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Abstract

We review the mathematical structure used in quantum mechanics (namely vector spaces)
to show how the property of non-separability arises. In this context, non-separability is called
quantum entanglement, and we explore some of its history and the consequences of this concept.
Based on a mathematical discussion, we also explore non-separability in the context of classical
optics, which recently sparked interest due to the finding that entanglement-like correlations can
arise even with classical fields. Weak measurements are then introduced as an application of
non-separability, where the entanglement created by a weak interaction is manipulated to amplify
the measured value. Finally, we propose an experimental implementation of a weak valued beam
deflection measurement, capable of measuring small values of the nonlinear refractive index
through the weak valued amplification. In addition to this latter amplification, we also found a
dependence of our signal with the beam’s waist, which for a Gaussian beam is tantamount to an
amplification with the propagation distance.
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Resumo

Revisamos a estrutura matemática utilizada na mecânica quântica (principalmente espaços
vetoriais) para mostrar como a propriedade de não-separabilidade emerge. Neste contexto, não-
separabilidade é chamada de emaranhamento quântico, e exploramos um pouco de sua história e
as consequências desse conceito. Baseando-se na discussão matemática, também exploramos
não-separabilidade no contexto de óptica clássica, o que recentemente despertou interesse pelo
achado que correlações similares às do emaranhamento podem ocorrer mesmo com campos
clássicos. Medidas fracas são então introduzidas como uma aplicação de não-separabilidade,
onde o emaranhamento criado por uma interação fraca é manipulada para amplificar o valor
medido. Enfim, propomos uma implementação experimental de uma medida de desvio de feixe
utilizando valores fracos, capaz de medir pequenos valores do índice de refração não-linear através
da amplificação de valores fracos. Além desta amplificação, encontramos uma dependência do
sinal com a cintura do feixe, o que é equivalente a uma amplificação dependente da distância de
propagação para feixes gaussianos.
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Introduction

In the first decades of the 20th century, quantum mechanics revolutionized the way physicists
described and interacted with the microscopic world. This novel description of physical reality,
through a probabilistic wave-like behavior, introduced many concepts seemingly at odds with the
old and successful descriptions of the now named classical world. In particular, the non-local
probabilistic measurement interpretation and the possibility that parts of a system might be
influenced over large distances were a topic of heated debate since their introduction in the
seminal works of Schrödinger, Bohr, Heisenberg and others. This influence over large distances,
which received the name of “entanglement”, is perhaps most widely known from the debates
between Einstein and Bohr, since paradoxes and other inconsistencies may arise without a careful
interpretation of the theory.

Since the work of Bell in 1964 [9] and from themany experiments made to test it, entanglement
was accepted as an inherent feature of physical reality and became a synonymous for quantum-like
behavior. The violations predicted by Bell were tested in ever more robust scenarios, and
exploitation of the entanglement property allowed for quantum states to be reliably transferred
over large distances through the quantum teleportation protocol. However, in recent years more
careful observations found that correlations similar to those caused by entanglement can be
achieved by purely classical means. Even without the non-local aspect of measurements, classical
optics can support effects such as Bell-like inequalities violations and state teleportation (which
works similarly to quantum teleportation).

This “classical entanglement”, or more appropriately called “classical non-separability”, is
possible due to the very similar mathematical structure shared between quantum mechanics and
classical optics. Both of these theories are built from the mathematical concept of vector spaces,
and the non-separability naturally arises when vector spaces are combined to create a tensor
product space. As such, we dedicate part of Chapter 1 to review vector spaces and introduce
the tensor product operation, and later we explore quantum entanglement and its consequences.
Finally, classical non-separability is explored as a parallel to quantum entanglement, outlining
the similarities and differences between both.

After the discussion about entanglement, in Chapter 2 we review the metrology technique of
weak measurements. A weak measurement is an alternative measurement protocol where a weak
interaction entangles two degrees of freedom of a system, and by postselecting the final state a
large value can be observed as a result of the interaction. This protocol presents some advantages
over the standard non-weak protocol such as an improved signal-to-noise ratio [66] and the
possibility to measure ultra-small effects [39, 38], to name a few. Another interesting feature is the
possibility to realize weak measurements with classical optics: since they are intrinsically linked
to entanglement and interference, they can be analyzed as a special interferometric technique
with classical beams. The use of the latter allows for robust tabletop experiments to be made,
which can circumvent difficulties of manipulating quantum objects in an experimental scenario.

The later half of this work focuses in applying the weak measurement protocol to an already
established beam deflection (BD) technique of nonlinear optics. Chapter 3 focuses in reviewing
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the relevant concepts of nonlinear optics and explaining how the BD technique works, creating
a common foundation for the addition of the weak measurement. Then, Chapter 4 describes
our implementation and experimental setup, where we investigate the new features the weak
measurement introduces to the BD technique.
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Chapter 1

Entanglement

Entanglement is at the heart of quantum mechanics, and it is also one of the essential features
to perform weak measurements. Although entanglement is commonly discussed as a purely
quantum effect, recent research shows an entanglement analogue in classical optics, where no
quantum effects occur. For instance, researchers using such “classical entanglement” were
even able to violate Bell-like inequalities with purely classical beams [44]. In this chapter, I
will show how entanglement (in the more general case called non-separability) is related to the
mathematical structure of quantum mechanics and classical optics, namely on their use of vector
spaces. I will also show how non-separability arises naturally when we consider tensor products
of vector spaces, and how non-separability is to be interpreted in each theory.

1.1 Vector spaces
It is well-known for any physics student that vector spaces play a significant role in many

areas of physics: from classical mechanics to the most advanced quantum theories, vector spaces
concepts are ingrained in their mathematical foundation. In order to appreciate such a general
importance, it’s perhaps wise to take a step back and briefly analyze vector spaces from a purely
mathematical view, i.e., let’s briefly review some concepts from linear algebra. The discussion in
this section draws on Cohen-Tannoudji et al. [20], Lang [47] and Sakurai [63].

In mathematics, before we even define a vector space we have to define a field. A subset  of
the complex numbers C is said to be a field if the following conditions are satisfied [47]:

1. If G and H are elements of  , then G + H is also an element of  .

2. If G is an element of  , then −G is also an element of  . Also, if G ≠ 0, G−1 is an element
of  as well.

3. The elements 0 and 1 are elements of  .

By these conditions, it follows that the complex numbers C and the real numbers R (which
is a subset of C) are fields. The definition of a field is important because we need a set where
addition and multiplication are defined. Finally, some terminology: we call the elements of  
simply as numbers or scalars, when the context in which they appear is clear..

Now, let’s define what a vector space is. A vector space + over a field  is a set of objects
that obey the following conditions [47]:

1. If D, { are elements of + , then D + { is an element of + .
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1.1. Vector spaces

2. If { is an element of + and 2 an element of  , 2{ is an element of + .

3. If D, {, | are elements of + , then

(D + {) + | = D + ({ + |).

4. There’s an element of + , denoted by 0, such that for all D ∈ +

0 + D = D + 0 = D.

5. Given D ∈ + , there exists an element −D such that

D + (−D) = 0.

6. For all elements D, { ∈ + ,
D + { = { + D.

7. If 2 ∈  , then 2(D + {) = 2D + 2{.

8. If 0, 1 ∈  , then (0 + 1)D = 0D + 1D.

9. If 0, 1 ∈  , then (01)D = 0(1D).

10. For all D ∈ + , we have 1D = D (where 1 is the identity in  ).

From this set of conditions, it follows that the real numbers are a vector space over themselves,
while the complex numbers are a vector space over themselves or over R. It can also be shown
that the set of all functions that map elements of a set ( into  (i.e., 5 : ( →  ) is also a vector
space over  [47]. For simplicity, we can call the elements of a vector space simply as vectors.

From now on, we will consider the field  to be the complex numbers C, as it is the relevant
field in quantum mechanics and in optics. Since we can add vectors together and multiply them
by complex numbers, we call a linear combination a sum of the form

21{1 + 22{2 + . . . + 2={=,

where 28 are complex numbers and {8 are vectors. If all vectors of+ can be written as a non-trivial
linear combination of {8, we say that the vectors {8 span or generate the space + . As such, we
may also call the vectors {8 a basis of the space + . The choice of basis vectors is not unique, but
some basis are more useful than others, as will be discussed next.

A final concept that is also important to remember is the inner product. We denote the inner
product of two vectors D, { as the number 〈D, {〉. The inner product associates vectors to complex
numbers and must obey the following properties [47, 63]:

1. 〈D, {〉 = 〈{, D〉∗ (where ∗ denotes the complex conjugate).

2. 〈{, {〉 ≥ 0, where it is only an equality if { is the 0 vector.

3. If D, {, | are vectors, then 〈D + {, |〉 = 〈D, |〉 + 〈{, |〉.

4. If 2 is a complex number, then 〈2D, {〉 = 2∗〈D, {〉.
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Development of an ultrasensitive technique...

These four conditions are sufficient to determine the form of inner product for each vector
space. For example, if we are dealing with a space of column vectors of the type

D =


D1
...

D=


where D8 are complex numbers, then it is easy to show that inner product 〈D, {〉 that obeys
conditions 1 through 4 is:

〈D, {〉 = D†{ =
[
D∗1 . . . D∗=

] 
{1
...

{=

 = D
∗
1{1 + . . . + D

∗
={=, (1.1)

where † is the hermitian conjugate, the conjugate transpose of the original matrix.
A vector space equipped with such an inner product that is also a complete metric space is

called a Hilbert space [47, 32]. From this point on I’ll assume we are always working with a
Hilbert space.

Another form of the inner product of equal importance is the inner product for a function
space. Suppose 5 and 6 are continuous functions that map an interval ! of the real numbers
into the complex numbers ( 5 , 6 : ! → C), i.e., they belong to the vector space of continuous
functions defined in !. Then, the appropriate form of the inner product 〈 5 , 6〉 is:

〈 5 , 6〉 =
∫
!

5 (G)∗6(G) 3G. (1.2)

The final concept that comes from the definition of inner product is the notion of orthogonality
between two vectors: if 〈D, {〉 = 0 and either D or { is not the zero vector, then we say that D is
orthogonal to { and vice-versa. And of course, from orthogonality we can define the concept of
an orthogonal basis for the vector space. A basis {8 of vectors is said to be orthogonal if every
basis vector is orthogonal to each other, i.e., if 〈{8, { 9 〉 = 0 if 8 ≠ 9 . By extension, an orthonormal
basis of vectors 48 satisfies

〈48, 4 9 〉 = X8 9 , (1.3)

where X8 9 is the Kroenecker Delta:

X8 9 =

{
1, if 8 = 9
0, if 8 ≠ 9

The usefulness of the orthonormal basis is immediate since, being a basis, any vector { of the
space + can be represented by a linear combination of basis vectors:

{ =
∑
8

28 48, (1.4)

where 28 are complex numbers. In order to find the specific values of 28, it is only necessary to
take the inner product of { with each basis vector: by equations (1.4) and (1.3)

〈48, {〉 =
∑
9

2 9 〈48, 4 9 〉 =
∑
9

2 9X8 9 = 28 .
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1.1. Vector spaces

At last, we may also define operators as a map from vectors to vectors, and the most important
operators in physics are the linear operators. An operator � that maps elements from the space +
to the space* (� : + → *) is linear if

�(21{1 + 22{2) = 21�{1 + 22�{2 (1.5)

where {1, {2 ∈ + and 21, 22 are complex numbers.

1.1.1 Tensor product spaces
The final vector space to be discussed deserves its own subsection, and it is the tensor product

space. This is a vector space formed by combining two (or more) vector spaces together through
a tensor product, denoted here by ⊗. Let’s start by the simple case of the tensor product space
made from the product of two vector spaces + and, . The tensor product space (or simply the
product space), denoted by + ⊗, , is the space composed by the elements (called tensors) of the
form

{ ⊗ |, (1.6)

where { ∈ + and | ∈ , . The tensor product operation is linear, and as such

({1 + {2) ⊗ | = {1 ⊗ | + {2 ⊗ |
{ ⊗ (|1 + |2) = { ⊗ |1 + { ⊗ |2

2({ ⊗ |) = (2{) ⊗ | = { ⊗ (2|)

where 2 is a complex number.
The inner product between two tensors is defined element-wise as

〈{1 ⊗ |1, {2 ⊗ |2〉 = 〈{1, {2〉〈|1, |2〉. (1.7)

With the inner product defined for the product space, then we can also extend the notion of an
orthogonal basis: if {48} is a basis of + and { 5 9 } is a basis of, , then a basis of + ⊗, is simply

48 ⊗ 5 9 ,

and any element C of the space + ⊗, can be represented as a linear combination of the basis
vectors of + ⊗,

C =
∑
8, 9

28 9 48 ⊗ 5 9 . (1.8)

where 28 9 = 〈48 ⊗ 5 9 , C〉. Again, the choice of basis is not unique.
Just like operators were defined for vector spaces, we may also define operators on tensor

product spaces. In this case, if � is a linear operator in the space + and � is a linear operator in
, , then a linear operator in the space + ⊗, is

� ⊗ �. (1.9)

Operators written in the form of Eq. (1.9) are to be understood as acting on their own respective
spaces:

(� ⊗ �) ({ ⊗ |) = (�{) ⊗ (�|).
Operators that only act on the vector space + can be written as � ⊗ �, , and similarly, �+ ⊗ �
when the operator only acts on the space, . Here �+ , �, are the appropriate identity operators in
each space.
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Development of an ultrasensitive technique...

Due to the tensor product operation, we gain an additional freedom in this space: we can
write basis vectors which are not of the separable form (1.6). As an example, consider + to be
a two dimensional vector space with an orthonormal basis {41, 42}, then a basis for the space
+ ⊗ + is

41 ⊗ 41, 41 ⊗ 42, 42 ⊗ 41, 42 ⊗ 42. (1.10)

Another basis for this same space can be made by taking the following linear combinations of
elements from (1.10):

51 =
1
√

2

[
41 ⊗ 41 − 42 ⊗ 42

]
, 53 =

1
√

2

[
41 ⊗ 42 − 42 ⊗ 41

]
,

52 =
1
√

2

[
41 ⊗ 41 + 42 ⊗ 42

]
, 54 =

1
√

2

[
41 ⊗ 42 + 42 ⊗ 41

]
.

