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Abstract Measurements of the cosmological parameter S8

provided by cosmic microwave background and large scale
structure data reveal some tension between them, suggest-
ing that the clustering features of matter in these early and
late cosmological tracers could be different. In this work, we
use a supervised learning method designed to solve Bayesian
approach to regression, known as Gaussian Processes regres-
sion, to quantify the cosmic evolution of S8 up to z ∼ 1.5.
For this, we propose a novel approach to find firstly the evo-
lution of the function σ8(z), then we find the function S8(z).
As a sub-product we obtain a minimal cosmological model-
dependent σ8(z = 0) and S8(z = 0) estimates. We select
independent data measurements of the growth rate f (z) and
of [ f σ8](z) according to criteria of non-correlated data, then
we perform the Gaussian reconstruction of these data sets to
obtain the cosmic evolution of σ8(z), S8(z), and the growth
index γ (z). Our statistical analyses show that S8(z) is com-
patible with Planck �CDM cosmology; when evaluated at
the present time we find σ8(z = 0) = 0.766 ± 0.116 and
S8(z = 0) = 0.732 ± 0.115. Applying our methodology to
the growth index, we find γ (z = 0) = 0.465±0.140. More-
over, we compare our results with others recently obtained
in the literature. In none of these functions, i.e. σ8(z), S8(z),
and γ (z), do we find significant deviations from the standard
cosmology predictions.

1 Introduction

The way how the matter clusters throughout the universe
evolution is one of the critical probes to judge whether the
concordance model �CDM is, in fact, the standard model of
cosmology. In front of this scenario, accurate measurements
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of f (z), the growth rate of cosmic structures, and of σ8(z), the
variance of the matter fluctuations at the scale of 8 Mpc/h,
are important scientific targets of current and future large
astronomical surveys [1–3].

The growth rate, f , represents a measure of the matter
clustering evolution from the primordial density fluctuations
to the large-scale structures observed today, as such it behaves
differently in �CDM-type models, based on the theory of
general relativity (GR), and in alternative models of cos-
mology, based on modified gravity theories. On the other
hand, σ8,0 ≡ σ8(z = 0) can be obtained using the cosmic
microwave background (CMB) data, where it scales the over-
all amplitude of the measured angular power spectrum1 [4].

The growth rate of cosmic structures is defined as f (a) ≡
d ln D(a)/d ln a, where D = D(a) is the linear growth func-
tion, and a is the scale factor in the Robertson–Walker metric,
based on GR theory. A direct measurement of f applying the
above relationship to a given data set does not work because
the cosmological observable is the density contrast and not
the growth function D(a) [5]. However, it is possible to obtain
indirect measurements of f if one can measure the velocity
scale parameter β ≡ f/b, and one knows the linear bias b
of the cosmological tracer used in the measurement of β [6–
9]. Additionally, the most common approach to quantify the
clustering evolution of cosmic structures is in the form of
their product,2 [ f σ8](z), through the analyses of the Redshift
Space Distortions (RSD) [10], that is, studying the distortions
in the two-point correlation function (2PCF) caused by the
Doppler effect of galaxy peculiar velocities, associated with

1 The observed CMB angular power spectrum amplitude scales nearly
proportional with the primordial comoving curvature power spectrum
amplitude As , but assuming the �CDM model this amplitude constraint
can be converted into the fluctuation at the present day, usually quanti-
fied by the σ8,0 parameter.
2 Usually, f σ8 is termed the parametrized growth rate.
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the gravitational growth of inhomogeneities [11] (for other
applications of the 2PCF in matter clustering analyses see,
e.g., [12–17]).

Efforts done in recent years have provided measurements
of both quantities: f σ8 and f , at various redshifts and through
the analyses of a diversity of cosmological tracers, includ-
ing luminous red galaxies, blue galaxies, voids, and quasars.
We shall explore these data to find, as robust as possible,
a measurement of σ8(z) and S8(z), quantities that has been
reported to be in some tension when comparing the measure-
ments from the last Planck CMB data release [4] with the
analyses from several large-scale structure surveys [18–24].

The main objective of our analyses is to break the degen-
eracy in the product function [ f σ8](z) using the cosmic
growth rate data f (z), to know the evolution of the func-
tions σ8(z) and S8(z). In turn, the knowledge of σ8(z) pro-
vides its value at z = 0, σ8,0, an interesting outcome of
these analyses considering the current σ8-tension reported in
the literature [21,22,24]. Our approach consists of using the
Gaussian processes tool to reconstruct the functions [ f σ8](z)
and f (z), using for this task two data sets: 20 measurements
of [ f σ8](z) and 11 measurements of f (z), respectively. The
reconstructed functions [ f σ8]gp(z) and f gp(z) allow us to
know the function σ8(z), as described in the next section.

