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“You are seeking happiness.

Learn this lesson, once and forever,

that you will find happiness only by

helping others to find it!”

— OUTWITTING THE DEVIL
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ABSTRACT

Nowadays, the mobile robotics research community deals with different high-level tasks

that require the robot to manipulate or interact with objects that may not be in the robot’s

field of view. To find an object in unknown environments, the robot needs to look for

it while gaining information about the environment and making decisions in real-time,

known as the object search (OS) problem. The research community has proposed dif-

ferent approaches for dealing with the OS problem, relying on the objects’ color or 3D

shape as visual cues to guide the search. However, this geometric information (i.e., color

or size) limits the robot’s perception and, consequently, the robot’s performance during

the search. Therefore, we propose two OS systems that exploit the advantages of seman-

tic information inferred from the organisation of both the environment and objects. The

first one relies on semantic information inferred from numbers in text signs found in the

environment. The goal is to find a target door label. The use of organisational semantic

information in this scenario allows the robot to reduce the search costs by avoiding not

promising corridors to contain the target door label. The detected numbers are used to

estimate either the search continues towards unknown parts of the environment, or care-

fully search in the already known parts. The second proposed OS system is based on the

changes in the organisation and arrangement of objects over time in the environment. It

observes the environment and gathers data from the objects’ placement through the time

by executing its recording mode. This recorded data is later used when the robot exe-

cutes the requesting mode to search for the target object. Both systems were evaluated in

different environments and compared against other OS approaches in simulated and real

scenarios. Even though our systems do not depend on specific SLAM systems and object

detection algorithms, we have used Gmapping and YOLO in our experiments, respec-

tively. The results of the experiments support our systems’ efficiency and demonstrate

the improvement in the searching performance with the aid of organisational semantic

information.

Keywords: Mobile robotics. Object search. Organisational semantic information. Robo-

tics perception. Indoor environments.



Explorando Informações Semânticas em Ambientes Internos

RESUMO

Atualmente, a comunidade científica de robótica móvel está lidando com diferentes tare-

fas de alto-nível que requerem que o robô manipule ou interaja com objetos que podem

não estar no campo de visão do robô. Para encontrar um objeto em um ambiente desco-

nhecido, o robô precisa procurar por ele enquanto ganha informação sobre o ambiente e

toma decisões em tempo-real, conhecido como o problema de busca por objetos (BPO).

A comunidade de pesquisa propôs diferentes soluções para abordar o problema de BPO,

se baseando na cor, tamanho ou no que existe ao redor dos objetos. Contudo, todas es-

sas informações geométricas (como por exemplo cor ou tamanho) limita a percepção do

robô e, por consequência, o seu desempenho durante a busca. Portanto, nós propomos

dois sistemas de BPO que exploraram as vantagens de informações semânticas inferidas

a partir da organização tanto do ambiente quanto dos objetos presentes. O primeiro se

baseia em informações semânticas inferidas de números em placas de texto encontrados

no ambiente. O objetivo é encontrar a placa de texto da porta alvo. O uso da informação

semântica organizacional neste cenário permite que o robô reduza os custos da busca por

evitar corredores não promissores para conter a placa de texto da porta alvo. Os números

detectados são usados para estimar se busca continua em direção a regiões desconhecidas

ou se realiza a busca cuidadosamente em regiões já conhecidas. O segundo sistema de

BPO é baseado nas mudanças na organização e arranjo dos objetos ao longo do tempo

no ambiente. Nosso sistema observa o ambiente e coleta dados do posicionamento dos

objetos ao longo do tempo executando o seu modo de gravação. Os dados gravados são

usados posteriormente quando o robô executa o modo de requisição para buscar pelo ob-

jeto. Ambos os sistemas foram avaliados em diferentes ambientes e comparados contra

outros sistemas de BPO em simulação e ambiente real. Apesar dos nossos sistemas não

dependerem de um sistema de SLAM ou algoritmo para detecção de objectos específicos,

nós usamos o Gmapping e o YOLO nos nossos experimentos, respectivamente. Os resul-

tados dos nossos experimentos confirmam a eficiência dos nossos sistemas e demonstram

a melhora no desempenho da busca com o auxílio das informações semânticas organiza-

cional.

Palavras-chave: Robótica móvel. Busca por objectos. Informação semântica. Percepção

robótica. Ambientes internos.
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1 INTRODUCTION

Robots can be grouped into different classes depending on their function and the

workplace they are designed for (KUMAR et al., 2005; ROBOTICS, 2012; HAIDEGGER

et al., 2013). Among all the classes of robots, service robots (SRs), are robots that work

semi or completely autonomously to perform useful services, excluding manufacturing

operations (ROBOTICS, 2012). The SRs come in all different designs, as they may or

may not be equipped with an arm structure, and even though most of them are mobile,

they can also be fixed in place (GARCIA-HARO et al., 2020). The International Feder-

ation of Robotics (IFR) divides SRs into two subclasses based on their usability: profes-

sional and personal/domestic service robots (LITZENBERGER, 2018). Some examples

of the professional service robots (PSRs) are defence robots (MARTINIC, 2014), farmer-

assistants (VAKILIAN; MASSAH, 2017), medical (ABUBAKAR et al., 2020), and logis-

tic (THAMRONGAPHICHARTKUL et al., 2020). Examples of domestic service robots

(DSRs) include but are not limited to vacuum cleaners (FORLIZZI; DISALVO, 2006),

lawn-mowers (BORINATO, 2017), food and beverage waiters (WAN et al., 2020), and

elderly assistants (HERSH, 2015). The market for SRs has been regularly rising, and it

is no surprise that there is an expectation that it will grow even further in the next few

years (ALMEIDA; FONG, 2011; CHIANG; TRIMI, 2020). The decreasing cost of hard-

ware components (processors, motor drivers, and sensors), the increasing energy density

and lower cost of batteries, and the threats caused by outbreaks such as COVID-19 drive

this expansion (CHIANG; TRIMI, 2020).

According to the Population Division (PD) of the United Nations, in 2015, there

were 901 million people aged 60 or over, representing 12% of the global population (DI-

VISION, 2015). Besides, the PD projects that by 2030, the number of older adults in

the world will reach 1.4 billion and 2.1 billion by 2050. Several policies to tackle the

problems of population ageing have been proposed by several countries, including, for

example, facilities for the elderly (LIN; CHEN, 2018; SEDDIGH et al., 2020). How-

ever, placing elderly people in facilities for retirement or even in nursing homes may

cause some problems, such as physically, emotionally, and psychologically dependen-

cies (THEURER et al., 2015). Additionally, some elderly do not voluntarily stay at nurs-

ing homes, preferring to spend their remaining years at their home where they have a

more positive self-image than those who live in the nursing homes (KOK; BERDEN;

SADIRAJ, 2015; LIN; CHEN, 2018). The increasing number of older people living at
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home supports the need for DSRs to automate processes and tasks that may be tedious,

inconvenient, or even challenging for older people (PAULIUS; SUN, 2019; TORRESEN;

KURAZUME; PRESTES, 2020). In general, these sorts of robots can contribute to prac-

tical tasks for humans as robot assistants or robot companions, such as watching older

adults concerning emergencies, reminding them to take their medicines, and searching,

picking, and placing objects (SPRUTE et al., 2017; TORRESEN et al., 2018; PAULIUS;

SUN, 2019).

Additionally, while some of the main motivations for deploying SRs have been

elderly assistance and productivity improvement, the COVID-19 pandemic has brought

a more critical purpose for them (CHIANG; TRIMI, 2020). PSRs can be deployed to

perform a series of applications to provide contactless services, ensuring humans can

practice social distancing (SEIDITA et al., 2021). Besides disinfecting indoor environ-

ments (MANTELLI et al., 2022), PSRs also have the potential to support the hospitality

industry (ROSETE et al., 2020), and deliver medications and food (LEE et al., 2009;

YANG et al., 2020). The use of SRs in logistic applications is relevant during such un-

usual scenarios. Some national organisations from the United States identified logistics as

one of the broad areas where robotics can make a difference during outbreaks (SEIDITA

et al., 2021).

In many example applications that we listed above, it is likely that SRs have to per-

form some searching tasks. Simple examples would be DSRs searching and picking ob-

jects for elderly with mobility restrictions and PSRs delivering packages to a specific spot

in an unknown environment. Similar to humans in the context of object searching tasks,

SRs should also not rely on the assumption that the object (or regions of interest) they are

searching for is already within their field of view (FoV) (SJöö; AYDEMIR; JENSFELT,

2012). Hence, they have to find the target object in large-scale environments based on

primarily their visual sensors, known as object search (OS) problem (AYDEMIR et al.,

2013). However, how does an SR find the target object that is not initially within its FoV?

One way to address this problem is to make the SR perform a brute-force OS, in which

it visits the whole environment following a predefined search route. Even though this

strategy seems a straightforward solution, it does not efficiently solve the problem (RA-

SOULI et al., 2020). The SR will eventually find it as long as the target object is within

the environment. However, the searching process may be time-consuming due to the long

distances travelled by the robot. Another more efficient solution is to consider a search

strategy that incorporates information from both the environment and the target object, to
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improve the searching performance. For example, such information could be the shape

of the room for the environment (e.g. recognise a kitchen and then search for a plate)

(AYDEMIR et al., 2011a), and the colour or class for the target object (RASOULI et al.,

2020). The search strategy is one of the most critical parts of an OS approach, as it di-

rectly impacts the efficiency of an OS system (AYDEMIR et al., 2013). Therefore, it must

be robust and effective regardless of the environment the SR is performing the search.

The research community has proposed valuable works related to the OS prob-

lem (EKVALL; KRAGIC; JENSFELT, 2007; SJöö et al., 2009; SJöö; AYDEMIR; JENS-

FELT, 2012; AYDEMIR et al., 2013; RASOULI et al., 2020). The problem is proven to

be NP-Complete (TSOTSOS, 1992; YE; TSOTSOS, 2001), which means that the opti-

mal search solution can be computed by approximation (SJöö; AYDEMIR; JENSFELT,

2012), minimising the search cost as much as possible. In the case of SR performing

OS tasks, such approximation could be computed with the aid of strong cues provided by

the semantics of both the environment and other objects in the SR’s surroundings (SJöö;

AYDEMIR; JENSFELT, 2012). Semantics can be regarded as the high-level information

inferred (or “perceived”) from the environment, including but not limited to names and

categories of different objects, rooms and locations (VASUDEVAN et al., 2007; SJöö;

AYDEMIR; JENSFELT, 2012; LIU et al., 2016). Similarly, semantic maps encode not

just the geometric and topological description of the environment but also its semantic in-

terpretation, providing a friendly way for robots to communicate with humans (LIU et al.,

2016). Then, when the SR’s system processes the robot’s sensor readings to infer further

knowledge about the surroundings, it increases the level of abstraction of the environ-

ment over time (BARBER et al., 2018). The use of both semantic information and map

in robotic applications enhances the robot’s autonomy and robustness, besides facilitating

some challenging tasks (CESAR et al., 2016).

1.1 Objective

The objectives of this thesis are the followings

• exploit the organisation of both the environment and objects to infer semantic search

cues to address the OS problem: we aim to demonstrate that organisational seman-

tic information may help in the OS problem, providing a way to estimate which

regions are more likely to contain the target object than others;
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• infer organisational semantic information from numbers recognized from door signs:

we argue that the arrangement of the numbers from door signs follow a certain pat-

tern (and rules). Understanding how the numbers are arranged makes possible to

estimate how promising a certain corridor is, and then, decide whether the search

should continue in the current region or not. We proposed a Number-based Seman-

tic OS system to test this argument;

• infer organisational semantic information from changes of semi-dynamic objects:

we defend that objects are mainly moved by humans according to their daily rou-

tines and habits. It means that there are high chances that objects are moved in a

particular pattern throughout a period of time, suggesting a repetition from time to

time. Estimating such a pattern from human-object interaction may be useful for

the OS problem, to estimate which places a target object may be in a given time of

the day. We proposed a Long-term Semantic OS system to verify this idea;

• perform a coarse-to-fine OS search in indoor environments: we aim to propose a

larger OS system that makes possible to a SR find a target room, and interect with

the object within it. By combining the proposed OS systems we end up with a

coarse-to-fine OS sytem, which first searches for the room by its number, and later

looks for a target object.

We claim that, in general, our society is not randomly organised, and there are sev-

eral patterns and rules we follow every day. It is no surprise that humans can improve their

efficiency while performing daily tasks, like OS, if the environment is merely logically

organised. Thus, they can save energy and time during such tasks. For example, most

cities have their own rules for numbering the properties, although there is no universal

rule for that. The habitants can study it to understand the local numbering pattern. Thus,

they can estimate where a particular unknown building is in the city, even if they have

never been there. On the contrary, when there are no written rules to specify the organisa-

tion of the environment, humans can understand them just by observing the environment

for a while. Inspired by human behaviour in OS tasks, we are interested in making the

SRs take advantage of the organisation of environments to improve their performance in

the OS task.

We consider that the organisational semantic information could be inferred from

the environment through the SR’s sensor readings, and it could be used to help SRs in

search tasks. Such semantic information is helpful to OS systems because it could be

used as high-level search cues. Then, with a semantic OS system, the SR would not need
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to search the whole environment to find the target object. The human reasoning process

relies on several sorts of high-level search cues during searches, like labels and signs or

the acknowledgment that other people may interact with the environment. In our daily

life, we read signs, symbols, and labels to evaluate which direction we should go to find a

specific room in an unknown environment. Another example would be someone who first

checks whether the family’s car is at home to then search for the car key. In particular,

we focus on the organisational semantic information inferred from the organisation of

both static and dynamic environments, like the labels and signs in the first example or the

acknowledgement that other people may move objects.

1.2 Contributions of this Thesis

This thesis presents results (MANTELLI et al., 2021; MANTELLI et al., 2022)

showing that semantic information inferred from the organisation of the environment can

help SRs in the OS problem. Specially, we show that the use of organisational semantic

information as search cues in the search strategy of OS systems can make the SR save

resources by not visiting the whole environment. Besides, we show that the proper use

of semantic information can improve the SRs’ perception to perform high-level tasks,

bringing them closer to humans. We also present a discussion on how our contributions

could be adapted and deployed to Jaci (MANTELLI et al., 2022). It is a recently released

autonomous sanitiser SR that aims to aid both the fight against COVID-19 and hospital

infections due to bacterias and fungus contaminations.

The first contribution of this thesis is a semantic system that performs the OS

concerning the room organisation (MANTELLI et al., 2021). It aims to find a specific

room in an unknown environment based on the organisation of door labels. Although

humans heavily rely on texts, characters, and symbols for accomplishing several tasks, the

use of numbers from text labels as a data source is not very popular in robotics. Despite

the low interest by the research community, we argue that numbers detected from text

labels have a great potential for providing search clues and are often found in man-made

environments. This idea came from human behaviour when searching for someone’s

office in an unknown building. More specifically, we are interested in investigating how

the numbers from door labels in corridors could be used to estimate whether a corridor is

promising for finding the target office. The search strategy relies on the arrangement of

door labels in indoor scenarios, and then it estimates which corridor is more promising
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for achieving the goal. It is important to highlight that even though our OS system is

looking for a specific number, it is still looking for an object. That is because the number

is recognized from a door sign, which is associated to a door, the object. Therefore, by

saying that our OS sytem is searching for a number from a sign, what we really mean is

that the goal is to find the door, the object, associated to the specific sign.

The scenario of our first contribution is considered static. The door signs arrange-

ment do not change very often, as well as the position or amount of doors within a build-

ing. Hence, the parts of the environment that our system is relying on are static. If an SR

has to perform object manipulation tasks in the room it has just found, it will probably

have to search for the objects. However, in contrast to doors, objects inside a room are

more likely to have their positions changed by someone, resulting in a more dynamic sce-

nario. Hence, such a robot should perform an OS in a dynamic environment, and that is

the context of our next contribution.

Our second contribution is a long-term semantic system that searches for a target

object in dynamic unknown environments (MANTELLI et al., 2022). It assumes that

some objects within the environment are not always static, i.e., that the organisation of

the environment changes over time and is associated with people’s activities. In this way,

its goal is to incorporate a person’s routine and habits into the search strategy and then

make search estimations. This work aimed to model the semantic information of how

objects are organised over time within an environment. Then, it uses this information to

avoid making the SRs search for the target object in not promising regions. This idea

came from observing how the objects are placed over time and that every person has their

own singularities in terms of object placement.

Lastly, we finish the contributions of this thesis with a discussion about the pos-

sibility of deploying our OS systems in the SR Jaci (MANTELLI et al., 2022). This

robot was build aiming help the fight against COVID-19 and hospital contamination in

general. It is equipped with a set of UV lights and it autonomously disinfect indoor envi-

ronments. However, it presents some limitations that could be overcomed by our systems.

We present our ideas on how this deployment could be done, along with the possible boost

in efficiency that our systems may provide to Jaci.
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1.3 Outline

The outline of this thesis is as follows. First, in Chapter 2, we introduce the

theoretical background of this thesis, presenting some of the main problems in mobile

robotics, along with the most popular approaches that deal with each problem. We also

introduce the general concepts of the OS problem, which is the foundation of this thesis.

Lastly, we review other techniques that are used throughout this document. In Chapter 3

we discuss the main works proposed by the research community regarding the OS prob-

lem, and give an overview about many other works that have been used as inspiration to

the development of this thesis. In Chapters 4 and 5, we present both of our OS systems,

Number-based Semantic OS and Long-term Semantic OS, in addition to the experimen-

tal results for both systems. In Chapter 6, we introduce a discussion about how our OS

systems could be deployed in a real SR called Jaci (MANTELLI et al., 2022). Besides,

we also discuss the benefits our systems provide to the SR in an environment disinfection

application. Lastly, in Chapter 7, we draw the conclusions about the current work and

discuss the future directions.
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2 THEORETICAL BACKGROUND

In the previous chapter, we have argued that high-level tasks would benefit from

exploiting the semantic information inferred from spatial and temporal organization of

the environments. We have chosen the OS problem to explore this idea, which aims

to estimate a target object’s location in a large unknown environment, usually with a

camera attached to a mobile SR. We believe investigating this problem can enlarge our

understanding regarding the benefits of employing semantic information to expand the

SR’s perception.

This chapter presents a theoretical background detailing techniques used through-

out this thesis. The OS problem requires the SR to map the unknown environment and

to estimate its position simultaneously. Simultaneous Localization and Mapping (SLAM)

systems fulfill these requirements, as it computes the state estimation and builds an envi-

ronment representation. Hence, we address the basic concepts of such systems and mobile

robotics in general, from the individual localization and mapping problems to how they

are combined into the SLAM systems. Besides, we cover the generic and central formu-

lation of OS problems, which is the basis for the works presented in Chapters 4 and 5.

2.1 The Basics of Mobile Robotics

Mobile SRs perform several tasks that require them to be aware of their positions

in the environment and the position of obstacles to avoid collisions. In most realistic

scenarios where robots are deployed, such information is not directly available. Hence,

they have to estimate it with their sensors, which provide noisy data from the environ-

ment (THRUN; BURGARD; FOX, 2006).

The state estimation in mobile robotics can be summarized in four variables:

• xt: robot’s pose at time step t. It is composed by a three dimensional vector contain-

ing (x, y, θ)T , in which x, y represent the position and θ the orientation. A sequence

of robot’s poses from time step 0 to time step t is defined as x0:t = {x0,x1, · · · ,xt}.

• mi: object i’s position in the environment. A list of N objects, with 1 ≤ i ≤

N , in the environment along with their properties is given by the vector m =

(m1,m2, · · · ,mN)T .

• ut: control data at instant t. It corresponds to the change of state in the time interval
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(t− 1; t]. The sequence of control data that takes the robot from the initial position

to xt is denoted by u1:t = {u1,u2, · · · ,ut}.

• zi
t: the i-th measurement made by the robot at instant t. The vector of all of

them acquired at the same instant t is zt = (z1
t , z

2
t , · · · , zK

t )T , whereas z1:t =

{z1, z2, · · · , zt} expresses the history of all observations.

After defining the four variables that are the basic foundation for state estimation

in mobile robotics, it is worth to explain their role in different estimation problems. The

set of controls u1:t and measurements z1:t are always known since the robot’s sensors pro-

vide them. Inertial measurement units and wheel encoders are examples of sensors that

provide control data, whereas LiDARs, sonars, and cameras measure the environment.

The other two variables, robot’s pose, x0:t, and environmental map, m, are not neces-

sarily known. Depending on the estimation problem, it is necessary to estimate different

variables, like the three examples depicted in Figure 2.1. In Localization, Figure 2.1a, the

map is known in advance, and hence, only the SR’s pose is estimated. The opposite hap-

pens in Mapping, Figure 2.1b, as the map is built based on the known SR’s pose. Lastly,

in SLAM, Figure 2.1c, which combines the two previous problems, none of them is given

a priori, and therefore, both are estimated simultaneously.

Estimate 
of robot

pose

Real
robot
pose

Real
object
pose

Estimate
of object

pose

CAPTION

(a) Localization (b) Mapping (c) SLAM

Figure 2.1 – Fundamental problems in mobile robots and their state estimation. It is estimated:
(a) robot’s pose, (b) map, (c) both of them simultaneously. Extracted from (MAFFEI, 2017).
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Localization is the most basic perceptual problem in robotics. It aims to determine

the SR’s pose relative to a given map of the environment. Localization can also be seen as

a problem of coordinate transformation, in which it is established a correspondence be-

tween the map coordinate system and the SR’s local coordinate system (THRUN; BUR-

GARD; FOX, 2006). There are multiple localization problems, and they are not equal in

terms of their difficulty level. One characteristic that divides this problem into local and

global localization is the awareness of the SR’s initial pose. The former assumes that the

initial SR’s pose is known. Therefore, the problem becomes a sort of position tracking in

which the noise in the measurements is adjusted in robot motion, commonly by a Gaus-

sian distribution. On the other hand, the latter is unaware of the initial pose, making it

perform the localization globally (where the name comes from) in the map. The global

localization has a higher difficulty level than the local one, and one of its variations is

even more challenging, the kidnapped robot problem. It addresses the problem of a local-

ized robot being teleported to some other location in that the robot might believe it knows

where it is while it does not. Although a SR is rarely kidnapped in practice, recovering

from localization failures is essential for autonomous robots.

The formulation of the global localization problem is presented in Figure 2.2,

which depicts a few iterations of the robot’s pose estimation and how the variables are

used. The map m is already known, whereas the x0:t must be estimated based on the

controls u1:t and the measurements z1:t. For the case of local localization, the x0 is

known and hence, it does not need to be estimated. Markov localization is a probabilistic

algorithm that addresses all the localization problems mentioned earlier. It applies the

Bayes filter, p(xt | u1:t, z1:t,m), to transform a probabilistic belief at time t − 1 into a

belief at time t.

Many other localization algorithms implement Markov localization in mobile ro-

botics. Three of them have been in the spotlight for a long time and are prevalent in this

field: Kalman filter, grid-based filter, and particle filter. The former filters predicts in

linear dynamics and measurement functions (LEONARD; DURRANT-WHYTE, 1991),

whereas the grid-based filter approximates the estimations by decomposing the state space

into finitely many regions of the grid map (BURGARD et al., 1998). The key idea of the

latter, particle filter, is to represent the estimation by a set of random state samples, called

particles, drawn from the previous estimation. It can represent a much broader space of

distribution, in contrast to the Kalman filter that is more strict to Gaussians (DELLAERT

et al., 1999). The particle filter implementation for mobile robotics is also known as
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Figure 2.2 – Graphical model of the fundamental mobile robotics problems: localization,
mapping, and two SLAM variations. Adapted from (MAFFEI, 2017).

Monte Carlo Localization (MCL), widely used in many different robotics applications for

multiple robot types (DELLAERT et al., 1999; THRUN; BURGARD; FOX, 2006).

Mapping, for the case of the robot’s poses are known, is the problem of gen-

erating consistent maps from noisy and imprecise measurement data, as shown in Fig-

ure 2.1b (THRUN; BURGARD; FOX, 2006). The estimated belief of the map, p(m |

x1:t, z1:t), considers the set of all measurements up to time t, z1:t, along with the robot’s

path defined by its history of all poses, x1:t, as also shown in Figure 2.2. Comparing the

graphical models of the localization and mapping problems in Figure 2.2, one can say that

they are opposite in terms of which variable each estimates. This thought makes sense,

since whereas the former relies on m to estimate x0:t, the latter relies on x0:t to estimate

m. It is important to mention that the controls u1:t play no role in this context, as the path

is already known. Besides, the robot’s initial pose x0 is omitted from the map estimation

because no measures are taken when the robot is at that pose.

Similar to the localization problem that groups multiple localization types, the

mapping problem also represents a general idea implemented by different map types. The

feature-based maps represent the cartesian location of features, which are distinct ob-

jects in the physical world, extracted from the measurements, such as images from visual

sensors or a vector of distances from a 2D LiDAR (SALAS-MORENO et al., 2013; EN-

GEL; SCHÖPS; CREMERS, 2014; MUR-ARTAL; MONTIEL; TARDOS, 2015). The

advantage of such a map type is the reduction of computational complexity, as the fea-
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ture space has a lower dimension than the raw measurement. For example, the eight 3D

edges of a boudingbox encircling a car are computationally cheaper to process than a

point cloud from a 3D LiDAR. Another map type within the mapping problem is called

location-based. It represents in each map component mi the regions from the environ-

ment, regardless of whether they contain objects. This way, any location in the world

has a label on the map, not only features. Occupancy grid maps are often considered the

most popular location-based map (THRUN; BURGARD; FOX, 2006). They discretize

the environment into small portions called grid cells, which store information about the

area it covers. In general, this information in each cell is a single value representing the

probability that an obstacle occupies this cell. The size of the cells defines the map res-

olution, which brings a tradeoff between the level of details and the demand for memory

resources.

Lastly, SLAM, also known as Concurrent Mapping and Localization, is undoubt-

edly the most fundamental and challenging problem in robotics (THRUN; BURGARD;

FOX, 2006). SLAM problems appear in scenarios where the environmental map is un-

available and the robot is unaware of its pose, as depicted in Figure 2.1c. In contrast to the

other two problems presented earlier, which have to estimate either the map m or x1:t,

in SLAM problems, the robot has to perform the estimation of both variables at the same

time, as shown in Figure 2.2. Since the robot does not know its pose and there is no map,

the pose x0 is assumed, by convention, to be (0, 0, 0)T . The high difficulty level of SLAM

comes from the double dependency of localization and mapping: to estimate the pose, the

robot needs a map from the environment, whereas to estimate the map, the robot need to

know its pose.

