
Received March 27, 2022, accepted April 15, 2022, date of publication April 18, 2022, date of current version April 29, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3168603

Low-Voltage, Low-Area, nW-Power CMOS
Digital-Based Biosignal Amplifier
PEDRO TOLEDO 1,2, (Graduate Student Member, IEEE),
PAOLO S. CROVETTI 1, (Senior Member, IEEE), HAMILTON D. KLIMACH 2, (Member, IEEE),
FRANCESCO MUSOLINO 1, (Member, IEEE), AND SERGIO BAMPI 2, (Senior Member, IEEE)
1Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Turin, Italy
2Graduate Program in Microelectronics (PGMICRO), Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil

Corresponding author: Paolo S. Crovetti (paolo.crovetti@polito.it)

The work of Sergio Bampi was supported by FAPERGS.

ABSTRACT This paper presents the operation principle and the silicon characterization of a power efficient
ultra-low voltage and ultra-low area fully-differential, digital-basedOperational TransconductanceAmplifier
(OTA), suitable for microscale biosensing applications (BioDIGOTA). Measured results in 180nm CMOS
prototypes show that the proposed BioDIGOTA is able to work with a supply voltage down to 400 mV,
consuming only 95 nW. Owing to its intrinsically highly-digital feature, the BioDIGOTA layout occupies
only 0.022 mm2 of total silicon area, lowering the area by 3.22× times compared to the current state of the
art, while keeping reasonable system performance, such as 7.6 NEF with 1.25 µVRMS input referred noise
over a 10 Hz bandwidth, 1.8% of THD, 62 dB of CMRR and 55 dB of PSRR.

INDEX TERMS Ultra-low voltage (ULV) CMOS, ultra-low power (ULP), operational transconductance
amplifier (OTA), digital-based circuit, the Internet of Things (IoT).

I. INTRODUCTION
Next-generation biosensing, which envisions drinkable,
autonomous bio-electronic circuits with dimensions suitable
to be internalized into the human body to sense and transmit
clinical pieces of information (Body Dust) [1], [2], as illus-
trated in Fig. 1, poses many critical challenges to integrated
circuit (IC) designers.

Focusing on the analog signal acquisition, the stringent
requirements in terms of low noise and distortion, typical of
biosensing applications, need to be met under ultra-low area
and power consumption restrictions, since a tight miniatur-
ization and sub-µW operation are intrinsically demanded by
the nature of the biosensing application [2].

While low power and low area can be achieved in digital
ICs leveraging geometrical scaling provided by advanced
Complementary Metal-Oxide-Semiconductor (CMOS) tech-
nology nodes [3], operation in near-threshold close to
the minimum energy point [4], and energy-quality scal-
ing [5], the same techniques cannot be applied to analog
interfaces [6]–[8], which are indeed the bottleneck in terms of
power, cost and performance of present day ICs, and in partic-
ular to those targeting biomedical signal acquisition [9]–[16].
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Given the above limitations, there has been an increas-
ing research interest towards the implementation of tra-
ditional analog blocks by low-cost CMOS digital-based
replacements. This concept has been previously proposed
in all-digital phase-locked loops (PLLs) [17]–[19], Analog-
to-Digital-Converters (ADCs) [20]–[34], Digital-to-Analog
Converters (DACs) [20], [35]–[38], Low-Dropout Regula-
tors (LDOs) [39]–[44], switching-mode power converters
[45], [46], filters [47], [48], voltage references [49]–[51],
temperature sensors [52], oscillators [53] and Operational
Transconductance Amplifiers (OTAs) [54]–[63]. Most of
these solutions achieve relevant area reduction and power
savings compared to traditional analog solutions with similar
performance, as shown in Fig. 2 [8], which make them poten-
tial candidates to meet the requirements of next-generation
Body Dust biosensing. Besides, unlike traditional ones, this
digital-based analog circuit design trend takes advantage
of CMOS scaling and the benefits of an automatic digital
design flow.

In this context, the DIGOTA approach presented in [54],
[55] has been adopted in [64] to design a first-order fil-
ter addressing biomedical signal amplification targeting the
Body Dust requirements in terms of extreme low area,
low supply voltage, and low power. In this paper, silicon
measurements for a Fully-Differential (FD) Digital-Based
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FIGURE 1. Body dust illustration [1], [2].

FIGURE 2. Power vs area reduction for ADCs [20], DACs [37], OTAs [54],
[56], voltage reference [49] and oscillators [53]. comparing traditional
analog and digital-based approach.