This work is organized as follows. In Sect. 2 we review the
main equations of the linear theory of matter perturbations.
In Sect. 3 we present the data sets and describe the statisti-
cal methodology used in our analyses. Section 4 we report
our main results and discussions. We draw our concluding
remarks in Sect. 5.

2 Theory

On sub-horizon scales, in the linear regime, and assuming
that dark energy does not cluster, the evolution equation for
the growth function is given by

d f (a)

d ln a
+ f 2 +

(
2 + 1

2

d ln H(a)2

d ln a

)
f − 3

2
�m(a) = 0, (1)

where �m(a) ≡ �m,0 a−3H2
0 /H(a)2, with �m,0 ≡ �m(z =

0) the matter density parameter today, and H(a) is the Hubble
rate as a function of the scale factor, a. A good approximation
for f (z) is given by [25–27]

f (z) � �
γ
m(z), (2)

where γ is termed the growth index. For dark energy models
within GR theory γ is considered a constant with approx-
imate value γ � 3(ω − 1)/(6ω − 5) [28]. In the �CDM
model, where ω = −1, one has γ = 6/11 � 0.55. However,
in alternative cosmological scenarios the growth index can
indeed assume distinct functional forms beyond the constant

value [28,29]. In fact, from Eq. (2) one can define,

γ (z) ≡ ln f (z)

ln �m(z)
, (3)

a more general definition for γ .
The mass variance of the matter clustering is given by

σ 2
R(z) = 1

2π2

∫ ∞

0
P(k, z)W 2

R(k)dk, (4)

where P(k, z) is the matter power spectrum and WR(k) is the
window function with R symbolizing a physical scale. The
matter power spectrum can be written as

P(k, z) =
[

D(z)

D(z = 0)

]2

T 2(k)P(k, z = 0), (5)

where T 2(k) is the transfer function. One can write the Eq.
(4) as

σ 2
R(z) = D2(z)σ 2

R(z = 0), (6)

assuming the normalization D(z = 0) = 1 for the linear
growth function D(z) [30].

From the analyses of diverse cosmological tracers it is
common to perform the measurements at scales of R = 8
Mpc/h, that is, σ8,0 ≡ σ8(z = 0). Thus, for the scale of
8 Mpc/h one has

σ8(z) = D(z) σ8,0. (7)

Then, the product [ f σ8](z) can be written as

[ f σ8](z) = − σ8,0 (1 + z)
dD(z)

dz
, (8)

which directly measures the matter density perturbation rate.
For the purpose of our analyses, one can obtain the func-

tion σ8(z) as the quotient of the functions

σ
q
8 (z) ≡ [ f σ8]gp(z)

f gp(z)
, (9)

where f gp(z) and [ f σ8]gp(z) were reconstructed using Gaus-
sian Processes from measurements of f (z) and [ f σ8](z),
respectively. The superscript ‘q’ in σ

q
8 is used to indicate the

quotient shown in Eq. (9).
Once we obtain the function σ

q
8 (z), we shall obtain the

function S8(z) through

S8(z) ≡ σ
q
8 (z)

(
�m(z)

0.30

)1/2

. (10)

3 Data set and methodology

In this section we present the f (z) and [ f σ8](z) data used
to reconstruct first the f gp(z) and [ f σ8]gp(z) functions, then
used to infer the cosmic evolution of the σ8(z) and S8(z)
functions. In addition to these data, we use a set of E(z)

123



Eur. Phys. J. C           (2022) 82:594 Page 3 of 10   594 

Table 1 Data compilation of 11 f (z) measurements; see Sect. 3 for details

Survey z f Reference Cosmological tracer

ALFALFA 0.013 0.56 ± 0.07 [9] HI extragalactic sources

2dFGRS 0.15 0.49 ± 0.14 [35,36] galaxies

GAMA 0.18 0.49 ± 0.12 [37] Multiple-tracer: blue and red gals

WiggleZ 0.22 0.60 ± 0.10 [38] Galaxies

SDSS 0.35 0.70 ± 0.18 [39] Luminous red galaxies (LRG)

GAMA 0.38 0.66 ± 0.09 [37] multiple-tracer: blue & Red gals

WiggleZ 0.41 0.70 ± 0.07 [38] Galaxies

2SLAQ 0.55 0.75 ± 0.18 [40] LRG and quasars

WiggleZ 0.60 0.73 ± 0.07 [38] Galaxies

VIMOS-VLT Deep Survey 0.77 0.91 ± 0.36 [36] Faint galaxies

2QZ & 2SLAQ 1.40 0.90 ± 0.24 [41] Quasars

measurements performed by [31], in the redshift interval z ∈
[0.0, 1.5], to reconstruct the γ (z) function defined in Eq. (3).

