Universidade Federal do Rio Grande do Sul Instituto de Física Departamento Astronomia Trabalho de Conclusão de Curso

Calibração espectroscópica de [α /Fe] vs logg & [Fe/H] utilizando análise química de 50 estrelas FGK

TRABALHO DE CONCLUSÃO DE CURSO

JOÃO WECKERLE

PORTO ALEGRE, RS 2022

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Trabalho de Conclusão de Curso

Calibração espectroscópica de [α /Fe] vs logg & [Fe/H] utilizando análise química de 50 estrelas FGK

JOÃO WECKERLE

Trabalho de Conclusão de curso apresentado como requisito parcial para obtenção do título de Físico/As-trofísico.

Orientador: Prof. Alan Alves Brito, D.Sc.

PORTO ALEGRE, RS 2022

Weckerle, João. Calibração espectroscópica de $[\alpha/Fe]$ vs logg & [Fe/H] utilizando análise química de 50 estrelas FGK / João Weckerle. -- 2022. 160 f.

Orientador: Alan Alves Brito, D.Sc.

Trabalho (Conclusão de curso) - Universidade Federal do Rio Grande do Sul, Instituto de Física, Departamento Astronomia, Porto Alegre, BR-RS, 2022.

estrelas gigantes, abundâncias químicas, atmosferas estelares, calibração, parâmetros atmosféricos I. Alves-Brito, Alan, orient. II. Título.

Agradecimentos

Após 5 árduos e longos anos, concluo essa que, de longe, foi a batalha mais difícil que já travei. Me mudar para a capital mais distante do país não foi nem um pouco fácil, tão pouco foram os últimos 2 anos que, embora estivesse de volta à minha cidade e família, foram anos de muitas perdas, problemas e isolamento. Mas o fato de eu não ter vencido essa jornada sozinho é o que me motiva a escrever esse capítulo, pois cada um que fez parte da minha vida nos últimos 5 anos contribuiu de alguma forma para esse resultado e para a pessoa que sou hoje.

O primeiro e maior agradecimento que pode ser feito é a Monika Weckerle, que é muito mais do que apenas mãe, é uma amiga pra qualquer hora e exemplo de superação e determinação. É possivelmente também a pessoa que mais acredita em mim em todo mundo e que por isso sempre esteve no apoio de todas as minhas insanas decisões.

À minha querida avó Liselotte Weckerle, que igual a sua filha, é um exemplo de mulher guerreira que me acolheu dentro de sua casa num momento tão complicado quanto o que vivemos.

Aos amigos que fiz na cidade de Porto Alegre e que me acolheram como uma família. Tanto aos amigos do Tchê Suítes, em especial Alemão, Haroldo, Lucas, Batystuta, Victor e Rodolfo pelos vários churrascos e inúmeras noites de jogatina. Quanto também aos amigos da UFRGS que levarei pra toda, Jeferson, Dória, Marcos, Rafa, Marcelo, Nat, Zabot e Giulia, atravessar esse curso com certeza não foi fácil, mas foi muito mais leve ao lado dos senhores.

Aos irmãos que a vida me deu, Bruno, Leo, Manoel, Matheus, Marcello, Rebecca, Tchola, Amanda, Rafinha, Bipe, Ingra, Caribé, Iago, Davi e muitos outros que sempre me apoiaram e incentivaram até nos momentos mais desanimadores.

Ao meu grande orientador Alan Alves Brito, que desde o final do meu segundo semestre de faculdade me recebeu e transmitiu valiosos conhecimentos. Tenha certeza de que suas ações e trabalhos influenciam positivamente a vida de muitas pessoas.

E por último mas não menos importante, à Mariana Embiruçu, minha eterna companheira que esteve comigo durante 3 desses 5 anos de curso, mas não deixou de me ouvir reclamar das matérias e professores, nem deixou de escutar as minhas teorias malucas. O apoio seu, e de sua família, foi fundamental durante todo esse processo.

Resumo

Todos os anos novos surveys astronômicos são anunciados prometendo mais qualidade e quantidade de dados. Além dos atuais telescópios que já nos fornecem informações extremamente precisas, para a próxima década são esperados os lançamentos de diversos outros instrumentos (ELT, LSST, GMT, TMT, James Webb, etc.) que prometem revolucionar diferentes áreas da astronomia. Assim, dada essa atual necessidade por otimização de recursos e tempo na análise de grande quantidades de dados oriundos dos avanços tecnológicos em resolução e eficácia observacional, calibrações de diferentes tipos têm sido uma solução prática e assertiva na determinação de diferentes parâmetros atmosféricos. O propósito deste trabalho é performar uma análise química detalhada de 50 estrelas FGK já bem estudadas na literatura e com espectros em alta resolução (R > 40.000), utilizando o método das larguras equivalentes para criar uma calibração espectroscópica de [α /Fe] = Pol([Fe/H], log(g)). A calibração se demonstrou acurada na estimativa dos valores de [α /Fe], tendo $\sigma = 0.0731$ e tendo resultado positivo quando analisada sobre pontos de 2 diferentes levantamentos de dados com Erro Médio Absoluto de 0.0600 e 0.1634.

Palavras-chave: estrelas gigantes, abundâncias químicas, atmosferas estelares, calibração, parâmetros atmosféricos

Abstract

Every year new astronomical surveys are announced promising more quality and quantity of data. In addition to the current telescopes that already provide us with extremely accurate information, the launch of several other instruments (ELT, LSST, GMT, TMT, James Webb, etc.) is expected for the next decade, which promise to revolutionize different areas of astronomy. Thus, given the current need to optimize resources and time in the analysis of large amounts of data arising from technological advances in resolution and observational effectiveness, calibrations of different types have been a practical and assertive solution in determining different atmospheric parameters. The purpose of this work is to perform a detailed chemical analysis of 50 FGK stars already well studied in the literature and with high resolution spectra (R > 40.000), using the Equivalent Width method to create a spectroscopic calibration of $[\alpha/Fe] = Pol([Fe/H], log(g))$. The calibration proved to be accurate in estimating the values of $[\alpha/Fe]$, with $\sigma = 0.0731$ and having a positive result when analyzed on points from 2 different data surveys with Mean Absolute Error of 0.0600 and 0.1634.

Keywords: giant stars, chemical abundances, stellar atmospheres, calibration, atmospheric parameters

"Não leve a vida tão a sério. Você já vai ficar muito tempo sem rir no cemitério." (Mamute, Álvaro)

Sumário

Lista de Figuras	xii
Lista de Tabelas	xiv
Lista de Símbolos	xviii
1 Introdução 1.1 Contexto 1.2 Espectroscopia vs Fotometria 1.3 Elementos α 1.4 Outros elementos 1.5 Objetivos	1 1 3 4 5 6
 2 Materiais e Métodos 2.1 Amostra de estrelas	9 9 10 14 16 17 20
 3 Resultados e Discussão 3.1 Parâmetros Atmosféricos	25 25 27 32 37
4 Conclusão e Perspectivas	39
5 Apêndice 5.1 Tabelas	41 41 64
Referências Bibliográficas	65

Lista de Figuras

servada em [Fe/H] = -1.00	-
Figura 2.1 Exemplo de espectro do objeto HD 44007 antes e depois da normali- zação	11
Figura 2.2 Exemplo de espectro do objeto HD 44007 antes (gráfico superior) e depois (gráfico inferior) da correção de velocidade radial, que neste caso era de 162.2 km/s	12
Figura 2.3 Diagrama Cor-Magnitude comparando pontos deste trabalho com os de LEE95	12
Figura 2.4 Gráfico revelando as coordenadas galácticas de cada um dos objetos na projeção de Aitoff. 1	15
Figura 2.5 Demonstração do conceito de largura equivalente. Esta só é alcan- cada quando as áreas de ambas as cores são iguais.	17
Figura 2.6 Gráfico demonstrando o equilíbrio de ionização e excitação, e a eli- minação da correlação entre as abundâncias individuais de Ferro I com as larguras equivalentes normalizadas para a estrela HD 161770	19
 Figura 2.7 Fluxograma detalhando o processo de determinação dos parâmetros atmosféricos. O processo cíclico que começa com a criação da atmosfera teórica foi feito manualmente para estrelas pobres e de forma automática com o StePar para estrelar com [Fe/H] > -1.50	21
Figura 3.1 Gráficos de correlação entre parâmetros atmosféricos utilizando re- gressão linear como método de comparação entre os dados obtidos	26
Figura 3.2 Gráfico de temperatura efetiva vs $(B - V)_0$	27
Figura 3.3 Gráficos de abundâncias individuais dos elementos leves de Z ímpar e pico do ferro determinados neste trabalho.	29
Figura 3.4 Gráficos de abundâncias individuais dos elementos α determinados neste trabalho.	31
Figura 3.5 Gráfico global de $[\alpha/Fe]$ vs $[Fe/H]$ determinados neste trabalho, jun- tamente com duas regressões lineares que demonstram a presença	01
de um "joelho"	32
Cores dos pontos são representados pelo $\log(g)$	35

Figura 3.7	Gráfico demostrando calibração de $[\alpha/Fe]$ plotada contra log(g). Cores dos pontos são representados pelo [Fe/H]	35
Figura 3.8	Gráfico tridimensional demostrando calibração de $[\alpha/Fe]$ vs log(g) vs [Fe/H].	36
Figura 3.9	Gráfico da distribuição radial das gravidades evidenciando a decres- cência dos valores de log(g) com a distância. Novamente uma linha de tendência do tipo LOWESS foi ajustada para melhorar a visuali-	
	zação	36
Figura 3.10	Gráfico mostrando a equação 3.1 sobre os pontos de NS10 no plano	
	$[\alpha/\text{Fe}]$ vs [Fe/H]	37
Figura 3.11	Gráfico mostrando a equação 3.1 sobre os pontos de GALAH DR2 no plano $[\alpha/\text{Fe}]$ vs $[\text{Fe}/\text{H}]$. As linhas azuis correspondem aos valores	
	de mínimo e máximo de [α /Fe] da nossa amostra	38

Lista de Tabelas

Tabela 2.1	Fotometrias utilizadas neste trabalho. Todos os valores de (B-V) fo- ram extraídos do catálogo HIPPARCOS, os valores de E(B-V) calcu- lados segundo a equação 2.2 e os valores de $(B - V)_0$ calculados segundo a equação 2.1.	14
Tabela 2.2	Astrometrias utilizadas neste trabalho. As distâncias foram calcula- das como sendo o inverso da paralaxe	14
Tabela 2.3	Recorte da lista de linhas utilizada na determinação das abundâncias químicas dos elementos O, Na, Mg, Al, Si, Ca, TiI, TiII, FeI, FeII e Ni.	15
Tabela 2.4	Tabela mostrando o processo sequencial de determinação das incertezas das abundâncias para cada elemento. Colunas ABUN(Parâmetro) representam as abundâncias retornadas após aquele parâmetro variar com sua respectiva incerteza. Colunas Δ (Parâmetro) representam a diferença dessa variação com a abundân- cia original. Após todo o processo, o maior valor entre desvio padrão das colunas Δ e o desvio padrão apresentado pelo MOOG é consi- derado como incerteza do elemento. Elementos com abundância '- 'indicam que nenhuma linha foi considerada satisfatória para este elemento. Desvio padrão do MOOG nulo indica que apenas uma linha foi encontrada para o elemento.	23
Tabela 3.1	Valores de abundâncias solares adotados.	28
Tabela 3.2	Valores de $ \rho \ge 0.50$ para diferentes parâmetros iterados	33
Tabela 3.3	Coeficientes obtidos para a equação $[\alpha/Fe] = A[Fe/H]^3 + B[Fe/H]^2 + C[Fe/H] + Dlog(g)$ com seus respectivos desvios padrão	34
Tabela 3.4	Métricas estatísticas obtidas para a função $[\alpha/Fe] = A[Fe/H]^3 + B[Fe/H]^2 + C[Fe/H] + Dlog(g)$ determinada pelo software LAB fit	34
Tabela 3.5	Métricas estatísticas utilizadas nos 2 surveys de validação da calibra- ção	37
Tabela 5.1	Informações acerca dos espectros obtidos pelo ESO Science Archive.	41
Tabela 5.2	Tabela com todos os parâmetros atmosféricos obtidos através do mé- todo das larguras equivalentes, juntamente com suas respectivas in-	
	certezas	43
Tabela 5.3	Abundâncias químicas determinadas neste trabalho	45
Tabela 5.4	Incertezas das abundâncias derivadas	47

Tabela 5.5	Astrometrias utilizadas neste trabalho. As distâncias foram calcula-	
	das como sendo o inverso da paralaxe	49
Tabela 5.6	Fotometrias utilizadas neste trabalho. Todos os valores de (B-V) fo-	
	ram extraídos do catálogo HIPPARCOS, os valores de E(B-V) calcu-	
	lados segundo a equação 2.2 e os valores de $(B - V)_0$ calculados	
	segundo a equação 2.1.	51
Tabela 5.7	Lista de linhas global utilizada neste trabalho na determinação das	
	abundâncias químicas e parâmetros atmosféricos	53

Lista de Símbolos

T_{eff}	Temperatura efetiva da estrela	К
$(B-V)_0$	Índice de cor intrínseca	_
$[\alpha/Fe]$	Log da razão entre abundância de elementos α com valores solares	sobre Ferro comparando _
χ	Potencial de excitação	
\mathcal{Z}	Função de Partição	
E(B-V)	Excesso de cor	_
F_{Bol}	Fluxo Bolométrico	$\mathrm{W}\mathrm{m}^{-2}$
k_B	Constante de Boltzmann	$1,3806 \times 10^{-23} \mathrm{m}^2 \mathrm{kg s}^{-2} \mathrm{K}^{-1}$
R	Constante dos gases	$8,\!314\mathrm{J/molK}$
[Fe/H]	Metalicidade da estrela	_
d	Distância do objeto	pc
EW	Largura equivalente	
FGK	Estrelas com temperaturas efetivas entre 3500K e	е 7500К К
G	Energia de Gibbs	J/mol
Gyr	10^9 anos	
h	Constante de Planck	$J \cdot s$
l,b	Longitude e latitude galáctica, respectivamente	
log(g)	Logaritmo da gravidade superficial da estrela	К
Z	Número Atômico	

Siglas	
ESO	European Southern Observatory
IMF	Função inicial de massa, do inglês Initial Mass Function
IRAF	Image Reduction and Analysis Facility
ISM	Meio Interestelar, do inglês InterStellar Medium
LTE	Equilíbrio Termodinâmico Local, do inglês Local Thermodynamic Equili- brium
NASA	National Aeronautics and Space Administration
SFR	Taxa de Formação Estelar, do inglês Star Formation Rate
SN	SuperNova
SNR	Razão Sinal Ruído, do inglês Signal to Noise Ratio

Capítulo 1 Introdução

1.1 Contexto

Embora tenhamos avançado muito nos últimos anos na compreensão das galáxias e de sua formação, principalmente devido a chegada de grandes telescópios (8-10 metros) e do desenvolvimento de inúmeras novas tecnologias, ainda não temos um modelo que defina de fato como as galáxias se formaram. Porém, de forma semelhante a como geólogos e arqueólogos estudam a nossa Terra primitiva, ou seja, a partir de rochas, fósseis e composição química de isótopos em regiões mais profundas, nós também estudamos a formação de galáxias a partir de estrelas e suas propriedades, tais como suas abundâncias químicas, cinemáticas e idades. As principais teorias atuais sugerem que a formação dessas tão enormes estruturas do universo provém de uma evolução de estruturas menores que vão se unindo e se "apossando" de outras ((Searle; Zinn, 1978), (Mo; van den Bosch; White, 2010)), o que não seria diferente para nossa própria galáxia, tornando esse um dos maiores desafios da astronomia e astrofísica moderna.

