
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

RAFAEL BALDASSO AUDIBERT

On the Evolution of AI and Machine
Learning: Analyses of Impact, Leadership

and Influence over the Last Decades

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Anderson Rocha Tavares
Coadvisor: Prof. Dr. Luís da Cunha Lamb

Porto Alegre
May 2022



UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Rodrigo Machado
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Machines take me by surprise with great frequency.”
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ABSTRACT

Artificial Intelligence has changed the world we live in. It all started in the academia

where we had some seminal works in the area such as (MCCULLOCH; PITTS, 1943),

(TURING, 1950), (MINSKY, 1961), and (VALIANT, 1984). It is a fact, however, that

AI ended up becoming much more than a research topic explored only in universities: AI

has led to uncountable articles by large enterprises like (GOMEZ-URIBE; HUNT, 2016),

(RAMESH et al., 2021), and (MAHABADI et al., 2022). Even though the area has seen a

big evolution since it started, there hasn’t been much exploration about the evolution of it,

and the dynamics involved in the process of transforming it into a quite well-established

computer science area. This work, therefore, intends to shed some light on the history

of Artificial Intelligence, exploring the dynamics involved in its evolution through the

lenses of the papers published in AI conferences since the first IJCAI conference in 1969.

We achieve so by creating comprehensive citation/collaboration paper/author datasets and

computing its centralities looking for insights on how the area has reached its current state.

Throughout the process, we correlate these datasets with the Turing Award winners, and the

two winters the AI has field has gone through already, also looking at self-citation trends

and new authors’ behaviors. Finally, we also present a novel way to infer the country of

affiliation of a paper from its organization. This work, therefore, provides a deep analysis

of the Artificial Intelligence history, from the most diverse points of view, enabling insights

that, to the best of our knowledge, weren’t studied before.

Keywords: Machine learning. artificial intelligence. data analysis. graph. centrality

measures. conferences. influence. ethics. turing award. affiliation country.





Sobre a Evolução da IA e Aprendizado de Máquina: Análises do Impacto, Liderança

e Influência nas Últimas Décadas

RESUMO

A Inteligência Artificial mudou completamente o mundo em que vivemos. Tudo começou

na academia onde tivemos obras seminais como (MCCULLOCH; PITTS, 1943), (TURING,

1950), (MINSKY, 1961), e (VALIANT, 1984). A IA, porém, se tornou muito mais do que

um tópico de pesquisa existente somente em universidades: a IA gerou também incontáveis

trabalhos de grandes corporações como (GOMEZ-URIBE; HUNT, 2016), (RAMESH et

al., 2021), and (MAHABADI et al., 2022). Embora a area tenha tido uma grande evolução

desde o seu início, não houveram muita explorações sobre sua evolução, e as dinâmicas

envolvidas no processo que transformou a área em uma das mais estabelecidas da Ciência

da Computação. Esse trabalho, portanto, pretende colocar um holofote sobre a história da

Inteligência Artificial, exporando as dinâmicas de sua evolução utilizando como lente os

trabalhos publicados em conferências da área de IA desde o primeiro IJCAI em 1969. Nós

conseguimos isso criando datasets (conjuntos de dados) completos e compreensivos sobre

citações/colaboração entre autores/trabalhos, computando suas centralidades e buscando

possíveis instrospecções de como a área atingiu o seu estado atual. Durante esse processo

nós correlacionamos esses conjuntos de dados com os ganhadores da Turing Award, e

com os dois “AI Winters” (Invernos da IA) que a área já enfrentou, olhando também

para tendências de citações próprias e comportamento de novos autores. Finalizando,

apresentamos também um novo método para inferir o país de afiliação de um trabalho a

partir de sua organzação. Esse trabalho, portanto, provÊ uma análise profunda da história

da Inteligência Artificial, a partir dos mais diversos pontos de vistas, permitindo análises

e percepções que, até onde o nosso conhecimento permite, nunca haviam sido estudadas

antes.

Palavras-chave: aprendizado de máquina, inteligência artificial, análise de dados, grafos,

medidas de centralidade, conferências, influência, ética, turing award, país de afiliação,

conjunto de dados.
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1 INTRODUCTION

Artificial Intelligence has changed the world we live in. It all started in the academia

where we had some seminal works in the area such as (MCCULLOCH; PITTS, 1943),

(TURING, 1950), (MINSKY, 1961), and (VALIANT, 1984), but AI ended up becoming

much more than a research topic explored only in universities. AI has led to uncountable

articles by large enterprises like (GOMEZ-URIBE; HUNT, 2016), (RAMESH et al., 2021),

and (MAHABADI et al., 2022). There are surveys1 that show that AI is being used in

37% of the organizations, at least to some extent. For over half a century – the first

comprehensive AI conference, IJCAI, started in 1969 –, Artificial Intelligence has broken

barriers and surprised many who doubted it could not achieve groundbreaking results. In

the 1990s, Deep Blue (CAMPBELL; HOANE; HSU, 2002) became the first computer to

win a chess match against the then reigning chess world champion, Garry Gasparov, under

tournament conditions.

Later, AI would eventually be able to reach even higher grounds in a wide number

of applications: AlphaGo (SILVER et al., 2016) won a series of matches against Go world

champions, Brown et al. (2020) can generate texts that resemble human-like competence,

Cobbe et al. (2021)’s work was shown to solve math word problems, Jumper et al. (2021)

can accurately predict protein structure folding, Park et al. (2019) can render real life-like

images from segmentation sketches, to name a few.

Even though the area has seen a big evolution since it started, there hasn’t been

much exploration about the evolution of it, and the dynamics involved in the process of

transforming it into a quite well-established computer science area. Some influential (and

maybe polarizing) researchers such as Gary Marcus have discussed the developments that

happened in the area in recent years in (MARCUS, 2018) or even wondered what’s to

come in the next decade in (MARCUS, 2020). On the other hand, in this work, we look a

bit further back in Artificial Science’s history, and explore deeper the processes that caused

it to become the academic and business success it is today.

In this work, we will explore how the collaboration and citation networks of

researchers evolved since 1969, within the three flagship AI conferences – IJCAI, AAAI,

and NeurIPS – together with some flagship conferences of research areas impacted and

influenced by AI, namely CVPR, ECCV, ICCV, ICML, KDD, ACL, EMNLP, NAACL,

SIGIR, and WWW. Even though not all of these conferences had a vast number of AI-

1<https://www.gartner.com/en/newsroom/press-releases/2019-01-21-gartner-survey-shows-37-percent-of-organizations-have>

https://www.gartner.com/en/newsroom/press-releases/2019-01-21-gartner-survey-shows-37-percent-of-organizations-have
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related papers published in their early years, we add them to our work to compose a “big

picture” of how AI has not only grown itself but also gradually started to influence other

subjects, such as computer vision, natural language processing, and information retrieval.

We achieve so by exploring, and enhancing, a big dataset of papers published in

Computer Science venues since 1969, the v11 Arnet dataset (TANG et al., 2008). We use

version v11 from this data dataset, containing data originating from DBLP with further

disambiguation in regards to paper authorship, spanning from 1969 to 2019. There are

versions v12 and v13 available with data until 2021, but the data for the recent years is

pretty degraded in these more recent datasets, thus rendering the statistical analysis on

them useless (See Section 3.1 to understand our trade-offs on using v11 instead of v13).

This dataset is then used to create a dataset of our own, modeled in several different graph

representations of the same data, allowing us to explore them in a true network fashion.

These graphs – with their centralities already computed – are made available for future

research, as the process to generate them involves the use of supercomputers with amounts

of memory and processing not easily found outside big universities or companies.

Our analyses then make use of these centralities to rank both papers and authors

over time using citation and collaboration networks. We then correlate these rankings to

external factors, such as conferences loaction, or the Turing Award – the most coveted

award in Computer Science. This will allow us to explore what/who were/are the influential

papers/authors in every area/venue. Additionally, we will also explore the dynamics of

where all this research is being produced, trying to understand the recent shift of production

from the United States to China.

In these analyses (Chapter 4), we show how authors do not keep influence in an

area for a long period, with the trend not being confirmed if we rank papers by importance,

as they have the ability to be respected/important for a longer period of time. We also show

how the average number of authors per paper is increasing in the researched venues, as

well as the number of self-citations. Furthermore, we also take a peek at the authors who

introduce most people to these conferences, by checking how many papers an author is

where that paper is the "first paper" for one of the authors. We also show the dynamics

behind citations between conferences, showing how some conferences work better together

than others.

Because of the nature of our work – converting huge amounts of unstructured data

into a structured data format – we also generate some side contributions besides our main

work: a new and efficient Python library to convert XML to JSON that uses file streams
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instead of loading the whole data in memory; a parallel Python implementation to compute

some centrality measures for graphs, using all physical threads available in a machine; a

novel structure to avoid reprocessing data already processed when its underlying structure

is a graph.

Our work is organized as follows: Chapter 2 provides analyses of the history behind

Artificial Intelligence, and some background information on the analyzed computer science

conferences, the Turing Award, and a review of graphs in general; Chapter 3 elaborates

on the methodology used to fulfill this work, including information about the underlying

dataset and the process behind the generation of the graphs/charts used throughout this

work; Chapter 4 presents and discusses the analyses of the aforementioned data under

various perspectives; Chapter 5 concludes our work with some other insights, shedding

some light over what was seen in the work, and listing possible suggestions for future work

using this new dataset; The Appendix brings some tables and figures that do not properly

fit the main part of this work.
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2 BACKGROUND

2.1 Artificial Intelligence History

The Artificial Intelligence History can be defined in terms of five main time periods:

three important ones where the field grew stronger and stronger, interluded by two periods

where the area was discredited and thought to be of little real-world impact, aptly named

“AI Winters”.

2.1.1 The dawn of AI (1940-1974)

Although debatable, the first modern artificial intelligence papers were published

in the 1940s. One of the first artificial neural networks-related papers arguably dates

back to 1943, when Warren McCulloch and Walter Pitts formally defined how simple

logical operations from propositional logic could be computed in a connectionist setting

(MCCULLOCH; PITTS, 1943). Later, in 1950, Alan Turing published the widely cited

“Computing Machinery and Intelligence” paper (TURING, 1950), the first philosophical

paper related to AI. In this paper, Turing reflects if machines are able to think and also

proposes some sort of “imitation game” (now widely known as the Turing Test) in order

to verify the reasoning and thinking capabilities of computing machines. Nevertheless, it

was in 1956 that the term Artificial Intelligence (AI) was coined by John McCarthy during

the Dartmouth Summer Research Project on Artificial Intelligence workshop. From the

workshop onward, A.I. rapidly evolved into a potentially world-changing research field –

at that time, especially focusing on the symbolic paradigm, revolving around rule-based

systems. In 1963, the first collection of AI articles would be published in (FEIGENBAUM;

FELDMAN, 1963).

A great example of these primitive rule-based systems is Eliza (WEIZENBAUM,

1966), the first-ever chatbot, created in 1964, by Joseph Wiezenbaum at the Artificial

Intelligence Laboratory at MIT. It is undeniable how huge is the chatbot market in our age,

powering huge multi-million dollar company’s revenues like Intercom1 or Drift2. Eliza

was created to be an automated psychiatrist, as if the human was talking to someone who

understood their problems, although the system worked in this rule-based format, replying

1<https://www.intercom.com/>
2<https://www.drift.com/>

https://www.intercom.com/
https://www.drift.com/
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Figure 2.1 – Geometry Analogy Problem example

Source: (EVANS, 1964)’s Figure 1

to the user with pre-fed answers. Besides the main artificial intelligence approach, we can

already see how related areas are easily influenced with a chatbot clearly involving natural

language processing as well.

It would also be in 1964 that (EVANS, 1964) would show that a computer could

solve what they described as "Geometry Analogy Problems", which correlates with the

problems usually displayed in IQ tests where one needs to solve a question in the format

“figure A is to figure B as figure C is to which of the given answer figures?” such as the

one represented in Figure 2.1

Important research would also vouch in favor of the area, causing DARPA (the

American Defense Advanced Research Projects Agency) to fund several different AI-

related projects from the mid-’60s onwards, especially at MIT.

This era was marked by the extreme optimism in the speeches of the area practi-

tioners. Marvin Minsky said in a 1970s Life magazine interview – one year after receiving

the Turing Award (See Section 2.2) – that “from 3-8 years we will have a machine with

the general intelligence of a human being”. He would also, in the same interview, boldly

claim that “If we’re lucky, they might decide to keep us as pets.”. Science Fiction fully

adopted the Artificial Intelligence utopic future theme, with the release of famous movies

like the french “Alphaville” in 1965 by Jean-Luc Godard, and “2001: A Space Odyssey”

by Stanley Kubrick and Arthur Clarke in 1968.

Prior to its first fall into oblivion, however, AI had drawn enough attention to be

the main theme of an international conference, the First International Joint Conference

on Artificial Intelligence (IJCAI), held at Stanford, in 1969. In it, out of the 63 published
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papers, we have some of notice such as Stanford’s work in a “system capable of interesting

perceptual-motor behavior” (FELDMAN et al., 1969), Nilsson (1969)’s Mobius automation

tool, and Green (1969)’s QA3 computer program that can write other computer programs

and solve practical problems for a simple robot.

It was also before the first winter that Alain Colmerauer would develop Prolog, one

of the most famous programming languages responsible for powering most of the early AI

algorithms. The feature that makes Prolog stand out among other languages is the fact that

it is mostly a declarative language: the program logic is expressed in terms of relations,

represented as facts and rules. A computation is initiated by running a query over these

relations (LLOYD, 1984). Prolog would become the programming language chosen to

build Watson3, IBM’s question-answering computer system.

2.1.2 The first winter (1974-1980)

The first winter was defined by the hindrances found by the researchers while

trying to develop anything related to artificial intelligence. The biggest of which was the

computing power needed by the artificial intelligence algorithms, which simply did not

exist at the time. Computers did not have enough memory to store the overwhelming

amount of data required to build these complex rule-based systems, or just did not have

enough computational power to solve problems fast enough.

Minsky and Papert (1969) may have played a huge part in this process. Strong

critics of the “perceptron” (a machine learning algorithm used in binary classifiers) by the

already Turing Award winner can have caused strong influence on the Artificial Intelligence

to avoid researching deeper into neural networks – the state of the art in most areas today –

and instead focus on the already declining symbolic methods.

The foundations of what we today call NP-Complete problems established by Cook

(1971) and Karp (1972) would also help in the decline of the area by showing that many

problems can only be solved in exponential time. This posed a risk to AI because it meant

that some of the basic problems being solved by the era models would probably never be

used in real-life data, where data is not represented by just a few data points.

3<https://www.ibm.com/watson>

https://www.ibm.com/watson
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2.1.3 The revival (1980-1987)

AI had been brought to life again in the early 1980s, mainly due to an increase of

commercial interest in expert systems and to the agenda of the newly created Association

for the Advancement of Artificial Intelligence conference (AAAI). Besides that, the funds

that had gone missing in the first AI winter would also be back on the table, with the

Japanese government funding AI research as part of their Fifth Generation Computer

Project (FGCP). Some other countries would also restart their funding projects, like UK’s

Alvey project and DARPA’s Strategic Computing Initiative.

After Minsky’s criticism, connectionism would have a comeback in the early 1980s.

Hopfield (1982) proved that what we today call a “Hopfield network” could learn in a

different way than what it was being done before with perceptrons and simple artificial

neural networks. Also, at the same time, Rumelhart, Hinton and Williams (1986) would

popularize "Backpropagation": a new method to easily train and "backpropagate" the

gradient in machine learning models.

2.1.4 The second winter (1987-2000)

Criticisms over the deployment of expert systems in real-world applications, how-

ever, may have caused the second AI winter (from the late 1980s to the early 2000s), which

ended up ceasing AI research funding.