3.1 The f (z) data

The literature reports diverse compilations of measurements
of the growth rate of cosmic structures, [ f σ8](z) (see, e.g.
[32–34]), which we update here. Our compilation of f (z)
data, shown in Table 1, follows these criteria:

(i) We consider f (z) data obtained from uncorrelated red-
shift bins when the measurements concern the same cos-
mological tracer, and data from possibly correlated red-
shift bins when different cosmological tracers were anal-
ysed.

(ii) We consider only data with a direct measurement of f ,
and not measurements of f σ8 that use a fiducial cosmo-
logical model to eliminate the σ8 dependence.

(iii) We consider the latest measurement of f when the same
survey collaboration performed two or more measure-
ments corresponding to diverse data releases.

3.2 The [ f σ8](z) data

In Table 2 we present our compilation of f σ8 data. The cri-
teria for selecting these data are:

(i) We consider [ f σ8](z) data obtained from uncorrelated
redshift bins when the measurements concern the same
cosmological tracer, and data from possibly correlated
redshift bins when different cosmological tracers were
analysed.

(ii) We consider direct measurements of f σ8.
(iii) We consider the latest measurement of f σ8 when the

same survey collaboration performed two or more mea-
surements corresponding to diverse data releases.

3.3 Gaussian processes regression

To extract maximum cosmological information from a given
data set, as for instance the f and f σ8 data listed in
Tables 1 and 2, we perform a Gaussian Processes Regression
(GP), obtaining in this way smooth curves for the functions
f gp(z) and [ f σ8]gp(z) according to the approach described in
Sect. 2. Both reconstructed functions are then used to obtain
the cosmic evolution of σ

q
8 (z) and S8(z).

The GP consists of generic supervised learning method
designed to solve regression and probabilistic classification
problems, where we can interpolate the observations and
compute empirical confidence intervals and a prediction in
some region of interest [54]. In the cosmological context,
GP techniques has been used to reconstruct cosmological
parameters, like the dark energy equation of state, w(z), the
expansion rate of the universe, the cosmic growth rate, and
other cosmological functions (see, e.g., [5,55–74] for a short
list of references).

The main advantage in this procedure is that it is able
to make a non-parametric inference using only a few phys-
ical considerations and minimal cosmological assumptions.
Our aim is to reconstruct a function F(x) from a set of its
measured values F(xi ) ± σi , for different values {xi } of the
variable x . It assumes that the value of the function at any
point xi follows a Gaussian distribution. The value of the
function at xi is correlated with the value at other point x ′

i .
Thus, a GP is defined as

F(xi ) = GP(μ(xi ), cov[F(xi ), F(xi )]), (11)

where μ(xi ) and cov[F(xi ), F(xi )] are the mean and the vari-
ance of the variable at xi , respectively. For the reconstruction
of the function F(xi ), the covariance between the values of
this function at different positions xi can be modeled as

cov[F(x), F(x ′)] = k(x, x ′), (12)
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Table 2 Data compilation of 20
[ f σ8](z) measurements; see
Sect. 3 for details

Survey z f σ8 Reference Cosmological tracer

SnIa+IRAS 0.02 0.398 ± 0.065 [42] SNIa + galaxies

6dFGS 0.025 0.39 ± 0.11 [43] Voids

6dFGS 0.067 0.423 ± 0.055 [44] Galaxies

SDSS-veloc 0.10 0.37 ± 0.13 [45] DR7 galaxies

SDSS-IV 0.15 0.53 ± 0.16 [46] eBOSS DR16 MGS

BOSS-LOWZ 0.32 0.384 ± 0.095 [47] DR10, DR11

SDSS-IV 0.38 0.497 ± 0.045 [46] eBOSS DR16 galaxies

WiggleZ 0.44 0.413 ± 0.080 [48] Bright emission-line galaxies

CMASS-BOSS 0.57 0.453 ± 0.022 [49] DR12 voids + galaxies

SDSS-CMASS 0.59 0.488 ± 0.060 [50] DR12

SDSS-IV 0.70 0.473 ± 0.041 [46] eBOSS DR16 LRG

WiggleZ 0.73 0.437 ± 0.072 [48] Bright emission-line galaxies

SDSS-IV 0.74 0.50 ± 0.11 [2] eBOSS DR16 voids

VIPERS v7 0.76 0.440 ± 0.040 [51] Galaxies

SDSS-IV 0.85 0.52 ± 0.10 [2] eBOSS DR16 voids

SDSS-IV 0.978 0.379 ± 0.176 [52] eBOSS DR14 quasars

VIPERS v7 1.05 0.280 ± 0.080 [51] Galaxies

FastSound 1.40 0.482 ± 0.116 [53] ELG

SDSS-IV 1.48 0.30 ± 0.13 [2] eBOSS DR16 voids

SDSS-IV 1.944 0.364 ± 0.106 [52] eBOSS DR14 quasars

where k(x, x ′) is known as the kernel function. The kernel
choice is often very crucial to obtain good results regarding
the reconstruction of the function F(x).

