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RESUMO

Este trabalho tem por objetivo principal verificar a validade do algoritmo component-wise

boosting para prever a taxa de desemprego mensal na Região Metropolitana de São Paulo.

Para isto, desenvolvemos três modelos, um modelo completamente linear, apenas com learners

lineares, um modelo completamente não-linear, apenas com learners p-splines, e um modelo

misto. O modelo misto utiliza learners p-spline para os preditores relacionados a preços e learners

lineares para os demais. Tal configuração é motivada por estudos que apontam uma relação

não-linear da curva de Phillips; assim, o modelo misto aplica a modelagem não-linear com

consciência das relações entre a variável dependente e seus preditores. Os modelos boosting

utilizam 159 preditores e são testado entre 2013 e 2019, os anos em que ocorreu uma das maiores

recessões da história brasileira. Para testar a validade do modelo, utilizamos o modelo SARIMA

como benchmark. Os resultados indicaram uma superioridade em comparação com o benchmark

dos três modelos para os horizontes de previsão h = 2 até h = 11. Além disso, o modelo misto se

destaca com os melhores resultados em métricas de desempenho, seguido pelo modelo linear e

depois pelo modelo completamente não-linear. O trabalho conclui que a modelagem mista tendeu

a ser superior, especialmente para horizontes de previsão intermediários (h = 5 até h = 11), e

também destaca a importância de usar a modelagem não linear com consciência das relações

entre os preditores e a variável dependente.

Palavras-chave: Previsão do Desemprego, Previsão em Alta-dimensionalidade, Previsão Não-

linear, Boosting, P-splines.



ABSTRACT

The main purpose of this paper is to verify the validity of the component-wise boosting algorithm

to predict the monthly unemployment rate in the São Paulo Metropolitan Region. For this, we

developed three models, a completely linear model, with only linear learners, a completely

non-linear model, with only p-splines learners, and a mixed model. The mixed model uses

p-spline learners for price-related predictors and linear learners for the rest of them. Such a

configuration is motivated by studies that point out a non-linear relationship of the Phillips

curve; thus, the mixed model applies non-linear modeling with awareness of the relationships

between the dependent variable and its predictors. The boosting models use 159 predictors and

are tested between 2013 and 2019, the years when one of the biggest recessions in Brazilian

history occurred. To test the validity of the model, we used the SARIMA model as a benchmark.

The results indicated a superiority compared to the benchmark of the three models for the forecast

horizons h = 2 through h = 11. In addition, the mixed model stands out with the best results in

performance metrics, followed by the linear model and then by the completely non-linear model.

The work concludes that mixed modeling tended to be superior, especially for intermediate

forecast horizons (h = 5 trough h = 11), and also highlights the importance of using nonlinear

modeling with awareness of the relationships between predictors and the dependent variable.

Keywords: Unemployment Forecast. High-Dimensional Forecast. Non-linear Forecast. Boosting,

P-splines
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1 INTRODUCTION

The use of machine learning techniques for macroeconomic time series forecasting is

a growing trend in economic research. This project aims to expand the trend for the Brazilian

macroeconomic environment by testing a particular machine learning technique, the component-

wise boosting algorithm, for a particular time series, the unemployment rate of the Metropolitan

Region of São Paulo (MRSP). 159 different predictors of the macroeconomic theme are used in

a monthly forecasting exercise tested from 2013 through 20191.

Although considerable research has been done in macroeconomics using non-linear

relationships between the variables, when applied to forecasting, linear models historically tended

to have better performance compared to non-linear approaches (KAUPPI; VIRTANEN, 2021).

Nevertheless, this thesis may be changing with the expansion of machine-learning algorithms

in economic research. As given by Medeiros et al. (2021), new approaches using artificial

intelligence consistently produce better performance results compared to traditional linear

models. In this project, we test this statement with a boosting algorithm for the unemployment

rate in Brazil.

Between 2014 and 2016, Brazil faced one of the largest and deepest recession of its

history. This has not only impacted the current conditions of the country’s population but has

also pushed society to be more concerned about the future of the country, increasing attention to

information on economic status, such as forecasts of GDP, inflation, and interest rates. Between

these macroeconomic numbers, unemployment rates are one of time series that brings most

interest for all classes of society, since it can give insights about employment opportunities for

workers or about product demand for companies. The precision of our knowledge of future

unemployment creates a more stable path for the decision-making of individuals and companies.

Figure 1 shows the complete dependent time series. As can be seen, the data has non-

ordinary movements, particularly following the beginning of Brazilian crisis in 2014. Modeling

macroeconomic can became especially difficult when done in an environment of recession, thus

our forecasting exercise represents a real challenge for any prediction strategy.

The methodology to test the validity of boosting algorithm and its different configurations

will be based on a comparison of performance measures in a dedicated test segment of the

time series. This test segment differs from another part of the series, the train segment, a time

interval in which the models will fit their parameters with knowledge of the dependent variable
1 The code repository for this project can be found at https://github.com/pedroskorin/boosting-thesis-ufrgs.
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Figure 1 – Unemployment rate in the Metropolitan Region of São Paulo (MRSP)
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true value. The benchmark selected to judge the general competitiveness of boosting is the

Seasonal Autoregressive Integrated Moving Average (SARIMA) model. This decision was based

on the consolidation of the model in the unemployment rate forecasting literature, as can be

seen in Chapter 2. Boosting will be considered a good instrument if it brings better performance

measures than SARIMA. Also, the better configurations of boosting will be those that bring

better performance measures in comparison to the other configurations.

In short, the boosting algorithm uses a set of learners based on predictors to create the

desired forecast. The learners used in this project are divided into two types: linear learners,

estimated by ordinary least-squared, and non-linear learners, modeled via p-splines. The different

results given by both linear and non-linear learners are a crucial aspect of the project, since

they insert the research into the larger discussion of non-linearity modeling in macroeconomic

forecasts.

Three models are proposed and tested: a complete linear model, where all predictors

enter in the algorithm with linear learners; a complete non-linear model, where all the predictors

appear in the algorithm with p-splines learners; and finally, a mixed model, where only the

predictors related to prices are modeled with non-linear learners, with the rest using linear ones.

This last proposal is based on the discussion about the format of the Phillips curve, the trade-off

relation between unemployment and inflation. Research indicates the non-linearity of this relation

(DEBELLE; LAXTON, 1997) (XU et al., 2015) (BYRNE; ZEKAITE, 2020); therefore, the
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incorporation of the third model asks if the conditional expectation of the unemployment rate

in the MRSP could be better modeled respecting the most recent research on employment and

price relation. Finally, we emphasize that the results presented in this project have a restricted

nature. Here we use only one time series for forecasting, so the results of the project should be

associated with possible specific characteristics of the time series such as the region or also the

time interval of the exercise.

The rest of the project is organized as follows: First, in Chapter 2, we will present the

literature review for both the boosting algorithm and unemployment forecasting. Secondly, in

Chapter 3, we will explain how the boosting algorithm actually works, from the linear learners

to the non-linear p-spline learners. In Chapter 4, it is time to explain the forecasting process, the

benchmark model and the selected performance measures and in Chapter 5 we understand more

deeply the forecasting exercise by exploring the created data set and especially the dependent

variable. Chapter 6 brings the results and, finally, Chapter 7 concludes the project.
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2 LITERATURE REVIEW

The review of the literature will be divided into two sections. First, we explore how

boosting was developed, its history and its evolution to the model we use in this exercise.

Macroeconomic applications and discussion of the linearity of the model are also reviewed. The

second section concentrates on unemployment forecasting, independently of whether it is done

using boosting or not. Reviewing other unemployment forecast models is important because we

need to ensure that common practices are applied in this project based on cutting-edge research

practices.

2.1 THE L2-BOOSTING ALGORITHM

The L2 boosting model is an iterative algorithm of the ensemble type, with a central

objective of bias and variance reduction (ZHOU, 2019). We say that the boosting model is an

iterative algorithm because it uses mathematical procedures that start with an initial value to

generate a sequence of improved approximate solutions for the problem class, in which the i-th

iteration is derived from past iterations. Furthermore, we say that the model is of ensemble type

because it uses multiple learning algorithms to obtain better prediction performances.

The origin of boosting is based on the question proposed by Kearns and Valiant (1989):

Can a set of weak learners create a single strong learner? In this question, weak learners

mean methods with low predictive ability, that is, with accuracy only slightly better than random

guessing. Strong learners, on the other hand, are methods with high accuracy. The first affirmative

answer to the question comes with the 1990 article by Schapire (1990).

Schapire’s paper describes a method of converting weak learning algorithms into one

that achieves arbitrarily high accuracy. The article is built around a conjecture, dubbed the

equivalence between strong and weak learning. This conjecture states that a conceptual class

C has weak learning if and only if it has strong learning. It is clear that strong learning implies

weak learning, but the non-trivial result consists in the return of the theorem: it is possible to

construct a strong learning method from a weak method. Later on, the operation ends up being

known as the boosting method, precisely because it improves weak methods, as "to boost" means

“to improve”.

One main obstacle in Schapire’s paper is that an application was presented exclusively on
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binary data. Later, still in the 1990s, we would observe two important steps in the development

of the boosting algorithm. In Freund (1995), the author goes one step further than Schapire in

substantiating the basic aspects of the method. First, by reducing the number of assumptions

needed to apply the algorithm, and second, by applying the boosting method to non-binary data.

The second important step is the work of (BREIMAN, 1996). Breinam manages to interpret

the boosting algorithm as a gradient algorithm in a functional space, inspired by numerical

optimizations and statistical estimation. In practice, this implies that boosting could work for

methods beyond classification. The algorithm increases its generalization, and consequently

creates more potential for applications.

Finally, a few years later, Friedman, Hastie, and Tibshirani (2000) and Friedman (2001)

develop the boosting method in a more generic form, for regressions that are implemented as

optimizers. They present a set of loss functions and, when using the quadratic error function as

the loss function, since the loss function represents the Euclidean norm (with parameter equal to

2) we name the boosting algorithm L2 boosting. With the development of the new method, the

next years of research on the algorithm focused on the theoretical foundation of the instrument,

along with its main applications. The article also presents the two main tuning parameters of the

algorithm for regression: M , the stopping iteration factor, and v , the step-length factor. More

details about their role in the algorithm will be presented in the future, but their presentation

is important because part of the following discussion is about the best ways to choose these

parameters.