The SLAM problem is divided into two forms based on what is estimated: online

and full SLAMs. The former focus on estimating only the posterior over the current

robot’s pose xt and the map m, p(xt,m | z1:t,u1:t). The full SLAM computes the same

estimation, but with the entire robot’s trajectory x1:t along with the map m, p(x1:t,m |

z1:t,u1:t).

The majority of the algorithms for the online SLAM problem are incremental, i.e.,

the idea is to estimate the posterior probability on the current robot state and map as the

robot moves, discarding past measurements and controls once they have been processed.

The Kalman and particle filters are also used in this context, besides the localization one

as previously discussed. The Extended Kalman Filter is the basis of one of the earli-

est online SLAM approaches, linearizing motion and observation models, which usually
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are nonlinear, to perform the online SLAM estimations (MAFFEI, 2017). An online

SLAM problem that is based on particle filter is known as Rao-Blackwellized particle fil-

ter (RBPF) (MURPHY et al., 1999; DOUCET et al., 2000; GRISETTIYZ; STACHNISS;

BURGARD, 2005; GRISETTI; STACHNISS; BURGARD, 2007a). In RBPF, each par-

ticle carries an individual grid map of the environment, representing a hypothesis of the

robot’s trajectory. The number of particles is directly related to the map quality since the

higher this number, the broader is the hypotheses variety. However, there is a cost asso-

ciated with each particle, and hence, it is not practical to increase the number of particles

until the estimated map matches the physical world.

The algorithms for the full SLAM problem calculate a posterior over the entire

path, which solves an issue in the online SLAM problem. Discarding the previous states

after estimating the current one, also known as Markov assumption, implies that the pos-

sible poor estimations in the past are not adjustable. In contrast, the full SLAM problems

backpropagate to the previous estimations the error reduction computed in the current

state calculation. GraphSLAM captures the essence of the full SLAM problem, since it

calculates a solution for the offline problem over x1:t and z1:t in m. Despite the advan-

tage of improving previous state estimations, full SLAM algorithms are computationally

heavy due to the optimization of nonlinear quadratic constraints.

Explaining the fundamental problems of mobile robotics, from the simplest local-

ization to the more complex SLAM problems, helps to understand why the OS works for

unknown environments depend on a SLAM system. Since our works in the next chapters

are designed for similar conditions (large and unknown environments), we opted to rely

on GMapping (GRISETTI; STACHNISS; BURGARD, 2007a). It is an online SLAM

algorithm based on RBPF that provides a 2D grid map, and each cell contains a value

that means whether the region it represents is unknown (to the SLAM system), occupied

(obstacle), or free.

The aforementioned problems belong to the perception group in mobile robotics.

The localization, mapping, and SLAM, use the robot’s perception to make estimations

about the robot’s and world’s state, regardless their actions during the computation of

the estimate. However, in mobile robotics there is a second large group of problems,

the action. In contrast to the first group, perception, the problems within this group are

responsible for choosing the right actions for the robot according to a policy (or a cost

function) (THRUN; BURGARD; FOX, 2006). For example, an unmanned aerial vehicle

(UAV) has to flight from point A to point B, and there are two possible paths. The first
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one is shorther, but the UAV has to flight through many mountains, risking to colide and

getting lost by losing its signal connection with satellites. The second path is longer, cir-

cunventing the mountains in a safe way. Then, should the UAV take the risk and maybe

land on point B as fast as possible, or delay its arrival and ensure it will arrive? Action

selection in many robotics tasks is tied to the notion of uncertainty. In some cases, re-

ducing uncertainty is the direct goal of action selection, like when a robot is exploring an

environment. In other cases, reducing uncertainty is a way to achieving other goal, such

as reliably arrinving at a target location (THRUN; BURGARD; FOX, 2006).

We presented the localization and the SLAM problems in this section, and they

also have their own variations for action selection. In the active localization problem,

an algorithm controls the robot to minimize the localization error arising from moving a

poorly localized robot into a hazardous place (THRUN; BURGARD; FOX, 2006). The

algorithm could avoid homogeneous regions in the environment, e.g. long corridors or

squared empty rooms, where the localization error usually increases, and prefer other type

of regions with distinguishable landmarks. For the SLAM problems, the action selection

is performed by exploration techniques. Their combination resulted in another problem

called integrated exploration, or active SLAM. The idea is to find a balance between

exploring the unknown parts of the environment to gain information and returning to the

visited parts to reduce the uncertainty regarding both the map and the robot’s pose. The

exploration alone is within the action group, and as our thesis is related to this topic, we

will present more details about it further in this chapter.

2.2 Environment Perception

Different applications performed by robots depend on distinct information about

the environment. The robot’s sensors readings, such as images and point clouds, are input

to various perception algorithms, like object detection or a QR code reader. For our thesis,

we also depend on some environmental information that are perceived by the techniques

we present below.
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2.2.1 Text Localization and Recognition

Text can be embedded into documents or scenes as a mean of communicating in-

formation, and it is considered one of the most expressive means of communications (YE;

DOERMANN, 2014). The process of Optical Character Recognition (OCR) aims to de-

tect and recognize text in printed materials, images or videos, to then convert it into a dig-

itized form so that machines can manipulate the digital text (YE; DOERMANN, 2014;

ISLAM; ISLAM; NOOR, 2017). The OCR process has been in the spotlight for sev-

eral years (ISLAM; ISLAM; NOOR, 2017). The motivation for such attention from the

research community is that text provides meaningful information to be used in many ap-

plications. Besides, OCR is a complex problem, and constantly a new work is proposed

to deal with the variety of languages, fonts, and styles in which text can be written, along

with the complex rules of languages (ISLAM; ISLAM; NOOR, 2017).

There are two methodologies commonly used in OCR systems, integrated and

stepwise (YE; DOERMANN, 2014). The integrated methodology recognizes words when

the detection procedures share information with character classification and relies on joint

optimization strategies, as shown in Figure 2.3a. On the other hand, stepwise methodol-

ogy has separated detection and recognition modules. Besides, it uses a feed-forward

pipeline to detect, segment, and recognize text regions, shown in Figure 2.3b (YE; DO-

ERMANN, 2014). Lastly, it relies on a feedback procedure from text recognition to text

detection to reduce false detections.

(a) Integrated Methodology

(b) Stepwise Methodology
Figure 2.3 – Frameworks of two popular text detection and recognition methodologies, where (a)

is the Stepwise methodology, and (b) is the Integrated methodology. Adapted from (YE;
DOERMANN, 2014).

The latter methodology usually employs a coarse-to-fine strategy, which is done in
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four steps: localization, verification, segmentation, and recognition (YE; DOERMANN,

2014). The goal of the first step, localization, is to coarsely classify components and

groups into candidate text regions. In the second step, verification, such regions are

further classified into text or non-text regions. The third step, segmentation, separates

the characters in a way that exclusive, accurate outlines of image blocks remain for the

recognition step. Lastly, the recognition step converts image blocks into characters. It

is also possible that some stepwise methodologies ignore the verification and segmenta-

tion steps. Further, another adaptation is the inclusion of additional steps to perform text

enhancement and rectification (YE; DOERMANN, 2014).

One of the leading methods in scene text detection is based on detecting charac-

ters, and the work proposed by Neumann and Matas (2012) is an example (ZHANG et al.,

2016). It is an end-to-end real-time scene text localization and recognition method based

on the stepwise methodology (NEUMANN; MATAS, 2012; YE; DOERMANN, 2014).

Neumann and Matas addressed the character detection problem as an efficient sequential

selection from the set of Extremal Regions (ERs) to achieve real-time performance. Such

ER is a character detector that analyses image regions whose outer boundary pixels have

higher values than the region itself. It is robust to blur, illumination, colour, and texture

variation. Additionally, it also handles low-contrast text (NEUMANN; MATAS, 2012).

The pixels within each ER’s bounding box are described by a class of region descriptors

that serve as features for the character classification.

In a given grayscale image, Figure 2.4b, the authors do the text localization by es-

timating the probability of each ER being a character using a set of features, Figure 2.4c.

The verification step is done by selecting only the ERs from the previous step with locally

maximal probability (of being a character), Figure 2.4d. Since the verification step aims to

eliminate not promising character candidates, the authors further classify the high-likely

ERs with more computationally expensive features to improve the character classifica-

tion. Then, they group the verified ERs into words and select the most probable character

segmentation, Figure 2.4e. The grouping is computed with a highly efficient exhaustive

search with feedback loops. To get the text detected, Figure 2.4f, the average run time

of the proposed method on a 800 × 600 image is 0.3s on a standard PC (NEUMANN;

MATAS, 2012). The method proposed by Neumann and Matas achieved state-of-the-art

text localization results when evaluated in two public datasets. Besides, they were the

first ones to report results for the end-to-end text recognition on the ICDAR 2011 Robust

Reading competition dataset (NEUMANN; MATAS, 2012). Due to the efficiency and ro-
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bustness of the work proposed by proposed by Neumann and Matas (2012), we are using

it in our work presented Chapter 4.

(a) (b) (c)

(d) (e) (f)

Figure 2.4 – Text localization and recognition overview, in which (a) is the source image, (b) is
the extracted intensity channel, (c) is the ERs selected by the first stage of the sequential

classifier, (d) is the ERs selected by the second stage of the classifier, (e) is the text lines found by
region grouping, and (f) is the only ERs in text lines selected and text recognized by an OCR

module. Extracted from (NEUMANN; MATAS, 2012).

2.2.2 Object Detection using 2D images

Generic object detection problem is defined as determining whether there are in-

stances of objects from predefined categories in a given image. For the present instances,

it is also necessary to return their spatial location and extent (LIU et al., 2020). This prob-

lem is also known as generic object category detection, object class detection, or even

object category detection (LIU et al., 2020). It focuses on detecting a broad range of nat-

ural classes instead of specific object class detection, where only a narrower predefined

class of interest may be present, such as faces, pedestrians, or cars.

Nowadays, the research community is more interested in detecting highly struc-

tured objects, like cars, bicycles, and airplanes, and articulated objects, such as humans

and pets, rather than unstructured scenes (e.g., sky, grass, and cloud) (LIU et al., 2020).

Regarding the spatial location and extend of an object within an image, like the detected

objects in Figure 2.5a, it can be defined coarsely using a bounding box (EVERINGHAM

et al., 2010; REDMON et al., 2016), which is a rectangle tightly bounding the object,

Figure 2.5b, a precise pixel-wise segmentation maks (ZHANG et al., 2013), Figure 2.5c,

or a closed boundary (RUSSELL et al., 2008; LIN et al., 2014), Figure 2.5d (LIU et al.,
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2020).

(a) Object classification (b) Generic object
detection

(Bounding box)

(c) Semantic segmentation (d) Object instance
segmentation

Figure 2.5 – Recognition problems related to generic object detection. This figure shows (a)
image level object classification, (b) bounding box level generic object detection, (c) pixel-wise

semantic segmentation, and (d) instance level semantic segmentation. Extracted from (LIU et al.,
2020).

Recently, deep learning-based techniques have been proposed to deal with the ob-

ject detection problem (REDMON et al., 2016). Deep learning has been used to solve

many other challenging tasks, in areas such as image classification (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012; HE et al., 2016) and language modeling (GONG et al.,

2018; DAI et al., 2019)(HE; ZHAO; CHU, 2021). Deep learning techniques have arisen

as powerful techniques for learning feature representations automatically from data (LIU

et al., 2020). The success of deep learning in general in these areas is partly due to

the rapidly developing of computational resources, such as powerful graphical cards, the

availability of big training data, and the effectiveness of deep learning to extract hidden

representations from images, texts, and videos (WU et al., 2020b).

A popular deep learning approach for object detection that has been improved

since its first version is called YOLO (REDMON et al., 2016). The name is an acronym

and is short for “You Only Look Once”, which partially explains the general idea of

the approach. The YOLO’s authors have entirely abandoned the initial object detection

paradigm of “proposal detection + verification”. Instead, they followed an entirely differ-

ent idea: to apply a single neural network to the whole image. This idea made YOLO the

first one-stage object detector in the deep learning era (where the name comes from) (ZOU

et al., 2019). Thanks to this unified approach, YOLO detects objects extremely fast, pro-

cessing images in real-time at 45 frames per second (FPS) (REDMON et al., 2016). To

compare, the best object detector before YOLO, called Faster RCNN, processes images

at 5 to 7 FPS (LIU et al., 2020).

Redmon et al. (2016) approached object detection as a regression problem, straight

from image pixels to bounding box coordinates and class probabilities (LIU et al., 2020).

Each image is evaluated once in their system by a single neural network that predicts

bounding boxes and class probabilities. Due to this single network detection pipeline,
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YOLO can be optimized end-to-end directly on detection performance (REDMON et al.,

2016).

YOLO divides an image into an U ×U grid, and each grid cell predicts B bound-

ing boxes and confidence scores for those boxes. These confidence scores reflect how

confident the model is that the box contains an object. In addition, the score also suggests

how accurate YOLO thinks the box is what it predicts. In the second image of Figure 2.6,

the score of the bounding boxes is represented by their thickness. The thicker the bound-

ing box, the higher the confidence that there is an object in that location. Here is important

to mention that at this point, YOLO does not know which objects there are in the image.

It just knows whether exist any and their locations. To find out the object classes within

the image, YOLO predicts C conditional class probabilities for each grid cell. These

probabilities are conditioned on the grid cell containing an object. It means that YOLO is

predicting that if there is an object in a cell, that object is an instance of the class with the

highest probability. YOLO only predicts a set of class probabilities per grid cell regard-

less of the number of bounding boxes B for each grid cell. The third image of Figure 2.6

illustrates this prediction. Finally, YOLO multiplies the conditional class probabilities

and the individual bounding box confidence predictions at the test time, which results in

the class-specific confidence scores for each box. Hence, these scores encode both the

probability of that class appearing in the bounding box and how well the predicted box

fits the object, represented by the fourth image of Figure 2.6. Through a non-max sup-

pression process, YOLO discards low-value bounding boxes and duplicated detections,

resulting then in the final detections, illustrated by the fifth image of Figure 2.6.

Figure 2.6 – YOLO’s model detection as a regression problem. The input image is initially
divided into an U × U grid, and for each grid cell YOLO predicts B bounding boxes, confidence

for those boxes, and C class probabilities. Adapted from (REDMON et al., 2016).

Unlike sliding window and region proposal-based techniques, YOLO reasons glob-

ally about the image when making predictions, processing the entire image during training

and test time (REDMON et al., 2016). Hence, it implicitly encodes contextual informa-

tion about classes and their appearance. Besides, YOLO learns generalizable represen-

tations of objects. In one of its experiments, YOLO was trained on natural images and
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tested on artwork, outperforming top detection methods proposed by the research com-

munity (REDMON et al., 2016). However, despite its significant improvement in de-

tection speed, YOLO suffers from a slight drop in localization accuracy compared with

two-stage detectors, especially for some small objects (ZOU et al., 2019). The imposing

performance of YOLO, proposed by Redmon et al. (2016), in detecting objects on 2D

images convinced us to use it in our work presented Chapter 5.

2.2.3 Free space segmentation in grid maps

The process of computing the probability density function f of any data sample

X = {x1,x2,x3, · · · ,xn} is called density estimation (DEVROYE; KRZYŻAK, 1999;

MAFFEI, 2017; BHATTACHARJEE; GARG; MITRA, 2021). The kernel density esti-

matation (KDE), f̂h(x), is a non-parametric estimate of f computed at point x, defined

as

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) (2.1)

where Kh(d) is a circular kernel function that operates over all points at distance d ≤

h from x, and h is called the bandwidth of the kernel (SILVERMAN, 1986; JONES;

KAPPENMAN, 1992).

For any given point xi ∈ X where 1 ≤ i ≤ n, the KDE on dataset X is used

to estimate the likelihood of a point xi being drawn from X . The probability estimated

through the kernel density estimator may be interpreted as the “point density” at any

xi ∈ X (DEVROYE; KRZYŻAK, 1999; BHATTACHARJEE; GARG; MITRA, 2021).

A variety of kernel profiles may be applied for estimating the density using KDE.

Even though the Gaussian kernel is one of the most frequently used kernel functions,

other kernel profiles are used by the research community (SILVERMAN, 1986; MAFFEI

et al., 2015a). Below we show the uniform, gaussian, and the inverted ones:

UKh(d) =

a , if d ≤ r

0 , otherwise
(2.2)

GKh(d) =
1

h
√

2π
exp

(
− 1

2

d2

h2

)
(2.3)
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IKh(d) =

h(b+ c)− (
√
h2 − d2)c , if d ≤ h

0 , otherwise
(2.4)

where d signifies the distance from a kernel centre x to the target point xi, r is the radius

of the kernel, and a is the height of the uniform kernel — typically a = 1/(πr2). The

kernel bandwidth h is also known as the smoothing factor that controls the smoothness

of the curve obtained from the KDE function. A higher value of h ensures a smoother

curve of the kernel (BHATTACHARJEE; GARG; MITRA, 2021). For IK(·), b and c are

respectively the height of the uniform circular kernel and the length of the semi-axis of

the oblate ellipsoid (MAFFEI et al., 2015a). Figure 2.7 shows these three kernel profiles

in their 2D and 2 1/2D shapes.

(a) 2D Uniform kernel (b) 2D Gaussian kernel (c) 2D Inverted Kernel

(d) 21/2D Uniform kernel (e) 21/2D Gaussian kernel (f) 21/2D Inverted Kernel
Figure 2.7 – Different kernel profiles shown in 2D and 21/2D. Adapted from (MAFFEI, 2017).

The KDE is a fundamental tool in statistics (DEVROYE, 1985; SILVERMAN,

1986; DEVROYE; LUGOSI, 2001; SCOTT, 2015) and machine learning (SCHÖLKOPF

et al., 2002; GRETTON et al., 2012; MUANDET et al., 2017). However, it can also

be used in many other fields, such as robotics, like in work proposed by Maffei et al.

(2015a). The authors proposed an efficient KDE-based observation model for a localiza-

tion approach in their work. The KDE is estimated considering the density of free space

cells in a 2D grid map, as these cells are more abundant and less noisy than the obstacle

cells. One big advantage of using KDE for robotic applications is that it is orientation in-

dependent and has a low computational cost (MAFFEI et al., 2015a). Their KDE of free
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space surrounding a point x is computed through an equation similar to Equation 2.1:

f̂h(x) =
1

n

n∑
i=1

s(x)Kh(x− xi) (2.5)

where the function s(·) is defined as

s(x) =

1, if x is inside a free space cell

0, otherwise.
(2.6)

Figure 2.8 shows the Equation 2.5 with an uniform kernel applied to a 2D grid

map. Given four map cells in four different spots of the map (1, 2, 3, and 4) indicated in

Figure 2.8a, the circular KDE would consider the red cells highlighted in Figure 2.7a. The

function s(·) in Equation 2.5 makes the KDE to consider only the free cells, as shown by

the greenish cells in Figure 2.8c. The free space density estimation for each cell, estimated

with KDE, is illustrated in Figure 2.8d. In this image, it is possible to see that the larger

the number of free cells within the kernel area, e.g. spot number 3, the higher the density.

Besides, this simple example also demonstrates that KDE is invariant to ratations. The

KDE for spots 1 and 4 are equal, even though the area of free cells for each spot is in

different orientations (horizontal and vertical). Point 3 has the highest KDE, which is

explained by the highest number of free cells under the kernel’s coverage among all the

four kernels.

The idea of estimating the free space density with the aid of KDE was later used

by Maffei and colleagues in a second work, Maffei et al. (2015b). This time, they were

interested in using a robot to construct a topological map, to then localize itself using a

laser range finder and odometry information. Their proposed algorithm used an observa-

tion model based on kernel density estimates, similarly to their previous work, Maffei et

al. (2015a). The difference, however, is that this observation model separates the map into

regions denominated words, classified based on the density of free space estimated with

the KDE, number of observations, and segmentation orientation (MAFFEI et al., 2015b).

The robustness of the free space density estimation in this second work motivated the

authors to pursue a third work, Maffei et al. (2016). Now, Maffei et al. (2016) proposed

a long-term place recognition, which extends their strategy that represents environment

regions using words based on spatial density information extracted from laser readings.

The novelty is in building multi-level words to account for possible changes in the obser-

vations of a place generated by non-static objects. For example, when a robot is in front
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(a) (b)

(c) (d)
Figure 2.8 – Computing kernel density estimates in four different positions of a map. The gray
cells represent the unknown region, whereas the white ones the free space. In (a) we have the

four spots to compute the kernel density, in (b) the area of each kernel, in (c) the free cells within
the area of the kernel, and in (d) the computed free space density.

of a door and estimates the free space density, the final KDE value will differ whether

the door is open. For long-term operations, this may happen, and even though the density

value is different, the region is still the same. In Chapter 4 we are using the KDE due to

its low computational cost and efficiency, as part of a grid map segmentation approach.

2.3 Action in the environment

Making the right choices for the robot’s action is crucial for many robotic applica-

tions. In the context of this thesis, the core of OS is making the proper decisions to bring

the robot to the target position. Below we introduce an exploration technique we used in

Chapter 4 to gain information about the environment, along with the presentation of the

OS problem.

2.3.1 Exploration of environments

Exploration is one of the robotic problems that the research community has been

working on for many decades (THRUN; BURGARD; FOX, 2006). Approaches that deal
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with this problem come in handy when a robot is deployed in an environment where a

map is unavailable. This scenario requires the robot to safely move around within the

environment at the same time that it builds the map. This problem has two fundamental

requirements: the safety of the robot while it is moving and the preference for movements

towards unexplored regions of the environment (JORGE, 2017). A simple strategy to

fulfil the safety requirement is to make the boundaries of obstacles to repel the robot.

Similarly, the other requirement could be met by making the boundaries (frontiers) of

unexplored regions attract the robot, as shown in Figure 2.9 (THRUN; BURGARD; FOX,

2006). Exploration approaches that are guided by the frontier of unexplored regions of

the environment are commonly called frontier-guided (JORGE, 2017).

Figure 2.9 – Example of the two fundamental requirements of exploration at the boundaries of a
partial map. The border of obstacles (black cells) has red arrows that represent the force that

repels the robot. The border of unknown region (green cells) has green arrows that represent the
force that attracts the robot. One way to update the potential field in the free space (white cells) is

to consider a BVP, solving the Laplace equation considering the boundary-values in the green
frontiers. Adapted from (JORGE, 2017).

Among the frontier-guided exploration approaches for exploratory tasks, we high-

light the sequence of works proposed by Prestes and colleagues (PRESTES et al., 2002;

SILVA et al., 2003; PRESTES; ENGEL, 2011). Initially, Prestes et al. (2002) proposed

the use of a numeric solution to a boundary value problem (BVP) for the exploration

problem. Their BVP exploration approach uses the gradient descent of the potential field

generated over a grid to perform the map coverage with the robot. This potential field is

computed with the finite difference method, by solving the Laplace equation,

∇2p(mi) =
n∑

j=1

∂2p(mi)

∂x2j
= 0, (2.7)

where p(mi) is the potential value at position mi in the free space. In the grid map, the

boundary of obstacles and unknown regions are considered Dirichlet boundary conditions.
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The potential value associated to unknown cells is the minimum, i.e. 0, whereas the same

value associated to obstacle cells is the maximum, i.e. 1. The free cells have their potential

value updated with Equation 2.7 (PRESTES et al., 2002; SILVA et al., 2003). However,

as they are working with a discrete regular grid map, they used the Gauss-Seidel method

for the numerical approximation of Equation 2.7. Therefore, to update the potential value

of free cells, they did

p(mi) =
1

4
(p(ml) + p(mr) + p(mu) + p(mb)) (2.8)

where p(ml), p(mr), p(mu), and p(mb) are the left, right, top and bottom cells neighbor-

ing the center and reference cell p(mi), respectively. Figure 2.10 illustrates an example

of these cells.

Figure 2.10 – Representation of part of a 2D grid map m. The potential field computed in
relation to a cell centered at mi, considers the four neighbors cells on its left, right, bottom and

up, ml, mr, mb, and mu, respectively.

The Equation 2.8 applied to a 2D grid map to update the potential results in the

exploratory behavior illustrated by Figure 2.11. The robot starts moving and it goes to

the nearest frontier, Figure 2.11a. Then it goes inside a room and maps it, Figures 2.11b

and 2.11c. As there is no frontier within the room, the potential field guides the robot

towards other frontiers to keep exploring, as shown in Figure 2.11d. The BVP exploration

approach uses the gradient descent of the potential field over a grid map to perform the

map coverage. The angle of the robot’s heading is computed based on the robot’s current

position on the potential field, i.e.

θ = arctan(p(ml)− p(mr), p(mu)− p(mb)) (2.9)

where arctan(x, y) is the inverse tangent taken in the interval [−π, π]. The robot’s speed

can also be adjusted based on the potential field. The difference between the robot’s ori-
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entation and the negative potential gradient direction θ for the current position represents

how much the robot has to turn. Hence, this difference can be correlated to the robot’s

speed, i.e., the larger the difference, the slower is the robot’s speed (SILVA et al., 2003).

Therefore, the BVP exploration has many advantages, including but not limited to smooth

movements of the robot, easy understanding and implementation, and there are no local

minima in the resulting potential field (MAFFEI et al., 2014; JORGE et al., 2015). As

we mentioned in this subsection, the BVP is used in our work introduced in Chapter 4

to safely and smoothly move the robot to the most promising regions according to our

search estimations.

(a) (b)

(c) (d)

Figure 2.11 – Exploration process with the potential field. The trajectory followed by the robot is
illustrated in the map, and four snapshots of the potential field during the exploration are shown

in (a)-(d). Extracted from (PRESTES et al., 2002).

SR

2.3.2 OS problem

The OS problem relies on an efficient strategy for finding a target object in a large

unknown indoor environment. Since our works presented in this thesis are based on a 2D

grid map, the search strategies from these works reason over the map m. They estimate

what cell mi is currently more promising to find the target object while minimizing the

total search cost. We define cost as the distance traveled by the SR during the search, as

the longer the SR’s path, the higher is the amount of resources (battery and time) it spends.

The SRs we use throughout our experiments are equipped with a 2D LiDAR, to build a

2D grid map, RGB cameras, to gather visual cues for semantic information estimation,

and RGB-D cameras to estimate the position of objects in relation to the robot’s pose.
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All sensors are fixed to the robot’s body, and hence, we consider only the movements

performed by a ground mobile robot.