The kernel most commonly used is the standard Gaussian
squared-exponential (SE) approach, defined as

kSE(x, x ′) = σ 2
F exp

(
−|x − x ′|2

2l2

)
, (13)

where σ 2
F is the signal variance, which controls the strength

of the correlation of the function F , and l is the length scale
that determines the capacity to model the main characteris-
tics (global and local) of F in the evaluation region (l mea-
sures the coherence length of the correlation in x). These two
parameters are often called hyper-parameters.

However, given the irregular pattern noticed in our data
sets (observe the blue squares representing the f (z) and
[ f σ8](z) data shown in the plots of Fig. 1), a more general
kernel is suitable for the GP analyses, namely the Rational
Quadratic kernel (RQ), defined as [54]

kRQ(x, x ′) =
(

1 + |x − x ′|2
2αl2

)−α

, (14)

where α is the scale mixture parameter. This kernel can be
seen as an infinite sum of SE kernels with different charac-
teristic length-scales.

Beside the choice of the kernel, the length scale bounds
also have an influence in the results, as discussed in [66,
75]. For data showing irregular pattern behavior, as the data
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Fig. 1 Left panel: growth rate reconstruction f gp(z) from Table 1. Right panel: the reconstruction of [ f σ8]gp(z) function using the sample in
Table 2. In both plots the shaded areas represent the 1σ and 2σ CL regions
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Fig. 2 Left panel: reconstruction of the function σ
q
8 (z) (the letter q to

remember its origin: the quotient of two continuous functions) at 1σ

and 2σ CL obtained from our [ f σ8](z) and f (z) data sample. The dot-
dashed line represents the prediction from the data. Right panel: same

as in left panel, but for the S8(z) function. The black line represents
the prediction from the �CDM model considering the Planck-CMB
cosmological parameters

we are considering for analyses, a more restrictive bounds
for the hyper-parameters are necessary. To reconstruct the
function [ f σ8](z) correctly, our choice for the length scale
bound corresponds to the redshift interval of the sample. For
the f σ8 sample, for instance, we fix the priors 0.1 ≤ l ≤ 2
and 0.1 ≤ α ≤ 2.

It is worth mentioning that the choice of the kernel and
the length scale parameters, l and α, were delicate steps for
a robust GP reconstruction of the function γ (z) from the
[ f σ8](z) data sample. However, the reconstructed functions
σ

q
8 (z) and S8(z) were obtained robustly against those par-

ticular choices, and this is also true for the γ (z) function
reconstructed using the f (z) and E(z) data.

4 Results and discussions

The left panel of Fig. 1 shows the f (z) reconstruction at
1σ and 2σ confidence levels (CL) in the redshift range
z ∈ [0.0, 1.4], and the blue squares are the data points from
Table 1. The dash-dot line is the prediction obtained from the
GP using the RQ kernel. When evaluated at the present time,
we find f (z = 0) = 0.526 ± 0.060 at 1σ CL. In the right
panel of Fig. 1 we quantify the same statistical information,
but assuming our [ f σ8](z) data sample. When evaluated at
the present time, z = 0, we find f σ8(z = 0) = 0.414±0.038
at 1σ CL. In both panels, the black solid line represents the
�CDM prediction with the Planck-CMB best fit values [76].
One can notice that the model-independent obtained here
from both data samples, Tables 1 and 2, predicts a smaller
amplitude in comparison with �CDM model, but globally
compatible within 2σ uncertainties.