Desde o final do século passado, o foco de muitos trabalhos tem sido diminuir o tempo na determinação de parâmetros atmosféricos e abundâncias químicas criando softwares que realizem alguma parte do processo de forma automática, sejam eles programas que calculem as larguras equivalentes (Automatic Routine for line Equivalent widths in stellar Spectra (ARES): Sousa et al. 2007, Dominion Astronomical Observatory SPECtrum analysis code (DAOSPEC): Stetson; Pancino 2008, Tool for Automatic Measurement of Equivalent-width (TAME): Kang; Lee 2012), que façam a iteração de escolha dos parâmetros para criação da atmosfera teórica e interpolação destes parâmetros com as larguras equivalentes (StePar: Tabernero, H. M. et al. 2019, Fast Automatic MOOG Analysis (FAMA): Magrini, Laura et al. 2013) ou ainda, que criem espectros sintéticos que serão modelados ao espectro real revelando os parâmetros e abundâncias (SPECTRUM: Gray 1999, PFANT: Barbuy; Trevisan; de Almeida 2018). Dessa forma, em uma época onde os avanços tecnológicos melhoram a precisão e a quantidade de dados de forma exponencial, torna-se impossível analisar todos os materiais analogicamente, fazendo com que calibrações envolvendo parâmetros atmosféricos de estrelas apareçam como uma ferramenta fundamental para analisar essa grande quantidade de dados e até mesmo relacionar observações com teoria.

Esses tipos de calibrações não são novas no meio astrofísico, no passado, muitos autores criaram boas calibrações fotométricas para automatizar grandes levantamentos ((Ramirez; Meléndez, 2005); (Alonso; Arribas; Martínez-Roger, 1999)), mas nenhum deles usou uma amostra selecionada de estrelas padrão com espectros de alta resolução, realizando uma análise homogênea a fim de obter os melhores parâmetros atmosféricos e abundâncias para criar a calibração. A maioria destas calibrações são relações entre parâmetros que já são bem estabelecidas na teoria, e.g. calibrações envolvendo cor-temperatura.

Em especial as calibrações feitas por Alonso; Arribas; Martínez-Roger 1999 (A99 daqui em diante), serviram de inspiração primordial para este trabalho, pois levantaram questões fundamentais como a existência de algum tipo de correlação entre abundâncias químicas e parâmetros atmosféricos. Porém, diferente deste trabalho, em A99 o método utilizado para determinação das temperaturas efetivas é o InfraRed Flux Method (IRFM) (Blackwell; Shallis, 1977), que consiste em medir os diâmetros angulares e fluxos bolométricos¹, de forma que, a temperatura efetiva (T_{eff}) é obtida comparando o quociente entre fluxo bolométrico (\mathcal{F}_{Bol}) e fluxo monocromático em um comprimento de onda infravermelho do contínuo ($F(\lambda_{IR})$). Conceitualmente, a temperatura efetiva é a temperatura de um corpo negro de mesmo (\mathcal{F}_{Bol}) que a estrela analisada, de acordo com a Lei de Stefan-Boltzmann ($\mathcal{F}_{Bol} = \sigma T_{eff}^4$). Como o fluxo que obtemos é emitido pelas camadas mais exteriores da estrela (fotosfera) então a tempe-

¹O fluxo bolométrico é obtido integrando o fluxo de uma estrela em todos os comprimentos de onda ou frequências, tendo assim um "fluxo total".

ratura efetiva é, essencialmente, a temperatura desta camada.

1.2 Espectroscopia vs Fotometria

Existem duas grandes técnicas astronômicas que, embora estejam conceitualmente corretas, costumam apresentar significante diferença nos resultados apresentados na literatura. Uma delas é a espectroscopia que, geralmente, consiste em dispersar a luz através de um prisma ou usar técnicas de difração e, analisar a variação da intensidade de radiação eletromagnética em função do comprimento de onda, também conhecida como espectro.

A outra técnica é a fotometria, que não necessita dessa dispersão, e se preocupa apenas em analisar o fluxo de luz (geralmente através de filtros passa-banda) e gravar a energia desta com um instrumento fotossensível. Atualmente os instrumentos mais utilizados, tanto nessa área quanto na espectroscopia, são os fotômetros de CCD (Charge-Coupled Device), que são circuitos integrados sensíveis à luz que capturam imagens convertendo fótons em elétrons. Quando calibrados com fontes de luz de intensidade e cor conhecidas, os fotômetros podem medir o brilho ou magnitude aparente de objetos celestes e obter diferentes parâmetros através de teoria.

Ambos os métodos são sólidos e apresentam resultados consistentes com suas respectivas considerações. A escolha por um método espectroscópico geralmente vem atrelada à decisão por uma análise mais individual e considerada mais precisa² (Genest-Beaulieu; Bergeron, 2014), embora seja mais lenta e com menos opções de objetos, uma vez que, a própria captura de radiação requer uma maior quantidade de tempo e geralmente só consegue capturar a luz de um objeto por vez. A escolha por uma análise fotométrica por sua vez, está atrelada a decisão de que a quantidade de dados gera um peso estatístico que contrabalanceia as incertezas individuais.

Assim, além destes motivos listados acima, a escolha deste trabalho pela espectroscopia está diretamente atrelada à sua importância, que decorre da urgente necessidade de uma nova abordagem na análise de grandes surveys, principalmente daqueles

²Não necessariamente mais acurada.

onde a maioria dos objetos de estudo possuem baixa resolução, sendo uma forma rápida de tirar informações cruciais para o estudo de populações estelares.

1.3 Elementos α

O processo α é uma das classes de fusão nuclear que utiliza o hélio para gerar elementos mais pesados. Quando os isótopos mais abundantes destes elementos mais pesados são múltiplos inteiros da massa nuclear de hélio³ eles são chamados de elementos α . São exemplos de elementos α o O, Ne, Mg, Si, Ca, Ti, S, entre outros. Como este é um processo que envolve reações entre núcleos de números atômicos (Z) relativamente grandes, as temperaturas para realizar tal fusão são da ordem de 10⁹ graus (Burbidge et al., 1957). Portanto, esta condição só será alcançada quando uma estrela estiver se contraindo após a queima de hélio. Consequentemente, podemos supor que esta situação somente é alcançada em um estágio avançado da evolução estelar, após a estrela deixar o ramo das gigantes.

Os elementos α são traçadores fundamentais para diversos estudos de formação e evolução galáctica. Uma possível análise pode ser feita ao grafarmos [α/Fe] vs [Fe/H] (figura 1.1) que revela características interessantes como o fato da proporção de [α/Fe] poder ser entendida como um "cronômetro"(que começa a decair após ~ 1Gyr), pois estrelas muito massivas são mais eficientes produzindo elementos α , assim os valores de [α/Fe] em baixas metalicidades (antes do "joelho") são uma indicação da massa das estrelas que contribuíram para o enriquecimento do Meio Interestelar (do inglês, InterStellar Medium ou ISM) e, portanto, fornece uma medida indireta da Função Inicial de Massa (do inglês, Initial Mass Function ou IMF) (TOLSTOY et al., 2003).

Além disso, $[\alpha/Fe]$ é comumente usado para traçar a escala de tempo de formação de estrelas em um sistema, porque é sensível à razão entre SNII (Supernova resultante do rápido colapso de estrelas massivas) e SNIa⁴ que ocorreram no passado.

 ³Partículas α possuem a mesma estrutura nuclear do Hélio, com diferença de possuírem carga elétrica +2.

⁴Supernova do tipo Ia é o tipo de supernova que ocorre em sistemas binários onde uma das estrelas é uma anã branca. A explosão é causada quando a anã branca acreta massa da sua companheira até atingir

FIGURA 1.1. Gráfico teórico [α /Fe] vs [Fe/H] revelando as informações que podem ser obtidas com o estudo de elementos α . A repentina queda nos valores de [α /Fe] é conhecida como um "joelho" e pode ser observada em [Fe/H] = -1.00

SNIa tem uma escala de tempo mais longa que SNII e, assim que começam a contribuir dominam o enriquecimento de ferro e o $[\alpha/Fe]$ inevitavelmente diminui (Tolstoy; Hill; Tosi, 2009). Assim, a posição do joelho indica o enriquecimento de metais alcançado por um sistema no momento em que as SNIa começam a contribuir para a evolução química (e.g Tinsley 1979, Matteucci; Brocato 1990, Matteucci 2003).

Quando a Taxa de Formação Estelar (do inglês, Star Formation Rate ou SFR) é alta, o gás atinge maiores valores de [Fe/H] antes da primeira SN Ia ocorrer e os elementos α começarem a diminuir (o "joelho").

1.4 Outros elementos

Além dos elementos α já citados mencionados, foram determinadas também as abundâncias de Sódio, Alumínio e Níquel.

o limite de Chandrasekhar (massa máxima que pode ser suportada pela pressão de degenerescência dos elétrons), ou quando ocorre uma fusão das duas estrelas.

O níquel, juntamente com o Cr, Mn, Fe e Co, é um elemento do pico do ferro, categoria dada aos elementos na vizinhança do número atômico do Ferro que produzem um máximo local em abundância. Supernovas são os sítios da nucleossíntese dos elementos do pico do ferro, especialmente as SN Ia geram grandes quantidades de ⁵⁶Ni.

Abundâncias de elementos do pico do ferro podem aprofundar a física da nucleossíntese explosiva. Por exemplo, espera-se que as explosões termonucleares de anãs brancas massivas gerem quantidades relativamente grandes de nuclídeos ricos em nêutrons em comparação com as explosões de anãs brancas menos massivas, uma vez que, altas densidades, juntamente com a degenerescência de elétrons, favorecem a produção de nêutrons (Kirby et al., 2018).

Já o Sódio e o Alumínio são elementos leves de Z-ímpar, traçadores dos processos da nucleossíntese de metais por queima de H. Os elementos leves de Z-ímpar estudados aqui são gerados a partir da captura de prótons (núcleos de H) por elementos α .

1.5 Objetivos

Este trabalho foi realizado ao longo de 3 anos de pesquisa vinculada a diferentes bolsas de Iniciação Científica. Nosso principal objetivo é obter uma calibração relacionando abundâncias químicas (Mg, Si, Ca, Ti) e parâmetros atmosféricos para estrelas FGK da Galáxia, cobrindo uma faixa de: $4300K \le T_{eff} \le 6500K$; $-2,95 \le [Fe/H] \le$ 0,25. Segue abaixo uma lista detalhada dos objetivos específicos deste projeto:

- Identificar quais estrelas analisadas por A99 estão presentes no ESO Science Portal com R > 40.000
- Normalizar os espectros adquiridos e determinar suas velocidades radiais.
- Determinar os parâmetros atmosféricos usando o método das larguras equivalentes.
- Determinar as abundâncias químicas usando também as larguras equivalentes.

- Analisar correlações entre as abundâncias químicas e os parâmetros atmosféricos.
- Criar uma calibração envolvendo os objetos de interesse mais correlacionados.
- Validar a calibração fazendo comparações estatísticas com dados de outros surveys.

Por fim, é importante ressaltar que este trabalho compartilha dos princípios de dados do FAIR (Findable Accessible Interoperable Reusable) e portanto compartilha todos os resultados, *inputs* e *outputs* apresentados aqui. Todos os dados (incluindo o código que realizou toda a análise e *plots* escrito na linguagem Python e formato Jupyter Notebook) podem ser acessados no repositório do autor no GitHub⁵

⁵Disponível através do endereço <https://github.com/theweckerle/spectroscopic-calibrations>

Capítulo 2 Materiais e Métodos

2.1 Amostra de estrelas

A amostra de estrelas selecionadas para este estudo é uma subamostra das estrelas estudadas em A99, cujos espectros foram adquiridos unicamente através do ESO Science Archive Facility ¹ na seção Science Portal. Os instrumentos utilizados na obtenção dos espectros foram o UVES, HARPS, FEROS e o ESPRESSO unicamente para criação do espectro de Arcturus. Para garantir uma uniformidade na qualidade dos dados foram exigidos os seguintes pré-requisitos para as estrelas:

- Estarem presentes na lista de estrelas de A99 com $3700 \text{K} \leq T_{eff} \leq 7000 \text{K}$.
- Estarem presentes no ESO Science Portal.
- Possuírem espectros com resolução R ≥ 40.000, SNR ≥ 100, com comprimentos de onda na faixa entre ~ 4800Å e ~ 6800Å e que já fossem calibrados em fluxo.

A escolha do ESO Science Archive Facility como único provedor de dados é dada pela grande variedade de espectros de alta resolução já reduzidos e calibrados, sem que fossem necessárias quaisquer alterações. Essas reduções foram feitas por pipelines automáticas e variam para cada um dos espectrógrafos². No entanto, os espectros baixados deste sítio no formato .fits, possuem tabelas binárias com um header na

¹http://archive.eso.org/cms.html

²Todas as pipelines podem ser encontradas em <https://www.eso.org/sci/software/pipelines/>

convenção de palavras-chave ESO HIERARCH³, o que dificultava a sua análise pelo software IRAF (Tody, 1986). Para tal, foi criado um programa ⁴ escrito em Python 3 que interpola o fluxo e comprimento de onda originais, além das informações necessárias do header para então criar um novo arquivo .fits.

Portanto, após fazer a seleção de todas as estrelas que se enquadram nestes requisitos restaram as 50 estrelas FGK que servem de análise para este estudo. Tanto a Resolução quanto o SNR foram adotados conforme apresentado para cada espectro no portal. Uma vez que nenhuma redução de dados foi necessária, as únicas alterações de espectro feitas foram normalização e correção de velocidade radial. Ambas as mudanças foram feitas usando as tarefas IRAF *continuum* e *rvidlines*, respectivamente. Para realizar de forma correta a normalização com a *task continuum*, os espectros foram divididos em partes de aproximadamente 500Å e então polinômios do tipo Spline Cúbica com altos valores no parâmetro *order*⁵ foram aplicados a cada um. Ao final, as 4 partes são unidas e então, é feita a identificação das velocidades radiais utilizando uma lista de linhas no repouso⁴ e posteriormente feita a correção com a tarefa *dopcor*.

Um exemplo demonstrando a diferença entre um espectro normalizado e um espectro não normalizado pode ser visto na figura 2.1, bem como um exemplo de correção de velocidades radiais na figura 2.2.

2.2 Fotometria e Astrometria

Todos os valores de cor B-V utilizados neste trabalho foram retirados do catálogo HIPPARCOS (Perryman et al., 1997). Quando disponível foi retirada também a magnitude V e, quando ausente, utilizada a apresentada em Ducati 2002. Foi criado um diagrama Cor-Magnitude para demonstrar o estágio evolutivo da amostra e comparar com os dados apresentados em van Altena; Lee; Hoffleit 1995 (LEE95), de onde foram retirados os valores de B-V, magnitude aparente mV, paralaxes e incertezas das paralaxes. O diagrama pode ser observado na figura 2.3

³Mais sobre essa convenção em: https://fits.gsfc.nasa.gov/registry/hierarch/hierarch.pdf

⁴Disponível em https://github.com/theweckerle/Bolsa

⁵Quando o tipo de função selecionada é a Spline Cúbica, o parâmetro *order* dita o número de intervalos que serão divididos para que, em cada um, seja ajustado um polinômio cúbico.