Additionally, let ϕ(mi) be the probability distribution for a map cell, mi, where

the target object is in m. Depending on the level of a priori knowledge of m and ϕ(mi),

it is possible to address the OS problem in three different ways:

• m and ϕ(mi) are known: the problem becomes a sensor placement, aiming to

reduce the search cost by moving the SR straight to the cell mi. Since the target

object’s position is already estimated, a path planning algorithm could be used to

compute the shortest path between the SR’s position, mr, and the target object’s,

mi.

• only m is known: in case the map is available a priori (or acquired through a sep-

arate mapping step), the SR should either rely on a generic probability distribution

or move through the environment to gather information. The inspection performed

by the robot is to get information about the objects and update the probability dis-

tribution, and then estimate where the target object can be.

• m and ϕ(mi) are unknown: the robot needs to map the environment with the

aid of a SLAM system, at the same time that it collects information to compute the

probability distribution about the target object’s position. Since the robot performs

OS in an unknown environment, it has to tradeoff between expanding the mapped

area and executing sensing actions to search for the target object carefully. This

scenario is also known as the exploration vs. exploitation problem.

In this thesis, the last two points are addressed in different works, Chapters 4 and 5.

In general, each of these works has an organisational semantic search strategy, i.e., it in-

corporates semantic information into the estimations to improve the performance. How-

ever, it is important to mention that these semantic search strategies consider common-

sense knowledge, which is not environment-specific, and integrate high-level human con-

cepts. In the context of this thesis, common-sense knowledge encodes semantic informa-

tion inferred from numbers recognized in text signs and changes in the objects’ position

over time. Such information is valuable for our works because it reduces the amount of

spots the robot has to search, and improves the search for a human-like performance. In

Chapter 3, we review the main OS works proposed by the research community that have

inspired this thesis. Besides, we also introduce more details about the OS problem.
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3 RELATED WORK

The work in this thesis is closely related to two major research topics: OS ap-

proaches and spatio-temporal models of the environment. This chapter focuses on dis-

cussing the published works that aim to deal with these topics and that have been consid-

ered to develop this thesis.

3.1 Object Search approaches

The OS problem has been studied for many years in the robotics field. The

proposed approaches range from multi-agent collaborating to search for an object (YE;

TSOTSOS, 1996), to a single robot actively performing a semantic-based search (ZENG;

RÖFER; JENKINS, 2020). After many years subtopics of research arose within the OS,

such as Indirect and Active Visual searches. Despite this long period in which new ap-

proaches have been proposed, for the best of our knowledge, no detailed surveys in the

literature shed light on this latter subtopic. However, it is possible to find comprehensive

surveys on wider topics such as salient objects detection (BORJI et al., 2019), visual at-

tention (BEGUM; KARRAY, 2010), and as pointed out by Aydemir et al. (AYDEMIR

et al., 2013), active vision (CHEN; LI; KWOK, 2011; CHUNG; HOLLINGER; ISLER,

2011). It is important to mention that even though it has not been proposed as a survey,

Aydemir et al. presented a comprehensive review of some of the most important works

related to OS (AYDEMIR et al., 2013). Hence, we review other works not presented

in (AYDEMIR et al., 2013), that are as important to the development of this thesis as the

presented ones. This review allows us to show how this thesis compares to the visual OS

body of research. It also shows how our contributions push the state-of-the-art further.

Previous works have investigated the OS task in numerous ways and based on

different sorts of data. Ye and Tsotsos proposed one of the first works to deal with OS (YE;

TSOTSOS, 1999), in which they provided a sensor planning system. They argued that the

robot should change the sensing parameters to bring the target object into the camera’s

field of view. The proposed system was formulated as an optimization problem, i.e.,

maximize the probability of detecting the object with minimum overall cost. Hence, a

robot equipped with a camera that could pan, tilt, and zoom, was used throughout their

experiments. They decomposed the space of possible actions into a finite set to determine

the sensing actions. The next action was selected based on comparing the likelihood of
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detecting the target object and the action cost. They have successfully achieved their goal

with better performance than those OS strategies with fixed action sequences.

In a series of papers, Aydemir and colleagues also explored the advantages of an

adjustable visual sensor in the context of OS tasks (AYDEMIR et al., 2011; AYDEMIR et

al., 2011a; AYDEMIR et al., 2011b; AYDEMIR et al., 2013). In Aydemir et al. (2011a),

the authors proposed a spatial representation that consists of tree sub-representations. The

first one is a 3D metric map used for obstacle avoidance, path planning, and viewpoint

selection for object search. The second is a topological map, also called place map, that

maintains the environment’s topology. The last one is a conceptual map, which integrates

all these other maps to infer the category of each place based on the room shape (elon-

gated and square) and appearance (office-like, meeting room-like). Besides, the authors

also proposed a planner for the OS based on the spatial relationships between objects

and the environment (e.g., table IN kitchen or book ON table). First, it decides the over-

all search strategy based on the spatial representation (which objects should be found in

which location). Then it computes a subset of all possible sensing actions that are most

likely to bring the target object into the robot’s field of view. In Aydemir et al. (2011b),

it was used part of the contributions presented in Aydemir et al. (2011a). The spatial re-

lation previously introduced was used here as the basis of their new strategy for an OS

approach. They argue that the spatial relation is useful for OS tasks since it reduces the

search space. If the OS system is aware of the relation book ON table, the search space

reduces to the table area. The same applies for the case of cup IN kitchen, in which

the search space is only the kitchen. Besides reusing the spatial relation concept, the

authors also proposed the idea of grouping the spatial relations, i.e., book ON table IN

kitchen in the case of the previous example. Their outcome was a strategy that can ob-

tain near-optimal search behavior to find the target object. In Aydemir et al. (2011), it

was proposed another OS approach, but for the first time using semantic spatial knowl-

edge. Despite the hierarchical planner that is quite similar to the other works already

present, the biggest novelty is the high-level conceptual and semantic information from

the environment used on their OS approach. Semantic cues were used to guide the object

search process, in which its semantic room category represents each discrete place from

the environment. Due to the combination of low-level sensor percept and this high-level

representation from semantic cues, the hierarchical planner efficiently performed the OS

task. The advantages of using semantic information in OS tasks encouraged Aydemir et

al. (2011) to propose another OS work. In Aydemir et al. (2013), the authors proposed
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an OS approach for large unknown environments, and hence, the proposed system had to

balance between exploring the environment to gain more information or perform the OS.

Further, while exploring the environment, their approach guided the robot towards more

promising unknown areas according to the robot’s knowledge since its first movement. In

terms of the strategy for searching the object, the authors proposed a planner that consid-

ers four actions: move, process view, calculate views, and search object. The first moves

the robot to the desired place. The second one moves the robot to a viewpoint and runs

an object detection algorithm on the image taken by the robot. The third calculates a set

of viewpoints in a single room, aiming to point the camera towards the most promising

objects within the room. The last one forms a subproblem for their planner whose the

set of actions consists of move and process view to search for an object in a single room.

For performing the presented actions, the planner also considers the semantic cues from

the appearance, geometry, and topology of the environment and combines it with general

semantic knowledge of indoor spaces to reason about locations of interest.

These works aforementioned were designed as a searching function that mini-

mizes the search cost. Each action of moving either the robot or the camera has a cost,

and the goal is to find the target object with the lowest total cost. In Aydemir and Jensfelt

(2012), the authors fixed the robot’s visual sensor, reducing the complexity of the search-

ing function. The authors presented the 3D context idea: the correlation between local 3D

structure and object placement in everyday scenes. They use the local 3D shape around

objects as a signal of the placement of these objects. The advantage is that their approach

can capture more complex 3D contexts without implementing specialized routines for the

robot. Instead of looking for the object itself, they first find the places that are more likely

to contain the object. Their results show that the local structure surrounding the target

objects is a suitable indicator of object placement in scenes. Besides, their OS approach

accurately predicted the location of the everyday objects included in the study. Lastly, the

3D context present in this work is machine learning-based, and hence, their OS approach

has to be trained in every new environment to incorporate the singularities of the place.

Therefore, the local information about how the objects relate to the 3D context must be

known beforehand. Similarly to Aydemir and Jensfelt (2012) that made their RGB-D

dataset publicly available, in (AYDEMIR; JENSFELT; FOLKESSON, 2012) Aydemir et

al. also published a dataset called KTH. In this case, the dataset is composed of a set of

floor plans that encompasses, in total, 37 buildings, 165 floors, and 6248 rooms. In ad-

dition to KTH, another contribution of their work was two methods for predicting indoor
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topologies and room categories given a partial map of the environment. The goal was to

predict what lies ahead in the topology of the environment through its topology.

The idea of relying on significant and visible landmarks to optimize the search

was not used only in (AYDEMIR; JENSFELT, 2012). Zeng et al. exploited back-

ground knowledge about common spatial relationships between landmarks and target ob-

jects (ZENG; RÖFER; JENKINS, 2020). Their proposal, called Semantic Linking Maps

(SLiM), maintained the belief over the locations of the target object and the landmark.

Simultaneously, it accounted for probabilistic inter-object spatial relations. In contrast to

the 3D context-based OS systems, Rasouli et al. proposed an attention-based OS sys-

tem (RASOULI et al., 2020). They argued that an OS system must be responsive, direc-

tive, spatiotemporal, and efficient, which are the characteristics addressed by their model.

It embedded visual attention in an n-step decision-making algorithm formalized as a 1st-

order Markov process. The use of visual attention increased the robot’s awareness of the

environment. Hence, they used all relevant available visual information, leveraging the

spatial and appearance information about the object. Rasouli and Tsotsos also relied on

visual attention methods to reduce computational costs on their robotic visual search (RA-

SOULI; TSOTSOS, 2017). They proposed a three-pronged probabilistic search algorithm

that incorporated three forms of visual attention: viewpoint selection, saliency, and object-

based models. On their model, attention is used to generate maps with highlighted areas in

the image which are more likely to contain an object of interest. The experiments showed

that the proposed three-tier attention framework decreased the search cost in terms of

distance traveled, search time, and the number of actions taken. Saidi et al. explored a

different robot than the other works that opted for wheeled robots since their OS system

was proposed based on the specificities of a humanoid robot (SAIDI; STASSE; YOKOI,

2007). A visibility map, which constrains the sensor parameter space, was used to avoid

unnecessary calls to the rating function that evaluates the interest of a potential next view

through the analysis of the theoretical field of view.

The object’s surroundings provide a significant benefit for OS approaches. In Chen

and Lee (2013), it was proposed an OS approach for cluttered environments that are chal-

lenging scenarios due to the partial occlusion of objects by other ones. Some objects

may be only half visible in such scenarios, and the authors’ proposal used the object’s

surrounding and spatial constraints to aid the searching. As the authors argue, usually ob-

jects are neatly placed to fulfill many functional purposes, and hence, the searching space

can be substantially reduced even before the start of the OS. The proposed approach works
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in two phases. The first one is recognition, in which data is acquired to find out the num-

ber of objects in the scene and which map cells have a high probability of finding the

objects. Both the object’s 2D and 3D features are used for its recognition. The second

one aims to generate an action for every candidate cell in the map and select the best one

to be executed. Despite the promising ideas and results, Chen and Lee assume that the

sizes, heights, locations, orientations, and accessible angles of all objects surrounding the

target object are known in advance. Besides, they also assume these characteristics will

not change throughout the searching process.

Sprute et al. (2017) proposed a complete system to support the elderly in their

home environments. The system includes a service robot and a camera network to make

the older person’s home smart. The main proposal of this work is to use the camera net-

work to benefit the service robot in performing the OS task, besides expanding the total

area analyzed by visual sensors. The cameras in the environment reduce the searching

space for the service robot and overcome the robot’s sensor limitation. The hierarchical

search system proposed by the authors consists of three layers: local search, global search,

and exploration. The local search is activated when the object is within the robot’s field

of view. The global search is activated if the robot does not find the object locally, and

here the environmental cameras are used. If these two first layers cannot locate the ob-

ject, the robot explores the environment looking for it. Due to the substantial advantage

of the camera network and the smart home integration with the service robot, the pro-

posed system managed to find the objects within the environment during the experiments

efficiently.

In Wang et al. (2018), the authors claim that if the robot behaves like a human

in OS tasks, the searching efficiency and quality could be improved. Besides, they also

argue that the semantic information of the entities in the environment could fill the gap

between humans and the intelligent robot, so the robot could be trained by the typical

human’s knowledge to clarify the relations among entities. In light of this, they formulated

the OS problem as a Partially Observable Markov Decision Process (POMDP), which

is an idiomatic framework for modeling decision-making under uncertainty. The belief

distribution of their custom POMDP was trained considering the semantic information of

the room types and the objects. Besides the custom POMDP, the authors also proposed

a graph structure called Belief Road Map (BRM), built along with the searching process

in the unknown environment. The BRM is supposed to efficiently provide a path for the

robot instead of using the whole grid map to estimate the path for the search.
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It is worth mentioning that part of this thesis considers the exploration of un-

known environments as part of the OS problem. We aim to perform OS in an entire

unknown search space, which requires switching between the exploration of unknown

regions and the exploitation in already known regions. Hence, it is important to discuss

some works related to exploration. Here, they are divided into two significant groups

regarding their goals. First, strategies that aim to explore the whole environment, usu-

ally finishing when the robot has visited the entire free area (LI et al., 2016; GIRDHAR;

WHITNEY; DUDEK, 2014). Second, goal-directed strategies that aim to reach a goal,

such as searching for an object, a room, or a person.

Some of these exploration-based OS approaches use a semantic map, whereas

others use semantic properties from objects. The framework proposed by Veiga et al.

(VEIGA et al., 2016) searches for objects in domestic environments. It is composed of

a system that perceives the query object in RGB-D images through inference and sensor

information. The outcome of this process, called knowledge, is saved and updated in

a semantic map. Experiments in a realistic apartment have shown that their framework

worked well in practice, presenting a reliable and efficient search approach.

Another significant work that searches objects in domestic scenarios is Rogers’ et

al. (ROGERS; CHRISTENSEN, 2013). In contrast to (VEIGA et al., 2016) that proposed

a modular system, their approach considered the context of the environment. A graph,

connecting places and objects within these places, is used to predict objects’ presence (or

absence) based on the room categories. The reasoning over the graph, combined with a

planner, is used to perform an object search task. Experiments showed that the robot was

able to find objects in the environment.

Talbot et al. (TALBOT et al., 2016) and Schulz et al. (SCHULZ et al., 2015)

proposed navigation approaches that are also goal-directed, despite not being exploration

ones. The idea of an original and abstract map that links symbolic spatial information with

observed symbolic information and actual places in the real world was firstly introduced

by (SCHULZ et al., 2015). This map is used to make inferences about the location of

places. Later, Talbot et al. (TALBOT et al., 2016) extended the idea of the abstract

maps, proposing a novel method that defines the topological structure and spatial layout

information encoded in spatial language phrases. The system has shown to complete the

task by traveling slightly further than the optimal path.

Despite the good outcomes from the solutions presented by the papers mentioned

above, there is still room for improvements. In (AYDEMIR et al., 2013) Aydemir et al.



50

depended on prior semantic knowledge about indoor spaces obtained from databases. Tal-

bot et al. (TALBOT et al., 2016) and Schulz et al.(SCHULZ et al., 2015) depended on a

priori abstract maps. Veiga et al. (VEIGA et al., 2016) required beforehand information

to learn about objects and the environment. Additionally, it used a 3D recognition-based

framework from the Point Cloud Library (PCL) for object recognition, which is compu-

tationally expensive. Rogers et al. (ROGERS; CHRISTENSEN, 2013) also implemented

PCL to segment data from RGB-D sensor, continuing to cluster the points, which is a

heavy workload for computers. It is also important to highlight that none of them has

explored the benefits of textual information available in the environment.

In contrast to the works that rely on semantic information to improve the robot’s

performance in OS tasks, Rasouli et al. (2020) proposed a system that guides the robot

towards the target object using the relevant stimuli provided by the robot’s visual sensor.

Visual attention techniques are used to extract visual information from the environment

actively. In combination with a non-myopic decision-making algorithm, the author’s pro-

posal leads the robot to search more relevant areas of the environment to find the target

object. The results indicate that visual attention improves the searching process, but it

also depends on the nature of the OS task and the complexity of the environment.

3.2 Spatio-Temporal models

Most of the works proposed by the research community in Mobile Robotics ignore

or filter the changes in the environment since they are considered noise and only disturb

the estimations. The idea of modeling and incorporating the environmental changes into

different robotic solutions is relatively new. Below we present the works based on spatial-

temporal information, which most inspired this chapter work in terms of modeling the

environment changes.

In Krajník et al. (2014), it was proposed a topological localization approach for

service robots in dynamic indoor environments. It explicitly uses information about en-

vironment changes by learning and modeling the spatio-temporal dynamics of the robot’s

area. First, the robot learns the changes in the surroundings of each pre-defined loca-

tion over one week, and it models the changes using the proposed spectral representation.

Then, when the robot estimates its position within the map, it tries to match its current ob-

servation to the predicted representations of each location’s surroundings for that specific

time. According to the authors, the proposed localization approach can predict environ-
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mental changes in time, allowing the robot’s localization improvement during long-term

operations in populated environments. However, the authors assume that the environ-

ment’s appearance is affected by a set of hidden, periodic processes in mid- to long-term

perspective, and that the environment’s dynamics can be described by the frequency, am-

plitude, and time shift of these processes.

Besides the localization field, the time and environment changes were also con-

sidered within the human-robot interaction field. Vintr et al. (2019) introduced a spatio-

temporal representation for service robots to anticipate the human presence in human-

populated environments. Their proposal aims to model periodic and temporal patterns

of people’s presence, considering their routines and habits. The proposed representation

projects the time onto a set of wrapped dimensions representing the periodicities of peo-

ple’s presence, and hence, it can make long-term predictions of human presence. These

predictions allow service robots to schedule their tasks in a more suitable way not to

bother humans.

Krajník et al. (2020) explored the Chronorobotics, a new area introduced by them,

that studies the experiences that autonomous systems can gather when observing human-

populated environments for an extended period of time. The goal in Chronorobotics is to

provide robots capable of adapting to naturally cyclic dynamics of the human-populated

environments. Their work proposed methods that introduce the notion of dynamics into

spatial environment models, which end up in representations that provide service robots

the ability to anticipate future states of changing environments.

Narayana, Kolling and Fong use a semantic map as the user-facing interface on

their fleet of floor-cleaning robots (NARAYANA et al., 2020). They argue that these

robots may operate in dynamic environments, and hence, it is necessary to enable the

mapping to lifelong applications. They update their map based on the changes in the

environment, keeping only the most updated version of the semantic map, overwriting the

past versions. They use algorithms to detect when there are conflicts in the update of the

semantic map, and to resolve them with an additional map layers called map-meta with

additional meta-semantics. Their semantic map represents classes such as walls, rooms

and doors.

The last work discussed in this section is another work proposed by Krajník et al.

(2015).The authors argue that in human-populated environments, the object locations are

impacted by human activities that tend to exhibit daily and weekly periodicities. Hence,

identifying and modeling these periodicities generates a more accurate representation of
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possible object locations, thus reducing the search space. Their search is formulated as a

path planning problem in partially known environments, in which the probability of ob-

ject occurrences at particular regions is a function of time. A traditional topological map

represents the probability of object locations. Each node is associated with a temporal

model that represents the dynamics of the object occurrence at the particular location.

The experiments in different datasets show that explicit representation of the long-term

periodicities of environment dynamics speed up the search process due to the search space

reduction. Despite the promising results, the work has two assumptions. First, the topol-

ogy of the environment where the robot is operating has to be known in advance. Second,

the target object locations are influenced by human activities that exhibit a certain degree

of periodicity.

3.3 Semantic map and heat map

Despite not proposing an OS system, Pangergic et al. introduced an representa-

tion and acquisition of Semantic Objects Maps (SOM+), which provides information for

autonomous SRs (PANGERCIC et al., 2012). Their SOM+ represent all the furniture

entities of kitchen environments including cupboards, electrical devices, tables, counters,

positions, appearances, and articulation models. In addition to the objects’ pose, it also

includes the appearance and articulation of furniture objects, so the robot can perform

fetch and place tasks more efficiently. Lastly, the area of operation limits to kitchens,

where the robot can manipulate drawers, doors, cupboards, and other objects.

A second non-OS work that it is worth to mention here is the one proposed by

Oksanen et al. (OKSANEN et al., 2015). They use a heat map to highlight the most

popular places to do sports in a given region, and it was applied to public cycling workouts

to represent the density of the trajectories and the diversity of the users. They only register

the trajectory that has been taken by the cyclist, not matter when (day or hour) the user

was working out.

3.4 A discussion on the Related Works

There are several aspects of our thesis that push it beyond the current state of the

art, summarized in Table 3.1. Compared to most of the OS works discussed within this
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section, ours considers the organisation of the environment as search cues and does not

ignore the environmental changes over a period of time. The works proposed by Kra-

jník and colleagues have shown that it is possible to model the environment changes,

and spatial-temporal-based approaches present considerable improvements and robust-

ness. What sets our thesis aside from Krajník et al. (2015), for example, is that we do

not assume that the object’s location exhibit a certain degree of periodicity. Besides, it

is not necessary to collect data for an extended period to then start the search. Instead,

our proposals do not require any pattern or periodicity. Besides, they do not require any

data beforehand, which helps their deployment in practice. This is a considerable advan-

tage compared to the works that demand the environment’s map, object-object relation

(or object-place relation), or the information about the target object’s geometry or color.
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4 NSOS: USING NUMBERS TO INTERPRET THE ORGANISATION OF UN-

KNOWN ENVIRONMENTS

The first of our contribution is called Number-based Semantic OS system (NSOS),

and its goal is to guide an SR through an unknown environment until it finds a target door

sign. The novelty of our system is that is relies on detecting numbers from door signs

to estimate the organisation of indoor environments, aiming to reduce the search cost.

Besides, another aspect of NSOS is the combination of semantic and geometric clues

to improve the search estimations. The former clue type is inferred from the numbers of

several door signs found in the environment, and they are useful for understanding how the

doors are organised. The latter type is computed from the geometry of the environment,

e.g., the corridors and intersections, and it indicates which regions are more likely to

finding doors. An example of using our NSOS could be an autonomous courier SR that

delivers packages to an older person in a specific appartment within a large-scale and

unknown building, where a previous map is not available.

This section details the basic modules that compose our NSOS system. It starts

with the proposal and contributions in Section 4.1, followed by the explanation of the basis

for our NSOS system in Section 4.2. It details the Mapping module in Section 4.2.1, to

explain how the 2D grid map is built. The Map Segmentation module is introduced in

Section 4.2.2, which presents how the map is split into different segments. Section 4.2.3

describes how the numbers are extracted from the door signs through computer vision

algorithms. The planner of our NSOS system is described in Section 4.3. Finally, this

chapter is finished with the experiments in Section 4.4, and the summary in Section 4.5.

4.1 Proposal and contributions

Our NSOS efficiently searches for a target object that is represented by the number

of door signs, called goal-door, in large-scale and unknown buildings. Different OS ap-

proaches have been proposed by the research community as earlier presented in Chapter 3.

In many of them, the robot is tasked with finding objects based on their visual appearance

or position in the environment, e.g. an yellow mug on the kitchen table. However, to the

best of our knowledge, OS systems that search for door signs (not areas in general) and

take numbers (in text format) as input to their strategy are not well explored yet.
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The novelties presented in this chapter in comparison to the already published

systems are threefold:

• Number from door sign as target object: The target of our proposed semantic

OS system, NSOS, is a specific door sign within an unknown indoor environment.

Several other OS systems look for objects that are part of our daily life, such as

kitchen utensils or office supplies. However, in some cases finding a door sign is

as important as finding the objects from the previous example. The importance is

because the door sign is usually associated to a room of the environment, where the

SR could perform other tasks afterwards. This novelty enables, for example, au-

tonomous courier SR to perform the final part of the delivery task, which happens

after it arrives at the buildings, where there is no map available. Our system is rel-

evant in moments such as the COVID-19 pandemic or any other outbreak. In these

situations, people are recommended to avoid social contact, which forces them to

stay at home. Hence, the use of fully autonomous SRs for performing the entire

delivery task, from the restaurant straight to the costumer’s door, saves people of

being exposed to the threat, mainly the elderly people. The Starship Technologies

company has already deployed their fleet of courier SRs, supporting the importance

of robots in food and package deliveries. Another example of how our NSOS could

be used will be presented in Chapter 6.

• Organisational semantic information inferred from numbers: Our NSOS sys-

tem relies on information inferred from numbers as a visual cue, and more spe-

cific numbers extracted from the door signs. Large buildings, for instance, are

divided into many small rooms, and usually comply with a pattern of signing each

room (AYDEMIR; JENSFELT; FOLKESSON, 2012; AMHERST, 2012; HAINES,

2014; UNIVERSITY, 2017). Different from depending on color, visual features,

or 3D templates, to perform the search, using numbers allows our NSOS to infer

high-level information about the environment. Such information may suggest how

the environment and the door signs are organised, which is useful during the search.

If we could analyze humans behavior while looking for a door sign in an unknown

environment, most of them would try to figure out the door signing arrangement.

They would avoid exploring the entire building by analyzing how the door signs are

related to each other to infer whether the current corridor is promising in terms of

containing the goal-door. A courier SR could behave in a similar way to efficiently

perform the searching task. Hence, our NSOS system processes the numbers to in-
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fer semantic information from them. The inferred information is the odd and even

characteristics and whether the sequence of numbers is increasing or decreasing.

In addition to the semantic information, our NSOS system also considers geomet-

ric information, which is the distance between the estimated robot’s pose and the

unknown regions, and the history of the robot’s orientation.

• Organisational semantic information to complement the robot’s geometric per-

ception: we also present an analysis of the advantage of using numbers from the

door signs and the inferred semantic information as input to our NSOS system.

This way, it is not limited to only geometric information. The combination of this

semantic information, inferred from the numbers, and the geometric information,

extracted from the environment, are useful inputs for the reasoning of our system.

It permits the efficient computation of search steps, guiding the robot towards areas

more likely to lead to the target room. Lastly, in addition to this computation, which

is fully probabilistic, our system also builds a 2D map of the environment. It is seg-

mented based on KDE, introduced in Section 2.2.3, according to different densities

of free space (MAFFEI et al., 2015b). Our system considers the laser readings to

build the 2D map, and the images of an RGB camera to extract the numbers from

the door signs, and the other types of character are not used for now. The numbers

are used to infer semantic information and search cues, whereas the NSOS system

indicates which direction is more likely to contain the goal-door to guide the SR.