FIGURE 3. Muller C-element gate: symbol, truth table and CMOS
schematic.

Operational Transconductance Amplifier (BioDIGOTA), for
which simulation results have been previously presented
in [64], are shown for the first time, highlighting body dust
can take advantage of the power and area reductions of
digital-based analog design methodology. Furthermore, the
erroneous Noise Efficiency Factor (NEF) and Power Effi-
ciency Factor (PEF) evaluation found in [64] using simulation
results are now fixed and re-calculated for the measurement
data herein presented.

The paper is organized as follows: in section II, the
DIGOTA circuit operation is revisited for a single-end struc-
ture, and its noise performance is compared with the current
state of the art. Next, a new fully differential BioDIGOTA
schematic is presented, along with design guidelines for
power and noise reduction. In section IV, the measured per-
formance of the proposed BioDIGOTA is shown and com-
paredwith other state-of-the-art designs. Finally, in sectionV,
some concluding remarks are drawn.

II. BioDIGOTA CIRCUIT DESCRIPTION
The fully-differential BioDIGOTA circuit proposed in this
paper is based on the single-ended DIGOTA topology pre-
sented in [54], [58], and [56], which exploits a Muller

FIGURE 4. (a) Schematic of the single-end passive-less DIGOTA circuit
proposed in [54]. (b) DIGOTA State-transition diagram. (c) DIGOTA circuit
state and main waveforms time evolution [54].

C-element gate implemented in CMOS - whose symbol, truth
table and CMOS schematic are reported in Fig.3 - as an input
stage. The operation of the single-endedDIGOTA [54] will be
briefly revised before discussing the necessary modifications
needed to achieve fully-differential operation and to meet the
biosignal acquisition requirements [64].

A. SINGLE-ENDED DIGOTA CIRCUIT OPERATION
As shown in Fig.4a [54], [55], the single-ended DIGOTA
circuit is comprised of two MullerC gates (MULLERC+,
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FIGURE 5. (a) BioDIGOTA schematic. (b) Fully differential DIGOTA.

TABLE 1. Fully-differential DIGOTA truth table.

MULLERC−), two inverters (INV+ and INV−), a common-
mode compensation block (MCSwap) and a three-state buffer
as an output stage. As any OTA, DIGOTA is intended
to amplify the differential input signal while rejecting its
common-mode component, and this is efficiently accom-
plished by a digital self-oscillating common-mode compen-
sation loop, which drives the circuit through four different
states A, B, C and D, depending on the logical value of
the outputs of the inverters (MUL+,MUL−) [56], [58],
as shown in Fig.4b. The same self-oscillating loop also per-
forms differential-input-voltage-to-time and time-to-output-
voltage conversion, in order to drive the output stage with
digital pulses whose width is proportional to the input dif-
ferential voltage, as described in the following.

In details, the two CMOS inverters are used to compare
the voltage level ofMullerC gates vMUL+,vMUL− with respect
to their logic trip points (VT), resulting in four possible log-
ical outputs: (MUL+,MUL−) = (0, 0), (1, 1), (1, 0), (0, 1)
corresponding to states A, C, B and D in the state-transition
diagram shown in Fig. 4b.
Assuming perfect matching and neglecting the delay of

the inverters and of the gates in the MCSwap block [55],
when vIN+ − vIN− = 0 the circuit oscillates between
states A and C, with a natural oscillation period T0

approximately given by

T0 = 1/f0 ≈
1VMULCMUL

ICM
≈
VDDCMUL

ICM
(1)

where 1VMUL is the swing of the MullerC elements output
signals vMUL+(−) (from simulations, it can be approximated
to VDD), CMUL is their parasitic output capacitance, and
ICM is the equivalent drain current as a function of vIN+(−).
In other words, when (MUL+,MUL−) = (0, 0), (1, 1),
the circuit is in either state A or state C and the MCSwap
block is turned on to drive the common-mode input signal
around the trip points of INV+ and INV−. This behavior can
be observed in the vMUL+ and vMUL− waveforms shown in
Fig.4c before t = t0.
As soon as a differential input signal is applied, i.e., vIN+ 6=