FIGURA 2.1. Exemplo de espectro do objeto HD 44007 antes e depois da normalização.

A astrometria foi obtida diretamente do Gaia EDR3 (Brown et al., 2021), sendo usada para determinar o excesso de cor de B-V, que será utilizado para determinar a cor corrigida $(B - V)_0$ dado pela equação 2.1.

$$(B - V)_0 = (B - V) - E(B - V)$$
(2.1)

Um gráfico da localização espacial da amostra pode ser visto na figura 2.4 de acordo com a projeção de Aitoff.

FIGURA 2.2. Exemplo de espectro do objeto HD 44007 antes (gráfico superior) e depois (gráfico inferior) da correção de velocidade radial, que neste caso era de 162.2 km/s.

Foi assumido que a poeira no disco galáctico pode ser modelada como um disco exponencial fino com uma altura de escala de 125 pc (Bonifacio, P.; Caffau, E.; Molaro, P., 2000). Como a maioria das nossas estrelas está próxima, elas estão, no mínimo, próximas desse disco de poeira. Assim, os excessos de cor foram determinados seguindo os seguintes critérios:

- Para objetos com distância d < 80pc : E(B-V) = 0
- Para objetos afastados do Plano Galáctico (b > |20°|), foram utilizados os excessos de cor dados através dos mapas de Schlegel (Schlegel; Finkbeiner; Davis, 1998)⁶ (S98 a partir daqui).
- Para objetos perto do plano galáctico (b<|20°|) foi utilizada a equação 2.2 retirada de (Árnadóttir, A. S.; Feltzing, S.; Lundström, I., 2010)

⁶Obtidos através do NASA/IPAC INFRARED SCIENCE ARCHIVE em https://irsa.ipac.caltech.edu/applications/DUST/

FIGURA 2.3. Diagrama Cor-Magnitude comparando pontos deste trabalho com os de LEE95.

$$E(B-V)_{star} = [1 - exp(-\frac{|dsinb|}{h})] \times E(B-V)_{S98}$$
(2.2)

Onde $E(B - V)_{98}$ é o excesso de cor dado em S98.

Todos os valores de fotometria e astrometria podem ser encontrados nas tabelas 5.6 e 5.5. Tendo suas prévias mostradas nas tabelas 2.1 e 2.2, respectivamente.

ID	(B-V)	E(B-V)	$(B-V)_0$
Eps vir	0.934	0	0.934
94 aqr	0.787	0	0.787
Bet01 Cap	0.79	0.074	0.716
Bet Gem	0.991	0	0.991

Tuble 2.1 continued from previous puge							
ID	(B-V)	E(B-V)	$(B-V)_0$				
NGC 2682 231	1.219	0.031	1.188				
Procyon A	0.432	0	0.432				

Table 2.1 continued from previous page

TABELA 2.1. Fotometrias utilizadas neste trabalho. Todos os valores de (B-V) foram extraídos do catálogo HIPPARCOS, os valores de E(B-V) calculados segundo a equação 2.2 e os valores de $(B - V)_0$ calculados segundo a equação 2.1.

ID	RA (°)	DEC (°)	Paralaxe	e_Plx	1	b	Ref	d (pc)
Eps Vir	195.5429	10.95924	30.21096	0.190724	312.3208	73.63501	Gaia EDR3	33.100573
94 Aqr	349.7792	-13.4591	39.40194	1.056807	60.70914	-64.4747	Gaia EDR3	25.379462
Bet01 Cap	305.253	-14.7814	8.396575	0.634806	29.14976	-26.3703	Gaia EDR3	119.096179
Bet Gem	116	28.02631	96.74	0.87	192.2293	23.4063	HIPPARCOS	10.336986
NGC 2682 231	132.9378	11.79609	1.250896	0.025373	215.7547	31.99487	Gaia EDR3	799.427284
Procyon A	114.8272	5.227508	285.93	0.88	213.7022	13.0194	HIPPARCOS	3.497359

TABELA 2.2. Astrometrias utilizadas neste trabalho. As distâncias foram calculadas como sendo o inverso da paralaxe.

As magnitudes absolutas foram determinadas seguindo a expressão 2.3.

$$M_V = V - 5log(d(pc)) + 5 - A_v$$
(2.3)

Onde foi considerado que $A_v = 3,1 \times E(B-V)$ para os pontos da nossa amostra. Valores de A_v não eram disponíveis em LEE95, portanto apenas os objetos com uma incerteza na paralaxe inferior a 50 milliarcsecs foram considerados.

2.3 Lista de Linhas

Uma lista de linhas se configura a partir de uma lista de parâmetros atômicos, que consistem em comprimento de onda da transição no repouso, do potencial de excitação dessa transição χ e do log(gf) que é o logaritmo do produto entre o peso estatístico e a força do oscilador. A lista de linhas de FeI e FeII utilizada para determinar os parâmetros atmosféricos é a mesma usada em (Sousa et al., 2008), apenas algumas linhas foram cortadas por terem tido um consistente desvio nas abundâncias retornadas. As linhas de O, Na, Mg, Al, Si, Ca, TiI, TiII e Ni foram baseadas na lista de (Yong et al., 2014) que já se mostraram consistentes por terem sido testadas em outros trabalhos.

FIGURA 2.4. Gráfico revelando as coordenadas galácticas de cada um dos objetos na projeção de Aitoff.

Uma pequena amostra da lista de linhas pode ser vista na tabela 2.3. A escolha desta lista vem do fato da determinação de $\log g f$ s de confiança serem muito difíceis, o que torna a escolha de uma lista já testada anteriormente na literatura muito mais segura.

Comprimento de onda Å	Ele.	χ	$\log(gf)$
6300.31	08.0	0.00	-9.75
6363.78	08.0	0.02	-10.25
5682.65	11.0	2.10	-0.67
5688.22	11.0	2.10	-0.37
6154.23	11.0	2.10	-1.57
6160.75	11.0	2.10	-1.26
5711.09	12.0	4.34	-1.73
6318.71	12.0	5.11	-1.94

TABELA 2.3. Recorte da lista de linhas utilizada na determinação das abundâncias químicas dos elementos O, Na, Mg, Al, Si, Ca, TiI, TiII, FeI, FeII e Ni. A lista completa pode ser encontrada na tabela 5.7.

2.4 Larguras equivalentes e análise de linhas

Utilizou-se o método ARES+MOOG (Sousa, 2014) para derivar os parâmetros estelares. O método consiste em calcular as Larguras Equivalentes (EWs) e juntamente com um modelo teórico de atmosferas, servir de entrada para um programa de síntese espectral que irá interpolar estes dois e retornar os parâmetros atmosféricos bem como as abundâncias químicas de todos os elementos da lista de linhas.

Em um espectro normalizado, uma largura equivalente é definida como sendo o menor lado de um retângulo cujo maior lado é 1 e possui área igual a da linha espectral de interesse. Ela serve como uma medida da força de uma linha e matematicamente pode ser escrita como:

$$W_{\lambda} = \int_{0}^{\infty} \frac{F_c - F_{\lambda}}{F_c} \, d\lambda \tag{2.4}$$

Com F_c sendo o Fluxo no contínuo já normalizado.

Um exemplo gráfico do conceito de uma EW pode ser visto na figura 2.5.

É importante ressaltar que os parâmetros corretos somente são retornados quando alguns critérios são alcançados, sendo eles (que serão detalhados na próxima seção):

- Equilíbrio de ionização.
- Equilíbrio de excitação.
- A consideração de que a [Fe/H] é igual a [M/H]⁷.
- A consideração do efeito da microturbulência nas linhas.

Lembrando que para todos estes é assumido Equilíbrio Termodinâmico Local (LTE), ou seja, que a temperatura não varia na escala do livre caminho médio dos fótons.

⁷O que significa que a metalicidade de entrada deve produzir uma abundância global de ferro compatível. Aqui assume-se que a abundância de ferro é um indicador para a metalicidade estelar.

Comprimento de onda

FIGURA 2.5. Demonstração do conceito de largura equivalente. Esta só é alcançada quando as áreas de ambas as cores são iguais.

2.5 Determinação dos parâmetros

O equilíbrio de excitação é a principal consideração na determinação da T_{eff} , isso pode ser observado ao analisarmos a equação de excitação de Boltzmann:

$$N_i = N_{tot} \frac{g}{Z} e^{-\frac{\chi}{k_B T}}$$
(2.5)

Onde N_{tot} é o número total de átomos que gerou a linha espectral, g é a degenerescência do estado $|i\rangle$, k_B é a constante de Boltzmann, Z é a função de partição e χ é o potencial de excitação. Definindo a abundância de um elemento "X" como $A \equiv \frac{N_{tot}}{N_H}$ e considerando que o potencial de excitação é um valor fixo para cada linha espectral, um valor incorreto de temperatura irá resultar em diferentes abundâncias para diferentes linhas, por isso o equilíbrio de excitação será alcançado quando a dispersão entre as abundâncias individuais tender a zero, ou seja:

$$\frac{\partial A}{\partial \chi} \to 0$$
 (2.6)

O equilíbrio de ionização é regido pela equação de Saha, que descreve a fração entre o número de átomos em dois estados de ionização distintos e pode ser observada na equação 2.7.

$$\frac{n_{i+1}n_e}{n_i} = \frac{2}{\lambda^3} \frac{g_{i+1}}{g_i} \exp\left[-\frac{(\epsilon_{i+1} - \epsilon_i)}{k_B T}\right] = \frac{\Phi(T)}{P_e}$$
(2.7)

Onde P_e é a pressão eletrônica⁸, sendo esta fundamental na determinação do log(g). Como sabemos, a intensidade da linha de um determinado elemento é proporcional a quantidade de átomos naquele estado, logo, um valor incorreto de log(g) resultará em uma pressão eletrônica também incorreta, que por sua vez irá criar um modelo com estados ionizados diferentes do real. Dessa forma, assumir equilíbrio de ionização significa imputar que a abundância de FeI e FeII são iguais e este somente será alcançado com o correto valor de log(g).

Um dos parâmetros atmosféricos determinados pelo cálculo e manipulação de larguras equivalentes é a velocidade de microturbulência (ν_t), que nada mais é do que a consideração de que existe um movimento convectivo menor do que o livre caminho médio dos fótons⁹ na fotosfera. Assim, fótons emitidos em uma célula convectiva são absorvidos por outra célula convectiva com uma velocidade diferente da primeira, o que gera um desvio Doppler na linha de absorção, e consequentemente gera um alargamento da linha. Portanto, esse parâmetro tem fundamental importância para o modelo, pois é o que irá reger o alargamento das linhas, que por sua vez, serão responsáveis por determinar a abundância do elemento em estudo. Para alcançar o valor correto de ν_t , é necessário entender que linhas de maior largura equivalente são mais propícias a alargamentos, pois a largura equivalente é proporcional ao número de absorvedores por unidade de volume, ou seja, mais absorvedores significa mais átomos participando desse movimento convectivo e aumentando o alargamento. Então, ao normalizar cada uma das EW ($EW_{norm} = log(EW/\lambda)$) deve-se eliminar essa correlação com a abundância, isto é:

⁸A pressão eletrônica é uma quantidade proporcional a gravidade do gás da estrela.

 $^{^9}$ ~ 1cm em estrelas solares

$$\frac{\partial A}{\partial EW_{norm}} \to 0 \tag{2.8}$$

Ao final, o valor de [Fe/H] será determinado quando este for igual ao valor de [M/H] inserido no modelo de atmosferas.

Um gráfico que mostra a visualização destas considerações pode ser observado na figura 2.6, onde são plotadas as abundâncias de FeI contra o χ no gráfico superior e contra EW_{norm} no gráfico inferior. Além disso são mostradas a metalicidade de entrada e a diferença entre FeI e FeII. Uma regressão linear é então aplicada aos pontos para que as considerações 2.8 e 2.6 sejam satisfeitas.

FIGURA 2.6. Gráfico demonstrando o equilíbrio de ionização e excitação, e a eliminação da correlação entre as abundâncias individuais de Ferro I com as larguras equivalentes normalizadas para a estrela HD 161770.

Para estimar estes parâmetros é necessário um repetido processo de escolha dos mesmos, visto que, cada um dos parâmetros tem dependência única com cada um dos pré-requisitos necessários (Sousa, 2014), sendo finalmente escolhidos quando todos os coeficientes angulares das curvas mencionadas forem menores ou iguais a 0.005.

Para realizar este procedimento foi feito uso do código ARES (Sousa et al., 2007) para calcular as larguras equivalentes de forma automática, utilizando apenas larguras no intervalo $10\text{\AA} \leq \text{EW} \leq 150\text{\AA}$ e com erro inferior a 10% do valor da respectiva largura. O modelo de atmosferas adotado foi o modelo ATLAS9 (Kurucz, 1993), que recebe como entrada os 4 parâmetros atmosféricos de interesse (T_{eff} , log(g), [Fe/H] e ν_t) para a criação de uma atmosfera estelar teórica dividida em camadas. Importante ressaltar que este modelo assume uma simetria plano-paralela, ou seja, as variáveis físicas dependem apenas de uma coordenada espacial: a profundidade óptica.

O programa de análise de linhas escolhido foi o MOOG (Sneden, 1973). Para estrelas de metalicidade [Fe/H] > -1.50 foi utilizado o código StePar (Tabernero, H. M. et al., 2019) que realiza o processo de iteração entre escolha e determinação dos parâmetros atmosféricos de forma automática supondo LTE. Para simplificar o entendimento do processo, foi feito um fluxograma que demonstra o procedimento iterativo feito até que os parâmetros finais sejam retornados que pode ser observado na figura 2.7.

2.6 Incertezas

As incertezas dos parâmetros atmosféricos foram determinadas como demonstrado em Tabernero, H. M. et al. 2019 para todas as estrelas com [Fe/H] > -1.50, uma vez que o código fez a síntese para essas estrelas. Este método consiste em:

- Para a microturbulência, altera-se ligeiramente o valor de ν_t até que a inclinação da curva de dispersão de log(Fe I) vs. log(EW/λ) varie dentro do seu próprio erro, dividido pela raiz quadrada do número de linhas de Fe I.
- A temperatura efetiva é variada até que a inclinação de log(Fe I) vs. χ aumente com o seu erro, dividido pela raiz quadrada do número de linhas de

FIGURA 2.7. Fluxograma detalhando o processo de determinação dos parâmetros atmosféricos. O processo cíclico que começa com a criação da atmosfera teórica foi feito manualmente para estrelas pobres e de forma automática com o StePar para estrelar com [Fe/H] > -1.50.

Fe I. Aumentando ν_t em seu erro, recalcula-se a temperatura efetiva. Essas duas fontes de erro são então adicionadas em quadratura.

- A gravidade superficial é variada até que a abundância de Fe II aumente em uma quantidade igual ao desvio padrão retornado pelo MOOG dividido pela raiz quadrada do número de linhas de Fe II. Todos erros anteriores em ν_t e T_{eff} são levados em conta variando essas quantidades separadamente, e assim recalculando a gravidade. Essas diferenças são posteriormente adicionadas em quadratura.
- Finalmente, para determinar o erro na abundância de Fe, os parâmetros atmosféricos estelares são variados em suas respectivas incertezas, o que permite a combinação das variações de Fe I e Fe II devido às incertezas dos

parâmetros estelares e dos desvios padrão das abundâncias de Ferro em quadratura.