4.2 Basis for NSOS system

Our proposed system performs OS, i.e., it guides the SR through an unknown

environment until the robot reaches a specific location that contains the target object. Our

system focuses on indoor environments, such as buildings with many rooms identified by

door signs. One of its advantages is that it does not require any a-priory knowledge about

the environment, such as the door signs arrangement or where the SR should be heading.

The target object to be found is a door sign, which is identified by a number.

Our system comprises four modules: Mapping, Image Processing, Map Segmen-

tation, and Semantic Planner. The Semantic Planner module, presented in Section 4.3,

is the main contribution of this chapter. It requires a base system to work, composed by

the first three other modules, that are discussed in Sections 4.2.1, 4.2.2, 4.2.3. The first

of these three modules, Mapping, aims to build a 2D grid map of the environment. For
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our NSOS system, a 3D map would not be significantly beneficial, and the extra compu-

tational cost to build and update a 3D map does not worth it. The next module, Image

Processing, processes the images taken by two RGB cameras, and it analyses them to

recognize the number from door signs. Once identified, the module updates the 2D grid

map to include the numbers at their respective side. For instance, if the robot’s left cam-

era captures an image that contains a door sign, such number is drawn in the map, in the

left side of the current robot’s position. The same applies for the robot’s right camera.

Figure 4.1a illustrates this process. The third module, Map Segmentation, is responsible

for segmenting the free space of the 2D grid map according to its size using the Kernel

Density Estimation (KDE) approach introduced by Maffei et al. (MAFFEI et al., 2015b).

This module also assigns to each segment of a corridor its respective list of door signs,

which is the list of numbers recognized while the SR was within the corridor.

4.2.1 Mapping module

The Mapping module considers that an SR is equipped with a 2D LiDAR sensor.

The sensor measurements are used to build a 2D occupancy grid map m of the envi-

ronment, like shown in Figure 4.1a. In simulation, the grid map m is built using the

Histogramic In-Motion Mapping (HIMM) technique (BORENSTEIN; KOREN, 1991),

that takes as input the LiDAR sensor readings. We assume there is no error in the robot

motion, as we explained in Section 2.1, but this assumption holds true only for the simu-

lation experiments. When carrying out the experiments with the physical robot, we used

the SLAM system called GMapping (GRISETTI; STACHNISS; BURGARD, 2007b).

Over m, the Mapping module also computes the Voronoi diagram to have the

center cells of the free spaces, represented by the green lines in Figure 4.1b. The yellow

region represents the free space visited by a circular kernel centered at the robot’s position,

i.e., the circle centered at the robot’s pose. Based on that, the BVP smoothly moves the

SR through the environment, avoiding obstacles and keeping it as close as possible to the

Voronoi cells.
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(a) (b)

(c) (d)
Figure 4.1 – Example of our mapping and segmentation modules. (a) It shows the robot, the

white area representing free cells, the pink line as the robot path, and the five frontier points, (b)
the marked yellow areas representing the visited cells and the Voronoi through the green lines, (c)

the segmented map, with the visited cells from (b) segmented into two different segment types,
and (d) the segment identification using different colors with four distinct segments indicated.

4.2.2 Map Segmentation module

The Segmentation and Mapping modules are executed simultaneously, aiming to

split the free space of m into multiple regions according to the density of free space.

Every segmented region, called a segment s, is associated to a group of cells mi of the

grid map m. In m, there might be different types of segments. Figure 4.1c illustrates

the case in which the Segmentation module considers only two types. In this case, all

green segments, or all the red ones, have a similar density of free space computed using

the KDE. Besides their type, each segment is also singularly identified, such as sj for the

j-th segment in m. Figure 4.1d shows the segmented 2D map as if each segment was
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identified as one color, to highlight that they are identified diferently (even though there

are only two segment types in such figure).

KDE computes the estimation of a given region surrounding a cell m0, Ψ(m0),

which is explained in Section 2.2.3, centered on m0 by

Ψ(m0) =
1

|T |

T∑
mi

Q(mi,m0)UK(‖mi −m0‖). (4.1)

where K(·) is a uniform circular kernel function that over all cells at distance d ≤ r from

m0, defined as

UK(d) =

1 , if d ≤ r

0 , otherwise,
(4.2)

where r is the radius and d is the Manhattan distance from the current cell being measured,

mi ∈ T, to the centre of the kernel, cell m0 ∈ m. T ∈ m is a subset of cells that are

at maximum r farther from m0. The function Q(mi,m0) tests whether a cell mi is free,

and it is defined as

Q(mi,m0) =

1 , if mi is a cell that belongs to the free space region connected to m0

0 , otherwise.
(4.3)

According to Equation 4.3, Ψ(·) returns different density estimations based on the

number of obstacle or unknown cells are surrounding m0. Assuming that the Segmenta-

tion module considers different values, and given that Equation 4.1 estimates the density

of free space surrounding a cell m0 ∈ m, Ψ(·) can be used in the Segmentation module

as

Υ(m0) =

⌊
Ψ(m0)

δ

⌋
(4.4)

where δ is a threshold that defines how many different densities of free regions are con-

sidered by the segmentation function, Υ(·). Therefore, a high δ means Equation 4.4

considers few different densities, whereas a low δ is the opposite.

A segment s represents a group of free and adjacent cells from m that have the

same Υ(·). Figure 4.1d demonstrates different segments, in which each one has a different

color. For example, given m0 and m1 as two free and neighbouring cells in m, and that

Υ(m0) = Υ(m1), then both belong to the same segment s0. Otherwise, a new segment

s1 is created and m1 is associated to it. Thus, the segmentation of free adjacent cells from
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m is based on Equation 4.4.

4.2.3 Image Processing module

The last module that completes the basis of our NSOS system is the Image Pro-

cessing. It aims to recognize the number of door signs that may be in an RGB image.

The idea here is to use one existing character recognition algorithm (ZHANG et al., 2013;

JUNG; KIM; JAIN, 2004; NEUMANN; MATAS, 2012), since this is not the focus of this

thesis and any approach can be used. The chosen work is the one proposed by Neumann

and Matas (2012) due to its real-time recognition aspect and its robustness against noise,

and low contrast of characters. Besides, it does not require any information or preparation

beforehand. The work proposed by Neumann and Matas (2012) is presented in details in

Section 2.2.1.

For a given image I that was captured by the robot at cell mr, e.g., Figures 4.2a

and 4.2c, this module returns a list, L, containing the recognized number from door signs.

In the case of Figure 4.2, L would contain only the number 228. Figure 4.2 also shows

where the detected door signs are included into the 2D map m. Figure 4.2c shows an

image taken by the robot’s right camera, and hence, the number is included in m, at the

right side of the robot’s position, mr, as shown in Figure 4.2b. Given that the goal of

signing rooms is to provide a unique door sign for each of them, it is assumed that there

are not two door signs in an environment identified by the same number. In regions where

there are multiple door signs in sequence with the same number, our system will consider

only one instance of all these door signs. After receiving L, it must be merged with the

numbers of the door signs from the segment that mr is associated. For this process, it

is important to define S(mi) as a function that returns the segment in which the cell mi

is associated with. In addition, there is also the function L(·) that returns the list of door

signs from a segment. Thus, each door number l ∈ L is included in the list of door signs

from the segment of mr, l ∪ L
(
S(mr)

)
. Besides, each l has an occurrence number that

increases by one every time the image processing algorithm recognizes it. If the robot

revisits a place and recognises a l that already exists in L
(
S(mr)

)
, then its occurrence

number is summed to the one in L
(
S(mr)

)
.
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(a) (b) (c)
Figure 4.2 – Example of the Image Processing module processing two images, in which (a) is an
image taken from the left camera, and (c) an image taken from the right camera. (b) shows the

2D map of the environment and the position of the door sign number 228.

4.3 Semantic Planner of our NSOS system

The previous Section 4.2 explained the necessary components that compose the

basis of our NSOS system, i.e., the Mapping, Segmentation, and Image Processing mod-

ules. The explanation continues with the Semantic Planner module, presenting how the

planner decides whether the SR should continue its search in the current region to find

the target, or change its path to a known region. To the rest of this section, imagine that

an SR has partially visited the environment while running the necessary components of

our NSOS system. Then, there will be a partial map, segmented, and with all the so far

recognised doors included. This section presents the details of our planner assuming the

existence of such a map, aimed to help the explanation.

Our semantic planner is composed of five different parts, in which two of them

are semantic-based, Growing Direction and Parity, and the other three are geometric-

based, Doors and Robot Orientations, and Closeness. Combining them them leads to a

planner that is neither exclusively semantic nor geometric. This non-exclusivity charac-

teristic is suitable for situations where the environment does not have semantic cues to be

considered by our system. All the five factors are presented individually in this section,

introducing the semantic-based first and then the geometric-based ones. However, as this

section follows a top-down fashion to introduce the whole planner, the computation of the

estimation about where the SR should go, which combines all the five factors, is presented

before them. Therefore, the reader can have a general idea of how the factors are used

and later understand how they work.
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4.3.1 Combining the geometric and semantic factors to estimate where to go

Our NSOS system analyses the environment during the searching process while

the SR has not found the goal-door. If it realizes the current region of the environment is

not promising, the system guides the SR to another direction. To decide the best frontier

to go given the set of frontiers, for each candidate cell mi ∈ C, the planner calculates its

attractiveness factor ϕ(mi). This factor is the outcome of the combination of five factors

briefly presented earlier. These candidate cells in C are the ones in the center of the free

space, i.e., in the Voronoi, and within a frontier, which is the boundary between visited

and not visited cells. Graphically speaking, five candidate cells are shown in Figure 4.1a,

represented by the red dots near the pink line ends. In this case, C = {m1,m2, · · · ,m5}.

The visited cells are the free cells that were within T, represented by the yellow region in

Figure 4.1b, whereas the white region represents the free cells that is not close enough to

the kernel centered at the robot’s position. The explanation here is divided into two parts,

in which the semantic factor is presented before the geometric factor. In the following

subsections, the components of each factor, i.e., Growing Direction, Parity, Robot and

Door Orientations, and Closeness, are presented.

The semantic factor, SF(mi), combines the Growing Direction and the Parity fac-

tors, ϕg(·) and ϕp(·), respectively. The idea of the first factor is to return high values when

the segment S(mi) is more likely to contain the goal-door given the door sign sequence.

On the other hand, the second part of SF(mi) aims to analyze the parity of S(mi) and

compare it to the goal-door parity. When an SR is in a S(mi) that is not likely to contain

the goal-door, either due to ϕg(·) or ϕp(·), it should go to another path and continue the

active search. Both Growing Direction and Parity factors are essential for our NSOS. If

the robot is moving through a corridor where the numbers from the door signs have their

parity different from the goal-door, there is no reason to continue the search there. Simi-

larly, if the numbers of a sequence of door signs is increasing (or decreasing) away from

the goal door, searching in that region is pointless. Hence, if either of these factors indi-

cate the corridor is not promising, the robot should continue the search in another region,

regardless the other factor. Then, in SF(mi) they are multiplied by each other. If one is

low, the result of SF(mi) will end up being low as well, even when the other is high. It

is important to highlight that SF(mi) is completely probabilistic, and considering to how

both ϕg(·) and ϕp(·) are modelled, SF(mi) becomes robust to outliers. The Semantic
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factor is given by

SF(mi) = ϕg(mi)ϕp(mi) (4.5)

Differently, the geometric factor, GF(mi) combines the three other factors (Door

Orientation, Robot Orientation, and Closeness), which are computed based on the geome-

try of the environment. During the search, it is important that the semantic planner makes

the most optimal decisions, like when the SR is in a crossroads and there are multiple

options of where to go. In situations like this, the Door Orientation factor aims to suggest

which corridors are more likely to contain door signs. Based on the robot’s orientation

when it recognised the all past door signs, this factor estimates the best option. Similarly,

the Robot Orientation factor estimates how the corridors of the environment are organ-

ised. It projects which corridors are more frequent to happend based on their orientation

(e.g. vertical or horizontal). These two orientation-based factors are important to the se-

mantic planner because they provide vital geometric information of the organisation of

the building, e.g., in which corridors is expected to contain door signs. The goal of the

last factor, Closeness, is to save SR’s batery. Among the segments the planner has to

choose to take the robot, it measures how close each one is to the robot’s current position.

The geometric factor multiplies the Robot and the Door Orientation factors, ϕr(·), ϕo(·)

respectively, by the Closeness one, ϕc(·). The idea is that the further the segment is, the

less it matters. Then, the outcome of these multiplications is summed to the ϕc(·). The

geometric factor is given by

GF(mi) =

(
ϕo(mi) + ϕr(mi)

)
ϕc(mi) + ϕc(mi)

3.0
. (4.6)

Finally, in order to compute the best mi ∈ C, i.e. the mi that is more likely to

contain the goal-door, each of them is submitted to the following equation

ϕ(mi) = SF(mi)α + GF(mi)(1.0− α). (4.7)

Here, α is a threshold that controls the importance of the SF(mi) and GF(mi), and it

ranges as 0 ≤ α ≤ 1. To estimate the candidade cell, m∗
i , in which its S(mi) is more

likely to contain the goal-door, we do

m∗
i = arg max

mi∈C
(ϕ(mi)). (4.8)
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4.3.2 Growing Direction factor

Usually, doors sign of buildings are arranged in sequence and sorted (either in

increasing or decreasing order). For example, the number of the first door sign in a cor-

ridor is smaller than the last one, or in the other way around. This characteristic can be

inferred through the door sign sequence analysis. Imagine, for instance, that an SR is in a

corridor where the number of the first door sign is larger than the goal-door one, and this

corridor has an increasing door sign sequence. Hence, in terms of the Growing Direction

factor, the SR should not consider this path as promising, since it is not very likely that its

door sequence contains the goal-door. Therefore, the proposed Growing Direction factor,

semantic information inferred from the door sign sequence, is beneficial to our NSOS

system, given that it indicates the door signs organization in a segment.

For each mi ∈ C, the Growing Direction factor first calculates the angle in which

the door sign sequence is increasing, θinc
(
S(mi)

)
. To determine it, all the detected door

signs of the segment S(mi) are considered, L
(
S(mi)

)
, as illustrated by Figure 4.3a.

Then, for all possible pairs of two different door signs, one is larger than the other, the

vector that connects them is computed. Figure 4.3b demonstrates an example for door

sign number 1, and how the vectors are computed in pairs, such as (1,2), (1,3), (1,4), and

(1,5). As it shows, the door sign number 1 has four vectors, while the door sign number

4 has only one. To illustrate, if we align all these detected door signs in the centre of

the corridor, as shown by Figure 4.3c, it would be easier to understand that the sum of

vectors from Figure 4.3b and the final θinc
(
S(mi)

)
, indicate that the sequence increases

to the right. To make this process even clearer, Figure 4.3d repeats the same procedure

to the other door signs remaining, i.e., 2, 3, and 4. Here, it is important to mention that

the door signs, i.e., the yellow circles, were represented within the white area to help the

explanation. In practice, they appear within the grey area, as illustrated in Figure 4.2b.

Figure 4.4 illustrates a partial map from the simulator used in this chapter, and it

helps to explain the importance of the Growing Direction. The robot has started at the

intersection of three corridors, and it has chosen the corridor number 3, i.e., the one on

the right. According to the robot’s orientation in this corridor 3, the door sign sequence

is considered increasing. Hence, in this current scenario, if the goal-door was 40, for

instance, the Growing Direction factor would consider corridor 3 as promising. In contrast

to this, the same corridor 3 would not be promising if the goal-door was 2, because the

sequence only increases. It means that the distance from door sign 2 also increases as
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(a) (b)

(c) (d)
Figure 4.3 – Demonstration of how the increasing angle θinc

(
S(mi)

)
is computed in a segment.

All the detected door signs within the segment, (a), are considered to calculate the θinc
(
S(mi)

)
.

The first step, (b), illustrates the vectors from door sign 1 to the other door signs, and it is easier
to understand the effect of this vector calculation aligning all the door signs, (c). The final step of

the vector computation, (d), shows all the vectors to all possible pairs.

the SR continues in that corridor and the SR will not get closer to the goal-door. Besides

these two examples, which help to understand how the Growing Direction factor behaves,

a third case is important to mention. Imagine that the goal-door was 21. This factor

would be high until the SR recognizes the door sign 20 in corridor 3. However, after

that its value would decrease as the SR goes on, and the door sign sequence increases.

Hence, in terms of only the Growing Direction factor, the robot should continue its search

in either corridor 1 or 2.

One possible solution to deal with the aforementioned third case is to measure

whether all the door signs within the sequence are smaller or bigger than the goal-door.

Hence, the amount of door signs that are smaller or bigger than the goal-door are counted

by the functions SL
(
S(mi)

)
andBL

(
S(mi)

)
, respectively. The factor ζ(·) measures the

possibility of a segment to have door signs smaller or bigger than the goal-door, defined

by

ζ
(
S(mi)

)
=

(
SL
(
S(mi)

)
−BL

(
S(mi)

))
max

(
SL
(
S(mi)

)
+BL

(
S(mi)

)
, wg

) , (4.9)

where−1 ≤ ζ
(
S(mi)

)
≤ 1. When ζ

(
S(mi)

)
= 1, it means that in S(mi) there are only

bigger door signs than the goal-door. On the other hand, when ζ
(
S(mi)

)
= −1, there are

only smaller door signs than the goal-door. Lastly, when ζ
(
S(mi)

)
= 0, both SL(·) and

BL(·) are equal. wg is a threshold used to control the minimum amount of detected door
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(a)

(b)

(c)
Figure 4.4 – Partial 2D map of the environment to show the importance of Growing Direction

factor. All images represent the same part of the environment, but (a) shows the simple 2D grid
map, (b) shows the visited region, and (c) shows the two segments of the map.

signs are necessary to this equation reaches 1 or -1.

In addition, Growing Direction factor also considers θf (mi). It is the Voronoi

angle at cell mi. The difference angle between θf (mi) and θinc
(
S(mi)

)
, measured by

γ(θf (mi)), indicates whether θf (mi) is pointing to the same direction than θinc
(
S(mi)

)
.

Then,

γ(θf (mi)) = 1.0 +

∣∣∣∣∣θf (mi)− θinc
(
S(mi)

)
π

∣∣∣∣∣ (−2.0), (4.10)

where−1 ≤ γ(θf (mi)) ≤ 1. When γ(θf (mi)) = 1, it means that θf (mi) and θinc
(
S(mi)

)
are pointing at the same direction. On the contrary, when γ(θf (mi)) = −1, it means that

they are pointing to opposite directions.



68

Now, the Growing Direction factor of a cell mi, ϕg(mi), is defined as

ϕg(mi) =
ζ
(
S(mi)

)
γ
(
θf (mi)

)
+ 1.0

2.0
, (4.11)

where 0 ≤ ϕg(mi) ≤ 1. When ϕg(mi) = −1, it means that is less likely to reach the

goal-door given how the door signs are set in S(mi). Differently, when ϕg(mi) = 1,

it means that is high likely. When ϕg(mi) = 0, it means that the Growing Direction

factor is not sure about either the growing direction angle, or about the smaller and larger

numbers. Hence, it cannot indicate whether mi is a very likely frontier.

4.3.3 Parity factor

This factor considers the characteristics of a door sign to be either even or odd, the

kind of information that is not explicitly available in the environment. However, it can

be easily inferred after the number recognition. The idea is to attribute a high probability

to corridors that contain mostly door signs with the same parity as the goal-door. It is

important to mention that this factor also considers the case in which a corridor contains

both even and odd door signs since the probability is proportional to their respective

amount.

To calculate the Parity factor, first it is necessary to count the amount of door signs

from S(mi) that have their parity alike or different than the goal-door. We use the func-

tions AL
(
S(mi)

)
and DL

(
S(mi)

)
to count the alike and different parities, respectively.

Then, for a cell mi ∈ C, its Parity factor, ϕp(mi), is given by

ϕp(mi) = 0.5 +
AL
(
S(mi)

)
−DL

(
S(mi)

)
max

(
AL
(
S(mi)

)
+DL

(
S(mi)

)
, wp

)0.5 (4.12)

where 0 ≤ ϕp(mi) ≤ 1, and wp is a threshold used to control the minimum amount of

detected door signs that are necessary to this equation reaches 0 or 1. When ϕp(mi) = 1,

it means that all the observed numbers from doors sign in the segment where the SR is

have the same parity than the goal-door, whereas ϕp(mi) = 0 is the opposite. When

ϕp(mi) = 0.5, it means that AL(·) and DL(·) are equal, and therefore is not possible to

ensure the parity of the segment S(mi).
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4.3.4 Robot and Door Orientation factors

The SR moves through the environment, and it detects numbers from door signs as

they are in its path. Usually, the position of doors in the environment follows a pattern that

includes the possibility of existing doors only on horizontal or vertical corridors. There-

fore, aiming to find the goal-door quickly, it is better to prioritize corridors in the same

orientation than the already visited ones containing many doors. If the robot can prioritize

the corridors in the same orientation, by consequence, its most common orientation will

be an angle similar to these corridors.

To calculate the Door Orientation factor, it is considered a history of the λd most

recent robot’s orientations when a door sign was detected. Figure 4.5a illustrates an ex-

ample, in which the robot’s poses from c to k would be saved. Based on this history,

it is computed a histogram of such orientations. Each bin saves the percentage of each

possible robot’s orientation. Then, given the orientation of mi, θf (mi), it is consulted in

the robot’s orientation histogram the probability of finding a door sign considering such

orientation,

ϕo(mi) = Hd[θf (mi)], (4.13)

where Hd[·] is the door orientation histogram, and the Door Orientation factor is 0 ≤

ϕo(mi) ≤ 1, in which 1 is 100% and 0 is 0%. The number of bins in the histogram Hd[·]

defines its level of sampling. AHd[·] with 360 bins provides a finer estimation than aHd[·]

with 45 bins. In our work, Hd[·] has maximum 179 bins, because we are not interested in

saving the direction. Hence, if the robot’s orientation is 0◦ or 180◦, both will point to the

same index in Hd[·] because they are in the horizontal line (although pointing to opposite

directions).

The Door and Robot Orientation factors are very similar to each other. The differ-

ence between them is that the first one saves the robot’s orientation only when a door sign

has been recognized. Therefore, it prioritises the θf (mi) that has the highest Hd[θf (mi)],

i.e. the orientation in which the robot has detected most of the door signs. On the other

hand, the idea of the second one, the Robot Orientation factor, is to prioritize the θf (mi)

that is most similar to the robot’s orientation that is more frequent. It does not consider

when the door signs were recognized. This factor makes the robot consider other paths

that, despite not having door signs, may connect to other more promising ones.

As the robot moves through the environment, its λr most recent orientations are

saved, as shown by the robot’s pose, from a to o, in Figure 4.5a. They are used to compute
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a histogram. Each histogram bin represents an angle and its percentage in the history of

the robot’s orientation. Given the calculated histogram, the θf (mi) is used as an index to

get the probability of that angle, as presented by

ϕr(mi) = Hr[θf (mi)], (4.14)

where Hr[·] is the robot orientation histogram, and the Robot Orientation factor is 0 ≤

ϕr(mi) ≤ 1. When ϕr(mi) = 1, it means that θf (mi) is an orientation that is equal to

the unique robot’s orientation saved. On the other hand, when ϕr(mi) = 0, it means that

θf (mi) is an orientation that the robot did not do.

The scenario in Figure 4.5 illustrates the importance of both Robot and Door Ori-

entation factors. The robot starts at the pose a in Figure 4.5a, and it moves forward until

pose p. Then, it finds a second intersection between points 3 and 4, and it has to decide

which one it should take. At this moment, the robot has detected door signs from pose c

to k, with robot’s orientation mostly at 0◦ as the reference shown in Figure 4.5a. Then,

Hd[0] = 100%. Besides, the robot has moved most of the time heading 0◦, as illustrated

by the 12 poses (from a to l) in Figure 4.5a, against the four poses (from m to p) heading

approximately 270◦. Then, Hr[0] > Hr[270]. Hence, when the semantic planner has to

decide where to go, among the four available points, the 3 and 4 will have higher priori-

ties due their proximity to the robot’s pose. Besides, point 3 will have the highest priority

among the two because of its orientation, which is 180◦. In this case, Hd[0] = 100%

(recall that 0◦ and 180◦ point to the same index in Hd[·]) while point 4 is Hd[90] = 0%

(converting 270◦ to the range [0◦,180◦] of Hd[·]). Therefore, Hd[·] suggests that point 3

is the most promising one considering the organisation of the environment that has been

observed by the robot.

4.3.5 Closeness factor

The fifth factor considered by our Semantic Planner is the distance between the

robot cell mr and each mi ∈ C, i.e. the smallest number of Voronoi cells that connects

each pair of (mr,mi). Its goal is to guide the robot towards the closest mi, instead of

spending battery and time going to the farthest one. Take the Figure 4.6 as an example,

and suppose that the goal-door was 71. The robot has started at the intersection between

corridors 1 and 2, and it has moved to the right corridor, Figure 4.6a. After a few minutes,
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(a)

(b)
Figure 4.5 – Partial 2D map of the environment to show the importance of the Robot and Door
Orientation factors. (a) shows the robot’s orientation during its trajectory and (b) the orientation

of each point.

guided by the Robot and Door Orientation factor, it has chosen to continue the searching

on corridor 3. Even though this corridor has the same parity as the goal-door (both are

odd), the Growing factor indicates that corridor 3 is not promising. Therefore, the robot

should continue the searching in one of the other three options, corridors 1, 2, or 4. The

Closeness factor is responsible for indicating the closest option to the robot, given by the

sum of green cells that connect the robot’s current position and each red point near the

numbers 1, 2, and 4, as shown in Figure 4.6b.

The first step of the Closeness factor calculation is to find the smallest proximity

m�
j between mr and all mi ∈ C. It only considers the Voronoi cells in m, in which one

cell is considered as one to the proximity sum. It is given by

m�
j = arg min

mi∈C

(
D(mr,mi)

)
(4.15)

where D(·, ·) is the function that counts the number of cells between two other specific

cells. In this factor, only Voronoi cells are counted, regardless they are within mapped or

unknown regions.
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(a)

(b)

(c)
Figure 4.6 – Partial 2D map of the environment to show the importance of the Closeness factor.

All images represent the same part of the environment, but (a) shows the simple 2D grid map, (b)
shows the visited region, and (c) shows the six segments of the map.

The idea is that the Closeness factor of mi, ϕc(mi), should be high to small

proximities, and low to the big ones, i.e., give more preference to mi that is closer to the

robot. Then

ϕc(mi) = 1.0−
(

1.0−
D(mr,m

�
j )

D(mr,mi)

)4
, (4.16)

where 0 ≤ ϕc(mi) ≤ 1, in which ϕc(mi) = 1 means that D(mr,mi) is equal to
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D(mr,m
�
j ), and ϕc(mi) = 0 means that D(mr,mi) is so high that makes the division

be around zero.

