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Táıs Loureiro Bellini

Porto Alegre, Junho 2022.





CIP - Catalogação na Publicação

Bellini, Taís
   Global variable selection for quantile regression /
Taís Bellini. -- 2022.
   60 f. 
   Orientador: Eduardo Horta.

   Coorientadora: Gabriela Cybis.

   Dissertação (Mestrado) -- Universidade Federal do
Rio Grande do Sul, Instituto de Matemática e
Estatística, Programa de Pós-Graduação em Estatística,
Porto Alegre, BR-RS, 2022.

   1. quantile regression. 2. variable selection. 3.
LASSO. 4. group LASSO. I. Horta, Eduardo, orient.  II.
Cybis, Gabriela, coorient. III. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os
dados fornecidos pelo(a) autor(a).
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“The most dangerous phrase in the language is:
‘we’ve always done it this way’.”

(Grace Hopper)
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Resumo

A regressão quant́ılica fornece um modelo parcimonioso para a função quant́ılica
condicional da variável resposta Y dado o vetor de covariáveisX, e descreve toda a dis-
tribuição condicional da resposta, produzindo estimadores mais robustos à presença
de valores discrepantes. Os modelos de regressão quant́ılica especificam, para cada
ńıvel quant́ılico τ , a forma funcional para o τ -ésimo quantil condicional da resposta,
o que traz complexidade para realizar a seleção de variáveis utilizando técnicas de
regularização, como LASSO ou adaptive LASSO (adaLASSO), pois podemos obter
um conjunto diferente de variáveis selecionadas para cada ńıvel quant́ılico. Neste
trabalho, propomos um método global para seleção de variáveis e estimação de coefi-
cientes na estrutura de regressão quant́ılica linear, impondo poucas restrições à forma
funcional de β(·), e aplicando penalização group adaLASSO para seleção de variáveis.
Montamos um estudo de Monte Carlo comparando seis diferentes estimadores pro-
postos baseados em LASSO, adaLASSO e group LASSO em seis cenários que variam
o tamanho da amostra e o número de ńıveis quant́ılicos estimados. Os resultados
demonstram que a seleção do parâmetro de ajuste λ para penalização é fundamental
para a seleção das variáveis e estimativa do coeficiente. Observou-se que os métodos
que utilizam LASSO tradicional são mais propensos a incluir o modelo verdadeiro
em relação ao adaLASSO, mas renunciando à redução do modelo e não removendo
covariáveis irrelevantes, enquanto as abordagens agrupadas são mais eficazes em zerar
coeficientes menos relevantes.





Abstract

Quantile regression provides a parsimonious model for the conditional quantile
function of the response variable Y given the vector of covariates X, and describes
the whole conditional distribution of the response, yielding estimators that are more
robust to the presence of outliers. Quantile regression models specify, for each quan-
tile level τ , the functional form for the conditional τ -th quantile of the response, which
brings complexity to perform variable selection using regularization techniques, such
as LASSO or adaptive LASSO (adaLASSO), as we might obtain a different set of
selected variables for each quantile level. In this work, we propose a method for
global variable selection and coefficient estimation in the linear quantile regression
framework, imposing little restrictions on the functional form of β(·), and applying
group adaLASSO penalization for variable selection. We set up a Monte Carlo study
comparing six different proposed estimators based on LASSO, adaLASSO and group
LASSO in six scenarios that diversify sample and quantile levels grid sizes. The
findings demonstrate that the selection of the tuning parameter λ for penalization
is critical for model selection and coefficient estimation. It was observed that the
methods using traditional LASSO are more prone to include the true model as com-
pared to adaLASSO, but renouncing model shrinkage and not removing irrelevant
covariates, while the grouped approches are more effective in zeroing coefficients that
are less relevant.
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Chapter 1

Introduction

In this dissertation, we study a method for global variable selection and coefficient
estimation in the linear quantile regression framework presented in the article that
constitutes Chapter 2 of the present work (Bellini, Cybis and Horta, 2022). The
current chapter discloses the main concepts employed in this study and the areas it
contributes to.

1.1 Quantile Regression

The most studied linear quantile regression specification, proposed by Koenker and
Bassett (1978), provides a model for the conditional τ -th quantile of the response
variable as a function of explanatory covariates, in contrast to the traditional linear
regression that offers information only on the conditional expectation of the regres-
sand. Under a globally concerned viewpoint, therefore, a quantile regression model
fully specifies the conditional distribution of the outcome variable given the regres-
sors. Formally, given a scalar random variable Y and a D-dimensional random vector
X, the conditional τ -th quantile (0 < τ < 1) of Y given X = x is defined to be the
real number QY |X(τ |x) given by

QY |X(τ |x) := inf{y ∈ R : P(Y ⩽ y |X = x) ⩾ τ},

with the linear quantile regression taking the form

QY |X(τ |x) = β1(τ)x1 + β2(τ)x2 + · · · + βd(τ)xd,

which can be succinctly represented by QY |X(τ |x) = x⊺β(τ), where τ ∈ (0, 1), x ∈
support(X) and β : (0, 1) → RD. For each τ , the parameter β(τ) can be estimated
by solving the following optimization problem: for a sample {(Xn, Yn) : 1 ⩽ n ⩽ N}
from (X,Y ), let

β̂(τ) = arg min
b∈RD

1
N

N∑

i=1
ρτ (Yi −X⊺

i b) ,

where ρτ (u) = u(τ−I[u<0]) denotes the so called “check function” with Is representing
the indicatior function that maps elements of the subset s to one, and all other
elements to zero. Figure 1.1 illustrates an application of quantile regression to Engel’s
food expenditure data (Koenker, 2005).
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Figure 1.1: Quantile regression example.
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Application of quantile regression in Engel’s food expenditure data, showing the regression lines
x 7→ Q̂(τ |x) for a few selected τ values.

1.2 Variable Selection

When working with high-dimensional regression models, it is often desireable to re-
duce the number of explanatory variables; for example, in the linear setting this can
be achieved by zeroing some coefficients. It is well known that sparse estimated mod-
els can improve overall prediction accuracy by lowering the variance (at the cost of
introducing a little bias), as well as offering a meaningful interpretation of the model
coefficients (Hastie et al., 2001). The literature offers a vast toolbox of techniques for
subsetting—such as best-subset or stepwise selection—and shrinkage—like the Ridge
(Hoerl and Kennard, 1970) and the Least Absolute Shrinkage and Selection Oper-
ator (LASSO) (Tibshirani, 1996) regression. Notably, traditional LASSO regression
in fact shrinks some coefficients to the point of exactly zero, effectively removing
the corresponding covariates from the estimated model. In the present work, we are
particularly interested in the LASSO technique adaptations thereof.
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1.2.1 LASSO

Suppose we are given a real-valued random variable Y and a D-dimensional random
vector X = (1, X2, . . . , XD) satisfying the regression relation Y = X⊺β + ε, where
β ∈ RD and where ε is centered and uncorrelated with X. The LASSO regression
estimator of Tibshirani (1996) is attained similarly to an Ordinary Least Squares
(OLS) regression, but with the minimization problem constrained so that the sum of
the absolute values of coefficients is less than a user-specified constant. Equivalently,
LASSO regression can be represented via an OLS loss with the addition of an ℓ1-
penalty, with the estimator being the minimizer

β̂LASSO = arg min
b∈RD





N∑

n=1

(
Yn − b1 −

D∑

d=2
Xndbd

)2

+ λ
D∑

d=1
|bd|


 . (1.1)

Here, λ is a tuning parameter and N is the number of observations in the sample,
with

(
(X1, Y1), . . . , (XN , YN )

)
drawn from the same distribution as (X,Y ). When λ

is sufficiently large, the LASSO estimator will have some of its coefficients that are
exactly zero.

1.2.2 Oracle properties and adaptive LASSO

A given fitting procedure is said to have oracle properties if:

• it identifies the correct set of active covariates;

• it has the optimal estimation rate (cf. Zou, 2006).

Studies suggest that the LASSO estimator does not provide oracle properties (Fan
and Li, 2001), being biased for “large” coefficients. Zou (2006) introduces the adaptive
LASSO regression (adaLASSO), where distinct adaptive weights are included in the
penalty factor. The adaLASSO estimator is defined through

β̂adaLASSO = arg min
b∈RD





N∑

n=1

(
Yn − b1 −

D∑

d=1
Xndbd

)2

+ λ
D∑

d=1
ŵd|bd|



 . (1.2)

The weight ŵd is given by |β̂|−γ , with γ > 0, and β̂ is a first-step estimator for β, say
β̂OLS or β̂LASSO. Thus, the weight increases the penalty for small coefficients, and
vice-versa, delivering an estimator that enjoys oracle properties and is asymptotically
unbiased for large coefficients, as shown in Zou (2006).

1.2.3 Group LASSO

Both LASSO and adaLASSO penalize individual coefficients in the regression equa-
tion. Notwithstanding, when we have factor levels represented as dummy variables in
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our dataset, it may not be appropriate to penalize them individually, since a level of
the factor is not representative of the variable itself. To address this scenario, Yuan
and Lin (2006) propose penalizing coefficients in a grouped manner. This grouping
can be employed both for LASSO and adaptive LASSO (Wang and Leng, 2008). In
this connection, suppose that K = {K1, . . . ,KDeff} is a partition of {1, . . . , D} satis-
fying the additional condition that d < d′ whenever d ∈ Ki, d′ ∈ Kj and i < j. The
idea is that each Ki represents one effective covariate in the model, for instance, we
could have K1 = {1, . . . , 5} corresponding to 5 dummies associated with a regressor
comprised of 6 factors. Additionally, for any vector b ∈ RD, write bi = (bd : d ∈ Ki),
that is, bi is the sub-vector of b comprised of those components of b whose index lies
in Ki. The group adaLASSO estimator applies a mixed penalty to each group of
covariates:

β̂groupLASSO = arg min
b∈RD





N∑

n=1

(
Yi − b1 −

D∑

d=1
xndbd

)2

+ λ
Deff∑

i=1
ŵi∥bi∥



 , (1.3)

where ∥bi∥ := s

√∑
d∈Ki

|bd|s, for some pre-specified s > 1. See Wang and Leng (2008)
for details.