Para as estrelas pobres em metais, ([Fe/H] < -1.50), as incertezas foram determinadas de forma manual e semelhante à mostrada acima, porém não levando em conta número de linhas de Fe I e Fe II e nem incertezas anteriores no processo, já que, desconsiderando estes fatores temos incertezas mais conservadoras que englobam outras possíveis fontes de erro associadas ao processo manual de análise. Assim, de forma simplificada:

- A *T*_{eff} e o log(g) foram variados até que a abundância de Fe I e Fe II aumentasse em seu desvio padrão fornecido pelo MOOG, respectivamente.
- A microturbulência foi variada até que o coeficiente angular da curva de dispersão de log(Fe I) vs. log (EW/λ) varie pelo seu próprio erro.
- Para o [Fe/H], todos os parâmetros foram variados por suas incertezas determinadas, então a diferença entre o [M/H] de entrada e o [Fe/H] retornado foi considerada a incerteza.

Para determinar os erros das abundâncias, primeiramente foram mantidos todos os desvios padrão retornados pelo MOOG para todos os elementos, então a iteração foi repetida variando um parâmetro atmosférico de cada vez por sua incerteza. Após todas as quatro variações, o desvio padrão das abundâncias obtidas foi calculado e comparado com o retornado pelo MOOG de forma a se utilizar o maior valor. Um exemplo desse método pode ser visto na tabela 2.4

As incertezas no $[\alpha/Fe]$ foram obtidas usando o método de Propagação de Incertezas através do pacote de Incertezas do Python (Lebigot, 2019).

TABELA 2.4. Tabela mostrando o processo sequencial de determinação das incertezas das abundâncias para cada elemento. Colunas ABUN(Parâmetro) representam as abundâncias retornadas após aquele parâmetro variar com sua respectiva incerteza. Colunas Δ (Parâmetro) representam a diferença dessa variação com a abundância original. Após todo o processo, o maior valor entre desvio padrão das colunas Δ e o desvio padrão apresentado pelo MOOG é considerado como incerteza do elemento. Elementos com abundância '-'indicam que nenhuma linha foi considerada satisfatória para este elemento. Desvio padrão do MOOG nulo indica que apenas uma linha foi encontrada para o elemento.

						HD 204543							
Ele.	ABUN	ABUN(TEFF)	Δ TEFF	ABUN(log(g)	$\Delta \log(g)$	ABUN(ν_t)	$\Delta \nu_t$	ABUN([FE/H])	Δ [FE/H]	STD	MEAN	STD MOOG	Incerteza considerada
OI	7.590	7.649	-0.059	7.659	-0.069	7.588	0.002	7.545	0.045	0.030	0.044	0.	0.030
Na I	4.316	4.384	-0.068	4.303	0.013	4.314	0.002	4.337	-0.021	0.029	0.026	0.017	0.029
Mg I	6.188	6.269	-0.081	6.173	0.015	6.179	0.009	6.434	-0.246	0.110	0.088	0.	0.110
AII	-	-	-	-	-	-	-	-	-	-	-	-	0.000
Si I	6.205	6.285	-0.08	6.206	-0.001	6.202	0.003	6.219	-0.014	0.037	0.025	0.097	0.097
Ca I	4.852	4.943	-0.091	4.835	0.017	4.84	0.012	4.881	-0.029	0.037	0.037	0.053	0.053
Ti I	3.412	3.586	-0.174	3.392	0.02	3.404	0.008	3.465	-0.053	0.076	0.064	0.047	0.076
Ti II	3.594	3.623	-0.029	3.658	-0.064	3.563	0.031	3.563	0.031	0.017	0.039	0.048	0.048
Fe I	5.833	5.953	-0.12	5.817	0.016	5.815	0.018	5.868	-0.035	0.049	0.047	0.076	0.076
Fe II	5.832	5.827	0.005	5.903	-0.071	5.82	0.012	5.799	0.033	0.030	0.030	0.044	0.044
Ni I	4.455	4.568	-0.113	4.443	0.012	4.449	0.006	4.48	-0.025	0.050	0.039	0.063	0.063

Capítulo 3 Resultados e Discussão

3.1 Parâmetros Atmosféricos

Todos os parâmetros atmosféricos e suas incertezas determinados neste trabalho podem ser encontrados na tabela 5.2 no Apêndice. Uma breve análise nos permite dizer que todos os parâmetros estiveram dentre o esperado, tendo $4300K \leq T_{eff} \leq$ $6500K; -2,95 \leq [Fe/H] \leq 0,25; 0,8 \leq log(g) \leq 4,3; 0,8 \leq \nu_t \leq 3,2$ valores condizentes com estrelas gigantes do tipo FGK cobrindo um grande intervalo de metalicidades.

Uma comparação entre os resultados obtidos aqui com os de A99 podem ser encontrados na figura 3.1, sendo necessário relembrar da diferença entre os métodos espectroscópicos e fotométricos para a determinação dos parâmetros atmosféricos ((Genest-Beaulieu; Bergeron, 2014), (Ramya; Reddy; Lambert, 2012)). Neste gráfico é possível observar uma melhor correlação entre os métodos quando da temperatura efetiva e da metalicidade, sendo menos condizente ao calcular as gravidades (log(g)). Essa variação em log(g) se deve ao fato desse parâmetro não ter sido efetivamente calculado em A99, os valores utilizados no referido artigo são valores médios dos tipos espectrais de cada objeto, dessa forma não possui uma validade observacional efetiva. Valores de R² (descrita na equação 5.4 na seção 5.2) e, média e desvio padrão das diferenças (Parâmetro - Parâmetro_A99) podem ser observados no gráfico 3.1.

A absoluta maioria das incertezas dos parâmetros atmosféricos permanece dentro do esperado para trabalhos deste tipo, com $\Delta T_{eff} \sim 100K$, $\Delta log(g) \sim 0.3 \ dex$, $\Delta [Fe/H] \sim 0.1 \ dex$ e $\Delta \nu_t \sim 0.2 \ km/s$ com apenas alguns desvios ocasionados princi-

FIGURA 3.1. Gráficos de correlação entre parâmetros atmosféricos utilizando regressão linear como método de comparação entre os dados obtidos aqui e os de A99.

palmente por espectros cuja normalização não ficou ideal.

Gráficos de temperatura efetiva vs $(B - V)_0$ também foram feitos para explicitar a validade dos parâmetros obtidos.

FIGURA 3.2. Gráfico de temperatura efetiva vs $(B - V)_0$.

Foi ajustada uma linha de tendência LOWESS, que é um método regressivo nãoparamétrico para ajustar uma curva suave aos pontos de um gráfico. A cor dos pontos é representada por [Fe/H], que se mostra ter uma forte dependência com a Temperatura Efetiva por diversos fatores. Um deles é o fato de que, para maiores metalicidades, a superfície da estrela é mais opaca, o que faz com que a estrela seja menos luminosa e mais fria.

3.2 Abundâncias Químicas

As abundâncias solares adotadas como base para este trabalho são as abundâncias fotosféricas de Asplund; Amarsi; Grevesse 2021, que podem ser observadas na tabela 3.1.

Os valores das abundâncias absolutas obtidas neste trabalho podem ser obser-

Elemento	Abundância Absoluta	Incerteza
0	8.69	0.04
Na	6.22	0.03
Mg	7.55	0.03
Al	6.43	0.03
Si	7.51	0.03
Ca	6.30	0.03
Ti	4.97	0.05
Fe	7.46	0.04
Ni	6.20	0.04

TABELA 3.1. Valores de abundâncias solares adotados.

vados na tabela 5.3. Para fins práticos, consideraremos apenas os elementos Mg, Si, Ca, Ti para o cálculo dos valores de α . O oxigênio foi retirado do cálculo devido à baixa quantidade de linhas espectrais deste elemento no intervalo analisado, uma vez que, apenas as linhas de 6300Å e 6363Å estavam em nossa lista e, especialmente nas estrelas de baixa metalicidade, apenas a linha de 6300Å aparecia com EW ≥ 10 mÅ. Portanto, este elemento foi descartado pela baixa quantidade de abundâncias finais para estrelas pobres, o que poderia trazer uma falsa correlação entre metalicidade e valores de α . A abundância de titânio considerada para o cálculo dos α é a média entre o estado neutro e o ionizado, quando ambos disponíveis. Todas as abundâncias foram determinadas com modelos atmosféricos que consideram valores de α *solar*, pois a grande maioria das estrelas estão dentro da vizinhança solar.

Gráficos de [Na, Al, Ni/Fe] vs [Fe/H] (figura 3.3) foram feitos, embora nenhuma correlação tenha sido identificada com exceção do gráfico de Níquel que manteve abundância média nula para todas as metalicidades, como já esperado (Gratton; Sneden; Carretta, 2004). Abundâncias de alumínio foram extremamente difíceis de serem obtidas, especialmente para estrelas com [Fe/H] < -1.0, uma vez que apenas as linhas de 6696Å e 6698Å estavam presentes de forma confiável na nossa lista de linhas. Análises anteriores mostraram que essas duas linhas tem resultados mais precisos do que as linhas de ressonância em 3944Å e 3961Å (Collaboration, 2017), porém estas últimas não são identificadas com muita frequência e confiabilidade em estrelas pobres em metais (Roederer; Lawler, 2021).

Gráficos de [X/Fe] vs [Fe/H]

FIGURA 3.3. Gráficos de abundâncias individuais dos elementos leves de Z ímpar e pico do ferro determinados neste trabalho.

Gráficos de abundâncias individuais dos elementos α vs [Fe/H] podem ser observados na figura 3.4. Todos os elementos, com exceção do oxigênio, possuem o mesmo padrão de decrescência suave (quase horizontal) até [Fe/H] ~ -1, tendo uma queda mais brusca após esse joelho. O padrão descrito pelas abundâncias de oxigênio foram considerados escassos para baixas metalicidades e insatisfatórios no intervalo geral por não apresentarem o comportamento esperado.

Um gráfico de [α /Fe] vs [Fe/H] também pode ser observado na figura 3.5, onde é possível perceber a presença de um, já anteriormente observado, "joelho"(Alves-Brito, A. et al. 2010, Nidever et al. 2014) entre -1.2 \leq [Fe/H] \leq 0.7. Como já mencionado anteriormente, a posição da metalicidade do joelho depende diretamente da eficiência de formação estelar da galáxia (Pagel, 1997) e não pôde ser determinado de forma exata devido à uma falta de estrelas nesse intervalo de metalicidade.

Analisando a figura 3.5 é possível perceber uma grande dispersão nos valores de [α /Fe] para baixas metalicidades, o que torna a curva de regressão muito mais inclinada do que a curva vista em outros trabalhos que dividiram suas amostras baseados em pertencimento morfológico, e.g. (Alves-Brito, A. et al., 2010), que faz uso de uma amostra com predomínio de estrelas do Disco e Bojo. Dessa forma, é possível que essa dispersão seja dada pela presença de duas distintas populações (Nissen; Schuster, 2011), porém, não é possível afirmar isto sem um estudo de pertencimento.

Gráficos de [X/Fe] vs [Fe/H]

FIGURA 3.4. Gráficos de abundâncias individuais dos elementos α determinados neste trabalho.

FIGURA 3.5. Gráfico global de $[\alpha/Fe]$ vs [Fe/H] determinados neste trabalho, juntamente com duas regressões lineares que demonstram a presença de um "joelho".

3.3 Calibração Espectroscópica

Com todos os parâmetros atmosféricos e abundâncias químicas, junto com suas respectivas incertezas em mãos, foi possível começar a criação de uma calibração que envolvesse diferentes indicadores foto-espectroscópicos. Para tal, primeiramente foi feita uma Correlação de Spearman entre todos os parâmetros atmosféricos, os valores de $[\alpha/\text{Fe}] e (B - V)_0$ para verificar quais dados possuíam maior correlação.

A Correlação de Spearman retorna um valor ρ , cuja interpretação será dada como mostrado em Rumsey 2011:

- $\rho = 1.00$ -> correlação crescente perfeita.
- $\rho = 0.70$ -> correlação crescente forte.
- $\rho = 0.50$ -> correlação crescente moderada.
- $\rho = 0.30$ -> correlação crescente fraca.

De forma análoga, para os valores negativos: -1; -0.70; -0.50; -0.30 temos a mesma intensidade correlativa, porém de forma decrescente. Dessa forma, o interesse aqui é a criação de uma calibração de dois parâmetros, i.e. Y(X1,X2) = Pol(X1,X2), e

por isso procuraremos por parâmetros que possuam $|\rho| \ge 0.50$ e mesmo sentido de crescimento. Alguns dos valores de ρ encontrados podem ser observados na tabela 3.2.

Parâmetro 1	Parâmetro 2	ho
T_{eff}	logg	0.734
T_{eff}	$(B-V)_0$	-0.848
logg	[Fe/H]	0.573
logg	$[\alpha/\text{Fe}]$	-0.551
$ u_t$	[Fe/H]	-0.505
[Fe/H]	logg	0.573
[Fe/H]	$ u_t$	-0.505
[Fe/H]	$[\alpha/\text{Fe}]$	-0.867
$[\alpha/\text{Fe}]$	logg	-0.551
$[\alpha/\text{Fe}]$	[Fe/H]	-0.867
$(B-V)_0$	T_{eff}	-0.848
$(B-V)_0$	$(B-V)_0$	1.000

TABELA 3.2. Valores de $|\rho| \ge 0.50$ para diferentes parâmetros iterados.

Dessa forma, ao observar os valores retornados, é possível perceber que a melhor escolha de parâmetros será dada por $[\alpha/Fe] = Pol([Fe/H], log(g))$. Esta é, provavelmente, a melhor escolha de calibração, pois relaciona as abundâncias químicas com parâmetros atmosféricos, que são determinados em diferentes etapas do processo, sendo uma eficiente forma de análise para grandes surveys de alta resolução (Huang et al., 2015).

Com os atributos escolhidos, fez-se necessário o entendimento de como performar uma regressão não linear multivariada e, para isso, utilizou-se o software LabFit (Silva; Silva, (1999-2021)), que possui uma biblioteca com mais de 570 funções disponíveis para análise. Assim, após colocar cada um dos atributos com suas respectivas incertezas no programa, ele retorna as funções com os menores valores de Chi-Quadrado, juntamente com outras métricas estatísticas. Para o nosso caso, a função que melhor se ajustou aos dados é dada na equação

3.1

$$[\alpha/Fe] = A[Fe/H]^3 + B[Fe/H]^2 + C[Fe/H] + D \log(g)$$
(3.1)

Os coeficientes podem ser observados na tabela 3.3 e as métricas na tabela 3.4

Coeficiente	σ
A = -0.12001129775E+00	0.40424345812E-01
B = -0.45079416983E + 00	0.12332884676E+00
C = -0.55397378581E+00	0.95259442945E-01
D = 0.10247380300E-01	0.56927889672E-02

TABELA 3.3. Coeficientes obtidos para a equação $[\alpha/Fe] = A[Fe/H]^3 + B[Fe/H]^2 + C[Fe/H] + Dlog(g)$ com seus respectivos desvios padrão

Métricas	Valores
Chi-Quadrado Reduzido.	0.634150E+00
Desvio padrão da curva	0.731320E-01
Coeficiente de correlação R ² yy(x)	0.7627018E+00
Resíduo Absoluto Médio	0.542547E-01

TABELA 3.4. Métricas estatísticas obtidas para a função $[\alpha/Fe] = A[Fe/H]^3 + B[Fe/H]^2 + C[Fe/H] + Dlog(g)$ determinada pelo software LAB fit.