(1.11)

By taking the inner product between each element of the above, it can be shown that they also
form an orthonormal basis for + ⊗ + . However, this time all the elements 58 of (1.11) can not be
written as a tensor product of two vectors of + ( 58 ≠ { ⊗ |, for any {, |); they are ‘non-separable’.
It is also worth mentioning the non-separable property is more general than the two-dimensional
example shown here - any tensor product space supports it. This non-separability is at the core
of quantum entanglement, where each basis vector represents a possible quantum state of the
system, and having a state in a non-separable form creates a correlation between each of its parts.
However, no quantum mechanics was used to derive the non-separable basis (1.11), showing that
any theory built with tensor product spaces allows a similar non-separability to be constructed,
such as in classical electromagnetism, as will be shown in the next sections. We will now
explore the feature of non-separability within the context of quantum mechanics and classical
electromagnetism, explaining how this quantum interpretation can be used in the classical theory.

1.2 Quantum mechanics and entanglement
In quantum mechanics, the state of a quantum system is represented by a state vector |k〉 in

a Hilbert spaceH , with the restrictions that it must be normalized (〈k |k〉 = 1) and solves the
Schrödinger equation:

�̂ |k〉 = 8ℏ m
mC
|k〉, (1.12)

where �̂ is the hamiltonian operator, representing the total energy of the system [20, 63]. This
arbitrary quantum state can be expanded by defining a basis in its Hilbert spaceH . Typically,
this basis is formed by the eigenstates of an hermitian operator1 �̂ that commutes with the
hamiltonian ([�̂, �̂] = �̂ �̂ − �̂�̂ = 0), with the interpretation that whenever this condition is
satisfied both observables corresponding to �̂ and �̂ can be observed simultaneously, classifying
them as compatible observables [20, 63]. As an example relevant to this work, we may takeH
to be a two-dimensional Hilbert space, with the basis vectors |0〉 and |1〉 being eigenstates of the
operator �̂ with

|0〉 with eigenvalue 0,
|1〉 with eigenvalue 1.

Due to |0〉, |1〉 being eigenvectors of an hermitian operator, it can be shown that they are already
orthogonal to each other [20, 63], thus we may take them to be orthonormal as well.

1An operator is considered hermitian if �̂† = �̂, where † is the hermitian conjugate.
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1.2. Quantum mechanics and entanglement

The two-dimensional Hilbert spaceH is a general example of a single particle space, in this
case also called a qubit as it represents the simplest form of a quantum bit of information. Now,
if the system is composed of two qubits � and �, the state vector will now belong to the product
spaceH� ⊗ H�, whose basis will be similar in structure to (1.10):

|0〉� |0〉�, |0〉� |1〉�, |1〉� |0〉�, |1〉� |1〉�, (1.13)

where the subscripts � and � refer to which qubit the individual state vector belongs to2. From
the basis (1.13), we can create an entangled basis for the state vectors of this system as [37]

|q±〉 = 1
√

2

(
|0〉� |0〉� ± |1〉� |1〉�

)
,

|k±〉 = 1
√

2

(
|0〉� |1〉� ± |1〉� |0〉�

)
.

(1.14)

These states are also called the maximally entangled states or Bell states [37], the reason for the
latter is due to their relationship with the Bell inequalities.

The state vectors of (1.14) are entangled since they cannot be written as a product of individual
state vectors of � and �:

|k±〉 ≠ |k〉� |q〉� (1.15)

for any choice of one qubit state vectors |k〉� and |q〉�. The same applies for the states |q±〉.
Due to the postulates of quantum mechanics, a measurement on a quantum system will

collapse its state vector onto one of the eigenvectors of the measured observable. Thus, the
implications of the entangled state vectors (1.14) are apparent: if a measurement is made on a
single qubit of an entangled state it has equal probability of being found in either state 0 or 1,
thus we have no knowledge of each individual qubit that makes up the system [37]. However,
once a measurement is made on a qubit, we know for certain the state of the other qubit. This
high correlation between the two constituent qubits is a key feature of entanglement, and has
found wide use since its discovery, from a deep insight into the theoretical framework of quantum
mechanics to real world applications of quantum protocols [37]. In what follows I’ll briefly
discuss some of the applications of quantum entanglement.

1.2.1 Applications of quantum entanglement
One of the earliest discussions and perhaps the most famous that features entangled states

is the EPR paradox. In 1935, Einstein, Podolsky and Rosen proposed a thought experiment
where they considered correlations between position and momentum measurements on a pair of
entangled particles separated by an arbitrary distance [26]. Based on the postulates of quantum
mechanics, they argued that the theory would violate no faster than light communication or
would be incomplete to describe physical reality [26, 62]. Another formulation of the thought
experiment attributed to Bohm analyzes spin rather than position-momentum measurements [13,
62], and this is the formulation that common quantum mechanics textbooks, like Griffiths [32]
and Sakurai [63] follow.

Consider two observers, Alice and Bob, separated by an arbitrary distance. Midway through,
a source prepares two electrons on the singlet state

|k−〉 = 1
√

2

(
|+I〉|−I〉 − |−I〉|+I〉

)
��

(1.16)

2In the bra-ket notation of quantum mechanics is customary to drop the tensor product symbol “⊗” between kets.
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where |±I〉 are eigenvectors of the Pauli matrix fI (i.e., fI |±I〉 = ±|±I〉). Since spin 1/2 can
only take values of +1 or −1, this system is isomorphic to (1.14). After preparing the singlet
state, the source shoots one electron to Alice and the other to Bob. If Alice makes a measurement
of fI (the spin in the I-direction) on her particle, she will find with equal probability the result
+1 or −1. If she measures say, +1, Bob’s measurement must necessarily be −1, since by (1.16)
their measurements will be anti-correlated. If Bob instead decides to measure the spin on the
G-direction, represented by the Pauli matrix fG with eigenvectors [20, 63]

|±G〉 = 1
√

2

(
|+I〉 ± |−I〉

)
(1.17)

and thus, after Alice’s +I measurement, the state of the system will be

|+I〉� |−I〉� =
1
√

2
|+I〉�

(
|+G〉 − |−G〉

)
�

(1.18)

and thus Bob will measure with equal probability +1 or −1, making his measurements completely
uncorrelated to Alice’s. This is no surprise, since fI and fG do not commute and thus are
incompatible observables [20, 32, 63]. But if instead of measuring fI, Alice decides to measure
fG as well, we can rewrite (1.16) to the G-direction basis as [63]

|k−〉 = 1
√

2

(
|−G〉|+G〉 − |+G〉|−G〉

)
��

(1.19)

and the anti-correlation of Alice’s and Bob’s measurements return. In their paper, Einstein,
Podolsky and Rosen concluded that in order for such correlations to occur the results of each
measurement would have to be predetermined in order to not violate Einstein’s locality principle
(which says that spatially separated parts of a system should be independent from each other).
But that would require a hidden variable responsible for such predetermined outcomes, which
would imply that quantum mechanics is an incomplete description of reality [26, 62].

The first part of the solution of this Paradox is to show that indeed quantum mechanics is
non-local (i.e., it violates Einstein locality principle), but it does not violate causality [63]. In
order to prove this, we have to consider a string of measurements on fI made by Alice and Bob.
Each of their measurements are perfectly anti-correlated, but it is impossible for them to infer that
based on their measurements only. They would have to compare their strings of measurements
using a conventional slower than light way, and thus no new information was transferred before
the comparison, preserving causality [62, 63]. Even if Alice and Bob both agree beforehand
to measure fI, but then Alice suddenly changes to fG midway through the experiment, it is
impossible for Bob to know that [63]. All that Bob will measure will be a string of randoms
+1 and −1s, and will only notice the lack of correlation between the measurements after they
compare their results, transferring no new information again [63].

It is remarkable that a thought experiment based on a single entangled state led to a deeper
insight of quantum theory, namely that it is non-local. The second conclusion of the EPR paradox,
however, had to wait until 1964 for Bell to rule out the possibility of a local hidden-variable
theory [32, 62]. In short, Bell showed that a local hidden-variable theory would have to obey a
specific inequality, while quantum mechanics predicts incompatible results with such inequality
[37, 62].

In his original paper [9], Bell considered a general local hidden-variable theory and arrived at
an inequality involving the expectation value of the product of the observables �, �′, measured by
Alice, and �, �′, measured by Bob, assuming Alice’s and Bob’s measured outcomes are perfectly
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1.2. Quantum mechanics and entanglement

anti-correlated. Typically, the four observables �, �′, �, �′ are taken to be the spin observables,
and can be rotated by an arbitrary angle in relation to each other [37]. A more general inequality
without the assumption of anti-correlation was derived by Clauser et al. in 1969 [19], and is
known as the Bell-CHSH inequality [37, 62]. They arrived at the general expression

( = � (�, �) − � (�, �′) + � (�′, �) + � (�′, �′), (1.20)

where � (-,. ) is the expectation value of the product -. . For a local hidden-variable theory,
they showed that ( is bounded by [19, 37]

|( | ≤ 2. (1.21)

In the quantum case, some configurations can violate this bound (for instance, any of the
maximally entangled states (1.14)), in fact, quantum mechanics can achieve the maximum value
of [19, 32, 37]

|(quantum | = 2
√

2. (1.22)

This violation of the inequality (1.21) was a firm proof that any local hidden variable theory
cannot reproduce the results from quantum mechanics [9, 19, 37]. Since then, the higher than
usual correlation arising from entanglement was used as one of the definite signs of quantum
behavior [58].

The experimental realizations of the EPR paradox and Bell inequality violations started in
the 1970s, however only in the early 1980s it was possible to achieve an unambiguous violation
by tens of standard deviations using photon pairs from atomic cascades due to advancements in
laser physics [6]. In the late 1980s was already possible to realize EPR-type experiments on the
continuous degrees of freedom (as originally proposed by Einstein) on photon pairs coming from
spontaneous parametric-down conversion, once again confirming the results from Bell [6].

Another interesting feature of quantum entanglement is the possibility for a qubit to be
transferred between Alice and Bob through a maximally entangled state, which is known as
quantum teleportation. The teleportation protocol goes as follows [10, 37]: Alice has at her site
the following qubit

|@〉� = U |0〉� + V |1〉� (1.23)

and wants to transfer it to Bob, which is spatially separated from Alice. Beforehand, they agree
on sharing a maximally entangled state (1.14), in this case the |q+〉 one. Therefore, the state of
the entire quantum system is

|k���〉 =
1
√

2

(
|0〉|0〉 + |1〉|1〉

)
��
⊗ |@〉� . (1.24)

Alice then makes a projective measurement on her side of the system, but the basis chosen to
project is the entangled basis between the qubits � and �. Eq. (1.24) can be written in this
entangled basis in the following way [37]

|k���〉 =
1
2
[
|q+〉�� (U |0〉� + V |1〉�)

+ |q−〉�� (U |0〉� − V |1〉�)
+ |k+〉�� (U |1〉� + V |0〉�)
+ |k−〉�� (U |1〉� − V |0〉�)

]
.

(1.25)

When Alice projects the system onto the �� basis, Bob’s qubit shares a similar structure to
the initial qubit |@〉� , albeit it is not necessarily equal to it. In order to make Bob’s state be the
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same as |@〉� , Alice shares with Bob the result of her measurement on �� through a classical
communication channel. Depending on which state she got, Bob makes the appropriate rotation
on his state (realized through the Pauli matrices) to get the desired state, successfully teleporting
the state |@〉� to Bob’s site.

Quantum teleportation was first proposed in theory by Bennett et al in 1993, and ever since it
has been an essential tool in many quantum communication protocols [37]. On the experimental
side, the first realization of teleportation was reported in 1998 by Boschi et al [15] with entangled
photons over a distance of 2.5 m. This distance has increased over time, culminating in a
successful teleportation over 143 km reported by Ma et al in 2012 [51].

Most experimental realizations of quantum entanglement use photon pairs coming from
spontaneous parametric down-conversion (SPDC), where an incoming pump photon with
frequencyl0 is split by a nonlinear crystal into two photons of frequenciesl1 andl2, conserving
energy in the process: l1 + l2 = l0 [49]. Depending on the configuration, this photon pair is
entangled and has a high degree of spatial correlation [49]. The caveat of this method is the low
efficiency of conversion: usually less than 4 pairs are created for every 106 pump photons [12].
There’s also the problem of keeping the entanglement of the pair: environment perturbations can
cause the entanglement to be lost, which makes keeping the entangled pair a very delicate task
[58].

1.3 Classical electromagnetism and ‘entanglement’
Although entanglement is typically thought as an exclusively quantum feature, classical

electromagnetism allows for a similar non-separability between the degrees of freedom of the
electromagnetic (EM) field. In order to appreciate this non-separability, let’s start from the basics.
The EM field is described by the Maxwell Equations, which for the free fields (far from sources)
and in SI units read [42, 31]

∇ · E = 0 (1.26)
∇ · B = 0 (1.27)

∇ × E = −mB
mC

(1.28)

∇ × B = `0n0
mE
mC
. (1.29)

As it is well-known, these equations describe EM waves for the fields E and B. By taking the
curl of Eq. (1.28) and using Eq. (1.29),

∇ × (∇ × E) = − m
mC
(∇ × B) = −`0n0

m2E
mC2

. (1.30)

Using the following vector calculus identity

∇ × (∇ × F) = ∇(∇ · F) − ∇2F (1.31)

and Eq. (1.26), the right hand side of Eq. (1.30) becomes

∇ × (∇ × E) = −∇2E. (1.32)

Thus, the electric field E obeys the wave equation

∇2E − 1
22
m2E
mC2

= 0 (1.33)
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1.3. Classical electromagnetism and ‘entanglement’

where 2 = 1/√`0n0 is the speed of light in vacuum. A similar procedure yields the wave equation
for the magnetic field B:

∇2B − 1
22
m2B
mC2

= 0. (1.34)

Eqs. (1.33) and (1.34) are not independent from each other however, the electric and magnetic
fields are constrained by the Maxwell Equations (1.28) and (1.29). We can then choose any of
the wave equations to be our starting point, and the other field can be found by invoking this
constraint. Usually in optics the wave equation for the electric field (1.33) is the one chosen.
Then, since electromagnetism describes vector fields (in the Euclidean 3-dimensional sense), we
can seek solutions to Eq. (1.33) of the form

E = eG �G (r, C) + eH �H (r, C) (1.35)

where eG , eH are orthonormal vectors and �8 (r, C) is a function that solves the scalar wave equation:(
∇2 − 1

22
m2

mC2

)
�8 (r, C) = 0 (1.36)

In this context, e8 represents the polarization of the electromagnetic wave and �8 (r, C) its
amplitude.