1.3 Variable selection and global quantile regression

Regularization techniques for variable selection, such as LASSO, adaptive LASSO
and group LASSO can be applied to quantile regression models, as seen in Koenker
(2004), Li and Zhu (2008), Belloni and Chernozhukov (2011), Wu and Liu (2009), Li
et al. (2010), Hashem et al. (2016), and references therein. However, since quantile
regression models specify the functional form for the conditional τ -th quantile of the
response for each quantile level τ , there is one regression equation for each quantile
level and, with regards to estimation, one corresponding optimization problem. This
brings complexity to certain operations, including variable selection, since we will
have, say, M different estimation procedures, where M ⩾ 1 is the cardinality of the
set T of quantile levels we are evaluating. Thus, the interpretability of the model
gained from the techniques above is lost, as we may have a different set of active
covariates for each quantile level.

To overcome this situation, some approaches estimating the whole quantile func-
tion in one single optimization problem are explored. The present work is partially
inspired by the method presented in Frumento and Bottai (2016), where the regres-
sion functional coefficient β(·) is modelled as a parametric function of the quantile
level, in a way that the functional space in the minimization problem is finite dimen-
sional. When we tackle quantile regression in one optimization problem, a variable
being relevant or not is defined functionally, in the sense that a covariate, say Xd,
should be included in the model if and only if βd(τ) ̸= 0 for every τ ∈ (0, 1). Sottile
et al. (2020) study global estimation and variable selection using the LASSO estima-
tor, demonstrating its ability to approximate the true model with a high probability
efficiently. However, in their representation, it turns out that each coefficient is not
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directly linked to a specific covariate; rather, regressors are represented by groups of
covariates. Thus, as the (ada)LASSO estimator penalizes coefficients individually, it
may fail to deliver a meaningful active set. Yoshida (2021) further adapts the adaptive
group LASSO of Wang and Leng (2008) for variable selection in quantile regression
models to penalize the coefficients globally, an approach that we follow closely.

1.4 Chebychev Interpolation

Interpolation by Chebyshev polynomials is a cornerstone in our proposed method for
global regularization, as it provides a parameter—namely, a D ×M matrix α—that
nearly characterizes the conditional distribution of the response variable given any
level of the covariates. Here we outline the basic aspects of the underlying theory
(we refrain from delving too deep, as this is beyond the scope of this work). In this
connection, the first thing we want to define are the so called Chebyshev polynomials
of the first kind: for each positive integer k, we let Tk be defined by

Tk(x) = cos
(
k arccos(x)

)
, −1 ⩽ x ⩽ 1.

That the Tk are indeed polynomials is a matter of verification, by using standard
trigonometric identities. For example, since cos(2θ) = 2 cos2(θ) − 1, we see that
T2(x) = 2x2 − 1.

Now suppose that ψ is a real valued function defined on the closed interval
[−1, 1]. The idea of interpolating ψ with a polynomial, say P , is based on two in-
gredients/aims:

1st finding points x0, x1, . . . , xK in the interval [−1, 1] such that ψ(xk) = P (xk) for
any k ∈ {0, . . . ,K}.

2nd ensuring that dist(ψ, P ) is small, for some metric dist.

In the case of Chebyshev interpolation, the interpolant polynomial P will happen
to be a linear combination of the Tk’s, and the points where it coincides with ψ are
given, for integer K ⩾ 1, by the Chebyshev-Gauss-Lobatto nodes, defined through

xk = cos(πkK−1), 1 ⩽ k ⩽ K.

Note that the xk are indexed in a way that 1 = x0 > x1 > · · · > xK = −1. Also, notice
that the interpolant depends on the underlying function ψ one wishes to approximate,
as well as on the number K which tells us how many of the Chebyshev polynomials
Tk are to be linearly combined. A better notation, thus, is to write P = IKψ, and we
now formally introduce it through

IKψ(x) =
K∑

k=0
ψ∗

kTk(x), −1 ⩽ x ⩽ 1,

where the real coefficients ψ∗
k are given by

ψ∗
k = 2

B(k)K

K∑

j=0

1
B(j) cos

(
kjπK−1ψ(xj)

)
,
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with B(j) = 1 + I
[
j ∈ {0,K}]. It is not difficult to check that ψ(xk) = IKψ(xk)

for any k; hence the first objective of function interpolation is achieved. Thus far,
however, nothing can be said about the quality of the approximation. Here is where
Mathematics does its magic, and a lot of theory is needed before one can get there,
but—as inequality (4.3.42) in Quarteroni and Valli (1994) tells us—provided ψ admits
(weak) derivatives ψ(1), . . . , ψ(s) up to the sth order, it holds that, for some universal
positive constant C,

max
−1⩽x⩽1

|ψ(x) − IKψ(x)| ⩽ CK
1
2 −s∥ψ∥s,w

where ∥ψ∥2
s,k := ∑s

k=0 ∥ψ(k)∥2
0,w, with

∥f∥2
0,w :=

∫ 1

−1
f2(x) dx√

1 − x2 .

Theorem 1 in Bellini et al. (2022) adapts the above theory in a way that allows the
functional parameter β(·) in a linear quantile regression model to be arbitrarily well
approximated by a vector of polynomials, provided this parameter is a “sufficiently
smooth” function. The approximation is fully characterized by a matrix α of real
coefficients, and noticing that β(·) is tantamount to the conditional distribution of
the response, what is being said is that such models are nearly finite dimensional.
The reader should contrast this fact with the approach put forth by Frumento and
Bottai (2016) and Sottile et al. (2020), who take it as a modeling assumption that
β(·) is de facto finite dimensional—even though their method does allow for flexibility
in choosing the “parametric basis” freely.

1.5 Proposal of this work

We propose a global variable selection methodology in the linear quantile regression
framework, similar to (and partially inspired by) the ideas put forth by Sottile et al.
(2020), combined with the group adaLASSO penalty of Yoshida (2021), but we con-
sider Chebyshev interpolation in contrast to the more flexible—albeit at the price of
restricting the functional parameter to lie on a finite dimensional space—approach
of Sottile et al. (2020) or the B-splines strategy of Yoshida (2021). In terms of theo-
retical assumptions, our method has the advantage of imposing little restrictions on
the functional form of β(·), only requiring a condition that is slightly weaker than
continuous differentiability of its coefficients. We do not develop the asymptotic the-
ory of the proposed (class of) estimators, relying on a Monte Carlo study to assess
and compare their quality. We use a single data generating process to set up a study
of 200 replications comparing six different proposed estimators in six scenarios that
diversify sample and τ -grid sizes. The proposal is presented in an article format in
Chapter 2.



Chapter 2

Article

The attached research article, Global variable selection for quantile regression (Bellini
et al., 2022), comprises the main contribution of the present Thesis.
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Abstract

Quantile regression provides a parsimonious model for the conditional quantile function of
the response variable Y given the vector of covariates X, and describes the whole conditional
distribution of the response, yielding estimators that are more robust to the presence of
outliers. Quantile regression models specify, for each quantile level τ , the functional form for
the conditional τ -th quantile of the response, which brings complexity to perform variable
selection using regularization techniques, such as LASSO or adaptive LASSO (adaLASSO),
as we might obtain a different set of selected variables for each quantile level. In this work,
we propose a method for global variable selection and coefficient estimation in the linear
quantile regression framework, imposing little restrictions on the functional form of β(·), and
applying group adaLASSO penalization for variable selection. We set up a Monte Carlo study
comparing six different proposed estimators based on LASSO, adaLASSO and group LASSO
in six scenarios that diversify sample and quantile levels grid sizes. The findings demonstrate
that the selection of the tuning parameter λ for penalization is critical for model selection and
coefficient estimation. It was observed that the methods using traditional LASSO are more
prone to include the true model as compared to adaLASSO, but renouncing model shrinkage
and not removing irrelevant covariates, while the grouped approches are more effective in
zeroing coefficients that are less relevant.

1 Introduction
Quantile regression, brought to light in its modern guise by Koenker and Bassett (1978), provides
a parsimonious model for the conditional quantile function of the response variable Y given the
vector of covariates X, and, a fortiori, describes the whole conditional distribution of the response.
Importantly, quantile regression also yields more robust estimators to the presence of outliers, as
opposed to classical linear regression methods that only evaluate the conditional mean at a specific
location (Davino et al., 2014). In Buchinsky (1998), practical uses of quantile regression exemplify
an empirical analysis of change in education returns at various points of the log wage distribution.
Koenker (2000), Koenker and Hallock (2001) and Koenker (2005) apply quantile regression to
consolidated econometric examples. Recent studies use the quantile regression concepts to measure
the social and economic impacts of COVID-19 in the society, as seen in Lu et al. (2020), Azimli
(2020) and Bonaccorsi et al. (2020).

Variable selection techniques have been proposed for the regression context aiming to select
a subset of predictors in the model, specially in cases where the number of studied covariates is
large, thus bringing interpretability and tractability to the estimated model. Tibshirani (1996)
introduced the Least Absolute Shrinkage and Selection Operator (hereafter, LASSO) regression, a
regularization technique that applies an ℓ1 penalty to the ordinary least squares (OLS) estimation,
thus forcing corner solutions that result in some estimated coefficients that are exactly zero. Fur-
ther, Zou (2006) introduced the adaptive LASSO (adaLASSO), where coefficients are penalized
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with distinct, adaptive weights in the penalty factor, an approach that attains the so called oracle
property that is lacking in the standard LASSO except under strong assumptions. LASSO and
adaLASSO aim to select individual variables in the model, whereas the group LASSO of Yuan
and Lin (2006) targets variables in a grouped manner by applying a penalty that is intermediate
between the ℓ1 and ℓ2 penalties. Wang and Leng (2008) extend the group LASSO to the adaptive
group LASSO, demonstrating consistency and oracle efficiency.