Gráficos da calibração podem ser vistos nas figuras 3.6, 3.7, 3.8, que mostram $[\alpha/Fe]$ vs [Fe/H], $[\alpha/Fe]$ vs log(g) e $[\alpha/Fe]$ vs [Fe/H] vs log(g), respectivamente.

Uma primeira análise da equação 3.1 revela a forte dependência entre $[\alpha/Fe]$ e [Fe/H] (já comentada na seção 1.3), uma vez que a metalicidade aparece em todos os graus do polinômio cúbico enquanto o log(g) tem apenas um peso linear sobre a regressão. Essa relação cúbica aparece como uma nova forma de observar a relação teórica observada no gráfico 1.1, onde é conceituado um comportamento linear dessa relação.

A introdução do log(g) na calibração é vista como uma forma de refinar os dados, além de trazer uma nova visão para diferentes correlações que podem existir entre parâmetros atmosféricos e abundâncias químicas, uma vez que, sua dependência na calibração é apenas linear e possui coeficiente com uma ordem de grandeza inferior aos coeficientes de [Fe/H].

FIGURA 3.6. Gráfico demostrando calibração de $[\alpha/Fe]$ plotada contra [Fe/H]. Cores dos pontos são representados pelo log(g)

FIGURA 3.7. Gráfico demostrando calibração de $[\alpha/Fe]$ plotada contra log(g). Cores dos pontos são representados pelo [Fe/H]

A correlação deste parâmetro com $[\alpha/Fe]$ pode ser explicada primeiro analisando a distribuição radial das gravidades, observada na figura 3.9, na qual é possível observar como os valores de log(g) decrescem com a distância. Essa relação pode ser entendida a partir do fato de que estrelas gigantes (menor log(g)) são mais brilhantes e por isso podem ser observadas a maiores distâncias. Somado a isso, estrelas com maiores distâncias indicam maior probabilidade de serem estrelas do Disco Espesso ou Halo (Önal Taş et al., 2016). Essa hipótese pode ser comprovada analisando as dis-

FIGURA 3.8. Gráfico tridimensional demostrando calibração de $[\alpha/Fe]$ vs log(g) vs [Fe/H].

tribuições de metalicidades representadas pelas cores no gráfico e observando que os mesmos objetos mais distantes, em sua maioria, também são os menos ricos em metais, sendo compatíveis com os valores esperados para estrelas dessas duas regiões galácticas. Portanto, a relação deste parâmetro com o objeto de interesse ([α /Fe]) é uma relação indireta e, acima de tudo, empírica.

FIGURA 3.9. Gráfico da distribuição radial das gravidades evidenciando a decrescência dos valores de log(g) com a distância. Novamente uma linha de tendência do tipo LOWESS foi ajustada para melhorar a visualização.

3.4 Validação da calibração

Como mais um método de validação, foi também aplicada a equação 3.1 para outras duas bases de dados, sendo elas o GALAH DR2 (Buder et al., 2018) (GDR2 daqui em diante) e os dados analisados em Nissen; Schuster 2011 (NS10 daqui em diante). Para os dados de GDR2, foi feito um recorte de temperatura e log(g), visto que a amostra engloba estrelas fora do intervalo das FGK, dessa forma, apenas estrelas no dentro do alcance de $4300K \leq T_{eff} \leq 6500K$ e $0.8 \leq log(g) \leq 4.3$ foram consideradas.

Foi feita uma análise estatística regressiva com cada um dos surveys de modo a retirar algumas métricas para estudo e validação, tais como erro médio percentual, erro quadrático médio e erro médio absoluto. Essas estatísticas podem ser encontradas na tabela 3.5, tendo suas definições dadas no apêndice 5.2. Gráficos mostrando a presença da equação 3.1 sobre os pontos de cada um dos *surveys* podem ser encontrados abaixo.

Métricas	NS10	GDR2
Erro médio percentual	0.2358	2.1749
Erro quadrático médio	0.0053	0.0337
Erro médio absoluto	0.0600	0.1634

TABELA 3.5. Métricas estatísticas utilizadas nos 2 surveys de validação da calibração.

FIGURA 3.10. Gráfico mostrando a equação 3.1 sobre os pontos de NS10 no plano $[\alpha/\text{Fe}]$ vs [Fe/H].

FIGURA 3.11. Gráfico mostrando a equação 3.1 sobre os pontos de GALAH DR2 no plano [α /Fe] vs [Fe/H]. As linhas azuis correspondem aos valores de mínimo e máximo de [α /Fe] da nossa amostra.

Uma primeira análise das métricas revela que a calibração se ajustou melhor aos alvos de NS10 pois, todas as estatísticas são quase uma ordem de grandeza menores do que as de GDR2. Levando em conta os gráficos, é possível perceber que na amostra de NS10 existe uma grande amplitude nos valores de [α /Fe] no intervalo de -1.4 \leq [Fe/H] \leq -0.8 tornando difícil a penetração da calibração nesse espaço amostral.

Para os pontos de GDR2 existe uma nítida correlação para estrelas de baixa metalicidade, perdendo precisão ao chegar em valores mais altos devido ao aumento da variação de [α /Fe].

Capítulo 4 Conclusão e Perspectivas

Em sumo, é possível afirmar que as 50 estrelas escolhidas representam uma amostra heterogênea (dentro do intervalo das FGK), consideravelmente próxima (o que aumenta ainda mais a acurácia) e bem estudada na literatura para ser considerada uma amostra de referência na criação de uma calibração espectroscópica eficaz na estimativa de valores de [α /Fe], considerando que os parâmetros log(g) e [Fe/H] também tenham sido determinados com métodos espectroscópicos.

As abundâncias possuem incertezas, em sua maioria, dentro do 0.1 dex esperado para trabalhos deste tipo. Além disso, os gráficos de abundâncias individuais e [Mg, Si, Ca, Ti] vs [Fe/H] estão de acordo com o previsto pela teoria e encontrado em diversos trabalhos da literatura (e.g. Alves-Brito, A. et al. 2010, Matteucci; Brocato 1990). Dado isso, não há motivos para desconfiar da validade destas medidas.

A calibração apresentada mostrou resultado satisfatório, tendo desvio padrão de ≈ 0.07 dex com nossa amostra e tendo valor de MAE ainda menor na amostra de NS10.

Uma análise de pertencimento, utilizando velocidades UVW para determinar a quais componentes da galáxia nossos objetos pertencem, é uma alternativa futura indicada para melhorar a qualidade da amostra, uma vez que, a depender da população de estudo deve-se fazer uso de modelos atmosféricos α – *enhanced*.

Métodos de aprendizagem de máquina também são um forte caminho para melhorar a precisão da calibração pois, podem ser utilizados em diferentes partes do processo, desde a determinação dos parâmetros atmosféricos ((Fuentes, 2001), (Kou et al., 2018), (Fabbro et al., 2017)) até a criação de diferentes calibrações para diferentes surveys ou criação de calibrações para populações estelares específicas.

A aplicação da calibração em dados de baixa resolução é tida como outra excelente forma de testagem e validação, uma vez que, este tipo de espectroscopia é muito mais abundante, porém carece de informações essenciais, principalmente quando se trata de abundâncias químicas, podendo ser essencial no estudo, em larga escala, de elementos traçadores da formação e evolução química da galáxia.

A possibilidade de expansão do espaço de parâmetros a serem correlacionados também é uma excelente alternativa futura, tendo parâmetros fotométricos como uma escolha segura pela alta abundância em dados e em estudos envolvendo essas calibrações (e.g. Alonso; Arribas; Martínez-Roger 1999 com a calibração de T_{eff} = Pol([Fe/H], Cor)).

Capítulo 5

Apêndice

5.1 Tabelas

ID	R	S/N	INSTRUMENTO
Eps Vir	47000	313.9	UVES
94 Aqr	115000	256.5	HARPS
Bet01 Cap	45990	303.2	UVES
Bet Gem	107200	464.1	UVES
NGC 2682 231	51690	159.4	UVES
Procyon A	115000	280	HARPS
Alf Ari	48000	109.9	FEROS
Phi02 Ori	115000	329.6	HARPS
Bet Com	45990	220.5	UVES
71 Oph	115000	205.1	HARPS
Eta Ser	115000	253.4	HARPS
Mu Aql	115000	323	HARPS
Eta Eri	115000	268.6	HARPS
Nu Psc	115000	246	HARPS
HD 150177	115000	397.6	HARPS
7 Psc	115000	332.25	HARPS
HIP 17183	48000	132.9	FEROS
35 Peg	115000	174.2	HARPS
11 Lib	115000	200.65	HARPS
HD 180928	115000	152.8	HARPS
53 vir	115000	341.1	HARPS
HD 175179	42310	303.1	UVES
HD 45282	56990	314.2	UVES
HD 9562	107200	116.5	UVES
HIC 57983	56990	324.6	UVES

TABELA 5.1. Informações acerca dos espectros obtidos pelo ESO Science Archive.

	D		
ID	K	5/IN	INSTRUMENTO
Del Lep	48000	177.3	FEROS
Alf02 Cap	115000	370.9	HARPS
c Vir	115000	321	HARPS
HD 2796	107200	259.4	UVES
Tet Cet	48000	97.2	FEROS
HD 9051	45254	297.4	UVES
HD 44007	45254	318.6	UVES
HD 93529	42310	159.8	UVES
HD 108577	42310	359.1	UVES
HD 128279	45254	355.7	UVES
5 Ser	74450	259.9	UVES
HD 161770	45254	380.6	UVES
HD 171391	42310	308.7	UVES
HD 218502	51690	203.8	UVES
HD 122563	107200	174.3	UVES
Arcturus	190000	424.5	ESPRESSO
HD 204543	45254	303.9	UVES
31 Vul	45254	377.2	UVES
HD 184266	45254	278.1	UVES
Ups02 Cnc	45990	252.9	UVES
HD 26297	66320	161.6	UVES
BD+18 2890	42310	209.1	UVES
BD+06 0648	42310	322.1	UVES
HD 124358	48000	148.3	FEROS
HD 126587	56990	427.9	UVES

Table 5.1 continued from previous page

ID	Teff	Δ Teff	log(g)	$\Delta \log(g)$	ν_t	$\Delta \nu_t$	[Fe/H]	Δ [Fe/H]
Eps vir	5019	62	2.44	0.22	1.46	0.09	0	0.08
94 aqr	5560	39	4.1	0.1	1.05	0.07	0.17	0.03
Bet01 Cap	4947	64	2.33	0.22	1.64	0.05	0.06	0.05
Bet Gem	4987	50	3.19	0.13	1.4	0.06	0.19	0.04
NGC 2682 231	4934	45	3.23	0.15	1.21	0.05	0.14	0.03
Procyon A	6577	104	3.59	0.19	2.13	0.09	-0.14	0.08
Alf Ari	4685	53	2.83	0.21	1.56	0.05	-0.04	0.04
Phi02 Ori	4830	94	2.49	0.34	1.35	0.1	-0.68	0.11
Bet Com	5986	129	4.14	0.27	1.36	0.22	-0.04	0.14
71 Oph	5141	47	3.01	0.16	1.64	0.06	0.17	0.04
Eta Ser	5019	110	3.07	0.34	1.59	0.22	-0.39	0.12
Mu Aql	4673	140	2.61	0.53	1.81	0.24	-0.38	0.15
Eta Eri	4764	42	2.87	0.17	1.35	0.04	0.06	0.03
106 Psc	4300	101	1.89	0.37	1.62	0.07	-0.15	0.09
HD 150177	6322	47	4.21	0.11	2.07	0.15	-0.51	0.03
7 Psc	4458	37	1.99	0.18	1.46	0.03	-0.57	0.04
HIP 17183	5012	28	3.86	0.1	0.97	0.05	0.08	0.02
35 Peg	4767	26	2.83	0.12	1.31	0.02	-0.14	0.02
11 Lib	4917	22	2.77	0.08	1.51	0.02	-0.21	0.02
HD 180928	4285	60	1.82	0.3	1.45	0.2	-0.44	0.05
53 Vir	6491	70	4	0.3	2.19	0.3	-0.06	0.06
HD 175179	5926	30	4.26	0.1	1.39	0.2	-0.56	0.08
HD 45282	5380	80	3.12	0.2	1.75	0.2	-1.5	0.08
HD 9562	5974	40	4.21	0.1	1.42	0.1	0.23	0.06
HIC 57983	5240	90	2.72	0.3	1.48	0.05	-2.15	0.09
Del Lep	4821	80	2.78	0.4	1.4	0.2	-0.52	0.08
Alf02 Cap	5175	60	3.26	0.2	1.39	0.3	0.21	0.1
c Vir	4491	40	1.94	0.15	1.73	0.1	-0.39	0.05
HD 2796	5000	100	1.2	0.22	2.9	0.4	-2.5	0.3
Tet Cet	4912	40	2.74	0.2	1.47	0.2	0	0.15
HD 9051	5025	100	2.15	0.4	1.85	0.12	-1.5	0.2
HD 44007	5075	100	2.3	0.5	1.89	0.15	-1.53	0.15
HD 93529	5000	90	1.8	0.3	1.83	0.09	-1.55	0.2
HD 108577	5070	110	1.5	0.4	1.68	0.2	-2.3	0.2
HD 128279	5275	75	2.9	0.15	1.47	0.05	-2.15	0.1
5 Ser	6364	30	4.22	0.1	1.62	0.06	0.13	0.04
HD 161770	5900	100	4.05	0.1	1.52	0.02	-1.27	0.07
HD 171391	5129	45	2.99	0.11	1.43	0.05	0.07	0.03
HD 218502	6440	100	4.15	0.15	0.86	0.04	-1.54	0.06
HD 122563	4500	70	0.8	0.2	2.28	0.07	-2.64	0.07
Arcturus	4409	32	1.9	0.13	1.7	0.03	-0.47	0.03

TABELA 5.2. Tabela com todos os parâmetros atmosféricos obtidos através do método das larguras equivalentes, juntamente com suas respectivas incertezas.

