

Conectando vidas Construindo conhecimento

XXXIII SIC SALÃO INICIAÇÃO CIENTÍFICA

Evento	Salão UFRGS 2021: SIC - XXXIII SALÃO DE INICIAÇÃO			
	CIENTÍFICA DA UFRGS			
Ano	2021			
Local	Virtual			
Título	Produção de filmes inteligentes por diferentes metodologias			
	contendo bagaço de uva como indicador de pH			
Autor	SABRINA FERREIRA SEIBERT			
Orientador	JORDANA CORRALO SPADA			

PRODUÇÃO DE FILMES INTELIGENTES POR DIFERENTES METODOLOGIAS CONTENDO BAGAÇO DE UVA COMO INDICADOR DE PH S. F. SEIBERT¹, J. C. SPADA¹

¹Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Engenharia Química.

Pesquisas voltadas para o desenvolvimento de embalagens que preservam e monitoram a qualidade e segurança dos alimentos, têm aumentado expressivamente nas últimas décadas. Nessa categoria de produto, encontram-se as embalagens inteligentes; que sinalizam possíveis alterações na qualidade do produto, através de sensores e indicadores integrados, capazes de reagir a mudanças específicas nas propriedades químicas e físicas do alimento ou do ambiente.

Buscando aliar funcionalidade à diminuição do impacto ambiental das embalagens, foram elaborados filmes indicadores de pH à base de amido de mandioca e pó do bagaço de uva, resíduo rico em antocianinas, compostos naturais sensíveis à mudança de pH e potenciais indicadores.

Em vista disso, esse trabalho teve como objetivo viabilizar a produção de filmes inteligentes e ambientalmente amigáveis contendo bagaço de uva como indicador de pH. Inicialmente foram feitas formulações filmogênicas com diferentes quantidades de amido de mandioca e resíduo em pó do bagaço da uva vindo do processamento do suco. O bagaço liofilizado e posteriormente triturado em liquidificador de inox foi adicionado de diferentes formas; inicialmente foram feitos testes com uma granulometria mais grosseira (sem passar por peneiramento), e posteriormente o pó triturado foi peneirado, gerando uma fração mais fina, que passou na malha 80 mesh e uma fração mais grosseira que ficou retida na malha. Os filmes feitos via casting (0,24 g/cm2) com o resíduo apenas triturado em liquidificador doméstico ficaram muito heterogêneos, de modo que os testes seguintes foram feitos com o pó de granulometria mais fina.

Definida a formulação com 4g de amido de mandioca, 1,2g de glicerol, 10 mL de água destilada e 1g de pó indicador, nas etapas seguintes, foram testadas diferentes fontes de antocianinas, como o extrato antociânico do bagaço triturado retido na peneira, e o pó do bagaço de uvas de vinho.

A produção dos filmes se deu através do seguinte método: Mistura do pó indicador ou extrato aquoso com quantidades específicas de água destilada, amido e glicerol, gelatinização do amido em banho termostático para a formação da solução filmogênica, disposição da solução filmogênica em placas de petry, em quantidades aproximadas de 0,34 g/cm². E por fim, a secagem dos filmes em uma estufa com circulação forçada de ar, a 35°C.

Saindo da estufa, os filmes foram cortados em pequenos pedaços e mergulhados em soluções tampão com pH variando de 2 a 10. Após 8 minutos, as amostras eram retiradas da solução e levadas a um colorímetro de bancada, para serem analisados e caracterizados quanto aos parâmetros colorimétricos L*, a* e b*, utilizando-se da escala CIELab*.

Os filmes contendo extrato aquoso e o pó de bagaço de uva demonstraram capacidade de indicação da variação de pH na faixa de 2 a 10. Porém, ambos mostraram menores diferenças colorimétricas para a faixa de pH ente 5 e 7, faixa em que normalmente ocorre a deterioração de alimentos como os produtos cárneos.

Uma sugestão para estudos futuros seria investigar a possibilidade de incorporação de pigmentos secundários às antocianinas para melhorar a percepção visual nessa faixa específica.