Regularization techniques for variable selection have been widely applied in quantile regression
models. Koenker (2004) applies ℓ1 regularization methods in longitudinal data to shrink the
estimation of random effects, Li and Zhu (2008) propose an efficient algorithm to compute the
solution path of the ℓ1-norm quantile regression, and Belloni and Chernozhukov (2011) apply this
regularization in high-dimensional sparse models. More recently, Man et al. (2022) propose fitting
a penalized convolution smoothed quantile regression with several convex penalties. Furthermore,
Wu and Liu (2009) explore adaptive LASSO penalization in linear quantile regression. In addition,
Li et al. (2010) proposed regularized quantile regression with group LASSO from a Bayesian
perspective and Hashem et al. (2016) apply the grouped approach for classification.

Quantile regression models are customarily presented by specifying, for each quantile level τ , the
functional form for the conditional τth quantile of the response, seen as a function of the covariates.
Therefore, for each desired quantile level, there corresponds one regression equation and, with
regards to estimation, one optimization problem. This brings complexity to certain operations
since we will have, say, M different estimation procedures, where M ⩾ 1 is the cardinality of
the set T of quantile levels we wish to evaluate. One scenario where this may raise inconsistent
models occurs when we desire to perform variable selection using regularization techniques, such
as LASSO or adaptive LASSO, as we might obtain a different set of selected variables for each
quantile level.

Frumento and Bottai (2016) propose modeling the regression functional coefficient β(·) as a
parametric function of the quantile level in a way that the functional space in the minimization
problem is finite dimensional. Further applications of this proposal are explored in Frumento et al.
(2021), Frumento and Salvati (2021), and Sottile and Frumento (2022). Adding to this approach,
it is possible to tackle global selection of covariates: for instance, Sottile et al. (2020) study
global estimation and variable selection using the LASSO, demonstrating its ability to efficiently
approximate the true model with a high probability, although the (ada)LASSO, per se, does not
properly tackle selection of covariates (see discussion below). Das and Ghosal (2018) and Park
and He (2017), in turn, study approximating the function β(·) using B-splines, and Yoshida (2021)
further employs the adaptive group LASSO (Wang and Leng, 2008) for variable selection in this
connection. Ruas et al. (2022) propose an estimation for all quantile regression models in a single
mathematical optimization in a time series context using a Lipschitz regularization.

In this work, we posit a method for global variable selection and coefficient estimation in the
linear quantile regression framework. Our proposal is similar to (and partially inspired by) the
ideas put forth by Sottile et al. (2020), combined with the group adaLASSO penalty of Yoshida
(2021), but we consider Chebyshev interpolation in contrast to the more flexible—albeit at the price
of restricting the functional parameter to lie on a finite dimensional space—approach of Sottile
et al. (2020) or the B-splines strategy of Yoshida (2021). In terms of theoretical assumptions,
our method has the advantage of imposing little restrictions on the functional form of β(·), only
requiring a condition that is slightly weaker than the continuous differentiability of its coefficients.
A Monte Carlo study was performed to assess and compare the quality of the proposed (class of)
estimators. We use a single data generating process to set up a study of 200 replications comparing
six different proposed estimators in six scenarios that diversify sample and τ -grid sizes.

The paper is organized as follows: Section 2 describes the main concepts used in this work and
the proposed estimators; Section 3 explains the data generation process used in the study, how
the simulation procedure was set up, what are the evaluation criteria, the results of the simulation
and comparisson among methods; finally, Section 4 provides a final discussion enlightening future
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work.

2 Methodology
This heading gives an account of the theoretical framework used for this study. We describe
the (linear) quantile regression model, as well as our proposed method for global estimation and
variable selection.

2.1 Global Quantile Regression and variable selection
For a scalar random variable Y and a D-dimensional random vector X, the conditional τth
quantile of Y given X = x is

QY |X(τ |x) := inf{y ∈ R : P(Y ⩽ y |X = x) ⩾ τ}, 0 < τ < 1, x ∈ support(X).

The mapping τ 7→ Q(τ |x) is called the conditional quantile function of Y given X = x.
The most studied specification is the linear one, presented by Koenker and Bassett (1978), which
considers that there is some functional parameter β : (0, 1) → RD such that the conditional quantile
function admits the representation

QY |X(τ |x) = x⊺β(τ), (1)

for all τ ∈ (0, 1) and x ∈ support(X). Under this globally concerned linear quantile regression
specification (the terminology was coined in Zheng et al., 2015) and a convexity assumption, it
holds that, for any τ ∈ (0, 1) and integrable Y ,

β(τ) = arg min
b∈RD

Eρτ

(
Y −X⊺b

)
,

where ρτ (·) is the check function, ρτ (u) = u(τ − I[u<0]) (see Hunter and Lange, 2000, for example).
Along these lines, for a suitable grid composed of M quantile levels, say T = {τ1, . . . , τM}, and
letting β denote the D ×M matrix whose component (d,m) is βd(τm), it also holds that

β = arg min
b

M∑

m=1
Eρτm

(
Y −X⊺b:,m

)
, (2)

with the minimum running through all D ×M matrices b having columns b:,m.
Regularization methods aimed to reduce the number of covariates in the estimated model, such

as LASSO or adaLASSO, can be applied to the quantile regression context by incorporating a
penalizing factor. In light of Equation (2), for a sample of size N , denoting respectively by Xn

and Yn the covariates and response variable for the nth observation (1 ⩽ n ⩽ N), it is natural in
this setting to estimate the parameter β by solving the following optimization problem:

β̂ = arg min
b

N∑

n=1

M∑

m=1
ρτm(Yn −X⊺

nb:,m) + P̃ (b:,m), (3)

where P̃ (·) is a penalizing factor. We call this estimation procedure the “direct approach” and use
it as a baseline in our simulation study.

Simply estimating β(·) from a finite set of quantile levels can be misleading since such an
estimator may fail to provide a global picture of this functional parameter. For instance, there is
no assurance that the values of β outside said grid would be close to its values at the grid. Thus,
if β is “too irregular”, it will not be correctly selected when the grid is poorly chosen. To give an
example, if some of the βd’s, say β2(τ), are defined as I[τ > 0.9], then any grid T ⊆ (0, 0.9] will
lead to problems in identifying X2 as a relevant covariate. As the results below illustrate, such
problems do not occur provided β is “sufficiently smooth”:
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Theorem 1. Assume that, for each 0 < δ < 1/2, the coordinate functions β1, . . . , βD are absolutely
continuous on [δ, 1 − δ], and that moreover the condition holds that

∑D

d=1

∫ 1

−1

{
∂βd

(
1
2 + 1−2δ

2 x
)}2 dx√

1 − x2
< ∞. (4)

Then, for each M ⩾ 2 and δ ∈ (0, 1/2), there exist a set of grid points T = {τ1, . . . , τM} with
1 − δ = τ1 > τ2 > · · · > τM = δ, real coefficients αdm (with 1 ⩽ d ⩽ D and 1 ⩽ m ⩽ M), linearly
independent polynomials φ1(·), . . . , φM(·), and a positive constant C(β, δ), which does not depend
on M, such that

sup
δ⩽τ⩽1−δ

∣∣∣∣βd(τ) −
∑M

ℓ=1 αdℓφℓ(τ)
∣∣∣∣ ⩽

C(β, δ)√
M − 1

, 1 ⩽ d ⩽ D, (5)

with the equality βd(τ) = ∑M
ℓ=1 αdℓφℓ(τ) holding whenever τ ∈ T .

Remark 1. Recall that a real valued function ψ defined on the closed interval [δ, 1 − δ], where
0 < δ < 1/2, is said to be absolutely continuous if and only if (i) ψ is Lebesgue-almost everywhere
differentiable on [δ, 1 − δ], and; (ii) its derivative ∂ψ : [δ, 1 − δ] → R is Lebesgue integrable on
[δ, 1 − δ], and the representation ψ(τ) = ψ(δ) +

∫ τ
δ ∂ψ(u) du holds, for all τ ∈ [δ, 1 − δ].

Remark 2. In the conditions of Theorem 1, denote by α the D × M matrix whose component
(d,m) is αdm, by β the D × M matrix as defined above and by φ the M × M matrix whose
component (ℓ,m) is φℓ(τm). Write moreover φ(·) = [φ1(·) · · · φM(·)]⊺. Then eq. (5) can be
recast as

sup
δ⩽τ⩽1−δ

∥β(τ) − αφ(τ)∥ ⩽ C(β, δ)√
M − 1

,

and in particular it holds that β = αφ. With this notation, we have the following:

Corollary 1. The “basis matrix” φ is invertible, with α = βφ−1. Additionally, letting

R(b) :=
M∑

m=1
Eρτm

(
Y −X⊺b:,m

)
, (6)

it holds that α is a minimizer of the mapping a 7→ R(aφ), unique if R is uniquely minimized at
R(β).

