	C.	TOTAL
AÇO	(mm)		(m)
CA50	20		29479

PESO TOTAL
(kg)
CA50 72696

Volume de concreto $(C-45) = 783,8 \text{ m}^3$

NOTAS DE PROJETO

- 01) VER MEMORIAL DE CÁLCULO
- 02) DEVERÃO SER OBSERVADAS AS DEMAIS NOTAS PERTINENTES A CADA PLANTA

- 03) CLASSE DE AGRESSIVIDADE AMBIENTAL: CAA III
- 04) COTAS EM CENTÍMETROS E ELEVAÇÕES EM METROS, EXCETO SE INDICADO
- 05) CONSULTAR O PROJETISTA SE QUALQUER DIMENSÃO DIVERGIR, NA OBRA, DA COTA DE PROJETO
- 06) OS ELEMENTOS DA ESTRUTURA SÓ PODEM SER FURADOS COM A PRÉVIA AUTORIZAÇÃO DO RESPONSÁVEL TÉCNICO DO PROJETO, EXCETO SE INDICADO
- 07) TODAS AS SOLDAS DEVERÃO SER EXECUTADAS COM ELETRODO E70XX
- 08) SERVIÇOS DE MONTAGEM DE FÔRMAS, POSICIONAMENTO DE CHUMBADORES E ARMADURAS, TRATAMENTO DE SUPERFÍCIES E PROTENSÃO, DEVEM SER RIGOROSAMENTE EXECUTADOS
- 09) TODAS AS PEÇAS METÁLICAS DEVERÃO RECEBER GALVANIZAÇÃO À FOGO E PINTURA PROTETORA A CORROSÃO
- 10) O ESCORAMENTO E OS CIMBRAMENTOS NÃO FAZEM PARTE DO ESCOPO DESTE PROJETO
- 11) OS ELEMENTOS DESTINADOS À SEGURANÇA DOS TRABALHADORES E TRANSEUNTES A EXECUÇÃO DA OBRA, NÃO FAZEM PARTE DO ESCOPO DO PRESENTE PROJETO

MATERIAIS EMPREGADOS

CONCRETO IN LOCO:

CLASSE (ABNT NBR 8953): C45 - fck >= 45 MPa

fcj >= 38 MPa

COBRIMENTO NOMINAL: 40 mm (TOLERÂNCIA DE EXECUÇÃO 10 mm)
AÇOS:

AÇOS: AÇO CA-50

> AÇO CP-210RB ACO A572Gr50

AÇO A572Gr50

PROTENSÃO

SISTEMA: PÓS-TENSÃO NÃO ADERENTE COM CORDOALHA ENGRAXADA
ANCORAGEM ATIVA NAS DUAS EXTREMIDADES

FORÇA DE PROTENSÃO: 235 kN

R00 MAIO/2022	EMISSÃO INICIAL	MAICOM
REVISÃO DATA	DESCRIÇÃO	RESPONSÁVEL

PROJETO:

ASSUNTO:

PROJETO ESTRUTURAL DE SILO CILÍNDRICO DE CONCRETO PARA O ARMAZENAMENTO DE CLÍNQUER

ARMADURAS DO TÚNEL DE EXTRAÇÃO

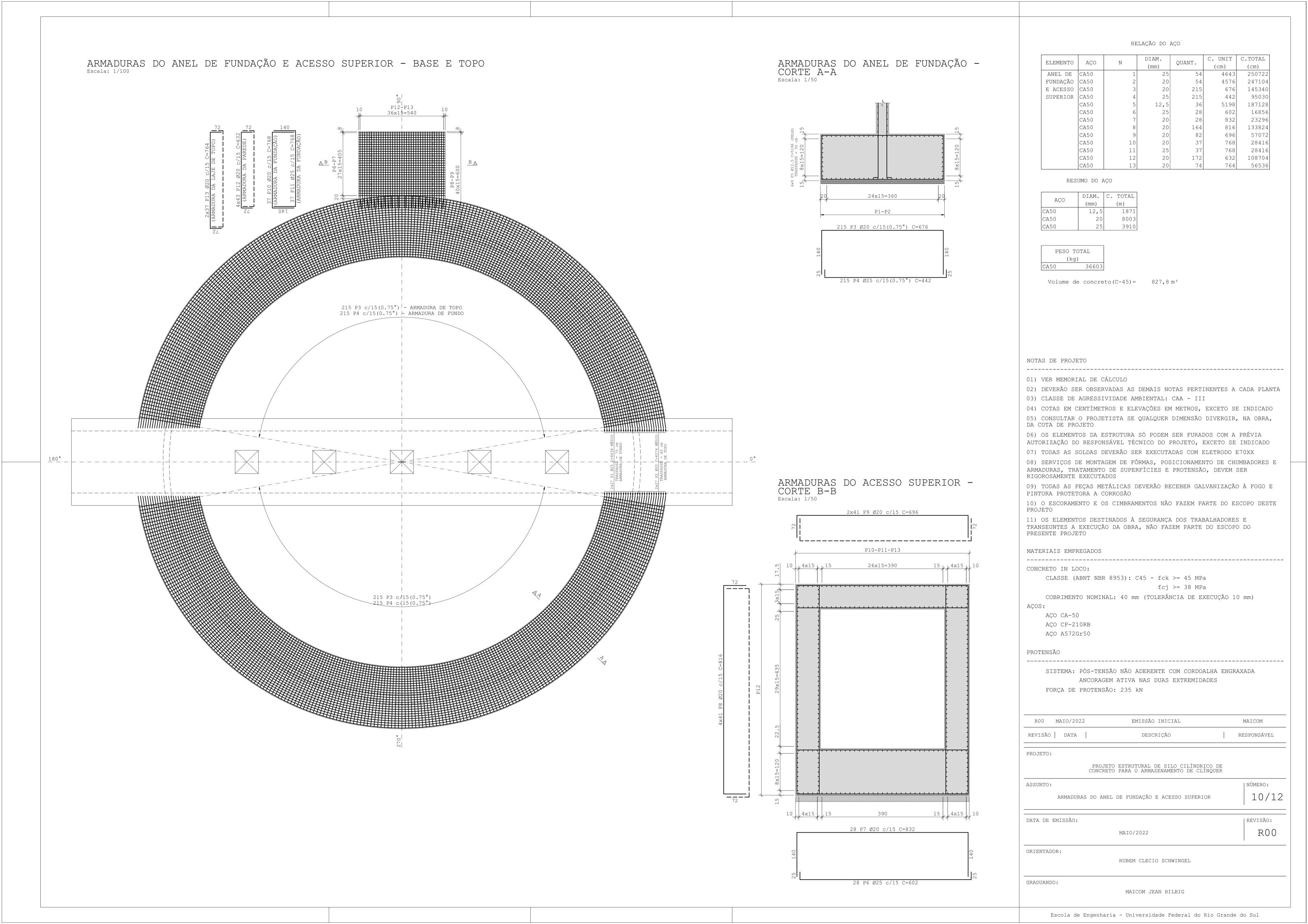