Although this fact is somewhat overlooked, Eq. (1.35) already shows a form of polarization-
amplitude “entanglement” [58]. Just by its mathematical structure, it neatly ties back with the
discussion about tensor product spaces: as it is well-known from partial differential equations
theory, these separable solutions form a basis for the vector space composed of all possible
solutions of the wave equation [47]. Therefore, the state of the EM field can be described as
a superposition of tensor product elements like Eq. (1.8), allowing for such non-separability
between the polarization and the amplitude of the field. If we go even further, we may look for
separable solutions of the scalar wave equation (1.36) of the type

�8 (r, C) = �8 (r)�8 (C) (1.37)

which is known as the “separation of variables” procedure. Referring to vector spaces yet
again, the functions �8 (r) and �8 (C) are basis functions to their own vector spaces: �8 (r) to the
Helmholtz equation and �8 (C) to the harmonic oscillator equation. Since the functions �8 (r)
form a basis for their vector space, they are typically chosen to be orthogonal in relation to the
inner product (1.2): ∫

�8 (r)�9 (r) 33G = 0 if 8 ≠ 9 . (1.38)

Thus, not only can we interpret the EM field to allow for polarization-amplitude entanglement
but we can also realize entanglement between the spatial modes and the temporal modes [58].

As to how to interpret this ‘classical entanglement’ (more on nomenclature later), consider the
following example taken from Qian, Vamivakas and Eberly [58]. We refer back to the separation
of variables outlined in Eq. (1.37) but consider now the two distinct superpositions made from
the basis functions:

�� (r, C) =
[
�1(r) + �2(r)

] [
�1(C) + �2(C)

]
(1.39)

�� (r, C) = �1(r)�1(C) + �2(r)�2(C). (1.40)

Eq. (1.39) shows a superposition in each vector space, while (1.40) shows a non-factorizable (or
non-separable) superposition of the field. The difference between these two types of superpositions
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EA EB

F1
F2 G2

G1

Figure 1.1: example of the distinction between the two superpositions �� and �� from Eqs.
(1.39) and (1.40), where the �1, �2 modes are represented by the upper and lower half circles
and �1, �2 by the colors red and blue, respectively. Image modified from [58].

of classical fields can be recast in a simple measurement of red and blue frequencies (represented
by �1 and �2) separated by a prism, as shown in figure 1.1.

Figure 1.1 shows how conditional information is delivered through ‘classical entanglement’:
while for the field �� no information about the spatial modes is acquired after the prism, the
�� field conveys additional information, namely, if the field is present in the upper part or not.
This higher than usual correlation between the degrees of freedom is a consequence of the vector
space aspect of EM, and doesn’t require any quantum mechanics to be invoked [58].

Speaking of quantum mechanics, now it is a good idea do explain the difference between
the ‘true’ quantum entanglement and this ‘classical entanglement’. While a measurement on an
entangled quantum system collapses the state onto one of the basis states, the same is not true
in the classical case. A measurement of the blue light in figure 1.1 from the field �� will not
change the entire state of the field to blue light only, the red frequency will be still present to be
measured after. This is why authors sometimes prefer to use the term ‘classical non-separability’
rather than ‘classical entanglement’, since entanglement is typically associated with the non-local
quantum measurement resulting from the wavefunction collapse. Yet, this correlation of classical
fields arising from non-separability is of great interest, as will be discussed next.

1.3.1 Applications of classical non-separability
Just like quantum entanglement, classical non-separability allows for a similar correlation

between degrees of freedom to be exploited. For instance, one can define classical optical states
with a similar structure to quantum states and use them to violate Bell-like inequalities [29,
44]. For the binary degrees of freedom necessary, polarization and path information inside
an interferometer can be used through the Jones vector formalism [29]. In this formalism, the
polarization of a coherent field of the type

E = (eG�G + eH�H)48(:I−lC) (1.41)

is written as the (normalized) Jones vector

J =
1√
(J · J)

[
�G
�H

]
(1.42)

where J · J = J†J = |�G |2 + |�H |2 is proportional to the intensity of the field. An example of
polarization-path entanglement is a Mach-Zender interferometer as in Fig. 1.2, constructed with
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1.3. Classical electromagnetism and ‘entanglement’

two 50:50 beam splitters (BS) and a polarization flipper (PF) in one arm. If a horizontally
polarized beam of intensity �0 = |�0 |2 is incident on the first BS, the polarization degree of
freedom will be entangled with the path states a, b, which effectively act as a two-dimensional
orthogonal basis. At the exits of the interferometer the state of the field will be of the form

�0√
2�0
[e� ⊗ a ± e+ ⊗ b] (1.43)

where e� = [1 0]) and e+ = [0 1]) represent horizontal and vertical polarization, respectively.
The path states a, b can carry information such as phase introduced by placing different optical
elements inside the interferometer. The non-separable state (1.43) is also sometimes written in
ket form (although no quantum mechanics is involved):

1
√

2
[|�〉|0〉 ± |+〉|1〉] . (1.44)

Figure 1.2: a Mach-Zender interferometer can also be thought as a form of entanglement between
degrees of freedom of a classical beam. In the figure, a horizontally polarized beam is incident
on a 50:50 beam splitter (BS), and on the |1〉 path the beam has its polarization flipped from |�〉
to |+〉 by a polarization flipper (PF). At the exits of the interferometer, the degrees of freedom
are correlated and the field is given by Eqs. (1.43) or (1.44).

Just like for the quantum case, one can define correlations between the polarization and path
degrees of freedom. For a general separable classical field state of the form

E =
[
cosU e� + 48V sinU e+

]
⊗

[
cos W a + 48X sin W b

]
, (1.45)

the classical equivalent of the S measurement as shown in Eq. (1.20) will also be bounded by
|(classical | ≤ 2 [29]. However, for the non-separable state (1.44) the (classical measurement can
be greater than 2. In fact, it achieves the same maximum value of |(classical | = 2

√
2 [29]. These

Bell-like violations were experimentally tested using polarization-parity non-separability on
coherent and partially coherent beams, with excellent agreement with the theory [44].
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Another realization explored the non-separability between the spin (polarization) and orbital
angular momentum [14]. Beams with orbital angular momentum are described by the Laguerre-
Gaussian modes LG?,; in cylindrical coordinates [5]. The LG modes can be written as a coherent
sum of two Hermite-Gaussian modes HG=,<, which are their cartesian counterpart. For example,
the beam LG0,±1 is given by [5]

LG0,±1 =
1
√

2

[
HG1,0 ± 8HG0,1

]
. (1.46)

with the HG modes being

HG1,0 = �0
√
d exp(−d/2) cos \ (1.47)

HG0,1 = �0
√
d exp(−d/2) sin \, (1.48)

where d = 2A2/|2 with | being the waist radius of the beam and (A, \) the polar coordinates.

Figure 1.3: some examples of the lowest order Hermite-Gaussian HG=,< and Laguerre-Gaussian
modes LG?,; , taken from [59].

The LG modes with ; ≠ 0 show a typical twist in the phase around the propagation axis (Fig.
1.3), the amount in which the phase twists is associated with the angular momentum of the beam.
Due to this twist, the on-axis amplitude must be zero, which gives the LG mode a ring-like shape.
While the mode (1.46) is separable, a non-separable spin-orbit mode can be made by considering
the following combinations [29]:

EA =
1
√

2

[
HG1,0 eG + HG0,1 eH

]
= �0

√
d/2 exp(−d/2) eA (1.49)

E\ =
1
√

2

[
HG1,0 eH − HG0,1 eG

]
= �0

√
d/2 exp(−d/2) e\ (1.50)
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The result of these non-separable combinations is to create an azimuthally polarized (Eq. (1.50))
and a radially polarized beam (Eq. (1.49)), as can be seen in Fig. 1.4. These non-separable
spin-orbit beams were also used on the classical equivalent of quantum teleportation [33].
Hashemi et al [33] developed a protocol to transfer the state from one degree of freedom to
another in the same beam. Their experimental realization achieved a 99% fidelity of transfer
between the radial modes and polarization [33]. Vortex beams were also used to investigate the
interplay between coherence and entanglement in both the classical and quantum domain [57]. It
was found that in order to violate intensity based CHSH inequalities the vortex beam must be
coherent in both cases, however in the quantum case sub-Poissonian fluctuations in the photon
number (below shot-noise) are also required for true entanglement to be realized [57].

Figure 1.4: intensity (white color) and polarization (red arrows) profiles of the non-separable
beams (also known as vector beams), (a) EA from Eq. (1.50) and (b) E\ from (1.49). Figure taken
from [4].

Just as said in section 1.1, non-separability is a general property of tensor product spaces and
is not restricted to two dimensional ones. Indeed, one could realize non-separable combinations
between three degrees of freedom: path, polarization and transverse mode. A study by Balthazar
et al. [7] explored the generation of GHZ-states with classical fields and the violation of the
Mermin inequality, which are the equivalents to the Bell-states (1.14) and the Bell-CHSH
inequality (1.21) for three degrees of freedom, respectively.

Another revealing application of classical non-separability has been on resolving a longstand-
ing issue in polarization optics [58, 64]. While the two dimensional Jones vectors and 2× 2 Jones
matrices are sufficient to describe polarization states and linear transformations on fully-polarized
coherent beams, one must employ Stokes vectors (which are 4-dimensional) and matrices to
describe partially-polarized light [35]. The set of all possible linear transformations one can do
on Stokes vectors is known as the Mueller matrices, which is composed of 4 × 4 matrices that
generalize the Jones matrices [35]. However, not every Mueller matrix corresponds to a physical
transformation that can be achieved with an optical element [64]. Simon et al [64] showed that in
order for a Mueller matrix to be physical its elements must satisfy a stronger positivity criterion,
which only follows when linear transformations on non-separable beams are considered.
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The advantages of using classical optical beams are apparent: while the generation of an
entangled quantum state has often low efficiency and high maintenance, classical beams are
easier to generate and are often robust with respect to environment perturbations [58]. Thus
they can be used in experiments when the nonlocal character of quantum entanglement is not
necessary, exploiting the same correlation that classical non-separability allows between degrees
of freedom.
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Chapter 2

Weak values

Weak values were first proposed by Aharonov et al in 1988 in their paper titled “How the
result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100”
[2]. And just as the title of the paper highlights, weak values have what is called an anomalous
amplification property, where the weak value of an operator can significantly exceed its largest
eigenvalue [2]. In this chapter it is explained how the weak value protocol (also called a “weak
measurement”) introduces the property of anomalous amplification by postselecting the final
state of the system. A way to compare weak measurements with conventional measurements is
discussed through the Fisher information, which comes from parameter estimation theory.

2.1 Von Neumann-type measurements
By the postulates of quantum mechanics, a measurement of an observable �̂ on a quantum

system collapses the state of the system onto one of the eigenstates of �̂, with a probability equal
to the absolute square of the projection of the system’s initial state onto the eigenstate [63, 20, 32].
Due to this nature, this type of measurement is usually called a projective measurement, since the
act of measuring an observable projects the system onto one of its eigenstates. In 1932, Von
Neumann described a different measurement protocol, which uses a quantum system with two
degrees of freedom to extract information about an unknown parameter [55]. In most practical
applications of weak measurements, the degrees of freedom are typically chosen as a discrete
and a continuous one [24, 69], and thus I will describe Von Neumann’s protocol in this context.

The setup of Von Neumann’s protocol is as follows. We start with a quantum system of two
degrees of freedom: a qubit (called the “system”) and a continuous degree of freedom G or ?
(called the “meter”), where ? is the canonical momentum of G (i.e., the operators satisfy the
commutation relation [Ĝ, ?̂] = 8ℏ). These two degrees of freedom are initially prepared on the
separable state:

|�〉 = |8〉 ⊗
∫

3G k(G) |G〉

= |8〉 ⊗
∫

3? q(?) |?〉
(2.1)

where the system’s initial state is

|8〉 = 20 |0〉 + 21 |1〉 (2.2)

with |0〉 and |1〉 the eigenstates of an operator �̂ (with |20 |2 + |21 |2 = 1) and k(G) the position
space wavefunction while q(?) is the momentum space wavefunction. q(?) is related to k(G)
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through a Fourier transform:

q(?) = 1
√

2cℏ

∫
3G k(G)4−8?G/ℏ. (2.3)

Next, we couple the qubit with the meter via an interaction of the type

�̂ (C) = −6(C) �̂ ⊗ Ĝ, (2.4)

where 6(C) is a function with compact support limiting the duration of the interaction [2]. This
leads to a time evolution operator

*̂ = exp
[
86 �̂ ⊗ Ĝ
ℏ

]
, (2.5)

where 6 =
∫ )
0 6(C) 3C with ) being the interaction time. The parameter 6, the interaction strength,

is the parameter to be estimated.
The operator (2.5) can be identified as the momentum-space translation operator, but with a

momentum shift dependent on the eigenvalues of �̂. It is convenient to take �̂ as the third Pauli
matrix, f̂I, since it will produce equal but opposite momentum shifts of ±6 in momentum space
(i.e., the operator will shift the momentum eigenstates |?〉 to |? ± 6〉). According to this notation,
the eigenstates of �̂ are

�̂|0〉 = +|0〉
�̂|1〉 = −|1〉,

(2.6)

and thus
�̂ = |0〉〈0| − |1〉〈1|. (2.7)

The final state |�〉 of the entire system is given by inserting (2.7) into (2.5) and applying on
(2.1):

|�〉 = *̂ |�〉

= 20 |0〉
∫

3? q(?) |? + 6〉 + 21 |1〉
∫

3? q(?) |? − 6〉

=

∫
3?

[
20 |0〉 q(? − 6) + 21 |1〉 q(? + 6)

]
|?〉, (2.8)

As expected by the interaction hamiltonian (2.4), the continuous degree of freedom is now
coupled with the qubit degree of freedom. This coupling is also highlighted if we calculate
the reduced density matrix over each of the degrees of freedom [53]. The qubit’s (system)
density matrix is calculated by tracing the global density matrix corresponding to the final state
d̂ = |�〉〈� | over the continuous degree of freedom (meter):

d̂( = Tr" ( |�〉〈� |) =
∫

3? 〈? |�〉〈� |?〉

=

(
|20 |2 202

∗
1U

2∗021U
∗ |21 |2

)
(2.9)

where the subscripts ( and " stand for system and meter, respectively. The parameter U, which
is a function of 6, measures the overlap between the displaced wavefunctions:

U(6) =
∫

3? q(? + 6)q∗(? − 6). (2.10)
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In the case of no interaction, 6 = 0, U becomes unity and d̂( describes a pure ensemble, thus we
get no information about q(?) by measuring the qubit only in this case. However, in the case of
a strong interaction, 62 � Var[q(?)]1, U approaches zero and d̂( describes a mixed ensemble.
Thus, in the strong interaction regime, we can extract information about the momentum space
wavefunction simply by measuring the qubit [53], as was expected from the earlier discussion of
entanglement.