Proof of Theorem 1. The proof is based on an inequality found in Quarteroni and Valli (1994).
We adapt their notation in order to make the proof easier to follow. First, fix δ ∈ (0, 1/2) and
d ∈ {1, . . . , D}, and set K = M − 1. Let fδ denote the linear reparametrization [−1, 1] → [δ, 1 − δ]
defined through 2fδ(x) := 1+(1−2δ)x for x ∈ [−1, 1]. Under the stated assumptions, the function
ψ := βd ◦ fδ is an element of the Sobolev space1 H1

w with w(x) := (1 − x2)−1/2, x ∈ [−1, 1].
Indeed, ψ is continuous and bounded, hence square-integrable with respect to any finite measure
on [−1, 1], and its weak derivative ψ(1) coincides with the (almost everywhere defined, strong)
derivative ∂ψ = ((∂βd) ◦ fδ) · ∂fδ = ((∂βd) ◦ fδ) · (1 − 2δ)/2, and then equation (4) ensures that ∂ψ
is square-integrable with respect to w(x) dx. By inequality (4.3.42) in Quarteroni and Valli (1994),
we have, for some constant C0 > 0 that does not depend on ψ,

sup
−1⩽x⩽1

|ψ(x) − IKψ(x)| ⩽ C0√
K

(∫ 1

−1

ψ(x)2
√

1 − x2
dx+

∫ 1

−1

∂ψ(x)2
√

1 − x2
dx
) 1

2

, (7)

1H1
w is the set of all real valued functions ψ on [−1, 1] having a weak-derivative ψ(1) such that both ψ and ψ(1) are

measurable and square-integrable with respect to the measure w(x)dx.
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where IKψ(·) := ∑K
k=0 ψ

∗
k cos

(
k arccos(·)

)
with

ψ∗
k := 2K−1

1 +
⌊
|cos(πkK−1)|

⌋
∑K

j=0
cos(πkjK−1)

1 +
⌊
|cos(πjK−1)|

⌋ψ(xj),

the xj being defined through xj := cos(πjK−1) for 0 ⩽ j ⩽ K. The remainder of the proof is just
a matter of adjusting definitions: for 0 ⩽ k ⩽ K ≡ M − 1, let φ : [δ, 1 − δ] → RM have component
functions

φk+1(τ) := cos
(
k arccos(f−1

δ (τ))
)
, δ ⩽ τ ⩽ 1 − δ, (8)

put

τk+1 := 1
2 + 1 − 2δ

2 xk, (9)

and let

αd,k+1 = 2K−1

1 +
⌊
|cos(πkK−1)|

⌋
∑K

j=0
cos(πkjK−1)

1 +
⌊
|cos(πjK−1)|

⌋βd(τj+1). (10)

Clearly ψ∗
k = αd,k+1, as ψ(xj) ≡ βd(τj+1), yielding the identity

(IKψ) ◦ f−1
δ (τ) =

K∑

k=0
αd,k+1φk+1(τ), δ ⩽ τ ⩽ 1 − δ.

Therefore, and noticing that ψ ◦ f−1
δ = βd, the equality

sup
−1⩽x⩽1

|ψ(x) − IKψ(x)| = sup
δ⩽τ⩽1−δ

|ψ ◦ f−1
δ (τ) − (IKψ) ◦ f−1

δ (τ)|

yields the bound in (5), with C(β, δ) given implicitly in (7) (sum along, or take the maximum
with respect to d, if necessary, to get rid of the dependence of C(β, δ) on d). The fact that the
functions φ1(·), . . . , φM(·) are (linearly independent) polynomials is well known from the literature
on Chebyshev interpolation. The validity of equality βd(τm) = ∑M

ℓ=1 αdℓφℓ(τm) is a matter of direct
verification. This completes the proof. ■
Remark 3. It is important to notice that the constants δ, M, and even the functional parameter
β, can be allowed to depend on the sample size N (if β depends on the sample size, then the data
generating process should be indexed by N as well: we would have, e.g., observations

(
Y N

n , XN
n

)

for N ⩾ 1 and 1 ⩽ n ⩽ N, etc). Permitting δ and M to depend on N is of interest as this
allows one to estimate β at a set of grid points that can get both finer and “wider”, with the
obvious benefits that such a grid provides. In turn, allowing β to depend on the sample size is a
way to accommodate scenarios where more covariates are added to the model when N gets larger,
for example. In this setting, by implication the bounding “constant” C(β, δ) will depend on the
sample size too, although it can be difficult, especially when β varies with N , to explicitly derive
conditions under which C(β, δ)/

√
M − 1 → 0 as N → ∞. If this is the case, then we can state the

following result:
Proposition 1. Let (γi

N)N⩾1, i = 1, 2, be two sequences of non-negative real numbers. With
the notation of Theorem 1, let α̂ be an estimator satisfying ∥α̂ − α∥ = OP(γ1

N) and assume
C(β, δ)/

√
M − 1 = O(γ2

N). Define moreover

β̂(τ) := α̂φ(τ), δ ⩽ τ ⩽ 1 − δ, (11)

where φ(·) = [φ1(·) · · · φM(·)]⊺. Then

sup
δ⩽τ⩽1−δ

∥∥∥β̂(τ) − β(τ)
∥∥∥ = OP

(
max{γ1

N

√
M ,γ2

N}
)
. (12)

In particular, β̂(·) is uniformly consistent for β if and only if max{γ1
N

√
M ,γ2

N} → 0 as N → ∞.
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Proof. For τ ∈ [δ, 1 − δ] we have, through Remark 2,
∥∥∥β̂(τ) − β(τ)

∥∥∥ ⩽ ∥α̂φ(τ) − αφ(τ)∥ + ∥αφ(τ) − β(τ)∥

⩽ ∥α̂ − α∥ · |φ(τ)| + C(β, δ)√
M − 1

,

with |φ(τ)|2 = ∑M
ℓ=1 φℓ(τ)2 ⩽M. This establishes (12) and completes the proof. ■

We conclude this remark by noticing that, in a typical setting, one cannot be “too greedy” in
expanding the grid T as the sample size grows. Indeed, in order to nearly preserve the convergence
rate γ1

N , a sensible choice is to set M = O
(
1/ log(γ1

N)
)
.

In view of Corollary 1, a natural estimator for α is given by

α̂ = arg min
a

N∑

n=1

M∑

m=1
ρτm(Yn −X⊺

naφ:,m) + P (a), (13)

where the minimization runs through all D×M matrices a, and where P (·) is a (possibly random)
penalty factor. Notice that this estimator is equivalent to the one put forth by Frumento and
Bottai (2016), whenever β(·) is comprised of polynomials—and, when the parameter does not fall
in this polynomial class, both estimators are still asymptotically equivalent. As a matter of fact,
we claim a weaker assumption, stating that the representation β(τ) = αφ(τ) holds for a grid of
quantile levels τ ∈ T , instead of being valid for the whole unit interval as required in Frumento
and Bottai (2016). We conjecture that, under mild ergodicity and convexity assumptions, together
with a properly chosen penalty P (·), the global estimator (11) converges uniformly to β(·), and
that the estimated active set {d : β̂d(·) ̸= 0} asymptotically identifies the relevant covariates.

As seen in the proof of Theorem 1, we choose the basis functions φ : (0, 1) → RM and the
grid of quantile levels T from the shifted Chebyshev polynomials to guarantee that the matrix
β provides a fair picture of the whole β(·). Our estimator α̂, defined in Equation (13), depends
crucially on the choice of the penalization term P (·). Below, we describe the penalty functions that
will be considered in this work.

2.2 Penalty functions
2.2.1 LASSO and adaLASSO

To perform variable selection using the adaLASSO penalization (Zou, 2006), the term P (·) in
Equation (13) is a weighted ℓ1-norm penalizing factor,

P (a) = λ
D∑

d=1

L∑

ℓ=1
wdℓ|adℓ|, (14)

where λ > 0 is a tuning parameter, and wdℓ := (|âdℓ|)−p is a weight based on a first-step estimator
â, with p > 0 fixed. For instance, traditional adaLASSO is achieved by setting â := β̂qrφ

−1,
where β̂qr solves Equation (3) with P̃ (·) identically zero, whereas the standard LASSO selection
(as implemented in Sottile et al., 2020) corresponds to wdℓ ≡ 1. Under this choice of P (·), we are
finding the matrix α̂ that solves the optimization problem (13), with the (ada)LASSO penalization
setting to zero those components of α̂ that are not “relevant to the model”. Notwithstanding, this
approach zeroes elements of α̂ individually without any “pattern restriction”, hence it does not
coherently achieve variable selection since each covariate is represented by an entire row of α̂. The
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lack of pattern restrictions is illustrated by the following scheme:

α̂ =




α̂11 α̂12 . . . 0
α̂21 0 . . . α̂2L

... ... . . . ...
0 α̂(D−1)2 . . . α̂(D−1)L

α̂D1 α̂D2 . . . α̂DL



.

As a consequence, although adaLASSO indeed shrinks coefficients (of α̂), no de facto variable
selection is achieved.

2.2.2 Group adaLASSO

In view of the drawbacks of adaLASSO in achieving proper variable selection in our global frame-
work (Equation (13)), we propose introducing the group adaLASSO penalty (Yuan and Lin, 2006;
Wang and Leng, 2008), which is an approach that applies an ℓs-norm penalization to groups of
coefficients, thus zeroing coefficients in a grouped manner:

P (a) = λ
D∑

d=1
wd∥ad,:∥, (15)

where ∥ad,:∥ := s

√∑L
ℓ=1 |adℓ|s, with s > 1. Here, setting wd := ∥âd,:∥−p for some p > 0 yields the

group adaLASSO procedure, whereas wd ≡ 1 corresponds to the standard group LASSO. The
penalty function (15) will consider an entire row as active or not, thus yielding a bona fide variable
selection procedure, as the following scheme illustrates:

α̂ =




α̂11 α̂12 . . . α̂1L

0 0 . . . 0
... ... . . . ...

α̂(D−1)1 α̂(D−1)2 . . . α̂(D−1)L
α̂D1 α̂D2 . . . α̂DL



.

A similar selection strategy is adopted by Yoshida (2021), but the author uses B-splines instead
of polynomial interpolation to approximate β(·).