						1 0		
ID	Teff	Δ Teff	log(g)	$\Delta \log(g)$	ν_t	$\Delta \nu_t$	[Fe/H]	Δ [Fe/H]
HD 204543	4760	100	1.42	0.13	2.13	0.03	-1.64	0.11
31 Vul	5308	33	3.06	0.11	1.46	0.03	0.01	0.03
HD 184266	6150	100	2.8	0.18	3.2	0.09	-1.18	0.07
Ups02 Cnc	4990	50	2.77	0.15	1.68	0.06	0.1	0.08
HD 26297	4500	50	1.23	0.15	1.9	0.05	-1.63	0.06
BD+18 2890	5180	70	2.73	0.2	1.66	0.1	-1.28	0.07
BD+06 0648	4500	60	1.14	0.14	2	0.08	-1.94	0.06
HD 124358	4830	60	1.51	0.13	2.02	0.08	-1.53	0.06
HD 126587	4680	60	1	0.1	2.55	0.12	-2.95	0.07

Table 5.2 continued from previous page

ID	ΟI	Na I	Mg I	Al I	Si I	Ca I	Ti I	Ti II	Fe I	Fe II	Ni I
Eps vir	8.643	6.915	7.733	6.577	7.683	6.376	4.938	5.001	7.485	7.508	6.252
94 aqr	9.083	6.496	7.769	6.705	7.754	6.317	5.061	5.308	7.623	7.74	6.41
Bet01 Cap	8.777	6.575	7.43	6.492	7.696	6.3	4.99	5.293	7.5	7.569	6.235
Bet Gem	9.099	6.673	7.608	6.679	7.745	6.293	5.073	5.266	7.606	7.733	6.423
NGC 2682 231	9.085	6.53	7.598	6.687	7.71	6.287	5.065	5.183	7.591	7.68	6.406
Procyon A	8.824	6.462	7.513	6.353	7.633	6.285	5.011	4.851	7.469	7.266	6.217
Alf Ari	8.941	6.293	7.566	6.533	7.592	6.094	4.958	5.071	7.382	7.52	6.195
Phi02 Ori	8.391	5.881	7.313	6.272	7.16	5.992	4.607	4.418	6.899	6.762	5.672
Bet Com	-	6.285	7.565	6.485	7.609	6.364	5.005	4.931	7.52	7.386	6.217
71 Oph	9.002	6.635	7.636	6.608	7.7	6.302	5.058	5.312	7.565	7.584	6.298
Eta Ser	8.615	6.084	7.389	6.421	7.389	6.025	4.839	4.743	7.218	7.105	5.945
Mu Aql	8.884	6.482	7.781	6.907	7.597	6.144	5.076	4.859	7.264	7.122	6.138
Eta Eri	8.958	6.382	7.575	6.649	7.734	6.249	5.027	5.201	7.51	7.602	6.324
106 Psc	8.803	6.286	7.494	6.578	7.581	5.993	4.89	4.954	7.289	7.421	6.101
HD 150177	-	5.868	7.086	5.813	7.186	5.871	4.78	4.698	6.948	6.985	5.733
7 psc	8.643	5.835	7.321	6.262	7.172	5.817	4.68	4.654	6.838	6.766	5.677
HIP 17183	9 -	6.259	7.658	6.754	7.681	6.285	5.202	5.316	7.533	7.603	6.351
35 peg	8.793	6.124	7.438	6.602	7.539	6.122	4.879	5.008	7.302	7.369	6.104
11 lib	8.94	6.16	7.531	6.398	7.522	6.071	4.891	5.223	7.237	7.276	6.065
HD 180928	8.801	6.151	7.422	6.589	7.345	6.097	4.936	4.846	7	7.076	5.846
53 vir	-	6.266	7.642	6.533	7.555	6.258	5.075	5.021	7.428	7.411	6.157
HD 175179	8.636	5.799	7.285	6.109	7.157	5.934	4.736	4.589	6.877	6.882	5.667
HD 45282	-	4.654	6.455	-	6.385	5.216	3.852	3.759	6.118	5.982	4.753
HD 9562	9.147	6.559	7.704	6.688	7.787	6.417	5.186	5.148	7.671	7.722	6.521
HIC 57983	-	-	5.813	-	6.009	4.534	3.347	3.168	5.314	5.304	4.093
Del Lep	8.752	5.894	7.322	6.317	7.255	5.97	4.734	4.855	6.92	6.911	5.763
Alf02 Cap	9.088	6.558	7.634	6.661	7.77	6.396	5.143	5.433	7.638	7.732	6.422
c Vir	8.799	5.894	7.514	6.314	7.48	5.969	4.764	4.715	7.117	7.144	5.923
HD 2796	7.136	3.958	5.632	-	5.861	4.367	2.996	2.823	5.333	5.136	3.996
tet cet	9.019	6.323	7.572	6.612	7.686	6.249	4.972	5.38	7.497	7.629	6.267
HD 9051	7.709	4.596	6.416	-	6.332	5.12	3.945	3.686	6.054	5.928	4.67
HD 44007	7.826	4.648	6.432	-	6.365	5.176	3.861	3.672	6.108	5.931	4.751
HD 93529	7.583	5.234	6.558	-	6.47	5.311	3.973	3.684	6.218	5.869	4.883
HD 108577	-	-	5.843	-	6.167	4.522	3.133	3.126	5.527	5.457	4.137
HD 128279	-	-	5.763	-	5.769	4.526	3.106	3.154	5.478	5.434	5.143
5 Ser	9.017	6.423	7.594	6.522	7.691	6.452	5.181	5.244	7.64	7.66	6.364
HD 161770	-	4.741	6.542	-	6.433	5.268	3.91	4.014	6.22	6.202	4.873
HD 171391	8.924	6.433	7.51	6.522	7.627	6.27	4.962	5.181	7.542	7.629	6.215
HD 218502	-	-	6.212	-	6.169	5.037	-	3.749	5.978	5.919	-
HD 122563	-	-	5.297	-	5.477	3.899	2.408	2.455	4.857	4.852	3.536
Arcturus	8.725	5.929	7.555	6.338	7.361	5.902	4.742	4.763	7.024	7.046	5.783
HD 204543	7.59	4.316	6.188	-	6.205	4.852	3.412	3.594	5.833	5.832	4.455

TABELA 5.3. Abundâncias químicas determinadas neste trabalho

						1	1	0			
ID	ΟI	Na I	Mg I	Al I	Si I	Ca I	Ti I	Ti II	Fe I	Fe II	Ni I
31 Vul	8.717	6.513	7.536	6.477	7.578	6.268	4.943	5.09	7.493	7.568	6.17
HD 184266	-	4.784	6.509	-	6.538	5.267	4.095	4.05	6.288	6.283	5.071
Ups02 Cnc	9.028	6.462	7.649	6.704	7.748	6.3	5.043	5.081	7.571	7.574	6.301
HD 26297	7.582	4.251	6.233	-	6.217	4.897	3.413	3.667	5.837	5.838	4.518
BD+18 2890	8.136	4.747	6.488	-	6.452	5.227	3.907	3.96	6.183	6.189	4.812
BD+06 0648	7.409	4.325	5.966	-	6.028	4.576	3.127	3.376	5.523	5.528	4.192
HD 124358	7.814	4.285	6.104	-	6.127	4.834	3.42	3.578	5.937	5.933	4.528
HD 126587	-	-	5.171	-	-	3.779	-	2.194	4.522	4.527	-

Table 5.3 continued from previous page

ID	$\Delta O I$	$\Delta Na I$	$\Delta Mg I$	$\Delta Al I$	ΔSiI	$\Delta Ca I$	$\Delta Ti I$	$\Delta \text{Ti II}$	$\Delta \text{Fe I}$	Δ Fe II	$\Delta Ni I$
Eps vir	0.082	0.245	0.030	0.099	0.098	0.094	0.100	0.211	0.105	0.107	0.108
94 aqr	0.020	0.126	0.019	0.008	0.075	0.074	0.095	0.065	0.164	0.114	0.087
Bet01 Cap	0.113	0.156	0.070	0.084	0.106	0.114	0.151	0.130	0.151	0.185	0.139
Bet Gem	0.073	0.015	0.046	0.030	0.124	0.081	0.108	0.084	0.138	0.107	0.110
NGC 2682 231	0.081	0.103	0.107	0.087	0.101	0.086	0.115	0.069	0.131	0.076	0.101
Procyon A	0.034	0.100	0.045	0.020	0.096	0.047	0.121	0.112	0.108	0.094	0.105
Alf Ari	0.038	0.111	0.084	0.062	0.128	0.094	0.137	0.121	0.120	0.113	0.110
Phi02 Ori	0.070	0.074	0.081	0.045	0.071	0.051	0.113	0.139	0.111	0.097	0.080
Bet Com	-	0.029	0.059	0.028	0.071	0.077	0.096	0.089	0.092	0.091	0.063
71 Oph	0.034	0.107	0.060	0.016	0.104	0.071	0.083	0.061	0.104	0.119	0.101
Eta Ser	0.064	0.050	0.082	0.030	0.088	0.076	0.117	0.111	0.116	0.081	0.102
Mu Aql	0.101	0.050	0.020	0.044	0.126	0.135	0.102	0.267	0.149	0.114	0.128
Eta Eri	0.076	0.028	0.026	0.025	0.093	0.121	0.114	0.064	0.116	0.110	0.105
106 Psc	0.084	0.069	0.013	0.041	0.124	0.140	0.129	0.194	0.127	0.182	0.094
HD 150177	-	0.028	0.007	0.009	0.080	0.056	0.275	0.054	0.112	0.101	0.104
7 Psc	0.046	0.026	0.008	0.079	0.094	0.099	0.116	0.050	0.129	0.103	0.076
HIP 17183	0.026	0.119	0.009	0.024	0.083	0.144	0.104	0.024	0.111	0.109	0.107
35 Peg	0.103	0.059	0.099	0.007	0.092	0.107	0.115	0.100	0.112	0.125	0.109
11 Lib	0.097	0.097	0.071	0.126	0.083	0.080	0.097	0.377	0.087	0.083	0.097
HD 180928	0.052	0.064	0.016	0.028	0.113	0.103	0.151	0.052	0.143	0.085	0.107
53 Vir	-	0.092	0.012	0.138	0.103	0.075	0.131	0.126	0.112	0.072	0.107
HD 175179	0.024	0.021	0.032	0.007	0.059	0.071	0.188	0.086	0.091	0.079	0.038
HD 45282	-	0.019	0.021	-	0.034	0.037	0.043	0.072	0.112	0.087	0.033
HD 9562	0.038	0.033	0.009	0.011	0.092	0.086	0.088	0.037	0.087	0.081	0.070
HIC 57983	-	-	0.022	-	0.016	0.054	0.302	0.064	0.121	0.039	0.046
Del Lep	0.102	0.064	0.170	0.026	0.060	0.070	0.120	0.157	0.105	0.068	0.090
Alf02 Cap	0.083	0.112	0.077	0.019	0.112	0.098	0.136	0.275	0.113	0.067	0.100
c Vir	0.054	0.070	0.095	0.035	0.092	0.085	0.109	0.123	0.108	0.092	0.117
HD 2796	0.073	0.029	0.031	-	0.213	0.054	0.069	0.115	0.098	0.073	0.057
Tet Cet	0.121	0.164	0.066	0.047	0.112	0.100	0.135	0.268	0.087	0.127	0.122
HD 9051	0.046	0.033	0.061	-	0.053	0.053	0.264	0.077	0.095	0.096	0.058
HD 44007	0.046	0.025	0.022	-	0.020	0.064	0.058	0.072	0.089	0.045	0.071
HD 93529	0.046	0.039	0.022	-	0.048	0.059	0.092	0.100	0.086	0.071	0.080
HD 108577	-	-	0.022	-	0.019	0.064	0.045	0.072	0.112	0.109	0.085
HD 128279	-	-	0.017	-	0.037	0.038	0.034	0.070	0.111	0.068	0.027
5 Ser	0.026	0.065	0.021	0.014	0.082	0.090	0.092	0.131	0.064	0.073	0.059
HD 161770	-	0.020	0.022	-	0.017	0.056	0.044	0.077	0.094	0.036	0.038
HD 171391	0.105	0.031	0.012	0.039	0.092	0.088	0.073	0.254	0.093	0.078	0.080
HD 218502	-	-	0.018	-	0.022	0.064	-	0.053	0.095	0.077	-
HD 122563	-	-	0.020	-	0.164	0.037	0.045	0.084	0.111	0.106	0.096
Arcturus	0.041	0.027	0.098	0.031	0.101	0.080	0.105	0.122	0.095	0.080	0.087
HD 204543	0.030	0.029	0.110	-	0.097	0.053	0.076	0.048	0.076	0.044	0.063

TABELA 5.4. Incertezas das abundâncias derivadas.

						1		0			
ID	$\Delta O I$	$\Delta Na I$	$\Delta Mg I$	$\Delta Al I$	ΔSiI	$\Delta Ca I$	$\Delta Ti I$	$\Delta \text{Ti II}$	$\Delta \text{Fe I}$	$\Delta Fe II$	$\Delta Ni I$
31 Vul	0.038	0.085	0.042	0.020	0.067	0.065	0.107	0.163	0.078	0.084	0.069
HD 184266	-	0.021	0.022	-	0.018	0.041	0.074	0.074	0.084	0.066	- 0.099
Ups02 Cnc	0.095	0.038	0.040	0.025	0.100	0.096	0.099	0.125	0.074	0.041	0.082
HD 26297	0.055	0.019	0.021	-	0.078	0.077	0.103	0.096	0.066	0.052	0.072
BD+18 2890	0.023	0.037	0.041	-	0.050	0.041	0.099	0.068	0.070	0.073	0.068
BD+06 0648	0.025	0.026	0.072	-	0.085	0.033	0.082	0.093	0.084	0.048	0.098
HD 124358	0.106	0.026	0.020	-	0.048	0.055	0.088	0.063	0.068	0.052	0.079
HD 126587	-	-	0.016	-	-	0.062	-	0.081	0.080	0.185	-