The main authors responsible for the theoretical foundation of L2 boosting were Bühlmann

and Yu (2003) and Bühlmann and Hothorn (2007). In the article Boosting with the L2-Loss:

Regression and Classification, the authors verify that computationally L2 boosting is successful

if learning is sufficiently weak. Attempting to apply the method to strong learners will lead

to so-called overfitting, i.e., an extremely biased fit. The two types of weak learners that are

explored in the article are the linear learners and the splines learners, the same as those used in

this project. Following the history of the algorithm, in the article Boosting Algorithms: Regular-

ization, Prediction and Model Fitting (BÜHLMANN; HOTHORN, 2007), the authors present

explanations and illustrations of boosting concepts, along with new derivations of the model. The

work is of a practical nature, focusing on presenting empirical examples of boosting applications,

as well as the explicit algorithms. To support this presentation, the authors develop the dedicated

mboost ("model-based boosting") package (HOTHORN et al., 2021) for the R language, which

is currently being updated and serves as one of the main equipment for actual practice work with
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the algorithm.

A key application soon realized for the model consisted of prediction exercises in high di-

mensionality (BUEHLMANN, 2006). One problem encountered in ordinary regression exercises

is the limit on the number of covariates imposed by the number of observations. A system of

equations must be solved to find the parameters; thus, if there are more variables than equations

available, it becomes impossible to solve the system. However, the L2 boost does not have this

constraint. Bühlmann’s article, Boosting for High-Dimensional Linear Models, is the first to

demonstrate the consistency of the exercise for the algorithm:

As the main result, we prove here that L2-Boosting for linear models yields
consistent estimates in the very high-dimensional context, where the number
of predictor variables is allowed to grow essentially as fast as O(exp(sample
size)), assuming that the true underlying regression function is sparse in terms
of the l1-norm of the regression coefficients (BUEHLMANN, 2006).

The use of boosting as a tool in high-dimensional regressions has helped open the door

to applications in several areas where such an exercise was previously impossible. I highlight

here the area of macroeconomics. The paper Forecasting with many predictors: Is boosting

a viable alternative? by Buchen and Wohlrabe (2011) uses component-wise boosting for US

industrial production forecasting. Their exercise consisted on OLS base learners and a L2-loss

function. It used 139 monthly time series that spread from 1959 through 2002, and both AIC

and cross-validation were tested for the selection of the meta parameter M . By comparing with

a set of other forecasting models, the authors concluded the boosting algorithm was a serious

competitor for forecasting US industrial production.

The same authors in Wohlrabe and Buchen (2014) show the competitiveness of the

boosting algorithm for a larger macroeconomic data set in a high-dimensionality exercise. The

paper not only compared the algorithm with a consolidated benchmark, but also their objective

was to analyze to what extent different configurations of the model could impact forecast

performance. As a result, boosting mainly outperforms the autoregressive benchmark and, for the

selection of the meta parameter M , the cross-validation technique outperformed the traditionally

employed information criteria.

Forecasting regional macroeconomic aggregates has also been a subject of application of

boosting. Robert Lehmann and Klaus Wohlrabe use component-wise boosting as a forecasting

tool for the quarterly gross domestic product of three regions in Germany, the state of Saxony,

the state of Baden-Wuerttemberg and East Germany from 1997 to 2013, in their paper Boosting

and regional economic forecasting: the case of Germany (LEHMANN; WOHLRABE, 2017).
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The purpose of the paper was to validate the application of boosting in the forecasting of

regional variables and to observe the choices made by the algorithm. As a benchmark, they

used the SARIMA model, and in the selection of M the authors used AICc. The authors

conclude that boosting is quite successful in its goal, being superior to SARIMA for h = 1 and

h = 2. Additionally, regional variables appear frequently in the algorithm’s choice, indicating a

preference for such indicators.

Another application in macroeconomics that the boosting algorithm has already been

used to is to forecast macroeconomic variables that can be disaggregated. For example, following

the definition of the gross domestic product of some country, we could also forecast each

component independently and then add these results. Furthermore, it is possible to think that

some components, when selected, present a better forecasting performance than others. Within

this discussion, Jing Zeng publishes her article Forecasting Aggregates with Disaggregate

Variables: Does boosting help to select the informative predictors? (ZENG, 2017). Author Jing

Zeng’s work shows the effectiveness of using disaggregate variables combined with the boosting

method to predict the original aggregate variable.

Related to the comparison of linear and non-linear boosting models, Boosting nonlinear

predictability of macroeconomic time series (KAUPPI; VIRTANEN, 2021) brings both OLS

and spline learners for a forecasting exercise with 129 macroeconomic time series. The authors

use lags of the target variable in the exercise, and present three different models: (i) a model

using only OLS linear learners; (ii) a two-staged model, where first a conventional linear auto-

regressive model is applied and then a boosting with spline learners is used; and finally, (iii) a

model using only spline learners. The paper indicates, by looking at the out-of-sample forecasting

results and by applying the Giacomini & White test of Predictive Ability (GIACOMINI; WHITE,

2006), that the macroeconomic time series had a better than expected non-linear predictability,

with the two-stage model bringing on average the best results. The decision regarding the three

different models used in this project is based to some extend in the cited paper, with a completely

linear model, a completely non-linear model, and a mixed one. The difference, however, is that

here we will also use other predictors in the forecasting exercise.

A last non-unemployment related article of boosting to be considered, applied in the

Brazilian context, is the article Using boosting for forecasting electric energy consumption

during a recession: a case study for the Brazilian State Rio Grande do Sul by Lindenmeyer,

Skorin, and Torrent (2021). The authors here also aimed to validate the use of the boosting

algorithm in forecasting a time series. In this case, it consists of the monthly time series of
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electricity consumption in Rio Grande do Sul from 2002 to 2017, the forecasting exercise being

contemporaneous with the Brazilian political-economic crisis. The work used 822 predictors,

with meteorological variables, regional economic variables, national economic variables, and

international economic variables. As a benchmark, the authors used the SARIMA model. The

paper’s result is positive for the boosting side, which is superior to the SARIMA model for h = 1

and h = 2. Also, selecting M with AIC gives better results than selecting it by cross-validation.

It is interesting to comment on the emphasis in the algorithm for moments of uncertainty, such

as the recession in this case, because these are the moments where the forecast and a look for the

future present the greatest demand.

2.2 FORECASTING UNEMPLOYMENT

In last section, the boosting algorithm, its history and its applications for macroeconomic

time series were the main topics of the literature review. Now we move for the literature of

forecasting unemployment, independently if it’s done by the boosting method or not.

The first article reviewed was the only found that related boosting and specifically

unemployment forecasting. The article Boosting nonlinear additive autoregressive time series

(SHAFIK; TUTZ, 2009) presents a boosting algorithm with b-splines learners and tests the

model in two exercises, comparing the results with a set of alternative competitive models. The

first exercise is a univariate forecast for the Federal Reserve unemployment index. Fifteen lags

of the series are used and prevision is done with and without seasonality control. The second

exercise is done in a high-dimensionality environment, where the US unemployment rate is the

target variable. The results in the first exercise are not very conclusive, with boosting performing

closely with other benchmark models. However, boosting performs particularly well in the

high-dimensionality forecast, where a more complex scenario is proposed. The conclusions

supports the use of boosting in forecasts with multiple predictors, as done in this project.

An increasing trend in unemployment forecasting, especially for multivariate exercises,

is the use of recent internet searches as predictors in the model. The articles The predictive

power of Google searches in forecasting US unemployment (D’AMURI; MARCUCCI, 2017)

and Short-term forecasting of the US unemployment rate (MAAS, 2020) use Google data to

forecast unemployment in the US. The first article adopts a standard autoregressive model with

explanatory variables to test the effectiveness of forecasting unemployment with Google data.
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Comparing the root mean forecasting squared errors (RMFSE), the authors show the Google-

based model outperforms a set of different benchmark models containing linear and non-linear

approaches, particularly in longer time horizons. However, this superiority diminishes when

larger samples and short horizons are used. The result goes in the opposite direction to Short-

term forecasting of the US unemployment rate, which claims the effectiveness of Google-based

models for short-horizon forecasting. This second article uses the Mixed-data sampling (MIDAS)

regression proposed by Ghysels, Santa-Clara, and Valkanov (2006) and compares the results with

an autoregressive (AR) model and the D’Amuri and Marcucci (2017) model. MIDAS performs

well on shorter horizons compared to AR, with statistical significance using the Diebold-Mariano

test (DIEBOLD; MARIANO, 2002). However, compared to the D’Amuri and Marcucci (2017)

benchmark, the results are diffuse and no model has statistically significant better results.

Agents’ expectations is also a set of predictors that was tested to see if it could help

predict unemployment rates. In article Claveria (2019), the author studies the performance gain

that exists in the addition of variables that reflect the future vision of consumers, particularly

the degree of consensus between these consumers. The adopted methodology consists of first

making a prediction via ARIMA as a benchmark and then adding the predictors to the ARIMA

model, thus forming an ARIMAX model. The article uses monthly data from a set of European

countries to test its hypothesis, and the main performance metric applied was MAPE. To ensure

a test of statisical significance for the difference between the model’s accuracies the author used

Diebold-Mariano. In conclusion, the paper understands that in general adding the indicators of

expectations implies an improvement in the performance of the models. In view of these results,

we also added expectations indicators as predictors in this project.

The discussion about linear and non-linear methods has also emerged in the unemploy-

ment forecasting literature. The article Unemployment Rate Forecasting: A Hybrid Approach

(CHAKRABORTY et al., 2021) combines linear and non-linear univariate techniques to predict

unemployment rates in a series of countries: Canada, Germany, Japan, The Netherlands, New

Zeeland, Sweden, and Switzerland. The study is motivated by the unusual behavior of unem-

ployment time series in the last four decades, series with asymmetric cyclical movements and no

consistent trend at all. Seven methods are proposed. Four single approaches: the Autoregressive

Integrated Moving Average (ARIMA) model, the Autoregressive Neural Network (ANN) model,

the Support Vector Machines (SVM) model, and the Artificial Neural Networks (ANN) model.

Also, three two-step approaches are proposed: the hybrid ARIMA-ANN model, the hybrid

ARIMA-SVM model, and the hybrid ARIMA-ARNN model. In the three cases, the first step
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uses ARIMA and is meant to model the linear features of the time series and the second step uses

the nonlinear technique. Performance metrics for one and three months ahead forecasting show

the hybrid approaches, particularly ARIMA-ARNN, outperforms all linear and nonlinear single

models consistently. This result helps motivate the exercise proposed in this project, especially

the mixed model already cited.

Another article that uses non-linear techniques to forecast unemployment rates is Dumičić,

Čeh Časni, and Žmuk (2015). The authors select five European countries where it is understood

that the 2008 crisis had a significant impact on employment. They are Greece, Spain, Croatia,

Italy and Portugal. In other words, here we also have a forecast focused on a time of recession,

like what we ended up having in this project when forecasting unemployment rate in Brazil.