3 Monte Carlo simulation study
To evaluate the proposed method for global estimation and variable selection, we executed a
Monte Carlo simulation study employing, in Equation (13), the four penalty procedures described
in Section 2.2. We also applied the group LASSO and group adaLASSO penalties to what we call
the “direct approach”, namely the solution β̂ to Equation (3). This yields six different selection
procedures: LASSO, adaLASSO, group LASSO, group adaLASSO, direct group LASSO, direct
group adaLASSO.

3.1 Data generating process
We consider the linear quantile regression model (1), where X ∈ RD, and with the functional
parameter β(·) of polynomial type,

βd(τ) = θd · τ d−1, 0 ⩽ τ ⩽ 1 and 1 ⩽ d ⩽ D, (16)

where θ is a vector that determines which regressors are relevant/active (that is, those for which
θd ̸= 0), and at the same time the magnitude of non-zero coefficients. It carries the following
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pattern: θd > 0 for 1 ⩽ d ⩽ D∗ and θd = 0 for D∗ < d ⩽ D, where D∗ is the number of relevant
covariates; θd = 2/D∗ for 1 ⩽ d ⩽ Dstrong, where Dstrong is the number of coefficients with a “strong
signal”; and where the Dweak remaining positions in the vector correspond to coefficients with a
“weak signal”, determined by θd = 0.1/D∗ for (Dstrong + 1) ⩽ d ⩽ D∗.

A random sample from (Y,X) can be generated using the fundamental theorem of simulation,
via

Yn := QY |X(Un|Xn), n ∈ {1, ..., N}, (17)

where (Xn, Un) are i.i.d. draws from (X,U), with X multivariate uniform on the D-dimensional
unit cube, except for the first coordinate which is identically one, and U is a standard uniform
random variable on the unit interval, independent from X. In practice we fixed D = 30, D∗ = 20,
Dstrong = 9; thus, Dweak = 11. Figure 1 illustrates the coefficient-functions in Equation (16).

Figure 1: Plot of relevant β coefficients.
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It is worth mentioning that, for this particular data generating process, the representation
β(τ) = αφ(τ) is valid for any τ (not restricted to τ ∈ T ), thus falling inside the framework of
Frumento and Bottai (2016). Hence, the LASSO method evaluated in this work is tantamount to
the one proposed by Sottile et al. (2020).

3.2 Simulation procedure
The optimization algorithm to compute the estimator α̂ described in Equation (13) was carried
through the package CVXR (Fu et al., 2020) from the statistical environment R. To determine
â for the weights in (14) and (15) we used the quantreg package (Koenker, 2021) to obtain the
canonical estimator β̂qr and derive â = β̂qrφ

−1. The parameter p was fixed to 1, and s ≡ 2.
The grid of quantile levels, T , and the matrix φ were generated using the shifted Chebyshev
polynomials as described in the proof of Theorem 1. The initial grid of λ values was generated
by setting Λ0 = {10i : i ∈ seq}, where seq is a vector of 50 values equally spaced in the interval
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[−3, 3], resulting in 50 λ values ranging in the interval [0.001, 1000], rounded to four decimal places.
Notwithstanding, for the present data generating process, we found out in preliminary simulations
that values of λ in points of the grid beyond the 30th value (3.5565) are either prone to numerical
instability or effectively large enough so that every coefficient was zeroed, except for the intercept.2
In view of this, we decided to restrict the values of λ to lie in the interval [0.001, 3.5565], resulting in
the grid Λ = {λ ∈ Λ0 : λ ⩽ 3.5565} with 30 points. In our preliminary simulations we also found
out that, in a handful of scenarios, the numerical optimization algorithms ended up returning
an error flag. In this connection, we set out with a dataset of nrep.tot := 10000 replications,
each consisting of a sample Nmax = 1000 independent realizations from (X, Y ), generated via the
method described above. For any given seed(), this generation is reproducible, always yielding
the same dataset for the same pair (nrep.tot, Nmax). The dataset contains the random data for
the Monte Carlo study, hence it is possible to run the replications independently, spreading the
execution across multiple platforms. The code is publicly available at https://github.com/tai
sbellini/global-qr-ppgest (Bellini and Horta, 2022).

In each replication, we performed the optimization procedure corresponding to each one of the
six proposed methods (LASSO, adaLASSO, group LASSO, group adaLASSO, direct group LASSO,
direct group adaLASSO), with varying sample size3 N ∈ {100, 500, 1000}, number of quantile
levels M ∈ {5, 10}, and λ ∈ Λ. Optimization was carried incrementally (across replications),
and we discarded those replications that resulted in numerical errors until the effective number of
replications nrep = 200 was reached.4

3.3 Evaluation metrics
Following Medeiros and Mendes (2015) and Konzen and Ziegelmann (2016), we used a set of
metrics to evaluate and compare variable selection performance between the studied methods:

• FVCI: Average fraction of variables correctly identified. To calculate this metric, for each
replication, we sum the number of variables correctly included and the number of variables
correctly excluded and divide by the number of covariates in the model to obtain the fraction
of correctly included and excluded covariates. Then, we take the average across the number
of replications.

• TMI: True model included. For this metric, we count how many replications included
all relevant covariates in the model. Subsequently, we divide this count by the number of
replications to obtain the fraction.

• FRVI: Average fraction of relevant variables included. To make this average, for each repli-
cation, we sum the number of covariates correctly included in the model and divide by the
number of relevant covariates. Then, we take the average of this fraction across all replica-
tions.

• FIVE: Average fraction of irrelevant variables excluded. Similarly to FRVI, for this metric
we sum the number of covariates correctly excluded from the model and divide by the number
of irrelevant covariates for each replication. Next, we take the average of this fraction across
all replications.

2Notice that if the set of active covariates contains only the intercept for a certain λ1 > 0, then this will also be
the case for any λ2 ⩾ λ1. Thus, in our simulation algorithm, given the computational burden of the optimization
procedure, in each replication, we only computed the estimators (incrementally on λ ∈ Λ) up to the point where
all non-constant covariates were excluded.

3In each replication, the samples size N = 100 is obtained from the first 100 observations from(
(X1, Y1), . . . , (XNmax , YNmax)

)
, and similarly for N = 500.

4Preliminarily we also implemented the “direct approach” with the (“non-grouped”) LASSO and adaLASSO penal-
ties, but the two additional methods ended up with execution errors in more than half of the replications and were
discarded.
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Additionally, to assess and compare the quality of the studied estimators, we considered the
following two criteria:

• MSE(β̂) = ∑D
d=1

∑M
m=1 nrep−1∑nrep

r=1 (β̂r

d,m − βd,m)2

• L(β̂) = ∑M
m=1

(
nrep−1∑nrep

r=1 ρτm(Y r
1 −Xr⊺

1 β̂
r

:m)
)
, drawing from the concept of elicitability as

proposed by Gneiting (2011).

In the above, β̂
r denotes the estimator computed in the rth replication, Y r

1 and Xr
1 are the first

observations of Y and X, respectively, in the rth replication. Regarding the elicitability criterion,
notice that L(b) ≡ ∑M

m=1(nrep−1∑nrep
r=1 ρτm(Y r

1 −Xr⊺
1 b:m)) ≈ ∑M

m=1Eρτm(Y − X⊺b:m) =: L∗(b),
with L∗(β) ⩽ L∗(b) for any b; thus, estimators that attain lower values of L can be regarded as
better.

3.4 Results
In this section, we report the results and provide an account of patterns observed in the studied
scenarios. We begin by describing the three criteria used to select the tuning parameter λ, as well
as how each method behaves in terms of these λ-selection criteria. This observation enlightens
the performance of the evaluated methods, as the λ parameter is determinant for the degree of
shrinkage. Next, we compare the methods’ performance according to the metrics described in
Section 3.3. Afterward, we compare the estimated β̂ coefficient with the real β function of four
covariates: the intercept (D = 1), variables with strong (D = 5) and weak (D = 15) coefficients,
and an irrelevant covariate (D = 25). Finally, we exemplify how the increase in N and M positively
impact the model fit. For every presented result, we start by outlining the observations in the
scenario with the largest sample size (N = 1000) and grid (M = 10), followed by the scenarios
and results that deviate from the standards identified in the highest sample size and grid.

3.4.1 Selection of tuning parameter

As mentioned above, the simulation procedure stores the estimated β̂ ≡ β̂λ for each λ evaluated.
We analyze the results after selecting, at each replication, the “optimal” λ according to the Bayesian
information criterion (BIC) and Akaike information criterion (AIC), as well as a fixed λ that gives
the best average outcome for a given metric across all replications, which we call the Omni criterion.
Notice that the latter is unfeasible in real world applications.

For this study, the BIC (Schwarz, 1978) and AIC (Akaike, 1973) criteria follow equation 3.7
from Sottile et al. (2020), namely

BICλ = log R̂
(
β̂λ

)
+ 1
N

log(N)dfλ (18)

and

AICλ = log R̂
(
β̂λ

)
+ 1
N

2dfλ (19)

with R̂(b) := ∑N
n=1

∑M
m=1 ρτm(Yn − X⊺

nb:,m) + P (bφ−1). Notice that R̂(·) implicitly depends on λ
through P (·). Here, df is the number of nonzero coefficients in the model, that is, the number of
nonzero rows in β̂λ. We consider that a variable was removed from the model if the entire row β̂d,:
contains absolute values below a given tolerance (1e−4).