vIN−, the waveforms of vMUL+(−) have different slopes, since
the charging/discharging currents of theMullerC gates output
parasitic capacitances, which depend on the vIN+(−) voltages,
are different (Fig. 4c for t > t0). For instance, in state A,
in which vMUL+(−) are both increasing, if vIN+ > vIN−
(vIN+ < vIN−), vMUL− (vMUL+) is lagging since the capacitor
CMUL in the inverting (non-inverting) branch is charged by a
lower current compared to the corresponding capacitor in the
non-inverting (inverting) branch. In this way, vMUL− (vMUL+)
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crosses the trip point of the inverter INV− (INV+) after
vMUL+ (vMUL−) crosses the trip point of the inverter INV+
(INV−) and, for a certain time interval (MUL+,MUL−) =
(0, 1) ((MUL+,MUL−) = (1, 0)) the state B is activated as
detailed in Fig.4b. An analogous behavior can be observed in
state C, leading to transitions to state D, as shown in Fig. 4c
for t > t3.
In states B and D the output stage is triggered and Vout is

either increased or decreased according to vd sign, remaining
in these states for a time interval

1t '
δvMUL(vd )CMUL

IMC
, (2)

proportional to δvMUL = vMUL+ − vMUL−, which is in turn
fairly proportional to the input differential voltage vd .

B. FULLY-DIFFERENTIAL BioDIGOTA
The DIGOTA concept described in Sect.II-A is exploited in
this paper to design a fully differential biosignal amplifier
targeting the requirements of electrocardiogram (ECG)
amplification [9]–[16], whose schematic is shown in Fig 5a
and whose design is described in what follows [64].

The proposed fully-Differential (FD) BioDIGOTA
includes a FD noise-optimized version of the single-end
DIGOTApresented in last subsection II-A, detailed in Fig. 5b,
and an on-chip capacitive feedback network (Cin,Cfp,Rf
shown in Fig. 5a) implemented by Metal-insulator-Metal
(MiM) capacitors and pseudo-resistors. In Fig. 5b), the
Muller-C cells are implemented in CMOS as in Fig. 3 ), and
the other logical gates (inverters, NANDs, NORs) are based
on their canonical CMOS implementation [65].

Aiming to allow FD operation, the proposed FD-DIGOTA
includes a Muller-C based input stage, two inverters and a
MCswap common-mode compensation stage analogous in
concept to the corresponding blocks of the single-ended ver-
sion in Fig.4, whereas its output stage is now comprised of
two three-state inverters so that to generate the positive and
negative output voltages vout+, vout−.

The two inverters of the BioDIGOTA output stage are dig-
itally operated both to amplify the differential input voltage
and to keep the common-mode output voltage constant. For
this purpose, they are driven based on the digital signals
IN+, IN−, equivalent in concept to (MUL+,MUL−) in the
single-ended version presented in section II-A, and based on
the additional digital signals OUT+ and OUT−, obtained by
two digital buffers driven by the analog outputs vout+ and
vout−, respectively, so that OUT+ (OUT−), is high or low
when the corresponding analog output voltage vout+ (vout−)
is above or below the trip point VT ' VDD/2.

The operation of the two output buffers and of theMCswap
stage based on the IN+, IN−, OUT+ and OUT− digital
signals is defined as in the truth table reported in Tab.1 and
are described next.

Whenever IN+ 6= IN− (highlighted in bold in Tab.1),
the sign of the differential input signal can be detected and
amplified, and the output stages are operated accordingly.

In details, if IN+ = 1 and IN− = 0 (IN+ = 0 and IN− = 1),
the pull-up device of the buffer driving the non-inverting
(inverting) output is operated, whereas the pull-down device
of the buffer driving the inverting (non-inverting) output is
operated, so that to increase (decrease) the differential output
component vd,out = vout+ − vout−, regardless the OUT+ and
OUT− values. In the meantime, the MCswap block is kept
inactive (i.e., in a high impedance state).

On the other hand, when IN+ = IN− and the sign of
the differential input signal cannot be detected, the MCSwap
stage is activated as in the single-ended DIGOTA circuit
in Fig.4a, and the output common mode signal is also cor-
rected, if needed. In particular, when OUT+ = OUT− =
0 (OUT+ = OUT− = 1), the output stages are acti-
vated so that to increase (decrease) both the output voltages
vout+ and vout− at the same time, as needed to enforce a
common-mode output voltage closer to VDD/2. By contrast,
whenever OUT+ 6= OUT−, which implies that the CM
output voltage differs from VDD/2 by less than one half of
the output differential signal vd,out, both the output stages are
kept in a high impedance state.

In essence, from the truth table 1 it is observed that
whenever IN+ and IN− are logically equal, the input
common-mode is always compensated as in the single-ended
DIGOTA circuit, whereas, the output common mode compo-
nent is either increased or decreased ifOUT+ andOUT− are
(0,0) or (1,1), and CM output stage is kept at high impedance
only when OUT+ and OUT− is (1,0) or (0,1).