The data are quarterly and the forecast outside the training sample occurs from 2008 to 2013.

The objective of the article is to determine the most accurate of three smoothing methods

for short-term unemployment forecasts: (i) Double exponential smoothing, (ii) Holt-Winters‘

multiplicative method, and (iii) Holt-Winters‘ additive method, where the choice of the smoothing

method is justified by its ability to quickly adjust to changes in trends. To test the three models,

the MAPE, MAE, and RMSFE metrics are compared. The analysis of the results does not

provide an optimal model for all cases, since the choice of the best model ends up depending on

the country under analysis and up to a certain limit on the metric used for the evaluation. It is

important to highlight this variability because a good model does not only depend on its own

characteristics, but it is also important to know when it is valid to use it. For example, different

situations may require more specific models. In the case of the article, the Double exponential

smoothing model is selected as the best candidate for the cases of Portugal and Spain. For Italy

and Croatia, the model selected was the Holt-Winters‘ multiplicative method. Finally, for Greece,

the optimal choice was the Holt-Winters‘ additive method.

Within the Machine-Learning prediction literature, article Katris (2020) compares several

models to forecast time series of unemployment rates from more than 20 countries. There are

five sets of models analyzed: the FARIMA, FARIMA/GARCH, Artificial Neural Networks

(ANN), Support Vector Regression and Multivariate Adaptive Regression Splines models. As

a benchmark, the ARIMA and Holt-Winters models are used and, as usual in the literature,

the comparison metrics are MAE and RMSFE. The motivation for the diversity of models

presented, according to the author, consists of the attempt to capture the different characteristics

that may be present in the studied series, using models with respect to the characteristics of

long-memory, heteroskedasticity (ie FARIMA and ARIMA/GARCH models) and non-linearity
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(ie ANN, SVR and MARS models). In addition, an attempt is made to understand whether there

is any dependence in choosing the most efficient model in relation to forecast horizons and

geographic location of countries. For this, the author uses Friedman nonparametric statistical test

and post hoc comparisons. Data are monthly, adjusted for seasonality, and models are univariate.

The results again do not point to a model that is superior to all: we have a better performance

of FARIMA models for small forecast horizons and a better performance of ANN-type models

with larger horizons, such as h=12. The result again confirms the importance of understanding

that different scenarios may require different tools.

Using the literature as a reference, we adopted some practices for the analysis of boosting

in the Brazilian unemployment context. Since SARIMA appeared a number of times as a

proposed model and as a benchmark in recent literature, it is the model selected for testing

boosting in this project. Also, the metrics for measuring model performance follow what have

been cited in recent papers on unemployment and boosting performance: MAPE, RMSFE, and

the Giacomini & White test. How SARIMA is implemented as well as how the boosting functions

will be explained in the next chapters.
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3 THE BOOSTING METHOD

3.1 THE ALGORITHM

The boosting algorithm constructs iteratively a linear or non-linear model, depending

on the model specifications. In this exercise, we will use both approaches. Given a vector of

predictors ®xt the boosting method is described as the following adjusted function:

f̂ (®xt ) = f̂ (0) + v
M∑︁

m=1
b(xm

t ) (1)

Where f̂ (0) is a constant value, xm
t is the selected predictor in the mth iteration and the

parameters v and M represent the metaperemeters of the model, with v ∈ (0, 1) and M ∈ N.

The notation b represents univariate functions, and they consist of learners of boosting. In this

project, b can take the form of a linear or a p-splines function. For example, the linear form of

the function b is described as

b(xm
t ) = 𝛽 · xm

t , (2)

for some xm
t ∈ ®xt and 𝛽 being a constant. The parameter v is known as the shrinkage

parameter. It reduces the learner’s variance and is used to improve the method’s performance. It

can be interpreted as the size of the step we are willing to make in each iteration. For example,

if v = 1 we would embrace all the impact of the learner in the final model. On the other hand,

if v = 0, we would not be embracing new learners at all. In the literature of boosting, the

established value for v is 0.1, hence this is the value we use in the forecasting exercises.

The parameter M shows how many iterations the boosting algorithm is going to have.

One needs to be careful when selecting the value of M , since too many iterations can produce

over-fitting2 in the model, and too few steps may not be enough to appropriately use information

from predictors. The usual approach selecting M is using an information-criteria or a cross-

validation process with a predetermined ceiling value. In this project we use k-fold to choose the

number of iterations M , and we also set the maximum value M so that the choice of the ceiling

of M does not interfere with the algorithm choice of M . For this, we select a maximum value
2 Overfitting describes when a statistical model fits the previously observed data set very well, but proves

ineffective at predicting new outcomes.
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of M large enough for the choices to be smaller than the maximum, depending on the model

structure.

In practice, the structure of the algorithm follows the following logic. First it sets the

function of y as the average of y , such that f̂ (0) = ȳ . After that, the algorithm regress the residuals

created in this first guess u (0) = y − f̂ (0) with each variable following it’s respective model

specifications. For example, it may regress u (0) with predictor xi using a linear model, as in

equation 3, or using a p-splines model, as in equation 4.

Ê [u (0) |xi ] = 𝛽xi (3)

Ê [u (0) |xi ] = Ŝ(xi ) (4)

After regressing the residual with each predictor, the algorithm calculates the Sum of

Squared Residuals (SSR) for each model and chooses the i th predictor with the lowest SSR. Note

that this means the algorithm observes all possible contributions of the predictors and selects the

combination of variable and model with the best fit for the error that still exists in the prediction.

Bellow there is a summary of the step-by-step algorithm instructions.

1. Set m = 0 and begin with f (0) = ȳ .

2. From each iteration step from m = 1 to M repeat:

2.1. Calculate the error vector u (m) = y − f (m−1) .

2.2. Regress u (m) with each predictor xi , i ∈ {1, 2, ..., n}, using the specified function

gi (gi being a linear or a p-splines univariate function of predictor xi ) and creating a

prediction û (m)
i .

2.3. Select i∗ ∈ {1, 2, ..., n} that minimizes the Sum of Squared Residuals
∑t

k=1(û
(m)
i −

u (m))2.

2.4. Set f (m) = f (m−1) + v · gi∗ .

3.2 P-SPLINES IN PRACTICE

As the name indicates, p-spline is a special type of spline function. A spline function is a

piecewise polynomial function that maps values from a domain [a, b] to the set of real numbers
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R. To build the spline function, first we partition the domain into n disjoint subintervals of [a, b].

Then, for each of the subintervals, we define polynomial functions Pn and the spline consists

of the combination of the various polynomials created in all the subintervals. Two important

parameters of the function are the knots and the degree of the spline. The knots are the points

that define the partitions; that is, if we divide the domain [a, b] into n subintervals, we will have

n − 1 knots. The degree of a spline is related to its polynomials Pn that make up the function,

where the degree of the spline is defined as the highest degree among the Pn polynomials. In this

project, we use first-order splines.

Figure 2 – Scatter-plot example
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Source: Elaborated by the author (2022)

One way to represent the first-order spline model is to use basis functions of the form

(x − k )+, where k represents a knot in the model. The expression (x − k )+, which could also be

called the "positive part" of the function x − k , represents a function that is zero for values to

the left of k and of the form (x − k ) for values to the right of k . The + sign is an indication to

zero the function in the case of negative values. To illustrate how this helps to represent a spline

model, take as an example data from Figure 2 and suppose that we select as knots the points

from the x-axis 0.3 and 0.6. The basis for creating the first-order spline model would be given

by the expressions3:

1, x , (x − 0.3)+ and (x − 0.6)+
3 The basis 1 represents a constant value.
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and graphically are represented by the Figure 3. To create the splines model, we find the

parameters that fit the mentioned basis functions to the data we have. In doing so we find the

results in Figure 4.

Figure 3 – Linear spline base learners
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Figure 4 – Curve-fitting using splines 1
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The generalization of the choice of knots leads us to the following way to represent the

first degree spline model. Here, K represents the total number of knots in the model, and each

(x − ^k )+ represents a linear spline basis function.
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f (x) = 𝛽0 + 𝛽1 · x +
K∑︁

k=1
bk (x − ^k )+. (5)

Remember, though, that we use p-splines in this project. The difference in p-splines from

the one just explained is the penalty given on the coefficients bk when fitting the model, thus

given the name penalized-splines (p-splines). Using an adequate number of knots and a proper

penalty format, the fit to the data will be flexible and smooth enough, as in the example in Figure

5. We follow the penalty format given in article Eilers and Marx (1996). To get into the details of

splines and p-splines, we recommend the basic reference Ruppert, Wand, and Carroll (2003).

A final example that can help in the understanding of p-splines curve-fitting application is

Figure 5, where using motorcycle crash helmet impact data from Silverman (1985) we illustrate

a fitted p-spline function. The spline divides the domain [0,60] using 20 knots that are at equally

spaced quantiles and a first degree polynomial. Note that in the example presented, we have an

efficient solution to fit non-linear data.

Figure 5 – Curve-fitting using splines 2
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In this project, the calculation of the boosting curves for both linear learners and p-

spline learners is done using the mboost package implemented in R. For the p-splines we use

20 equidistant knots and polynomials of one degree as parameters of the function ’bbs’. The

algorithm used in the package to calculate the p-splines functions is based on the article Eilers

and Marx (1996).
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4 FORECASTING EXERCISE SPECIFICATIONS

4.1 THE FORECAST ENGINE

The forecasting mechanism is an expanding window exercise that recalculates the param-

eters for each observation that is predicted. The exercise being an expanding window means that

the size of the interval that the model uses to estimate its parameters increases over iterations; that

is, at each iteration, we incorporate the most up-to-date information without removing older infor-

mation. For example, if when forecasting the observation yt we use the interval {y1, y2, ..., yT } to

train the model, when forecasting yt+1 we would use the interval {y1, y2, ..., yT , yT+1}. Addition-

ally, in each iteration, the algorithm calculates the parameters of the model again, incorporating

potentially new information about the relationship between the predicted time series and its

predictors.