The λ selected in each replication following the BIC criterion is the one that minimizes Equa-
tion (18) and the one selected by the AIC criterion minimizes Equation (19). The Omni criterion
for each evaluation metric calculates the results for every λ tested, fixing to all replications the
one that provided the best average outcome for that particular method. For example, the Omni
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Figure 2: λ-selection pattern of BIC and Omni (MSE and Elicitability Loss) criteria for N = 1000
and M = 10

ada lasso ada group lasso direct ada group lasso

lasso group lasso direct group lasso

0 1 2 3 0 1 2 3 0 1 2 3

0.0

2.5

5.0

7.5

0.0

0.2

0.4

0.6

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0

2

4

6

0.0

0.1

0.2

λ

F
re

qu
en

cy

 Elic MSE

λ values chosen by BIC in each replication (histogram) and Omni choice across replications (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 1000 and M = 10

Figure 3: λ-selection pattern of AIC and Omni (MSE and Elicitability Loss) criteria for N = 1000
and M = 10
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criteria for MSE chooses the λ that provided the lowest MSE across replications, while the Omni
criteria for FRVI chooses the λ that resulted in a higher average fraction of relevant variables
included across replications.

Figures 2 and 3 present the histogram of the selected λ’s, for each method, using the BIC and
AIC criteria, respectively. The dotted vertical lines represent the λ selected by the Omni criterion
for the MSE metric, while the dashed vertical lines indicate the Omni λ designated to minimize
the elicitability loss criterion across replications. We observe in both the BIC and AIC histograms
that the methods using the adaptive penalization (adaLASSO, group adaLASSO, direct group
adaLASSO) opt for higher λ values than the traditional LASSO methods, being adaLASSO the
one that picks lower λ values from this set, specially in the AIC criterion. The BIC criterion has
the attribute of applying a higher penalty to additional parameters (Bishop, 2006), in fact, we can
detect that it selects higher λ’s as compared to the AIC. Looking at the selection from the Omni
criteria, the λ that optimizes the MSE across replications is smaller on methods using adaLASSO
and bigger on traditional LASSO. When the Omni criterion is accounting for lower elicitability
loss, it opts for lower λ’s in all evaluated methods.

Figure 4: λ-selection pattern of BIC and Omni (FVCI, FRVI, TMI and FIVE) criteria for
N = 1000 and M = 10
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(dashed line), TMI (two dashed line) and FIVE (solid line) with N = 1000 and M = 10

Similarly, we have the same histogram in Figures 4 and 5 comparing the BIC and AIC λ choices
with the Omni criterion that favors the variable selection metrics. The solid vertical line with the
down arrow represents the λ selected via the Omni criterion for the FIVE metric, the dashed line
with a dot for FRVI, the dotted line with an X for FVCI, and the two dashed line with an up
arrow for the TMI metric.

It is possible to notice that, for the non-adaptive methods (LASSO, group LASSO, direct
group LASSO), the λ that optimizes the fraction of variables correctly included and correctly
excluded at the same time is bigger than the λ’s chosen by both BIC and AIC criteria, as well
as the Omni-selected ones for the other variable selection metrics. However, when we look at
the adaptive LASSO methods, the λ that performs better across all replications considering the
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Figure 5: λ-selection pattern of AIC and Omni (FVCI, FRVI, TMI and FIVE) criteria for
N = 1000 and M = 10
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fraction of irrelevant variables excluded (FIVE) has a higher value than the others. We can see
that the histogram of the λ choice via BIC criterion often has a peak that coincides with the
Omni selection of the FIVE metric, indicating that this criterion values the exclusion of irrelevant
variables. As expected, when the metric accounted for is related to correctly including relevant
variables (TMI and FRVI), the Omni-criterion always opts for the lowest λ option.

The λ-choice patterns are replicated when N = 500 and M = 10. However, the N = 100
scenario produces different outputs, as demonstrated in Figure 6 and Figure 7. We see bigger
λ values being chosen in the direct group LASSO and adaLASSO methods when using the BIC
criterion to select the optimal tuning parameter. It is also noticeable that the Omni selection for
MSE in adaptive penalization methods is higher as compared to the N = 1000, M = 10 scenario.
We also observe some variations when M = 5 with all sample sizes, having the N = 100 scenario
more outstanding differences, which is reported in Figure 8 and Figure 9. The other scenarios can
be reviewed in Appendix A.

Figure 10 illustrates the impact of the λ-choice on variable selection by plotting, for each
covariate on the vertical axis and each λ in the horizontal axis, how many replications have included
that covariate in the model. The horizontal lines reflect the Dstrong and Dsignal values: variables
below the dotted line have a strong coefficient, variables between them have a weak coefficient and
variables above the dashed line are non-relevant. We can see that the methods without adaptive
weights never remove the covariates for the λ values considered, while the adaptive LASSO ones
start excluding as λ increases. It is noticeable that variables with weak coefficients are often
removed from the model in higher λ values together with the irrelevant ones. The same pattern
is observed in other scenarios, however, the ones with sample size equal to 100 demonstrate a
lighter blue color, indicating some replications have removed the variables across λ values (see
Appendix A).
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Figure 6: λ-selection pattern of BIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M = 10
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Figure 7: λ-selection pattern of AIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M = 10
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Figure 8: λ-selection pattern of BIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M = 5
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Figure 9: λ-selection pattern of AIC and Omni (MSE and Elicitability Loss) criteria for N = 100
and M = 5
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Figure 10: Number of times each variable was included across λ values for N = 1000 and M = 10.

ada lasso ada group lasso direct ada group lasso

lasso group lasso direct group lasso

−6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0

10

20

30

10

20

30

logλ

C
ov

ar
ia

te

0.3

0.6

0.9

Included
rep (%)

Horizontal axis: grid of evaluated λ’s (log scale); vertical axis: model coefficients D; gradient from blue
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model. Horizontal lines: Dstrong(dotted) and Dsignal (dashed) values.

3.4.2 Evaluation results

Table 1 presents the results for all compared methods and evaluated metrics in the scenario with
N = 1000 and M = 10. The method with adaLASSO penalization achieves the lowest MSE
for all λ-selection criteria evaluated, however, it jeopardizes the variable selection metrics. As
identified in Section 3.4.1, the adaLASSO penalization opts for lower λ values as compared to
the other adaptive approaches but higher than the non-adaptive ones. The traditional LASSO
penalization methods result in lower elicitability loss than the adaptive ones. When we look at the
variable selection metrics, it is noticeable from the FRVI and FIVE metrics that the traditional
LASSO methods never exclude irrelevant covariates, in other words they always include all of the
30 regressors in the model. On the other hand, the FRVI and TMI metrics indicate that none of
the adaptive methods include the true model, being adaLASSO the one that includes the most in
both BIC and AIC criteria. In the context of variable selection, the Omni criteria are not very
meaningful, as they will maximize the λ when the metric evaluated is FIVE and minimize the
λ when the metric is TMI or FRVI. Among the ada-penalized methods, adaLASSO outperforms
in the FVCI metric, but excluding fewer variables as demonstrated in the FIVE metric, for both
AIC and BIC. If we look at the count of metrics where the methods outperformed, group LASSO
and direct group LASSO are the ones with better outcome in more metrics, but renouncing model
shrinkage and not excluding irrelevant variables.

The pattern observed for N = 1000 and M = 10 is also observed when N = 500, for both
tested τ -grid sizes. There is a variation in values in the third and fourth decimal places but the
overall behavior pattern is maintained. The table of results for both scenarios is in Appendix B.
When the sample size is smaller, N = 100, we observe some deviations from the standard. When
M = 10, the direct group LASSO method performs very poorly in the TMI metric when using BIC
criteria for λ-selection, as highlighted in Table 2. For this case, the average number of replications
that includes the true model is less than 30%. It is worth recalling that this particular scenario
also had a deviant pattern in the λ-choice, selecting higher values. The other metrics and methods
follow the pattern observed in the scenarios with a higher sample size, but it is worth mentioning
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Table 1: Results for N = 1000 and M = 10

MSE Elic FVCI FRVI TMI FIVE

BIC

LASSO 0.1401 0.2867 0.6667 1 1 0
adaLASSO 0.1071 0.2986 0.5098 0.3238 0.0100 0.8820

gLASSO 0.1399 0.2866 0.6667 1 1 0
gAdaLASSO 0.1195 0.2933 0.5043 0.2905 0 0.9320

direct gLASSO 0.1408 0.2867 0.6667 1 1 0
direct gAdaLASSO 0.1243 0.2935 0.4990 0.2775 0 0.9420

AIC

LASSO 0.1401 0.2867 0.6667 1 1 0
adaLASSO 0.0826 0.2917 0.5695 0.5000 0.0600 0.7085

gLASSO 0.1399 0.2866 0.6667 1 1 0
gAdaLASSO 0.1019 0.2922 0.5273 0.3610 0 0.8600

direct gLASSO 0.1408 0.2867 0.6667 1 1 0
direct gAdaLASSO 0.1018 0.2913 0.5325 0.3790 0 0.83795

Omni

LASSO 0.0956 0.2867 0.6667 1 1 0
adaLASSO 0.0637 0.2865 0.6667 1 1 0.9070

gLASSO 0 0.1185 0.2867 0.6667 1 1 0
gAdaLASSO 0.0776 0.2867 0.6667 1 1 0.9325

direct gLASSO 0.0938 0.2867 0.6667 1 1 0
direct gAdaLASSO 0.0797 0.2867 0.6667 1 1 0.9430

Results of all evaluated metrics for each method when N = 1000 and M = 10. In bold, the results with the best value. In grey, the
results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected in that use case.