Figure 2 on the left panel shows the function σ
q
8 (z)

obtained through the methodology described in Sect. 2. When
evaluated at the present time, we find σ

q
8,0 = 0.766±0.116 at

1σ CL. On the right panel of Fig. 2 we show the function S8

obtained using σ
q
8 (z) according to Eq. (10). Here one notices

that for such a procedure we need infer also a reconstruction
process for the function �m(z). For this, in the context of
the standard framework, we can use the Om(z) diagnostic
function [77]

Om(z) = E2(z) − 1

(1 + z)3 − 1
. (15)

If the expansion history E(z) is driven by the standard
�CDM model with null spatial curvature, then the func-
tion Om(z) is proportional to the matter density �m(z). To
reconstruct the �m(z) function in minimal model assump-
tions, let us use the Supernovae Type Ia data from the Pan-
theon sample [78]. As is well known, the Supernovae Type
Ia traditionally have been one of the most important astro-
physical tools in establishing the so-called standard cosmo-
logical model. For the present analyses, we use the Pantheon
compilation, which consists of 1048 SNIa distributed in the
range 0.01 < z < 2.3 [78]. With the hypothesis of a spa-
tially flat Universe, the full sample of Pantheon can be binned
into six model independent E(z) data points [31]. We study
the six data points reported by [79] in the form of E(z),
including theoretical and statistical considerations made by
the authors there for its implementation. Under these con-
siderations, we find �m,0 = 0.274 ± 0.073 at 1σ CL. Note
that this estimate is model-independent. Then, we reconstruct
the evolution of the matter density in a model-independent
way, by applying again the Pantheon sample on the defini-
tion �m(z) ≡ �m,0(1+z)3/E2(z). Figure 3 on the left panel
shows the robust reconstruction for the E(z) function and on
the right panel for the Om(z) diagnostic function. After these
steps, we can infer the reconstruction for the S8 function as
a function of redshift (right panel in Fig. 2). When evaluated
at the present time, we find S8(z = 0) = 0.732 ± 0.115 at
1σ CL.
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Fig. 4 Left panel: reconstruction of the γ (z) function with the f (z) sample. Right panel: reconstruction of the γ (z) function with the f σ8 sample

Within the context of the �CDM model, CMB tem-
perature fluctuations measurements from Planck and ACT
+ WMAP indicate S8 values of 0.834 ± 0.016 [76] and
0.840±0.030 [80], respectively. On the other hand, the value
of S8 inferred by a host of weak lensing and galaxy cluster-
ing measurements is typically lower than the CMB-inferred
values, ranging between 0.703 to 0.782: examples of surveys
reporting lower values of S8 include CFHTLenS [81], KiDS-
450 [82], KiDS-450 + 2dFLenS [83], KiDS + VIKING-450
(KV450) [84], DES-Y1 [85], KV450 + BOSS [86], KV450
+ DES-Y1 [87,88], a re-analysis of the BOSS galaxy power
spectrum [89], KiDS-1000 [90], and KiDS-1000 + BOSS +
2dFLenS [91]. Planck Sunyaev-Zeldovich cluster counts also
infer a rather low value of S8 = 0.774 ± 0.034 [92]. To bal-
ance the discussion, it is also worth remarking that KiDS-450
+ GAMA [93] and HSC SSP [94] indicate higher values of S8,
of 0.800+0.029

−0.027 and 0.804+0.032
−0.029, respectively. Also, combin-

ing data from CMB, RSD, X-ray, and SZ cluster counts, [95]
found S8 = 0.841±0.038. From our overall results, summa-
rized in Fig. 2, it can be noticed that our model-independent
analyses are fully compatible with the Planck �CDM cos-
mology (prediction quantified by the black line in Fig. 2).
Because our approach does not assume any fiducial cosmol-
ogy, the error bar estimate in S8 is degenerate. Due to this,

our model-independent estimates are also compatible with
some weak lensing and galaxy clustering measurements.

Now, let us investigate the cosmic evolution of the growth
index γ (z). First, let us analyze and quantify its evolution
as described by the definition given in Eq. (3). Figure 4 on
the left panel shows γ (z) at late times inferred from the f (z)
data in combination with the Pantheon sample. It is important
to remember that the Pantheon sample is used to reconstruct
the function �m(z). The black line represents the prediction
in GR theory. We find that γ is still statistically compatible
with GR. When evaluated at the present time, we find γ (z =
0) = 0.465 ± 0.140 at 1σ CL.

On the other hand, following [96], one can write the
growth index γ as a function of [ f σ8] in the form

γ (a) =
ln

(
[ f σ8](a)∫ a

0 dx
[ f σ8](x)

x

)

ln

(
a [ f σ8](a)2

3
∫ a

0 dx[ f σ8](x)
∫ x

0 dy
[ f σ8](y)

y

) . (16)

The main advantage of the above equation is that it only
requires [ f σ8](a) data to describe γ (a). In this way, we apply
our data compilation, displayed in Table 2, in this equation
and show our results in the right panel of Fig. 4. When evalu-
ated at the present time, we find γ (z = 0) = 0.571±0.046 at
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1σ CL. Note that both the data set and the statistical approach
developed here are different from the analyses presented in
[96]. Although both reconstruction processes on γ (z) are
compatible with GR, it is interesting to note that data pre-
dictions show a different tendency, while f (z) data predict
a behavior above the value γ = 6/11, for z > 0.3, the
[ f σ8](z) data sample predicts a behavior below γ = 6/11.
Despite this, all analyses displayed here are compatible with
GR. That is, in short, we do not find any deviation from stan-
dard cosmology predictions.