MAIO/2022

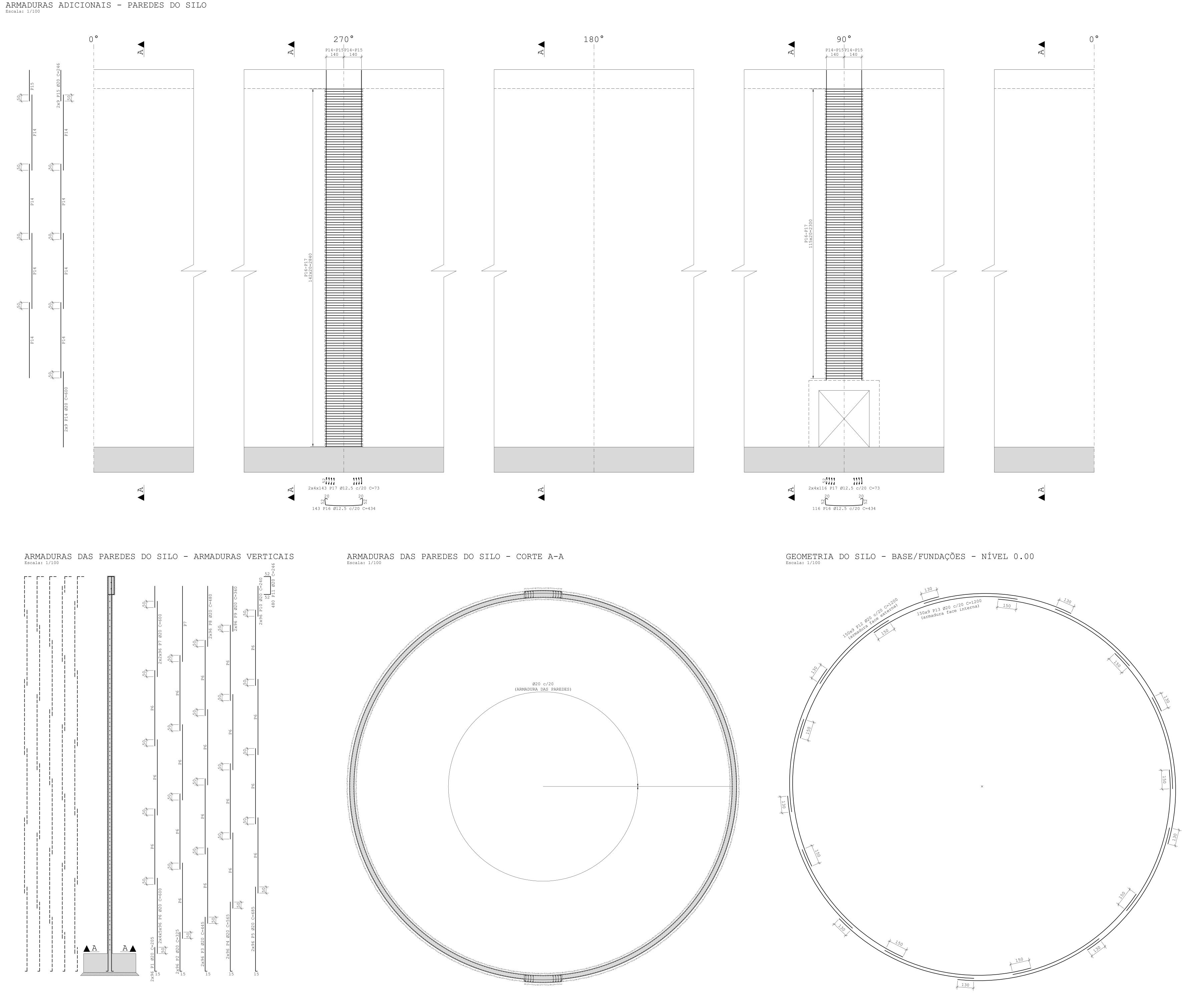
09/12

| NÚMERO:

| REVISÃO:

R00


DATA DE EMISSÃO:


RUBEM CLECIO SCHWINGEL

GRADUANDO:

ORIENTADOR:

MAICOM JEAN HILBIG

RELAÇÃO DO AÇO

ET EMENIO	7.00	NT	DIAM.	OTTA NIM	C. UNIT	C.TOTAL
ELEMENTO	AÇO	N	(mm)	QUANT.	(cm)	(cm)
PAREDES	CA50	1	20	192	205	39360
	CA50	2	20	192	325	62400
	CA50	3	20	192	445	85440
	CA50	4	20	192	565	108480
	CA50	5	20	192	685	131520
	CA50	6	20	3840	600	2304000
	CA50	7	20	384	600	230400
	CA50	8	20	192	480	92160
	CA50	9	20	192	360	69120
	CA50	10	20	192	240	46080
	CA50	11	20	480	246	118080
	CA50	12	20	1350	1200	1620000
	CA50	13	20	1350	1200	1620000
	CA50	14	20	18	600	10800
	CA50	15	20	18	246	4428
	CA50	16	12,5	259	434	112406
	CA50	17	12,5	2072	73	151256

RESUMO DO AÇO

AÇO DIAM. C. TOTAI (mm) (m)

CA50 12,5 263

CA50 20 6542

PESO TOTAL (kg)
A50 163871

Volume de concreto $(C-45) = 1209,7 \text{ m}^3$

NOTAS DE PROJETO

01) VER MEMORIAL DE CÁLCULO

02) DEVERÃO SER OBSERVADAS AS DEMAIS NOTAS PERTINENTES A CADA PLANTA

03) CLASSE DE AGRESSIVIDADE AMBIENTAL: CAA - III 04) COTAS EM CENTÍMETROS E ELEVAÇÕES EM METROS, EXCETO SE INDICADO 05) CONSULTAR O PROJETISTA SE QUALQUER DIMENSÃO DIVERGIR, NA OBRA, DA COTA DE PROJETO

06) OS ELEMENTOS DA ESTRUTURA SÓ PODEM SER FURADOS COM A PRÉVIA AUTORIZAÇÃO DO RESPONSÁVEL TÉCNICO DO PROJETO, EXCETO SE INDICADO 07) TODAS AS SOLDAS DEVERÃO SER EXECUTADAS COM ELETRODO E70XX 08) SERVIÇOS DE MONTAGEM DE FÔRMAS, POSICIONAMENTO DE CHUMBADORES E ARMADURAS, TRATAMENTO DE SUPERFÍCIES E PROTENSÃO, DEVEM SER RIGOROSAMENTE EXECUTADOS

09) TODAS AS PEÇAS METÁLICAS DEVERÃO RECEBER GALVANIZAÇÃO À FOGO E PINTURA PROTETORA A CORROSÃO 10) O ESCORAMENTO E OS CIMBRAMENTOS NÃO FAZEM PARTE DO ESCOPO DESTE

PROJETO

11) OS ELEMENTOS DESTINADOS À SEGURANÇA DOS TRABALHADORES E

TRANSEUNTES A EXECUÇÃO DA OBRA, NÃO FAZEM PARTE DO ESCOPO DO

PRESENTE PROJETO

MATERIAIS EMPREGADOS

CONCRETO IN LOCO:

CLASSE (ABNT NBR 89

CLASSE (ABNT NBR 8953): C45 - fck >= 45 MPa fcj >= 38 MPa

COBRIMENTO NOMINAL: 40 mm (TOLERÂNCIA DE EXECUÇÃO 10 mm) S:

AÇO CP-210RB ACO A572Gr50

AÇO CA-50

AÇO A572Gr50

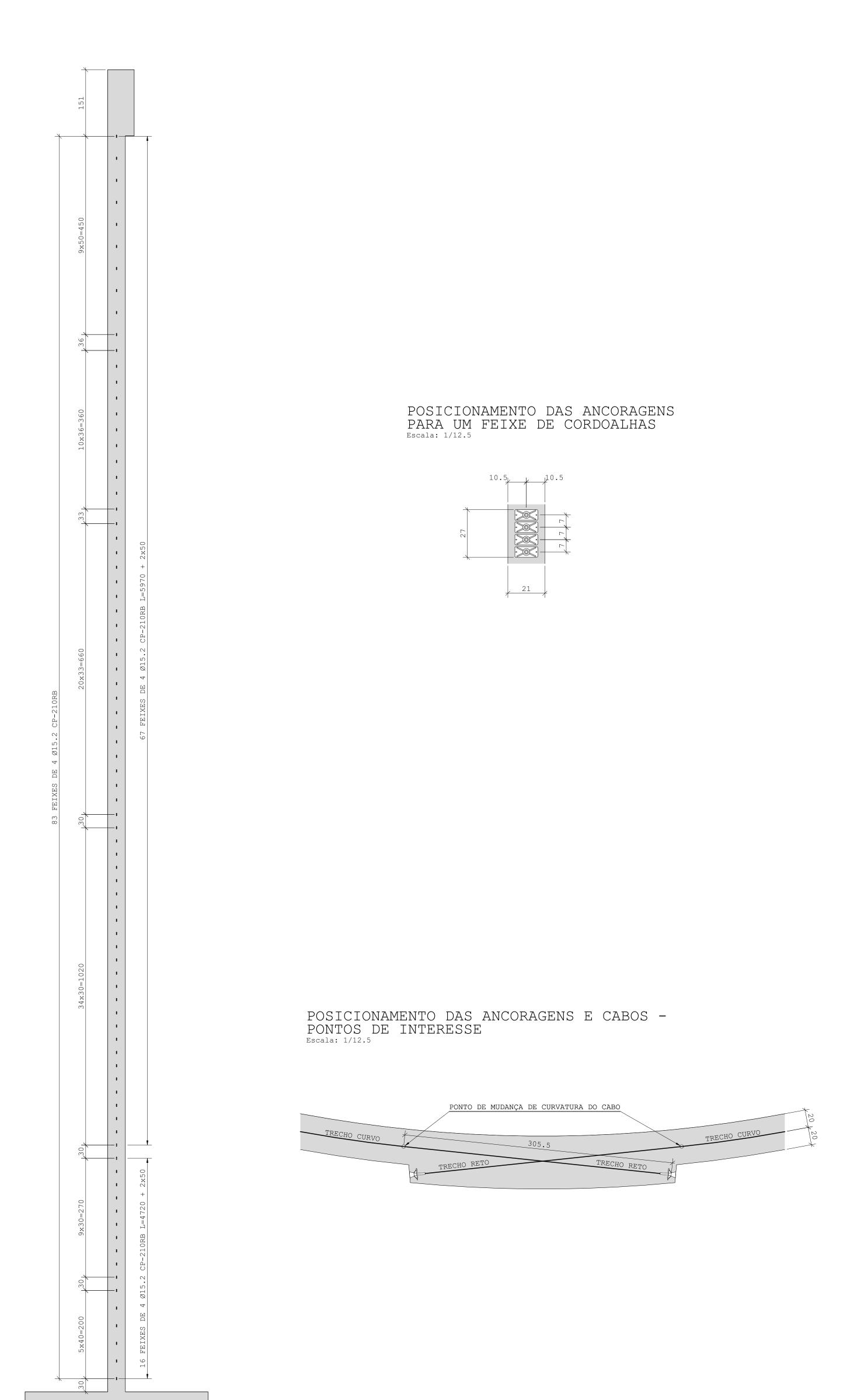
PROTENSÃO

SISTEMA: PÓS-TENSÃO NÃO ADERENTE COM CORDOALHA ENGRAXADA
ANCORAGEM ATIVA NAS DUAS EXTREMIDADES
FORÇA DE PROTENSÃO: 235 kN

R00	MAIO/202	2 EMISSÃO INICIAL		MAICOM
REVISÃO	DATA	DESCRIÇÃO	RE	SPONSÁVEL
PROJETO:				
		PROJETO ESTRUTURAL DE SILO CILÍNDRICO D CONCRETO PARA O ARMAZENAMENTO DE CLÍNQUE	E R	
ASSUNTO:				NÚMERO:
		ARMADURAS DAS PAREDES DO SILO		11/12