C. BioDIGOTA PERFORMANCE ANALYSIS
Based on the same modeling approach adopted for the
single-ended DIGOTA circuit in [55], the main performance
of the proposed BioDIGOTA circuit can be evaluated as
follows:

As detailed in [55], δvMUL is related to vd through a first
order system, and train of current pulses (iOUT in Fig. 4c) with
width equals to Eq. (2) also pass through a first order system
at output stage, providing the following transfer function for
the differential input signal

AD(s) =
4gmro ·

ION
ICM
·
rOUTCMUL

T0

(1+ s · 2 rOUTCL) · (1+ s · roCMUL)
(3)

where gmro is the intrinsic gain of MullerC stage, ICM and
ro are the effective common-mode current and the effective
output resistance of theMullerC stage, defined as in [55], ION
and rOUT are the ON current and the output resistance of each
output buffer, and CL is the differential output capacitance.
The DIGOTA noise performance is dominated by the shot

noise from the input devices within the Muller-C stage [55],
where the in-band integrated input noise is given by

v2IN = 2π
2qICM
g2m

fBW (4)

where q is the electrical charge and fBW is amplifier
bandwidth.
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FIGURE 6. (a) NEF and PEF for differential pair, (b) for stacked inverter-based [10], (c) Switched-capacitor [11], and (d) digital based
amplifier [54], [55].

The NEF, Eq. (5), is a well-known metric to quantify
the performance of low noise amplifiers for biomedical
application.

NEF = vIN,RMS

√
2ID

φT4kBTπ fBW
(5)

whereφT is the thermal voltage, kB is the Boltzmann constant,
T is the temperature, and ID is current consumption.
Once the DIGOTA is designed to reduce the total noise,

most of the power is consumed in the first stage (ID ≈ ICM )
given by Eq. (6) and its gm is given by Eq. (7) for weak
inversion regime.

ID =
Power
VDD

=
2CMULVDD

T0
(6)

gm =
ID
nφT

(7)

Substituting Eqs (1), (6) and (7) in (4) and after in (5),
we have

NEFDIGOTA ≈ n (8)

Fig. 6 compares NEF and the power efficiency fac-
tor PEF = NEF2VDD of current state of the art of
low frequency and low noise CMOS amplifier solutions.
Among them, the discrete-time low-noise amplifier made
by switched-capacitors achieves the best NEF and PEF at
the cost of a big silicon area [11]. In [10], current reused
is implemented to increase the equivalent transconductance
by N stacked inverters and, then, the final NEF is reduced
by
√
N . However, the later of approach limits the mini-

mum VDD. In the case of the proposed amplifier [64], the
NEF is equivalent to the stacked inverters for N = 1,
but no any bias circuit is needed, the circuit is compat-
ible to digital flow, and the total silicon area is further
reduced.
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FIGURE 7. (a) BioDIGOTA final layout in CMOS 180nm, area breakdown and power breakdown, (b) input and output waveforms, and (c) wide
spectrum density for output signal (b) for input amplitude of 3.5 mV at 3 Hz.

III. BioDIGOTA CIRCUIT DESIGN
The proposed FD BioDIGOTA has been designed and fabri-
cated in 180nmCMOS and its layout is shown in Fig. 7a along
with its micro-photo. Once most of the noise contribution is
related to the input stage [55], its design deserves a special
care in order to meet the requirements of biomedical signal
amplification. For this purpose, the area of the Muller-C
is increased one hundred times compared to [64] reduce
noise [66], by connecting one hundred cells in parallel.

The delays of the non-inverting and inverting signal paths
have been matched and the active components have been
integrated under theMiM capacitors to further reduce the area
of the layout. The circuit layout occupies just 0.022 mm2 thus
achieving 3.322× lower silicon area compared to the mini-
mum size found in the current literature [14]. In Fig. 7a, the
area breakdown shows that more than 50% of the area is occu-
pied by theMullerC logic-gates while almost 40% of the total
is covered by the MiM capacitors of the feedback network.
In other words, only 0.018 of 0.022 mm2 is dedicated to the
active devices, including the pseudo-resistors.