To fit the different forecast horizons, we create a different dependent series yph to be

predicted for each horizon h. We will show in next chapter the unemployment rate will need

a transformation in order to reach stationarity. These transformations involve taking the log

followed by a difference in the series. When we select the parameter h, we take the difference

between the observation t and t − h to build the new desired time series.

yph
t = ln(yt+h) − ln(yt ) (6)

By doing this shift, we calibrate the algorithm to consistently predict h steps ahead in

the time series, so when applying the parameters to the most recent observations, the algorithm

returns a prediction for the observation of the index t + h. To find the predicted value of yph
t , we

estimate the following equation using the algorithm explained in last chapter:

ŷt
ph

= f̂ (0)h + v
Mh∑︁

m=1
bh (xm

t ) (7)

The last step in the forecasting mechanism is to return the predicted value to its original

form. We do this by summing the predicted value ŷt
ph with the logarithm of yt and then taking

the exponential of the result:

ŷt+h = e(ln(yt )+ŷph
t ) (8)

For the prediction exercises performed in this paper, we set an index t∗ to be the first
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predicted observation, regardless of the h chosen. Note that in this format, for larger values of h,

we have fewer observations being used in the training interval, since the initial observation is

fixed at t = 1, thus shorting the interval of parameter estimation.

4.2 BENCHMARK SARIMA

To understand whether the proposed models are an efficient method of forecasting the

desired time series, we need to compare their performance with what is called a benchmark. A

benchmark model serves to verify the validity of the proposed model, one of the main objectives

of this work. As we saw in the review of the literature, the SARIMA model was used regularly

for this task; therefore, we embrace its use in this project.

The SARIMA model is an auto-regressive integrated moving average method. Unlike the

models proposed in this paper, SARIMA is a univariate statistical method, which means that it

uses only one time series as a predictor for the forecasting exercise. However, decisions have

still to be made related to the model parameters. The main parameters that have to be selected

are the ones of the composition of SARIMA: the number of AR (autoregressive) time lags, the

order of MA (moving avarage) composition and also the number of times the data have had past

values subtracted.

To decide on the model parameters, we use the Hyndman and Khandakar (2008) automatic

time series forecast algorithm. In each iteration, the algorithm selects the optimal parameters

using an AIC criterion. Also, we open the possibility for seasonal components for the algorithm to

choose when selecting the components of SARIMA, thus ensuring a possible seasonal dynamic.

In short, the algorithm applies a sequence of different tests to select the parameters. If no

seasonal component is found, the algorithm considers a model ARIMA(p, d , q) where the

selection of the parameter d is based on successive KPSS uniroot tests as (KWIATKOWSKI

et al., 1992). On the other hand, if a seasonal component is found, the algorithm considers an

SARIMA(p, d , q) (P, D, Q)m model where D is selected depending on an extended Canova-

Hansen test (CANOVA; HANSEN, 1995)4.

Following the explanation given by Hyndman and Khandakar (2008), in the case of

model ARIMA(p, d , q), it represents a process given by
4 For more detail about the algorithm decision making process, see sections 3.1 and 3.2 of Hyndman and

Khandakar (2008).
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h1(B) (1 − Bd )yt = c + h2(B)𝜖t (9)

where {𝜖t } is a white noise process with mean zero and variance 𝜎2, h1 is a polynomial

of order p, h2 is a polynomial of order q and B is the backshift operator. On the other hand, for

the case of SARIMA(p, d , q) (P, D, Q)m, it represents a process given by

h3(Bm)h1(B) (1 − Bm)D (1 − B)dyt = c + h4(Bm)h2(B)𝜖t (10)

where h3 and h4 are polynomials of order P and Q respectively. With d and D known,

the choice for p, q, P and Q is made using an information criterion.

4.3 PERFORMANCE MEASURES

To understand and compare the forecast quality of each proposed model, we introduce in

this section performance measures. Performance measures aim to classify different models in

terms of their ability to forecast a specific time series, and they generally do this by calculating

the magnitude of error between the forecasting values and the real observations.

What is considered a good forecast depends on a set of different characteristics of what

is forecasted. For example, in some scenarios, detecting a fall in a time series may be more

important than detecting a rise, therefore, more weight should be given to a low capacity in

predicting falls. In the case of this work, we choose performance measures that are already

applied in the literature of unemployment rate forecast, so we are aligned with established

measures.

The first performance measure selected is the Mean Absolute Error (MAE). As the name

indicates, we get this indicator by taking the arithmetic mean on the Euclidean distance between

the forecasted values and the real observations. To emphasize the performance measures use

out-of-sample forecasting data, assume we are using the index {1, 2, ..., t} to train the models

and the index {t + h, ..., T } to test them. With this notation, MAE is described as the equation

below:

MAE =
1

(T − t + h − 1)

T∑︁
i=t+h

|ŷi − yi |. (11)

The second performance measure aims at understanding the proportion of this absolute

error with the real observations. It is the Mean Absolute Percentage Error (MAPE), and we
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calculate it by dividing the absolute forecast error by the original value.

MAPE =
1

(T − t + h − 1)

T∑︁
i=t+h

|ŷi − yi |
yi

. (12)

The third performance measure penalizes larger errors more proportionally to errors

closer to the real observation. It does this by taking the average not on the simple errors, but on

the square of them. It is the Root Mean Square Forecast Error (RMSFE):

RMSFE =

√√√
1

(T − t + h − 1)

T∑︁
i=t+h

(ŷi − yi )2. (13)

The forth and fifth performance measures aim to bring information regarding the distribu-

tion of the forecast errors. P90 and P95 indicate the 90% and 95% percentiles of the calculated

absolute errors. By doing that we can understand what is considered a large deviation from the

real value of each model. If they are small values, we can assume that the model rarely makes

large forecast mistakes.

Lastly, as seen in Chapter 2, the unemployment forecasting literature in general uses

the Diebold-Mariano test more frequently to test for statistical significance of predictive ability.

However, we avoided using the Diebold-Mariano test because it assumes non-nested models,

which is not the case in this project. Thus, in a similar way to work Kauppi and Virtanen (2021),

we used the unconditional version of the Giacomini & White test, which does not assume

non-nested models, to test for statistical significance in model forecast accuracy. In practice,

we apply the gw.test function available in the afmtools package from the R environment. The

null hypotheses here is that both models being compared have the same forecast accuracy, so

if we reject the null-hypothesis, we build evidence to validate one model over another. An

important point is the fact that the validity of the Giacomini & White test lies in the hypothesis

of "nonvanishing estimation errors", that is, using expanding-window as we do in this project

would not be completely adequate for the test performed. However, again in the same way as

Kauppi and Virtanen (2021), we understand that the application of a fixed size to the estimation

window would not fully utilize the capabilities of the boosting models.
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5 DATASET

5.1 UNEMPLOYMENT RATE ANALYSIS

After explaining the boosting model and specifications regarding how the forecast will be

conducted, we turn to the dataset used in the exercises. The selected predicted time series yt is the

unemployment rate of the Metropolitan Region of São Paulo (MRSP). Its source is the Fundação

Sistema Estadual de Análise de Dados, Pesquisa de Emprego e Desemprego (Seade/PED)

and the time series contains hidden unemployment (precarious work5 and discouragement

unemployment) and open unemployment. This differentiation is important in emerging countries

such as Brazil, where informal work represents a significant portion of jobs.

The unemployment rate in MRSP has monthly frequency and because of its definition,

yt ∈ [0, 1]. Our time series analysis starts in January 1996 and runs through July 2019, so we

have 282 observations of more than 20 years of Brazilian employment history. In these twenty

years, Brazil has experienced five technical recessions, defined as a drop in GDP for at least

two consecutive quarters. As the algorithm will be tested to predict waves of unemployment, it

should be able to capture information from past crises to understand the dynamics of upcoming

ones. In table 1 we present the five recessions present in the mentioned period together with

specific information.

Table 1 – Brazilian recessions between 1996 and 2019

Recession Period Duration Cumulative Drop in GDP
1998-99 5 quarters 1,6%

2001 3 quarters 0,8%
2003 2 quarters 1,3%

2008-09 2 quarters 6,2%
2014-16 11 quarters 8,6%

Source: Elaborated by the author (2022)

As we use 12 lags of each predictor, the series that actually enters the algorithm starts

in January 1996, resulting in a total of 271 complete observations. We divide the time series

into two groups, the first being the training group, with 75% of the observations, and the second

being the test group, with 25% of the observations. The 75% cut takes place in November 2013,

that is, the boosting will have four previous recessions in its history and will be tested most

decisively in the fifth and strongest recession.
5 The concept of precarious work depicts a type of occupation in which people performed some work irregularly

while looking for a more consistent occupation.
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Figure 6 – Unemployment rate in MRSP with training and test cut

9

12

15

18

21

2000 2010 2020
Time

U
ne

m
pl

oy
m

en
t R

at
e 

in
 M

R
S

P
 (

%
)

Source: Elaborated by the author (2022)

As explained in the forecast engine section,we will not apply the boosting algorithm

exactly to the time series above. This happens because we ensure stationarity before engaging in

the prediction exercise. Observing the auto-corelation plot for the train section of the time series,

we have strong evidence of unit root presence.

Figure 7 – Autocorrelation function of the yt train section
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Source: Elaborated by the author (2022)

To build more evidence of non-stationarity from the original series, we performed the

Dickey-Fuller test using three models. The first relates the difference of yt only with its lag. The

second model adds a constant 𝛼0 to the first specification. Finally, the last model adds to the

second a deterministic trend t . The Dickey-Fuller test corroborates the unit root thesis derived

from the observation of the partial autocorrelation plot, which leads us to redo the test with
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Table 2 – Augmented-Dickey-Fuller unit root test

Original Series Transformed Series
Model 1 Δyt = 𝜏yt−1 + ut Model 1 Δyt = 𝜏yt−1 + ut
Value of test-statistic 𝜏 Value of test-statistic 𝜏

-0.5124 -8.0038
Critical values 1% 5% 10% Critical values 1% 5% 10%
𝜏 -2.58 -1.95 -1.62 𝜏 -2.58 -1.95 -1.62

Model 2 Δyt = 𝜙𝛼0 + 𝜏yt−1 + ut Model 2 Δyt = 𝜙𝛼0 + 𝜏yt−1 + ut
Value of test-statistic 𝜏 𝜙 Value of test-statistic 𝜏 𝜙

-1.7315 1.5171 -7.9941 31.9691
Critical values 1% 5% 10% Critical values 1% 5% 10%
𝜏 -3.46 -2.88 -2.57 𝜏 -3.46 -2.88 -2.57
𝜙 6.52 4.63 3.81 𝜙 6.52 4.63 3.81

Model 3 Δyt = 𝜙1𝛼0 + 𝜏yt−1 + 𝜙2t + ut Model 3 Δyt = 𝜙1𝛼0 + 𝜏yt−1 + 𝜙2t + ut
Value of test-statistic 𝜏 𝜙1 𝜙2 Value of test-statistic 𝜏 𝜙1 𝜙2

-3.5934 4.7518 7.1087 -8.0531 21.6316 32.4307
Critical values 1% 5% 10% Critical values 1% 5% 10%
𝜏 -3.99 -3.43 -3.13 𝜏 -3.99 -3.43 -3.13
𝜙1 6.22 4.75 4.07 𝜙1 6.22 4.75 4.07
𝜙2 8.43 6.49 5.47 𝜙2 8.43 6.49 5.47

Source: Elaborated by the author (2022)

the difference of the log of the series. In this second test performed with the difference of the

logarithmic value of the original series, we reject the null hypothesis of the presence of a unit

root with significance of 1% for all model specifications 6. We conclude applying the boost

algorithm in this transformed series, already stationary according to the applied tests. The test

results are shown in Table 2 and the plot for the transformed series appears in Figure 8.