In case we want to measure the continuous degree of freedom (the meter), we calculate the
meter’s reduced density matrix d̂" by taking the trace of |�〉〈� | over the qubit (system) states
[53]:

d̂" = Tr( ( |�〉〈� |) = 〈0|�〉〈� |0〉 + 〈1|�〉〈� |1〉

=

∫
3?

∫
3?′

[
|20 |2q(? − 6)q∗(?′ − 6) + |21 |2q(? + 6)q∗(?′ + 6)

]
|?〉〈?′|. (2.11)

Here we are interested in the expectation value of the momentum ?, which is:

〈?̂〉 = Tr( d̂" ?̂) =
∫

3? ?%(?; 6)

= 〈?̂〉0 + 6
[
|20 |2 − |21 |2

]
= 〈?̂〉0 + 6〈8 | �̂|8〉, (2.12)

where
%(?; 6) = 〈? | d̂" |?〉 = |20 |2 |q(? − 6) |2 + |21 |2 |q(? + 6) |2 (2.13)

is the probability distribution in momentum space and

〈?̂〉0 =
∫

3? ? |q(?) |2 (2.14)

is the expectation value of the initial momentum wavefunction. Equation (2.12) shows that the
interaction induces a shift on the expectation value of the momentum distribution, but this shift
depends on the initial qubit state. In the strong interaction regime, however, even in the case of
no shift in 〈?̂〉 we can still unambiguously associate a measurement of ?̂ to a specific state |0〉 or
|1〉, since due to the strong interaction the distribution %(?; 6) shows two well-separated peaks,
as in figure 2.1.

As a final note, it should be noted that the interaction (2.4) does not induce a shift in the
position space wavefunction, k(G), nor in the probability distribution %(G; 6). This can be seen
by applying the time evolution operator (2.5) on the position representation:

|�〉 = *̂ |�〉 =
∫

3G

[
204

86G/ℏ |0〉 + 214
−86G/ℏ |1〉

]
k(G) |G〉. (2.15)

The reduced density matrix for the meter in this representation is

d̂" =

∫
3G

∫
3G′

[
|20 |2486(G−G

′)/ℏ + |21 |24−86(G−G
′)/ℏ

]
k(G)k(G′) |G〉〈G′|, (2.16)

and the probability distribution in position space is

%(G; 6) = 〈G | d̂" |G〉 = |k(G) |2, (2.17)

and thus no shift is induced in this representation.

1Here Var[ ] stands for the variance measured in the indicated space, i.e.,

Var[q(?)] = 〈?̂2〉 − 〈?̂〉2 =
∫

3? ?2 |q(?) |2 −
[∫

3? ? |q(?) |2
]2
.
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Figure 2.1: Graph of %(?; 6) for the meter initially prepared in a gaussian distribution with
zero mean q(?) ∝ exp(−?2/2Δ2) and with parameters 6 = 4Δ (strong interaction), |20 |2 = 0.6
and |21 |2 = 0.4. Note that even in the case of |20 |2 = |21 |2 = 0.5 (no shift in 〈?̂〉), each peak is
separated enough to be associated with its respective qubit state.

2.2 Weak measurements
In the last section it was shown how the coupling between the qubit and the position of a

particle can be used to measure the interaction strength 6. However, the interaction strength
can only be measured when it is sufficiently strong to displace each peak in the probability
distribution %(?; 6). In other words, the measurement protocol described above is restricted to
the condition 62 � Var[q(?)]. In the opposite limit, 62 � Var[q(?)], Eq. (2.13) shows two
highly overlapped peaks, and since 6 can be considered small, we expand up to first order in 6:

%(?; 6) ≈ |20 |2
(
|q(?) |2 − 6 3

3?
|q(?) |2 + . . .

)
+ |21 |2

(
|q(?) |2 + 6 3

3?
|q(?) |2 + . . .

)
≈ |q(?) |2 −

(
|20 |2 − |21 |2

)
6
3

3?
|q(?) |2

≈ |q(? − 6〈8 | �̂|8〉) |2. (2.18)

Thus, if we want to maximize the estimation of 6, we have to maximize the expectation value
〈8 | �̂|8〉. However, the expectation value of any operator is bounded by its maximum eigenvalue
[20], which is still a limiting factor in the estimation of small 6.

In 1988, Aharonov et al [2] proposed a protocol in this limit of highly overlapped peaks,
where they exploited the freedom in the initial and final qubit states. They found that instead of
measuring over the initial state |8〉 like in Eq. (2.11), they could amplify the estimation of 6 by
realizing a post-selection on a final qubit state | 5 〉 which is almost orthogonal to |8〉, in the sense
that

|〈 5 |8〉|2 � 1. (2.19)

Coming back to Eq. (2.5), we use the fact that the interaction strength 6 is small to expand
the time evolution operator up to first order in 6:

*̂ ≈ 1 + 86 �̂ ⊗ Ĝ, (2.20)

this approximation is valid whenever 62 � Var[q(?)] [2, 53]. The final global state is therefore

|�〉 = *̂ |�〉 ≈ (1 + 86 �̂ ⊗ Ĝ)
[
|8〉 ⊗

∫
3? q(?) |?〉

]
. (2.21)

We now perform a post-selection onto a qubit state | 5 〉 consistent with the almost orthogonal
condition (2.19). Effectively, we are discarding all the measurements that do not project the qubit

26



2.2. Weak measurements

subsystem onto | 5 〉. The state that survives the post-selection is

(〈 5 | ⊗ 1) |�〉 ≈ 〈 5 | (1 + 86 �̂ ⊗ Ĝ)
[
|8〉 ⊗

∫
3? q(?) |?〉

]
≈ 〈 5 |8〉

(
1 + 86〈�̂〉w Ĝ

) ∫
3? q(?) |?〉 (2.22)

where the weak value of the operator �̂ was defined as

〈�̂〉w =
〈 5 | �̂|8〉
〈 5 |8〉 . (2.23)

The weak value (2.23) has some interesting properties. Since it is not an expectation value
in the usual sense, it is in general a complex number [24]. Furthermore, due to the freedom
in selecting the initial and final qubit states, the denominator of (2.23) can be made as small
as desired. With a suitable choice of initial and final states, it is possible to make the weak
value exceed the biggest eigenvalue of �̂ [2, 24]. This last property, usually called ‘anomalous
weak value amplification’, is highly valuable in metrology, since it can be used to amplify the
estimation of the parameter 6 to a measurable level [34], as will be shown next.

Since 〈�̂〉w is in general a complex number, let us consider it first as a real one. Then, we can
recognize the term inside the parenthesis in Eq. (2.22) as the momentum translation operator for
small momentum shifts:

1 + 86〈�̂〉w Ĝ ≈ exp
(
86〈�̂〉w Ĝ

)
(2.24)

and thus the final probability distribution in momentum space is

%wv(?; 6) = | (〈 5 | ⊗ 〈? |) |�〉|2 ≈ |〈 5 |8〉|2 |q(? − 6〈�̂〉w) |2. (2.25)

Due to the postselection, the momentum translation operator shifts the momentum wavefunction
by a value proportional to the weak value of �̂.

If the weak value is an imaginary number instead, we change Eq. (2.22) to the position basis
and reexponentiate the term inside the parenthesis:

(〈 5 | ⊗ 1) |�〉 ≈ 〈 5 |8〉
∫

3G k(G) 4−6〈�̂〉w G |G〉. (2.26)

In contrast to the non-postselected measurement, the inclusion of the exponential in Eq. (2.26)
induces a shift in the position spacewavefunction aswell, as can bemore easily seen by considering
the wavefunction to be a Gaussian, k(G) ∝ exp(−G2/|2). The probability distribution in position
space for this initial Gaussian wavefunction is

%wv(G; 6) = | (〈 5 | ⊗ 〈G |) |�〉|2 ≈ |〈 5 |8〉|2
��k(G + 6〈�̂〉w|2/2)

��2 . (2.27)

Eqs. (2.25) and (2.27) show that we can use both G and ? representations to estimate the
parameter 6. The choice of which to measure is a matter of convenience for the specific experiment
to be made. In fact, since imaginary weak values can outperform standard interferometric
techniques [17], Eq. (2.27) is the most used for weak valued metrology [53].

Due to weak measurements requiring the postselection onto an almost orthogonal state, it has
been objected that this discardment of data outweighs the benefits of the anomalous amplification
[53]. In order to show that the discardment of data is not detrimental to weak valued metrology,
one must employ a measure through the Fisher information in order to compare weak values
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to standard techniques. The Fisher information is a statistical concept which measures how
much information is available about a parameter 6 in a random variable - with a probability
distribution %(G; 6), and it is defined as

� (6) =
∫

1
%(G; 6)

(
m%(G; 6)
m6

)2
3G (2.28)

(see appendix A for a derivation of the Fisher information). It can be shown that for # independent
measurements of the random variable - , the Fisher information will be additive: �# (6) = #� (6).
In our case, we are interested in estimating the parameter 6 from the probability distribution
%(G; 6). That is why we have to consider an unbiased estimator 6̂ of the parameter 6. Here,
“unbiased” means that the expectation value of 6̂ is equal to 6, E[6̂] = 6. The importance of this
estimator and the Fisher information is due to the following: the variance of the estimator 6̂ is
bounded from below by the Cramér-Rao bound [22]

Var[6̂] ≥ 1
�# (6)

. (2.29)

A derivation of this bound can be found in appendix A. Thus, the Fisher information gives
the minimum amount of variance (uncertainty) in our estimation of 6. This gives context as
to why �# (6) is called “information”: maximization of �# (6) implies in more quality on the
estimation of 6. The question left is whether or not a weak valued procedure maximizes the
Fisher information in comparison to the standard measurement procedure.

In the conventional Von Neumann measurement for small 6, the probability distribution is
given by Eq. (2.18). Assuming the momentum space wavefunction is a Gaussian with variance
f2 and zero mean, q(?) ∝ 4−?2/4f2 , the Fisher information is

�std = #

∫
1
%

(
m%

m6

)2
3? =

#

f2 |〈8 | �̂|8〉|
2. (2.30)

Since the eigenvalues of the operator �̂ are ±1, maximization of the Fisher information happens
whenever the initial state |8〉 is one of the eigenstates, giving a maximal Fisher information of
�std = #/f2. Invoking the Cramér-Rao bound (2.29), the uncertainty Δ 6̂ =

√
Var[6̂] of our

estimator in this case is bounded by
Δ 6̂ ≥ f

√
#
. (2.31)

In the optical case, we interpret # as the average photon number of the EM field since every
photon is independent from the other, each representing an independent measurement of the
field. For instance, measurements on a coherent EM field are limited by shot noise, which has
a variance on the photon number = of (Δ=)2 = # [49, 54]. However, the relative uncertainty
(Δ=)/# = 1/

√
# decreases as the average photon number # increases. Thus the Cramér-Rao

bound (2.29) also gives the expected dependency of 1/
√
# for shot noise-limited measurements.

For the weak valued experiment, the probability distribution is given by Eq. (2.25) and the
Fisher information is thus

�wv = #

∫
1
%wv

(
m%wv

m6

)2
3? =

#

f2

��〈�̂〉w��2 |〈 5 |8〉|2. (2.32)

With a nonzero 〈 5 |8〉, we can use the definition of weak value (2.23) to rewrite (2.32) as

�wv =
#

f2

��〈 5 | �̂|8〉��2 . (2.33)
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Maximization of |〈 5 | �̂|8〉|2 can be more easily understood if we invoke the Bloch sphere for the
|0〉, |1〉 states [24]. Since weak values only show anomalous amplification for the case of almost
orthogonal initial and final states, we will consider this case. That means that | 5 〉 and |8〉 are
almost diametrically apart on the Bloch sphere. Now, the operator �̂ = |0〉〈0| − |1〉〈1| rotates
the state by c radians around the |0〉, |1〉 axis, and thus maximization of |〈 5 | �̂|8〉|2 only happens
when both states | 5 〉, |8〉 lie close to the equator, since in this configuration the rotated state �̂|8〉
will be almost equal to | 5 〉 (Fig. 2.2). It can never be equal however, because if the initial and
final states are orthogonal to each other Eq. (2.25) gives zero probability of postselection and no
shift can be observed. Therefore, we conclude that weak measurements asymptotically recover
all the available Fisher information #/f2 as 〈 5 |8〉 → 0 [53], showing that the discardment of
data does not hinder the anomalous amplification.

Figure 2.2: Bloch sphere representation of the |0〉, |1〉 states. The initial state |8〉 (in blue) is
almost diametrically opposite to | 5 〉 (in black). The rotated state �̂|8〉 (in red) is almost the same
as | 5 〉, giving an approximately unity overlap, 〈 5 | �̂|8〉 ≈ 1, and asymptotically maximizing the
Fisher information (2.33) as 〈 5 |8〉 → 0 .

2.3 Applications of weak measurements
The anomalous amplification of weak values can lead to an enhanced signal-to-noise ratio

(SNR) in the weak value regime [66] and with imaginary weak values [17] as compared to
non-postselected techniques. This SNR enhancement of small signals is sought in gravitational
wave detection such as the LIGO (Laser Interferometer Gravitational-Wave Observatory), which
had its highest sensitivity located at a narrow band around 100 Hz in its 2016 runs [1]. Due to
gravitational wave phenomena ranging from mHz to kHz, it is of great interest to improve the
SNR in this broadband range. Based on this problem, weak values are one of the possibilities to
enhance low frequency signals [53] while there are already proposals using weak polarization
measurements together with squeezed light to improve the SNR in the high frequency regime
[40].