Table 5.4 continued from previous page

ID	RA (°)	DEC (°)	Parallax	e_Plx	1	b	Ref	d (pc)
Eps vir	195.54291	10.95924	30.2110	0.1907	312.3208	73.6350	Gaia EDR3	33.1006
94 aqr	349.77921	-13.45910	39.4019	1.0568	60.7091	-64.4747	Gaia EDR3	25.3795
Bet01 Cap	305.25298	-14.78141	8.3966	0.6348	29.1498	-26.3703	Gaia EDR3	119.0962
Bet Gem	116.33068	28.02631	96.7400	0.8700	192.2293	23.4063	HIPPARCOS	10.3370
NGC 2682 231	132.93777	11.79609	1.2509	0.0254	215.7547	31.9949	Gaia EDR3	799.4273
Procyon A	114.82724	5.22751	285.9300	0.8800	213.7022	13.0194	HIPPARCOS	3.4974
Alf Ari	31.79286	23.46278	49.4800	0.9900	144.5784	-36.2055	HIPPARCOS	20.2102
Phi02 Ori	84.22706	9.28932	28.6722	0.1859	195.8463	-11.9474	Gaia EDR3	34.8770
Bet Com	197.96428	27.88211	108.7250	0.1645	43.5579	85.4102	Gaia EDR3	9.1975
71 Oph	271.82654	8.73400	12.6023	0.1106	35.8170	13.7440	Gaia EDR3	79.3508
Eta Ser	275.32506	-2.90194	52.4413	0.2036	26.8915	5.3628	Gaia EDR3	19.0689
Mu Aql	295.54815	13.34030	0.5233	0.0457	50.6243	-4.8762	Gaia EDR3	1911.0847
Eta Eri	44.10722	-8.89912	24.2178	0.1749	187.1577	-55.3115	Gaia EDR3	41.2920
106 Psc	25.35779	5.48763	8.9275	0.1567	145.1175	-55.2161	Gaia EDR3	112.0131
HD 150177	249.91309	-9.55524	23.0748	0.0246	7.5692	23.6792	Gaia EDR3	43.3372
7 psc	350.08611	5.38104	9.0926	0.1150	85.4213	-50.7352	Gaia EDR3	109.9792
HIP 17183	55.19930	-2.33367	20.4562	0.0227	188.8678	-42.5216	Gaia EDR3	48.8849
35 peg	336.96503	4.69431	21.0724	0.1166	69.9736	-42.9408	Gaia EDR3	47.4555
11 lib	222.75487	-2.29970	15.1361	0.2117	352.0775	48.8200	Gaia EDR3	66.0673
HD 180928	289.74998	-15.53782	5.9974	0.0850	21.9449	-13.0039	Gaia EDR3	166.7393
53 vir	198.01521	-16.19988	29.9003	0.1343	310.1183	46.3839	Gaia EDR3	33.4445
HD 175179	283.59609	-4.60709	13.6294	0.0158	29.1638	-2.7530	Gaia EDR3	73.3706
HD 45282	96.66990	3.42455	8.2629	0.0265	207.0500	-3.9306	Gaia EDR3	121.0222
HD 9562	23.42926	-7.02571	33.5829	0.0527	151.3806	-67.5317	Gaia EDR3	29.7771
HIC 57983	178.40543	-2.01074	2.5761	0.0182	275.1010	57.7029	Gaia EDR3	388.1782
Del Lep	87.83149	-20.88197	28.4234	0.1690	225.8377	-22.2186	Gaia EDR3	35.1822
Alf02 Cap	304.51384	-12.54484	29.9140	0.1651	31.0970	-24.8101	Gaia EDR3	33.4292
c Vir	185.08612	3.31229	9.6700	0.1530	284.2620	65.0509	Gaia EDR3	103.4126
HD 2796	7.82047	-16.79489	1.5519	0.0234	97.6070	-78.6630	Gaia EDR3	644.3560
Tet Cet	21.00550	-8.18416	29.0339	0.2198	146.5933	-69.5451	Gaia EDR3	34.4425
HD 9051	22.19402	-24.34048	1.9906	0.0192	196.6601	-81.1442	Gaia EDR3	502.3530
HD 44007	94.70257	-14.84558	3.3141	0.0204	222.7445	-13.8210	Gaia EDR3	301.7376
HD 93529	161.87079	-25.43760	1.7884	0.0174	270.6247	29.5469	Gaia EDR3	559.1622
HD 108577	187.06990	12.34454	1.1064	0.0174	281.6433	74.2513	Gaia EDR3	903.8160
HD 128279	219.20246	-29.11446	7.6334	0.0274	329.0696	28.3549	Gaia EDR3	131.0040
5 Ser	229.82998	1.76313	39.7954	0.0807	3.6741	46.4476	Gaia EDR3	25.1285
HD 161770	266.94133	-9.60605	7.8231	0.0148	16.9354	9.4727	Gaia EDR3	127.8265
HD 171391	278.76019	-10.97723	12.4371	0.0825	21.3055	-1.3965	Gaia EDR3	80.4043
HD 218502	347.16454	-15.05459	13.4395	0.0250	54.5144	-63.2392	Gaia EDR3	74.4078
HD 122563	210.63184	9.68578	3.0991	0.0332	350.1653	65.8043	Gaia EDR3	322.6788
Arcturus	213.91811	19.18727	88.8500	0.7400	15.0501	69.1113	HIPPARCOS	11.2549

TABELA 5.5. Astrometrias utilizadas neste trabalho. As distâncias foram calculadas como sendo o inverso da paralaxe.

					8118			
ID	RA (°)	DEC (°)	Parallax	e_Plx	1	b	Ref	d (pc)
HD 204543	322.36755	-3.51558	1.4136	0.0226	49.9001	-36.3769	Gaia EDR3	707.4284
31 Vul	313.03166	27.09669	14.7064	0.1590	71.3048	-10.9828	Gaia EDR3	67.9975
HD 184266	293.56471	-16.31761	4.4625	0.0240	22.7857	-16.6650	Gaia EDR3	224.0910
Ups02 Cnc	128.25012	24.08459	5.2510	0.0250	200.3097	32.3083	Gaia EDR3	190.4408
HD 26297	62.26444	-15.89087	1.5290	0.0200	209.6647	-42.9878	Gaia EDR3	654.0280
BD+18 2890	218.05613	17.42297	1.0343	0.0369	15.5459	64.8088	Gaia EDR3	966.8798
BD+06 0648	63.30477	6.60032	0.8875	0.0172	185.9022	-30.7031	Gaia EDR3	1126.7075
HD 124358	213.33842	-12.15685	0.9679	0.0212	332.4118	45.9736	Gaia EDR3	1033.1245
HD 126587	216.75144	-22.24440	1.5676	0.0218	330.3450	35.4892	Gaia EDR3	637.9086

Table 5.5 continued from previous page

TABELA 5.6. Fotometrias utilizadas neste trabalho. Todos os valores de (B-V) foram extraídos do catálogo HIPPARCOS, os valores de E(B-V) calculados segundo a equação 2.2 e os valores de $(B - V)_0$ calculados segundo a equação 2.1.

ID	(B-V)	E(B-V)	$(B-V)_0$
Eps vir	0.934	0	0.934
94 aqr	0.787	0	0.787
Bet01 Cap	0.79	0.074	0.716
Bet Gem	0.991	0	0.991
NGC 2682 231	1.219	0.031	1.188
Procyon A	0.432	0	0.432
Alf Ari	1.151	0	1.151
Phi02 Ori	0.951	0	0.951
Bet Com	0.572	0	0.572
71 Oph	0.951	0	0.951
Eta Ser	0.941	0	0.941
Mu Aql	1.176	0.26	0.9160001
Eta Eri	1	0	1.088
106 Psc	1	0.039	1.308
HD 150177	0.492	0	0.492
7 psc	1.204	0.063	1.141
HIP 17183	0.954	0	0.954
35 peg	1.039	0	1.039
11 lib	0.988	0	0.988
HD 180928	1.42	0.069516	1.3504844
53 vir	0.46	0	0.46
HD 175179	0.586	0	0.586
HD 45282	0.703	0.406507	0.2964932
HD 9562	0.639	0	0.639
HIC 57983	0.725	0.023	0.702
Del Lep	0.984	0	0.984
Alf02 Cap	0.883	0	0.883
c Vir	1.172	0.019	1.153
HD 2796	0.713	0.021	0.692
Tet Cet	1.065	0	1.065
HD 9051	0.82	0.01	0.81
HD 44007	0.829	0.204111	0.6248891
HD 93529	0.801	0.079	0.722
HD 108577	0.704	0.026	0.678
HD 128279	0.64	0.1	0.54
5 Ser	0.54	0	0.54
HD 161770	0.672	0.04456	0.6274399
HD 171391	0.926	2.353823	-1.4278235
HD 218502	0.411	0	0.411
HD 122563	0.853	0.025	0.828

		L	10
ID	(B-V)	E(B-V)	$(B-V)_0$
Arcturus	1	0	1.239
HD 204543	0.888	0.043	0.845
31 Vul	0.835	0	0.835
HD 184266	0.548	0.109205	0.438795
Ups02 Cnc	1.032	0.034	0.998
HD 26297	1.088	0.032	1.056
BD+18 2890	0.818	0.02	0.798
BD+06 0648	1.282	0.27	1.012
HD 124358	0.916	0.066	0.85
HD 126587	0.774	0.1	0.674

Table 5.6 continued from previous page
Wavelenght	Ele.	E.P	log(gf)
6300.31	08.0	0.00	-9.75
6363.78	08.0	0.02	-10.25
5682.65	11.0	2.10	-0.67
5688.22	11.0	2.10	-0.37
6154.23	11.0	2.10	-1.57
6160.75	11.0	2.10	-1.26
5711.09	12.0	4.34	-1.73
6318.71	12.0	5.11	-1.94
6696.02	13.0	3.14	-1.57
6698.67	13.0	3.14	-1.89
5665.56	14.0	4.92	-2.04
5690.43	14.0	4.93	-1.87
5701.11	14.0	4.93	-2.05
5772.15	14.0	5.08	-1.75
5793.08	14.0	4.93	-2.06
5948.55	14.0	5.08	-1.23
6142.49	14.0	5.62	-1.43
6145.02	14.0	5.62	-1.49
6155.14	14.0	5.62	-0.86
6237.33	14.0	5.62	-1.08
6243.82	14.0	5.62	-1.26
6244.48	14.0	5.62	-1.29
6414.99	14.0	5.87	-1.03
6721.84	14.0	5.86	-1.16
7405.79	14.0	5.62	-0.82
7415.96	14.0	5.62	-0.71
4512.27	20.0	2.52	-1.90
5260.39	20.0	2.52	-1.72
5261.71	20.0	2.52	-0.58
5512.99	20.0	2.93	-0.45
5581.98	20.0	2.52	-0.56
5590.13	20.0	2.51	-0.57
5601.29	20.0	2.52	-0.52
5867.57	20.0	2.93	-1.49
6161.29	20.0	2.52	-1.27
6166.44	20.0	2.52	-1.14
6169.04	20.0	2.52	-0.80
6169.56	20.0	2.52	-0.48
6471.67	20.0	2.52	-0.69
6499.65	20.0	2.52	-0.82
6717.69	20.0	2.71	-0.52

TABELA 5.7. Lista de linhas global utilizada neste trabalho na determinação das abundâncias químicas e parâmetros atmosféricos.

			1 1 0
Wavelenght	Ele.	E.P	log(gf)
4548.77	22.0	0.83	-0.35
4617.28	22.0	1.75	0.39
4758.12	22.0	2.25	0.42
4759.28	22.0	2.25	0.51
4820.41	22.0	1.50	-0.44
5009.66	22.0	0.02	-2.26
5016.17	22.0	0.85	-0.57
5022.87	22.0	0.83	-0.43
5043.59	22.0	0.84	-1.73
5147.48	22.0	0.00	-2.01
5219.71	22.0	0.02	-2.29
5223.63	22.0	2.09	-0.56
5282.44	22.0	1.05	-1.30
5295.78	22.0	1.05	-1.63
5299.98	22.0	1.05	-1.36
5648.57	22.0	2.49	-0.25
5662.16	22.0	2.32	-0.11
5679.94	22.0	2.47	-0.58
5689.48	22.0	2.30	-0.47
5702.69	22.0	2.29	-0.57
5713.92	22.0	2.29	-0.84
5716.46	22.0	2.30	-0.70
5720.48	22.0	2.29	-0.90
5739.46	22.0	2.25	-0.60
5739.98	22.0	2.24	-0.67
5866.46	22.0	1.07	-0.84
5880.27	22.0	1.05	-2.05
5903.32	22.0	1.07	-2.14
5922.12	22.0	1.05	-1.47
5937.81	22.0	1.07	-1.89
5941.75	22.0	1.05	-1.52
5953.16	22.0	1.89	-0.33
5965.83	22.0	1.88	-0.41
5978.55	22.0	1.87	-0.50
5999.68	22.0	2.17	-0.73
6091.18	22.0	2.27	-0.42
6126.22	22.0	1.07	-1.42
6146.22	22.0	1.87	-1.47
6186.15	22.0	2.17	-1.15
6303.76	22.0	1.44	-1.57
6312.24	22.0	1.46	-1.55
6497.69	22.0	1.44	-1.93

Table 5.7 continued from previous page

Wavelenght	Ele.	E.P	log(gf)
6508.14	22.0	1.43	-1.98
6554.24	22.0	1.44	-1.22
6743.12	22.0	0.90	-1.63
4583.42	22.1	1.16	-2.87
4589.95	22.1	1.24	-1.78
4609.27	22.1	1.18	-3.43
4708.67	22.1	1.24	-2.37
4865.62	22.1	1.12	-2.81
4874.01	22.1	3.10	-0.95
5005.17	22.1	1.57	-2.73
5154.08	22.1	1.57	-1.92
5185.91	22.1	1.89	-1.50
5336.79	22.1	1.58	-1.63
5381.03	22.1	1.59	-2.08
5418.78	22.1	1.58	-2.11
6606.98	22.1	2.06	-2.90
4523.40	26.0	3.65	-1.930
4531.62	26.0	3.21	-1.871
4537.67	26.0	3.27	-2.918
4551.65	26.0	3.94	-1.984
4554.46	26.0	2.87	-2.804
4556.93	26.0	3.25	-2.694
4561.41	26.0	2.76	-2.927
4566.52	26.0	3.30	-2.214
4574.22	26.0	3.21	-2.407
4574.72	26.0	2.28	-2.879
4579.33	26.0	2.83	-3.072
4593.53	26.0	3.94	-1.977
4596.41	26.0	3.65	-2.144
4602.00	26.0	1.61	-3.217
4602.95	26.0	1.49	-2.369
4607.65	26.0	3.98	-0.844
4625.05	26.0	3.24	-1.307
4630.12	26.0	2.28	-2.549
4631.49	26.0	4.55	-1.940
4635.85	26.0	2.85	-2.441
4661.54	26.0	4.56	-1.250
4690.14	26.0	3.69	-1.616
4741.53	26.0	2.83	-2.092
4749.95	26.0	4.56	-1.296
4757.58	26.0	3.27	-2.048
4772.82	26.0	1.56	-2.812

Table 5.7 continued from previous page

Wavelenght	Ele.	E.P	log(gf)
4779.44	26.0	3.42	-2.216
4780.81	26.0	3.25	-3.279
4787.83	26.0	3.00	-2.584
4788.76	26.0	3.24	-1.857
4789.65	26.0	3.55	-1.250
4793.97	26.0	3.05	-3.506
4794.36	26.0	2.42	-3.934
4802.52	26.0	4.61	-1.766
4802.88	26.0	3.69	-1.591
4808.15	26.0	3.25	-2.677
4811.05	26.0	3.07	-3.225
4885.43	26.0	3.88	-1.209
4905.14	26.0	3.93	-1.871
4924.77	26.0	2.28	-2.125
4946.39	26.0	3.37	-1.131
4952.65	26.0	4.21	-1.248
4961.92	26.0	3.63	-2.349
4962.58	26.0	4.18	-1.273
4967.90	26.0	4.19	-0.800
4993.70	26.0	4.21	-1.204
4994.14	26.0	0.92	-3.223
5044.22	26.0	2.85	-2.096
5049.82	26.0	2.28	-1.515
5054.65	26.0	3.64	-2.042
5067.15	26.0	4.22	-0.933
5068.77	26.0	2.94	-1.158
5072.68	26.0	4.22	-1.053
5074.76	26.0	4.22	-0.321
5083.34	26.0	0.96	-3.101
5088.15	26.0	4.15	-1.608
5090.78	26.0	4.26	-0.598
5107.45	26.0	0.99	-3.199
5107.65	26.0	1.56	-2.659
5109.65	26.0	4.30	-0.812
5127.36	26.0	0.92	-3.360
5129.63	26.0	3.94	-1.527
5141.74	26.0	2.42	-2.185
5143.73	26.0	2.20	-3.849
5151.91	26.0	1.01	-3.201
5159.06	26.0	4.28	-0.918
5180.06	26.0	4.47	-1.165
5187.91	26.0	4.14	-1.263