5.2 PREDICTORS

Inspired by the FRED-MD data set introduced by McCracken and Ng (2016), which

contains variables from several different macroeconomic themes and aims to help studying US

macroeconomic dynamics, in this project we built a Brazilian macroeconmics FRED-MD style

data set. For that, we used the IPEADATA website combined with its Python-dedicated library

ipeadatapy and extracted 159 variables from ten different themes. The themes were selected

with the objective of providing a broad overview of the Brazilian economy, with both real and

monetary predictors. All the time-series selected have monthly frequencies and also contain

observations from January 1996 through July 2019. The themes and the number of variables can

be seen in table 3.
6 Because of the predictive nature of the project, we do not go into the interpretative details of the transformed

variable, but focus on the stationary characteristic of the new time series.
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Figure 8 – Difference of the log of unemployment rate in MRSP
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Table 3 – Data breackdown

Theme Number of Predictors
Consumption and Sales 28
Currency and Credit 17
Employment 5
Exchange Rates 7
Financial Accounts 5
Foreign Trade 21
National Accounts 7
Perception and Expectations 2
Prices 64
Wages and Income 3
Total 159

Source: Elaborated by the author (2022)

Transformations had to be done in some of the 159 variables in order to reach stationarity.

To do this, we classified the predictors into three transformation groups, each of which specifies

a different transformation requirement. The purpose of transformation groups is to enable the

series to apply a difference function. For example, in the case of a strictly positive series, the first

group of predictors, we can apply the logarithmic difference function to achieve this goal. The

second group consists of series with positive or zero values. In this case, the difference function

consists of summing a constant k over the entire series, thus making it strictly positive, and then

applying the log difference. The third group consists of series with negative values. Here the log

function cannot be applied, so we perform the relative difference, that is, the ratio between the
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index value t with the index value t − 1: (xt − xx−1)/xt−1.

With this grouping in mind, we applied an algorithm to find the stationarized version of

all predictors. The algorithm starts by applying the Dickey-Fuller test to verify that the original

series is stationary. If the test returns a null hypothesis rejection for 5% significance, we stop here.

If not, we start the transformations iteratively. Depending on the group, the algorithm applies

specific transformations and repeats the Dickey-Fuller test until it finds an iteration in which

the test returns a rejection of the null hypothesis for significance of 5%. When we find such an

iteration, the algorithm stops and returns the transformed series. This is the series that we use as

a predictor in the boosting prediction exercises.

Table 4 – Transformations

Transformation
Name Tranformation Number of Predictors

T0 No Transformation Applied 50
T1 First Difference 3
TL0 Log of the Series 1
TL1 Log and First Difference of the Series 93
TL2 Log and Second Difference of the Series 4
TLK1 Sum of a Constant K, Log and First Difference of the Series 2
TR1 First Relative Difference of the Series 5
TR2 Second Relative Difference of the Series 1

Source: Elaborated by the author (2022)

Table 5 – Transformation by theme

Theme T0 T1 TL0 TL1 TL2 TLK1 TR1 TR2 Total
Consumption and Sales 1 27 28
Currency and Credit 4 2 7 2 2 17
Employment 5 5
Exchange Rates 1 6 7
Financial Accounts 4 1 5
Foreign Trade 21 21
National Accounts 6 1 7
Perception and Expectations 2 2
Prices 41 1 15 1 5 1 64
Wages and Income 3 3
Total 50 3 1 93 4 2 5 1 159

Source: Elaborated by the author (2022)

Detailed information on the transformation and sources for each of the predictors can be

found in the Appendix A. Table 4 shows us that the most performed transformation was the time

series log difference. After that we have the predictors that did not need to receive any transfor-

mation to achieve stationarity. Table 5 presents these results broken down by macroeconomic
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theme. Note that the series that dominate the non-application of transformations consist of the

price theme, with 41 of the 50 elements being from this theme.

To get an idea of what these categorizations really represent, figure 9 presents examples

of the original series for each type of transformation performed. Those that underwent fewer

transformations were those with formats closer to what we know of stationary series. Those that

had to go through two differences had apparently non-linear trend elements, as in the case of the

Brazilian GDP, with a trend visually closer to an exponential function.

Returning to the explanation of section 4.1, the algorithms are applied to forecast the

transformed series of yt and this transformation depends on the forecast horizon evaluated. The

format of this transformation consists of Equation 6 from Chapter 4.

yph
t = ln(yt+h) − ln(yt ) (14)

We do not make transformations of the predictors depending on the forecast horizon. To

return from the predicted series transformed to the original series, we do the inverse transforma-

tion path, according to Equation 8 from Chapter 4.

ŷt+h = e(ln(yt )+ŷph
t ) (15)

5.3 THE THREE PROPOSED MODELS

Taking into account both the model structure and the empirical evidence from the pre-

dicted time series, we propose three models to forecast the unemployment rate in Brazil. The

three models are listed below, where bols represents a linear function, and bbs a p-spline

function. In addition, the vector ®xt represents the set of predictors within the choice possibilities

of the algorithm. Particularly in the Mixed Model we have two intermediate parameters M1 and

M2 with M1 + M2 = M .

• Linear Model: a boosting algorithm in which all learners are linear.

f̂ (®xt ) = f̂ (0) + v
M∑︁

m=1
bols(xm

t ) (16)

• Non-linear Model: a boosting algorithm in which all learners are p-splines.
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f̂ (®xt ) = f̂ (0) + v
M∑︁

m=1
bbs(xm

t ) (17)

• Mixed Model: a boosting algorithm in which learners that use predictors of the Prices

theme are p-splines and the rest of the learners are linear ones.

f̂ (®xt ) = f̂ (0) + v
M1∑︁

m1=1
bols(xm1

t ) + v
M2∑︁

m2=1
bbs(xm2

t ) (18)

The choice of model three, where we have the price variables in a non-linear format,

takes into account established evidence of the non-linear relationship of the Phillips curve, the

empirical curve that relates prices and unemployment. Articles such as Debelle and Laxton

(1997), Xu et al. (2015) and Byrne and Zekaite (2020) show that non-linear models tend to fit

better Phillips curves. Using these three models, we are able to isolate the non-linearity only in

the price predictors to better understand whether it is more effective to present this relationship

linearly or not. If we had only presented models one and three, for example, there could be

doubts as to whether the performance would be explained by the non-linearity of prices or by the

non-linearity of all predictors.

About the other parameters of the model, the value of the v is equal to 0.1, following

most of the boosting literature. The M metaparameter is chosen via k-fold. In addition, we set a

maximum value of M equal to 400 in the linear model, 1000 in the non-linear model and 700

in the mixed model. These choices happen to prevent the algorithm from hitting the maximum

value in its selection process.
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Figure 9 – Examples of time series by transformation type
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6 RESULTS

6.1 MODELS PERFORMANCE MEASURES

In this chapter, we present the results of the forecasting exercise carried out using the

three proposed models and the benchmark. The first analysis derives from the performance

metrics described in chapter 3. Table 6 shows the value of each metric by model and forecast

horizon of up to 12 months ahead, where the best results for a given model and forecast horizon

are shown in bold. All values are presented in relation to the SARIMA benchmark; that is, values

lower than 1 mean represent values lower than the benchmark.

First, comparing all models with the SARIMA benchmark, we can observe a superiority

of the boosting models. This superiority appears mainly in the intermediate forecast horizons,

between h = 3 and h = 10. However, in small horizons (h = 1 and h = 2) and also in larger

horizons (h = 11 and h = 12), this large superiority loses space for an improvement of the

SARIMA model. The trend that arises with the increase in the forecast horizon is a balance

between the models when we see the performance measures, which may be related to the increase

in uncertainty present in very distant forecasts. At h = 12, for example, the SARIMA benchmark

becomes the most qualified model in metrics P95 and P90, the metrics that study the tails of the

forecast error distribution. In the case of h = 1, the SARIMA model appears to be superior to the

mixed model for P90 and P95 metrics and superior to the linear model for MAPE, RMSFE and

P95 metrics. Despite this, the general analysis of the results shows a better predictive capacity of

the boosting models.

Table 6 – Performance measure results

Metric Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12

MAE
Linear 0.9824 0.8253 0.7050 0.6579 0.7695 0.8122 0.8285 0.8236 0.8515 0.9110 0.9703 1.0338

Nonlinear 0.9618 0.8312 0.7337 0.6957 0.7452 0.7318 0.7487 0.8224 0.8673 0.9404 0.9857 1.0458
Mixed 0.9470 0.8260 0.7127 0.6742 0.7304 0.7096 0.7102 0.7232 0.7648 0.7840 0.8465 0.9303

MAPE
Linear 1.0007 0.8262 0.6895 0.6461 0.7675 0.8068 0.8413 0.8393 0.8562 0.9051 0.9659 1.0106

Nonlinear 0.9893 0.8357 0.7230 0.6729 0.7262 0.7125 0.7367 0.8133 0.8531 0.9284 0.9692 1.0233
Mixed 0.9735 0.8211 0.6994 0.6519 0.7109 0.6934 0.7060 0.7189 0.7533 0.7789 0.8390 0.9147

RMSFE
Linear 1.0847 0.6788 0.4800 0.4207 0.6142 0.6581 0.7455 0.6800 0.7216 0.7925 0.8923 0.9693

Nonlinear 0.9861 0.7237 0.5161 0.4857 0.5128 0.5455 0.6162 0.6863 0.7710 0.9222 0.9945 1.0481
Mixed 0.9761 0.6867 0.4860 0.4345 0.4503 0.4689 0.5028 0.5341 0.5981 0.6823 0.7661 0.8433

P95
Linear 1.1768 0.9071 0.8272 0.8488 0.8450 0.8683 0.9241 0.8944 0.9589 0.9509 0.9411 1.0202

Nonlinear 0.9854 1.0214 0.8836 0.9375 0.8341 0.8917 1.0087 1.0724 0.9956 1.0732 1.1186 1.0889
Mixed 1.0556 0.9980 0.8628 0.7899 0.7473 0.7669 0.8381 0.8976 0.8981 0.9955 0.9997 1.0086

P90
Linear 0.9935 0.9218 0.8164 0.6527 0.7315 0.8009 0.9117 0.7022 0.7380 0.8964 0.9293 1.0559

Nonlinear 0.9604 1.0044 0.7613 0.7938 0.8533 0.7769 0.9189 0.8655 0.9361 1.0219 1.0733 1.0933
Mixed 1.1338 0.8723 0.7466 0.7080 0.7564 0.7469 0.7802 0.7283 0.8373 0.8976 0.9212 1.0195

Source: Elaborated by the author (2022)

The analysis between the three proposed models does not present a conclusion as strong
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as what we see in the case of the benchmark. There is an interaction between the best models for

each forecast horizon, mainly between the Linear and the Mixed models. A trend that we can

observe is a slightly better performance of the Linear model in the short-term forecast, in h = 2,

h = 3 and h = 4, followed by a dominance of the best results by the Mixed model for h = 5 until

h = 12.