IV. MEASUREMENTS RESULTS
Three BioDIGOTA samples have been measured and their
performance has been compared with biosignal ampli-
fiers presented in recent literature. The 3Hz frequency
time-domain input and output measured waveforms of the
proposed FD BioDIGOTA at VDD = 400mV and Cout =

10 pF capacitive load are reported in Fig.7b and reveal
the operation of the circuit as a filter with less than 2%
THD and 100nW of power consumption. Under such condi-
tions, the BioDIGOTA circuit works properly with an output
swing larger than 400 mV peak-to-peak, as shown in Fig.7b,

offering 10Hz bandwidth with 35 dB gain, without slew-rate
distortion, meaning its slew-rate exceeds 12 V/s.

A DC voltage gain of 35 dB has been measured for
this configuration. The power breakdown is also included
in the Fig.7a. A relevant power is consumed in the first
stage, as expected, to reduce the noise. The wide-band output
spectrum is reported in Fig.7c, revealing in-band harmonics
(THD=1.8%). Table 2 shows THD measured for all three
samples.

In [64], the proposed BioDIGOTA has been verified under
process and mismatch variations by Monte Carlo (MC) sim-
ulations performed on 100 samples, achieving σ

µ
= 34% for

output THD having a mean value of µ = 5.13%, σ
µ
= 41%

for noise having µ = 1.97µVRMS, and σ
µ
= 20.1% for the

power consumption having µ = 146nW. σ represents the
standard deviation.

A. DIFFERENTIAL AMPLIFICATION, CMRR, AND PSRR
FREQUENCY RESPONSE
The measured frequency response of the BioDIGOTA differ-
ential amplification is reported in Fig.8a and reveals 35dB
in-band gain and 10Hz bandwidth under Cout = 10pF
load. In the same plot, the common-mode rejection ratio
(CMRR) and the power supply rejection ratio (PSRR) are also
depicted, revealing a CMRR exceeding 62dB and a PSRR
exceeding 55 dB in the signal bandwidth for the best sample
(sample #3).

B. NOISE
Fig.9 shows the measured power spectral density of the
input-refereed noise for the three samples. The BioDIGOTA
integrated noise over the entire bioDIGOTA bandwidth
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TABLE 2. Measured performance for all three samples @ VDD = 400mV, 27 oC temperature, input amplitude of 3.5mV and frequency of 3 Hz.

TABLE 3. Performance summary and comparison.

FIGURE 8. Gain, CMRR, and PSRR at VDD = 400mV.

(0.05 Hz - 10 Hz specify the bandwidth here) is 1.25µVRMS,
corresponding to a 395 nV/

√
Hz average PSD over the same

bandwidth for sample #3. Power, NEF and PEF are listed for

FIGURE 9. BioDIGOTA measured noise spectrum density for each sample
over entire bandwidth at VDD = 400mV.

all samples in Table 2. Amongst all samples, the lowest NEF
and PEF found are 7.6 and 23, respectively, for the sample #3.

C. COMPARISON WITH THE STATE OF THE ART
Compared to biosignal amplifiers proposed in recent litera-
ture [9]–[16], whose performance is summarized in Tab. 3,
the BioDIGOTA presented here is able to work properly at
the lowest VDD (2× lower than [12], [13]), at the lowest
silicon area (3.22× lower than [14]), keeping reasonable
noise performance. These results prove that digital-based
analog design is very attractive for body dust applications.
The comparison in terms of NEF and PEF versus area is
also illustrated in Fig. 10. If the NEF and PEF are both
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FIGURE 10. NEF and PEF versus area.

multiplied by the total area as shown in Tab. 3 by NEFAREA
and PEFAREA, the proposed BioDIGOTA achieves the lowest
NEFAREA. Thesemeasurements results gathered from the pro-
posed BioDIGOTA demonstrate a relevant power-efficiency
and area reduction, as previously predicted in Fig. 2 [8].

V. CONCLUSION
In this paper, the authors have proposed a FD Digital-based
OTA that emulates an analog biomedical amplifier in the
digital domain, presenting lower silicon area than its analog
counterpart when operating in Ultra Low Voltage (ULV) and
Ultra Low Power (ULP) conditions. The proposed architec-
ture can also be implemented using CMOS standard-cells that
are available for any fabrication process. To enable process-
ing the bio-potential signals digitally with static logic gates,
a ULV Passive-less FD BioDIGOTA has been presented here
achieving at VDD = 400mV a NEF = 7.6 and PEF = 23,
while consuming just 95 nW and 0.022 mm2 of silicon area
with 35 dB gain and 395 nV/

√
Hz power spectral density.

Through this implementation, digital-based analog design
has been proven to be a good alternative for reducing area
and design effort for body dust applications working in low
voltage domain.
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