Hans Moravec wrote in (MORAVEC, 1988) that “it is comparatively easy to make

computers exhibit adult level performance on intelligence tests or playing checkers, and

difficult or impossible to give them the skills of a one-year-old when it comes to perception

and mobility”. This, with some contributions from Rodney Brooks, and Marvin Minsky,

would emphasize what is now known as Moravec’s Paradox: the idea that reasoning per

se does not require much computation power, and can easily be thought/learned to/by a

machine, but building an intelligent machine able to do what is “below conscience level

for humans”, i.e. motor skills, is what actually required enough computation power that

did not yet exist at the time.

It is naive, however, to assume that nothing happened in this era. Campbell,

Hoane and Hsu (2002) Deep Blue’s greatest achievement – winning a Chess match with

tournament rules against the then-reigning Chess champion Garry Gasparov – happened in

1997. Previously, in 1994, TD-GAMMON (TESAURO, 1994) program would show the
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power Reinforcement Learning has by creating a self-teaching backgammon program able

to play it at a master-like level. Also, although self-driving cars are usually considered

recent technology, the ground for it was laid in this era, with Ernst Dickmmans’s “dynamic

vision” concept in (DICKMANNS, 1988; THOMANEK; DICKMANNS, 1995) where

they had a manned car riding in a Paris’ 3-lane highway with normal traffic at speeds of up

to 130 km/h.

The late 1990s would also see an increase of research in information retrieval with

the World Wide Web’s boom, with research in web scrapers and AI-based information

retrieval/extraction tools (FREITAG, 2000).

2.1.5 The groundbreaking present (2000-present)

The 2000s present us with AI’s Renaissance, especially if we look at the impact

of a specific AI subarea: Machine Learning (ML), but even more specifically its Deep

Learning (DL) subfield. It was in this context that NeurIPS (at the time, NIPS) arose, again,

as perhaps the most prominent AI conference, where several groundbreaking DL papers

have been published, featuring convolutional neural networks, graph neural networks,

adversarial networks, and other (deep) connectionist architectures.

In the early 2000’s we would see AI reaching the end customer in most developed

countries. iRobot4 introduced its Roomba Robot Vacuum in 2002. Apple, Google, Amazon,

Microsoft, and Samsung released Siri, Google Assistant, Alexa, Cortana, and Bixby,

respectively, AI-based personal assistants capable of understanding natural language and

executing a wide variety of tasks – admittedly, it did not work that well at the beginning,

circa 2010, but it does work now.

Most achievements in the area since 2000 are related to DL, basing itself in the

Artificial Neural Network (ANN) concept, a system that tries mimicking the way our brain

cells work. This is not a new concept, as it was described in 1943 in (MCCULLOCH;

PITTS, 1943), however, the immense computing power we have now allowed us to stack

several layers of "neurons" one after the other – thus "deep" neural networks – and compute

the results extremely fast. Also, given the natural parallelism of the process, the advent of

GPUs created the necessary fertile ground for the explosion in deep models we have now.

Some of the most incredible recent achievements base themselves on something

called Generative Adversarial Networks (GANs), a “framework for estimating generative

4<https://www.irobot.com/>

https://www.irobot.com/
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models via an adversarial process, in which we simultaneously train two models: a

generative model G that captures the data distribution, and a discriminative model D

that estimates the probability that a sample came from the training data rather than G”

(GOODFELLOW et al., 2014). This framework is responsible for a wave of photo-realistic

procedurally-generated content at the likes of <https://this-person-does-not-exist.com/en>,

<https://thiscatdoesnotexist.com/>, <http://thiscitydoesnotexist.com/>, or the recursive

<https://thisaidoesnotexist.com/>.

GANs are responsible for what we colloquially call “deepfakes” – a mash of “deep

learning” with “fake”. They work by superimposing one’s face by another face, through the

use of a machine learning model. Some more recent deepfakes can also alter the subject’s

voice, improving the experience. These are especially bad from an ethics standpoint

when one imagines that these can be used to fake audio and images of influential people

(HWANG, 2020). A thorough review of the area can be found in (NGUYEN et al., 2019).

A lot of the work produced in the Deep Learning field generated fruits, with 3

Turing Awards (for 5 different people) going to Artificial Intelligence researchers from 2010

onwards. Leslie Valiant won it in 2010, although his main articles date back to the ’80s and

’90s with his most important work "A theory of the learnable" (VALIANT, 1984) being

published in 1984. Judea Pearl won it in the following year, 2011, for his "contributions

[...] through the development of a calculus for probabilistic and causal reasoning" present

in (PEARL, 1988) and (PEARL, 2009). The other three winners received their prizes in

2018: Hinton is most famously known for his Imagenet-winning CNN (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012), LeCun is also known for his work in text recognition

in (LECUN et al., 1998) and (LECUN et al., 1989), while Bengio is mostly known for

his collective work with LeCun and his recent works in GANs (GOODFELLOW et al.,

2014) and neural translation (BAHDANAU; CHO; BENGIO, 2014). They are collectively

known for (LECUN; BENGIO; HINTON, 2015).

Talking about games/e-sports, Google’s AlphaGo won against the Chinese Go

grandmaster Ke Jie in 20175, after having already won 4 out of 5 matches against the

famous Go player Lee Sedol in 20166. Also in 2017, OpenAI’s Dota 2 bot7 won a 1v1

demonstration match against the Ukrainian pro player Dendi, a huge demonstration of

power in a game with imperfect information, with almost infinite possible future states.

Later, in 2019, a new version of the same bot, called OpenAI Five, wins back-to-back

5<https://www.wired.com/2017/05/googles-alphago-continues-dominance-second-win-china/>
6<https://www.bbc.co.uk/news/technology-35797102>
7<https://openai.com/blog/dota-2/>

https://this-person-does-not-exist.com/en
https://thiscatdoesnotexist.com/
http://thiscitydoesnotexist.com/
https://thisaidoesnotexist.com/
https://www.wired.com/2017/05/googles-alphago-continues-dominance-second-win-china/
https://www.bbc.co.uk/news/technology-35797102
https://openai.com/blog/dota-2/
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5v5 games against the then-world-champion Dota team, OG8. Also in 2019 DeepMind’s

AlphaStar bot reaches the biggest possible tier in Starcraft II9.

It is impossible to talk about AI in recent years and not talk about the striking

growth in submitted, and accepted, papers in the three biggest AI-related venues. Figure 3.4

shows we have over 1500+ papers in these conferences in recent years. For exact numbers,

please check Table A.4. By checking the figure above it is also important noticing how

Computer Vision arguably became the most important of the related areas, with CVPR

having the biggest quantity of papers in their proceedings, thanks to the boom in image

recognition and self-driving cars. We give more details of AI-related publications in

Chapter 4.

2.2 The Turing Award

The annual ACM A.M. Turing Award is regarded as the highest prize a computer

scientist can earn. It is conceded by the Association for Computing Machinery (ACM) to

people with outstanding and lasting contributions to computer science and computing in

general.

The prize was introduced in 1966 and named after the British mathematician Alan

Turing. Turing influenced several different areas of computer science, formalizing the

concepts of algorithms and computation with the Turing Machine (TURING, 1936). Turing

is also considered by most as Artificial Intelligence’s father after having proposed the

Turing test to decide if a machine is “intelligent” or not (TURING, 1950). He is also known

for his work in the Second World War, helping the British to decode the Nazi German

Enigma machine with his Bombe machine, named after the Polish bomba kryptologiczna

decoding machine. He died at age 41 from cyanide poisoning.

The prize was accompanied by a US$250,000 prize from 2007 to 2013, with

financial support provided by Intel and Google (STAFF, 2007). Since 2014, however, the

winners receive US$1 million, financed by Google (STAFF, 2014) for their exceptional

achievement.

The prize has already been given to 62 different researchers in the most diverse

areas of computer science research, both from a hardware and a software perspective. It

has not ever been given to someone posthumously.

8<https://openai.com/five/>
9<https://www.theguardian.com/technology/2019/oct/30/ai-becomes-grandmaster-in-fiendishly-complex-starcraft-ii>

https://openai.com/five/
https://www.theguardian.com/technology/2019/oct/30/ai-becomes-grandmaster-in-fiendishly-complex-starcraft-ii
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It is worth noting the bias present in the prize, however. The winners are chosen

mostly from a US-centric view, as only 37%10 of the winners were not born in the United

States - and only 27%11 of them credit a country different than the United States as the

country where they did their main job. Also, the first woman to receive the prize, Elizabeth

Allen, received the prize for her work on IBM’s STRETCH computer only in 2006, 40

years after the first prize. Only two other women would eventually receive the prize.

For our work, the most interesting Turing Award Winners are those who had

important contributions to the Artificial Intelligence field. The annual ACM A.M. Turing

Award has given, since 1966, seven prizes to 11 different researchers due to their efforts in

AI and related areas:

• Marvin Minsky (1969): For his central role in creating, shaping, promoting, and

advancing the field of Artificial Intelligence;12

• John McCarthy (1971): Dr. McCarthy’s lecture "The Present State of Research

on Artificial Intelligence" is a topic that covers the area in which he has achieved

considerable recognition for his work;13

• Herbert Simon and Allen Newell (1975): In joint scientific efforts extending over

twenty years, initially in collaboration with J. C. Shaw at the RAND Corporation,

and subsequentially with numerous faculty and student collegues at Carnegie-Mellon

University, they made basic contributions to artificial intelligence, the psychology of

human cognition, and list processing;14

• Edward Feigenbaum and Raj Reddy (1994): For pioneering the design and

construction of large scale artificial intelligence systems, demonstrating the practical

importance and potential commercial impact of artificial intelligence technology;15

• Leslie Valiant (2010): For transformative contributions to the theory of computa-

tion, including the theory of probably approximately correct (PAC) learning, the

complexity of enumeration and of algebraic computation, and the theory of parallel

and distributed computing;16

10Table G.1 lists every Turing Award winner correlating them with their country of birth
11See every author page in their ACM Turing Award website: <https://amturing.acm.org/byyear.cfm>
12Extracted from <https://amturing.acm.org/award_winners/minsky_7440781.cfm>
13Extracted from <https://amturing.acm.org/award_winners/mccarthy_1118322.cfm>
14Extracted from <https://amturing.acm.org/award_winners/simon_1031467.cfm>, and <https://amturing.

acm.org/award_winners/newell_3167755.cfm>, respectively.
15Extracted from <https://amturing.acm.org/award_winners/feigenbaum_4167235.cfm>, and <https://

amturing.acm.org/award_winners/reddy_9634208.cfm>, respectively.
16Extracted from <https://amturing.acm.org/award_winners/valiant_2612174.cfm>

https://amturing.acm.org/byyear.cfm
https://amturing.acm.org/award_winners/minsky_7440781.cfm
https://amturing.acm.org/award_winners/mccarthy_1118322.cfm
https://amturing.acm.org/award_winners/simon_1031467.cfm
https://amturing.acm.org/award_winners/newell_3167755.cfm
https://amturing.acm.org/award_winners/newell_3167755.cfm
https://amturing.acm.org/award_winners/feigenbaum_4167235.cfm
https://amturing.acm.org/award_winners/reddy_9634208.cfm
https://amturing.acm.org/award_winners/reddy_9634208.cfm
https://amturing.acm.org/award_winners/valiant_2612174.cfm
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• Judea Pearl (2011): For fundamental contributions to artificial intelligence through

the development of a calculus for probabilistic and causal reasoning;17

• Geoffrey Hinton, Yann LeCun, and Yoshua Bengio (2018): For conceptual

and engineering breakthroughs that have made deep neural networks a critical

component of computing.18

The rationale for each prize above was transcribed from ACM’s special Turing

Award website19.

2.3 CS Conferences

There are several conferences in the Computer Science field, but we had to narrow

them down to the ones considered the most important to be able to properly analyze them.

CSRankings is a metrics-based ranking of top computer science institutions around the

world20, which separates the works from each institution for each venue. They have a

selection of conferences that they consider the important few: in this work, we will only

ever focus on institutions available in their "AI" category, which are briefly described

below.

Some of the abbreviations are actually from associations that happen to have a

conference that, colloquially, received the same abbreviation.

Most of the credits for the research in the section below, more specifically the "most

influential papers in the recent years" snippet, is due to <https://www.paperdigest.org/>.

2.3.1 IJCAI

The International Joint Conferences on Artificial Intelligence (IJCAI) was founded

in California in 1969, being the first comprehensive AI-related conference to exist. The

conference was held in odd-numbered years, but since 2016 the conference happens

annually. It has already been held in 15 different countries, while the 2 most recent ones

17Extracted from <https://amturing.acm.org/award_winners/pearl_2658896.cfm>
18Extracted from <https://amturing.acm.org/award_winners/hinton_4791679.cfm>, <https://amturing.

acm.org/award_winners/lecun_6017366.cfm>, and <https://amturing.acm.org/award_winners/bengio_
3406375.cfm>, respectively.

19<https://amturing.acm.org/byyear.cfm>
20<http://csrankings.org>

https://www.paperdigest.org/
https://amturing.acm.org/award_winners/pearl_2658896.cfm
https://amturing.acm.org/award_winners/hinton_4791679.cfm
https://amturing.acm.org/award_winners/lecun_6017366.cfm
https://amturing.acm.org/award_winners/lecun_6017366.cfm
https://amturing.acm.org/award_winners/bengio_3406375.cfm
https://amturing.acm.org/award_winners/bengio_3406375.cfm
https://amturing.acm.org/byyear.cfm
http://csrankings.org
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were in Virtual Japan and Montreal-themed based. The next ones will be held in Austria

(2022), South Africa (2023), and China (2024), increasing the number of countries that

hosted the conference to 17 – China has already hosted it before.

Similar to AAAI, IJCAI is a comprehensive AI conference, encompassing all areas,

with some recent publications in novel areas such as GNNs (ABBOUD et al., 2020) and

transformers (CLARK; TAFJORD; RICHARDSON, 2020).

IJCAI has, over the year, published important papers from Turing Award winners

such as (AVIN; SHPITSER; PEARL, 2005) and (VERMA et al., 2019).

2.3.2 AAAI

The Association for the Advancement of Artificial Intelligence (AAAI – pro-

nounced “Triple AI”) was founded in 1979 under the name of American Association

for Artificial Intelligence. This association is responsible for promoting one of the most

important conferences in the AI field since 1980: the AAAI Conference on Artificial

Intelligence. The conference used to be held once every 1 or 2 years, with a lack of

conferences between 1990 and 1996, but it is been held yearly since 2010. It is worthy of

note that although the conference has removed the "American" bit from its name, it has

actually only been held in the USA and Canada (and remotely in 2021).

The conference has a pretty broad focus on AI without an outstanding subarea, so

it has a lot of important papers published in the most recent years such as (BORDES et

al., 2011) in Knowledge Bases, (XIA et al., 2014) in Information Retrieval, (HASSELT;

GUEZ; SILVER, 2015) in Reinforcement Learning, and (LI et al., 2019) in Computer

Vision and NLP.

2.3.3 NeurIPS (formerly NIPS)

The Conference and Workshop on Neural Information Processing Systems (NeurIPS)

is a machine learning and computational neuroscience conference held every December,

since 1987. It was already held in the USA, Canada, and Spain.

The Conference was once abbreviated as NIPS, but because of it being controversial

and after the accusations of it being a hostile environment by some women attendees, their
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board decided to change it to NeurIPS 21 in 2018.

CSRankings defines it as a “Machine Learning & Data Mining” conference, con-

taining some important papers for the area, recently featuring GPT-3 (BROWN et al.,

2020) and PyTorch’s technical paper (PASZKE et al., 2019), which curiously have 31 and

21 authors, respectively. The sheer size of the company is incredible, with 2,334 papers

accepted in 2021, outnumbering every other conference studied in this work.

2.3.4 CVPR

The Conference on Computer Vision and Pattern Recognition (CVPR) is an annual

conference on Computer Vision and Pattern Recognition, regarded as one of the most

important conferences in its field, with 1,294 accepted papers in 2019. It will in 2023, for

the first time, be organized outside the United States in Vancouver, Canada. Of course,

CVPR 1997 was held in Puerto Rico, an American ultramarine territory. It was first held

in 1983 and has since 1985 been sponsored by IEEE, and since 2012 by the Computer

Vision Foundation, responsible for providing open access to every paper published in the

conference.