By adding the times that each model had the best performance, we find the results in

table 7. From it we can claim a better general performance of the Mixed model. The Mixed

model seems to be able to find an efficient way to reduce forecast errors by combining linear and

non-linear characteristics. For example, focusing on the MAPE metric, the Mixed model is able

to perform better in 10 of the 12 forecast horizons analyzed.

Table 7 – Number of forecast horizons for which the model had the best performance

Performance
Measure Linear Nonlinear Mixed SARIMA

MAE 3 0 9 0
MAPE 2 0 10 0

RMSFE 3 0 9 0
P95 5 1 5 1
P90 5 1 5 1

Source: Elaborated by the author (2022)

When looking at the results between the performance metrics used, MAE and MAPE

performance seem to describe reasonably similar information. Only in the forecast horizon h = 2

can we see a difference in the best model selected. Furthermore, in both metrics, the benchmark

presents lower results from h = 2 to h = 11 in relation to all proposed models. Only in h = 12

both metrics for the SARIMA model manage to be superior to a proposed model, the Linear and

Non-Linear models in this case.

The RMSFE metric follows a path similar to MAE and MAPE. RMSFE selects the same

best models as MAE and selects a different model only once compared to MAPE. Consistency

between models is preferable, as it indicates greater robustness in the conclusions we can draw

from performance metrics. If many metrics point to the same model, we can be more confident

that in fact this model had a greater predictive capacity.

The last metrics, P90 and P95, present structurally different information, as they do not

verify concentration, but quantiles of the forecast errors distribution. In this case the results were

a little different, but nothing out of the trend found in the other indicators. Here, as we advance

the forecast horizons, the SARIMA model starts to gain prominence more quickly, ending up

with a good performance at h = 12.
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Table 8 – Giacomini & White test

h=1 Linear Non-linear Mixed SARIMA h=2 Linear Non-linear Mixed SARIMA
Linear - 0.5737 0.711 0.5023 Linear - 0.3988 0.557 0.028*
Non-linear 0.4263 - 0.6717 0.4609 Non-linear 0.6012 - 0.6468 0.0372*
Mixed 0.289 0.3283 - 0.3958 Mixed 0.443 0.3532 - 0.0251*
SARIMA 0.4977 0.5391 0.6042 - SARIMA 0.972 0.9628 0.9749 -

h=3 Linear Non-linear Mixed SARIMA h=4 Linear Non-linear Mixed SARIMA
Linear - 0.1879 0.3655 0.001** Linear - 0.231 0.4344 2e-04***
Non-linear 0.8121 - 0.73 5e-04*** Non-linear 0.769 - 0.7062 3e-04***
Mixed 0.6345 0.27 - 0.0012** Mixed 0.5656 0.2938 - 7e-04***
SARIMA 0.999 0.9995 0.9988 - SARIMA 0.9998 0.9997 0.9993 -

h=5 Linear Non-linear Mixed SARIMA h=6 Linear Non-linear Mixed SARIMA
Linear - 0.7488 0.7925 0.0011** Linear - 0.9818 0.9865 0.0127*
Non-linear 0.2512 - 0.652 0.0081** Non-linear 0.0182* - 0.6768 0.0061**
Mixed 0.2075 0.348 - 0.0078** Mixed 0.0135* 0.3232 - 0.0076**
SARIMA 0.9989 0.9919 0.9922 - SARIMA 0.9873 0.9939 0.9924 -

h=7 Linear Non-linear Mixed SARIMA h=8 Linear Non-linear Mixed SARIMA
Linear - 0.9081 0.9659 0.0797 Linear - 0.624 0.9533 0.042*
Non-linear 0.0919 - 0.7843 0.0056** Non-linear 0.376 - 0.9987 0.0467*
Mixed 0.0341* 0.2157 - 0.0031** Mixed 0.0467* 0.0013** - 0.0046**
SARIMA 0.9203 0.9944 0.9969 - SARIMA 0.958 0.9533 0.9954 -

h=9 Linear Non-linear Mixed SARIMA h=10 Linear Non-linear Mixed SARIMA
Linear - 0.5204 0.9717 0.0748 Linear - 0.3562 0.9926 0.1635
Non-linear 0.4796 - 0.9974 0.0663 Non-linear 0.6438 - 0.9998 0.2172
Mixed 0.0283* 0.0026** - 0.0094** Mixed 0.0074** 2e-04*** - 0.0101*
SARIMA 0.9252 0.9337 0.9906 - SARIMA 0.8365 0.7828 0.9899 -

h=11 Linear Non-linear Mixed SARIMA h=12 Linear Non-linear Mixed SARIMA
Linear - 0.4842 0.9767 0.3423 Linear - 0.426 0.9681 0.5463
Non-linear 0.5158 - 0.9989 0.3779 Non-linear 0.574 - 0.989 0.627
Mixed 0.0233* 0.0011* - 0.0654 Mixed 0.0319* 0.011* - 0.1887
SARIMA 0.6577 0.6221 0.9346 - SARIMA 0.4537 0.373 0.8113 -

Source: Elaborated by the author (2022)

So far, we have used only the results found by the performance metrics, without getting

in touch with tests of statistical significance. The next analysis applies the Giacomini & White

test to compare the prediction accuracy of the models presented. Recalling, Giacomini & White

test is a test applied in two models. Its null hypothesis is the equality of the forecast accuracies

of these two models, and the alternative would indicate a difference in this measure. Here we

look for a tail alternative, where we check if a model has lower accuracy than another.

The result of this is the set of tables 8, where each matrix presents the p-value of a

Giacomini & White test. The test is applied with the null hypothesis being the equality of the

prediction accuracies of the row and column models and the alternative hypothesis a better

accuracy of the model of the row compared to the column model.

H0 = Row and column models have the same forecast accuracy.

H1 = Row model has a better forecast accuracy than column model.
(19)

From this table we can draw two conclusions. First, the superiority of the proposed
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models in relation to the SARIMA benchmark has statistical significance in the intermediate

forecast horizons, bringing more evidence to the thesis presented above. However, for smaller or

larger values of h, no such significance is found. Second, the comparison between the boosting

models showed a greater accuracy of the Mixed model in relation to the Non-linear model for

h = 8 up to h = 12 and of the Mixed model in relation to the Linear model for h = 6 up to

h = 12. Again we see results similar to those seen in the past analysis. We can also see that

the small dominance of the Linear model in the small forecast horizons was not reflected in

statistical significance.

6.2 SELECTED VARIABLES

After verifying the predictive capacity of the proposed boosting models, we proceeded to

understand the choices made by each algorithm. We can understand the choices made by looking

at the predictors selected in each iteration of the algorithm. Remember that boosting uses several

weak learnenrs to compose a larger strong learner, where each learner consists of a function

(linear or p-splines) that uses only one predictor, so the selection of predictors is an important

step in the structure of the model.

One way to analyze the choices made would be to build a table with the frequencies in

which the predictors appear in each model. However, with this, we would run the risk of not

actually representing the importance of each predictor in the final result of the forecast, since it

is possible for a variable to be chosen with a minor role in the algorithm. Thus, analysis of the

relevance of the variables takes place using a technique that attempts to circumvent this problem.

We use the varimp function of the mboost R library developed in Kuehn and Stoecker (2021):

This function extracts the in-bag risk reductions per booster step of a fitted
mboost model and accumulates it individually for each base learner contained
in the model. This quantifies the individual contribution to risk reduction of
each base-learner and can thus be used to compare the importance of different
base-learners or variables in the model. Starting from offset only, in each
boosting step risk reduction is computed as the difference between in-bag risk
of the current and the previous model and is accounted for the base-learner
selected in the particular step (KUEHN; STOECKER, 2021).

With the forecasting exercise taking place for the last 71 observations of the complete

time series, the analysis of the importance of the variables was performed using an arithmetic

mean of the importance of each variable in the 71 times that each algorithm was applied. This

means that we find the average of the importance of the variables in each model for a given
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forecast horizon. It is important to note that the choice of a variable does not indicate any

causal inference per se, what we are doing is observing the algorithm’s thinking logic to extract

insights into its functioning and eventually find correlations between the dependent and predictor

variables. The analysis is also valid to compare the choices of different models and different

forecast horizons.

To make the analysis leaner, the tables presented have the ranking of the 5 most important

variables for forecast horizons 1, 6, and 12. The choice of horizons was made to compare the

selection of models in distant forecast horizons, to see if it is possible to find any relationship

between the horizon and the selected variables.7

Table 9 – Top 5 variables selected for h = 1

Selected variables for the Linear model Importance
L12 - Unemployment rate - MRSP 32.96%
L3 - Personnel employed - industry - index (2006 average = 100) 13.38%
L1 - Unemployment rate - MRSP 10.67%
L2 - Personnel employed - industry - index (2006 average = 100) 9.20%
L10 - Personnel employed - industry - index (2006 average = 100) 4.49%
Selected variables for the Mixed model Importance
L12 - Unemployment rate - MRSP 34.34%
L3 - Personnel employed - industry - index (2006 average = 100) 14.05%
L2 - Personnel employed - industry - index (2006 average = 100) 9.90%
L1 - Unemployment rate - MRSP 9.85%
L10 - Personnel employed - industry - index (2006 average = 100) 4.46%
Selected variables for the Non-linear model Importance
L12 - Unemployment rate - MRSP 23.92%
L3 - Personnel employed - industry - index (2006 average = 100) 15.05%
L1 - Monetary Base - Restricted (M0) - currency issued - average 9.59%
L2 - Personnel employed - industry - index (2006 average = 100) 7.84%
L1 - Unemployment rate - MRSP 6.96%

Source: Elaborated by the author (2022)

For the three models, in the forecast horizon equal to 1, the most important variable was

lag 12 of the dependent variable, unemployment in the Metropolitan Region of São Paulo. We

can interpret this as an adjustment to the seasonality of the series, since lag 12 means using the

value in the same month but from last year and we did not perform any seasonality control for yt .