In the quantum domain, applications also exist based on the weak values framework. For
example, weak measurements can be used to steer quantum systems into pure states, and more
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recently to mixed states as well [46]. This allows experimental realizations to engineer desired
quantum states through variations of the weak measurement’s parameters. Weak measurements
can also be used as an alternative to quantum tomography, which in some cases can reconstruct
the quantum state without the global reconstruction that quantum tomography employs, reducing
experimental error propagation in the process [24]. At last, they also found their way into some
quantum paradoxes, most notably the “quantum Cheshire cat”. In this paradox, the circular
polarization of a photon (its spin, an intrinsic property of the particle) can be found in a location
where there is no photon at all [3], similar to how the cat in Alice in Wonderland can be separated
from its grin - hence its name. Instead of solving the paradox, weak measurements further
enhance it by making it possible to simultaneously perform both operations of locating the particle
and measuring the spin, which in the strong measurement regime wouldn’t be possible given
that both operations would force the particle state to collapse, thus destroying the paradox [3].
From the weak measurement interpretation, some authors conclude that it is possible to separate
an intrinsic property from its particle [3], while others support this is an effect of quantum
interference when the quantum states of the detectors are accounted for [21]. Nonetheless, this
paradox serves to remind us how important the interpretation of quantum mechanics is when we
make conclusions based on it.

Weak values can also be entirely described in terms of classical optics: as outlined in Chapter
1, non-separability is a feature shared by both quantum physics and classical optics. In this
classical context, the evolution operator (2.5) is interpreted as a coupling between two degrees
of freedom of the same optical beam, for example, its polarization and transverse position.
Postselection is achieved by placing polarizers or other optical elements in front of the detector,
which results in the same amplification effect of Eqs. (2.25) and (2.27). Many reported weak
measurements were made in this classical context, which allowed for robust tabletop experiments
such as: measuring the Spin-Hall effect of light [38, 73], ultrasmall beam deflections [23,
36], frequency shifts [67], angular rotations [52] and velocities [41], time delays [17, 68] and
temperature changes [25]. Other techniques based on weak values were also used to measure
small phases [67, 50] and were even able to achieve anomalous amplification without the need of
postselection [54, 48].
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Chapter 3

Nonlinear optical effects

In this Chapter we present the basics that constitute the field of nonlinear optics. We begin by
describing the basic features of a Gaussian beam, which is the most accurate representation of
many experimental laser beams. After briefly reviewing the concept of refractive index from
the perspective of the electromagnetic theory, we then move on to the more general case of the
nonlinear polarization. We specifically focus on third order effects due to their straightforward
inclusion through the nonlinear refractive index, which is the quantity measured in the beam
deflection technique.

3.1 Linear optics

3.1.1 Gaussian beams
As seen in Chapter 1, the free Maxwell equations can be simplified to two wave equations for

the fields E and B (whose amplitudes and phases are not independent but instead constrained by
the Maxwell equations). As usual in optics, we will work with the electric field, then, it must
satisfy (

∇2 − 1
22
m2

mC2

)
E(r, C) = 0. (3.1)

Let us restrict the solutions of Eq. (3.1) to only electric fields with harmonic time-dependence
of the type

E(r, C) = E(r)4−8lC . (3.2)

In this case eq. (3.1) becomes the Helmholtz equation for the electric field amplitude E(r)(
∇2 + :2

)
E(r) = 0. (3.3)

where :2 = (l/2)2 = (2c/_)2, where _ is the wavelength.
A basis for the solutions of this equation are the linearly polarized plane waves,

e8 48k·r (3.4)

where e8 (8 = 1, 2) is a vector perpendicular to k and |k|2 = :2 = (l/2)2. All solutions to Eq.
(3.3) can be written as linear combinations of plane waves (3.4).

Despite being able to write any solution of the wave equation as a linear combination of plane
waves, in some cases it is more convenient to work with a different basis that better approximates
the optical field we are working with. As a relevant case for us, consider laser light: it is
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highly directional, with minimal divergence and with a finite spatial extent perpendicular to the
propagation direction. Plane waves have a definite propagation direction, but they are infinite
in extent. This prompts us to seek other solutions of equation (3.1) that better represent these
features.

We will restrict ourselves again for the case of linearly polarized waves, and motivated by the
plane wave solution (3.4), we will seek solutions to (3.1) that resemble a plane wave modulated
by an envelope function, of the form

E(r, C) = E0 D(r)48(:I−lC) , (3.5)

where the propagation direction has been arbitrarily chosen as the I direction. Putting the above
ansatz in Eq. (3.1) (where again l2 = 22:2), we see that the envelope function D must satisfy

∇2
⊥D +

m2D

mI2
+ 28:

mD

mI
= 0, (3.6)

where ∇2
⊥ = m

2/mG2 + m2/mH2 is the transverse laplacian. Now, remember that we are seeking
solutions with minimal divergence, which means that the envelope function D must vary
slowly with the propagation distance I. This restriction is called the slowly varying envelope
approximation [16, 71], and in mathematical terms it is written as����m2D

mI2

���� � ����: mDmI ���� (3.7)

allowing us to neglect the m2D/mI2 term in equation (3.6). In physical terms, it means that many
oscillations occur before the envelope substantially changes with the propagation.

With approximation (3.7), D now solves the paraxial Helmholtz equation

∇2
⊥D + 28:

mD

mI
= 0. (3.8)

The solutions of this equation are the Hermite-Gaussian (HG) modes in cartesian coordinates
and Laguerre-Gaussian (LG) modes in cylindrical coordinates [5]. The fundamental solution to
both of these families, the LG0,0 = HG0,0 is [71]

D(A, I) = |0

|(I) exp
[
− A2

|(I)2

]
exp

[
8
:A2

2'(I) − 8k(I)
]
, (3.9)

and when inserted back into Eq. (3.5) gives the Gaussian beam solution:

E(r, C) = E0
|0

|(I) exp
[
− A2

|(I)2

]
exp

[
8:I + 8 :A

2

2'(I) − 8k(I) − 8lC
]
, (3.10)

where A2 = G2 + H2 and

|(I) = |0

√
1 +

(
I

I'

)2
is the beam’s waist radius, (3.11)

I' =
c|2

0
_

=
1
2
:|2

0 is the Rayleigh range, (3.12)

'(I) = I
[
1 +

(
I'

I

)2
]
is the radius of curvature, (3.13)

k(I) = arctan
(
I

I'

)
is the Gouy phase. (3.14)
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We see that the Gaussian beam diverges throughout its propagation (figure 3.1), and its waist
|(I) takes the minimum value of |0 at I = 0. Also in this region the radius of curvature '(I)
becomes infinite, which means the Gaussian beam has no curvature at I = 0. Far away from this
region (I � I'), the waist and the radius of curvature increase linearly.

Figure 3.1: schematic featuring the propagation of a Gaussian beam along the I-axis (red line repre-
senting the 1/42 ). The angleΘ is the divergence angle, defined asΘ = 2 limI→∞ arctan

(
|(I)/I

)
.

Figure adapted from https://en.wikipedia.org/wiki/File:GaussianBeamWaist.svg.

The same propagation effects can be modeled using Fourier optics [30]. Consider the slowly
varying amplitude D(A, I) from Eq. (3.9) at I = 0, its two-dimensional Fourier transform is

D(?) = 1
2c

∫
4−A

2/|2
04−8?GG−8?HH 32G

=
1
2
|2

0 4
−?2|2

0/4, (3.15)

where ?2 = ?2
G + ?2

H. In reciprocal space, propagation of the beam by a distance I is equivalent to
multiplying D(?) by exp(−8?2I/2:), where : = 2c/_, and taking an inverse transform [30]:

D(A, I) = 1
2c

∫
D(?) exp

(
−8?2I

2:

)
48?GG+8?HH 32?

=

[
|2

0

|2
0 + 28I/:

]
exp

(
− A2

|2
0 + 28I/:

)
(3.16)

This can be simplified by noting that

1
|2

0 + 28I/:
=

1
|2

0 (1 + 8I/I')
=

1 − 8I/I'
|2

0 [1 + (I/I')2]

=
1

|(I)|0
exp

[
− 8 arctan(I/I')

]
(3.17)

=
1

|(I)2
− 8:

2'(I) . (3.18)

Thus, by substituting the identities (3.17) and (3.18) into (3.16), we recover the result (3.9),
showing that indeed this is an equivalent method for propagating Gaussian beams. This method
will become advantageous in Chapter 4, where we will analyze the propagation of a Gaussian
beam after a small momentum shift is introduced on it.
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Finally, the intensity of the optical beam is defined as

� (r) = n02〈Re(E) · Re(E)〉C (3.19)

where 〈 〉C is a time average over the rapid oscillations of the electric field. For fields with a time
dependence 4−8lC , it can be shown that (3.19) reduces to

� (r) = 1
2
n02 |E(r) |2. (3.20)

Thus, by substituting (3.10) in (3.20), we see that a Gaussian beam also has a gaussian
intensity profile:

� (A, I) = 1
2
n02 |E0 |2

(
|0

|(I)

)2
exp

(
−2A2

|(I)2

)
= �0

(
|0

|(I)

)2
exp

(
−2A2

|(I)2

)
(3.21)

where I combined the constants into the peak intensity �0. Integrating (3.21) over the GH plane
gives the total power % carried by the beam:

% =

∫ ∞

−∞
3G

∫ ∞

−∞
3H � (A, I) = 1

2
c|2

0 �0, (3.22)

which is independent of I.

3.1.2 Linear polarization
When an electric field E acts on a neutral, non-magnetic medium, the medium’s response is

described by its polarization vector P. The polarization is the macroscopic description of the
alignment of permanent and induced dipoles to the electric field, and for weak static fields on
isotropic media, it is phenomenologically treated as directly proportional to the applied electric
field:

P = n0j(1)E. (3.23)

Here j(1) is known as the linear or first order electrical susceptibility, and assumes different
values depending on the medium being described. It’s also worth pointing out that for anisotropic
media j(1) becomes a second-rank tensor.

If the incoming electric field is a dynamic quantity, like an electromagnetic wave oscillating
with frequency l, the medium can be dispersive and j(1) will be a function of l, thus (3.23)
must be analyzed in frequency domain, where it reads

P(l) = n0j(1) (l)E(l). (3.24)

The time-dependent polarization P(C) is found from (3.24) by taking its Fourier transform and
applying the convolution property:

P(C) = n0
∫ ∞

0
'(1) (C′)E(C − C′) 3C′, (3.25)

where '(1) (C) is known as the linear or first order response function, and this convolution between
the response function and the electric field states that the polarization at time C depends on the
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applied electric field at earlier times C − C′. Here the lower limit C′ = 0 was explicitly shown,
since '(1) (C′) = 0 for C′ < 0 in order to not violate causality. The connection between '(1) (C′)
and j(1) (l) is also through a Fourier transform:

j(1) (l) =
∫ ∞

0
'(1) (C′)48lC ′ 3C′. (3.26)

Let’s briefly return to the case of j(1) being non-dispersive. The inclusion of the polarization
P on Maxwell’s equations is through Eqs. (1.26) and (1.29), which now become [42, 31]:

∇ · (n0E + P) = 0 (3.27)

∇ × B = `0n0
mE
mC
+ `0

mP
mC
. (3.28)

Doing the same procedure as of section 1.3, we arrive at the following wave equation for E:

∇(∇ · E) − ∇2E + 1
22
m2E
mC2

= − 1
n022

m2P
mC2

. (3.29)

This equation can be simplified: since P is directly proportional to E, Eq. (3.27) assures us that
∇ ·E = 0, thus the first term of (3.29) vanishes identically, and by substituting (3.23) on the right
hand side of (3.29), we find

∇2E − 1
22
m2E
mC2

=
j(1)

22
m2E
mC2

. (3.30)

This can be further simplified by defining the refractive index = as

=2 = 1 + j(1) . (3.31)

thus, we finally arrive at

∇2E − =
2

22
m2E
mC2

= 0. (3.32)

Equation (3.32) encapsulates that the effect of the linear polarization is to change the speed
of light inside the medium to 2/=. This change in the speed of light is the core of linear optics.

3.2 Nonlinear polarization
Equations (3.23) and (3.24) work well for weak fields, but fail to describe the medium’s

polarization when the electric field amplitude becomes comparable to the atomic fields that
hold the charges together. When such strong fields act on a medium, the polarization is better
described by the general power series expansion on the electric field [16]:

1
n0

P = j(1) · E1 + j(2) · E2 + j(3) · E3 + . . . , (3.33)

where j(=) represents the =th-order susceptibility (in general it is a (= + 1)-rank tensor for
anisotropic media) and the notation j(=) · E= represents the tensor contraction between the
susceptibility and the electric field components. In a different notation, Eq. (3.33) is sometimes
written as

P = P(1) + P(2) + P(3) + . . . , (3.34)
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where P(=) = n0j(=) · E= is the =th-order polarization. For dispersive media, the susceptibilities
depend on the frequencies of the electric field as well, and Eqs. (3.33) and (3.34) must be analyzed
in frequency domain, similar to what was done in Eq. (3.24). In general, for an incoming electric
field composed of = different frequencies l1, . . . , l=, the term P(=) in expansion (3.34) involves
a mixture of the = frequencies and therefore the susceptibility j(=) is a function of these [16]:

j(=) = j(=) (l1, l2, . . . , l=). (3.35)

Just like for the linear case, the time dependent =th-order polarization can be found by defining a
=th-order response tensor R(=) and integrating over time [16]:

P(=) (C) = n0
∫ ∞

0
3C1 · · ·

∫ ∞

0
3C= R(=) (C1, . . . , C=) · E(C − C1) · · ·E(C − C=). (3.36)

Equation (3.29) still holds when P is given by expansion (3.33), however, the term ∇ · E does
not vanish in general. Despite this, it is usually a small term, and can be neglected [16]. Thus,
the nonlinear wave equation is

∇2E − 1
22
m2E
mC2

=
1
n022

m2P
mC2

. (3.37)

Notice that this equation is in the form of a wave equation with a source term on the right-hand
side. Since this source term depends on powers of the electric field by Eq. (3.33), it can induce
effects that oscillate at different frequencies from the incoming electric field. These effects are
further divided into parametric and non-parametric processes: parametric processes conserve
the energy of the electromagnetic field, examples are harmonic generation, sum and difference
frequency generation, optical rectification and the intensity dependent refractive index, [16];
non-parametric processes however do not conserve the energy of the field, examples being
saturable absorption and stimulated Raman scattering [16]. Instead of describing all the possible
nonlinear optical processes, the focus will now be put on the third order effects, which are the
ones investigated in this work.

3.2.1 Third order effects
For samples composed of gases, liquids, amorphous solids and centrosymmetric crystals,

the lowest order nonlinear susceptibility is the third order term, characterized by j(3) [16]. This
happens because all these materials obey inversion symmetry: inverting the sign of the incident
electric field (i.e., E to −E) is equivalent to inverting the sign for the emitted electric field, i.e.,
changing P to −P. However, since the most general P(E) is given by Eq. (3.33), requiring that
P(−E) = −P(E) implies in all even susceptibilities vanishing identically, leaving only the odd
terms in expansion (3.33).