It is worth commenting the growth rate tension reported in
the literature in light of recent statistical analyses, consider-
ing assumptions that could solve the Hubble and the growth
rate tensions simultaneously.

A class of modified gravity theories that allows the New-
ton’s gravitational constant to evolve, i.e. G = G(z) evolves
with z, can solve at the same time both the Hubble and growth
rate tensions, as shown by [97,98]. In [99], parametrizing an
evolving gravitational constant, the authors found no tension
with the RSD data and the Planck-�CDM model. Addi-
tionally, using an updated f σ8 data set, [100] shows that
analysing a subsample of the 20 most recently published data
the tension in f σ8 disappears, and the GR theory is favoured
over modified gravity theories.

On the other hand, combining weak lensing, real space
clustering and RSD data, [101] found a substantial increase
in the growth tension: from 3.5σ considering only f σ8 data
to 6σ when taking into account also the Eg data.

As a criterion for comparison, we look for previous stud-
ies in the growth rate tension using the GP reconstruction. In
[102], using f σ8 data, the authors did not find any tension
when no prior in H0 is used in the analyses, which agrees
with our results because no H0 prior was assumed here. In
[103], the authors consider evolving dark energy models and
show that, for these models, the growth rate tension between
dynamical probe data and CMB constraints increases. More
recently [104], using different kernels for the GP reconstruc-
tion and two methodologies to obtain the hyperparameters,
discovered that the growth rate tension arises for specific
redshift intervals and kernels.

Gaussian reconstruction is a powerful tool that allows to
reconstruct functions from observational data without prior
assumptions. However, it has the disadvantage that the recon-
structed functions exhibit large uncertainties, as the case
studied here where we have few data with large errors (see
Tables 1 and 2). For example in [105], using only a f σ8

data set, the authors found no tension in the growth rate, but
one observes that the confidence regions are large enough
to encompass different cosmological models. To avoid this
inconvenience, the way adopted in the literature is to com-
bine diverse cosmological probes or assume specific priors.
From our results, and other statistical analyses like those in
[102,104], we can say that in the future, with more astronom-

ical data measured with less uncertainty, the GP methodology
may indeed solve the growth rate tension.

4.1 Consistency tests in �CDM

It is important to perform consistency tests, comparing our
results with the predictions of the �CDM model. This time
we search for S8 and σ8 but following a different approach. In
fact, we now perform a Bayesian analysis with both data sets
presented in the Tables 1 and 2 using the Markov chain Monte
Carlo (MCMC) method to analyze the set of parameters θi =
{�m, σ8}, and building the posterior probability distribution
function

p(D|θ) ∝ exp
(

− 1

2
χ2

)
, (17)

where χ2 is chi-squared function. The goal of any MCMC
approach is to draw M samples θi from the general posterior
probability density

p(θi , α|D) = 1

Z
p(θ, α)p(D|θ, α) , (18)

where p(θ, α) and p(D|θ, α) are the prior distribution and
the likelihood function, respectively. Here, the quantities
D and α are the set of observations and possible nuisance
parameters. The quantity Z is a normalization factor. In order
to constrain the baseline θi , we assume a uniform prior such
that: �m,0 ∈ [0.1, 0.5] and σ8,0 ∈ [0.5, 1.0].

We perform the statistical analysis based on the emcee
[106] code along with GetDist [107] to analyze our chains.
We follow the Gelman-Rubin convergence criterion [108],
checking that all parameters in our chains had excellent con-
vergence.

Figure 5 shows the posterior distribution in the parameter
space �m − σ8 (left panel) and �m − S8 (right panel) at
1σ and 2σ CL for [ f σ8](z) and [ f σ8](z) + f (z) data set,
respectively. For �CDM model, we find �m,0 = 0.292 ±
0.061, σ8,0 = 0.798 ± 0.040 and S8,0 = 0.788 ± 0.055
at 1σ CL from [ f σ8](z) only. When performing the joint
analyses [ f σ8](z) + f (z), we find �m,0 = 0.274 ± 0.029,
σ8,0 = 0.809 ± 0.029 and S8,0 = 0.773 ± 0.033 at 1σ CL
(for recent analyses see, e.g. [109–111]).