Focusing on the analysis for the linear model, we highlight that the five most important

series for h = 1 are related to employment in some way, basically a mixture of lags from the

dependent series with a similar series of people employed in the industry. For h = 6, we have an
7 The prefix L6 indicates that the selected variable is the 6th lag of the time series.
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Table 10 – Top 5 variables selected for h = 6

Selected variables for the Linear model Importance
L1 - Personnel employed - industry - index (2006 average = 100) 23.83%
L2 - Personnel employed - industry - index (2006 average = 100) 16.74%
L9 - Unemployment rate - MRSP 6.97%
L1 - Purchasing power parity (PPP) rate - household consumption 4.40%
L1 - Exports - prices - index (2006 average = 100) 4.23%
Selected variables for the Mixed model Importance
L1 - Personnel employed - industry - index (2006 average = 100) 21.38%
L2 - Personnel employed - industry - index (2006 average = 100) 14.48%
L9 - Unemployment rate - MRSP 5.26%
L1 - Exports - prices - index (2006 average = 100) 4.51%
L1 - Purchasing power parity (PPP) rate - household consumption 3.18%
Selected variables for the Non-linear model Importance
L1 - Personnel employed - industry - index (2006 average = 100) 21.20%
L5 - Monetary Base - Restricted (M0) - currency issued - average 12.41%
L2 - Personnel employed - industry - index (2006 average = 100) 9.49%
L2 - Consumption - electricity - trade - quantity 3.77%
L1 - Exports - prices - index (2006 average = 100) 3.51%

Source: Elaborated by the author (2022)

Table 11 – Top 5 variables selected for h = 12

Selected variables for the Linear model Importance
L1 - Employed personnel - industry - deseasonalized index. (2006 average = 100) 20.48%
L12 - Apparent consumption - fuel oil - average - others - average - daily amount 8.54%
L10 - Contracted exchange - financial 4.13%
L2 - Employed personnel - industry - deseasonalized index. (2006 average = 100) 3.68%
L4 - Prices - IPCA - housing - var. 3.65%
Selected variables for the Mixed model Importance
L1 - Employed personnel - industry - deseasonalized index. (2006 average = 100) 12.79%
L1 - Exports - prices - index (2006 average = 100) 6.77%
L9 - Prices - IPA-DI - origin - prod. industrial - index (Aug. 1994 = 100) 6.69%
L12 - Apparent consumption - fuel oil - average - others - average - daily amount 5.76%
L12 - Prices - IGP-DI - general - centered - end of period - index (Aug. 1994 = 100) 5.75%
Selected variables for the Non-linear model Importance
L1 - Employed personnel - industry - deseasonalized index. (2006 average = 100) 13.05%
L6 - Apparent consumption - fuel oil - average - others - average - daily amount 5.28%
L2 - Employed personnel - industry - deseasonalized index. (2006 average = 100) 4.83%
L1 - Apparent consumption - fuel oil - average - others - average - daily amount 4.77%
L5 - Apparent consumption - fuel oil - average - others - average - daily amount 4.59%

Source: Elaborated by the author (2022)

input of variables of other types, such as the purchasing power parity rate, a value for the real

exchange rate. This signals a use of international economic factors to predict unemployment,

which may be explained by Brazil’s relationship with its economic partners. Finally, the analysis

for h = 12 indicates a greater diversity of variables, with the entry of energy and price indicators,

in addition to a predictor related to exchange rates. We see that as the forecast horizons increase,
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the importance vector of the variables becomes less concentrated, and the most important

predictor loses relative importance.

The numbers of the Mixed model for h = 1 and h = 6 is quite similar to what we saw

in the table of the Linear model. Note that for the forecast horizon h = 1 and h = 6, the Mixed

model has the same 5 most important variables as the linear one: variables mainly related to

employment and for h = 6 with the relationship between Brazil and other countries. For h = 12,

however, three of the five most variables in the ranking are related to prices, precisely those that

have non-linear learners. It is important to emphasize this difference because, when we look at

the result data of the performance metrics, for low values of h both the Mixed and Linear models

have a similar behavior. However, for higher values of h the difference between the Linear and

Mixed models is remarkable, as can be seen in Figure 10. Recall that the only difference between

both models is the fact that the Mixed model has spline learners for price-related predictors.

From this we can understand that, for longer-term forecasts, using prices in a non-linear format

may be a way to improve the forecast performance.

Figure 10 – RMSFE comparison between models
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The numbers of the most important variables of the Non-linear model deviates a little

from the other models, especially for larger values of h. Here, we see more variables related to

Brazil’s money supply. Note that the monetary base plays an important role for h = 1 and also

for h = 6. For h = 12, we see a strong presence of energy consumption, a predictor related to the

real economy. However, this difference does not end up converting into better results.

In general, the types of predictors that were highlighted were: firstly, employment-related

predictors, which is reasonable considering that the dependent series is an unemployment rate
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series; then predictors related to the relationship between Brazil and abroad; and for greater

values of h, predictors related to fuels, a theme of the Brazilian real economy. Furthermore,

combining the analysis of the chosen variables and Figure 10, we can see that for small values of

h the difference between the models is not large. Models tend to choose similar predictors and

obtain similar results.

Looking at the existing literature on unemployment forecasting methods, mainly the part

of the literature that compares linear and non-linear models, we can separate them into two groups.

There are articles that point to a better performance of non-linear models for small horizons

and a better performance of linear models for larger horizons, as in the case of Chakraborty

et al. (2021); and there are also articles that show the opposite, a better performance of linear

models for short horizons and a better performance of nonlinear models for longer horizons,

such as Katris (2020). The exercise made in this project points more towards the second group

of articles. Similar to Katris (2020), the Linear model had good results in short horizons (one to

three months ahead), and for longer horizons, the best accuracy goes to the non-linear model,

represented here by the Mixed model.
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7 CONCLUDING REMARKS

In this work we proposed three different multivariate models to predict the unemployment

rate series in the Metropolitan Region of São Paulo. We had two goals with these models: (i) to

verify if they were good forecasting instruments compared to a benchmark already established in

the literature and (ii) to understand how the different configurations between the models affected

the forecasting performance.

As reported, the three models consisted of boosting applications with different config-

urations on the weak learners that make up the algorithm. The Linear model, with all linear

learners; the Non-linear model, with all learners using the p-splines model; and the Mixed model,

with the price-related learners being of the p-spline format and the rest of the predictors being

of the linear format. The benchmark used to test the general validity of the models consisted

of an SARIMA algorithm with automatic parameter selection. The motivation of the models

aroused from the discussion on the non-linearity in the prediction of macroeconomic time series.

The presence of the Linear and Non-linear models aimed to directly compare these two types

of modeling, whereas the Mixed model is motivated by a more detailed analysis. In the Mixed

model, by parsimony we started from linear learners, but with information on the literature on

the non-linear relationship between prices and employment (the Phillips curve) we exclusively

modified the price related learners for p-splines. The motivation of the Mixed model is linked to

the use of non-linear models with attention to the structure of the phenomenon being predicted,

thus avoiding large parameterization, but taking into account the studies of the subject (in this

case, unemployment).

Regarding the first objective, the work concluded, using performance metrics, that the

proposed boosting models were superior to the SARIMA benchmark for the great majority

of forecast horizons tested: for two to eleven months ahead. The superiority of accuracy had

statistical significance via the Giacomini & White test in the intermediate forecast horizons, for

h = 2 to h = 10. The dominance of the proposed models reached its maximum at h = 4, when the

RMSFE metric for the proposed models was less than half of the benchmark. Subsequently, for

higher values of h the distance between SARIMA and the proposed models accuracy decreased.

Regarding the second objective, there was no model of absolute prominence among the

three proposals, but the Mixed model overall had the best results when looking at the performance

metrics. The forecast results for horizons 1 to 4 are similar between the three models, with a

slightly better accuracy of the Linear model, but from h = 5 trough h = 12 it was possible to
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notice the greater predictive capacity of the Mixed model. The Giacomini & White test showed

better accuracy of the Mixed model in relation to the Linear model from h = 6 to h = 12 and in

relation to the Non-linear model from h = 8 to h = 12. After the Mixed model, in general the

Linear model had the best performance, and lastly the Non-Linear model.

One result that we can draw from the exercise performed is the importance of using

non-linear methods with knowledge about the series being predicted. Although the most current

literature points to a better performance of non-linear models in relation to linear ones, an

application without knowledge of the data can point to the other side, with simpler models

outperforming more complex instruments. This seems to have been the case in the project. When

all learners were designated as p-splines, there was a decrease in accuracy compared to linear

learners. However, when only part of these were changed using empirically found relationships,

there was improvement. The Mixed model managed to combine well the linear and non-linear

characteristics of the series in question and, therefore, presented better results.