Being one of the most important Computer Vision venues it has seen some ground-

breaking work in the past with research in novel areas such as Siamese Representation

Learning (CHEN; HE, 2020), GANs (KARRAS; LAINE; AILA, 2018), and Dual Attention

Networks (FU et al., 2018).

Turing Award Yann LeCun is a historical participant of the conference with works

published in it on several occasions, e.g. (BOUREAU et al., 2010), (LECUN; HUANG;

BOTTOU, 2004).

2.3.5 ECCV

ECCV stands for European Conference on Computer Vision, being CVPR’s Euro-

pean arm – even though ECCV 2022 is actually going to be held in Tel Aviv - Israel, and

not in Europe. It is held biennially every even-numbered year since 1990, when it was held

in Antibes, France.

Even though it is considered CVPR’s small sister, it had 1,360 accepted papers in

21<https://www.nature.com/articles/d41586-018-07476-w>

https://www.nature.com/articles/d41586-018-07476-w
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2019, also heavily focusing on Computer Vision with some publications of note such as

RAFT (TEED; DENG, 2020), a model able to segment and predict image depth with high

accuracy.

2.3.6 ICCV

Similar to ECCV, the International Conference on Computer Vision is CVPR’s

International arm, being held every odd-numbered year since 1987, when it was held in

London, United Kingdom, been held in 14 other countries ever since.

1,077 papers made the cut in 2019, such as (SHAHAM; DEKEL; MICHAELI,

2019) who won the 2019’s best paper award.

2.3.7 ACL

ACL is the Association for Computational Linguistics’s conference held yearly

since 2002, having surprisingly been held in 15 different countries in the last 20 years.

They define themselves on their website as “the premier international scientific

and professional society for people working on computational problems involving human

language, a field often referred to as either computational linguistics or natural language

processing (NLP). The association was founded in 1962, originally named the Association

for Machine Translation and Computational Linguistics (AMTCL), and became the ACL

in 1968.”

Commonly referred to as an NLP-related conference, it has some amazing work in

recent years such as (STRUBELL; GANESH; MCCALLUM, 2019)’s work in investigating

the environmental effects of creating these huge language models we have seen recently -

such as (BROWN et al., 2020).

2.3.8 NAACL

NAACL is the conference held by the North American Chapter of the Association

for Computational Linguistics, therefore also referred to as an NLP conference. The con-

ference is actually named NAACL-HLT (or HLT-NAACL, sometimes) – North American

Chapter of the Association for Computational Linguistics: Human Language Technologies.
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It has been held since 2003, and it was co-located with ACL on the few occa-

sions when ACL happened in North America. One of the most important papers using

transformers in recent years was published there: the BERT model (DEVLIN et al., 2018).

2.3.9 EMNLP

EMNLP stands for Empirical Methods in Natural Language Processing. The

conference started in 1996 in the US based on an earlier conference series called Workshop

on Very Large Corpora (WVLC) and has been held yearly since then.

The recent conferences are marked by works trying to improve the BERT model

(DEVLIN et al., 2018) already explained above, such as (JIAO et al., 2019), (FENG et al.,

2020) and (BELTAGY; LO; COHAN, 2019) – the latter has also been published in ACL.

2.3.10 ICML

ICML is the International Conference on Machine Learning, the leading interna-

tional academic conference focused on machine learning. The conference is held yearly

since 1987, with the first one being held in 1980 in Pittsburg, USA. The first few con-

ferences were all held in the United States, but the 9th conference, in 1992, was held in

Aberdeen, Scotland, United Kingdom. Since then it has been held in 10 other countries,

and twice virtually because of the COVID-19 pandemic.

It contains some seminal papers in Machine Learning from PASCANU; MIKOLOV;

BENGIO and IOFFE; SZEGEDY, and some more recent excellent research like (ZHANG

et al., 2018) and (CHEN et al., 2020). Besides Bengio’s aforementioned seminal paper,

his Turing Award co-winner Hinton also published important papers in ICML (NAIR;

HINTON, 2010).

2.3.11 KDD

The SIGKDD Conference on Knowledge Discovery and Data Mining is an annual

conference hosted by ACM, which had its first conference in 1989’s Detroit. Although it

is usually held in the United States, it has already been hosted by a few other countries,

namely Canada, China, France, and United Kingdom.
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It is the most important conference encompassing the Knowledge Discovery and

Data Mining field, with 394 accepted papers in 2021: a smaller number if we compare with

the other conferences we investigate in this paper, but a huge achievement nonetheless.

The conference recent years have seen a lot of presence of Artificial Intelligence,

mostly defined by Graph Neural Networks (GNNs), with works from QIU et al., WU et

al., JIN et al., and LIU; GAO; JI, all of them accepted in 2020’s SIGKDD. It is interesting

to note how all of these authors with influential papers in this 2020 conference are from

Chinese territory, a preview of what’s to come – see some insights about it in Section 4.6.

2.3.12 SIGIR

SIGIR stands for Special Interest Group on Information Retrieval, an ACM group.

It has its own annual conference that started in 1978 and has happened every single year

since then. It is considered to be the most important conference in the Information Retrieval

(how to acquire useful and organized information from raw, unorganized, and unstructured

data) area.

After 43 editions, it has been hosted in 21 different countries. It used to alternate

between the USA and a different country, but this rule does not follow anymore, with only

one conference in the US in the last 8 years.

A lot of the work in recent years is focused on recommender systems such as (HE

et al., 2020), (WU et al., 2021), and (WANG et al., 2020).

2.3.13 WWW

The Web Conference (WWW) is one of the top internet conferences in the world.

It "brings together key researchers, innovators, decision-makers, technologists, businesses,

and standards bodies working to shape the Web"22. It is a yearly event that started,

obviously, at CERN in Geneva, Switzerland, in 1994.

The conference heavily focuses on Semantic web and Data mining with some

important results in recommender systems as well.

22<https://dl.acm.org/conference/www>

https://dl.acm.org/conference/www
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2.4 Graphs and their centralities

A graph G is represented by a tuple G = (V,E), where V is a set of nodes

(vertexes) and E a set of edges eu,v connecting nodes u to v where u, v ∈ V . These edges

can be directed or undirected – thus making us able to differentiate between directed and

undirected graphs. In the directed case of eu,v we call u as being the source node and v the

destination node. We will always use n to represent the number of nodes in a graph, and

m to represent the number of edges in it.

Also, a pair of nodes (u, v) might have more than one edge connecting them: in

this case, we call the graph a multigraph. Similarly, these edges might have a weight w

making the graph a weighted graph.

Furthermore, we can also have labeled graphs, where nodes and edges can be of

different types. These are useful in knowledge representation systems, such as the graph

built in Section 3.3.4.

We call p = u1, u2, ..., up a path between u1 and up in G if ∃ eui,ui+1 ∀ 1 <= i <=

p− 1. Basically, we have a path if we can go from node u1 to up through a sequence of

connected edges. We can also define a shortest path between a pair of nodes (u, v) as the

path with the minimum possible quantity of intermediate nodes – note, however, that we

can have more than one shortest path between any pair of nodes (u, v).

2.4.1 Centralities

The existence and interest in Graph centrality measures date back to the 1940s,

but it was more formally incorporated into graph theory in the 1970s (WAN et al., 2021;

FREEMAN, 1978). A fundamental motivation for the study of centrality is the belief that

one’s position in the network impacts their access to information, status, power, prestige,

and influence (WAN et al., 2021). Therefore, throughout this work when we want to

identify the above concepts we will use graph centralities for the different networks we

built.

Sections 2.4.1.1 to 2.4.1.4 describe the most important graph centralities in the

literature which are used throughout this work. Then in Section 2.4.1.5 we go over some

other centrality measures for completeness’ sake. Although we did not use these, they have

some merit and have the ability to provide interesting insights into this and are, therefore,

present as options for future work.
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2.4.1.1 Degree Centrality

We represent the degree of a node u as ku meaning the number of other nodes

connected to this node. In a directed graph we can further split this metric into two: kin
u is

the in-degree, representing the number of nodes v ∈ V that have an edge ev,u with v as

source and u as destination (i.e. number of nodes with an edge pointing to u); the opposite

metric kout
u is the out-degree, representing the number of nodes v ∈ V that have an edge

Eu,v.

Therefore, it is easy to extend this metric to a centrality called Degree Centrality

defined as:

CDg(u) =
ku

n− 1
, (2.1)

where n represents the number of nodes V in the graph G.

Also, the same way we have in-degree and out-degree metrics, we can extend

Equation 2.1 and define In-Degree Centrality and Out-Degree Centrality, respectively:

CDgin(u) =
kin
u

n− 1
(2.2)

CDgout(u) =
kout
u

n− 1
(2.3)

These degree metrics are used to identify how well a node is directly connected to

other nodes, without considering the influence a node can pass to its neighbors.

2.4.1.2 Betweenness Centrality

The Betweenness Centrality was defined in (FREEMAN, 1977), and its measure

of importance of a node u is how many shortest paths in the graph go through u. It is

defined as

CB(u) =
∑

s ̸=u̸=t
∂s,t(u)

∂s,t

(n− 1)(n− 2)/2
∀s, u, t ∈ V, ∃ es,t (2.4)
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where ∂s,t(u) is the number of shortest paths between s and t that go through u,

and ∂s,t is simply the number of shortest paths between s and t. Note that we are only ever

counting paths between the pair (s, t) if there is a path between (s, t).

Betweenness is related to the notion of connectivity, where a node with a bigger

betweenness actually means that it is a point of connection between several nodes. In a

graph with a single connected component, a node can have the highest betweenness if it

works as a bridge between two individually disconnected components. It is regarded as a

measure of a node’s control over communication flow (FREEMAN, 1978), (CARDENTE,

2012).

2.4.1.3 Closeness Centrality

Closeness Centrality was created in (SABIDUSSI, 1966) representing the close-

ness of a node with every other node in the graph. It is the inverse of the farness which

in turn is the sum of distances with all other nodes (SAXENA; IYENGAR, 2020). It is

defined by

CC(u) =
n− 1∑

v ̸=u d(u, v)
∀u, v ∈ V (2.5)

where d(u, v) is the distance between the nodes u and v. This distance is simply the

number of edges in the shortest path p between the pair (u, v) if the graph is unweighted,

while it is the sum of every edge in the path in case the graph is unweighted.

Note that because distance is not defined between every pair of nodes in discon-

nected graphs (a graph where not every node can be reached from another node) we can’t

compute closeness for disconnected graphs.

A node with a higher closeness indicates that the node is in the middle of a hub of

other nodes. It also means that a node with big closeness values is "closer", on average,

to the other nodes, hence closeness. It represents the node’s level of communication

independence (FREEMAN, 1978), (CARDENTE, 2012).

2.4.1.4 PageRank Centrailty

Pagerank is a global centrality measure that needs the entire network to measure the

importance of one node. It measures the importance of one node based on the importance
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of its neighbors. (SAXENA; IYENGAR, 2020). It was developed by BRIN; PAGE when

they were creating Google, and it is the underlying method behind their search engine.

To understand Pagerank, we need to understand that its main idea is to understand

how important a web page is in the middle of all the other millions of pages on the world

wide web. The main idea behind it is that we are considering a web page important if other

important web pages link to it.

Think about it as if we had a webcrawler randomly exploring the web and increasing

a counter every time we enter into a specific page. Then, when you are on a page you

either have the option to click on one of the links on the page or go to a random page on

the web with probability 0 <= q <= 1 – this is useful both to model real-life where we

simply go to random websites and also to mimic pages without any out link. The usual

value for q, also called teleportation or damping factor, is 0.15, as defined in the original

paper. Therefore, with this thought in mind, we can define Pagerank as

CPR(u) =
q

n
+ (1− q)

∑
v

CPR(v)

kout
v

∃eu,v ∈ E (2.6)

The equation above illustrates how this process is iterative because we depend on

the Pagerank of every neighbor to be able to compute our own Pagerank. The process

usually converges or can be stopped after a certain number of iterations.

2.4.1.5 Other centralities

There are other useful centralities present in the literature. As explained before

they were not used in our work, but they would ideally be used in future work using the

dataset created. Most of these were extracted from similar lists in (SAXENA; IYENGAR,

2020) and (WAN et al., 2021).

• Semi-Local centrality (CHEN et al., 2012) defines a metric similar to the degree

centrality where we expand it to 2 levels of neighbours.

CSL(u) =
∑

v∈N(u)

∑
w∈N(v)

d2(w), (2.7)

where d2(w) is the number of neighbors plus the number of neighbors for every



45

neighbor of w – basically how many nodes you can reach in two steps.

• Volume Centrality (WEHMUTH; ZIVIANI, 2013) is a kind of generalization from

the above centrality parameterizing how far a node influence can reach and is defined

by

CV (u) =
∑

v∈Ñh(u)

kv, (2.8)

where Nh(u) is the set of neighbors within a distance h of u, and Ñh(u) = Nh(u) ∪

{u}. WEHMUTH; ZIVIANI demonstrated that h = 2 results in a good trade-

off of identifying nodes with important relations and the cost of computing this

relationship.

• H-index (HIRSCH, 2005) is a well-known statistic in the research world, being

exhibited as a statistic in most research-aggregator portals such as Google Scholar

and DBLP. HIRSCH defined that h is the highest integer value for which the author

has h papers with at least h citations.

• Coreness Centrality (KITSAK et al., 2010) represents the idea that the important

nodes are at the core of a graph. It can be determined by the process of assigning each

node an index (or a positive integer) value derived from the k-shell decomposition.

The decomposition and assignment are as follows: Nodes with degree k= 1 are

successively removed from the network until all remaining nodes have a degree

strictly greater than 1. All the removed nodes at this stage are assigned to be part

of the kshell of the network with index kS= 1 or the 1-shell. This is repeated with

the increment of kto assign each node to distinct k-shells(WAN et al., 2021). See

Figure 2.2 to see an example of definition of k-shells. Then, we can mathematically

define this centrality as

Ck(u) = max{k|u ∈ Hk ⊂ G}, (2.9)

where Hk is the maximal subgraph of G with all nodes having a degree of at least k

in H(WAN et al., 2021).
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Figure 2.2 – Example of a k-shell assignment

Source: (TANASE et al., 2015)

Some more complex centralities mostly use the fact that we can define a graph by

its adjacency matrix A and its corresponding eigenvalues and eigenvectors. Because this

work is not a literature review we will not include them.

2.5 Related Work

One of the main motivations behind this work is the fact that the history of artificial

intelligence and its dynamic evolution has not been researched enough: (XU et al., 2019)

focused specifically on “explainable AI” evolution (or de-evolution, in this case); (OKE,

2008) does deepen its work in several different AI areas, with a thorough review of each

area, but it does not go back in history further than the mid-1990s; (MIJWIL; ABTTAN,

2021) does a great job of explaining recent research on AI in general and tries predicting

what we can expect from it in the next few years, similar to (MARCUS, 2020)’s look at

the future.

There are also similar approaches to investigate author citation/collaboration net-

works such as (DING et al., 2010; GUNS; LIU; MAHBUBA, 2011; ABBASI; HOSSAIN;

LEYDESDORFF, 2012; CARDENTE, 2012; WU et al., 2019), mostly focusing in the

betweenness centrality. Wartburg, Rost and Teichert (2022) use closeness to analyze

patent networks. Also, Krebs (2002) show how centrality measures can be used to identify

proeminent actors from the 2001 Twin Tower’s terrorist attackers network.

In the country affiliation in papers, Grubbs, Glass and Kilmarx (2019) investigated

coauthor country affiliation in Health research funded by the US National Institute of

Health; Michalska-Smith et al. (2014) go further by trying to correlate country of affiliation

with the acceptance rate in journals and conferences; Yu et al. (2021) studied how one
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can infer the country of affiliation of a paper from its data in WoS23; Hottenrott, Rose and

Lawson (2019) investigates the rise on multi-country affiliations in articles as well.