Table 2: Results for N = 100 and M = 10

MSE Elic FVCI FRVI TMI FIVE

BIC

LASSO 1.1533 0.1948 0.6643 0.9942 0.9050 0.0045
adaLASSO 0.2033 0.2992 0.4125 0.1735 0 0.8955

gLASSO 1.1572 0.1954 0.6655 0.9965 0.9300 0.0040
gAdaLASSO 0.2039 0.2815 0.4067 0.1455 0 0.9290

direct gLASSO 0.5628 0.2219 0.6358 0.9040 0.2800 0.0095
direct gAdaLASSO 0.2110 0.2804 0.4053 0.1428 0 0.9305

AIC

LASSO 1.2243 0.1935 0.6667 1 1 0
adaLASSO 0.2288 0.2813 0.4395 0.2405 0.0050 0.8375

gLASSO 1.2122 0.1953 0.6663 0.9990 0.9800 0.0010
gAdaLASSO 0.2140 0.2762 0.4128 0.1638 0 0.9110

direct gLASSO 1.1028 0.1998 0.6600 0.9740 0.8450 0.0320
direct gAdaLASSO 0.2245 0.2745 0.4167 0.1728 0 0.9045

Omni

LASSO 0.435 0.1931 0.6667 1 1 0.0150
adaLASSO 0.1975 0.1941 0.6667 1 1 0.8955

gLASSO 0.5709 0.1933 0.6667 1 1 0.0040
gAdaLASSO 0.2011 0.1937 0.6667 1 1 0.9290

direct gLASSO 0.2917 0.1934 0.6667 1 1 0.1180
direct gAdaLASSO 0.2083 0.1936 0.6667 1 1 0.9335

Results of all evaluated metrics for each method when N = 100 and M = 10. In bold, the results with the best value. In grey, the
results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected in that use case.
In red, the results that are significantly different from the N = 1000 M = 10 scenario.
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Table 3: Results for N = 100 and M = 5

MSE Elic FVCI FRVI TMI FIVE

BIC

LASSO 0.2759 0.1016 0.6342 0.8900 0.2400 0.1225
adaLASSO 0.1216 0.1332 0.4198 0.1845 0.0050 0.8905

gLASSO 0.3388 0.0949 0.6507 0.9388 0.3750 0.0745
gAdaLASSO 0.1116 0.1334 0.3867 0.1013 0 0.9575

direct gLASSO 0.1189 0.1074 0.5850 0.7220 0 0.3110
direct gAdaLASSO 0.1114 0.1309 0.3902 0.1060 0 0.9585

AIC

LASSO 0.6075 0.0938 0.6627 0.9865 0.9100 0.0150
adaLASSO 0.1290 0.1228 0.4480 0.2668 0.0050 0.8105

gLASSO 0.5580 0.0918 0.6602 0.9782 0.8000 0.0240
gAdaLASSO 0.1118 0.1244 0.4115 0.1622 0 0.9100

direct gLASSO 0.3103 0.0994 0.6128 0.8100 0.3500 0.2185
direct gAdaLASSO 0.1148 0.1226 0.4183 0.1808 0 0.8935

Omni

LASSO 0.1465 0.0908 0.6667 1 1 0.1405
adaLASSO 0.1170 0.0912 0.6672 1 1 0.9165

gLASSO 0.2015 0.0908 0.6667 1 1 0.0825
gAdaLASSO 0.1040 0.0911 0.6667 1 1 0.9625

direct gLASSO 0.1157 0.0909 0.6667 1 1 0.3105
direct gAdaLASSO 0.1071 0.0913 0.6667 1 1 0.9650

Results of all evaluated metrics for each method when N = 100 and M = 5. In bold, the results with the best value. In red, the results
that are significantly different from the N = 1000 M = 10 scenario.

that the Elicitabilty Loss measurement has lower values overall and MSE values for non-weighted
penalization methods are relatively higher. The N = 100 scenario with M = 5 presents the same
patter deviations as with M = 10, with the exception of the true model inclusion when using
the BIC criteria, that has lower values for all evaluated methods as compared to the outcome of
this metric in other scenarios, highlighted in Table 3. In this case, the direct group LASSO only
includes the true model (TMI) in 35% of the replications when using AIC criteria.

Figures 11 and 12 illustrate how the results reported in Section 3.4.1 and Table 1 reflect the
estimated β̂, by plotting the true β and the estimated ones for the first 50 replications, using
the BIC and AIC criteria for λ-selection. The dashed line represents the average values af the
50 replications plotted and the solid line represents the true parameter β(τ). We observe that all
methods have more difficulty estimating the coefficients for higher quantiles, due to the nature of
how the β values are generated. When looking at the intercept, a constant coefficient of 0.1, the
traditional LASSO penalization methods (which we observed in Section 3.4.1 select lower λ values)
follow the true β(τ) pattern, while the adaptive methods appear to have a bias. This particular
result differs from the asymptotic theory for large coefficients in Zou (2006) that states the adaptive
LASSO results in unbiased estimates. The same is observed when D = 5, which is from the group of
strong coefficients. However, in this case, we see that the adaptive LASSO methods already remove
this coefficient in most evaluated replications, specially using the BIC criterion. The average values
across the replications follow the real β line, specially on non-adaptive methods. When D = 15,
which is part of the Dweak set of coefficients, the ada penalization methods remove the variable
in most of the replications, while the non-adaptive ones do not. However, the latter brings a lot
of instability towards the higher quantile levels and the average does not match the original β
curve in higher quantiles. When D = 25, which is an irrelevant coefficient, the methods with
adaptive weights remove this coefficient in most of the replications, as opposed to the traditional
LASSO ones, which was identified in Section 3.4.2. In comparison with the other adaptive LASSO
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Figure 11: Plot of first 50 replications of β estimation for using BIC criterion for N = 1000 and
M = 10.
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Figure 12: Plot of first 50 replications of β estimation for using AIC criterion for N = 1000 and
M = 10.
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approaches, the adaLASSO penalization using the AIC criteria considers the irrelevant variable
relevant in more replications, specially in higher quantile levels.

3.4.3 Variation across scenarios

We can see in Figures 13 and 14 how increasing the sample size improves β̂ estimation with both
BIC and AIC criteria, specially when we increase from N = 100 to N = 500. Similarly, we observe
how the estimated β̂ comes closer to the β when the grid size is bigger.
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4 Final discussion and future work
This work proposes a method for global variable selection and coefficient estimation in a (linear)
quantile regression context through a single optimization procedure, applying the group adaLASSO
regularization to achieve a meaningful selection of covariates. We waive the flexibility to choose
the τ -grid in favor of a fair picture of the whole β(·) function, including function value disparities
between grid points, by using Chebyshev interpolation. A remark about terminology is called for:
although we name our method global, a more honest terminology would be to call it a nearly global
approach for estimation and variable selection. This is because, in finite samples, it is always the
case that the tails of the distribution (namely, the quantile levels τ < δ and τ > 1 − δ) are left
out of the estimation procedure. De facto global methods are only attainable (at least from a
computational viewpoint) under strong parametric assumptions, as is the case of the generating
processes considered by Frumento and Bottai (2016) and Sottile et al. (2020). We perform a Monte
Carlo simulation study comparing six different optimization procedures, varying the objective
function and penalization factors, in six different sample and quantile grid sizes scenarios.

Our findings demonstrate that each estimator studied displays different patterns for selecting
the tuning parameter λ in the penalty factor, which is critical for the model selection and coefficient
estimation. It was observed in the simulation study that the methods using adaptive LASSO
penalization select larger λ values when compared to the ones using regular LASSO. This pattern
is evidenced in the results: those methods without adaptive weights in the penalizing factor have
a more conservative behavior in removing variables from the model. When comparing the grouped
approaches with the traditional ones, we see that the grouped proposal is more effective in removing
variables from the model. This is also observed when using the BIC criterion for λ-selection. For the
studied data generation process, the direct approach was similar to the other methods. A word of
caution is called for, however, before we jump to definitive conclusions: the scale of “reasonable”
λ values may be widely distinct for different penalty factors, and we chose our effective grid Λ
having in mind computational reasons (possibly at the expense of flexibility/specificity). Thus,
the observed selection patterns are not granted to be comparable, which reiterates the necessity of
deeper investigations regarding the λ choice.

Form a practical outlook, the inquiry of what distinguishes a “more suitable choice” for the
regularization method is fundamentally tied to the specific aims of the researcher. For instance, the
adaLASSO has shown to deliver a better balance between coefficient estimation, inclusion of true
model, and exclusion of irrelevant covariates, specially when the tuning parameter is selected via
the AIC criterion, due to picking intermediate values from the tested set of λ’s. Indeed, this method
appears to include only half of the relevant variables—thus, it may not be the best approach when
including the correct model is paramount. On the other hand, if we wish to shrink the model as
much as we can, then the BIC criterion, combined with an adaptive LASSO penalization approach,
seems to be a good alternative. Tables 4 and 5 summarize the strengths of each approach.

Throughout this research, the computational time to execute simulations, especially with regard
to optimization, surfaced as a major challenge, even more so in settings with larger sample and
grid sizes. This fact limited the amount of scenarios and variations to be evaluated, as well
as further exploration based on preliminary findings. Opportunities to propose an algorithm to
ameliorate execution time of simulations were preliminarily explored by the authors, inspired
by the MM algorithm in Hunter and Lange (2000) and the so-called “η-trick” of Bach et al.
(2012) and Mairal et al. (2014), but the results were not satisfying. It is noticeable that the
optimization problems faced in the present framework are also connected to the computational
problem of dealing with large matrices—thus, additional research on the statistical computing
field would be valuable to unlock further exploration of scenarios and parametrization of the
proposed methods. For future work, it is recommended to compare, in a more thorough manner,
the β(·) approximation methodology developed here with the ones presented by Frumento and
Bottai (2016) and Yoshida (2021), as well as different Data Generating Processes, including other
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Table 4: Recommendation summary for N ⩾ 500

MSE Elicitability Include model Exclude irrelevant

Ada penalization BIC ✓ ✓ ✓
AIC ✓ ✓ ✓

Grouped penalization BIC ✓ ✓
AIC ✓ ✓

Interpolated BIC ✓ ✓
AIC ✓ ✓

Table comparing the strengths observed by each element of the methodology proposed according to evaluated metrics when N ⩾ 500.
Adaptive penalization provides lower MSE and elicitability loss, and excludes the irrelevant covariates more often, using both AIC or
BIC criteria to select the λ parameter. Grouped penalization provides lower elicitability loss and excludes the irrelevant covariates more
often, for both λ criteria evaluated. Chebychev interpolation provides lower MSE using both BIC and AIC, includes the true model
regularly when using the BIC criterion and excludes the irrelevant covariates more often when the AIC criterion is used.