It is important to remember that the conclusions here are preliminary, in the sense that

a stronger argument demands additional exercises that call into question linear and non-linear

methods in the forecast of macroeconomic series. Also, the project opens space for other

questions to be asked when forecasting macroeconomic variables in Brazil. Here, we used only

the unemployment rate for the Metropolitan Region of São Paulo. An analysis could be done

for other variables in other regions of the country. It is possible that the Metropolitan Region of

São Paulo has sufficiently different characteristics from other regions with a lower concentration

of economic activity, motivating also an exercise for the less central regions of the country. In

addition, in technical terms, we can also do exercises with other characteristics. Tree-based

boosting algorithms have lately gained prominence for time series forecasting, so there is room

for studies to test them as predictor models of macroeconomic time series in Brazil.
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APPENDIX A – DATASET SOURCES AND PREDICTORS TRANSFORMATIONS

Table 12 – Dataset sources and predictors transformations

Name Transformation Source

Consumption and Sales Theme

SPC - number of queries TL1 ACSP/IEGV

Usecheque - number of queries TL1 ACSP/IEGV

Apparent consumption - fuel alcohol - average - daily amount TL1 ANP

Apparent consumption - petroleum derivatives - average - daily amount TL1 ANP

Apparent consumption - gasoline - average - daily amount TL1 ANP

Apparent consumption - LPG gas - average - daily amount TL1 ANP

Apparent consumption - petroleum derivatives - others - average - daily amount TL1 ANP

Apparent consumption - fuel oil - average - others - average - daily amount TL0 ANP

Apparent consumption - diesel oil - average - daily amount TL1 ANP

Real revenue - industry - index (2006 average = 100) TL1 CNI

Real revenue - industry - deseasonalized index (2006 average = 100) TL1 CNI

Consumption - electricity - Midwest Region (CO) - quantity TL1 Eletrobras

Consumption - electricity - trade - quantity TL1 Eletrobras

Consumption - electricity - industry - quantity TL1 Eletrobras

Consumption - electricity - Northeast Region (NE) - quantity TL1 Eletrobras

Consumption - electricity - North Region (N) - quantity TL1 Eletrobras

Consumption - electricity - other sectors - quantity TL1 Eletrobras

Consumption - electricity - residential - quantity TL1 Eletrobras

Consumption - electricity - Southeast Region (SE) - quantity TL1 Eletrobras

Consumption - electricity - South Region (S) - quantity TL1 Eletrobras

Consumption - electricity - quantity TL1 Eletrobras

Consumption - electricity - trade - average tariff per MWh TL1 Eletrobras

Consumption - electricity - industry - average tariff per MWh TL1 Eletrobras

Consumption - electricity - residential - average tariff per MWh TL1 Eletrobras

Consumption - electricity - average tariff per MWh TL1 Eletrobras

Current Economic Conditions Index (ICEA) TL1 Fecomercio SP

Vehicle sales by dealerships - automobiles TL1 Fenabrave

Vehicle sales by dealerships - total TL1 Fenabrave

Currency and Credit

Credit operations - balance of the credit portfolio - Total TL2 Bacen

Money Aggregate - Expanded - M2 - Savings Deposits - End of Period TL2 Bacen

Money Aggregate - Restricted (M1) - demand deposits - average TL1 Bacen

Monetary base conditioning factors - BC rediscount operations T0 Bacen

Monetary base conditioning factors - deposits from financial institutions T0 Bacen

Monetary base conditioning factors - external sector operations T0 Bacen

Monetary base conditioning factors - operations with federal public securities T0 Bacen

Monetary base conditioning factors - National Treasury T1 Bacen

Monetary base conditioning factors - monetary base variation T1 Bacen

Monetary Base - Restricted (M0) - average TL1 Bacen

Restricted Monetary Base (M0) - % of GDP - end of period TL1 Bacen

Money Aggregate - Restricted (M1) - average TL1 Bacen

Money Aggregate - Expanded - M3 - oper. committed with federal bonds - end of period TLK1 Bacen

Money Aggregate - Expanded - M3 - oper. pledged with title. fed. - % of GDP - end of period TLK1 Bacen
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Table 12 continued from previous page

Name Transformation Source

Monetary Base - Restricted (M0) - currency issued - average TL1 Bacen

Money Aggregate - Restricted (M1) - paper money held by the public - average TL1 Bacen

Money Aggregate - Restricted (M0) - bank reserves - average TL1 Bacen

Foreign Trade

Imports - prices - index (2006 average = 100) TL1 Funcex

Imports - quantum - index (2006 average = 100) TL1 Funcex

Terms of trade - index (2006 average = 100) TL1 Funcex

Exports - basic products - prices - index (2006 average = 100) TL1 Funcex

Exports - manufactured products - prices - index (2006 average = 100) TL1 Funcex

Exports - semi-manufactured products - prices - index (2006 average = 100) TL1 Funcex

Exports - prices - index (2006 average = 100) TL1 Funcex

Exports - basic products - quantum - index (2006 average = 100) TL1 Funcex

Exports - manufactured products - quantum - index (2006 average = 100) TL1 Funcex

Exports - semi-manufactured products - quantum - index (2006 average = 100) TL1 Funcex

Exports - quantum - index (2006 average = 100) TL1 Funcex

Exports - profitability - index (Dec. 2003 = 100) TL1 Funcex

Imports - (FOB) TL1 MDIC

Exports - Gasoline TL1 MDIC

Exports - aggregate factor - basic products - (FOB) TL1 MDIC

Exports - aggregate factor - industrialized products - (FOB) TL1 MDIC

Exports - aggregate factor - manufactured products - (FOB) TL1 MDIC

Exports - aggregate factor - semi-manufactured products - (FOB) TL1 MDIC

Exports - (FOB) TL1 MDIC

Exports - aggregate factor - special transactions - (FOB) TL1 MDIC

Exports (Kg) - Gasoline TL1 MDIC

Exchange Rates

Contracted exchange - financial - purchase TL1 Bacen

Exchange rate - R/US - commercial - purchase - average TL1 Bacen

Exchange rate - R/US - commercial - sale - average TL1 Bacen

Contracted exchange - commercial - import TL1 Bacen

Contracted exchange - financial T0 Bacen

Contracted exchange - financial - sale TL1 Bacen

Purchasing power parity (PPP) rate - household consumption TL1 IPEA

National Accounts

GDP TL2 Bacen

GDP - accumulated 12 months TL1 Bacen

Apparent consumption - consumer goods - index (2012 average = 100) TL1 IPEA

Apparent Consumption - Consumer Goods - desase Index. (2012 average = 100) TL1 IPEA

Apparent consumption - semi-durable and non-durable consumer goods - desase Index. (average 2002 = 100) TL1 IPEA

Apparent consumption - intermediate goods - index (2012 average = 100) TL1 IPEA

Apparent consumption - capital goods - index (2012 average = 100) TL1 IPEA

Prices

Prices - IPCA - free prices - tradable - var. TR1 Bacen

Prices - IPCA - core by exclusion - ex1 - var T0 Bacen

Prices - IPCA - free prices - not tradable - var. TR2 Bacen

Prices - IPCA - free prices - var. T0 Bacen

Prices - IPCA - free prices - durable goods - var T0 Bacen
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Table 12 continued from previous page

Name Transformation Source

Prices - IPCA - free prices - non-durable goods - var T0 Bacen

Prices - IPCA - free prices - semi durable goods - var TR1 Bacen

Prices - IPCA - free prices - services - var TR1 Bacen

Prices - IPCA - monitored prices - var. T0 Bacen

Double-weighted core - IPCA T0 Bacen

Prices - IPC (FIPE) T0 Fipe

Prices - IPC - 1st quadsweek (FIPE) T0 Fipe

Prices - IPC -2nd quadsweek (FIPE) T0 Fipe

Prices - IPC -3rd quadsweek (FIPE) T0 Fipe

Prices - CPI - general - index (June 1994 = 100) - MRSP TL1 Fipe

Prices - IGP-10 - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IGP-DI - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IGP-DI T0 FGV

Prices - IGP-DI - general - centered - end of period - index (Aug. 1994 = 100) TL1 FGV

Prices - IGP-M - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IGP-M T0 FGV

Prices - IGP-M - 1st ten-day period T0 FGV

Prices - IGP-M - 2nd ten-day period T0 FGV

Prices - IGP-OG - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IGP-OG T0 FGV

Prices - INCC-10 - general - index (Aug. 1994 = 100) TL1 FGV

Prices - INCC-DI - general - index (Aug. 1994 = 100) TL2 FGV

Prices - INCC-DI T1 FGV

Prices - INCC-M T0 FGV

Prices - INCC-M - 1st ten-day period T0 FGV

Prices - INCC-M - 2nd ten-day period T0 FGV

Prices - IPA-10 - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IPA-DI - origin - prod. livestock - index (Aug. 1994 = 100) TL1 FGV

Prices - IPA-DI - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IPA-DI T0 FGV

Prices - IPA-DI - origin - prod. industrial - index (Aug. 1994 = 100) TL1 FGV

Prices - IPA-M T0 FGV

Prices - IPA-M - 1st ten-day period T0 FGV

Prices - IPA-M - 2nd ten-year period T0 FGV

Prices - IPC-10 - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IPC-DI - general - index (Aug. 1994 = 100) TL1 FGV

Prices - IPC-DI (FGV) T0 FGV

Prices - IPC-M T0 FGV

Prices - IPC-M - 1st ten-day period T0 FGV

Prices - IPC-M - 2nd ten-day period T0 FGV

Prices - INPC - general - index (Dec. 1993 = 100) TL1 IBGE/SNIPC

Prices - INPC - food and beverages - var. T0 IBGE/SNIPC

Prices - INPC -residence articles - var. T0 IBGE/SNIPC

Prices -INPC - general T0 IBGE/SNIPC

Prices - INPC - personal expenses - var. T0 IBGE/SNIPC

Prices - INPC - housing - var. T0 IBGE/SNIPC

Prices - INPC - health and personal care - var. T0 IBGE/SNIPC
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Table 12 continued from previous page

Name Transformation Source

Prices - INPC -transportation - var. T0 IBGE/SNIPC

Prices - INPC - clothing - var. TR1 IBGE/SNIPC

Prices - IPCA - general - index (Dec. 1993 = 100) TL1 IBGE/SNIPC

Prices - IPCA - food and beverages - var. T0 IBGE/SNIPC

Prices - IPCA - articles of residence - var. T0 IBGE/SNIPC

Prices - IPCA - personal expenses - var. T0 IBGE/SNIPC

Prices - IPCA - general T0 IBGE/SNIPC

Prices - IPCA - housing - var. T0 IBGE/SNIPC

Prices - IPCA - health and personal care - var. T0 IBGE/SNIPC

Prices - IPCA - MRSP - var. T0 IBGE/SNIPC

Prices - IPCA - transport - var. T0 IBGE/SNIPC

Prices - IPCA - clothing - var. TR1 IBGE/SNIPC

Employment

Hours worked - industry - index (2006 average = 100) TL1 CNI

Hours worked - industry - deseasonalized index. (2006 average = 100) TL1 CNI

Personnel employed - industry - index (2006 average = 100) TL1 CNI

Employed personnel - industry - deseasonalized index. (2006 average = 100) TL1 CNI

Unemployment rate - MRSP TL1 SEADE

Wages and Income

Minimum wage - purchasing power parity (PPP) TL1 IPEA

Real minimum wage TL1 IPEA

Minimum wage TL1 MTE

Perception and Expectations

Consumer Confidence Index (ICC) TL1 Fecomercio SP

Expectations Index (IEC) TL1 Fecomercio SP

Financial Accounts

Stock index - Ibovespa - closing T0 Anbima

Savings - nominal income - 1st business day (until 05.03.2012) T0 Anbima

Interest rate - CDI / Over - accumulated in the month T0 Bacen

Interest rate - Over / Selic - accumulated in the month T0 Bacen

Savings account (total) - Balances TL1 Bacen

Source: Elaborated by the author (2022)
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