23<https://www.webofknowledge.com/>

https://www.webofknowledge.com/
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3 METHODOLOGY

This chapter explains how our work was developed, explaining where our underly-

ing data was extracted from in Section 3.1, throughly describing the artifacts generated in

this work along with the algorithms and data structures used to build them in Section ??.

3.1 Underlying Dataset

The most extensive bibliography of computer science publications is the DBLP

Database (DBLP, 2019), available at <https://dblp.uni-trier.de/>, recently (in February

2022), it surpassed the 6 million publications mark (See Figure 3.1), containing works

from almost 3 million different authors. Figure 3.2 shows how large is the increase in

publications in the recent years, per DBLP’s statistics page1. They provide a downloadable

664MB GZipped version of their dataset in XML format2. Recently (after this work had

already been started and was past the dataset choosing process), DBLP has also released its

dataset in RDF format3. However, because their dataset has its pitfalls, such as duplicated

authors and/or incorrectly merged authors, we opted to not use their dataset directly.

Instead, in our work, we used Arnet’s (TANG et al., 2008) V114 paper citation

network, which dates from May 2019. It contains 4,107,340 papers from DBLP, ACM,

MAG (Microsoft Academic Graph), and other sources, including 36,624,464 citation

relationships. This dataset contains more information than DBLP’s, as they better worked

on author disambiguation (merging authors DBLP considered to be different ones, or

separating authors DBLP considered to be the same person), providing us the ability to

generate truther collaboration/citation networks.

It is important to clarify why we are using Arnet’s v11 dataset instead of one of

their newer datasets, namely v12 and v13 – the latter, from May 2021, contains 5,354,309

papers and 48,227,950 citation relationships, an increase of 30.3% compared to v11. First,

and foremost, this work started in 2019, when versions v12 and v13 were not available yet.

Also, when these newer datasets were made available, we did try to use both of them, but

we faced some problems that prompted us back to the v11 dataset:

1. v12’s and v13’s data format is different from v11’s. The format of v12 and v13 is a
1<https://dblp.org/statistics/index.html>
2<https://dblp.org/xml/release/>
3<https://blog.dblp.org/2022/03/02/dblp-in-rdf/>
4<https://lfs.aminer.cn/misc/dblp.v11.zip>

https://dblp.uni-trier.de/
https://dblp.org/statistics/index.html
https://dblp.org/xml/release/
https://blog.dblp.org/2022/03/02/dblp-in-rdf/
https://lfs.aminer.cn/misc/dblp.v11.zip
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Figure 3.1 – Excerpt of a DBLP poster acknowledging their 6 million papers mark

Source: <https://blog.dblp.org/2022/02/22/6-million-publications/>

Figure 3.2 – DBLP papers per year

Source: <https://dblp.org/statistics/publicationsperyear.html>

https://blog.dblp.org/2022/02/22/6-million-publications/
https://dblp.org/statistics/publicationsperyear.html
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fully-fledged 11GB XML file, which required us to write a new Python library to

convert from XML to JSON (our storage method) without loading the whole file

into memory by streaming-converting it (see Section H.1). Besides the file being

harder to read and handle, the new format also changed the IDs from an integer to

a UUID-based value, causing us to rewrite the whole logic that was able to detect

papers from the main AI conferences based on their past integer values.

2. There are fewer papers from the AI conferences of interest for this work. Even

though we have 30% more papers in the most recent version, after carefully finding

out which are the new IDs for the conferences, we could only find 58490 papers

out of the 89102 ( 65%) present on version v11. As a smoke test, we did reduce

our test only for the main AI conferences (AAAI, NeurIPS, and IJCAI): we could

manually count 42082 papers in these 3 conferences – and this is a lower bound

because we could not find the count of papers in some years for AAAI and IJCAI;

v11 and v13 have 41414 and 20371 of them, respectively. We also tried finding the

AI Conferences by name instead of IDs (at cost of some false positives) but it did

not work, also finding only 20929 papers. This shows how we have twice the data in

v11 compared to v13 instead of 30% more in v13 as expected.

3. Missing data in the most recent years. Even though v13 should have data until 2021,

there are only a few hundred papers for the main AI conferences in 2019, 2020, and

2021, while in reality there should be 12559 of them.

All of the data compiled to build the points above can be seen in Table 3.1, and

Figure A.4. Table A.4 has the raw data used to build Figure A.4, where “?” data points

were considered to be 0 for the sake of simplicity. An interesting statistical information

one might get from Figure 3.3 is the fact that even though IJCAI used to happen only in

odd-numbered years, even-numbered years do not have any noticeable NeurIPS and AAAI

paper acceptance rates increase.

Section 4.6.1 shows some charts where it can be seen how degraded our data looks

if we had used v13 instead of v11.

Arnet’s v11 format is a variation of a JSON file with some improvements to make

it easier to load the data in memory without having to load the whole file. Every line is a

valid JSON object, requiring us to simply stream the file, iterating over every line, parsing

the JSON file, keeping only the required information in memory, and immediately send the

JSON file to be garbage collected, using no more than 8kb of memory to read the entire
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Table 3.1 – Comparison of paper counts with different methods

AI Conferences Total

Manual Count 42082
v11 41414
v13 detecting conferences by ID 20371
v13 detecting conferences by name 20929

Source: The Author

Figure 3.3 – Manual paper count per year in AAAI, NeurIPS and IJCAI

Source: The Author

file.

Every JSON object in this file follows the structure defined in Table 3.2. We, then,

for most of the work, keep only the fields tagged with an asterisk (∗). Also, a question

mark symbol (?) indicates the field is optional and is, sometimes, not present in the data

provided by Arnet. Figure A.1 shows an example of such JSON entry, depicting (GLOROT;

BENGIO, 2010)’s representation in the dataset.

Figure 3.4 shows some raw insights about this dataset, using the conferences

defined in Section 2.3. It shows that all conferences have seen an increasing trend in the

number of papers in the last few years, specially CVPR and AAAI.

3.2 Artifacts

The code used to download the data, parse the dataset, and generate the graphs,

analyses, and charts present in this work is available at <https://github.com/rafaeelaudibert/

TCC/tree/v11> in Github. The code for this work is in branch v11. The master branch

https://github.com/rafaeelaudibert/TCC/tree/v11
https://github.com/rafaeelaudibert/TCC/tree/v11
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Table 3.2 – Data structure for a single entry in the Arnet JSON dataset
Field Name Type Description

id* string Unique identifier for the paper
title* string Paper title
authors* Author[] (See Table A.1) List of every single author
venue* Venue (See Table A.2) Object with data about the venue
year* integer Year of publication
n_citation integer Citation number
page_start? string Paper start page in the Proceedings/Book/Journal
page_end? string Paper end page in the Proceedings/Book/Journal
doc_type string Place of publication
publisher? string Book/Journal publisher
volume? string Book volume
issue? string Journal issue
references* string[] List of ids this paper references
indexed_abstract* IndexedAbstract (See Table A.3) Inverted index holding data about the paper abstract

“*” indicates the field was used in this work
“?” indicates the field is optional

Source: The Author

Figure 3.4 – Number of papers per conference per year.
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contains the code used when we were trying to parse Arnet’s v13 dataset, which did not

work out as explained in the previous section.

All the data analysis was built using Python, with the help of some open-source

third-party libraries (See Table B.1) available in PyPi.

For the most complex plots, Python was not the right tool for the job, so they were

built using R and its built-in counterparts for matplotlib, numpy and seaborn. Unfortunately,

the code for these graphs is not available anymore because it was lost during a disk

formatting procedure.
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3.2.1 Graph Datasets

Throughout this work, we assembled 5 new datasets, modeled in a graph structure,

which are briefly described below. A thorough explanation can be found in each respective

section below.

Author Citation Graph (ACi) Directed multigraph, where every author is a

node, with edges representing citations.

Author Collaboration Graph (ACo) Undirected graph, where every author is a node,

with edges representing co-authorship

Paper Citation Graph (PC) Directed graph, where every paper is a node, with

edges presenting citations.

Author-Paper Citation Graph (APC) Directed labeled graph, where nodes can be an

author or a paper, and we can have edges between papers (citation) or between

authors and papers (authorship).

Country Citation Graph (CC) Directed multigraph, where each node represents

a country of origin, and edges represent citations.

As our work is focused on the flagship AI and adjacent fields conferences, we

filtered their dataset to contain only the papers published in these conferences to build ours.

The chosen conferences were based on CSRankings (CSRANKINGS, 2019) top-ranked

AI conferences, which include the following fields: Artificial Intelligence, Computer

Vision, Machine Learning & Data Mining, Natural Language Processing, and The Web &

Information Retrieval. For each of the graphs explained above, we calculated the following

exact centralities: degree (in and out) (Section 2.4.1.1), betweenness (Section 2.4.1.2),

closeness (Section 2.4.1.3), and PageRank (Section 2.4.1.4).

For our work, we created the cumulative graph for each year from 1969 (the first

IJCAI conference) until 2019, i.e. the cumulative graph for the year 2000 contains all

the papers before and including 2000. A graph for each individual year from 1969 to

2019 was also created, to help with the analysis presented in the sections below. The

cumulative graphs containing all the data, including exact centralities, were made available

at <https://github.com/rafaeelaudibert/conferences_insights_database>. The cumulative

graphs for the entire Authors Citation dataset, not restricting it by conference, were also

https://github.com/rafaeelaudibert/conferences_insights_database
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Table 3.3 – Graph Statistics for the cummulative data
Graph Nodes Edges

CS Conferences

ACi 104179 5654596
ACo 104179 621644
PC 89102 486373
APC 193281 759386
CC 93 4776703

Full DBLP ACi 3655049 210362459
Source: The Author

made available in the same repository, without computing the centralities. We can find the

statistics for the size of each graph dataset in Table 3.3.

3.3 Types of Graphs

The graphs were built in Python using networkx (HAGBERG; SWART; CHULT,

2008) which provides an easy interface to build various types of graphs, including multi-

graphs with directed edges, which we routinely use.

All graphs below are based on the data shown in Figure 3.5.

3.3.1 Author Citation Graph

This is a directed multi-graph, where every author is a node. An edge eu,v represents

a paper from author u having a citing to a paper by author v. As author u can have more

than one paper citing a paper by author v there might be more than one edge between

the nodes, therefore we have a multi-graph. Also, authors might cite another paper from

themselves, therefore we might have self-loops.

Because of the way our data is organized, when we are iterating over the papers we

have only the id of the papers that were referenced, but not the ID of the authors in the

other papers. So, we first create a hash table with keys as the papers IDs and the value as

the authors of that paper. We use this as a lookup table to identify which authors should be

connected when we are iterating over the papers. See Algorithm 2 to see how this works

when building the graph.

The above means that we first need to iterate over all papers and create this huge

lookup table. In practice, because you can’t cite papers that haven’t yet been published, we

split the papers into buckets by the year they were published, and iterate in ascending years,
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Figure 3.5 – Sample data for graphs

Source: The Author

Algorithm 1 Bucket-splitting paper per year
Require: L ▷ List of papers such as the example in Figure 3.5

papers_per_year← empty hashtable

for year = 1969...2018 do
papers_per_year[year]← empty list

end for

for paper ∈ L do
papers_per_year[paper.year]≪ paper ▷≪ means append

end for

return papers_per_year
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Algorithm 2 Author Citation Graph
Require: papers_per_year ▷ Hash table as returned by Algorithm 1

G← new graph with empty V and E
old_papers← {}

for year = 1969...2018 do
papers← papers_per_year[year]
for paper ∈ papers do

old_papers[paper.id]← id of every author in paper.authors
end for

for paper ∈ papers do
for author ∈ paper.authors do

G.V← G.V ∪ {author.id}
end for

for citation_id ∈ paper.references do
if citation_id ∈ old_papers.keys then

for cited_author ∈ old_papers[citation_id] do
for author ∈ paper.authors do

G.E← G.E ∪ { (author.id, cited_author.id) }
end for

end for
end if

end for
end for

end for

return G
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Figure 3.6 – Example of author citation graph

Graph generated given the input data from Figure 3.5
Source: The Author

which will make us keep only the “past” papers in this hash table. Algorithm 1 shows the

year bucket-splitting algorithm and Algorithm 2 shows how we build this graph, with this

more efficient hash table where at any year y we only have papers from years i <= y in the

hash table. Although at the end of the process the table has the same size as it would have

if we had built it from the beginning, this method increases local consistency improving

cache results when we are iterating over the first years making this process more efficient.

Note that we might not have data for the cited paper because we are filtering the

data out for only a few conferences. In this case, we simply do not add this paper.

The most recent version of the code for this graph generation process can be found

in <https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/

generate_authors_citation_graph.py>.

Figure 3.6 shows an example of such graph, given the input data from Figure 3.5.

3.3.2 Author Collaboration Graph

This is an undirected graph, where every author is a node. In this graph, an edge

eu,v represents that u and v worked together in at least one paper.

This graph is easier to generate compared to the Author Citation Graph (Sec-

tion 3.3.1) because data is local and we do not need to iterate twice over the data to

generate a lookup table: we can simply iterate over all papers and then connect all co-

authors in a clique.

The most recent version of the code for this graph generation can be found

https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_authors_citation_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_authors_citation_graph.py
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Figure 3.7 – Author collaboration example graph

Graph generated given the input data from Figure 3.5
Source: The Author

in <https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/

generate_collaboration_graph.py>.

Figure 3.7 shows an example of such graph, given the input data from Figure 3.5.

3.3.3 Paper Citation Graph

This is a directed graph, where every paper is a node. A directed edge eu,v means

that paper u cited paper v. Similar to the Authors Citation Graph we need to create a

lookup table, using the same incremental procedure of loading in the lookup table data

only for years i <= y when iterating over year y.

The most recent version of the code for this graph generation can be found

in <https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/

generate_citation_graph.py>.

Figure 3.8 shows an example of such graph, given the input data from Figure 3.5.

3.3.4 Author-Paper Citation Graph

This is a directed labeled graph, where nodes can be either an author or a paper,

and we can have edges between papers or between authors and papers, therefore this graph

is more complex than the previous ones because it can represent both a paper citation

network and an author citation network (through intermediate paper nodes).

This graph is built based on the Papers Citation Graph, with the already existent

https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_collaboration_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_collaboration_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_citation_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_citation_graph.py
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Figure 3.8 – Paper citation example graph

Graph generated given the input data from Figure 3.5
Source: The Author

nodes being from the type paper VP , and the already existent edges being from the type

citation EC . After, we add a node with type author VA for each author, with a directed

edge with type authorship EA for each paper they authored.

This graph is ideal for a full picture of the data, with the possibility of inferring

every possible interaction in it. Therefore, it is an ideal representation for knowledge

representation tasks or even recommender systems. This is discussed in more detail in

Section 5.3.

The most recent version of the code for this graph generation can be found

in <https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/

generate_authors_and_papers_graph.py>.

Figure 3.9 shows an example of such graph, given the input data from Figure 3.5.

3.3.5 Country Citation Graph

This is a directed multigraph, where each node represents a country, and an edge

eu,v represents that an author from country u cited an author from country v in a paper.

Because of this two nodes might have many edges between them.

After we have figured out which country an author is from (Details in Sec-

tion 3.3.5.1) we can create this graph by doing the same procedure for the citation graph.

Save the papers already existing by that time in a lookup table; iterate over every paper;

iterate over the citations; iterate over the current paper authors and the cited paper authors;

connect the country they belong to with an edge. It is possible (and quite common) to

create self-loops.

https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_authors_and_papers_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_authors_and_papers_graph.py
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Figure 3.9 – Author Paper Citation example graph

Graph generated given the input data from Figure 3.5
Red nodes indicate they have type VP ;
Red edges indicate they have type EC;
Blue nodes indicate they have type VA;
Blue edges indicate they have type EA;

Source: The Author
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Figure 3.10 – Countries citation example graph

Graph generated given the input data from Figure 3.5
Source: The Author

The most recent version of the code for this graph generation can be found

in <https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/

generate_country_citation_graph.py>.