As well known, there is a tension for low-z measurements
of growth data, and it is weaker than the Planck-�CDM pre-
dictions (see [21,22] and reference therein for a review). Our
results here also confirm that growth rate data based in our
compilation and criteria also predict a suppression on the
amplitude of the matter density perturbation at low z due the
low �m estimation in comparison with that from the Planck-
�CDM baseline. Despite obtaining a low �m,0 best-fit value
in our analyses, including the error estimates our results are
in agreement with the Planck CMB cosmological parameters
at 1σ CL.
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Fig. 5 1D and 2D posterior distributions for [ f σ8](z) and [ f σ8](z) + f (z) data at 1σ and 2σ CL. Left panel: contour diagram on the plane
�m − σ8. Right panel: contour diagram on the plane �m − S8

5 Final remarks

The study of the large-scale matter clustering in the universe
is attracting interest of the scientific community due to valu-
able information encoded in the growth rate of cosmic struc-
tures, useful to discriminate between the standard model of
cosmology and alternative scenarios. In this work we con-
struct, using the GP algorithm, the cosmic evolution of the
functions σ8(z), S8(z), and γ (z) using sets of measurements
of f (z), [ f σ8](z), and E(z) (see Tables 1 and 2, and [79]).

According to the current literature, measurements of the
cosmological parameter S8(z = 0) provided by early (using
CMB) and late (through galaxy clustering at z � 2) cos-
mological tracers reveal some discrepancy between them,
suggesting somehow that the process of cosmic structures
growth could be different. Although this tension could be
due to unknown – or uncalibrated – systematics, it is worth-
while to investigate the possibility of new physics beyond
the standard model. This motivate us to construct the cosmic
evolution of σ

q
8 (z) first, and then S8(z), using available data.

All our results show a good concordance, at less than 2σ CL,
with the corresponding predictions derived from the standard
cosmological model, i.e. the flat �CDM.

In the near future, we expect several percent measure-
ments of the expansion history of the universe, as well as of
the cosmic growth rate, in a large set of experiments, e.g.,
through maps of the universe obtained by the Euclid satellite
[112], or measuring the peculiar motions of galaxies using
Type Ia supernovae from LSST [113], RSD with DESI [114].
Additionally, we will have the SKA telescopes performing
BAO surveys and measuring weak gravitational lensing using

21 cm intensity mapping [115,116]. All of these efforts will
either reveal a systematic cause or harden the current tension
in the growth rate measurements. Then, the methodology and
results presented here can be significantly improved with new
and precise measurements. Therefore, we believe that future
perspectives in obtaining estimates of S8 minimally model-
dependent with cosmic growth rate measurements can shed
new light on the current S8 tension.

Acknowledgements FA and AB thank CAPES and CNPq for the
grants under which this work was carried out. RCN acknowledges finan-
cial support from the Fundação de Amparo à Pesquisa do Estado de São
Paulo (FAPESP, São Paulo Research Foundation) under the project no.
2018/18036-5.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: The data underlying
this article will be shared on request to the corresponding author.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C           (2022) 82:594 Page 9 of 10   594 

References

1. A. Pezzotta et al., A&A 604, A33 (2017). arXiv:1612.05645
2. M. Aubert et al., MNRAS 513, 186 (2022) https://doi.org/10.

48550/arXiv.2007.09013
3. J.E. Bautista et al., MNRAS 500, 736 (2021). arXiv:2007.08993
4. P.C. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Bacci-