Table 5: Recommendation summary for N = 100

MSE Elicitability Include model Exclude irrelevant

Ada penalization BIC ✓ ✓ ✓
AIC ✓ ✓ ✓

Grouped penalization BIC ✓ ✓
AIC ✓ ✓ ✓

Interpolated BIC ✓ ✓
AIC ✓ ✓

Table comparing the strengths observed by each element of the methodology proposed according to evaluated metrics when N = 100.
Adaptive penalization provides lower MSE and elicitability loss, and excludes the irrelevant covariates more often, using both AIC or
BIC criteria to select the λ parameter. Grouped penalization provides lower MSE sing AIC criterion to select the λ parameter, as well as
lower elicitability loss and more frequent irrelevant covariatesexclusion for both BIC and AIC criteria. Chebychev interpolation provides
lower elicitability loss using the BIC criterion, includes the true model regularly when using both λ selection criteria and excludes the
irrelevant covariates more often when the AIC criterion is used.
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functional forms, larger coefficients, etc., to assess the strengths of the proposed estimator in
problematic scenarios as exemplified in Section 2. It is worth highlighting that the particular DGP
studied in the present work provides values for the covariate vector on the same scale—in fact,
aside from the constant regressor, the remaining ones are identically distributed. Hence, if one is
to analyze data generated otherwise, covariate normalization is recommended. Likewise, we would
want to explore scenarios where D > N , which is of interest in the variable selection literature. In
particular, given the observed importance of tuning parameter selection, a wider range of criteria
and deeper exploration on proposed metrics is desired. Applications to real world data would
be interesting after an extensive evaluation of different β functional forms, to be more precise
on the type of data this methodology can better contribute to. Last but not least, our method
can potentially contribute to the literature on conditional density estimation (Fan et al., 1996;
Spady and Stouli, 2020; Cattaneo et al., 2022) by exploring the well-known relation between the
conditional probability density function of the response and the derivative of the corresponding
conditional quantile function.
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Appendices
This appendix complements Section 3.4 with the figures and tables for scenarios not outlined in
the main text.

A Selection of tuning parameter

Figure 15: λ selection from BIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 1000 and M = 5
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Figure 16: λ selection from AIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 1000 and M = 5
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Figure 17: λ selection from BIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M = 5
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Figure 18: λ selection from AIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M = 5

ada lasso ada group lasso direct ada group lasso

lasso group lasso direct group lasso

0 1 2 3 0 1 2 3 0 1 2 3

0.0

2.5

5.0

7.5

10.0

0.0
0.1
0.2
0.3
0.4
0.5

0

1

2

3

4

0.0

0.1

0.2

0.3

0.4

0.5

0

5

10

0.0

0.2

0.4

0.6

λ

F
re

qu
en

cy

 Elic MSE

Figure 19: λ selection from BIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M = 10
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Figure 20: λ selection from AIC (histogram) and Omni (vertical lines) for MSE (dotted line) and
Elicitability Loss (dashed line) with N = 500 and M = 10
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Figure 21: Number of times each variable was included across λ values for N = 1000 and M = 5.
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Horizontal axis: grid of evaluated λ’s (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dsignal (dashed) values.
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Figure 22: Number of times each variable was included across λ values for N = 500 and M = 10.
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Horizontal axis: grid of evaluated λ’s (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dsignal (dashed) values.

Figure 23: Number of times each variable was included across λ values for N = 500 and M = 5.
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Horizontal axis: grid of evaluated λ’s (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dsignal (dashed) values.
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Figure 24: Number of times each variable was included across λ values for N = 100 and M = 10.
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Horizontal axis: grid of evaluated λ’s (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dsignal (dashed) values.

Figure 25: Number of times each variable was included across λ values for N = 100 and M = 5.

ada lasso ada group lasso direct ada group lasso

lasso group lasso direct group lasso

−6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0

10

20

30

10

20

30

log(lambda2)

va
r

0.3

0.6

0.9

Included
rep (%)

Horizontal axis: grid of evaluated λ’s (log scale); vertical axis: model coefficients D; gradient from blue
(highest - included) to red (lowest - excluded): proportion of replications coefficient was included in the
model. Horizontal lines: Dstrong(dotted) and Dsignal (dashed) values.
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B Metrics results

Table 6: Results for N = 1000 and M = 5

MSE Elic FVCI FRVI TMI FIVE

BIC

LASSO 0.0726 0.1366 0.6667 0.9980 0.9600 0.0040
adaLASSO 0.0638 0.1395 0.4837 0.2740 0.0050 0.9330

gLASSO 0.0750 0.1370 0.6667 1 1 0
gAdaLASSO 0.0867 0.1384 0.4542 0.1838 0 0.9950

direct gLASSO 0.0707 0.1367 0.6662 0.9958 0.9150 0.0070
direct gAdaLASSO 0.0879 0.1384 0.4525 0.1818 0 0.9940

AIC

LASSO 0.0747 0.1368 0.6665 0.9998 0.9950 0
adaLASSO 0.0464 0.1385 0.5583 0.4705 0.0450 0.7340

gLASSO 0.0750 0.1370 0.6667 1 1 0
gAdaLASSO 0.0541 0.1381 0.5233 0.3605 0 0.8490

direct gLASSO 0.0742 0.1368 0.6667 0.9988 0.9750 0.0025
direct gAdaLASSO 0.0551 0.1383 0.5302 0.3765 0 0.8375

Omni

LASSO 0.0416 0.1363 0.6668 1 1 0.0030
adaLASSO 0.0351 0.1368 0.6677 1 1 0.9590

gLASSO 0.0555 0.1368 0.6667 1 1 0
gAdaLASSO 0.0420 0.1367 0.6672 1 1 0.9955

direct gLASSO 0.0436 0.1365 0.6667 1 1 0.0070
direct gAdaLASSO 0.0433 0.1365 0.6670 1 1 0.9960

Results of all evaluated metrics for each method when N = 1000 and M = 5. In bold, the results with the best value. In grey, the
results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected.
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Table 7: Results for N = 500 and M = 5

MSE Elic FVCI FRVI TMI FIVE

BIC

LASSO 0.1215 0.1246 0.6665 0.9948 0.9000 0.0100
adaLASSO 0.0748 0.1361 0.4592 0.2245 0 0.9285

gLASSO 0.1315 0.1234 0.6667 0.9988 0.9750 0.0025
gAdaLASSO 0.1019 0.1366 0.4213 0.1385 0 0.9870

direct gLASSO 0.1025 0.1247 0.6662 0.9848 0.7350 0.0290
direct gAdaLASSO 0.1025 0.1362 0.4212 0.1373 0 0.9890

AIC

LASSO 0.1330 0.1236 0.6663 0.9992 0.9850 0
adaLASSO 0.0641 0.1330 0.5110 0.3777 0 0.7775

gLASSO 0.1315 0.1234 0.6667 0.9988 0.9750 0.0025
gAdaLASSO 0.0738 0.1326 0.4823 0.2782 0 0.8905

direct gLASSO 0.1302 0.1247 0.6668 0.9962 0.9500 0.0080
direct gAdaLASSO 0.0740 0.1324 0.4907 0.2948 0 0.8825

Omni

LASSO 0.0598 0.1230 0.6673 1 1 0.0100
adaLASSO 0.0539 0.1234 0.6673 1 1 0.9625

gLASSO 0.0847 0.1232 0.6667 1 1 0.0025
gAdaLASSO 0.0607 0.1232 0.6667 1 1 0.9895

direct gLASSO 0.0608 0.1232 0.6668 1 1 0.0285
direct gAdaLASSO 0.0624 0.1232 0.6668 1 1 0.9915

Results of all evaluated metrics for each method when N = 500 and M = 5. In bold, the results with the best value.

Table 8: Results for N = 500 and M = 10

MSE Elic FVCI FRVI TMI FIVE

BIC

LASSO 0.2508 0.2485 0.6667 1 1 0
adaLASSO 0.1306 0.2684 0.4687 0.2448 0 0.9165

gLASSO 0.2494 0.2485 0.6667 1 1 0
gAdaLASSO 0.1493 0.2654 0.4688 0.2313 0 0.9440

direct gLASSO 0.2505 0.2486 0.6668 1 1 0
direct gAdaLASSO 0.1553 0.2655 0.4625 0.2158 0 0.9560

AIC

LASSO 0.2508 0.2485 0.6667 1 1 0
adaLASSO 0.1149 0.2655 0.5123 0.3602 0.0100 0.8165

gLASSO 0.2494 0.2485 0.6667 1 1 0
gAdaLASSO 0.1356 0.2623 0.4865 0.2822 0 0.8950

direct gLASSO 0.2512 0.2484 0.6667 1 1 0
direct gAdaLASSO 0.1371 0.2617 0.4925 0.2980 0 0.8815

Omni

LASSO 0.1501 0.2483 0.6667 1 1 0
adaLASSO 0.0985 0.2482 0.6672 1 1 0.9275

gLASSO 0.1923 0.2484 0.6667 1 1 0
gAdaLASSO 0.1138 0.2482 0.6667 1 1 0.9455

direct gLASSO 0.1389 0.2483 0.6668 1 1 0
direct gAdaLASSO 0.1175 0.2483 0.6667 1 1 0.9575

Results of all evaluated metrics for each method when N = 500 and M = 10. In bold, the results with the best value. In grey, the
results that numerically have the best result, but are not relevant in the context, since there weren’t variables selected.
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