4.4 Experiments and Results

This section presents the experiments carried out in simulation and in the real

world. Section 4.4.1 explains the software setup used in our simulated experiments, as

well as the differences between the physical and simulated experiments. Section 4.4.2

presents the results of the simulation phase, comparing the performance of our NSOS

system and an entirely geometric OS system, called Greedy. Four different maps were

considered in this comparison. Section 4.4.3 introduces a second type of comparison,

in which these two initial OS systems, ours and the Greedy one, are compared to human

participants teleoperating the robot in the simulation setup while performing the searching

task. Finally, Section 4.4.4 demonstrates how our NSOS system performs in the physical

world, as well as the information about where this test was performed.

It is also important to report the parameters used by our system throughout all the

experiments presented below, either in simulation or in the real world. Both wg and wp are

set to eight. This means that in Equations 4.9 and 4.12, respectively, the closer or higher

to eight the number of detected door signs is, the more important the Growing Direction

and Parity factors become. The number eight was chosen to balance the importance of

the factors since a small number would make them important soon in the search process,

and a large number would play the opposite role. In addition to these two parameters,

the Robot and Door orientation factors also have some parameters. The size of the Hd[·]

is four, which is the outcome of dividing the range of [0◦,179◦] by 45◦. It means our

approach considers the robot’s orientations when detecting a door sign in groups of 45◦

(e.g., if the robot detects a door sign and its orientation is 42◦, Hd[0] is incremented).

For the histogram Hd[·], we consider the past 6.000 orientations, as this sensor reading is

noisy. For the case of Hr[·], we assume a finer setup since the robot may be in a different

orientation in the range of [0◦,359◦]. The size of Hd[·] is 18, and we consider the past

600.000 readings due to our high reading rate from the robot’s orientation, the presence

of noise in the data, and to reduce the impact of an unexpected turning that may happen.
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4.4.1 Simulated Experiment Setup

The setup of the simulated experiments is represented in Figure 4.7. The Mo-

bileSim simulates a Pioneer 3-DX robot equipped with a 180◦ Laser, providing its odom-

etry information and its laser sensor readings, Figure 4.7a. However, MobileSim does not

provide information from door signs, which is vital for our experiments. Therefore, we

developed a door simulator (DS) to mimic both the two RGB cameras that are embed-

ded in the physical robot and the Image Processing module that recognizes the numbers,

Figure 4.7c. DS provides the number of door signs and their positions in the world when

they are within the robot’s FoV. Then, the final setup combines the MobileSim to read

the robot’s information and our DS to provide the door signs information, as illustrated in

Figure 4.7.

(a) (b) (c)
Figure 4.7 – Software setup used in the simulated experiments. It shows the MobileSim in (a), (b)

represents the robot’s and door signs information as input to our NSOS system that returns the
robot’s next movements, and (c) is the door signs map as ground-truth in the Door simulator.

Both (a) and (c) represent the same position on the map.

The first evaluation of our NSOS system was made through the comparison with

the Greedy OS system in simulated indoor environments. The experiments considered

four different scenarios. Table 4.1 and Figure 4.8 present the details of the scenarios.

The four scenarios vary considerably regarding the number of door signs and how they

are set, the size of the buildings, and the orientation of the corridor. The Normal and

Inverse were made aiming to test the OS systems in scenarios with many long corridors

intersecting each other, where the OS systems are forced to make decisions very often.

Due to the high number of door signs in both scenarios, four of them were chosen as

goal-doors for the tests, one in each horizontal corridor. Their difference is that Normal,

Figure 4.8a, has its door signs sequence increasing from the middle to the borders. The

Inverse, Figure 4.8b, is in the other way around. This way, we can test the performance
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of our NSOS system in different door signs arrangements. Since the Normal and Inverse

scenarios have been designed by us for this experiment and we would like to test the OS

systems in real world environments, we also considered the Hotel and KTH. The Hotel is

the third scenario used in the experiments, and it represents the third and fourth floors of

the Hotel Pennsylvania (MCKIM, 1919) located in New York. It has the highest amount of

door signs, along with a large environment containing many door signs and long corridors,

Figure 4.8c. The Hotel scenario aims to test the OS systems in terms of how they perform

when there is a large number of door signs in the environment. A bad choice in Hotel

may cause a long run that will not lead to the goal-doors. The fourth scenario is from a

public dataset called KTH Campus1, Figure 4.8d, that contains more than 38,000 rooms in

total, considering the many floor plans from different buildings (AYDEMIR; JENSFELT;

FOLKESSON, 2012). Even though the particular floor plan chosen for this test, called

KTH scenario, has the lowest amount of door signs compared to the three other scenarios

used in the tests, it presents corridors in a different orientations, i.e., not only in horizontal

or vertical. All tests in the simulation were carried out on a laptop with 8GB RAM and

processor i7.

Table 4.1 – Different scenarios used on our simulated tests.
Name # of Door signs Goal-doors

Normal 113 54, 55, 111, 124
Inverse 116 54, 55, 111, 124
Hotel 124 76, 135, 148, 185
KTH 47 756

4.4.2 Semantic and Greedy Object Search systems

Our NSOS system was early introduced in Sections 4.2 and 4.3. In this section,

the performance of our system is compared to the Greedy OS system, which has the exact

same basis presented in Section 4.2, but its planner is composed only by the geometric

factor from Equation 4.7, i.e. the Equation 4.7 with α = 0. Therefore, both systems

only differ by their planners, which are responsible for the reasoning over their inputs.

In summary, the Greedy OS system searches for goal-doors based on the nearest frontier,

whereas our NSOS system considers environmental information to make smarter deci-

1It was used the left building from the floor plan identified as 0510028829_A30–00–07, A0043015. The
dataset can be found at <http://www.csc.kth.se/~aydemir/KTH_CampusValhallavagen_Floorplan_Dataset.
tar.bz2>

http://www.csc.kth.se/~aydemir/KTH_CampusValhallavagen_Floorplan_Dataset.tar.bz2
http://www.csc.kth.se/~aydemir/KTH_CampusValhallavagen_Floorplan_Dataset.tar.bz2
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(a) (b)

(c) (d)
Figure 4.8 – The four maps used in the simulated experiments. The green squares represent the
position where the robot has started, and the red circles highlight the goal-doors. The maps are

(a) Normal, (b) Inverse, (c) Hotel, and (d) KTH.

sions.

Both systems were tested using the same simulation setup. For the four scenarios,

the door signs shown in Table 4.1 were set as goal-doors. They were chosen to cover

as many corridors of the scenarios as possible. For each goal-door, both systems have

been run ten times each in these experiments, so we have statistically significant results.

For every test, it was measured, in meters, the distance traveled by the robot from its

initial position until it finds the goal-door. Since we consider the distance traveled as the

search cost, the shorter the distance, the better is the system’s performance. Even though

we have not measured and presented the search cost in terms of time, it is important to

mention that both our NSOS system and the Greedy one moved the robot with the same
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velocity, and at no moment the robot stood still, wasting time. Therefore, the system that

provides the shortest distance traveled is also the fastest. Throughout the tests presented

in this Section, in Equation 4.4 we used δ = 2. This parameter mean that the map of the

environment has been segmented into two tyoes, a corridor and not a corridor, as shown

in Figure 4.1c.

Tables 4.2, 4.3, 4.4, and 4.5 present the results of both systems in each scenario in

the simulated tests, Normal, Inverse, Hotel, and KTH, respectively. The colorful columns

represent the results achieved by the tested OS systems. The first one is the result from

the Greedy OS system, and the other three are from our semantic one. In the greedy

column, the value 0, 00% means that α = 0% in Equation 4.7, and hence, the planner

becomes fully geometric. In the semantic columns, the same value ranges from 80, 0%

until 100, 0%, which means that the α ranges from 0.80 until 1.0 in Equation 4.7. Hence,

it changes the importance of the semantic factor in that equation. Our NSOS system was

also tested with α ranging from 0.5 up to 0.7, but the results were not significant and

not presented in the tables. The rows of the tables correspond to the two OS systems’

performance while searching for each goal-door. Each system’s performance for every

goal-door was evaluated in terms of Median, Average, Standard Deviation, Minimum,

and Maximum distances. It is also important to highlight that within a row, the color of

the table cells ranges from green to red. Green represents the cell with the smallest value

within a row, and red represents the largest one.

The results in Table 4.2, Normal scenario, and in Table 4.3, Inverse scenario, are

similar in terms of which column has the most red cells. In both cases, our NSOS system

has a better performance than the greedy one, as most of the green cells are within the

semantic columns, mainly when α = 80.0% and α = 90.0%. In one of its ten runs for

such map, the Greedy OS system made a sequence of decisions that lead it to find the

goal-door 54 with the shortest distance (82.19 m in Table 4.2). This low result probably

contributed to the lowest average being achieved by it, 121.94 m in the same table. How-

ever, it is also important to highlight that the standard deviation for the Greedy system for

that goal-door is the highest one, 41.59 m. It means that it did not find the goal-door 54

traveling the shortest distance every test. A similar behaviour for this system can be seen

when searching for goal-door 124, in which the minimum traveled distance was achieved

by the Greedy system, 49.56 m, but not for all the ten runs (its standard deviation for this

goal-door was the highest, 70.09m). In Table 4.3, the lowest average and minimum of the

goal-door 111 are from the greedy OS system, but again its standard deviation is the high-
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est. It means that the ten tests of the greedy system vary considerably, as shown by the

difference between its minimum and maximum values, 61.86 m and 278.57 m, respec-

tively. On the other hand, the standard deviation within the semantic columns is lower,

meaning our semantic system has a constant behavior during the searches. It guides the

robot through a similar path through the ten runs, making the same decisions in different

executions.

Table 4.2 – Results of the greedy and our NSOS systems in the Normal scenario. All the results
are shown in meters.

Table 4.3 – Results of the greedy and our NSOS systems in the Inverse scenario. All the results
are shown in meters.
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The Tables 4.4 and 4.5, from Hotel and KTH, present similar results than the two

previous tables in terms of the greedy column having most of the red cells. Besides,

in general our NSOS system has better performance than the greedy system. Both ta-

bles also show that our proposed system is efficient in real scenarios. Even though the

α = 100.00% column within the semantic columns presents satisfying results, mainly in

Table 4.5, a purely semantic OS system is not always suitable for searching tasks. The

geometric factor in Equation 4.7 is essential and, combined with the semantic factor, may

provide the best results. The Greedy system presents good results for all the four goal-

doors in terms of minimum traveled distance. Again, as this system does not repeat the

sequence of decisions during the search over all the ten runs, sometimes it is lucky enough

to make a sequence of decisions that lead it to find the goal-door very quickly. The lack

of consistency and robustness on Greedy’s performance is demonstrated by its poor re-

sults in terms of standard deviation, being the worst of all for all goal-doors in Tables 4.4

and 4.5.

Table 4.4 – Results of the greedy and our NSOS systems in the Hotel scenario. All the results are
shown in meters.

It is worth to mention that the shape of the environment and the door signs ar-

rangement play an important role in our NSOS system’s performance. Depending on the

direction that the sequence of door signs number are increasing, for example, it is possi-

ble that our system performs differently. Both Nornal and Inverse scenarios illustrate this

situation, where the only difference between them is the direction in which the door signs

number increase. Analysing the three semantic columns in both Figures 4.2 and 4.3, it is
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Table 4.5 – Results of the greedy and our NSOS systems in the KTH scenario. All the results are
shown in meters.

possible to say that the Inverse scenario is more favorable to our NSOS system because it

can easily estimate when a corridor is not promising. Since the robot starts at the center of

the map, every corridor that it explores, it realizes the numbers are decreasing. Hence, if

ous system is looking for a larger number than the first (and also larger) number of a cor-

ridor, it quickly gave up on that corridor and continues the search somewhere else. That

behavior explains the difference in our system’s performance depending on the scenario

we considered.

Besides the previous analysis, the optimal solution for each scenario was also

measured. It is the shortest path between the starting position, green squares, and a goal-

door, red circles, in Figure 4.8. The Tables 4.6, 4.7, 4.8, and 4.9 present the optimal

solution to each goal-door, as well as the average and standard deviation with each OS

system from Tables 4.2, 4.3, 4.4, and 4.5.

Table 4.6 – The average and the standard deviations from the Normal scenario, Table 4.2, and the
optimal solution (shortest path) between each goal-door and the starting position. All the results

are shown in meters.

In general, the difference between the optimal solution of each goal-door and the

averages in the same line is larger for greedy system results than those from our NSOS

system. For example, the optimal solution for the goal-door number 124 in Table 4.6 is

33.16 m. The average of the Greedy system for the goal-door 124 is 148.5 m± 70.08 m,

which is almost five times larger than the shortest path. The results of our NSOS system

for this same goal-door, in the worst case, is 67.04 m± 17.08 m, which is just two times

larger.

The same analysis can be made for other goal-doors in other scenarios, Tables 4.7

and 4.8. Besides this analysis, it is also possible to measure how large the averages are
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compared to their optimal solution. For all goal-doors and systems tested in the simulation

experiments, Table 4.10 shows how many times, in percentage, the averages are larger

compared to the optimal solutions. For the case of our NSOS system from Tables 4.6, 4.7,

and 4.8, it is considered the lowest average between the ones from α = 80.0%, α =

90.0%, and α = 100.0%.

Table 4.7 – The average and the standard deviations from the Inverse scenario, Table 4.3, and the
optimal solution (shortest path) between each goal-door and the starting position. All the results

are in meters.

Table 4.8 – The average and the standard deviations from the Hotel scenario, Table 4.4, and the
optimal solution (shortest path) between each goal-door and the starting position. All the results

are in meters.

Table 4.9 – The average and the standard deviations from the KTH scenario, Table 4.5, and the
optimal solution (shortest path) between each goal-door and the starting position. All the results

are in meters.

To compute the percentages presented in Table 4.10, it is considered the optimal

solution of each goal-door for each scenario as 100%. Hence, if the average is larger than

the shortest path, it will be higher than 100%, as in the case of the goal-door 54, scenario

Normal. The greedy system is approximately seven times larger than the optimal solution,

i.e., 709.39%.

In Table 4.10, most of the lowest percentages are within the semantic rows. There

are few goal-doors in which the greedy system presents the lowest rate. That is the case

of goal-door 54 of the Normal scenario, and the 111 of the Inverse. However, even though

the greedy system presents low values, the values from the semantic system to the same

goal-doors are similar. On the contrary, analyzing the goal-door 54 of the Inverse scenario,

for instance, the value from the greedy system is almost four times larger.

The two OS systems were submitted to search for one goal-door at time in all

scenarios. Hence, we do not have their results as if they were searching for a sequence



82

Table 4.10 – Comparison of the optimal solution (shortest path) of each goal-door from each
scenario, with the averages from Tables 4.2, 4.3, and 4.4. The shortest path is equivalent to

100%, and the figure shows how large the averages are in comparison with the optimal solution.

of goal-doors in a single attempt. However, we can speculate their performance in such

conditions, based on their results in the previous experiments. In general, our NSOS

system finds the first goal quickly, demonstrating that it is efficient even when there is no

information available a priori about the environment. After finding the first goal-door,

NSOS will be partially aware about the organisation of the environment, which may give

it advantages for more accurate searches in the future. On the other hand, in most of

the cases the Greedy system wastes too much robot’s resources to find the first goal-door

of the sequence. In this process, it may discover the next goal-doors of the sequence

and improve its performance a little bit. However, if the next goal-doors were not found

during the first search, its performance will be even worse than our NSOS sytem in such

a scenario.

4.4.3 Human participants performance in object searching task

The results presented in Table 4.10 illustrate how many times, in percentage, the

results of the greedy and our NSOS systems are larger than the optimal solution. Some

results from the semantic system are two, three, or even four times larger, whereas the

greedy system provides results that are up to 12 times larger than the optimal solution for

the scenario Inverse and goal-door 54.

Given only these high percentages, it seems that both systems are not suitable for

the task of finding a target door sign in an unknown environment based on text information

as visual cues. However, it is important to highlight that this task is challenging because

the environment is unknown, and there is no way of planning an optimal path a priori. This

section illustrates the difficulty level of the searching task by presenting an experiment in

which human participants were invited to perform the searching while piloting the robot

in the simulator presented in Section 4.4.1. This experiment measured (in meters) the
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distance traveled by the robot from the initial position until the goal-doors. The distance

traveled is the search cost used in this work, and hence, the shorter the distance, the better

is the system performance.

Instead of using the planner of either our semantic or the greedy OS system to

find the goal-door task, ten human participants were invited to teleoperate the robot in

the simulation setup to perform the same role as our semantic planner. The participants

were presented to the searching task beforehand, with a time to get familiar with the robot

control system and our simulation setup. This experiment aimed to measure human per-

formance in the same setup as the other tested system to show whether human reasoning

provides better results than our NSOS system in the same conditions. Therefore, the hu-

mans controlled the robot in the same simulator and graphical interface as the two OS

systems, as shown by Figure 4.1a. The difference of this experiment to the one from Sec-

tion 4.4.2 is how the choices are made. In this case, the participants must choose where

the robot must go, playing the planner role to choose the path.

In this experiment, only two scenarios were tested, with one goal-door each. The

Normal and Inverse scenarios are certainly similar, differing only on how the door signs

are arranged. Given that humans can memorize what they have seen, it would be unfair to

submit them to two similar scenarios or more than one goal-door for the same scenario.

Therefore, the Normal and Hotel scenarios were used for this experiment. Door signs

picked as the target were 111 to Normal and 148 to Hotel. They are not too far nor too

near to the robot’s initial position. Hence, the participants would have to explore at least

a small part of both scenarios. Throughout all the tests, the only data considered for the

evaluation was the traveled distance.

Table 4.11 summarises the analysis of the ten participants. Besides, it also com-

pares human performance to the greedy and our NSOS systems. As in the previous ta-

bles, green represents the cells with the smallest value within a row, and red represents

the largest. As can be seen, our system presents a smaller average in both goal-doors,

with the lowest indices compared to the others. The minimum traveled distance for the

goal-door 148 is the only case where our NSOS system does not have the lowest result.

For that result, one of the ten participants made some decisions that luckly brought them

to the goal-door with the shortest traveled distance. The second shortest traveled distance

from the participants was 199.23 m, a result two times larger than the 75.23 m shown in

Table 4.11, and which supports that humans do not have a regular and efficient perfor-

mance.
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Table 4.11 – Human performance to the problem of OS system. It is compared to the greedy and
semantic systems, in which all of them had to find two goal-doors, one in each scenario. The

results are presented in meters.

In contrast to our NSOS system, the greedy one presents the worst results for both

goal-doors, which confirms the previous results presented in Section 4.4.2. It is also worth

mentioning the high standard deviation of the Human participants for both goal-doors. It

shows that they had different performances, in which some had a shorter traveled distance

than others. Some participants did not follow the same pattern when making decisions

throughout their run. At the end of their participation, they have reported that they did not

have an efficient strategy to search for the target, and no reasoning was made based on

the door signs. One specific participant forgot, for only a few seconds, the goal-door for

the Hotel scenario. The participant mentioned that as soon as they realized they could not

remember de number, they look at a paper that was in front of them to read it again. The

human eye has a wider FoV than the two cameras used in this experiment setup, which

provides advantages to humans when searching for objects in an unknown environment.

However, as previously mentioned, the goal of this experiment was to test humans as the

decision-makers within the system. That is why they used the same software setup for the

experiments as our semantic and greedy systems.

Besides the lowest average from the NSOS system, there are other advantages

compared to the participants’ results. Its slight standard deviation means that the same

decisions were taken in all the ten test repetitions, which suggests that our system does

not make random decisions. On the other hand, the same does not apply to the Human

results, which means that every participant had their particular reasoning to make a de-

cision. Hence, some participants are more efficient than others in this OS task. Besides

the standard deviation, another advantage is that SRs are not disturbed by other moving

objects or agents in the environment. Therefore, they can focus on the task, and they do

not forget the goal-door, what happened to one of the humans during the experiment.
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4.4.4 Experiments Using a Physical Robot

The experiment with a physical robot was performed in one of the buildings of

the Federal University of Rio Grande do Sul, Brazil, where the Phi Robotics Research

Lab is located. Figure 4.9 shows how this building is organised, as well as the rooms and

their door signs. The robot used in this experiment is a Pioneer 3DX from MobileRobots,

which is equipped with a LiDAR laser scan of 180◦ and two RGB cameras, as shown in

Figure 4.10.

Figure 4.9 – Map used in the experiments with the real robot. It is the building where the Phi
Robotics Research Lab is located at the Federal University of Rio Grande do Sul, Brazil. The

green square represents the position where the robot starts, and the red circle highlight the
goal-door.

Figure 4.10 – The Pioneer 3DX robot used in the real environment experiment, as well as the two
embedded cameras. The door signs of the environment are also depicted on this figure.

This experiment aims to demonstrate that our NSOS system works in physical

scenarios, meaning that the robot should be able to find the target goal-door traveling the

shortest distance as possible. For this experiment, goal-door 232 is chosen as the target,

which is located on the left side of the initial position, the green square in Figure 4.9. Even

though it was at the same corridor as the initial position, the experiment setup is suitable

to prove that our system can make estimations over the detected door signs. From the
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initial position, the SR can turn to the left or the right. If it decides the left direction, it

will find the goal-door quicker, but the other option would take it to the opposite side. For

this case, as soon as a few door signs have been detected, our semantic system would be

able to reason over them and infer that this direction is not promising. Hence, it should

change to the opposite direction. Therefore, this would show that our semantic system

uses the door signs to find the goal-door efficiently.

When submitted to finding the goal-door 232 in a physical environment, the per-

formance of our NSOS system was similar to the situation described above. Figure 4.11

depicts six steps of the system, and all of them show important moments for the searching.

In Figure 4.11a, the robot just had finished one complete rotation to map its surroundings,

and then it detected the door sign 240. In Figure 4.11b, the robot had chosen to turn

right, where the door sign 242 has been found. This figure demonstrates how our plan-

ner decides on changing: i) the door signs 240 and 242 were recognized in an increasing

sequence, and it means that as the robot goes forward, the distance from the goal-door

increases; ii) the robot is between two frontiers, and even though the robot is closer to

the one that is in front of it, the other is not that far from it; iii) the first two door signs

were found in a horizontal corridor, and so far, the horizontal corridors are the more likely

ones to contain other door signs. Combining all this information, the decision is that the

frontier that the robot is following is less promising than the other one that is behind it.

In Figure 4.11c, the robot has changed its orientation to the opposite one. The door sign

238 was recognized, which supports the orientation change. In Figure 4.11d, as the robot

has not recognized any other door sign that contradicts its decision, the searching con-

tinues towards the left direction. In Figure 4.11e, it recognizes the door sign 234, which

indicates a decreasing sequence towards the goal-door. Finally, in Figure 4.11f, the robot

detects the goal-door 232, and the robot finishes the searching.

4.5 Summary

We proposed NSOS, a semantic OS system that relies on organisational semantic

information inferred from numbers within the environment. The proposed system aims to

demonstrate that it is possible to take advantage of numbers from textual signs to estimate

the organisation of the environment and improve the robot’s performance. Even though

we have not tested our system with traffic signs or outdoor advertisements, for example,

and only with door signs, the results show that detecting complementary information
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(a) (b)

(c) (d)

(e) (f)
Figure 4.11 – Step-by-step of the performance of our NSOS system in the physical environment.
a shows the initial position, where the robot has started the searching, whereas f shows the final

step when the robot has found the goal-door 232.

from signs is promising for robotic solutions. Besides, our NSOS system also intends to

encourage the mobile robotics research community to explore the advantages of semantic

information for mobile robot tasks. To the best of our knowledge, there is no other OS

system in the literature that extract semantic information from any of the aforementioned

examples. Hence, we could not present a fair comparison between our proposal and other

published method, other than the comparison we did with the Greedy OS sytem.

The main contributions of this chapter are:

• a robust semantic planner, based on five different factors, that reason over the door

signs to find the goal-door with the SR traveling the shortest possible distance;

• a semantic OS system called NSOS which, by using our semantic planner, can

make estimations over the detected numbers from door signs and estimate the or-

ganisation of the environment, and make an SR avoid continuing searching on non-

promising regions;

• an analysis of the usage of information inferred from numbers as input to the seman-
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tic planner within our NSOS. In general, the analysis shows that NSOS presented

better results than human participants, both in the same simulation setup.

Our semantic planner applied to the OS system presented an excellent perfor-

mance, mainly when compared to the results from the greedy system and humans per-

forming the searching. Besides providing the shortest distance traveled, and by conse-

quence, it was also the fastest search system, given that the SR moved with the same

velocity in all the experiments. It is important to mention that no experiments were con-

ducted in an environment where its rooms were randomly signed. This is because we

believe that in such kind of environment, probably not even humans would be able to

rely on the random signs and efficiently search for the target door sign, and our NSOS

system would rely on an input that is not reliable. On the other hand, despite not being

random, the Hotel map presents very challenging door sign configurations. Some corri-

dors have a door sign sequence that does not increase or decrease, which does not have

a predominant parity. These conditions do not reflect a well-structured environment, but

our proposal still presented a robust performance, with better results than the other tested

approach and humans. Our NSOS system does not support door signs labeled with other

characters other than numbers. However, this limitation could be overcomed with the de-

velopment of different heuristics (or factors) that model the organisation of other labeling

patterns. The modular characteristic of our semantic planner from NSOS allows the re-

placement of factors by new ones designed for interpreting specific labels. All the other

parts from NSOS could remain the same.

Our semantic planner does not require that the door signs of the environment are

arranged according to a specific pattern, as confirmed by the wide variety of the four

tested scenarios. The scenario Hotel demonstrates how different the door signs can be

located, and according to the feedback from the participants after their participation, the

Hotel is indeed a little bit confusing for them.