Figure 3.10 shows an example of such graph, given the input data from Figure 3.5,

in addition to the following mapping from organizations to countries: MIT5 → USA;

UFRGS6 → Brazil; TU KL7 → Germany.

3.3.5.1 Affiliation x Country mapping

It is important to note that the Arnet v11 data we collected does not always provide

the country of an author in its “org” field, containing only the organization they belong to –

it sometimes doesn’t even provide the organization – which poses a problem.

The “organization” field present in the data is in free-form format, which means

that it does not have a clear structure from which we can extract the country of an author.

Even worse, it might not even be a university name, as both companies and non-affiliated

individuals can have papers in flagship venues. There is some structure in it for most of

the data, though, so we have developed a pipeline where we iteratively try to detect an

organization’s country of origin.

In our pipeline, we first preprocess the organization by following Algorithm 4

removing cluttering and using only the text after the last comma – ideally where the

5<https://www.mit.edu/>
6<https://www.ufrgs.br>
7<https://www.uni-kl.de/>

https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_country_citation_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_country_citation_graph.py
https://www.mit.edu/
https://www.ufrgs.br
https://www.uni-kl.de/
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country of affiliation should be. After, Algorithm 3 is followed. We try matching the text

against a lookup table that maps organizations to countries. If there’s a miss, we split the

text into spaces and try matching only the first word to the table, and after only the last

word. If that still does not work we try matching the text without the preprocessing step.

In the end, if everything fails, we check if we matched that author previously. That

is our last resort because remember that the author might change organization (and even

country) throughout their academic career, so we can’t trust an author will still be in the

same organization as they were the last time they published something.

Algorithm 3 Organization to Country Mapping
Require: raw_org ▷ Organization name
Require: org ▷ Organization name preprocessed by Algorithm 4
Require: author_id
Require: T ▷ Lookup table matching organization to country
Require: PT ▷ Past author to organization matchings

if org ∈ T.keys then ▷ Check if preprocessed org is in the table
return T[org]

end if

split_org← split("org", " ") ▷ Split the text into every space, turning it into a list
if split_org[0] ∈ T.keys then ▷ Check if first name in org is in the table

return T[split_org[0]]
end if
if split_org[-1] ∈ T.keys then ▷ Check if last name in org is in the table

return T[split_org[-1]]
end if

if raw_org ∈ T.keys then ▷ Check if org without preprocessing is in the table
return T[raw_org]

end if

if author_id ∈ PT.keys then ▷ Check if we have already matched this author before
return PT[author_id]

end if

return ∅

The above process can be seen in the infer_country_from function in <https://github.

com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_country_citation_

graph.py>.

We do have another important step not fully explained in the steps above: how we

created the “lookup table” to map from organizations to countries. We manually created it

over the span of 2 months, through a manual iterative labor-intensive process: manually

https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_country_citation_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_country_citation_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_country_citation_graph.py
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looking at the organizations not matched using Algorithm 3 and mapping them to the

countries they belong to using both our own knowledge and web searches to filter the

options down. This mapping is available at <https://github.com/rafaeelaudibert/TCC/blob/

v11/graph_generation/country_replacement.json>. The mapping for every organization

that has ever been published in AAAI, IJCAI, and NeurIPS is complete, and the process

to map this for the other conferences is still ongoing. We hope this mapping can be used

in the future by other works to facilitate the inference of a country from an organization.

Figure 3.11 shows how many organizations we mapped per country – the USA does not fit

in the figure for scale purposes and has a value of 2163.

Additionally, there are a few authors whose “org” field is empty. For the first years

of the area (1969-1979), we did not have many papers being published, so we manually

looked at every single paper with an empty organization field and generated another lookup

table available at <https://github.com/rafaeelaudibert/TCC/blob/v11/graph_generation/

author_country_replacement.yml>. We then check this table first before attempting the

above pipeline, because it is more reliable. This table was specially built in YML instead

of JSON for better readability, and allows us to add comments in-between the entries.

It is notable, though, that this problem is worse in more recent years. Arnet’s data

does not have organizations for most papers published from 2018 onward, so the problem

is bigger in recent years. For example, in Figure 4.23 the "None" stacked part is bigger in

recent years.

https://github.com/rafaeelaudibert/TCC/blob/v11/graph_generation/country_replacement.json
https://github.com/rafaeelaudibert/TCC/blob/v11/graph_generation/country_replacement.json
https://github.com/rafaeelaudibert/TCC/blob/v11/graph_generation/author_country_replacement.yml
https://github.com/rafaeelaudibert/TCC/blob/v11/graph_generation/author_country_replacement.yml
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Figure 3.11 – Quantity of mapped different organizations per country that appeared in our data.

This does not reflect the true count of different organizations per country, because some of
them could be easily identified by their country, and did not need any special treatment.

The USA does not fit in the figure for scale purposes, and has a value of 2163.
Source: The Author
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4 DATA ANALYSIS

This chapter presents the main analyses and insights performed on our datasets

described in Chapter 3. We present initial statistics in Section 4.1, then analyse each graph

(Sections 4.2 to 4.6). We then investigate the research impact of Turing Award winners in

Section 4.7.

As already stated before, the full code for both the data generations and data analysis

was made publicly available at <https://github.com/rafaeelaudibert/TCC/tree/v11>. The

main code is in the branch v11 because of the aforementioned problems with Arnet’s V13.

4.1 Raw Data

Although the bulk of this work is intended to revolve around the graph datasets and

their centralities built to support our claims, the raw data itself is also able to provide us

with great introductory information to the following sections.

Figure 4.1 shows a boxplot with a rising trend in the number of authors per paper

over the years. In this boxplot graph the red dot represents the average number of authors

per paper, the black line represents the median, the box per se represents the 95% percentile,

while the black lines represent the 99% percentile – even showing a failure in the dataset

with some papers with 0 authors in the late 1960s. The figure shows how the trend of

several authors in a single paper, like (BROWN et al., 2020), (JUMPER et al., 2021), and

(SILVER et al., 2016), is recent and rare with not more than 1% of the papers having 7 or

more authors since 2004. It is noticeable how the average value jumps to almost 4 in the

years past 2014.

We also intersected the authors who published in the same year in different venues.

Some interesting trends arose, such as: AAAI and IJCAI have the biggest overlap in authors

than any combination of them with NIPS and ACL (Figure 4.2); CVPR has congregated

more authors than NIPS and IJCAI since the beginning of the 2000s and its biggest authors

overlap is always with NIPS (Figure 4.3); SIGIR had almost no overlap with these three

conferences during the 90s and still has very little overlap nowadays, despite an increase

in its intersection with AAAI (Figure 4.4).

https://github.com/rafaeelaudibert/TCC/tree/v11
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Figure 4.1 – Boxplot of the number of authors for each single paper per year

1969−1973

1974−1978

1979−1983

1984−1988

1989−1993

1994−1998

1999−2003

2004−2008

2009−2013

2014+

Y
e

a
r

Authors per paper

0 2 4 6

Source: The Author



69

Figure 4.2 – Percentage of overlapping authors in AAAI, NIPS, ACL, and IJCAI.

Source: The Author

Figure 4.3 – Percentage of overlapping authors in AAAI, NIPS, CVPR, and IJCAI.

Source: The Author
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Figure 4.4 – Percentage of overlapping authors in AAAI, NIPS, SIGIR, and IJCAI.

Source: The Author

4.2 Author Citation Graph

4.2.1 Ranking over time

We have calculated an authors’ ranking regarding the aforementioned centralities

from 1969 until 2019 using the accumulated citation data – AC graph.

Figures 4.7, 4.8, and 4.9 show the evolution of PageRank, Betweenness and In-

Degree centralities, respectively, in our Author Citation Graph. In these figures, a line

represents a single author and its ranking evolution over time in some predefined years

(chosen to be 1969, 1977, 1985, 1993, 2001, 2009, and 2014). The only authors shown

are those who, at any point in one of these years, reached the top 10 in that specific rank.

Authors who hadn’t published yet in one of these years and, therefore, did not have any

rank yet, show as N/A.

Although chaotics, these graphs do have some interesting insights. Figure 4.7

is an interesting starting point because it is considerably stable, at least at the top of

it. Harry Pople was the top 1 author in this ranking at least from 1977 until 2001, the

longest period one will hold this position in any of our analyses. His main work is focused
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on Artificial Intelligence to Medicine (DHAR; POPLE, 1987) therefore very central in-

between different areas. Also in the PageRank graph, one might see that the rises tend to

be meteoric with Andrew Ng going from position 974 in his debut year of 2001 to 16th 8

years later, and then 2nd after 5 more years. The same can be said for most of the dynamics

present in this graph.

The aforementioned insights also hold for Figure 4.8 where Betweenness is ana-

lyzed. This graph is a lot less stable than PageRank’s, as betweenness is easier to evolve

when new areas in Machine Learning happen, therefore changing the flow of information

in the graph, while PageRank will be more stable because important people at one time

will continue to be as important as they were forever, only going down in rank if someone

even more influential appears. One can see this dynamic, for example, by looking at the

last position in both charts: Larry Tesler – the one but last in the PageRank chart because

the last position is an outlier – is 4267th in the PageRank, while the last position in the

Betweenness chart is 31159th, showing how low one might drop in the Betweenness

ranking even though they once were in the top 10 most influential scientists.

The Indegree chart shows a basic and raw datapoint: which author is the most cited,

which should reward older authors with seminal papers. The first place in this ranking

belongs to Andrew Zisserman, author of papers such as (SIMONYAN; ZISSERMAN,

2014) and (HARTLEY; ZISSERMAN, 2003), having close to 300,000 citations over his

whole life – more than 100,000 of those only for the 2 cited papers. The second position is

Andrew Ng with just over a third of the number of citations that Zisserman has.

Considering all these charts together, it is interesting to see how Andrew Ng is

the most influential overall author in the AI area when we analyze it from a citation

perspective. He is the author of papers such as (BLEI; NG; JORDAN, 2003), and (NG;

JORDAN; WEISS, 2001), having an h-index of 134, i.e. 134 papers with at least 134

citation (See H-Index on Section 2.4.1.5 to understand how this metric is computed), the

1403th biggest h-index in Google Scholar1. He appears with the biggest betweenness value,

and second-biggest indegree and PageRank ranking.

Takeo Kanade, the first position in the page rank ranking, is only 14th and 16th

when looking at betweenness and indegree, respectively – although it is worthy of note

that in 2001 he was first in in-degree and betweenness while third in PageRank. This is the

best result, on average, that can be found in our results. Similarly, Andrew Zisserman, the

first position in the in-degree ranking, is sixth when looking at betweenness, and 8th on

1<https://www.webometrics.info/en/hlargerthan100>

https://www.webometrics.info/en/hlargerthan100
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the PageRank ranking.

The ranking for the other computed centralities can be seen in Appendix C.

4.2.2 Self-citations

Authors might build up in their previous work, which would introduce self-edges

in our graph representing self-citations. Figure 4.5 shows a boxplot of the evolution of self-

citations count per year. Despite the average beginning stable at around two, increasingly

more authors have been increasing their number of self-citations over the years.

This figure, however, does not represent the full truth because there are more papers

recently. Figure 4.6 shows a better view of the same data, clearly showing the average

number increasing. The data has its faults because if an author can publish more than one

paper per year then it will help to bring the average up by not being divided twice, but this

can be said for every single year, so the increasing rate of self-citations would still exist.

Figure 4.5 – Boxplot of self-citation count per year
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Figure 4.6 – Normalized self-citation count per year
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4.3 Author Collaboration Graph

4.3.1 Ranking over time

We have calculated an authors’ ranking regarding the six aforementioned centrali-

ties from 1969 until 2019 using the accumulated collaboration data – ACo graph.

Figures 4.10 and 4.11 demonstrate how the PageRank and Betweenness rankings,

respectively, evolved over time. In these figures, we chose to plot the top 10 authors each

year, in an 8-year interval. Considering this gap, it is interesting to observe that only

in 2009 it is possible to see all authors who appeared in the top 10 ranking during all

the selected years. Also, most of the authors entered the ranking during the 80s and the

90s, regardless of the centrality. The remaining rankings (centralities) can be seen in the

Appendix D.
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Figure 4.7 – Author citation ranking over time according to PageRank centrality.
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Figure 4.8 – Author citation ranking over time according to Betweenness centrality
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Figure 4.9 – Author citation ranking over time according to In-degree centrality
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Figure 4.10 – Authors collaboration ranking over time according to PageRank centrality.
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Figure 4.11 – Authors collaboration ranking over time according to betweenness centrality
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4.3.2 Entering the realm of AI

Every year several researchers publish their first papers in AI-related venues such

as the ones we are analyzing throughout this work. Figure 4.12 shows the yearly share of

new authors per conference. The stacked area contains spikes due to the fact that several

conferences did not occur yearly. NIPS conference (currently NeurIPS) was the main

responsible for attracting new authors until the mid-90s together with IJCAI. Since then

the share became more and more split into conferences of different areas: highlights to

CVPR and ICCV in the last years, and to AAAI and WWW at the beginning of the 2000s.

Figure 4.12 – Share of yearly new authors per conference.
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Table 4.1 lists all the authors who collaborated with more than 200 new authors

since 1969. Several of them appeared in the authors’ collaboration ranking (especially

regarding Betweenness, Closeness, and PageRank centralities). The regular behavior,

however, is better described by the average and standard deviation statistics: the average

number of new authors that an author collaborated with is around 4 with an std. dev. of 12.

It is also a fact that these numbers are highly affected by the career age of a researcher. We

estimated this age with the author’s first year of publication inside our graph and we used

this age to normalize the amount of collaboration with new authors, achieving a normalized

average number of new authors per author of 0.3 (avg. career time: 11) with std. dev of

0.94 (std. dev. career time: 9.2), which essentially means that a researcher usually brings a

new author to these AI venues after 3 years of his entry into the field.
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Table 4.1 – The 23 authors who collaborated with more than 200 new authors since the year 1969

Author Count

Lei Zhang 488
Luc Van Gool 352
Ming-Hsuan Yang 350
Thomas S. Huang 322
Andrew Y. Ng 298
Jiawei Han 294
Dacheng Tao 282
Yang Liu 280
Philip H. S. Torr 280
Yoshua Bengio 248
Wei Wang 238
Milind Tambe 236
Yang Li 232
Aleš Leonardis 224
Liang Lin 222
Qingming Huang 222
Shuicheng Yan 222
Christos Faloutsos 222
Jiri Matas 214
Michael Felsberg 212
Horst Bischof 212
Philip S. Yu 208
Richard Bowden 206

Source: The Author
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4.4 Paper Citation Graph

4.4.1 Ranking over time

In every centrality measure done for this graph, whenever we plot it we mapped

the name of the papers to those in Table E.1. This format is not ideal for readability, but it

was the best method found to show this data in its full form.

When it comes to citation networks, the betweenness centrality can be seen as a

measure of how a node (paper) is able to connect different research areas, or how it acts to

foster interdisciplinarity (LEYDESDORFF, 2007). In this sense, Figure 4.13 shows how

the ranking of most important papers (according to betweenness centrality) evolved. It is

possible to see that the ranking itself is very volatile as no paper can remain in the top 5 for

more than 2 times (inside our gap of 8 years), nevertheless the paper "Constrained K-means

Clustering with Background Knowledge" (WAGSTAFF et al., 2001) (CKCWBK01 in the

figure) has been in the top 10 at least since 2009. Also, all papers in the top 5 of 2017

and 2019 were published after the year 2000, which could indicate that, despite not being

seminal papers, these recent researches are being more helpful in different areas.