An effect of the third order susceptibility is the nonlinear refractive index. Suppose a linearly
polarized, monochromatic EM field of the type (ignoring the spatial dependence)

� (C) = �0 cos(lC) (3.38)

is incident on a nonlinear medium with third order polarization:

%(C) = n0j(1)� (C) + n0j(3)� (C)3. (3.39)
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3.2. Nonlinear polarization

With Eq. (3.38) and using the identity cos(lC)3 = [cos(3lC) + 3 cos(lC)]/4, the medium’s
response is

%(C) = n0j(1)�0 cos(lC) + 3
4
n0j

(3)�3
0 cos(lC) + 1

4
n0j

(3)�3
0 cos(3lC). (3.40)

In Eq. (3.40), there is one term that depends on 3l, which is responsible for the third harmonic
generation [16]. There are also two terms that oscillate at the original frequency of the field:
the first is linear in �0 and is responsible for the linear refractive index as already discussed; the
second one depends on the third order of the field amplitude, however, due to oscillating at the
same frequency it can be grouped together with the linear contribution, which motivates the
definition of an effective susceptibility jeff as

jeff = j
(1) + 3

4
j(3)�2

0 . (3.41)

From jeff, we can also define an effective refractive index = [16],

=2 = 1 + jeff (3.42)

= =2
0

(
1 + 3

4
j(3)�2

0

=2
0

)
(3.43)

where =0 is the linear refractive index, defined as =2
0 = 1 + j(1) . The form (3.43) for the nonlinear

refractive index is convenient since, typically, j(3)�2
0 is orders of magnitude smaller than =2

0,
motivating a Taylor expansion up to the lowest order in j(3) when taking the square root of Eq.
(3.43):

= ≈ =0

(
1 + 3

8
j(3)�2

0

=2
0

)
. (3.44)

Through the definition of intensity, Eq. (3.20), which in a medium with linear refractive index =0
is modified to

� =
1
2
=0n02 |� |2, (3.45)

we rewrite Eq. (3.44) to
=(�) = =0 + =2�, (3.46)

known as the intensity dependent refractive index, with =2 defined as [16]

=2 =
3
4
j(3)

=2
02n0

. (3.47)

Eq. (3.46) describes the nonlinear refractive index experienced by the same beam which
generated it, leading to effects such as self-focusing and self-phase modulation [16, 28]. However,
in this work we are interested when one beam generates the nonlinear response and another,
separate beam experiences it - this is described by the pump and probe setup. In this setup, a
strong excitation (pump) beam �4 stimulates the nonlinear response of the sample, while a probe
beam �?, much weaker than the excitation (|�? | � |�4 |), measures the change in the optical
response of the sample due to the excitation. The electric field for the pump and probe setup is
given by (assuming the same polarization and ignoring the spatial dependence):

� = �44
−8l4C + �?4−8l?C + c.c. , (3.48)
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where c.c. stands for the complex conjugate of the terms that precede it1. Due to the probe being
much weaker than the excitation beam, the nonlinear effects due to the excitation will be much
stronger than those due to the probe, therefore we can ignore the nonlinear contributions of �?,
keeping only the first order terms. For example, the nonlinear refractive index (3.46) experienced
by the probe will be a function of the pump intensity �4:

=? = =0(l?) + =2(l?, l4)�4, (3.49)

where the frequency dependence of each term was shown for clarity. For the non-instantaneous
effects, we use Eq. (3.36) to write the third order polarization as

%(3) (C) = n0
∫ ∞

−∞
3g1

∫ ∞

−∞
3g2 '

(3) (g1, g2)
���4 (C − g1 − g2)��2�? (C − g1), (3.50)

which follows from Eq. (3.36) assuming |�4 | � |�? |. This equation will contribute with a
non-instantaneous effect to =2 as well. Since all the effects caused by the pump beam is through
=2, this is the parameter to be measured.

The inner mechanisms that produce =2 are varied [18]: the fast electronic transitions between
states, nonlinearities in glasses (doped amorphous SiO2), semiconductor nonlinearities, molecular
reorientation in liquids and gases, electrostriction and thermal nonlinearities. These mechanisms
happen in different timescales, from the sub-femtosecond electronic response to the millisecond-
long thermal nonlinearities [18], and thus the time resolution of the experiment is vital to resolve
which mechanisms are at play.

3.2.2 Beam deflection technique
The beam deflection technique is a type of pump and probe where, as the name suggests,

the measured parameter is the transversal displacement the probe beam experiences due to the
nonlinearity created by the pump. Originally proposed as a technique to measure photothermal
effects using CW and pulsed beams [43, 65], it has been adapted to measure the fast rotational
and electronic nonlinearities [27, 61] as well. Here we are interested in the latter application of
the technique.

The beam deflection technique utilizes the index gradient created by the Gaussian profile of
the excitation beam to induce a small deflection on the probe beam, in a setup shown in Fig. 3.2. If
the excitation spot size |4 is sufficiently bigger than the probe spot size |? (usually, |4/|? ≥ 3)
and the angle between the probe and excitation is small (< 5º), the index gradient experienced by
the probe will be practically constant on the H direction and linear on the G direction. Working in
the thin sample approximation (where the sample size ! is significantly smaller than the Rayleigh
range, ! � I') and neglecting the nonlinear phase shift iNL = :0Δ=?! � 1, the index gradient
can be approximated as a thin prism that deflects the probe by an angle \ given by [27, 43, 65]

\ (G, H, C) =
∫ !

0

m

mG
=? (G, H, I, C) 3I ≈ !

m

mG
=? (G, H, C), (3.51)

where the right hand side is valid in the thin sample approximation, =? (G, H, C) is the index
experienced by the probe beam and the sample was assumed to be located at I = 0.

The refractive index =? can be further divided into =? = =0,? +Δ=?, where =0,? is the constant
linear refractive index and Δ=? is the change in refractive index due to the excitation. For third

1When dealing with nonlinear optical processes, we have to use the real representation of the fields, since the
principle of superposition is no longer applicable when the nonlinear polarization is present.
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3.2. Nonlinear polarization

Figure 3.2: the pump and probe setup used in the beam deflection technique (adapted from [27]).
(a) excitation beam; (b) probe beam; (c) delay line (used if the probe is also from a pulsed source);
(d) sample, with the drawing below it showing the alignment between excitation and probe; (e)
probe beam deflected by a small angle \; (f) segmented photodiode, measuring the difference in
power in the G direction.

order effects, this change is proportional to the intensity of the excitation, thus Δ=? also has a
Gaussian profile:

Δ=? (G, H, C) = Δ=? (C) exp
[
−2(G2 + H2)

|2
4

]
(3.52)

where Δ=? (C) carries the temporal information of the index change, and is proportional to
the convolution of the material response and excitation intensity [27], with the latter having a
Gaussian temporal profile with g4 HW1/4M duration [27]. Eq. (3.52) is true when the absorption
of the sample is negligible. If that is not the case, heat diffusion may increase the size of
Δ=? (G, H, C), making it bigger than the spot size |4 [43]. If the absorption is negligible, the
largest angle \ is realized when the probe passes the point of highest derivative at G = |4/2 and
H = 0, so by Eqs. (3.51) and (3.52)

\ (C) = 2!
|4
√
4
Δ=? (C). (3.53)

Next, the probe beam propagates towards the detector located a distance I away from the
sample, and the spatial profile of the intensity at the detector is given by [27]

�? (G, H, I) = �?,0(I) exp
[
−2
(G − \I)2 + H2

|? (I)

]
, (3.54)

The detector utilized in this technique is a segmented photodiode, capable of measuring the
difference in power Δ% between the right and left portions of the detector. For small deflections,
this signal will be linear in the deflection ΔG = I\, and is given by (see Chapter 4 for more
details)

Δ% = % · 4
√

2c
\I

|? (I)
, (3.55)

where % is the total power, calculated by integrating Eq. (3.54) in the GH plane. Usually
the distance I is greater than the Rayleigh range I' (I � I'), allowing to approximate
|? (I) ≈ |?,0 · (I/I') = 2I/(:0|?,0) (Eqs. (3.11) and (3.12)) and thus Eq. (3.55) will be I
independent:

Δ%

%
=

2
√

2c
:0|?,0 \, (3.56)
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where |?,0 is the probe minimum waist radius, |? (I = 0) = |?,0, and :0 = 2c/_ is the probe
wavevector magnitude in vacuum.

The results (3.55) and (3.56) are independent from the mechanism that created the deflection
(be it thermal, electronic or orientational nonlinearities). For the case of non-thermal nonlinearities,
\ (C) is given by Eq. (3.53), and thus the signal will be

Δ%

%
=

4:0!√
2c4

|?,0

|4
Δ=? (C). (3.57)

If the probe comes from a pulsed laser source with g? pulse duration (defined as the HW1/4M),
then the intensity profile (3.54) will have a temporal factor of

�? (G, H, I, C − g3) = �? (G, H, I) exp

[
− (C − g3)

2

g2
?

]
(3.58)

where g3 is the delay introduced by the delay line (Fig. 3.2). With the pulsed probe, the power %
will also be a function of time, and therefore the normalized signal is given by the integrated
power instead [27]:

Δ�? (g3)
�?

=

∫ ∞
−∞ Δ%(C − g3) 3C∫ ∞
−∞ %(C − g3) 3C

=
4:0!√

2c4

|?,0

|4
〈=?〉(g3), (3.59)

where 〈=?〉(g3) is the change in refractive index averaged over the probe temporal profile, which
is a function of the delay g3 . This delay is used to distinguish the fast dynamics from the slow
effects.

Through the independence between the probe and excitation beams, this technique allows to
resolve the tensor elements of j(3) by using different combinations of polarization. It is even
possible to measure dispersion effects by changing the wavelengths of the two beams [27].
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Chapter 4

Amplification of third order optical effects
with weak measurements

4.1 Experimental setup
The development of this technique began by recreating the experimental setup used by Dixon

et al [23] to measure ultrasmall deflections through weak values. Their setup consisted of a
Sagnac interferometer whose postselection was achieved by destructive interference at the exit of
the interferometer. The displacement was imparted on the beam through a piezo-driven mirror.
Through the use of the anomalous amplification the smallest deflection angle they measured was
400 frad [23]. Furthermore, their setup can be easily analyzed in both quantum and classical
descriptions [23, 66], and here we will use each as a matter of convenience. This setup was then
adapted as the probe beam for the beam deflection technique, with a separate excitation beam
being used to create the nonlinear refractive index.

We begin by considering a collimated beam and analyze it with the quantum mechanical
description of weak values. As our probe beam, we used a 633 nm HeNe laser (model Melles
Griot 05-LHP-845, 15 mW of power) emitting at the fundamental TEM00 mode, described by a
Gaussian intensity profile. The beam was made to be collimated and prepared on the diagonal
polarization state before entering the interferometer (Fig. 4.1), which in the weak measurement
protocol is equivalent to preparing the photons in the initial state

|�〉 = |8〉
∫

3G k(G) |G〉 = 1
√

2
[|�〉 + |+〉]

∫
3G k(G) |G〉, (4.1)

where k(G) ∝ exp(−G2/|2
?), with |? the probe beam waist radius (constant in the case of a

collimated beam).
The Sagnac interferometer was constructed with a 50:50 polarizing beam splitter (PBS) and

dielectric mirrors to minimize power losses. The interferometer dimensions were 23 by 31 cm.
We slightly displaced the beam from the center of the PBS, making the counter-propagating
beams be distant by roughly 4 mm from each other (Fig. 4.1). This configuration allows for only
one of the counter-propagating beams to interact with the excitation, while the other only passes
through the sample. In nonlinear optics nomenclature, the interacting beam acts as the probe and
the non-interacting one as the reference beam. We chose the |+〉 beam as the probe and the |�〉
as the reference.

A relative phase i between the |�〉 and |+〉 states is added by placing a Babinet-Soleil
compensator (BSC) inside the interferometer. The BSC is made from two birefringent wedges,
one of each is movable through a micrometer, which allows for the phase i to be continuously
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Development of an ultrasensitive technique...

Figure 4.1: experimental setup used. (a) converging lens; (b) diagonal polarizer; (c) anti-diagonal
polarizer; (d) 50:50 polarizing beam splitter; (e) sample; (f) Babinet-Soleil compensator; (g)
spatial filter.

varied. Essentially then, the BSC changes the polarization state of the photons to the tunable
state

|8〉 = 1
√

2
[|�〉 + 4−8i |+〉] . (4.2)

The excitation beam was a pulsed Nd:YAG laser (model Quantel YG 781 C 20) operating at
532 nm with 8 ns pulse duration at 20 Hz repetition rate and variable pulse energy. The Nd:YAG
beam was collimated through a telescope configuration shown in Fig. 4.1. We also placed a
spatial filter at the focal point of the telescope, made of a hole carved by the beam on a steel
blade. This spatial filter clips the higher order modes from the beam, converting it from a flat-top
to a Gaussian intensity profile. At the exit of the telescope, the excitation beam retained ∼50% of
its input energy and had a waist radius of |4 = (2.63± 0.04) mm, measured through a knife-edge
scan (Fig. 4.2). Whenever the pulse energy is indicated here, it corresponds to the energy after
the telescope.

The probe beam was aimed to experience the nonlinear refractive index gradient induced by
the excitation beam, with their alignment adjusted to impart the greatest deflection on the probe.
The refractive index experienced by the probe inside the sample is written as

=? = =0 + Δ=, (4.3)

with =0 being the linear refractive index and Δ= the nonlinear contribution. For third order
effects, Eq. (3.52) shows that Δ= will also have a Gaussian spatial profile. Due to the slope of the
Gaussian the probe beam is deflected by an angle \ given by Eq. (3.53). The probe beam also
receives an extra phase of :0Δ=! due to the change in refractive index (4.3). However, we can
neglect the phase from the nonlinear effects due to Δ= being orders of magnitude smaller than =0.

Ignoring absorption, the effect of the nonlinear index gradient on the probe beam can then be
described as the following unitary operator

*̂ = exp
[
− 8:0\ Π̂+ ⊗ Ĝ

]
, (4.4)
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4.1. Experimental setup

where Π̂+ = |+〉〈+ | is the vertical polarization projector. This unitary operator is of the same
type of (2.5), which entangles the polarization state of the photon with its transverse profile by
imparting a small momentum shift of :0\ on the |+〉 polarization state and leaving the |�〉 state
unchanged.