The results show that our NSOS system presented better or similar results than

the ones from human participants. However, it is important to highlight that these results

were obtained when humans piloted the robot in the same simulation setup as the other

experiments. The human eyes have a wider field of view than cameras, so in this case, it

would be unfair to compare the performance of humans against robots if they had different

visual sensors. That is why only human reasoning was considered in the experiments of

this chapter.
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5 LSOS: USING CHANGES IN THE ORGANISATION OF THE ENVIRONMENT

OVER TIME

We have already seen the advantages of using organisational semantic information

in OS tasks. The previous semantic information is inferred from both the organisation of

door signs and the corridors of a building, which rarely change over time. In most of the

time, rooms are identified by signs that last for many years, as well as the corridors that

only change when the environment goes through a renovation. Our previous OS system,

NSOS (MANTELLI et al., 2021), Chapter 4, estimates the organisation of indoor envi-

ronments for OS tasks based on static source of data to infer the organisation semantic

information. However, it is no surprise that SRs sometimes operate in semi- and fully-

dynamic environments, where some objects and obstacles move occasionally, e.g. chairs

in the launch area, or very often, e.g. the glasses of an older adult in their house. Suppos-

ing that an SR has to interact with some objects within the room that it has found with aid

our our NSOS system from the previous chapter, it would be interesting that the SR could

efficiently search for these objects. In this chapter we discuss how an OS system could

estimate the organisation of the environment even if it is not static as in Chapter 4.

5.1 Proposal and contributions

In this chapter, we propose a Long-term Semantic OS system (LSOS) that es-

timates which regions of the dynamic environment are more promising to find a target

object. The search is based on the organisation of objects throughout a period of time.

We assume that human activities have an influence in the objects’ placement (ZHOU et

al., 2020). Besides, we argue that a robust OS strategy should consider the semantic infor-

mation of how humans interact with objects over time, rather than searching objects only

based on their shape or color. Instead of filtering the changes within the environment, the

OS system could model and incorporate the changes in the objects’ position over time to

make predictions about its future positions (KRAJNÍK et al., 2020). For example, a per-

son may move their smartphone many times throughout a day, but there are high chances

that it will be on the bedside table during the night. Suppose the SR is tasked with finding

the smartphone at night, and the OS system can understand this pattern. In that case, it

will reduce the regions to search for only the bedroom. Consequently, it would improve
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the robot’s overall performance during the search.

Our LSOS system works in two modes. One is called recording, and it collects

objects’ data in the unknown environment, whereas the other is called requesting, and it

is responsible for processing the saved data to perform the search. In the recording mode,

the SR gathers information about the surrounding objects over a period of time, and then it

builds the map of the environment (or just update it in case it already exists). The mapping

could be done while the SR carries out other tasks, such as cleaning the floor or watching

an older person. The requesting mode is executed when someone requests the SR to find

a target object, in which our LSOS processes the gathered data to estimate where the

object might be at the request moment. We use a Heat map to represent the probability

of finding the target object, in which areas where are more likely to have the target object

located are more heated than elsewhere. Before we continue, it is important to highlight

that in the previous chapter our NSOS actually searched for objects and not just numbers

from door signs. The numbers are the identifying code for the doors, which were the real

object that our NSOS system meant to find and that the numbers were associated with.

Therefore, even though the numbers of the door signs may not be a real object, in the end

our previous NSOS system was searching for an object, as our next LSOS system does.

The diference is that NSOS searcher for only one type of object, doors, whereas LSOS

can search for different sorts of objects, as we will see in this chapter.

Figure 5.1 illustrates how the core of our LSOS system, the requesting mode,

works. For this example, imagine that an SR has already moved through the whole area

performing the recording mode. Then, it built the 2D grid map and recorded the location

of objects and the hour they have been detected. Saving the detection hour of an object,

along with its position, is the core of our LSOS system. By doing this, our system will

be able to estimate the organisation of the objects over time in the environment, and

efficiently find the target object. It is as if the system could learn the objects arrangement

in different moments of the days, and recognise patterns. Back to the example, when the

SR receives a request to find a mug at 14:00, as shown in Figure 5.1, the requesting mode

of LSOS uses the recorded information that a mug has been detected twice. The first time,

at 9:00, it was in region A, and it was moved to region B at 13:00. The recording mode

compares the current time, 14:00, with the two detection hours of the object. Then, it

decides which region it should start searching. As region B has the smallest difference to

the querying time, i.e. the most recent time the object has been seen it was in region B,

the SR goes to that region first. The idea is that the more data our LSOS records, the more
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precisa are its estimations.

Figure 5.1 – One example of our proposed LSOS system operating in our custom made simulated
environment. The robot’s task is finding a mug at 14:00.

The contributions of this chapter are presented below:

• Semantic OS system combined with a heat map to indicate the object’s pres-

ence: a probabilistic OS system that does not require a priori map from the en-

vironment, a training phase, nor data annotation. It builds a 2D grid map of the

environment to estimate the robot’s pose and indicate the free cells regions for nav-

igating. Simultaneously, it builds a Heat map based on the 2D grid map, repre-

senting the computed estimations of the objects’ likelihood for each area. For our

LSOS system, a 3D map would not be favorable, as its benefits do not make up for

the computational cost of building and updating it. A simple 2D is already suitable

for our LSOS needs. However, depending on the secundary tasks the SR has to

perform simultaneously to the OS task, such a 3D may be mandatory. In such case,

our LSOS system will continue working without considerable adaptations from the

2D to a 3D map.

• Self-contained and easy to deploy OS system: a semantic OS system that works

independently. It does not depend on a specific SLAM system for mapping the

environment or an object detection module for detecting the objects. It only requires

the robot’s and objects’ pose within the map, the objects’ class, and the hour in

which detection happened, which will be stored during the recording information

mode.

• Changes in the objects arrangement over time as an OS strategy: a new strategy

for OS that takes advantage of the organisational semantic information inferred

from the objects arrangement throughout a period of time. It aims to reduce the
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amount of regions of the environment that the SR has to search in, and improve the

overall results. It saves information about when the objects were where, and then

estimates the map regions’ likelihood of containing the target object.

• The organisational semantic information in dynamic environments: in contrast

to most of the works in robotics, which assume the world is static and filter the

dynamic agents, our LSOS system incorporates the changes in the objects’ position

in the environment to improve the robot’s performance in OS tasks. We present an

analysis of the advantages of using such type of information as input to our system,

which permits an efficient estimation of the region which is more likely to contain

the target object.

5.2 LSOS system’s search strategy

Our LSOS system is based on spatio-temporal information, and it requires data

from the past to perform OS tasks efficiently. It is important to highlight that although our

LSOS system depends on previous observations of the objects to compute the estimations,

no data must be provided to LSOS a priori. Nevertheless, that is the only requirement of

our system. The more observations the recording mode saves, the more precise are the

estimations from the requesting mode. Our LSOS system does not depend on ambient

sensors like in (SPRUTE et al., 2017) or environmental changes. Even though smart

houses may have visual sensors that could be used to expand the SR’s FoV, an OS system

that depends on such set of sensors restricts its usage in other regular houses. Therefore,

we focused on making our LSOS system self-sufficient, resulting in a two-mode recording

and requesting system. Besides, our system can run simultaneously with any other task

the SR performs, such as cleaning the environment or monitoring an old adult. Hence, a

single SR can perform multiple tasks along with our LSOS system.

The first mode, recording, is responsible for gathering and saving all the data that

our LSOS system needs, as Figure 5.2 illustrates. The goal of this mode is to fulfill

our OS system’s requirements, as mentioned earlier. In summary, the recording mode

relies on an object-detection algorithm and a SLAM system. We use YOLO for object-

detection (see Section 2.2.2), as it is a robust and popular package for such task, and

apply the Gmapping package, a laser-based SLAM for building a 2D grid map, as step

1 in Figure 5.2 (BJELONIC, 2016–2018; GERKEY, 2013–2020). During the execution

of this mode, when an object is within the camera’s point of view, YOLO detects it, as
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step 2 in Figure 5.2. A depth camera with a point cloud measures the distance between

the robot and the object, and then our system calculates its position in the map given the

robot’s pose, as step 3 in Figure 5.2. Once the robot’s and object’s position are known, our

system saves this information, along with the detection hour and the class of the object

provided by YOLO, as step 4 in Figure 5.2. This recording mode can be executed hourly,

daily, or while the robot performs any other task. It is also important to highlight that our

OS system is not restricted to YOLO and Gmapping. Any object-detection and SLAM

package, respectively, provide the same data type our system saves, and hence, could be

used in our system.

Figure 5.2 – Flowchart that explains how the recording mode from our LSOS system works. The
mode gathers information about the environment and save it.

The second mode, requesting, is performed by our LSOS system when the SR is

active with finding an object, i.e., when someone requests it to look for a target object.

It worth to mention that when when our system is requested to search for a target object,

it does not differentiate the instances of that object. For example, when searching for a

book, both The Lord of the Rings and Don Quixote (or any other book) are valid options to

LSOS. Hence, the target object represents a class of objects, and finding any instance that

belongs to that class is sufficient. Furthermore, this mode aims to find the target with the

robot traveling the shortest distance to save time and the robot’s resources. All the data

gathered in the recording mode plays an important role here, as it helps to improve the

estimations of our LSOS system. Figure 5.3 illustrates the entire requesting process. The

requesting mode builds a heat map out of the recorded data to estimate which environment

regions are more promising to locate the target object in, as steps 1 and 2 in Figure 5.3. In

contrast to many OS systems in the literature, our proposal considers the hour that objects

have been detected and compares them with the request hour, as step 3 in Figure 5.3.

Therefore, when the robot receives a request, it goes to the warmest spot in the heat map,
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i.e., region of the environment where is more liley to find the target object, as step 4 in

Figure 5.3. Lastly, if the requesting mode is executed before the recording one, and no

data from the environment is available, our OS system would perform a brute force search

since no information is available to improve its performance.

Figure 5.3 – Flowchart that explains how the requesting mode from our LSOS system works. The
mode is the one that is executed when the robot is active with finding an object.

Although our LSOS system makes predictions based on the arrangement of ob-

jects, it does not have a separate training phase to learn the objects’ presence, like machine

learning algorithms. In fact, both modes (recording and requesting) can run in parallel,

albeit the more information the map contains prior to the search, the better the search

results tend to be. Another important point is that the semantic map in which the searches

are based is not a black box. On the contrary, it relies on a probabilistic approach that in-

fers the most promising regions to find the target object by recording how people interact

with it. Besides, as the experiments presented below suggest, a small amount of data is

enough for our system to succeed.

This section details our OS system and how it works. It starts with the description

of the heat map module in both Sections 5.2.1 and 5.2.2. These sections explanation of

how our LSOS system builds the heat map based on the data gathered by the recording

mode. Finally, Section 5.2.3 presents the goal computation, which explains how our

OS system estimates the most promising map regions to find the target object, i.e., the

warmest spots in the heat map. It also discuss how our OS system behaves when the

object is not found at the most promising region of the map.

5.2.1 The Heat Map and the representation of the objects’ presence

The heat map is a visual technique widely used for visualizing complex spatial

patterns, proposed by Kinney (KINNEY, 1993). It provides a meaningful and straight-

forward understanding for humans and processing programs. In this chapter, the discrete
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distribution of objects’ presence is processed into a continuous color distribution, in which

the most likely regions to find the target object are intuitively revealed.

The 2D grid map m that has been built by the SLAM system during the recording

mode is used for computing the heat map h. Both maps are equal in terms of the number

of cells and size, but the difference is that a cell mi ∈ m is either free, occupied, or

unknown, whereas the same cell hi ∈ h is the heat value that represents how likely that

location is to contain a certain object. A cell in both mi and hi represents exactly the

same place in the environment. Hence, only the cells that are either free or occupied in m

are likely to have a heat value different than zero in h, as there are no objects on unknown

regions in m.

All the n objects that have been detected in the recording mode are represented

by the set O, in which O = {o1,o1, · · · ,on}. Each oj ∈ O is composed by its position

within h, its class, the hour it has been detected, and the robot’s position during the

detection, i.e., oj = (opj , o
c
j, o

h
j , o

r
j), respectively. To compute h, we represent the presence

of the object oj ∈ O by a weighted circular kernel K(·) of radius r. Let T be the set of

cells within the area of K(·) for a given r, and T ∈ h. For all cells hi ∈ T, K(·) is

defined as

K
(
D(hi, o

p
j), o

h
j

)
=

W (rh, ohj )Q(hi)(1− d
r
), if d 6 r

0, otherwise
(5.1)

where D(hi, o
p
j) is the Manhattan distance from the current cell being measured, hi ∈ T

to the centre of the kernel, opj ∈ h. The function Q(·) is defined as

Q(mi) =

0, if mi is unknown in m

1, otherwise
(5.2)

and it checks whether a cell mi is unknown in m. The other functionW (rh, ohj ) computes

the difference between the hour the object has been detected, ohj , and the hour the robot is

requested to perform the search, rh. This difference is then used to compute the weight

factor of the object oj , since the smaller is the hour difference, the more important that

object becomes to the search. This function is defined as

W (rh, ohj ) = 1−
∣∣rh− ohj ∣∣

12
(5.3)
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Here is important to mention that we use the 24-hour notation. Hence, W (rh, ohj ) is equal

to one when rh and ohj are equal, and it is zero when they are 12 hours apart from each

other, i.e., the largest difference in hours between two different time stamps. For example,

if our LSOS system detected an object two times, at 8:00 in position A and 14:00 in

position B, and it is performing the search at 10:00, it will probably start searching the

object in A, as 8:00 is closer to 10:00 than 14:00.

The first part of computing the heat map h is depicted in Figure 5.4. The outcome

of Equation 5.1 is shown in Figure 5.4c, in which every object from O is represented by

the kernel K(·). It is important to notice that the warmest cells in h, Figure 5.4c, are at

the objects’ positions in Figure 5.4a.

(a) (b) (c)
Figure 5.4 – Example of the computed heat map given a set of detected objects. (a) is the

simulated environment with 10 objects spread in seven rooms. (b) is the 2D grid map built by
Gmapping. (c) is the heap map built by our OS system, considering the map in (b) and the

detected objects in (a). The warmer regions represent their position within the map.

The computed heat map h in Figure 5.4c indicates which regions our LSOS sys-

tem should search, since it does not consider the colder spots (green region) in h. Besides,

the class of an object helps to focus the searching in more promising regions, as there is

no point in searching in a warm spot where there is only a book if our system is looking

for a mug. Since the class of a detected object oj is known, ocj , our system ignores warm

spots from objects with different classes than the target one.

A third adjustment in the process of computing the heat map comes with a sub-

traction on the circular kernel’s angle. During the search, our OS system guides the robot

towards the edge of the most promising kernel. The edge, yellow cells in h, is one of the

best regions to place the robot because it is the ideal distance between the robot and the

kernel center (or the object’s position). However, despite the ideal distance, positioning

the robot at any place over the edge of the kernel does not ensure the object will be ei-
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ther recognised or even within the camera’s FoV. This issue is illustrated in Figure 5.5, in

which the SR is quite close to the compute monitor at the edge of its kernel, but yet the

object detection module is not able to detect it. Alternatively, the most appropriate posi-

tion to place the SR would be the same one that the it has been in when recognizing the

object during the recording mode. Thus, it is most likely that the object detection module

will recognize the object once again if the robot assumes a similar pose it has assumed

before. Hence, our heat map h is built considering the kernel K(·) in Equation 5.1 with

an acute angle, instead of considering a 360◦ one. For a given object oj , its kernel’s angle

is defined considering its robot’s position when it has been recognised, i.e., orj . Figure 5.6

illustrates the advantage of restricting the kernel’s angle, in which the object detection

module recognize the computer monitor.

(a) (b)

(c) (d)
Figure 5.5 – Example of the robot at the edge of the kernel, and yet not recognising the object. (a)

is the environment in simulation, (b) is the robot in m, (c) is the robot in h, and (d) the current
image capture by the robot’s camera.

The adjustments performed while computing the heat map h plays an important

role in our LSOS system. Figure 5.7 represents the step by step of each adjustment,

and the outcome is a few warmer spots in h. Besides saving computational resources

by reducing the amount of regions to search, there is also an increase in the chances of

detecting the target object by positioning SR in a better way.
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(a) (b)

(c) (d)
Figure 5.6 – Example of the modified kernel with an acute angle, and the recognised object. (a) is

the environment in simulation, (b) is the robot in m, (c) is the robot in h, and (d) the current
image capture by the robot’s camera.

(a) (b) (c) (d)
Figure 5.7 – Step by step of the space reduction performed by our OS system. (a) is the empty h,

(b) is the representation of all objects from O with the circular kernel K(·), (c) is the kernels’
angle reduction given the robot’s position of each object, and (d) is the outcome of considering

only objects with the same class as the target’s one and the other ones are ignored.

5.2.2 Inverted kernel IK(·)

Our system performs another operation to make it easier to find the target object.

In OS systems, one of the main goals is to place the robot at the most appropriate place to

accomplish the task. For our LSOS system, as we already mentioned, the most promising

regions to place the robot are at the kernels’ edges due to the ideal distance to the objects.

However, such edges in the kernel K(·) presented in Equation 5.1 are the coldest regions

within the kernel area, as the warmest one is at the kernel’s center. Hence, if our system
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computes the inverse IK(·), the warmest regions becomes the ones at the edge, i.e., the

ideal spots to place the robot during the search are the ones with the highest heat value.

The IK(·) is similar to the one presented in Equation 5.1, and it is defined as

IK
(
D(hi, o

p
j), o

h
j

)
=

W (rh, ohj )Q(hi)
d
r
, ifd 6 r

0, otherwise
(5.4)

In summary, the difference between Equations 5.1 and 5.4 is that the former com-

putes h as the warmer regions being the object’s position, whereas the latter computes h

as the warmer regions being the ideal place to position the robot during the search. Fig-

ure 5.8 shows their difference.

Normal kernel Inversed kernel

(a) (b) (c) (d)
Figure 5.8 – The difference between the normal kernel and its inverse. (a) and (b) represent the
normal kernel, the circular and reduced version, respectively. (c) and (d) represent the same for

the inversed version of the same kernel.

Despite the easy readability by humans of h built by Equation 5.1, due to the

intuitive object’s presence representation, for our OS system Equation 5.4 provides the

most appropriate h. Therefore, for now on, all references of h within this work considers

that it has been built using Equation 5.4.

5.2.3 Goal computation in the request mode

The process of building the heat map h and reducing the regions to search for

the object is the first part of our OS system, in which we represent the data from the

recording mode in h. In addition to that, it is also necessary to compute the goal, i.e., the

most promising cell, h∗i , in h that our system estimated to the robot go and find the target

object. This computation is performed when the SR is requested to look for the target
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object.

The goal computation is similar to the heat map construction because we also use

a kernel approach. Our idea here is to analyse the whole h in several circular kernels,

and get the cell h∗i that neighbours have the highest probability of containing the target

object, oj , for the request hour, rh. The final equation for computing the goal cell h∗i ∈ h

is defined as

h∗i = arg max
hi∈h

(
ϕ(hi,oj, rh)

)
(5.5)

in which the function ϕ(hi,oj, rh) computes the possibility of the cell hi contains the

target object, oj . It is defined as

ϕ(hk,oj, rh) =
T∑
hi

H(hi,oj, rh) (5.6)

where T is a set of cells within the kernel area and T ⊂ h centred in hk. The function

H(·, ·, ·) returns the heat value (or probability) of the target object oj being in the cell hi,

at the request hour, rh.

It is possible that for a certain request to our OS system, there are multiple regions

in h that register the presence of instances of the target object. Thus, our OS system

computes Equation 5.5 over h and sorts the multiple h∗i according their likelihood. The

robot is moved towards the most likely one, and if the target object at that position is not

found, the robot proceeds to the second most promising h∗i . This process is repeated until

the robot visits all regions that register the presence of the target object. Lastly, in the

worst case where the object was not found in any promising regions, the robot inspects

all unvisited rooms, similar to a brute force search.

5.3 Experiments and Results

This section is divided into four subsections. Section 5.3.1 discusses the dataset

and simulation setup used throughout the experiments. Section 5.3.2 explains the other

two OS systems that we compare against our proposal, followed by Sections 5.3.3 and 5.3.4

that presents the experimental setup to which the three OS systems have been tested, along

with their respective performances, respectively. Section 5.3.5 shows the performance of

our LSOS system in estimating the person’s presence given the HH106 dataset.
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5.3.1 Simulation and dataset

Our proposal is to let the robot autonomously navigate through the environment

until the target object’s position. Such autonomy demands motion freedom that exists

either in the real world or in a simulated environment that allows the robot to make de-

cisions about its movement freely. Besides, as most of the OS systems in the literature

are proposed assuming static environments, ignoring changes in the objects’ position, the

majority of the publicly available datasets are recorded in static environments. Unlike

them, our LSOS system considers the semantic information of objects’ position changes,

and also uses other specific sorts of data, like the robot’s pose. We assume that the envi-

ronment is not static all the time. Hence, for testing and evaluating our system, we need a

long-term dataset that provides information about the history of the objects’ position, i.e.,

their location over time and what time they have been recognised at a specific location.

To the best of our knowledge, no dataset in the literature accomplishes our require-

ments, with all the high-level information our proposal needs. The datasets consist of a

robot either moving through an environment many times but without objects’ information

or a single run and the class of the recognised object (HOWARD; ROY, 2003; LUO et al.,

2007; AFIF et al., 2019). Besides, even though we could annotate the objects’ position

over time by watching the video from the robot’s camera, we would not be able to move

the objects as we want to mimic different patterns and routines, and we cannot ensure our

annotations would be correct.

Therefore, we have used the Gazebo simulator to create an environment similar

to an office with many small rooms connected, illustrated in Figure 5.9a. It measures

20.5 m by 14.5 m and contains seven rooms and objects in ten different places. We

have chosen objects easily found in most offices, such as books, mugs, computers, and

smartphones. Instances of different object classes are found in our simulated environment,

at least in two different places, to test our system in scenarios with multiple promising

places simultaneously. Creating our environment allows us to change the objects’ position

and even remove some of them. Thus, we can record the data using the recording mode

with the objects’ presence in different patterns, simulating multiple human routines. For

this experiment, we use the Husky robot from Clearpath, Figure 5.9b. It is an unmanned

ground vehicle equipped with a 2D LiDAR laser and an Intel RealSense RGB-D camera.

Despite the lack of public datasets appropriate for our LSOS system, we still

would like to evaluate our OS system in a real scenarios. Therefore, we used a long-term
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dataset where the target object is a human. The HH106 provides continuous ambient sen-

sor data for human activity recognition, collected by 37 sensors spread over a nine-room

apartment for two months (COOK, 2010). A single volunteer occupies the apartment,

generating over 259.900 instances of data within the two months. We have considered

only the motion sensors for our experiments, as they indicate where the volunteer is at

a specific time. Figure 5.10 shows the apartment’s floorplan and where the sensors have

been placed for recording the data.

(a) (b)
Figure 5.9 – (a) is the seven-rooms environment created on Gazebo simulator, and (b) is the

Husky robot used throughout the experiments presented in this chapter.

Figure 5.10 – The floorplan of the single-resident apartment from the HH106 dataset.
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5.3.2 Two other object search systems to be compared against ours

We compare our LSOS system with a Brute Force and a Last Seen OS systems.

They are briefly presented below as well as why they have been chosen to be tested in this

chapter.

5.3.2.1 Brute Force OS system

Inspired by security patrol SRs that repeat the same route from time to time, this

system makes the SR visit all locations according to a predefined route. Besides the

robot’s route, no information about the environment or the objects’ presence is provided

beforehand. In the field of OS, it is known as a brute force approach, which explains its

name. Figure 5.11 depicts the clockwise route periodically repeated by the SR. Like any

other brute force-based OS system, it does not ensure the robot will achieve the optimal

performance in terms of the use of resources (battery and time), even though the robot

finds the target object in most cases. In this chapter, such a system is the benchmark to be

considered.

Figure 5.11 – The robot’s route for the Brute Force OS system. The squared R is the robot’s
initial position, and then it follows the clockwise track in red from location A until location J,

finishing back in R.

5.3.2.2 Last Seen OS system

This system is similar to our proposal in terms of the usage the semantic informa-

tion about the organisation of objects over time. It guides the SR to the map spot where

it has detected an instance of an object class that is equal to the target object, but only
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the most recent object detection. The difference to our proposal is that it only considers

the most recent observation, neglecting the rest of the objects’ historic positions. Even

though this system may save time and the robot’s resources by guiding the robot straight

to a specific spot, it does not ensure that the object will be found. The lack of information

from the past may mislead the system, reducing its efficiency.

5.3.3 Simulated Experiment Setup

The three OS systems have been tested in different scenarios in simulation, with

five objects’ position patterns. Throughout the tests, we considered a simulated environ-

ment with objects being positioned in ten different locations, as can be seen in Figure 5.11.

The systems have to find any instance of the target object, which is a mug. It is important

to highlight that for this experiment we have chosen the mug, but it could be any other

object class that YOLO (whe object detection algorithm we are using) is able to detect.

These instances could be in location A or H, Figure 5.11. We have chosen these locations

because they are on opposite directions of the robot’s initial position R in Figure 5.11.

Hence, it highlights the efficiency of an OS system. If an OS system does not make the

right decision since the begining of the search, its performance will be inefficient.

The Table 5.1 depicts the data that is used in the experiments. To get the data,

a robot repeated ten times a routine of visiting all rooms of our simulated environment

while running the recording mode. Starting at 3:00, every routine was performed two

hours apart, except for the period between 11:00 and 15:00. When an instance of mug

was detected, our system recorded where it was (location A or H), and the hour of the

detection. We could position instances of mug in many possible arrangements in the

simulation, but this section does not intended to test all of them. Instead, we defined

five different arrangements (patterns) for the objects, namely Static, Static-Inv, Mobile,

Mobile-Inv, Shift. The five patterns in Table 5.1 have been manually designed as if the

robot had recorded them on different days, and they are not related to each other. The

experiments in this section aim to compare the three OS systems in different scenarios

and investigate our OS system’s performance in searches with little data available about

the objects’ position. Hence, when we test our OS system based on Mobile, for example,

there are only its ten moments of the day that mugs have been detected to be considered

for the estimations.

An instance of a mug has been detected both in locations A and H at different



105

Table 5.1 – Mug’s position recorded in five setups by the recording mode of our LSOS system.

Pattern
Recording hours

Morning Evening

3:00 5:00 7:00 9:00 11:00 15:00 17:00 19:00 21:00 23:00
Static A A A A A H H H H H

Static-Inv H H H H H A A A A A
Mobile A H A H A H A H A H

Mobile-Inv H A H A H A H A H A
Shift H H H H A A A A A H

hours. On Static, the mug was in location A during the morning, from 3:00 until 11:00,

and in location H during the evening, from 15:00 until 23:00. The opposite happened

on Static-Inv, in which the mug was also moved between 11:00 and 15:00. On Mobile

and Mobile-Inv, it is possible to note that the mug was moved more often, illustrating a

different pattern of Static and Static-Inv. On Shift, the Static-Inv patter is shifted back by

one hour, and the mug is in a different location on the last hour of each period of the day

(morning and afternoon).