4.14 shows the same graph data, but ranked by their in-degree centrality, which

simply measures how many citations a paper has received until a given year (inside our

graph). The latest top 5 is composed of 3 papers related to computer vision and 2 to natural

language processing. A similar pattern can be found until 1993, but back in 1985 and

before most of the ranking is composed of papers that tackled reasoning, problem-solving

and symbolic learning, such as "Reasoning about knowledge and action" (MOORE, 1977)

(RAKAA77 in the figure), "A multi-level organization for problem-solving using many,

diverse, cooperating sources of knowledge" (ERMAN; LESSER, 1975) (AMOFPSUMD-

CSOK75 in the figure) and "The art of artificial intelligence: themes and case studies of

knowledge engineering" (FEIGENBAUM, 1977) (TAOAITACSOKE77 in the figure).

A very stable behavior can be seen in the PageRank ranking (Figure 4.15): most

papers remained in the top 5 for 2 gaps (usually 8 years) and many of them for 3 gaps

(16 years in the middle, 10 in the end). The paper "Towards automatic visual obstacle

avoidance" (MORAVEC, 1977) (TAVOA77 in the figure) is in the top 5 at least since 1993

and it is leading the ranking since 2001. The second one, "Feature extraction from faces

using deformable templates" (YUILLE; COHEN; HALLINAN, 1989) (FEFFUDT89 in

the figure), is also a somewhat old paper related to computer vision.
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Figure 4.13 – Paper citation ranking over time according to Betweenness centrality.
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Figure 4.14 – Paper citation ranking over time according to In-degree centrality.

TWARIE69

AMAAAOAIT69

ACPFNL69

TMOSAAIPIASMS69

AOTPTPS69

AMOFPSUMDCSOK75

PEOKIP71

AUMAFFAI73

RAKAA77

ARVOTHA77

HEFANLP77

TAOAITACSOKE77

SF83

GPN77

IAFLPARBOADP90

ALOIAEB84

WCBSITDWAUSR92

AIIRTWAATSV81

HMME92

POOFT92

CRFPMFSALSD01

TAOALHWSE98

RODUABCOSF01

BAMFAEOMT02

HOOGFHD05

ICWDCNN12

DROWAPATC13

DRLFIR16

TWARIE69

AMAAAOAIT69

ACPFNL69

TMOSAAIPIASMS69

AOTPTPS69

AMOFPSUMDCSOK75

PEOKIP71

AUMAFFAI73

RAKAA77

ARVOTHA77

HEFANLP77

TAOAITACSOKE77

SF83

GPN77

IAFLPARBOADP90

ALOIAEB84

WCBSITDWAUSR92

AIIRTWAATSV81

HMME92

POOFT92

CRFPMFSALSD01

TAOALHWSE98

RODUABCOSF01

BAMFAEOMT02

HOOGFHD05

ICWDCNN12

DROWAPATC13

DRLFIR161

13

109

606

2118

6767

19039 20680

2 2

10

66

288

1641

5160 5718

3

38

278

1271

3857

10670

27106 29306

4

70

488

1984

5541

14323

34157 36804

5

1

11 14

74

547

2592 2953

NA

3

2

8

100

830

3640 4101

NA

4

40

251

1051

3566

11463 12548

NA

5

24

147

736

2764

9410 10330

NA 139

1 1

18

177

1064 1206

NA

36

3

15

159

1091

4565 5081

NA 144

4

48

289

1642

6308 6943

NA 532

5

20

160

1016

4301 4812

NA NA 802

2

4

48

274 333NA 409

18

3

9

149

881 1015

NA NA NA

4

8

107

529 543NA NA

38

5

43

329

1418 1574

NA NA NA

146

1

37

279 339

NA NA 704

157

2

4

18

21

NA NA NA 3247

3

33

211 262

NA NA NA

1951

5

23

138 158

NA NA NA NA 8579

1

3

6

NA NA NA NA

15

2

17

22

NA NA NA NA 8557

3

11 16

NA NA NA NA NA

5

4

5

NA NA NA NA NA

9

1

2

NA NA NA NA NA NA

2

3

NA NA NA NA NA NA

5

4

NA NA NA NA NA NA

7

1

1969 1977 1985 1993 2001 2009 2017 2019

Top 5 over time

Indegree citation ranking

N/A stands for papers who had not been published in the selected venues until that year.
Please refer Table E.1 in the Appendix E to see the details of each ranked paper.

Source: The Author



84

Figure 4.15 – Paper citation ranking over time according to PageRank centrality.
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Similarly, one can see the stableness and invariability to change that PageRank

offers by noticing that we only had 20 different papers in the top 10 in the selected years,

while we have 28 for Betweenness and Indegree, a more befitting number when compared

to the figures shown in the previous sections.

The remaining rankings (Closeness, Degree, and Out-degree) can be seen in the

Appendix E.

4.4.2 Share of top 100 ranking per venue

Figures 4.16 to 4.18 reinforce the trend seen in the top 5 ranking in the last section:

despite the centrality, computer vision-related venues are progressively gaining importance

regarding their published papers, especially the CVPR. However, there is a distinguished

contribution by the ACL conference to the most important papers (according to PageRank)

since 1984. These three heatmaps also show that the AAAI papers had their peak of

importance during the late 1980s and the 1990s, but now they are losing their share of the

ranking in the same fashion that IJCAI.

Figure 4.16 – Venue contribution per year (accumulated) in the top 100 most important papers,
according to Betweenness.
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Figure 4.17 – Venue contribution per year (accumulated) in the top 100 most important papers,
according to In-Degree.
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Figure 4.18 – Venue contribution per year (accumulated) in the top 100 most important papers,
according to PageRank.
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4.4.3 Share of citations per venue

We were also interested in how the citations of each venue have been evolving in

the last few years. In this analysis, we were also able to distinguish citations to papers from

arXiv, Journals, and the International Conference on Learning Representations (ICLR).

For instance, back in the 1980s and early 1990s, around 50% of citations coming from

NIPS papers were directed to papers from journals (see Figure 4.19), however, this share

nowadays has been reduced to less than 25%. More than that, citations to ICLR papers

and especially to arXiv papers have been increasing since the early 2010s.

A similar pattern occurs when we consider papers from AAAI and IJCAI, Fig-
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ures 4.20 and 4.21 respectively. However, in their case, there is a much more divided

share between all the conferences: it is possible to distinguish some influence from KDD,

WWW, ACL, and EMNLP together with the increasing, yet unobtrusive, the influence of

arXiv and ICLR.

Figure 4.19 – Where the citations coming from NeurIPS papers are pointing to: share of each
venue.
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Figure 4.20 – Where the citations coming from AAAI papers are pointing to: share of each venue.
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Figure 4.21 – Where the citations coming from IJCAI papers are pointing to: share of each venue.
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4.5 Author-Paper Citation Graph

This graph was built to foster the research on recommender systems for papers –

“given an author and his publication history, which are the most relevant papers he has not

yet cited?"". In this sense, we have not developed any analysis on this graph and we expect

to use it as a benchmark for future research on recommender systems: see Section 5.3.

4.6 Country Citation Graph

This graph, computed for every country, is interesting because it has a different

cardinality compared to the other graphs: while the others have tens of thousands of nodes,

this graph only has 93 nodes with 4776703 edges. Figure 4.22 shows the increase in the

number of papers published at these conferences per year. The best-fitting line interpolates

the data every 5 years. While the mid-1970s saw just a few countries participating in

conferences (1974 and 1976 only had 2 countries: USA and United Kingdom, and USA and

Canada, respectively) we have seen a huge increase in countries participating in conferences

in the last years, with 66 different countries having published in the conferences of interest

in 2017. As mentioned above, in total authors from 93 different countries already published

at these conferences.

Figure 4.23 shows a stacked percentual chart of the 15 countries with the most

published papers. This data clearly shows the dominance of the United States in Artificial
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Figure 4.22 – Quantity of countries that published papers per year.

The interpolating line is the best-fitting linear interpolation with 5 points
Source: The Author
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Intelligence research, with a slow increase in the number of papers published by authors in

China. Similarly, Figure 4.24 shows the same data but the pink bar at the bottom represents

papers that we could not detect their country of affiliation.

Through this data representation, one can clearly see the years when IJCAI hap-

pened. Given the fact that IJCAI is commonly held outside the United States, and only

in odd-numbered years, we can see a jagged-line pattern in the United States share of

papers, with a higher percentage in even-numbered years, and a lower percentage in odd-

numbered years (when people from different countries have a higher chance of attending

the conference, usually because of less strict visa requirements). For the same reason, after

IJCAI started to be held annually (2013) the pattern disappears. Figure F.1 tries fixing this

problem by creating a 2-year-wide sliding window and averaging the data before plotting

it, creating a clearer view of the data.

An interesting outlier can be seen in 1979 when Japan has the highest share of

published papers except for the USA. That happened exactly because IJCAI was held in

Tokyo that year.

Figure 4.25 shows the same data but with numbers in absolute terms instead of

showing it with a stacked percentual. With it, we can see how the rate of acceptance for

countries that are not the USA has grown faster than it has for the USA (the curve is

steeper at the top). With it, we can also see the striking increase in papers accepted to these

conferences in the last years, as already shown in numbers before.

4.6.1 Analysis with more recent years

If we try using Arnet’s v13 dataset to generate the above graphs, we can see in

Figure 4.26 how much the data deteriorates. For 2019, we can only identify close to 5% of

the paper country of affiliation, because for most of them the “organization” field is empty.

Note as well that even for the previous year the data is not as clear as it is in Figure 4.24,

for instance.

We didn’t try applying any mapping similar to the one explained in Section 3.3.5.1

to this data because most of the non-identifiable organization fields are empty, as stated

above.
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Figure 4.23 – Stacked percentage of papers published per country per year including non-mapped
ones.

The pink bar at the bottom indicates papers we could not identify which country they are
from.

Source: The Author
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Figure 4.24 – Stacked percentage of papers publishd per country per year, not considering the ones
we can’t infer.

Source: The Author
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Figure 4.25 – Quantity of papers per country per year

Source: The Author
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Figure 4.26 – Deteriorated countries stacked chart with Arnet’s V13

Source: The Author
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4.7 Turing Award

As previously stated, the Turing Award has given seven prizes to researchers due

to their efforts in AI and related areas, namely: Marvin Minsky (1969), John McCarthy

(1971), Allen Newell and Herbert Simon (1975), Edward Feigenbaum and Raj Reddy

(1994), Leslie Valiant (2010), Judea Pearl (2011) and Yoshua Bengio, Geoffrey Hinton

and Yann LeCun (2018).

The Turing Award winners timeline (see Figure 4.27) depicts a change of focus of

these highly prolific researchers over time: most recent awardees have their work divided

into several venues (especially machine learning and computer vision related ones, such as

NIPS and ICML and CVPR), while the older ones concentrated their efforts in AAAI or

IJCAI. It needs to be taken into account, as well, that we are only considering conferences

in this work, while most of the works published in the early days of Artificial Intelligence

were published in journals.

Figure 4.27 – AI-related Turing Awardees timeline.

Marvin Minsky

John McCarthy

Herbert A. Simon

Allen Newell

Edward A. Feigenbaum

Geoffrey E. Hinton

Yann LeCun

Leslie G. Valiant

Yoshua Bengio

Judea Pearl

IR-WW-KD NLP NIPS-ICML AAAI-IJCAI CV

1970 1990 2010        1980         2000         2020

Turing Awardees Timeline

Each year is divided proportionally according to the amount of papers published in each
group of venues.

Yellow ellipses are placed on the year each award was granted.
Source: The Author

We also verified the Spearman correlation between the titles of papers published

by Turing Award winners and the titles of papers published in the selected AI conferences

(AAAI, IJCAI, and NIPS) over time. To do so we compare the ranking of the TF-IDFs for
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the words in the Turing Award winner’s paper titles in that year, related to the ranking of

the TF-IDFs conference’s (or group of conferences) papers titles in the same year.

As the AI community, in general, has leaned towards a more connectionist approach

in the last years, we expected to see a decreasing trend regarding old Turing Award winners

who focused on symbolic AI and expert systems – or at least a very little correlation.

Nevertheless, the work of Marvin Minsky (Turing Award of 1969) is still quite in

line with what is published in NIPS, for instance, despite being poorly correlated with the

three conferences when they are considered altogether (see Figure 4.28). These correlations

may be however not very realistic since there are only two papers by Marvin Minksy in

the entire dataset. The most positive and significant slope, however, comes from the work

of the latest Turing Award winners (Bengio, Hinton, and LeCun, 2018): their papers’ titles

have a positive and moderate correlation with all three conferences (and naturally with the

average) and also show an increasing trend along the years, as depicted on Figure 4.29.

The remaining plots can be found in Appendix G

4.7.1 Turing Award Influence takeaway

Figure 4.29 clearly shows how the most recent Turing Awardees (Yoshua Bengio,

Geoffrey Hinton, and Yann LeCun) influenced the area, with increasing rates of correlation

over the years in all three main conferences from the Artificial Intelligence field. We

predict that, in the next few years, if we were to plot the same data again, their correlation

would have increased even further, showing that they were able to influence research in

general. We base our hypothesis on the fact that the 1969 Turing Award Winner, Marvin

Minsky, still has a positive correlation rate in some conferences such as NeurIPS, even

though the same cannot be said for the AI field in general. Also, as noted in Chapter 2,

Minsky possibly held AI away from the connectionist view with his book (MINSKY;

PAPERT, 1969).

Similarly, this data can also be seen from the opposite side, if we consider the 2018

winners: they were closely following the trend of papers published in these conferences,

therefore winning the Turing Award by researching the areas of interest. Even if possible,

it is undeniable that their works are of huge importance, and influenced the area in ways

not influenced by the others.

Also, it is worth of note that the winners of the Turing Award do not appear in

the ranking of authors according to centralities in Section 3.3.1 and 4.3. This is probably
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Figure 4.28 – 1969 Turing Award Correlation with AI conferences and NIPS specifically

Correlation between titles of papers published by the Turing Award
winner of 1969 and titles of all papers published yearly in AAAI, IJCAI

and NIPS.

Correlation between titles of papers published by the Turing Award
winner of 1969 and titles of all papers published only at NIPS.

Source: The Author
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Figure 4.29 – Correlation between titles of papers published by 2018 Turing Award winners and
titles of papers published in the three AI flagship conferences.

Source: The Author
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because the Turing Awardees do not have enough papers published to be able to reach the

top of the rankings, mainly due to their “celebrity” status, and also because they are mostly

based around some seminal works.
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5 CONCLUSION

5.1 Overview

Artificial Intelligence has gone further than anyone could have thought since

(TURING, 1936), (MCCULLOCH; PITTS, 1943), and (TURING, 1950), being used all

over academia and the industry in our era, powering multi-billion dollar companies. Some

of the processes behind this evolution are not well understood, but this work makes it clear,

with thorough research of how AI came to be, having a short but comprehensive survey

on AI’s history, defining the 5 time periods AI has already gone through. We also show a

quick survey in graph centralities, and the Turing Award, necessary to better understand

the overall picture of the area.

By analyzing Arnet’s v11 dataset, a dataset based on the DBLP corpus, and en-

hancing it to a graph-based format, we intended to ease paper/author citation/collaboration

network research. This dataset generated quite insightful graphs and could generate even

more in future works. Also, the code presented in this work makes it such that it is

pretty easy to extend it to any other underlying dataset, making it possible to generate and

compute the same statistics presented in this work for any other area than AI.

With these graphs, we show insights on self-citations, new authors, and author and

paper importance throughout the years. We also proposed a new type of dataset intended

to be used as a knowledge graph source for recommender systems, where authors, papers,

citations, and collaborations are all defined in the same graph. With the Country Citation

Graph, we also introduced an important dataset and pipeline capable of inferring the

country of affiliation of an author based on its organization.

Also, by investigating the Turing Award winners and comparing them against the

data published we find out there is evidence that they actually “pull” their most common-

published venues to their topic of research, at least for the most recent AI researchers

winners.

Lastly, the study on countries’ affiliation is, to the best of our knowledge, the first

of its type, creating a new algorithm able to infer the country of affiliation of an author

from its organization, as available at DBLP or Arnet.
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5.2 Contributions

This work has some impactful and important contributions, including but not

restricted to:

• Five new graph-based datasets, with fully computed centralities to ease paper/author

citation/collaboration network research.