At the exit of the interferometer, both |�〉 and |+〉 polarization states were made to interfere
with each other by an anti-diagonal polarizer. This polarizer acts as the postselection of the
polarization states, postselecting this degree of freedom to

| 5 〉 = 1
√

2
( |�〉 − |+〉). (4.5)

Assuming the momentum shift :0\ is small, we follow the same procedure to derive Eq. (2.27)
and find the photon probability density to be a Gaussian with a shifted peak:

%wv(G; \) = | (〈 5 |〈G |)*̂ |�′〉|2 ≈ |〈 5 |8〉|2 |k(G + :0\〈Π̂+ 〉w|2
?/2) |2. (4.6)

From Eqs. (4.2), (4.4) and (4.5), we can calculate

|〈 5 |8〉|2 = sin(i/2)2 (4.7)

〈Π̂+ 〉w = −
1
2
(1 − 8 cot(i/2)) . (4.8)

As already explained in Chapter 2, only the imaginary part of the weak value (4.8) will be
measurable in the G representation. Then, the displacement ΔG of the probability density |k(G) |2
is

ΔG =
1
4
:0\|

2
? cot(i/2). (4.9)

In practice, however, we have to take into account the propagation effects of the probe beam.
That is because our probe waist radius |? was not considerably smaller than the excitation waist
|4. To achieve the condition |?/|4 < 1/3, we placed a converging lens with a focal distance of
75 cm before the PBS and made the focal point be inside the interferometer. For this converging
beam, we model the propagation effects using the Fourier optics method from section 3.1 with a
classical description of the fields. Suppose the sample is located at I = 0 and working in the thin
sample approximation, the nonlinear refractive index induces a momentum shift of 6 ≈ :0\ on
the beam. That is, the electric field amplitude in reciprocal space �? (?G , ?H) is shifted in the G
direction to �? (?G + :0\, ?H). Propagation towards the detector located at a distance I gives for
the probe amplitude �?

�? =
1

2c

∫
� (?G + :0\, ?H) exp

(
−8?2I

2:0

)
48?GG+8?HH 32?

=
�0 |

2
0

|2
0 + 28I/:0

exp

[
−

8:0\
2|2

0I

2|2
0 + 48I/:0

−
8:0\|

2
0G

|2
0 + 28I/:0

− A2

|2
0 + 28I/:0

]
, (4.10)

where � (?G , ?H) ∝ exp(−|2
0?

2/4) and |0 = |? (0). With some algebraic manipulation, we can
rewrite the exponential in Eq. (4.10) into a more convenient form

exp

[
−8:0\G −

(G + \I)2 + H2

|2
0 + 28I/:0

]
exp

[
−

8:0\
2|2

0I

2|2
0 + 48I/:0

+ (\I)2

|2
0 + 28I/:0

]
. (4.11)

Equation (4.11) is more convenient since it separates the I independent phase −:0\G, which
is the phase to be amplified, from the other phase terms. Likewise, it allows the \2 and I\ terms
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in Eq. (4.11) to be neglected, since the deflection angle \ is small (≤ 10−5 rad) and provided
\I is not too large compared to the Rayleigh range. Thus, the probe beam at the detector is
approximately

�? ≈
�0 |

2
0

|2
0 + 28I/:0

exp

[
−8:0\G −

G2 + H2

|2
0 + 28I/:0

]
. (4.12)

The horizontally polarized reference beam �A only undergoes free propagation by the same
distance I, since it does not experience the gradient created by the excitation. We also ignored
the linear phase :0=0! since both beams experience it. Thus, taking into account the phase i
added due to the BSC, the intensity at the detector is given by

�3 =
1
2
n02 |�A − 4−8i�? |2

≈ �0
(
|0

|? (I)

)2 ��1 − 4−8:0\G−8i
��2 exp

[
−2(G2 + H2)
|? (I)2

]
. (4.13)

Since :0\ is small, the intensity (4.13) approximately describes a Gaussian but with a smaller
amplitude and shifted peak. The same displacement from Eq. (4.9) can be calculated by expanding
4−8:0\G up to first order in \:��1 − 4−8:0\G−8i

��2 ≈ ��1 − (1 − 8:0\G)4−8i
��2

= 4 sin(i/2)2
����1 + :0\G4

−8i/2

2 sin(i/2)

����2 . (4.14)

Assuming the term inside the absolute square in (4.14) is nearly unity, we can reexponentiate:����1 + :0\G4
−8i/2

2 sin(i/2)

����2 ≈ ����exp
(
:0\G4

−8i/2

2 sin(i/2)

)����2 = exp
(
:0\G cot(q/2)

)
. (4.15)

Therefore, the intensity at the detector is approximated by

�3 ≈ �03 sin(i/2)2 exp
[
−2
(G − ΔG)2 + H2

|? (I)2

]
(4.16)

where
ΔG =

1
4
:0\|? (I)2 cot(i/2) (4.17)

is the shift in the peak of the Gaussian and

�03 = 4�04|
2
? (ΔG)2/8

(
|0

|? (I)

)2
. (4.18)

The probe beam had a waist of |? (I) = (682 ± 5) `m, measured through a knife-edge scan at
the same position as the detector, with a distance I of roughly 90 cm (Fig. 4.2), measured from
the focal point (located inside the sample). From those values, we also estimated a waist of
|?,0 = 260 `m at the focal point.

In a realistic experimental scenario, the interferometer is subject to losses due to scattering,
misalignment and background noise. These effects may result in less than ideal amplification
due to the reduced contrast between the bright (diagonal polarization) and dark (anti-diagonal)
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Figure 4.2: knife-edge scans of the excitation beam (left) and probe beam (right). For the
excitation beam, the knife-edge scan was made after the spatial filter and telescope, which also
served as a quality control of our spatial filtering. By fitting an erf function, we measured a
waist of |4 = (2.63 ± 0.04) mm and |? = (682 ± 5) `m for the excitation and probe beams,
respectively. The distance I in |? (I) was measured as 90 cm from the focal spot to the detector.

exits, and we can phenomenologically include them by modifying Eq. (4.13) by including the
interferometric parameter [ [70]:

�′3 ∝
��1 − [4−8:0\G−8i

��2 exp
[
−2(G2 + H2)
|? (I)2

]
. (4.19)

The parameter [ represents the relative amplitude between each path at the exit of the interferometer,
and therefore it is bounded by 0 ≤ [ ≤ 1. The contrast of the dark exit is defined as the ratio
between the minimum and maximum intensities at the dark and bright ports respectively, and in
our case is given by1

�min

�max
=

(
1 − [
1 + [

)2
. (4.20)

In our experiment, the bright exit typically has a power of 5.61 mW, while the dark exit goes as
low as 20 `W, thus from Eq. (4.20) we expect [ ≈ 0.89.

In this non-ideal scenario, the shift ΔG′ is calculated through

ΔG′ =
1
N

∫
G�′3 3G 3H, (4.21)

where N is a normalization factor, N =
∫
�′
3
3G 3H. Calculation of Eq. (4.21) for small \ yields

ΔG′ ≈
:0\|? (I)2

2
[ sin(i)

[2 + 1 − 2[ cos(i)
. (4.22)

In the case of a perfect interferometer, [→ 1 and Eq. (4.22) reduces to Eq. (4.17), as expected.

1Typically in interferometric experiments the parameter that measures the quality of the interferometer is the
visibility + , defined in terms of the maximum and minimum intensities as + = (�max − �min)/(�max + �min). The
parameter [ used here is defined in terms of the relative amplitudes in each arm, [ = (�max − �min)/(�max + �min),
and is therefore connected to the visibility by

+ =
2[

1 + [2 .
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As the detector, we used a quadrant detector (model QP50-6-18U-SD2) coupled to a
oscilloscope (model Tektronix 2022B, 200 MHz bandwidth) to measure the shift ΔG′. The
quadrant detector has the advantage of simultaneously measuring both the sum and the difference
in power between the left and right portions (in the G direction) of the detector. From these two
measurements, we can calculate the relative difference in power:

Δ%

%
=
%right − %left
%right + %left

. (4.23)

Using equations (3.21) and (3.22) for a Gaussian beam displaced by ΔG′ on the G direction,
Eq. (4.23) becomes

Δ%

%
=

2
c|2

0 �0

[∫ ∞

0
3G

∫ ∞

−∞
3H � (G − ΔG′, H, I) −

∫ 0

−∞
3G

∫ ∞

−∞
3H � (G − ΔG′, H, I)

]
= erf

(√
2ΔG′

|? (I)

)
, (4.24)

where we used the error function, defined as

erf (G) = 2
√
c

∫ G

0
4−C

2
3C. (4.25)

In Eq. (4.24) was assumed that the beam diameter 2|? (I) is smaller than the detector dimensions,
which is a condition satisfied by our beam. For small G, erf (G) ≈ 2G/

√
c, then, (4.24) reduces to

Δ%

%
=

4
√

2c
ΔG′

|? (I)
. (4.26)

Inserting the displacement ΔG′ of Eq. (4.22) and the deflection angle \ given by Eq. (3.53) we
arrive at

Δ%

%
=

4:0!√
2c4

|? (I)
|4

Δ=(C) [ sin(i)
[2 + 1 − 2[ cos(i)

. (4.27)

Comparing Eq. (4.27) with the standard beam deflection signal (3.57), we notice two major
differences: the weak value amplification through the i-dependent terms and a I-dependence in
the spot size |?. This can be more easily seen by rewriting (4.27) as(

Δ%

%

)
WV

=

(
Δ%

%

)
BD

√
1 + (I/I')2 5[ (i) (4.28)

where (Δ%/%)BD is the standard beam deflection signal (3.57) and

5[ (i) =
[ sin(i)

[2 + 1 − 2[ cos(i)
(4.29)

is the phase-dependent amplification factor.
The signal (4.28) turns out to be I-dependent due to the deflection only appearing in

the interference between probe and reference beams, with the phase term 4−8:0\G being the
responsible for this spatial imbalance. Provided I\ � I', the diffraction effects will only make
this interference further from the center due to the increasing beam waist |? (I) (Fig. 4.4). For
the second difference, we remark that the amplification is limited by the parameter [, as can be
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4.1. Experimental setup

Figure 4.3: graph of the amplification factor 5[ (i) from Eq. (4.29) for the values [ = 0.89 (in
red) and [ = 1 (in blue). For the ideal case of [ = 1, 5[ (i) = 1

2 cot(i/2). In the non-ideal case,
the amplification is limited for small i.

seen by plotting the amplification factor 5[ (i) as a function of the phase i, Fig. 4.3. We now
estimate how high the amplification factor

A =
√

1 + (I/I')2 5[ (i) (4.30)

can be achieved with our current implementation. For the value [ = 0.89, 5[ (i) can be as
great as 4.2 at i ∼ 0.1 (only the values 0 ≤ i < 1 are used, since this is the interval where
5[ (i) > 1). For the I/I' term, using the measured values |? (I) = 682 `m and I = 90 cm
we can calculate a divergence angle X = |? (I)/I = 760 `rad, and from the divergence angle
estimate the |?,0 = 260 `m and I' = 111 mm, which gives

√
1 + (I/I')2 ∼ 8.1. Thus, our

current amplification factor is of the order of A ∼ 34.

Figure 4.4: schematic showing the deflected beam (probe) intensity profile relative to the
unchanged beam (reference) profile in the I axis. The green profile represents the result of the
interference of the previous two beams. As the beams propagate to the right, their waist increase
and more constructive interference happens further away from the I axis, resulting in a profile
(green) displaced with a I2 behavior (dotted green line), in stark contrast to the probe with its
displacement linear in I (dotted red line).
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The quadrant detector however was only capable of acquiring the slow response of the sample
due to its 1 microsecond temporal resolution. To measure the fast response, we employed a 90º
prism and two Thorlabs DET210 detectors with a 1 nanosecond rise time, which is sufficiently
fast to follow the shape of the excitation pulse. The prism splits the intensity �′

3
in half and sends

each half to one of the fast detectors (Fig. 4.5). An electronic subtraction is performed after
acquisition, which gives the difference in power Δ%. Since the DET210 sensors can only measure
changes in power, the total power % had to be inferred by modulating the 633 nm beam with a
chopper and varying the value of the relative phase i. This same chopper is used to position the
prism such that each detector receives the same amount of power from the probe beam when there
is no excitation. In conjunction with the DET210 sensors, we used a SRS SR445A amplifier,
which amplified the signal by 19 times at 50 Ω impedance and by 27 times at 500 Ω impedance.

Figure 4.5: (a) front view of the quadrant detector and (b) top view of the construction used to
measure the fast response with the DET210 detectors.

4.2 Results

4.2.1 OG515
The first sample we investigated was the Schott Optical Filter OG515. This is a longpass

filter (see Fig. 4.6) made of glass doped with semiconductor quantum dots (QDs) of CdSGSe1−G
with G = 0.08 and 2.8 nm crystallite diameter [8, 11]. Due to the QDs structure, the nonlinear
optical properties of the semiconductor are greatly enhanced relative to the bulk case near the
band gap [18], with a strong absorption for wavelengths shorter than the gap wavelength (half
transmittance at 515 nm [56]). For the OG515 filter, Z-scan measurements near the band gap
show a nonlinear refractive index of =2 = −5.7 × 10−9 cm2/MW at 527 nm with 4 ps pulse
duration [11], which is 4 orders of magnitude larger than the typical =2 ∼ 10−13 cm2/MW bulk
semiconductors exhibit [18].

Our first measurements on this filter used the quadrant detector and an average over 128
pulses through the oscilloscope built-in average acquisition. We started with an average post-filter
excitation energy of 1.3 mJ per pulse with a repetition rate of 20 Hz. A subtraction of the
Nd:YAG lamp discharge noise was performed by blocking the excitation beam and recording
the detected noise to the oscilloscope reference memory, the subtraction was then performed
in a LABVIEW VI. With the excitation unblocked, the phase i was tuned away from zero and
a signal was detected in the oscilloscope. The probe and excitation beams were aligned in a
manner to maximize the detected signal, which corresponds to the point of the highest refractive

48



4.2. Results

Figure 4.6: internal transmittance versus wavelength for the OG515 filter, taken from the data
sheet [56]. For wavelengths near the band gap (the sharp drop in transmittance around 500 -
600 nm), the nonlinear optical properties are enhanced [18].

index gradient in the sample. With one channel of the oscilloscope recording the difference in
power Δ% and the other recording the total power %, the LabVIEW VI calculated the signal
Δ%/% of Eq. (4.27).
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Figure 4.7: measurement of Δ%/% versus time for the phase i = 0.112 rad (left) and peak value
of Δ%/% versus phase i (right) for 1.3 mJ pulse energy (1.53 MW/cm2 peak intensity) and
20 Hz repetition rate. The experimental data on the right graph correspond to the peak value of
Δ%/%(C), and show the expected phase dependency of Eq. (4.27) (fitted in red) when the phase
is varied.