galupi, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo,
S. Basak, K. Benabed, J. Bernard, M. Bersanelli, P. Bielewicz,
J.R. Bond, J. Borrill, F.R. Bouchet, F. Boulanger, M. Bucher,
C. Burigana, E. Calabrese, J. Cardoso, J. Carron, A. Challinor,
H.C. Chiang, L.P. Colombo, C. Combet, F. Couchot, B.P. Crill,
F. Cuttaia, P. Bernardis, A.D. Rosa, G.D. Zotti, J. Delabrouille,
J.M. Delouis, E.D. Valentino, J.M. Diego, O. Dor’e, M. Douspis,
A. Ducout, X. Dupac, G.P. Efstathiou, F. Elsner, T.A. Ensslin,
H.K.Eriksen, E. Falgarone, Y.T. Fantaye, F. Finelli, M. Frailis,
A.A. Fraisse, E. Franceschi, A.V. Frolov, S. Galeotta, S. Galli, K.
Ganga, R.T. G’enova-Santos, M. Gerbino, T. Ghosh, J. Gonz’alez-
Nuevo, K.M. G’orski, S. Gratton, A. Gruppuso, J.E. Gudmunds-
son, W. Handley, F.K. Hansen, S. Henrot-Versill’e, D. Herranz, E.
Hivon, Z. Huang, A.H. Jaffe, W.C. Jones, A. Karakci, E. Keihanen,
R. Keskitalo, K. Kiiveri, J. Kim, T. Kisner, N. Krachmalnicoff, M.
Kunz, H. Kurki-Suonio, G. Lagache, J. Lamarre, A.N. Lasenby,
M. Lattanzi, C.R. Lawrence, F. Levrier, M. Liguori, P.B. Lilje,
V. Lindholm, M. L’opez-Caniego, Y. Ma, J. Mac’ias-P’erez, G.
Maggio, D. Maino, N. Mandolesi, A. Mangilli, P.G. Martin, E.
Mart’inez-Gonz’alez, S. Matarrese, N. Mauri, J.D. McEwen, A.
Melchiorri, A. Mennella, M. Migliaccio, M. Miville-Deschênes,
D. Molinari, A. Moneti, L. Montier, G. Morgante, A. Moss, S.
Mottet, P. Natoli, L. Pagano, D. Paoletti, B. Partridge, G. Patan-
chon, G., Patrizii, L., Perdereau, F. Perrotta, V. Pettorino, F. Pia-
centini„ J. Puget, J.P. Rachen, M. Reinecke, M. Remazeilles, A.
Renzi, G.M. Rocha, G.M. Roudier, L. Salvati, M. Sandri, M. Save-
lainen, D. Scott, C. Sirignano, G. Sirri, L.D. Spencer, R. Sunyaev,
A. Suur-Uski, J. Tauber, D. Tavagnacco, M. Tenti, L. Toffolatti,
M. Tomasi, M. Tristram, T. Trombetti, J. Valiviita, F. Vansyngel,
B.V. Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio, B.D. Wandelt,
I.K.Wehus, A. Zonca A&A 641, A6 (2020). https://doi.org/10.
1051/0004-6361/201833910

5. F. Avila, A. Bernui, R.C. Nunes, E. de Carvalho, C.P. Novaes,
MNRAS 509, 2994 (2022). arXiv:2111.08541

6. M. Bilicki, M. Chodorowski, T. Jarrett, G.A. Mamon, ApJ 741,
31 (2011). arXiv:1102.4356

7. S.S. Boruah, M.J. Hudson, G. Lavaux, MNRAS 498, 2703 (2020).
arXiv:1912.09383

8. K. Said, M. Colless, C. Magoulas, J.R. Lucey, M.J. Hudson,
MNRAS 497, 1275 (2020). arXiv:2007.04993

9. F. Avila, A. Bernui, E. de Carvalho, C.P. Novaes, The growth rate
of cosmic structures in the local Universe with the ALFALFA
survey. Monthly Not. R. Astrono. Soc. 505(3), 3404–3413 (2021).
https://doi.org/10.1093/mnras/stab1488

10. L. Perenon, S. Ilic, R. Maartens, A. de la Cruz-Dombriz, Improve-
ments in cosmological constraints from breaking growth degen-
eracy. Astron. Astrophys. 642, A116 (2020). https://doi.org/10.
1051/0004-6361/202038409

11. N. Kaiser, MNRAS 227, 1 (1987)
12. F. Avila, C.P. Novaes, A. Bernui, E. de Carvalho, JCAP 2018, 041

(2018). arXiv:1806.04541
13. F. Avila, C.P. Novaes, A. Bernui, E. de Carvalho, J.P. Nogueira-

Cavalcante, MNRAS 488, 1481 (2019). arXiv:1906.10744
14. B. Pandey, S. Sarkar, MNRAS 498, 6069 (2020).

arXiv:2002.08400
15. B. Pandey, S. Sarkar, JCAP 2021, 019 (2021). arXiv:2103.11954

16. E. De Carvalho, A. Bernui, H.S. Xavier, C.P. Novaes, Baryon
acoustic oscillations signature in the three-point angular corre-
lation function from the SDSS-DR12 quasar survey. Monthly
Not. R. Astron. Soc. 492(3), 4469–4476 (2020). https://doi.org/
10.1093/mnras/staa119

17. E. de Carvalho, A. Bernui, F. Avila, C.P. Novaes, J.P. Nogueira-
Cavalcante, A&A 649, A20 (2021). arXiv:2103.14121

18. G. d’Amico et al., JCAP 2020, 005 (2020). arXiv:1909.05271
19. O.H. Philcox, M.M. Ivanov, M. Simonović, M. Zaldarriaga, J.
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