• Analyses for these graphs, focusing both on its raw structure and the centrality

rankings

• Theoretical algorithms description, allowing anyone to replicate the graph building

process in any programming language for any dataset

• Spearman Correlation computation between Turing Awardees papers and conference

papers, showing they have a positive correlation

Besides the theoretical background generated in this project, there are also a few

important software contributions. They can be read more about in Section H, but are here

shortly outlined:

• Python library to convert an XML to JSON in a stream-fashion, i.e. without loading

the whole XML and JSON files in memory

• Parallel Python implementation for the Betweenness and Closeness Centralities

• Novel Python implementation for a Graph Parsing pipeline, avoiding duplicate work

through data caching

• Python implementation of the proposed algorithm to infer a paper country of affilia-

tion

5.3 Future Work

The dataset created in this work provides uncountable possibilities for future work,

especially when we think about the computed centralities. This work presented several

analyses of the dataset, and one might think of even more possible ways to visualize it.

Additionally, it would be ideal if Coreness centrality (Section 2.4.1.5) was also

computed for this dataset, as it displays the interesting feature of being a discrete value
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instead of a continuous one, thus allowing you to more easily identify the most important

authors/papers according to it.

The Country Citation Graph has a lot of potential in understanding “brain-draining”

by investigating the flow of authors from one country of affiliation to others – easily done

with our dataset, without any extra work besides counting the number of “transitions”

between countries.

Similarly, we believe that comparing more advanced usages of this dataset with

the Turing Awardees might bring even more interesting results. With a better dataset, one

where there are abstract data available for every paper, one might be able to achieve better

results when running a Spearman Correlation (Section4.7) between the text in Turing

Award winners’ abstracts and the ones from the remaining venues papers.
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APPENDIX A — ARNET DATASET

This chapter presents some extra data in the Arnet Dataset, which did not fit in the

main work.

Tables A.1 , A.2, and A.3 display the inner objects we referenced in Table 3.2.

Table A.4 shows a manual count of papers published at AAAI, NeurIPS and IJCAI.

This was built to support Figure 3.3 and bring the point that the v13 dataset did not had

not even half the data present at these conferences. In this table a question mark (“?”)

indicates that we could not infer the number of papers for that conference in that year.

To aggregate the data present in this table, we used AAAI’s website statistics, the

NeurIPS API and the IJCAI Proceedings page. The harder to get this data was IJCAI as

they do not have anything the count of papers anywhere, only containing links to every

paper published in every year, therefore we built a Javascript snippet that counted the

number of links in those pages. Ultimately, we could not use this script in the years 1979

and 2001 because their data is badly formatted.

Figure A.1 shows an example of data present in Arnet dataset, and used throughout

our work when we needed an example.
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Table A.1 – Data structure for an Author entry in the Arnet JSON dataset

Field Name Type Description

id* string Unique ID for the author - unique across papers
name* string Full author name
org?* string Name of the organization this author was in when of this paper

“*” indicates the field was used in this work
“?” indicates the field is optional

Source: The Author

Table A.2 – Data structure for a Venue entry in the Arnet JSON dataset

Field Name Type Description

id* string Unique ID for the venue - unique across papers
raw* string The raw name of the venue
name? string Humand readable name of the venue

“*” indicates the field was used in this work
“?” indicates the field is optional

Source: The Author

Table A.3 – Data structure for a IndexedAbstract entry in the Arnet JSON dataset

Field Name Type Description

IndexLength integer How many words we have in the abstract
InvertedIndex* object<string, integer[]> Inverted index structure with the position of every

word in the paper abstract
“*” indicates the field was used in this work

Source: The Author
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Table A.4 – Manual count of papers per main AI conference per year

AAAI NeurIPS IJCAI

1969 0 0 63

1970 0 0 0

1971 0 0 58

1972 0 0 0

1973 0 0 77

1974 0 0 0

1975 0 0 141

1976 0 0 0

1977 0 0 200

1978 0 0 0

1979 0 0 ?

1980 ? 0 0

1981 0 0 106

1982 ? 0 0

1983 ? 0 233

1984 ? 0 0

1985 0 0 257

1986 ? 0 0

1987 ? 90 301

1988 ? 94 0

1989 0 101 270

1990 0 143 0

1991 ? 144 190

1992 ? 127 0

1993 ? 158 137

1994 341 140 0

1995 0 152 275

1996 336 152 0

1997 268 150 183

1998 269 151 0

1999 235 150 203
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Table A.4 continued from previous page

AAAI NeurIPS IJCAI

2000 265 152 0

2001 0 197 ?

2002 256 207 0

2003 0 198 297

2004 250 207 0

2005 530 207 340

2006 718 204 0

2007 702 207 480

2008 648 250 0

2009 0 262 331

2010 780 292 0

2011 743 306 494

2012 707 370 0

2013 720 360 484

2014 912 411 0

2015 1101 403 656

2016 1163 569 658

2017 1049 679 782

2018 1201 1009 871

2019 1150 1428 965

2020 1591 1898 779

2021 1692 2334 722

Total 17627 13902 10553

Data for AAAI was extracted from their API; for NeurIPS it was extracted from their
official statistics website; and for IJCAI it was manually (using JavaScript) counted on

their website.
Cells with a “?” text indicate the years we were not able to find an accurate count of

papers for that conference, reinforcing the fact that this is a lower-bound estimate.
Source: The Author
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Figure A.1 – Example of a JSON entry for (GLOROT; BENGIO, 2010) in the Arnet dataset

[...] indicates some itens in the array were abbreviated for sake of brevity
Source: The author and (TANG et al., 2008)
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APPENDIX B — CODEBASE

In this chapter, we present Algorithm 4 used in Section 3.3.5.1 along Algorithm 3

to be able to infer a country of origin from an organization. This basically removes the

clutter present in Arnet’s data.

Table B.1 shows every open-source library used to develop this work. We are very

thankful for every library contributor’s work to the open source community.

Table B.1 – Python libraries used in this work

Library Name Usage

click Create CLI to run experiments with different parameters
fire Create CLI to run experiments with different parameters
matplotlib Plot the charts
networkx Build the graph datasets
nltk Tokenize words and detect stop words
numpy Manipulate data arrays in a vector-fashion
scipy Compute Spearman Correlations
seaborn Improve matplotlib’s plots look
sklearn Generate linear models and compute TF-IDF
tqdm Generate progress bars for long data processing pipelines

Source: The Author

Algorithm 4 Organization Name Cleaning Preprocessing
Require: org ▷ Organization name

org← split(org, ",") ▷ Split the text in every comma, turning it into a list
org← org[-1] ▷ Last item in the array
org← replace(org, "#TAB#", "") ▷ Remove unknown tag
org← replace(org, "#tab#", "") ▷ Remove unknown tag
org← replace(org, /[\(\)\[\]\-_]/, "") ▷ Regex-based replacement

return org
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APPENDIX C — AUTHOR CITATION

The charts presented in this chapter are related to centralities from Section 3.3.1.

Figure C.1 – Authors citation ranking over time according to Closeness centrality.
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Figure C.2 – Authors citation ranking over time according to Out-degree centrality
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APPENDIX D — AUTHOR COLLABORATION

The charts presented in this chapter are related to centralities from Section 4.3.

Figure D.1 – Authors collaboration ranking over time according to Closeness centrality.
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Figure D.2 – Authors collaboration ranking over time according to In-Degree centrality.
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APPENDIX E — PAPER CITATION

The charts presented in this chapter are related to centralities from Section 4.4.

Similarly, Table E.1 is used to map every paper entry in these charts to a paper title

and year.

Table E.1 – Dictionary for the papers which appeared in the Top 5 rankings

Initials Title Year Venue

AAAOSL92 An asymptotic analysis of speedup learning 1992 ICML

AALR85 AI and legal reasoning 1985 IJCAI

AAOLTPAASP92 An analysis of learning to plan as a search problem 1992 ICML

AASTNAP69 An augmented state transition network analysis pro-

cedure

1969 IJCAI

ACDAAS90 Accurate corner detection: an analytical study 1990 ICCV

ACPFNL69 A conceptual parser for natural language 1969 IJCAI

ACRSFFL69 A contextual recognition system for formal lan-

guages

1969 IJCAI

ACSOICI86 A case study of incremental concept induction 1986 AAAI

AEARCFLG90 AUTOMATICALLY EXTRACTING AND REPRE-

SENTING COLLOCATIONS FOR LANGUAGE

GENERATION

1990 ACL

AIIFIR83 Artificial intelligence implications for information

retrieval

1983 SIGIR

AIIRTWAATSV81 An iterative image registration technique with an

application to stereo vision

1981 IJCAI

ALOIAEB84 A logic of implicit and explicit belief 1984 AAAI

AMAAAOAIT69 A mobius automation: an application of artificial

intelligence techniques

1969 IJCAI

AMEMFPT96 A Maximum Entropy Model for Part-Of-Speech Tag-

ging

1996 EMNLP

AMOFPSUMDCSOK75 A multi-level organization for problem solving using

many, diverse, cooperating sources of knowledge

1975 IJCAI

Continued on next page
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Table E.1 – Continued from previous page

Initials Title Year Venue

ANSFSISDAR71 A net structure for semantic information storage,

deducation and retrieval

1971 IJCAI

AOMOAHC75 Acquisition of moving objects and hand-eye coordi-

nation

1975 IJCAI

AOTPTPS69 Application of theorem proving to problem solving 1969 IJCAI

APFFSC01 A probabilistic framework for space carving 2001 ICCV

APFQCTSCOEG91 A Procedure for Quantitatively Comparing the Syn-

tactic Coverage of English Grammars

1991 NAACL

ARVOTHA77 A retrospective view of the Hearsay-II architecture 1977 IJCAI

ASNAAMOHM73 Active semantic networks as a model of human mem-

ory

1973 IJCAI

AUMAFFAI73 A universal modular ACTOR formalism for artificial

intelligence

1973 IJCAI

BAMFAEOMT02 Bleu: a Method for Automatic Evaluation of Ma-

chine Translation

2002 ACL

BBOWEMDAFIIR08 Beyond bags of words: effectively modeling depen-

dence and features in information retrieval

2008 SIGIR

BTMANEFTEOVM97 Boosting the margin: A new explanation for the

effectiveness of voting methods

1997 ICML

CCALMFIA11 Combining concepts and language models for infor-

mation access

2011 SIGIR

CKCWBK01 Constrained K-means Clustering with Background

Knowledge

2001 ICML

CLMFTC96 Context-sensitive learning methods for text catego-

rization

1996 SIGIR

CPS84 Classification problem solving 1984 AAAI

CRFPMFSALSD01 Conditional Random Fields: Probabilistic Models

for Segmenting and Labeling Sequence Data

2001 ICML

CSS73 Case structure systems 1973 IJCAI

CSTAE92 Camera Self-Calibration: Theory and Experiments 1992 ECCV

Continued on next page
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Table E.1 – Continued from previous page

Initials Title Year Venue

DCOEW93 DISTRIBUTIONAL CLUSTERING OF ENGLISH

WORDS

1993 ACL

DRLFIR16 Deep Residual Learning for Image Recognition 2016 CVPR

DROWAPATC13 Distributed Representations of Words and Phrases

and their Compositionality

2013 NIPS

EAAC89 Execution architectures and compilation 1989 IJCAI

EAFMCVE94 Efficient algorithms for minimizing cross validation

error

1994 ICML

ETUOSNTP75 Expanding the utility of semantic networks through

partitioning

1975 IJCAI

EWANBA96 Experiments with a new boosting algorithm 1996 ICML

EWASAFTDBOAHBS69 Experiments with a search algorithm for the data

base of a human belief structure

1969 IJCAI

EWSRD13 Explicit web search result diversification 2013 SIGIR

FAATIOAIOS73 Forecasting and assessing the impact of artificial

intelligence on society

1973 IJCAI

FCNFSS15 Fully convolutional networks for semantic segmen-

tation

2015 CVPR

FEFFUDT89 Feature extraction from faces using deformable tem-

plates

1989 CVPR

FOAITHSUS77 Focus of attention in the Hearsay-II speech under-

standing system

1977 IJCAI

FRUE91 Face recognition using eigenfaces 1991 CVPR

GPN77 Generating project networks 1977 IJCAI

HEFANLP77 Human Engineering for Applied Natural Language

Processing.

1977 IJCAI

HMME92 Hierarchical Model-Based Motion Estimation 1992 ECCV

HOOGFHD05 Histograms of oriented gradients for human detec-

tion

2005 CVPR

HTUWYK75 How to use what you know 1975 IJCAI

IAA88 Interpretation as Abduction 1988 ACL

Continued on next page
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Table E.1 – Continued from previous page

Initials Title Year Venue

IAFLPARBOADP90 Integrated architecture for learning, planning, and

reacting based on approximating dynamic program-

ming

1990 ICML

ICWDCNN12 ImageNet Classification with Deep Convolutional

Neural Networks

2012 NIPS

IEAUWA08 Intelligent email: aiding users with AI 2008 AAAI

IFATSSP94 Irrelevant features and the subset selection problem 1994 ICML

IMAMFEMFIS69 Implicational molecules: a method for extracting

meaning from input sentences

1969 IJCAI

INLG01 Instance-based natural language generation 2001 NAACL

ISARASAFD77 Information storage and retrieval: a survey and func-

tional description

1977 SIGIR

LAAATFTOLA85 Lexical ambiguity as a touchstone for theories of

language analysis

1985 IJCAI

LELASTTITP89 Lazy explanation-based learning: a solution to the

intractable theory problem

1989 IJCAI

LPPKICE96 Learning procedural planning knowledge in complex

environments

1996 AAAI

LRCNFVRAD15 Long-term recurrent convolutional networks for vi-

sual recognition and description

2015 CVPR

LTGCWCNN15 Learning to generate chairs with convolutional neural

networks

2015 CVPR

LTRFIR10 Learning to rank for information retrieval 2010 SIGIR

LTRNLAAUA98 Learning to resolve natural language ambiguities: a

unified approach

1998 AAAI

LTRWPD08 Learning to rank with partially-labeled data 2008 SIGIR

MIFRVS91 Multidimensional indexing for recognizing visual

shapes

1991 CVPR

MRLUAV98 Mobile Robot Localisation Using Active Vision 1998 ECCV

Continued on next page
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Table E.1 – Continued from previous page

Initials Title Year Venue

MSCBSSFVSTN3MSAR01 Multi-view scene capture by surfel sampling: from

video streams to non-rigid 3D motion, shape and

reflectance

2001 ICCV

MSDIAAN71 Managing semantic data in an associative net 1971 SIGIR

NATCA18 Neural Approaches to Conversational AI 2018 SIGIR

NCFPS90 NOUN CLASSIFICATION FROM PREDICATE-

ARGUMENT STRUCTURES

1990 ACL

PASTAPW69 PROW: a step toward automatic program writing 1969 IJCAI

PAUAODNPID83 PROVIDING A UNIFIED ACCOUNT OF DEFI-

NITE NOUN PHRASES IN DISCOURSE

1983 ACL

PEOKIP71 Procedural embedding of knowledge in planner 1971 IJCAI

POACBC75 Progress on a computer based consultant 1975 IJCAI

POOFT92 Performance of optical flow techniques 1992 CVPR

PSGANL83 Phrase structure grammars and natural languages 1983 IJCAI

RAKAA77 Reasoning about knowledge and action 1977 IJCAI

RODUABCOSF01 Rapid object detection using a boosted cascade of

simple features

2001 CVPR

SAATNICGWVA15 Show, Attend and Tell: Neural Image Caption Gen-

eration with Visual Attention

2015 ICML

SCASFPM08 Server characterisation and selection for personal

metasearch

2008 SIGIR

SF83 Scale-space filtering 1983 IJCAI

SMIS14 Semantic Matching in Search 2014 SIGIR

STFSWA06 Semi-Supervised Training for Statistical Word Align-

ment

2006 ACL

TAOAITACSOKE77 The art of artificial intelligence: themes and case

studies of knowledge engineering

1977 IJCAI

TAOALHWSE98 The anatomy of a large-scale hypertextual Web

search engine

1998 WWW

TAVOA77 Towards automatic visual obstacle avoidance 1977 IJCAI

Continued on next page
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Table E.1 – Continued from previous page

Initials Title Year Venue

TCDAHOITP87 The classification, detection and handling of imper-

fect theory problems

1987 IJCAI

TCOSP89 Term clustering of syntactic phrases 1989 SIGIR

THSUSAEOTRP73 The hearsay speech understanding system: an exam-

ple of the recognition process

1973 IJCAI

TMOSAAIPIASMS69 The modeling of simple analogic and inductive pro-

cesses in a semantic memory system

1969 IJCAI

TSHP69 The Stanford hand-eye project 1969 IJCAI

TUGIAIE83 Tracking user goals in an information-seeking envi-

ronment

1983 AAAI

TWARIE69 Talking with a robot in English 1969 IJCAI

UDTTICL93 Using decision trees to improve case-based learning 1993 ICML

VMBARR79 Visual mapping by a robot rover 1979 IJCAI

WCBSITDWAUSR92 What can be seen in three dimensions with an uncal-

ibrated stereo rig

1992 ECCV

WSNGVG88 What Size Net Gives Valid Generalization 1988 NIPS

WYCRNTKYLIK92 What your computer really needs to know, you

learned in kindergarten

1992 AAAI

Source: The Author
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Figure E.1 – Papers citation ranking over time according to Closeness centrality.
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Figure E.2 – Papers citation ranking over time according to In-Degree centrality.
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Figure E.3 – Papers citation ranking over time according to Out-degree centrality.
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7418
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69
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NA NA NA NA
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1
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2
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3
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16

NA NA NA NA NA

4
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21

NA NA NA NA NA

5
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26

NA NA NA NA NA NA
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5
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1

1969 1977 1985 1993 2001 2009 2017 2019

Top 5 over time

Outdegree citation ranking

N/A stands for papers who had not been published in the selected venues until that year.
Please refer to Table E.1 in the Appendix E to see the details of each ranked paper.