Fig. 4.7 shows an example of the time dependency of the signal and its dependency on
phase i. Since the filter had a thickness of ! = 2.5 mm, by fitting Eq. (4.27) on the Δ%/%
versus i graph we found Δ= = −8.12 × 10−7 for the peak value in the refractive index change.
Comparing our measured index change to the estimated Δ= = 2=2�4 ≈ −1.4 × 10−8 using
=2 = −5.7 × 10−9 cm2/MW [11] and a peak excitation intensity of �4 = 1.53 MW/cm2, we see
that our measured value is 1-2 orders of magnitude larger than the estimated one. This larger value
can be due to a combination of electrostriction effects, with a typical timescale of nanoseconds -
which is on the same timescale as our pulse of 8 ns - with thermal effects, on a microseconds
timescale. To investigate the thermal dependency of our signal, we performed measurements to
compare the signals under different repetition rates with an average pulse energy of 2.5 mJ. We
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tested for 20, 10 and 4 Hz which was adjusted in the Nd:YAG laser itself. From Fig. 4.8, we see
a dependence on the repetition rate, especially in the long time behavior of the signal.
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Figure 4.8: measured signal for the phase i = 0.19 rad with 20, 10 and 4 Hz repetition rates.
Pulse energy of 2.55 mJ.

We are sure these signals are all a result of the interaction between probe and excitation
since by aiming the excitation away from the probe, the signal vanishes. Another condition that
identifies a beam deflection signal is whether it changes signal (from positive to negative or
vice-versa) when the probe is swept over the excitation spatial profile. Since the deflected signal
depends on the spatial derivative of the excitation, it will invert its sign as the probe is swept over
the gaussian profile of the excitation, which has a derivative proportional to G exp(−2G2/|2

4).
Even though the measurements with different repetition rates indicate a kind of thermal

response, it was not possible to entirely resolve the thermal effects from the non-thermal ones
due to the quadrant detector ∼ 1 `s response. With this in mind, we replaced the quadrant
detector with the 1 ns rise time DET210 detectors. We expected these detectors would be able
to distinguish the fast, nanosecond effects from the slow ones, and indeed we observed effects
on dozens of nanoseconds. However, the observed signal did not behave like in the previous
detector. The signal in both channels (with each corresponding to one DET210 detector) shows
its largest value when i = c (Fig. 4.9), in contrast to the weak valued signal that shows its peak
at i close to 0. Even by subtracting both channels to get Δ%, no signal is observed since both
detectors see the same variation.

The fact both detectors measured the same signal, we suspect we have observed a type of
saturable absorption. With the presence of the excitation pulse, the sample absorbs a fraction of
the probe power, creating a homogeneous change in intensity that both detectors see. This is
also befitting with the largest signal being observed at i = c, since in the case of absorption the
intensity at the detectors can be written as

�3 ∝ |1 − �(C)4−8i |2 = 1 + �(C)2 − 2�(C) cos i, (4.31)
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Figure 4.9: measured signals for the phases i = 0, c/2 and c by the left and right DET210
detectors. Pulse energy of 10 mJ.

where �(C) is the variable amplitude due to absorption and the displacement of the beam was
ignored for simplicity.

4.2.2 Acetone
Acetone (CH3(CO)CH3) is a a liquid at room temperature and a typical solvent for chemical

reactions. In order to distinguish the nonlinear response of the solute from the solvent, it is
imperative to characterize the latter in similar scenarios. Being a molecular liquid, acetone shows
two major contributions to its nonlinear response: the fast bound-electronic contribution and
the nuclear contributions [18, 72]. With the pulse width used in this work, the bound-electronic
response can be treated as instantaneous, and their contribution to Δ= is equal to 2=2,4; �4 (C) [72],
where =2,4; is the =2 value due to the bound electrons. Now for the nuclear contributions, they
arise from the diffuse molecular reorientation (where the induced dipole aligns to the excitation
field), molecular libration, collision and vibration [18, 72]. These nuclear contributions are
generally non-instantaneous, and when taken into account in Δ= through Eq. (3.50) it becomes
[72]

Δ= = 2=2,4; �4 (C) +
∑
9

=2, 9

∫ ∞

−∞
3C′ A 9 (C − C′)�4 (C′) (4.32)

where A 9 (C− C′) is a normalized response function and 9 indexes the different nuclear contributions
(diffuse reorientation, libration, etc). The response function typically induces an exponential rise
and fall to the time resolved measurement [72].

In our first measurements, we used the quadrant detector already introduced. With this
steup, we measured a modulation of the signal in the scale of microseconds. This modulation
is practically the same for both repetition rates of 20 and 5 Hz (Fig. 4.10), and its amplitude
increased with phase i similar to the weak value amplification term. However, the figure does
not properly show the exponential rise and fall expected in molecular liquids.

Once again we attempted to measure the fast response by employing the DET210 sensors,
however no signal was observed with them - not even a sign of saturable absorption. Our initial
attempts used excitation energies in the 1-3 mJ range, and later we increased to around 25 mJ and
even focalized the excitation beam close to the sample in an attempt to increase the signal, but
nothing was observed as well. With this lack of results we were led to believe the prism and
fast detectors are not able to replicate the same behavior as the quadrant detector for this type of
measurement.
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Figure 4.10: measured signal in acetone comparing the different repetition rates for the phase
i = 0.1 rad and pulse energy 1.3 mJ.

The next step in development is to measure the fast response of the samples. We plan
to achieve that by replicating this technique using a mode-locked Ti:sapphire laser system
available in another laboratory in our group, which delivers pulses of 120fs at a repetition rate of
78MHz. The pulsed laser compensates the lack of temporal resolution and its wavelength of
780 nm has an optimal spectral response by the quadrant detector. Using this laser, we expect to
make measurements similar to the time-averaged signal (3.59) but with the benefits from the
weak-valued procedure already discussed in this chapter.
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Concluding remarks

Weakmeasurements have received increased attention in the last decade as a novelmetrological
tool for measuring small parameters. From a fundamental perspective, weak measurements
exploit the non-separability introduced by an interaction that entangles two degrees of freedom,
with a destructive interference between quantum states postselecting the system onto a state
that shows an amplified effect of such interaction. This amplification property of the weak
value can be used to improve the signal-to-noise ratio (SNR) in many situations, outperforming
conventional techniques [17]. Weak values also found fundamental quantum applications, from
steering quantum systems [46] to raising questions about the interpretation of fundamental
properties [3, 21]. But as explained in text, the properties underlying weak measurements are
more general, and they can also be realized with purely classical systems, which motivated a
more general review of the underlying features of both quantum mechanics and classical optics.

Starting from a revision of vector spaces, we showed how the concept of non-separability
emerges from the mathematical structure of quantum mechanics and classical optics, which
serves as a motivation for the recent developments in the quantum-classical boundary. The
non-separability allows for entanglement-like correlations to be observed with classical entities,
such as state teleportation [33] and Bell-like inequalities violations [29]. This all comes with the
benefit of the robustness classical experiments have against environment perturbations, creating
reliable tabletop measurements that can achieve great precision and fidelity.

The second half of this work focused on applying a weak-valued procedure to the beam
deflection (BD) technique. The BD technique is a type of pump-and-probe where the probe
beam is deflected by the index gradient created by the excitation, and it is versatile enough to
measure thermal and non-thermal nonlinearities [27, 43, 61, 65, 72]. In our proposal, we applied
this deflection inside a Sagnac interferometer, which coupled the deflection to the polarization
state of the probe beam. With a polarizer set at an almost orthogonal orientation to the initial
polarization of the probe, a large signal can be observed due to the weak-valued amplification.
Besides this latter amplification, we also found the signal to depend on the probe’s spot size at
the detector, and not at the focal point like the conventional BD technique. The dependence with
the variable spot size is another byproduct of the interferometric aspect of our signal, opening
another possibility to improve the SNR. When both amplification mechanisms are accounted for,
we found an amplification factor A ∼ 34 when compared to the usual implementation of the BD
technique.

Our experimental implementation of the weak-valued BD technique used a CW 633 nm HeNe
laser as the probe and a pulsed (8 ns temporal width) 532 nm Nd:YAG laser as the excitation,
together with a quadrant detector. With this setup we could promptly detect thermal response on
the OG515 glass filter, but due to using a CW beam as the probe we did not achieve the temporal
resolution necessary to reliably detect non-thermal effects (such as electronic nonlinearities).
We also tried employing two fast (ns rise time) sensors with a 90º prism to split the beam,
however this approach did not work like the quadrant detector and was only able to measure a
type of saturable absorption. The same procedure was applied to acetone, however the current
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implementation led to inconclusive results.
Due to COVID restrictions, wewere not able tomodify our implementation to a pulsed (fs pulse

width) Ti:Sapphire laser, which would provide the necessary temporal resolution for non-thermal
measurements. In the future, we expect to use this new laser source to experimentally demonstrate
an improvement in the detection of small nonlinearities. For instance, the amplification factor
A can be as high as A ∼ 80 for [ = 0.94 and I/I' ∼ 10, which should be achievable with our
current equipment. There are still many possibilities to implement classical non-separability yet
to be explored (for instance, last year a polarization-frequency non-separability was explored
by Kopf et al. [45]), and this topic has a very broad applicability suited for theoretists and
experimentalists alike.
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Appendix A

Fisher information and the Cramér-Rao
bound

A.1 Fisher information

Consider estimating an unknown parameter 6 from a set x = {G1, G2, . . . , G# } of # independent
measurements of a random variable - , described by a probability distribution %(G; 6) [53, 60].
The Fisher information is a measure of how much information about the parameter 6 is available
in the set x [22]. We first introduce the likelihood function %(x; 6), defined as the probability to
measure the string x of values:

%(x; 6) =
#∏
8=1

%(G8; 6). (A.1)

From the likelihood function, the score + (x; 6) describes its sensitivity to changes in the
parameter 6, and it is defined as

+ (x; 6) = m

m6
ln %(x; 6) =

#∑
8=1

m

m6
ln %(G8; 6) =

#∑
8=1
+ (G8; 6) (A.2)

where the score of each measurement + (G8; 6) was defined as + (G8; 6) = m6 ln %(G8; 6).
The Fisher information �# (6) is defined as the variance of the score [22, 53],

�# (6) = Var[+ (x; 6)] . (A.3)

Assuming %(G8; 6) is normalized and with a few regularity conditions [22], it can be shown that
the expectation value (denoted here as E[ ]) of the score of each measurement + (G8; 6) has zero
mean:

E[+ (G8; 6)] =
∫ (

1
%(G8; 6)

m%(G8; 6)
m6

)
%(G8; 6) 3G8 =

m

m6

∫
%(G8; 6) 3G8 = 0 (A.4)

since %(G8; 6) is normalized. And since the expectation value is a linear operator, E[+ (x; 6)] = 0
as well.
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From Eqs. (A.3) and (A.4), we can rewrite the Fisher information as

�# (6) = Var[+ (x; 6)] = E
[
+ (x; 6)2

]
=

∫
+ (x; 6)2%(x; 6) 3G1 · · · 3G#

=

∫
1

%(x; 6)

(
m%(x; 6)
m6

)2
3G1 · · · 3G# (A.5)

= −
∫ (

m2

m62 ln %(x; 6)
)
%(x; 6) 3G1 · · · 3G# = −E[m6+ (x; 6)] (A.6)

Using the definition (A.6), we can see that the Fisher information �# is additive over independent
trials: from the definition of score (A.2),

�# (6) = −E[m6+ (x; 6)] = −E

[
m6

#∑
8=1
+ (G8; 6)

]
= −

#∑
8=1

E
[
m6+ (G8; 6)

]
. (A.7)

Since the measurements are all independent from each other, the expectation values inside the
summation (A.7) will all be equal to −� (6), the Fisher information of a single measurement.
Therefore,

�# (6) = #� (6), (A.8)

proving that the Fisher information over # independent measurements is additive.

A.2 Cramér-Rao bound
In order to derive the Cramér-Rao bound, we must go back to our unbiased estimator 6̂(-) of

Chapter 2. By the definition of an unbiased estimator, the following equality holds for whatever
value of 6:

E [6̂(-) − 6] =
∫
(6̂(G) − 6) %(G; 6) 3G = 0. (A.9)

By taking a derivative of (A.9) with respect to 6, its result must also be zero. Thus

m

m6

∫
(6̂(G) − 6) %(G; 6) 3G =

∫
(6̂(G) − 6) m%

m6
3G −

∫
%(G; 6) 3G = 0. (A.10)

Using the following identity
m%

m6
= %

m ln %
m6

(A.11)

together with the fact that %(G; 6) is normalized,
∫
% 3G = 1, Eq. (A.10) becomes∫

(6̂ − 6)%m ln %
m6

3G = 1. (A.12)

Now, assuming the probability distribution % is sufficiently smooth, we can factor the integrand
of (A.12) as ∫ (

(6̂ − 6)
√
%

) (√
%
m ln %
m6

)
3G = 1, (A.13)
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A.2. Cramér-Rao bound

Squaring the expression (A.13), we can invoke the Cauchy-Schwarz inequality:

1 =
[∫ (

(6̂ − 6)
√
%

) (√
%
m ln %
m6

)
3G

]2
≤

[∫
(6̂ − 6)2% 3G

] [∫ (
m ln %
m6

)2
% 3G

]
. (A.14)

We recognize the term inside the first brackets of (A.14) as the variance of the estimator 6, while
the second bracketed term is recognized as the Fisher information � (6):

� (6) =
∫ (

m ln %
m6

)2
% 3G =

∫
1
%

(
m%

m6

)2
3G (A.15)

Thus, by rearranging Eq. (A.14) we arrive at the Cramér-Rao bound:

Var[6̂] ≥ 1
� (6) . (A.16)

This same reasoning can be used in the case of # independent measurements, which will only
change � (6) to #� (6) in Eq. (A.16).
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