ARMADURAS DAS PAREDES DO SILO

DATA DE EMISSÃO:


MAIO/2022

ORIENTADOR:
RUBEM CLECIO SCHWINGEL

GRADUANDO:

MAICOM JEAN HILBIG

POSICIONAMENTO DAS CORDOALHAS NA PAREDE Escala: 1/50

RELAÇÃO DO AÇO

ELEMENTO	ACO	N	DIAM.	QUANT.	C. UNIT	C.TOTAL
FIEMENIO	AÇO	IN	(mm)	QUANI.	(cm)	(cm)
PAREDES	CP-210RB	1	15,2	64	4820	308480
DO SILO	CP-210RB	2	15,2	268	6070	1626760

PESO TOTAL
CP-210RB 2

NOTAS DE PROJETO

01) VER MEMORIAL DE CÁLCULO

02) DEVERÃO SER OBSERVADAS AS DEMAIS NOTAS PERTINENTES A CADA PLANTA
03) CLASSE DE AGRESSIVIDADE AMBIENTAL: CAA - III

04) COTAS EM CENTÍMETROS E ELEVAÇÕES EM METROS, EXCETO SE INDICADO
05) CONSULTAR O PROJETISTA SE QUALQUER DIMENSÃO DIVERGIR, NA OBRA,
DA COTA DE PROJETO
06) OS ELEMENTOS DA ESTRUTURA SÓ PODEM SER FURADOS COM A PRÉVIA
AUTORIZAÇÃO DO RESPONSÁVEL TÉCNICO DO PROJETO, EXCETO SE INDICADO

07) TODAS AS SOLDAS DEVERÃO SER EXECUTADAS COM ELETRODO E70XX

08) SERVIÇOS DE MONTAGEM DE FÔRMAS, POSICIONAMENTO DE CHUMBADORES E ARMADURAS, TRATAMENTO DE SUPERFÍCIES E PROTENSÃO, DEVEM SER RIGOROSAMENTE EXECUTADOS

09) TODAS AS PEÇAS METÁLICAS DEVERÃO RECEBER GALVANIZAÇÃO À FOGO E

PINTURA PROTETORA A CORROSÃO

10) O ESCORAMENTO E OS CIMBRAMENTOS NÃO FAZEM PARTE DO ESCOPO DESTE PROJETO

11) OS ELEMENTOS DESTINADOS À SEGURANÇA DOS TRABALHADORES E TRANSEUNTES A EXECUÇÃO DA OBRA, NÃO FAZEM PARTE DO ESCOPO DO PRESENTE PROJETO

MATERIAIS EMPREGADOS

CLASSE (ARNT NRR 89

CLASSE (ABNT NBR 8953): C45 - fck >= 45 MPa fcj >= 38 MPa

COBRIMENTO NOMINAL: 40 mm (TOLERÂNCIA DE EXECUÇÃO 10 mm)

AÇO CA-50 AÇO CP-210RB

AÇO A572Gr50

DATA DE EMISSÃO:

PROTENSÃO

SISTEMA: PÓS-TENSÃO NÃO ADERENTE COM CORDOALHA ENGRAXADA ANCORAGEM ATIVA NAS DUAS EXTREMIDADES FORÇA DE PROTENSÃO: 235 kN

REVISÃO	DATA	ĺ	DESCRIÇÃO	İ	RESPONSÁVEL
NEVIDAO	DATA		DESCRIÇÃO	I	
ROJETO:					
		PROJETC CONCRETC	ESTRUTURAL DE SILO CILÍN PARA O ARMAZENAMENTO DE (ORICO DE CLÍNQUER	

ASSUNTO:

ARMADURAS DE PROTENSÃO DAS PAREDES DO SILO

1

MAIO/2022

ORIENTADOR:

RUBEM CLECIO SCHWINGEL

GRADUANDO:

MAICOM JEAN HILBIG