Source: The Author
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APPENDIX F — COUNTRY CITATION GRAPH

Figure F.1 presents a different view than the one available at Section 4.6 by gener-

ating the stacked version of the countries but with a 2-year-wide sliding average window,

i.e. every datapoint is actually the average between the year and its prior window, trying to

avoid the variation seen in Figure 4.24 because of IJCAI being held only in odd-numbered

years. The steady decline of the USA share in the graph is clearly seen.

Figure F.1 – Stacked percentage of papers viewed with a 2-years-wide sliding average window

Source: The Author
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APPENDIX G — TURING AWARDS

These chapter presents some charts related to the correlation between Turing

Awardees papers abstracts and the other authors abstracts words. We used a Spearman

Correlation to compute these.

Table G.1 contains every single Turnig Award winner, with the year they won the

prize and also their country of birth.

Table G.1 – Turing Award Winners per year

Year Winner Country of Birth

1966 Perlis, Alan J. * United States

1967 Wilkes, Maurice V. * United Kingdom

1968 Hamming, Richard W. * United States

1969 Minsky, Marvin * United States

1970 Wilkinson, James Hardy ("Jim") * United Kingdom

1971 McMarthy, John * United States

1972 Dijkstra, Edsger Wybe * Netherlands

1973 Bachman, Charles William * United States

1974 Knuth, Donald ("Don") Ervin United States

1975
Newel, Allen * United States

Simon, Herbert ("Herb") Alexander * United States

1976
Rabin, Michael O. Poland

Scott, Dana Stewart United States

1977 Backus, John * United States

1978 Floyd, Robert (Bob) W. * United States

1979 Iverson, Kenneth E. ("Ken") * Canada

1980 Hoare, C. Antony ("Tony") R. Sri Lanka

1981 Codd, Edgar F. ("Ted") * United Kingdom
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Table G.1 – Continued from previous page

Year Winner Country of Birth

1982 Cook, Stephen Arthur United States

1983
Ritchie, Dennis M. * United States

Thompson, Kenneth Lane United States

1984 Wirth, Niklaus E. Switzerland

1985 Karp, Richard ("Dick") Manning United States

1986
Hopcroft, John E United States

Tarjan, Robert (Bob) Endre United States

1987 Cocke, John * United States

1988 Sutherland, Ivan United States

1989 Kahan, William ("Velvel") Morton Canada

1990 Corbato, Fernando J. ("Corby") * United States

1991 Milner, Arthur John Robin Gorell ("Robin") * United Kingdom

1992 Lampson, Butler W. United States

1993
Hartmanis, Juris Latvia

Stearns, Richard ("Dick") Edwin United States

1994
Feigenbaum, Edward A. ("Ed") United States

Reddy, Dabbala Rajagopal ("Raj") India

1995 Blum, Manuel Venezuela

1996 Pnueli, Amir * Israel

1997 Engelbart, Douglas * United States

1998 Gray, James ("Jim") Nicholas * United States

1999 Brooks, Frederick ("Fred") United States

2000 Yao, Andrew Chi-Chih China

2001
Dahl, Ole-Johan * Norway
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Table G.1 – Continued from previous page

Year Winner Country of Birth

Nygaard, Kristen Norway

2002

Adleman, Leonard (Len) Max United States

Rivest, Ronald (Ron) Linn United States

Shamir, Adi Israel

2003 Kay, Alan United States

2004
Cerf, Vinton ("Vint") Gray United States

Kahn, Robert ("Bob") Elliot United States

2005 Naur, Peter * Denmark

2006 Allen, Frances ("Fran") Elizabeth * United States

2007

Clarke, Edmund Melson * United States

Emerson, E. Allen United States

Sifakis, Joseph France

2008 Liskov, Barbara United States

2009 Thacker, Charles P. (Chuck) * United States

2010 Valiant, Leslie Gabriel Hungary

2011 Pearl, Judea Israel

2012
Goldwasser, Shafi United States

Micali, Silvio Italy

2013 Lamport, Leslie United States

2014 Stonebraker, Michael United States

2015
Diffie, Whitfield United States

Hellman, Martin United States

2016 Bernes-Lee, Tim United Kingdom

2017
Hennesy, John L. United States
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Table G.1 – Continued from previous page

Year Winner Country of Birth

Patterson, David United States

2018

Bengio, Yoshua France

Hinton, Geoffrey E. United Kingdom

LeCun, Yann France

2019
Catmull, Edwin E. United States

Hanrahan, Patrick M. United States

2020
Aho, Alfred Vaino Canada

Ullman, Jeffrey David United States

2021 Dongarra, Jack United States

* indicates the winner is deceased

Source: ACM Turing Award, available at <https://amturing.acm.org/byyear.cfm>

Figure G.1 – Correlation between 1969 Turing Award Winner papers and AAAI and
IJCAI-published ones.

Correlation between titles of all papers
published by the Turing Award winner

of 1969 and all titles of papers published
yearly in AAAI.

Correlation between titles of all papers
published by the Turing Award winner

of 1969 and all titles of papers published
yearly in IJCAI.

Source: The Author

https://amturing.acm.org/byyear.cfm
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Figure G.2 – Correlation between titles of papers published by the 1971 Turing Award winner and
titles of papers published in the three AI flagship conferences.

(a) Correlation between titles of all
papers published by the Turing Award
winner of 1971 and all titles of papers
published yearly in AI conferences.

(b) Correlation between titles of all
papers published by the Turing Award
winner of 1971 and all titles of papers

published yearly in NIPS.

(c) Correlation between titles of all
papers published by the Turing Award
winner of 1971 and all titles of papers

published yearly in AAAI.

(d) Correlation between titles of all
papers published by the Turing Award
winner of 1971 and all titles of papers

published yearly in IJCAI.
Source: The Author
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Figure G.3 – Correlation between titles of papers published by the 1975 Turing Award winners and
titles of papers published in the three AI flagship conferences.

(a) Correlation between titles of all
papers published by the Turing Award
winner of 1975 and all titles of papers
published yearly in AI conferences.

(b) Correlation between titles of all
papers published by the Turing Award
winner of 1975 and all titles of papers

published yearly in NIPS.

(c) Correlation between titles of all
papers published by the Turing Award
winner of 1975 and all titles of papers

published yearly in AAAI.

(d) Correlation between titles of all
papers published by the Turing Award
winner of 1975 and all titles of papers

published yearly in IJCAI.
Source: The Author
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Figure G.4 – Correlation between titles of papers published by the 1994 Turing Award winners and
titles of papers published in the three AI flagship conferences.

(a) Correlation between titles of all
papers published by the Turing Award
winner of 1994 and all titles of papers
published yearly in AI conferences.

(b) Correlation between titles of all
papers published by the Turing Award
winner of 1994 and all titles of papers

published yearly in NIPS.

(c) Correlation between titles of all
papers published by the Turing Award
winner of 1994 and all titles of papers

published yearly in AAAI.

(d) Correlation between titles of all
papers published by the Turing Award
winner of 1994 and all titles of papers

published yearly in IJCAI.
Source: The Author
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Figure G.5 – Correlation between titles of papers published by the 2010 Turing Award winners and
titles of papers published in AAAI and IJCAI.

(a) Correlation between titles of all
papers published by the Turing Award
winner of 2010 and all titles of papers

published yearly in AAAI.

(b) Correlation between titles of all
papers published by the Turing Award
winner of 2010 and all titles of papers

published yearly in IJCAI.
Source: The Author
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Figure G.6 – Correlation between titles of papers published by the 2011 Turing Award winner and
titles of papers published in the three AI flagship conferences.

(a) Correlation between titles of all papers
published by the Turing Award winner of

2011 and all titles of papers published
yearly in AI conferences.

(b) Correlation between titles of all papers
published by the Turing Award winner of

2011 and all titles of papers published
yearly in NIPS.

(c) Correlation between titles of all papers
published by the Turing Award winner of

2011 and all titles of papers published
yearly in AAAI.

(a) Correlation between titles of all papers
published by the Turing Award winner of

2011 and all titles of papers published
yearly in IJCAI.

Source: The Author
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APPENDIX H — SOFTWARE CONTRIBUTIONS

Throughout this work, we have built some interesting pieces of software that might

be used by others in similarly sized tasks. They are briefly described and discussed below.

H.1 streamxml2json Library

When we were trying to use the original DBLP dataset (See Section 3.1 for more

context) we had some trouble when trying to convert the downloaded XML file to a JSON

file we could more easily manipulate. The benefits of a JSON file over the XML file go

from being more human-readable to the fact of it being a bit smaller (in our case, a 3.3GB

XML yields a 3GB JSON file, a 10% size reduction) – therefore, easier to load in memory.

It is a fact, however, that because we had the intention to parse this file in a CI

environment, to be able to weekly generate new charts (See Section 5.3) we would need

to be able to do this conversion from XML to JSON without loading the whole file into

memory. After searching on Github and PyPi we realized that a tool to convert from XML

to JSON without loading the whole file in memory did not exist.

That clarified, we decided we could build such a tool by using a few already existent

libraries as building blocks: simplejson1, jsonstreams2 and xmltodict3. Streaming over

any XML file and parsing only the necessary data, we can then output it to a JSON file,

also through a file stream, without any substantial memory usage. Because our data was

gzipped, the library supports reading directly from a .xml.gz file, not requiring the user to

unzip it.

The library streamxml2json (AUDIBERT, 2022a) (AUDIBERT, 2022b) is available

at Github in <https://github.com/rafaeelaudibert/streamxml2json> and publicly download-

able from PyPi on <https://pypi.org/project/streamxml2json/>. For sake of completeness,

the library can be downloaded if you have pip (DEVELOPERS, 2008) installed in your

machine by running “pip install streamxml2json"".

In the end, because we did not use this dataset, we do not use this library in our

work, but the contribution was deemed important enough to the whole Python ecosystem

in general so we are adding it to this section. We did keep in our main repository the file

1<https://github.com/simplejson/simplejson>
2<https://github.com/dcbaker/jsonstreams>
3<https://github.com/martinblech/xmltodict>

https://github.com/rafaeelaudibert/streamxml2json
https://pypi.org/project/streamxml2json/
https://github.com/simplejson/simplejson
https://github.com/dcbaker/jsonstreams
https://github.com/martinblech/xmltodict
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used to convert from XML to JSON, as a library usage example: <https://github.com/

rafaeelaudibert/conferences_insights/blob/v11/scripts/xml2json.py>.

H.2 Python Parallel Centralities Implementation

Throughout our work, we used UFRGS HPC Group’s (PCAD4 supercomputers to

be able to properly generate the graph we were building. We had to use their supercom-

puters because when we are computing graph centralities we need a lot of memory - for

betweenness we need to store the shortest path between every single node of our graph

that contains more than 100,000 nodes. Computing these centralities, however, was still

pretty slow because we have to do it for every single node in every single year. An easy

way to increase speed in computation, especially when you are using supercomputers, is to

parallelize your job across the available physical processors. In our case, we had access to

a machine with 16 cores (32 threads) allowing us to compute our results a lot faster.

Therefore, using networkx’s implementations as a base, we developed a parallel

Betweenness and a parallel Closeness algorithm capable of running close to 5x faster in a

machine with 16 cores. The results are not 16x faster as expected because of Python’s GIL

which severely degrades Python’s parallel performance.

The codes for these implementations can be found in <https://github.com/rafaeelaudibert/

conferences_insights/blob/v11/graph_generation/parallel_betweenness.py> and <https://

github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/parallel_closeness.

py> for Betweenness and Closeness, respectively.

H.3 Graph Parsing pipeline

In our work, we had to generate several different types of graphs, with several

different parameters in each of them. We also wanted to be able to easily cache data we

had already computed, avoiding unnecessary computation.

To solve these problems, we devised a simple structure where we could extend a

base GenerateGraph class (available in <https://github.com/rafaeelaudibert/conferences_

insights/blob/v11/graph_generation/generate_graph.py>) that exposed several methods

that made our job easier. Some of the exposed methods help us in the process of caching

4<http://gppd-hpc.inf.ufrgs.br/>

https://github.com/rafaeelaudibert/conferences_insights/blob/v11/scripts/xml2json.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/scripts/xml2json.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/parallel_betweenness.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/parallel_betweenness.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/parallel_closeness.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/parallel_closeness.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/parallel_closeness.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_graph.py
https://github.com/rafaeelaudibert/conferences_insights/blob/v11/graph_generation/generate_graph.py
http://gppd-hpc.inf.ufrgs.br/
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our data. Whenever we want to build a new graph, if we have no caching, we need to do

these steps:

1. Filter papers from the required venues from dblp’s JSON file

2. Generate the full graph for every year

3. After the full graph is complete, compute the centralities

If we always followed these steps, whenever we made a code change to the central-

ities computation, we would need to run everything before. We can easily solve this by

calling some of the base class helper methods that know how to save a pre-parsed list of

papers from selected venues, or even an already partial graph if we had only built it until a

given year (imagine you noticed something wrong or an exception was raised after you

had parsed half the dataset).

Also, to be able to control which type of graph we wanted to run from the com-

mand line, we built a CLI on top of this class using Google’s fire5 library. It is used to

automatically generate a CLI from the parameters of a function, effectively allowing us

to simply add a new parameter to a function and then pass the parameter value from the

command line to properly pass the parameters to our code.

When we want a new type of graph, therefore, we simply extend this Generate-

Graph class and add a new parameter to the main function, allowing us to easily call this

new type of graph generation.

It is worth noting, however, that, ideally, fire should be replaced by click. Click6 is

a more maintained library, with better features: automatically generated fully-customizable

help command, subcommands to avoid the extra work of manually creating flags when

creating new types of graphs, proper filename handling, etc.

5<https://github.com/google/python-fire>
6<https://click.palletsprojects.com/en/8.1.x/>

https://github.com/google/python-fire
https://click.palletsprojects.com/en/8.1.x/
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