For every setup in Table 5.1, the three OS systems were tasked with finding an

instance of a mug at noon and midnight. These two requesting hours have been chosen

because they are not within Table 5.1. Hence, the tested OS systems are not aware of the

mug’s position at these times. The Table 5.2 shows the mug’s location for each requesting

hour, and it is used as ground-truth for our experiments. We considered the mug remained

at the position it was when detected the last time within each period of the day, i.e., at

11:00 and 23:00. Hence, the values of Table 5.2 are equal to the columns 11 and 23 of

Table 5.1. It is important to highlight that the information in Table 5.2 is only used to

compute the results, and this data is not provided to any of the OS systems tested.

Table 5.2 – Ground-truth of the mug’s position for every setup according to the requesting hours.

Pattern
Requesting hours

12:00 00:00
Static A H

Static-Inv H A
Mobile A H

Mobile-Inv H A
Shift A H

The Brute Force system repeated its route in every test, whereas the Last Seen

considered the latest detection hour of every setup, which is at 23:00 for the five setups.

Our proposed semantic OS system used all the data from each setup, e.g., for a search in

Static, it uses only the data from its ten detections shown in Table 5.1. The robot’s traveled
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distance measures the system’s performance, i.e., the length of the robot’s trajectory until

either finding an instance of the target object or reporting that the object has not been

found. Therefore, the shorter the traveled distance, the better is the system’s performance.

5.3.4 Results and discussion from the simulated experiments

An OS system should efficiently find the target object, saving as much time and

robot’s battery as possible. This section presents and discusses the results of the three

OS systems tested in this chapter. We measured their performance by computing the

robot’s traveled distance for searching the target object and whether they managed to find

it. Every combination of OS system, requesting hour, and pattern was tested ten times,

and from these tests, we computed the average and the standard deviation of the traveled

distances, which are shown in Figure 5.12.

The Static and Static-Inv are characterized by only one change in the mug’s posi-

tion throughout the day, which happened at some time between 11:00 and 15:00. Their

difference is that one is the inverted version of the other. In the results from both setups,

Figures 5.12a and 5.12b, respectively, when the Last Seen OS system had to find an in-

stance of mug at noon, it was the only one that failed. That is due to the mug’s position at

23:00 in both setups. Their last mug detection in Table 5.1 happened at 23:00 in location

H for the Static, and in location A for the Stativ-Inv. Hence, the Last Seen system wrongly

guided the SR towards the opposite location in each setup. The Brute Force and our sys-

tem found an instance of mug in both request searches for the two setups. However, there

is a considerable difference in their performances for the request search at midnight in

the Static, Figure 5.12a, and for the one at noon in the Stativ-Inv, Figure 5.12b. In such

requests and setups, the mug was in the location H, as shown in Table 5.2, and the Brute

Force system makes the SR travel a longer distance until it finds an instance of mug, as

illustrated by the robot’s trajectory in Figure 5.13d. In contrast, the Last Seen and our

systems achieved the same goal traveling a distance three times shorter, like the examples

in Figures 5.13e and 5.13f, respectively. For the request search at noon in the Static, and

at midnight for the Static-Inv, the three systems have a similar result because the mug is

in location A, Table 5.2, which is the first location the Brute Force guides the robot to, as

shown in Figure 5.13a. Therefore, despite not reasoning over the available data, the Brute

Force presents a similar result as ours.

Similar to the previous pair of patterns, the Mobile and Mobile-Inv represent an
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(a) Static setup (b) Static-Inv setup

(c) Mobile setup (d) Mobile-Inv setup

(e) Shift setup (f) All combined setups
Figure 5.12 – Results of the three OS systems for both request search times considering many

different setups.

arrangement in which the object is moved more often throughout the day. They aim

to test the OS systems in more dynamic environments, in which the mug has constantly

been moved. Figure 5.12c and Figure 5.12d show the results from the three OS systems in

Mobile and Mobile-Inv patterns, respectively. In general, we see a similar outcome from

the systems for the Mobile pattern pair than the one from the Static pair. The Brute Force

always finds the mug, but as it just makes the SR repeats its route, it does not present a

good performance when the mug is in location H, no matter the request search hour and

the setup. Due to the same problem mentioned before, the Last Seen system is not able

to consistently find the mug. In contrast to these two systems, our system is the only

one that finds the target object traveling the shortest distance in most of the times. It is
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(a) Brute Force and loc. A (b) Last Seen and loc. A (c) Our system and loc. A

(d) Brute Force and loc. H (e) Last Seen and loc. H (f) Our system and loc. H
Figure 5.13 – Examples of the robot’s path for the search performed by the three OS systems in

both locations A and H.

also worth mentioning that if our system does not find the target object with the smallest

traveled distance for a search, its result is not significantly worse than the other systems.

An example is shown in the requested search at midnight on Mobile, Figure 5.12c, where

the Last Seen provided better results between the three systems.

It is important to compare the results from the Last Seen and our systems. Their

difference is in the number of observations about the past object’s position that each con-

siders. The Last Seen considers only the most recent one, whereas ours considers all of

them. The Last Seen often fails to find the target object because relying on the newest

object detection is unreliable. Hence, the robot ends up in a location that does not contain

the target object, like demonstrated in Figure 5.15c. Our system shows the advantages of

using all available data for more robust estimations, such as the results from the Mobile

pattern pair. For the request search at noon on Mobile, our system estimates that it is

more likely to find the mug in location A. It memorizes that the mug has been detected

in location A three times, at 3:00, 7:00, and 11:00, and only two times in location H, at

5:00 and 9:00, Table 5.1. Besides the higher occurrence in location A, 11:00 is simply

one hour before noon, whereas 9:00 is three, increasing A’s likelihood.

The results of the three OS systems for Shift are presented in Figure 5.12e. Our OS

system has better performances than the other two systems, traveling the shortest distance
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in all requested searches. It also presents the lowest standard deviation, meaning that our

results are consistent throughout the ten runs.

(a) Results of the three OS systems
(b) Robot’s path searching for

the mug
Figure 5.14 – Results of the three OS systems for the request search at midnight in a modified
version of Mobile-Inv in (a), and the robot’s trajectory during the search generated by our OS

system.

(a) Robot and mugs detected on location H

(b) Robot and mugs on location A (c) Robot and no mug on location A
Figure 5.15 – Results of the three OS systems for both request search times considering many

different setups.

There are two more experiments we carried out aiming to test our OS system’s

efficiency. In the first one, we submit our OS system to perform the object searching con-
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sidering all data from the five setups together. We aim to measure the performance of our

LSOS system in a scenario where the target object is moved in different patterns through-

out a period of time, such as a week. The ground-truth for the setups combination is the

same as the one from Mobile-Inv, and Figure 5.12f shows the results for this experiment.

In general, the results indicate that our system is efficient in finding the target

object when moved in different patterns, as the target object was found in both request

searches with the robot traveling the shortest distance between the three OS systems, as

it is possible to observe comparing the Figures 5.13d and 5.13f. The Brute Force and the

Last Seen systems presented similar results to the previous experiments since the pattern

combination did not affect them. In the second experiment, we intentionally changed the

mug’s position from location A to location H on Mobile-Inv at midnight, Table 5.2. The

goal is to analyse how our OS system behaves when the gathered data suggests the object

is in a place, but it is somewhere else. Figure 5.14a illustrates the results, in which the

Brute Force produces the longest traveled distance and the Last Seen failed in finding the

mug. In contrast, our system accomplished the task, traveling a shorther distance than the

Brute Force. Our system’s estimation indicates location A as the first goal to find the mug.

The estimation matches the data from Table 5.1, and since there is no information about

the object’s position at midnight, location A is considered as the most promising region

to find the mug. As shown in Figure 5.14b, our system guides the robot to the location

A. As soon as it does not find the target object in location A, it guided the robot towards

the second most promising spot, location H, where an instance of mug was. Examples

of our OS system in action are illustrated in Figure 5.15, in which the detected mugs

and the robot’s position on location H and location A are shown in Figure 5.15a, and in

Figure 5.15b. The scenario that the mug was intentionally removed from location A is

depicted in Figure 5.15c.

An extension to this experiment would be removing all instances of mug from

environment. In this scenario, no even in location H our LSOS system would find a

mug. Even though we have not presented this situation to our system, we would like to

discuss the possible ways to overcome this problem. We argue that there are two main

ideas: the first one would be finish the search when no object is found in the second

possible location, and then report the outcome to the user. Depending on the further

tasks the robot has to perform with the objects, this may not be suitable. The second

idea is to make our LSOS system perform a brute force search and look for the target

object in the unvisited regions. Since the rest of the environment are equally low likely
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to contain the target object, our system could mimic the route performed by the Brute

Force system and illustrated in Figure 5.11. For this second idea, the overall performance

of our LSOS system may be worse than the Brute Force OS system’s. It depends on the

distance traveled by the robot while visiting all promising regions before figuring out that

the object is not present in any of them. However, in contrast to the first idea that is not

sure whether the object is in the environment, with this second idea our LSOS system

could confirm that this information, and so the user can decide what to do next.

5.3.5 Person presence estimation with HH106 dataset

The HH106 is a long-term dataset, and its motion sensors provide the human

location at different hours of the day in an apartment1. Although the HH106 does not

provide all information our OS system needs, such as the 2D map of the apartment, we

adapted it to our context. Since there is no 2D map from the apartment, the robot cannot

move and search for the human in the environment, and the heat map cannot be built.

Hence, the traveled distance is not evaluated in this experiment. Instead, we only compute

the human’s presence, by the Equation 5.3, in every location of the apartment for the given

request hour.

This experiment aims to evaluate our OS system in a large-scale dataset gathered

in a real scenario. In this experiment, the sensor readings data from 59 days were provided

to our OS system as if the recording mode gathered them. The data from the 60-th day

of the dataset was used as the ground-truth to the experiments. Our LSOS system had to

estimate the person’s presence at specific hours in this last day that is unknown to it. We

downsampled the dataset to represent the behavior of our system better as if the recording

mode would have recorded the data hourly. Our system considers that the person is in the

location that the person has spent most of the sixty minutes at a particular hour. Table 5.3

presents the downsampled dataset used by our OS system. Table 5.4 shows the person’s

presence at every hour of the day, except for the hours in which the sensors detected no

motion.

Our LSOS system was requested to estimate the human’s presence at five differ-

ent hours for the 60-th day, which were 1:00, 10:00, 16:00, 18:00, and 22:00, as shown

in Table 5.5. For this experiment, the higher is the score in Table 5.5, the more con-

fident our OS system is about its estimation. In general, the estimations of our system

1http://casas.wsu.edu/datasets/
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Table 5.3 – The 59 days data from HH106 used by our OS system.
Daily
Hours

Locations
W.A. Liv.R. Kit. BedR. Chair Din.R. BathR. O.D.

00 0 2 1 21 0 1 3 2
01 2 1 3 20 0 1 1 2
02 3 5 1 29 0 0 0 0
03 1 4 3 24 0 0 0 2
04 3 0 1 28 0 2 0 1
05 0 1 2 35 0 1 0 1
06 1 3 3 31 0 1 4 10
07 1 4 4 10 0 6 5 7
08 3 2 4 4 1 14 8 5
09 6 2 1 1 0 15 3 12
10 3 1 1 3 0 3 11 19
11 6 3 7 2 0 3 5 13
12 7 3 2 1 1 14 4 12
13 5 8 3 0 5 4 6 13
14 4 5 1 0 2 5 4 16
15 9 4 5 0 0 4 2 17
16 16 5 4 1 2 6 2 7
17 16 2 4 2 0 9 1 7
18 21 4 3 1 0 3 2 13
19 14 5 2 1 0 4 2 11
20 13 8 2 0 0 6 7 2
21 14 3 0 8 0 13 8 1
22 1 3 2 37 0 1 6 0
23 1 2 0 34 1 1 1 0

Total 150 80 59 293 12 117 85 173

to the requested hours correspond to the human presence pattern previously indicated in

Table 5.4. The person is in the bedroom from 21:00 until 5:00, which matches our OS

system estimations for the requested hours at 1:00 and 22:00. For both request hours, our

estimations for the BedR are considerably higher than the other locations, which suggests

our system is confident about the human’s presence at those hours. The requests at 10:00

and 16:00 are also correct compared to the Table 5.4 at the same daily hours. It is impor-

tant to highlight the estimations from the requested at 16:00 and 18:00. Both estimations

match the ground-truth from Table 5.4, but the scores from O.D. at 16:00 and the W.A. at

18:00 are pretty close. The minor difference is explained by the person’s movement from

the O.D. to the W.A., from 15:00 until 18:00, shown in Table 5.3. This movement makes

our OS system estimate that both locations are possible, but with a small difference to the

correct one.
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Table 5.4 – The data from the last day of HH106 used to test our OS system.
Daily
Hours

Locations
W.A. Liv.R. Kit. BedR. Chair Din.R. BathR. O.D.

01 0 0 0 1 0 0 0 0
02 0 0 0 1 0 0 0 0
04 0 0 0 1 0 0 0 0
05 0 0 0 1 0 0 0 0
06 0 0 0 0 0 0 0 1
08 0 0 1 0 0 0 0 0
09 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 1 0
12 1 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 1
14 0 1 0 0 0 0 0 0
15 1 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 1
18 1 0 0 0 0 0 0 0
19 1 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 1
21 0 0 0 1 0 0 0 0
22 0 0 0 1 0 0 0 0
23 0 0 0 1 0 0 0 0

Total 4 1 1 7 0 1 1 5

Table 5.5 – The human’s presence estimation from our OS system.
Req. Locations

Hours W.A. Liv.R. Kit. BedR. Chair Din.R. BathR. O.D.
01 59.92 35.42 24.92 219.66 2.0 43.5 34.92 51.25
10 67.42 38.58 33.83 106.08 7.83 69.58 48.33 115.00
16 106.41 46.58 32.5 76.25 8.83 68.92 46.66 109.66
18 108.41 46.08 29.66 101.25 7.16 61.75 42.66 93.50
22 82.58 41.42 25.16 186.92 4.16 47.41 36.66 58.00

5.4 Summary

This chapter presented our LSOS system that uses organisational semantic infor-

mation to estimate the target object’s position. The main contributions of this chapter

are:

• a heat map that represents the objects’ presence, highlighting the most promising

regions to position the robot, and then find an instance of the target object.

• a reduction in the number of regions to perform the search by the kernel’s angle

contraction, which provides a better placement for the robot while searching.
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• an OS system that observes the changes in the objects arrangement throughout a

period of time, and then uses the organisational semantic information to estimate

which regions of the environment are more likely to find the target object.

• an OS system for indoor environments that does not depend on a specific SLAM

system and object-detection algorithm, and that can be executed alongside any other

robotics application.

• a detailed analysis of the advantages of using the organisational semantic informa-

tion of how the objects are moved within the environment during a certain period

of time. Besides, the analysis also shows how it can save the robot’s resources by

making it travel shorter distances while searching.

Our proposed system was evaluated in simulation many times against two other

OS systems, considering different patterns of the objects’ positions and tested on the

HH106 dataset gathered over two months. The experiments of our OS system with the

HH106 dataset reveal that it performs well with long-term data, such as the two months

of motion sensor readings. Besides, the other experiments with the simulated patterns of

object’s positions also demonstrate that our OS system succeeded in the search task with

limited data of only ten instances within a day. Therefore, our system does not require

extensive data about the object’s position to accomplish the task.

Additionally, another important point highlighted by the experiments is that both

the Brute Force and our OS systems are the only ones that find the target object under

any circumstances. Although the Last Seen system travels a short distance in general, it

sometimes fails in accomplishing the searching task. Despite the Brute Force’s success in

the searching task, it makes the robot spend way more resources than our OS system. De-

pending on the target object’s location, the SR visited almost the entire environment until

finding it, which contrasts with the results from our proposal. It is also worth mentioning

that the larger is the environment, the more significant is the difference in performance

between our system and the Brute Force since the robot’s route in Brute Force also in-

creases.
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6 APPLICATION OF THE PROPOSED APPROACHES

This section describes how our approaches proposed in Chapters 4 and 5 could be

deployed in an SR for disinfection tasks. Jaci is an SR built to help the fight against many

bacterias and viruses, including the SARS-CoV-2 (MANTELLI et al., 2022). However,

despite its efficiency in disinfecting indoor environments and the ability to explore the

unknown environment room autonomously, it is not fully autonomous, and, in some cases,

its disinfection process is time-consuming. First, Jaci still requires human assistance to

find the room and position it there before disinfection. Second, it either disinfects the

whole room or does not disinfect it at all. Although we have not been able to deploy our

contributions presented in this thesis to Jaci, we believe they could enhance the robot’s

autonomy. Hence, Jaci would become an even more complete and fully autonomous SR.

Before explaining how our contributions can be adapted to the disinfection task

carried out by Jaci, in Section 6.1 we introduce the SR Jaci and how it performs the disin-

fection. Next, in Section 6.2 we explain how semantic information about the organisation

of the environment can improve Jaci’s performance. In detail, we show how the robot can

become fully autonomous by guiding itself to the rooms to perform the disinfection, Sec-

tion 6.2.1, and how it can partially disinfect the environment under certain circumstances,

Section 6.2.2. We conclude this chapter with further discussions in Section 6.3.

6.1 Jaci against COVID-19 and hospital infections

In the past few years, the Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) has quickly and widely infected several countries, globally threatening

human lives (ZHANG et al., 2020). The high infection rate of SARS-CoV-2 is associ-

ated but not exclusively with the virus’s characteristic of remaining viable on surfaces

for days, as demonstrated by studies (KAMPF et al., 2020; DOREMALEN et al., 2020).

Besides, the environment disinfection has been recommended by researchers after they

have found the SARS-CoV-2 present on surfaces of hospitals, threatening patients with

COVID-19 (WU et al., 2020a; ONG et al., 2020). In addition, hospitals suffer with bac-

terial and fungus contamination, leading to high rates of infections. Thus, besides the

recommended practices to reduce the spreading of the virus, like facial masks and social

distancing, it would be very appropriate to use an effective tool to disinfect environments.

According to some studies provided by the research community, ultraviolet type-C
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(UV-C) irradiation has produced a significant reduction in the incidence of microorgan-

isms (ANDERSON et al., 2017; MARRA; SCHWEIZER; EDMOND, 2018). In addition

to being a no-touch disinfection method, the UV lights have a wide range of incidence that

quickly sanitises the air and nearby surfaces, save water, and are reusable. The combina-

tion of all these characteristics make the UV lights a suitable candidate for environment

disinfection, and the increasing deployment of these lights in hospital and other health

centres supports their effectiveness (MANTELLI et al., 2022). In contrast to these conve-

nient characteristics of UV lights, prolonged exposure to them is not safe for humans due

to the damage they can cause to the skin and eyes (KITAGAWA et al., 2021).

The SR Jaci comes into play to replace humans in UV-C disinfection tasks and

prevent them from getting hurt (MANTELLI et al., 2022). Instor1 has projected and built

Jaci with eighteen UV-C lights attached to it in a two-layers tower shape, as shown in

Figure 6.1a. Equipped with a 2D LiDAR and a few cameras (RGB and RGB-D), Jaci

aims to navigate through the environment to perform the disinfection autonomously. It

moves through free spaces within the environment and next to the border of obstacles,

keeping an ideal distance from them and controling its velocity to ensure an uniform

disinfection.

Figure 6.1b illustrates Jaci disinfecting an operating room, circumventing the op-

erating table and the surgical light. It is necessary to expose the existing microorganisms

on obstacle surfaces to UV-C irradiation for a certain time to ensure their inactivation.

An ideal UV dose must be delivered to a specific region to consider it sanitized (CHAN-

PRAKON et al., 2019; CONTE; LEAMY; FURUKAWA, 2020). Jaci’s autonomous sys-

tem has been developed by Phi Robotics Research Lab2 from the Federal University of

Rio Grande do Sul, and it is responsible for both computing the disinfection trajectory and

the delivered UV-C dose. While Jaci navigates through the free spaces of the environment,

it also computes a dose map. This map estimates the amount of UV-C delivered on every

part of the map. Hence, the constant update on the dose map helps the robot determine

the regions that have already been sanitised and those that have not. Therefore, Jaci is

a suitable disinfection tool that prevents humans from getting harmed by long-term UV

exposure. Simultaneously, it reduces the spreading of the virus any other microorganism

that may exist.

Although Jaci seems a complete solution to fight viruses and bacterias spreading,

there is still room for improvement. Among the changes in Jaci’s software, we high-

1<https://www.instor.com.br>
2<https://www.inf.ufrgs.br/phi-group/site>

https://www.instor.com.br
https://www.inf.ufrgs.br/phi-group/site
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(a) (b)
Figure 6.1 – Jaci is a disinfection robot developed by Instor, embedded with 18 UV-C lights in
two different layers. (a) Jaci with the lights on, but not operating yet, and (b) Jaci in operation,

disinfecting a hospital room.

light Jaci’s dependency on human aid to find and place it within the room to disinfect,

and the lack of object-oriented disinfection. The first change is related to the preparation

phase before starting the disinfection. Jaci relies on human assistance to be placed within

the room to start the disinfecting process in its current version. On the other hand, the

second change is associated with Jaci’s performance while performing the disinfection.

Nowadays, Jaci only finishes the disinfection when the surface of objects in the free space

boundary receives the ideal UV-C dose. It means that Jaci does not distinguish objects,

i.e., regardless the objects there are in the environment, all of them will be disinfected.

We believe that our contributions presented in this thesis can provide Jaci with the organ-

isational semantic information necessary for these two improvements. Unfortunately, we

have not been able to deploy our code to Jaci and carry out some experiments to evaluate

the improvements in Jaci’s performance. Instor could not make it available for us to use

it for a certain time to conduct the experiments, but we still plan in doing so in the near

future. However, based on how our proposal works and the results presented in this thesis,

we can discuss how they could be adapted for Jaci’s context and explain why they would

be helpful.

6.2 Jaci and the environment organisation

Jaci is an SR that has been proposed to operate in indoor environments. Its effi-

ciency in quickly sanitising environments, mainly due to the high amount of UV-C lights

that combined deliver a high UV-C dose per second in a wide area in Jaci’s surround-



118

ings, allows the robot to be productive (MANTELLI et al., 2022). Depending on the

arrangement of obstacles in the rooms, Jaci can disinfect many rooms before recharging

its battery.

However, it is necessary to improve its autonomy by addressing the two issues

mentioned above to maximise even more its efficiency. In our view, our contributions

presented in this thesis, which relies on the organisational semantic information available

in the environments where Jaci is supposed to operate, can provide the way for such

efficiency improvement. Below we dive deep into how our systems could boost Jaci’s

efficiency.

6.2.1 Disinfecting a specific room

Imagine that Jaci is deployed in a large environment, where there are multiple

rooms connected to corridors, like the hospital shown in Figure 6.2. Jaci has a preparation

phase before starting its disinfection process in a given room in its present form. As briefly

introduced in Section 6.1, it depends on human help to place it within the room, and then

it is allowed to perform its task. This dependency is not an issue in small environments

where there is just a few rooms to be disinfected, but it is a problem in places with a

higher demand for the service provided by Jaci. Besides, this limitation worsens when

a sequence of rooms must be sanitised, one right before the other. When Jaci finishes

the disinfection in a certain room, it has to wait to be picked up by someone and then

brought to the next room. The longer a waiting time between two disinfection processes,

the longer it takes to disinfect the last room, and the more inefficient it becomes.

This limitation can be interpreted as an OS. Jaci has to find a particular room that

must be disinfected, which is exactly the context of our contribution presented in Chap-

ter 4. It could be imported to Jaci as an alternative to such an issue of human dependency.

As shown in Chapter 4, our NSOS system guides a robot during a search for a specific

door label in unknown environments. Analysing how the door labels are locally organ-

ised, our system estimates which regions are more promising to contain the target door

label. Hence, the robot avoids the less likely regions and focuses on the most likely ones.

Jaci could autonomously search for the target door label in a human-out-of-the-

loop process with our NSOS system. Instead of moving Jaci to the target door label, the

person could request Jaci to find and disinfect it. Jaci may take more time to find the target

than if a human would move it in the first few requests. However, as our NSOS system
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Figure 6.2 – Hospital environment used during in simulation during the development of Jaci’s
autonomous system.

also builds the environment map while searching for the target, the more Jaci searches for

different door labels, the more it explores (and maps) the environment. Consequently, it

becomes more likely that Jaci does not need to search for every door label, as it discovers

many door labels during a search. After a while, the whole environment would be mapped,

which means that Jaci would be aware of all door labels. A further improvement could be

using a path-planning approach for cases where the target door-label position is already

known. Therefore, Jaci relies on a path-planning to compute the optimal path if the target

door label has already been recognised and mapped. Otherwise, it relies on our NSOS

system from Chapter 4 to search for the target.

Besides the hospital environment we mentioned before, there are other examples

that highlight the improvement in the Jaci’s autonomy with our NSOS system. Places that

remain closed for a few days in a row, like schools and offices during the weekends and

holidays, are perfect scenarios for multiple rooms disinfected in sequence. This is because

the lack of people within the buildings reduces the risk of someone getting hurt due to the

UV light exposure, and makes all empty rooms ready to be disinfected. Then, with the

aid of our NSOS system, a single person could set a list of rooms to be disinfected by Jaci

during the days the place is empty.

6.2.2 Disinfecting a specific object within a room

Jaci’s autonomous system developed specifically for the sanitising task guides the

robot throughout the free space, maintaining the robot to a certain distance from the ob-
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stacle borders. The experiments with Jaci indicate that once the disinfection process has

started, it only finishes when the whole room has received the ideal UV-C dose (except

for the objects that are positioned in regions that Jaci’s lights cannot reach) (MANTELLI

et al., 2022). In summary, if Jaci can reach a certain region in the environment, it will be

disinfected. Although the disinfection of the whole environment is ideal for most cases,

Jaci could also offer the possibility of performing partial disinfection of certain objects

in the room. For example, Jaci could disinfect the tables and computers more often than

the bookshelves when operating in a library. Similarly, in a school, Jaci could disinfect

the water dispensers in the hallways right before the break instead of disinfecting all the

hallways (including all walls and other obstacles). By focusing on disinfecting only an

object (or a list of objects), Jaci would be more effective and efficient in providing a safer

and cleaner environment for people in short periods.

However, Jaci does not provide such a high-level disinfection option in its current

version due to its purely geometric autonomous system. The map cells are represented

only as free, occupied (obstacle), or unknown. Since this type of environment representa-

tion does not differentiate obstacles, there is no association between high-level concepts

(or object classes) to some map areas. Consequently, Jaci’s autonomous system for disin-

fection is unable to answer any other request other than “disinfect the whole environment”.

