

Conectando vidas Construindo conhecimento

XXXIII SIC SALÃO INICIAÇÃO CIENTÍFICA

Evento	Salão UFRGS 2021: SIC - XXXIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2021
Local	Virtual
Título	UMA INTRODUÇÃO À TEORIA DE EXISTÊNCIA DE SOLUÇÕES
	FRACAS DE EDPs ELÍPTICAS DE SEGUNDA ORDEM
Autor	ADIR MATOS DE SOUZA JÚNIOR
Orientador	LEONARDO PRANGE BONORINO

Autor: Adir Matos de Souza Júnior Orientador: Leonardo Prange Bonorino

Instituição: Universidade Federal do Rio Grande do Sul

UMA INTRODUÇÃO À TEORIA DE EXISTÊNCIA DE SOLUÇÕES FRACAS DE EDPS ELÍPTICAS DE SEGUNDA ORDEM

O problema geral que motiva este trabalho é o problema de valor de fronteira $\begin{cases} Lu = I & \text{em } U \\ u = 0 & \text{em } \partial U \end{cases}$ onde U é um subconjunto aberto e limitado de \mathbb{R}^n , L é um operador diferencial parcial de segunda ordem uniformemente elíptico, f é uma função dada em $L^2(U)$ e $u: \overline{U} \to \mathbb{R}$ é a incógnita, u = u(x). O operador L tem a forma Lu = u(x) $-\sum_{i,j=1}^n \left(a^{ij}(x)u_{x_i}\right)_{x_i} + \sum_{i=1}^n b^i(x)u_{x_i} + c(x)u$, onde as funções coeficientes a^{ij} , b^i , c^i (i, j = 1, ..., n) são dadas e estão em $L^{\infty}(U)$. É costume dizermos que o operador L, dado pela expressão acima, está na forma divergente. A forma bilinear B[,]elíptico divergente L é definida associada ao operador $:= \int_U \ \textstyle \sum_{i,j=1}^n a^{ij} u_{x_i} v_{x_j} + \textstyle \sum_{i=1}^n b^i u_{x_i} v + cuv \ dx, \ \text{ para } \ u,v \in H^1_0(U). \ \text{Dizemos que } \ u \in \mathcal{U}_0(U).$ $H_0^1(U)$ é uma solução fraca do problema de valor de fronteira (1) se B[u,v]=(f,v)para qualquer $v \in H_0^1(U)$, onde (,) denota o produto interno em $L^2(U)$. Dois teoremas de Análise Funcional importantes no estudo da existência de soluções fracas são o Teorema da Representação de Riesz e o Teorema de Lax-Milgram. Estes teoremas, junto com alguns resultados auxiliares (denominados estimativas de energia), nos permitem obter o chamado Primeiro Teorema de Existência para soluções fracas. Este teorema afirma que existe um número $\gamma \geq 0$ tal que, para cada $\mu \geq \gamma$ e cada função $f\in L^2(U)$, existe uma única solução fraca $u\in H^1_0(U)$ do problema de valor de fronteira (2) $\begin{cases} Lu + \mu u = f \text{ em } U \\ u = 0 \text{ em } \partial U \end{cases}$. Como exemplos, podemos citar os casos $Lu = -\Delta u$ e $Lu = -\Delta u$ $-\sum_{i,j=1}^{n} \left(a^{ij} u_{x_i}\right)_{x_i}^{x_j} + cu$, com $c \ge 0$ em U. No caso $Lu = -\Delta u$, podemos verificar usando a desigualdade de Poincaré que o Teorema de Existência vale com $\gamma = 0$. Uma afirmação análoga vale para o outro exemplo.