Besides lacking a high-level representation for objects, there is another issue with object-

based disinfection. When Jaci is requested to disinfect a certain object, it needs to know

where such a target object is to perform the disinfection. However, it is not appropriate

to assume that the target object has already been mapped or that the object will be at the

same position all the time. In case the target object has not been mapped or moved from

its position, Jaci would have to search for it.

An alternative to overcome these issues is another contribution of our thesis pre-

sented in Chapter 5, the LSOS system. Besides providing the high-level representation

of the environment, our LSOS system also performs the OS considering the object or-

ganisation over time. Combining our LSOS system with Jaci would allow the robot to

efficiently search for the object when its position is unknown and perform the local dis-

infection. Another advantage would be scheduling the disinfection for more convenient

periods for every place and situation. Since our LSOS system is temporal, it can esti-

mate the most likely spot where the target object will be based on previous observations.

Lastly, as it is very likely that the environment constantly needs to be disinfected, Jaci

will have the opportunity of collecting more data about the objects for our LSOS system.
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Hence, it is a mutual collaboration between Jaci and our LSOS system. Jaci gathers more

data for the LSOS system while performing constant disinfection. Simultaneously, our

LSOS system makes Jaci save resources by travelling short distances when searching for

the target object.

6.3 Summary

The deployment of our contributions to Jaci would completely change how the

user interacts with it. The current interaction is for a person to move it to the room and re-

quest it to start the disinfection process. However, with our NSOS system, the user could

send a request to Jaci in a high-level form, e.g. “disinfect the room number 12, and then

the room number 15”. The inclusion of our LSOS system would allow requests at an even

higher level, such as “disinfect the computer on room 12 at 11:00”. The difference in the

user’s request to Jaci reflects the improvement in terms of human-robot interaction and

Jaci’s autonomy during the disinfection process. Although we were unable to carry out

experiments with our contributions deployed to Jaci, their results presented in both Chap-

ters 4 and 5 suggest the improvements that Jaci could achieve. The semantic information

inferred from the organisation of the environment could bridge the gap between Jaci’s

purely geometric autonomous disinfection system and its improved high-level version.

Judging by the characteristics of this thesis contributions, they offer an ideal combination

to boost Jaci’s performance, making it less human-dependent and easier for human-robot

to interact.

(a) (b)
Figure 6.3 – Jaci’s sensor (a) in its front and left side, and (b) in its back and right side.

It is also important to analyse Jaci’s sensor kit, indicated in Figure 6.3, concerning
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our contributions, i.e., is it necessary to make any changes in Jaci’s hardware or software

to make it compatible with our systems? The short answer is no, and we explain why.

Jaci has a 2D LiDAR, which is used by the Gmapping SLAM system to build a 2D

grid map m. This type of map is the same used throughout the works presented in this

thesis, highlighting the harmony between current Jaci’s mapping system and this thesis

contributions. Besides, Jaci also has one RGB camera pointing on each of its sides, which

could be used to read the door labels, similar to our setup shown in Figure 4.10. Lastly,

there are two RGB-D cameras attached to Jaci, pointing forward. These two visual sensors

provide a 3D point cloud each, which helps estimate the objects’ position in relation to

the robot, as we show in Figure 5.2. Therefore, Jaci’s configuration in its current version

supports the deployment of both our NSOS and LSOS systems, and no change in the

hardware of Jaci is required.
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7 CONCLUSION AND FUTURE WORK

In this thesis, we have explore the idea of semantic concepts to geometric entities

in the robot’s surroundings can be useful for mobile robotics in the context of high-level

OS (CADENA et al., 2016). The use of semantics in mobile robotics aid to overcome

the limitations of purely geometric SR’s perception and maps. It aims to enhance robot’s

autonomy and robustness, as well as facilitate more complex tasks, like OS.

We have investigated the usage of semantic information associated with the spatial

and temporal organisation of the environment in the context of OS problems. We argue

that the organisational semantic information complements the robot’s perception, expand-

ing and improving it to aid in high-level tasks in everyday living spaces. The majority of

the proposed solutions to the OS problems depend on geometric information only, such

as the objects’ 3D format or color, or even require a preparation step, like providing the

association between rooms of the environments and possible objects that it may contain.

The disadvantages of such proposals are that they are limited to the raw data read by

the sensors or are not easy to deploy due to the preparation step they need before oper-

ating. This thesis goes beyond the geometric information and sensor readings, inferring

organisational semantic information that complements the SR’s geometric perception and

enhances its performance in OS tasks.

We have devised two OS systems, NSOS and LSOS, presented in Chapters 4

and 5, respectively. They demonstrate that it is possible to model the organisation of both

static and dynamic environments as semantic information, and use it for estimating ob-

jects’ position. We have also demonstrated that these systems can rely on not trivial search

clues, like the parity of numbers or the time an object has been detected, to efficiently

deal with the OS problem. We present qualitative and quantitative results showing that

the proposed OS sytems have systematically outperformed the other OS systems tested in

simulation.

In our NSOS system, we exploited the numbers from door signs to find a tar-

get door in a large and unknown environment. This strategy is inspired by how humans

behave under the same circumstances, i.e., looking for a door sign in an unknown envi-

ronment. Besides comparing each detected number of a door sign with the target one and

check whether they are equal, humans also reason over the sequence of the door signs to

estimate how the door signs are organised within the corridors. The search strategy of our

NSOS system combines semantic information, namely the parity and growth properties
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of the numbers, along with geometric information, the orientation of the corridor and the

proximity between the robot and the promising regions, to estimate which region of the

building is more favorable for the search. In case the robot is in a corridor that becomes

less likely to contain the target door as the robot finds out more door signs, our OS system

guides the robot towards another one more promising. For our NSOS system, a number

from a door sign is associated to a door, which is the object that our system is actually

aiming to find. Since the environment is entirely unknown to our system and no map is

provided beforehand, it is doubtful that the SR will take the optimum path until the target

door label while searching. Hence, more than guiding the robot straight towards the tar-

get’s position, our OS system estimates when the current corridor is hopeless, and the SR

should go elsewhere. The experiments in simulation and in real environment attest that

our NSOS system always accomplishes the OS task, finding the target door.

In this thesis, we also managed to come up with a way to take advantage of the

changes in the organisation of the environment through a period of time. It is no surprise

that robots may operate in dynamic environments, and the task of searching for objects in

these scenarios becomes even more chalenging. This is the context of other contribution

of our thesis, the LSOS sytem. It aims to explore the fact that the environment may change

from time to time, and observing these changes in a long-term way may produce useful

information. The search strategy of our LSOS system also works in a way that mimics

humans. It assumes that objects are movable in real life, and it tries to understand how

they are positioned over time to estimate their future position. The semantic part of this

strategy processes the data the system gathers over a while. Then, it estimates the target

object’s position based on the history of positions of this same object. As the estimations

of LSOS system being computed based on the collected data from the same environment,

our system can adapt itself to the routine and habits of the person that interact with the

objects. Hence, besides being generic and can be deployed in any environment, LSOS

also adapts to the local singularities. Besides, the results suggest that the more consistent

and repetitive the routine is, the more confident are the estimations. Lastly, the results also

shows that the LSOS system can find the target object even when the object’s arrangement

varies considerably over a period of time.

The discussion about a possible deployment of both NSOS and LSOS systems to

Jaci is worth to be mentioned. Besides showing in some high-level how they could be

deployed to Jaci, it also explains the advantage of each system to this SR. Besides, the

combination of both OS systems would bring to Jaci a considerable improvement in its
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autonomy. In addition to increasing Jaci’s efficiency in terms of the disinfected area in

a certain time, the combination would also take humans out of the loop and make the

disinfection process safer. The SR Jaci was not available for us to deploy our systems and

carry out some experiments during the last few months. However, we still aim to do so as

soon as Instor, the company that has built Jaci, gives us permission.

A drawback of our contributions is that they are too specific for their context,

mainly the NSOS system. For example, our system is limited to scenarios where the door

signs are design only with numbers. However, it was projected in a modular way, which

allows the easy replacement of our current semantic planner to any other one with other

heuristics. In the LSOS system, a drawback is the fact that it looks for instances of object

classes. For cases in which the user wants an specific instace of object, e.g. a pair of

Nike sneakers (and not just “shoes”) or Don Quixote (and not just “book”), our LSOS

system may finish the task finding any other instance of these examples. Nonetheless,

this simplification is more associated to the limitation of the object detection algorithm,

in our case YOLO, than to our LSOS system. Therefore, when the research community

proposes an algorithm that is efficient in detecting such a fine level of details from objects,

we could replace YOLO and provide a better search service.

There are still interesting new aspects of the object search that could be addressed.

Outdoor environments also have great potential for SRs to perform searching tasks, con-

sidering that such scenarios present some sort of organisation. For example, most of the

cities in the world have their houses numbered according to a certain rules, resulting in

a large-scale organised environment. Even better, some cities also have a street naming

system along with house numbering one, which could be combined into a coarse to fine

approach (ASSOCIATION, 1950). Thus, if an SR is tasked with finding a specific house

in these well-planned cities, its searching system could rely on the street naming rules to

coarsely estimate the most likely streets to contain the target house. Next, the searching

system could use the house numbering rules to find the target house. In this example, the

SR would depend on a computer vision algorithm and a set of visual sensors to read the

street names and house numbers. This may not be an issue nowadays with the advance of

OCR algorithms and robustness of visual sensors. Besides, the research community has

already presented promising results towards that functionality, like Oosterman and Green

(2010) that used an iPhone to read the street names in New Zealand a few years ago.

Finally, using Ontology in the OS problem is also an interesting topic to consider.

Ontology aims to describe a hierarchical structure composed by entities and relations for
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purposes of representation (THOMAS, 2018). It shows the properties of a subject area,

along with how they are related, by defining a set of concepts and categories that represent

that subject. With the aid of Ontology to formally describe parts of outdoor environments,

e.g. different stores, vehicles, and parks, an OS system could improve its performance.

New clues could be used by the OS system, mainly the ones that specify the relation

between properties of different objects.
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APPENDIX A — RESUMO EXPANDIDO

Robôs podem ser agrupados em diferentes classes dependendo de suas funções

e do local de trabalho para o qual foram projetados (KUMAR et al., 2005; ROBO-

TICS, 2012; HAIDEGGER et al., 2013). Dentre todas as classes de robôs, os robôs

de serviço (RSs), são robôs que trabalham de forma semi ou totalmente autônoma para

realizar serviços úteis, excluindo operações de manufatura (ROBOTICS, 2012). Os RSs

vêm em diferentes formatos, pois podem ou não ser equipados com uma estrutura de

braço e, embora a maioria deles sejam móveis, eles também podem ser fixados no lo-

cal (GARCIA-HARO et al., 2020). A Federação Internacional de Robótica (FIR) di-

vide RSs em duas subclasses com base em sua usabilidade: RS professional e pes-

soal/domestic (LITZENBERGER, 2018). Alguns exemplos de RS profissional (RSPs)

são robôs de defesa (MARTINIC, 2014), médicos (ABUBAKAR et al., 2020), logísti-

cos (THAMRONGAPHICHARTKUL et al., 2020) e assistentes de fazendeiros (VAK-

ILIAN; MASSAH, 2017). Exemplos de RS doméstico (RSDs) incluem, mas não estão

limitados a aspiradores de pó (FORLIZZI; DISALVO, 2006), cortadores de grama (BORI-

NATO, 2017), assistentes idosos (HERSH, 2015) e garçons de alimentos e bebidas (WAN

et al., 2020). O mercado de RSs vem crescendo regularmente, e não é surpresa que haja

uma expectativa de que ele cresça ainda mais nos próximos anos (ALMEIDA; FONG,

2011; CHIANG; TRIMI, 2020). O custo decrescente dos componentes de hardware (pro-

cessadores, drivers de motor e sensores), o aumento da densidade de energia e o menor

custo das baterias e as ameaças causadas por surtos como o COVID-19 impulsionam essa

expansão (CHIANG; TRIMI, 2020).

De acordo com a Divisão de População (PD) das Nações Unidas, em 2015, haviam

901 milhões de pessoas com 60 anos ou mais, representando 12% da população global (DI-

VISION, 2015). Além disso, a PD projeta que, até 2030, o número de idosos no mundo

chegará a 1,4 bilhão e 2,1 bilhões até 2050. Diversas políticas para enfrentar os problemas

de envelhecimento populacional têm sido propostas por vários países, incluindo, por ex-

emplo, asilos e infra-estrutura para os idosos (LIN; CHEN, 2018; SEDDIGH et al., 2020).

No entanto, colocar idosos em casas de repouso ou até mesmo em asilos pode causar

alguns problemas, como dependências físicas, emocionais e psicológicas (THEURER

et al., 2015). Além disso, alguns idosos não permanecem voluntariamente em asilos,

preferindo passar os anos restantes em suas casas, onde têm uma autoimagem mais pos-

itiva do que aqueles que moram em lares de idosos (KOK; BERDEN; SADIRAJ, 2015;
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LIN; CHEN, 2018). O número crescente de idosos que vivem em casa apoia a neces-

sidade de RSDs para automatizar processos e tarefas que podem ser tediosas, inconve-

nientes ou até mesmo desafiadoras para os idosos (PAULIUS; SUN, 2019; TORRESEN;

KURAZUME; PRESTES, 2020). Em geral, esses tipos de robôs podem contribuir para

tarefas práticas para humanos como robôs assistentes ou companheiros, tais como obser-

var idosos em situações de emergências, lembrá-los de tomar seus remédios e procurar, e

pegar e colocar objetos (SPRUTE et al., 2017; TORRESEN et al., 2018; PAULIUS; SUN,

2019).

Além disso, embora algumas das principais motivações para a implantação de

RSs tenham sido a assistência aos idosos e a melhoria da produtividade, a pandemia do

COVID-19 trouxe um propósito mais crítico para eles (CHIANG; TRIMI, 2020). Os

RSPs podem ser implantados para executar uma série de tarefas para fornecer serviços

sem contato, garantindo que os humanos possam praticar o distanciamento social (SEI-

DITA et al., 2021). Além de desinfetar ambientes internos (MANTELLI et al., 2022),

os RSPs também têm o potencial de apoiar o setor de hotelaria (ROSETE et al., 2020) e

fornecer medicamentos e alimentos (LEE et al., 2009; YANG et al., 2020). O uso de RSs

em aplicações logísticas é relevante durante esses cenários incomuns. Algumas organiza-

ções nacionais dos Estados Unidos identificaram a logística como uma das grandes áreas

onde a robótica pode fazer a diferença durante os surtos (SEIDITA et al., 2021).

Em muitos exemplos de aplicações listados acima, é provável que os RSs precisam

realizar algumas tarefas de busca. Exemplos simples seriam RSDs buscando e coletando

objetos para idosos com restrições de mobilidade e RSPs entregando pacotes em um lo-

cal específico em um ambiente desconhecido. Semelhante aos humanos no contexto de

tarefas de busca de objetos, os RSs também não devem confiar na suposição de que o

objeto (ou regiões de interesse) que estão procurando já estão dentro de seu campo de

visão (CdV) (SJöö; AYDEMIR; JENSFELT, 2012). Portanto, eles precisam encontrar

o objeto alvo em ambientes de grande escala com base principalmente em seus sensores

visuais, conhecidos como problema de busca por objetos (BPO) (AYDEMIR et al., 2013).

No entanto, como um RS encontra o objeto alvo que não está inicialmente dentro de seu

CdV? Uma forma de resolver esse problema é fazer com que o RS execute um BPO de

força bruta, no qual ele visita todo o ambiente seguindo uma rota de busca pré-definida.

Mesmo que essa estratégia pareça uma solução direta, ela não resolve o problema com

eficiência (RASOULI et al., 2020). O RS eventualmente o encontrará enquanto o objeto

alvo estiver dentro do ambiente. No entanto, o processo de busca pode ser demorado de-
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vido às longas distâncias percorridas pelo robô. Outra solução mais eficiente é considerar

uma estratégia de busca que incorpore informações tanto do ambiente quanto do objeto

alvo, para melhorar o desempenho da busca. Por exemplo, essas informações podem ser

a forma da sala para o ambiente (por exemplo, reconhecer uma cozinha e procurar um

prato) (AYDEMIR et al., 2011a) e a cor ou categoria/classe do objeto alvo (RASOULI

et al., 2020). A estratégia de busca é uma das partes mais críticas de uma abordagem de

BPO, pois impacta diretamente na eficiência de um sistema de BPO (AYDEMIR et al.,

2013). Portanto, deve ser robusto e eficaz independentemente do ambiente em que o RS

está realizando a busca.

A comunidade de pesquisa propôs trabalhos valiosos relacionados ao problema

de BPO (EKVALL; KRAGIC; JENSFELT, 2007; SJöö et al., 2009; SJöö; AYDEMIR;

JENSFELT, 2012; AYDEMIR et al., 2013; RASOULI et al., 2020). O problema é

provado ser NP-Completo (TSOTSOS, 1992; YE; TSOTSOS, 2001), o que significa

que a solução de busca ótima pode ser calculada por aproximação (SJöö; AYDEMIR;

JENSFELT, 2012), minimizando o custo de busca tanto quanto possível. No caso de

RS executando tarefas de BPO, tal aproximação pode ser calculada com o auxílio de

fortes pistas fornecidas pela semântica tanto do ambiente quanto de outros objetos no en-

torno do RS (SJöö; AYDEMIR; JENSFELT, 2012). A semântica pode ser considerada

como a informação de alto nível inferida (ou “percebida”) do ambiente, incluindo mas

não limitado a nomes e categorias de diferentes objetos, salas e locais (VASUDEVAN

et al., 2007; SJöö; AYDEMIR; JENSFELT, 2012; LIU et al., 2016). Da mesma forma,

os mapas semânticos codificam não apenas a descrição geométrica e topológica do ambi-

ente, mas também sua interpretação semântica, fornecendo uma maneira amigável para os

robôs se comunicarem com os humanos (LIU et al., 2016). Então, quando o RS processa

suas leituras de sensores para inferir mais conhecimento sobre seu entorno, ele aumenta

o nível de abstração do ambiente ao longo do tempo (BARBER et al., 2018). O uso de

informações semânticas e mapas em aplicações robóticas aumenta a autonomia e robustez

do robô, além de facilitar algumas tarefas desafiadoras (CESAR et al., 2016).

A.1 Objetivo

Os objetivos desta tese são os seguintes

• explorar a organização do ambiente e dos objetos para inferir pistas de busca
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semântica para resolver o problema de BPO: pretendemos demonstrar que a in-

formação semântica organizacional pode ajudar no problema de BPO, fornecendo

uma maneira de estimar quais regiões são mais propensos a conter o objeto de des-

tino do que outros;

• inferir informações semânticas organizacionais de números reconhecidos de pla-

cas de porta: argumentamos que o arranjo dos números de placas de porta segue

um certo padrão (e regras). Entender como os números estão dispostos permite

estimar o quão promissor é um determinado corredor e, então, decidir se a busca

deve continuar na região atual ou não. Propusemos um sistema semântico de BPO

baseado em números para testar esse argumento;

• inferir informações semânticas organizacionais a partir de mudanças de objetos

semi-dinâmicos: defendemos que os objetos são movidos principalmente pelos hu-

manos de acordo com suas rotinas e hábitos diários. Isso significa que há grandes

chances de que os objetos sejam movidos em um padrão específico ao longo de

um período de tempo, sugerindo uma repetição de tempos em tempos. Estimar tal

padrão a partir da interação humano-objeto pode ser útil para o problema de SO,

para estimar quais locais um objeto alvo pode estar em uma determinada hora do

dia. Propusemos um sistema semântico de longo prazo de BPO para verificar essa

ideia;

• realizar uma busca de grosseira para fina de BPO em ambientes internos: pre-

tendemos propor um sistema de BPO maior que possibilite a um RS encontrar uma

sala alvo e interagir com o objeto dentro dela. Ao combinar os sistemas de BPO

propostos, acabamos com um sistema de BPO grosseiro para fino, que primeiro

procura a sala por seu número e depois procura um objeto de destino.

Afirmamos que, em geral, nossa sociedade não é organizada aleatoriamente, e ex-

istem vários padrões e regras que seguimos todos os dias. Não é surpresa que os humanos

possam melhorar sua eficiência ao realizar tarefas diárias, como BPO, se o ambiente for

meramente organizado logicamente. Assim, eles podem economizar energia e tempo du-

rante essas tarefas. Por exemplo, a maioria das cidades tem suas próprias regras para

numerar os imóveis, embora não exista uma regra universal para isso. Os habitantes po-

dem estudá-lo para entender o padrão de numeração local. Assim, eles podem estimar

onde está um determinado edifício desconhecido na cidade, mesmo que nunca tenham

estado lá. Ao contrário, quando não há regras escritas para especificar a organização do

ambiente, os humanos podem entendê-las apenas observando o ambiente por um tempo.
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Inspirados no comportamento humano em tarefas de BPO, estamos interessados em fazer

com que os RSs aproveitem essa organização de ambiente disponível para melhorar seu

desempenho na tarefa de BPO.

Consideramos que as informações semânticas podem ser inferidas do ambiente e

podem ser usadas para auxiliar os RSs em tarefas de busca. Essas informações semânticas

são úteis para sistemas de BPO porque podem ser usadas como dicas de pesquisa de

alto nível. Então, com um sistema de BPO baseado em semântica, o RS não precisaria

pesquisar todo o ambiente para encontrar o objeto de destino. O processo de raciocínio

humano depende de vários tipos de dicas de pesquisa de alto nível durante as pesquisas,

como rótulos e sinais ou o reconhecimento de que outras pessoas podem interagir com

o ambiente. Em nossa vida diária, lemos sinais, símbolos e rótulos para avaliar qual

direção devemos seguir para encontrar uma sala específica em um ambiente desconhecido.

Outro exemplo seria alguém que primeiro verifica se o carro da família está em casa

para depois procurar a chave do carro. Em particular, nos concentramos nas informações

semânticas organizacionais inferidas da organização do ambiente, como os rótulos e sinais

no primeiro exemplo ou o reconhecimento de que outras pessoas podem mover objetos.

A.2 Contribuições desta Tese

Esta tese apresenta resultados (MANTELLI et al., 2021; MANTELLI et al., 2022)

mostrando que informações semânticas inferidas da organização do ambiente podem aju-

dar RSs no problema de BPO. Especialmente, mostramos que o uso de informações

semânticas organizacionais como pistas na estratégia de busca de sistemas de BPO pode

fazer com que o RS economize recursos por não visitar todo o ambiente. Além disso,

mostramos que o uso adequado das informações semânticas pode melhorar a percepção

dos RSs para realizar tarefas de alto nível, aproximando-os dos humanos. Também ap-

resentamos uma discussão sobre como nossas contribuições podem ser adaptadas e im-

plantadas no Jaci (MANTELLI et al., 2022). É um robô autônomo higienizador lançado

recentemente que visa auxiliar no combate ao COVID-19 e infecções hospitalares devido

a contaminações por bactérias e fungos.

A primeira contribuição desta tese é um sistema semântico que realiza a BPO ref-

erente à organização da sala (MANTELLI et al., 2021). Tem como objetivo encontrar

uma sala específica em um ambiente desconhecido com base na organização das etique-

tas das portas. Embora os humanos dependam fortemente de textos, caracteres e símbolos
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para realizar várias tarefas, o uso de números de rótulos de texto como fonte de dados não

é muito popular na robótica. Neste trabalho, argumentamos que os números detectados a

partir de rótulos de texto têm um grande potencial para fornecer pistas de busca e são fre-

quentemente encontrados em ambientes artificiais. Essa ideia surgiu do comportamento

humano ao procurar o escritório de alguém em um prédio desconhecido. Mais especifi-

camente, estamos interessados em investigar como os caracteres das etiquetas das portas

dos corredores podem ser usados para estimar se um corredor é promissor para encontrar

o escritório alvo. A estratégia de busca baseia-se nos padrões de rótulos de portas em

cenários internos e raciocina sobre eles para estimar qual corredor é mais promissor para

atingir o objetivo.

Outra contribuição é um sistema semântico de longo prazo que busca um objeto

alvo em ambientes dinâmicos desconhecidos (MANTELLI et al., 2022). Assume-se que

alguns objetos dentro do ambiente nem sempre são estáticos, ou seja, que a organização

do ambiente muda ao longo do tempo e está associada às atividades das pessoas. Dessa

forma, seu objetivo é incorporar a rotina e os hábitos de uma pessoa na estratégia de busca

e, em seguida, fazer as estimativas de busca. Este trabalho teve como objetivo modelar as

informações semânticas de como os objetos são organizados ao longo do tempo dentro de

um ambiente. Em seguida, ele usa essas informações para evitar que os RSs procurem o

objeto alvo em regiões não promissoras. Essa ideia surgiu da observação de como os ob-

jetos são colocados ao longo do tempo e que cada pessoa tem suas próprias singularidades

em termos de colocação de objetos.

Por fim, finalizamos as contribuições desta tese com uma discussão sobre a im-

plantação de nossos sistemas de BPO no RS Jaci (MANTELLI et al., 2022). Este robô foi

construído com o objetivo de ajudar no combate ao COVID-19 e contaminação hospitalar

em geral. Está equipado com um conjunto de luzes UV e desinfecta autonomamente os

ambientes internos. No entanto, apresenta algumas limitações que podem ser superadas

pelos nossos sistemas. Apresentamos nossas ideias de como essa implantação poderia

ser feita, juntamente com o possível aumento de eficiência que nossos sistemas podem

proporcionar à Jaci.

A.3 Organização

A organização desta tese é o seguinte. Primeiramente, no Capítulo 2, apresenta-

mos a base teórica desta tese, apresentando alguns dos principais problemas da robótica
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móvel, juntamente com as abordagens mais populares que tratam de cada problema. Ap-

resentamos também os conceitos gerais do problema de BPO, que é a base desta tese. Por

fim, revisamos outras técnicas que são usadas ao longo deste documento. Nos Capítulos 4

e 5, apresentamos os nossos dois sistemas de BPO, BPO semântico baseado em números

e BPO semântico de longo prazo, além dos resultados experimentais para ambos os sis-

temas. No Capítulo 6, apresentamos uma discussão sobre como nossos sistemas de BPO

podem ser implantados em um RS real chamado Jaci (MANTELLI et al., 2022). Além

disso, também discutimos os benefícios que nossos sistemas proporcionam ao RS em uma

aplicação de desinfecção do ambiente.
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