Table 5.7 continued from previous page

Wavelenght	Ele.	E.P	log(gf)
5194.95	26.0	1.56	-2.399
5195.48	26.0	4.22	-0.525
5196.06	26.0	4.26	-0.898
5197.94	26.0	4.30	-1.543
5198.72	26.0	2.22	-2.224
5217.40	26.0	3.21	-1.160
5223.19	26.0	3.63	-2.299
5225.53	26.0	0.11	-4.794
5228.38	26.0	4.22	-1.159
5229.86	26.0	3.28	-1.016
5242.50	26.0	3.63	-1.194
5243.78	26.0	4.26	-1.087
5247.06	26.0	0.09	-4.960
5250.21	26.0	0.12	-4.891
5253.02	26.0	2.28	-3.892
5253.47	26.0	3.28	-1.651
5263.31	26.0	3.27	-0.946
5288.53	26.0	3.69	-1.668
5293.96	26.0	4.14	-1.797
5294.55	26.0	3.64	-2.669
5295.32	26.0	4.42	-1.568
5361.62	26.0	4.42	-1.260
5373.71	26.0	4.47	-0.906
5376.83	26.0	4.29	-2.087
5379.58	26.0	3.69	-1.606
5386.34	26.0	4.15	-1.759
5389.48	26.0	4.42	-0.609
5395.22	26.0	4.45	-1.772
5398.28	26.0	4.45	-0.753
5401.27	26.0	4.32	-1.759
5406.78	26.0	4.37	-1.481
5409.14	26.0	4.37	-1.111
5417.04	26.0	4.42	-1.456
5432.95	26.0	4.45	-0.796
5436.30	26.0	4.39	-1.371
5436.59	26.0	2.28	-3.304
5441.34	26.0	4.31	-1.606
5461.55	26.0	4.45	-1.618
5464.28	26.0	4.14	-1.645
5466.99	26.0	3.65	-2.185
5473.17	26.0	4.19	-2.031
5481.25	26.0	4.10	-1.261

Table 5.7 continued from previous page

			1 1 0
Wavelenght	Ele.	E.P	log(gf)
5491.83	26.0	4.19	-2.237
5522.45	26.0	4.21	-1.469
5534.66	26.0	4.15	-2.434
5538.52	26.0	3.63	-2.133
5543.94	26.0	4.22	-1.128
5546.51	26.0	4.37	-1.180
5547.00	26.0	4.22	-1.786
5553.58	26.0	4.43	-1.371
5560.22	26.0	4.43	-1.120
5567.40	26.0	2.61	-2.634
5577.03	26.0	5.03	-1.531
5584.77	26.0	3.57	-2.233
5587.58	26.0	4.14	-1.703
5594.66	26.0	4.55	-0.917
5618.64	26.0	4.21	-1.350
5619.60	26.0	4.39	-1.485
5633.95	26.0	4.99	-0.451
5635.83	26.0	4.26	-1.601
5636.70	26.0	3.64	-2.549
5638.27	26.0	4.22	-0.873
5641.44	26.0	4.26	-1.028
5649.99	26.0	5.10	-0.839
5651.47	26.0	4.47	-1.807
5652.32	26.0	4.26	-1.795
5653.87	26.0	4.39	-1.450
5661.35	26.0	4.28	-1.871
5662.52	26.0	4.18	-0.673
5667.52	26.0	4.18	-1.344
5679.03	26.0	4.65	-0.816
5680.24	26.0	4.19	-2.372
5701.55	26.0	2.56	-2.208
5715.09	26.0	4.28	-0.908
5720.90	26.0	4.55	-1.847
5731.77	26.0	4.26	-1.176
5738.24	26.0	4.22	-2.206
5741.85	26.0	4.26	-1.670
5752.04	26.0	4.55	-0.972
5775.08	26.0	4.22	-1.178
5778.46	26.0	4.15	-2.009
5793.92	26.0	4.22	-1.666
5806.73	26.0	4.61	-0.931
5809.22	26.0	3.88	-1.660

Table 5.7 continued from previous page

Wavelenght	Ele.	E.P	log(gf)
5811.92	26.0	4.14	-2.376
5814.81	26.0	4.28	-1.863
5815.22	26.0	4.15	-2.407
5827.88	26.0	3.28	-3.186
5852.22	26.0	4.55	-1.238
5853.15	26.0	1.49	-5.161
5855.08	26.0	4.61	-1.574
5856.09	26.0	4.29	-1.616
5862.36	26.0	4.55	-0.473
5902.48	26.0	4.59	-1.840
5905.68	26.0	4.65	-0.831
5916.26	26.0	2.45	-2.953
5927.79	26.0	4.65	-1.105
5929.68	26.0	4.55	-1.257
5930.19	26.0	4.65	-0.395
5934.66	26.0	3.93	-1.147
5956.70	26.0	0.86	-4.548
5983.69	26.0	4.55	-0.777
5984.82	26.0	4.73	-0.403
5987.07	26.0	4.79	-0.539
6005.55	26.0	2.59	-3.514
6024.06	26.0	4.55	-0.198
6027.06	26.0	4.08	-1.228
6034.04	26.0	4.31	-2.345
6035.34	26.0	4.29	-2.515
6054.08	26.0	4.37	-2.276
6056.01	26.0	4.73	-0.550
6065.49	26.0	2.61	-1.672
6078.49	26.0	4.79	-0.428
6079.01	26.0	4.65	-1.055
6082.72	26.0	2.22	-3.597
6089.57	26.0	4.58	-1.317
6094.38	26.0	4.65	-1.608
6096.67	26.0	3.98	-1.815
6098.25	26.0	4.56	-1.795
6120.25	26.0	0.92	-5.917
6127.91	26.0	4.14	-1.460
6151.62	26.0	2.18	-3.327
6157.73	26.0	4.08	-1.284
6159.38	26.0	4.61	-1.921
6165.36	26.0	4.14	-1.545
6173.34	26.0	2.22	-2.908

Table 5.7 continued from previous page

			1 1 0
Wavelenght	Ele.	E.P	log(gf)
6180.21	26.0	2.73	-2.665
6187.99	26.0	3.94	-1.661
6200.32	26.0	2.61	-2.432
6213.44	26.0	2.22	-2.613
6219.29	26.0	2.20	-2.498
6220.79	26.0	3.88	-2.368
6226.74	26.0	3.88	-2.106
6229.24	26.0	2.85	-2.900
6232.65	26.0	3.65	-1.290
6240.65	26.0	2.22	-3.321
6265.14	26.0	2.18	-2.590
6270.23	26.0	2.86	-2.605
6290.98	26.0	4.73	-0.630
6297.80	26.0	2.22	-2.804
6303.46	26.0	4.32	-2.530
6315.81	26.0	4.08	-1.685
6322.69	26.0	2.59	-2.401
6335.34	26.0	2.20	-2.374
6336.83	26.0	3.69	-0.916
6358.68	26.0	0.86	-3.917
6380.75	26.0	4.19	-1.363
6385.72	26.0	4.73	-1.867
6392.54	26.0	2.28	-3.969
6430.85	26.0	2.18	-2.166
6481.88	26.0	2.28	-2.954
6498.94	26.0	0.96	-4.644
6581.21	26.0	1.49	-4.729
6593.88	26.0	2.43	-2.410
6608.03	26.0	2.28	-3.994
6609.12	26.0	2.56	-2.657
6625.02	26.0	1.01	-5.306
6627.55	26.0	4.55	-1.512
6646.94	26.0	2.61	-3.942
6653.86	26.0	4.15	-2.441
6699.15	26.0	4.59	-2.137
6703.57	26.0	2.76	-3.047
6705.11	26.0	4.61	-1.095
6710.32	26.0	1.49	-4.833
6713.05	26.0	4.61	-1.550
6713.20	26.0	4.14	-2.472
6713.74	26.0	4.79	-1.462
6725.36	26.0	4.10	-2.218

Table 5.7 continued from previous page

Wavelenght	Ele.	E.P	log(gf)
6726.67	26.0	4.61	-1.084
6732.07	26.0	4.58	-2.179
6733.15	26.0	4.64	-1.464
6739.52	26.0	1.56	-4.926
6745.11	26.0	4.58	-2.129
6745.97	26.0	4.08	-2.692
6750.16	26.0	2.42	-2.638
6752.71	26.0	4.64	-1.271
6786.86	26.0	4.19	-1.919
6793.26	26.0	4.58	-1.936
6806.85	26.0	2.73	-3.128
6810.27	26.0	4.61	-1.033
6820.37	26.0	4.64	-1.172
6828.60	26.0	3.57	-1.901
6833.23	26.0	4.64	-2.009
6837.01	26.0	4.59	-1.766
6839.84	26.0	2.56	-3.402
6842.69	26.0	4.64	-1.207
6843.66	26.0	4.55	-0.908
6855.72	26.0	4.61	-1.709
6857.25	26.0	4.08	-2.106
6858.15	26.0	4.61	-1.010
6861.94	26.0	2.42	-3.822
6862.50	26.0	4.56	-1.473
6864.32	26.0	4.56	-2.260
4508.28	26.1	2.86	-2.505
4520.22	26.1	2.81	-2.663
4534.17	26.1	2.86	-3.290
4541.52	26.1	2.86	-2.858
4576.34	26.1	2.84	-3.037
4582.84	26.1	2.84	-3.165
4620.51	26.1	2.83	-3.319
4629.34	26.1	2.81	-2.364
4656.98	26.1	2.89	-3.755
4670.17	26.1	2.58	-4.089
4923.93	26.1	2.89	-1.652
5132.67	26.1	2.81	-4.077
5197.57	26.1	3.23	-2.382
5234.63	26.1	3.22	-2.326
5256.94	26.1	2.89	-4.087
5264.81	26.1	3.23	-3.167
5284.11	26.1	2.89	-3.209

Table 5.7 continued from previous page

			r r r r
Wavelenght	Ele.	E.P	log(gf)
5414.07	26.1	3.22	-3.637
5425.25	26.1	3.20	-3.306
5427.81	26.1	6.72	-1.550
5525.12	26.1	3.27	-4.065
5534.85	26.1	3.25	-2.866
5991.38	26.1	3.15	-3.603
6084.11	26.1	3.20	-3.836
6113.32	26.1	3.22	-4.166
6149.25	26.1	3.89	-2.783
6238.39	26.1	3.89	-2.590
6239.94	26.1	3.89	-3.510
6247.56	26.1	3.89	-2.411
6369.46	26.1	2.89	-4.189
6407.29	26.1	3.89	-2.958
6416.93	26.1	3.89	-2.684
6432.69	26.1	2.89	-3.628
6442.97	26.1	5.55	-2.461
6456.39	26.1	3.90	-2.173
6516.09	26.1	2.89	-3.336
4904.42	28.0	3.54	-0.19
4913.98	28.0	3.74	-0.60
4935.83	28.0	3.94	-0.34
4953.21	28.0	3.74	-0.62
5003.75	28.0	1.68	-3.13
5010.94	28.0	3.64	-0.90
5048.85	28.0	3.85	-0.37
5578.73	28.0	1.68	-2.67
5587.87	28.0	1.94	-2.37
5589.37	28.0	3.90	-1.15
5593.75	28.0	3.90	-0.79
5748.36	28.0	1.68	-3.25
5760.84	28.0	4.11	-0.81
5805.23	28.0	4.17	-0.60
5847.01	28.0	1.68	-3.44
6007.31	28.0	1.68	-3.34
6108.12	28.0	1.68	-2.49
6111.08	28.0	4.09	-0.83
6128.98	28.0	1.68	-3.39
6175.37	28.0	4.09	-0.53
6176.82	28.0	4.09	-0.26
6177.25	28.0	1.83	-3.60
6186.72	28.0	4.11	-0.90

Table 5.7 continued from previous page

Wavelenght	Ele.	E.P	log(gf)
6370.35	28.0	3.54	-1.94
6482.81	28.0	1.94	-2.85
6532.88	28.0	1.94	-3.42
6586.32	28.0	1.95	-2.79
6767.78	28.0	1.83	-2.11
6772.32	28.0	3.66	-1.01
6842.04	28.0	3.66	-1.44

Table 5.7 continued from previous page

5.2 Equações

 Erro Percentual Médio Absoluto (MAPE): Essa métrica tem boa confiabilidade por ser sensível a erros relativos, não sendo alterada por uma escala global da variável de interesse.

MAPE
$$(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \frac{|y_i - \hat{y}_i|}{max(\epsilon, |y_i|)}$$
 (5.1)

Onde ϵ é um número arbitrário positivo e muito pequeno para evitar divisões por 0 quando y_i for nulo.

• Erro Quadrático Médio (MSE): Uma métrica de risco correspondente ao valor esperado do erro quadrático.

$$MSE(y, \hat{y}) = \frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}-1} (y_i - \hat{y}_i)^2,$$
(5.2)

Erro Médio Absoluto (MAE): Uma métrica de risco correspondente ao valor esperado do erro absoluto.

$$MAE(y, \hat{y}) = \frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}-1} |y_i - \hat{y}_i|, \qquad (5.3)$$

• Coeficiente de Determinação (R²): Medida de ajuste de um modelo estatístico linear generalizado aos valores observados de uma variável, podendo variar entre 0 e 1.

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(5.4)

• Cálculo de $[\alpha/Fe]$

$$\left[\frac{\alpha}{\text{Fe}}\right] \equiv \log_{10} \left(\frac{N_{\text{E}\alpha}}{N_{\text{Fe}}}\right)_{\text{Star}} - \log_{10} \left(\frac{N_{\text{E}\alpha}}{N_{\text{Fe}}}\right)_{\text{Sun}}, \quad (5.5)$$

onde $N_{\rm E}\alpha$ é o número de elementos alfa por unidade de volume e $N_{\rm Fe}$ é o número de núcleos de ferro por unidade de volume.

Referências Bibliográficas

Alonso, A.; Arribas, S.; Martínez-Roger, C. The effective temperature scale of giant stars (F0-K5). II. Empirical calibration of T_{eff} versus colours and [Fe/H]., v. 140, p. 261–277, dez. 1999.

Alves-Brito, A. et al. Chemical similarities between galactic bulge and local thick disk red giants: O, na, mg, al, si, ca, and ti*. *A&A*, v. 513, p. A35, 2010. Disponível em: https://doi.org/10.1051/0004-6361/200913444>.

Asplund, M.; Amarsi, A. M.; Grevesse, N. The chemical make-up of the Sun: A 2020 vision. , v. 653, p. A141, set. 2021.

Barbuy, B.; Trevisan, J.; de Almeida, A. *PFANT: Stellar spectral synthesis code*. 2018. ascl:1812.003 p.

Blackwell, D. E.; Shallis, M. J. Stellar angular diameters from infrared photometry. Application to Arcturus and other stars; with effective temperatures. *Monthly Notices of the Royal Astronomical Society*, v. 180, n. 2, p. 177–191, 09 1977. ISSN 0035-8711. Disponível em: https://doi.org/10.1093/mnras/180.2.177.

Bonifacio, P.; Caffau, E.; Molaro, P. Intrinsic colour calibration for f, g, k stars. *Astron. Astrophys. Suppl. Ser.*, v. 145, n. 3, p. 473–479, 2000. Disponível em: https://doi.org/10.1051/aas:2000253>.

Brown, A. G. A. et al. Gaia early data release 3. *Astronomy Astrophysics*, EDP Sciences, v. 650, p. C3, Jun 2021. ISSN 1432-0746. Disponível em: http://dx.doi.org/10.1051/0004-6361/202039657e>.

Buder, S. et al. The GALAH Survey: second data release. , v. 478, n. 4, p. 4513–4552, ago. 2018.

Burbidge, E. M. et al. Synthesis of the Elements in Stars. *Reviews of Modern Physics*, v. 29, n. 4, p. 547–650, jan. 1957.

Collaboration, H. Solar abundance ratios of the iron-peak elements in the perseus cluster. *Nature*, v. 551, n. 7681, p. 478–480, 2017.

Ducati, J. R. VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system. *VizieR Online Data Catalog*, jan. 2002.

Fabbro, S. et al. An application of deep learning in the analysis of stellar spectra. *Monthly Notices of the Royal Astronomical Society*, v. 475, n. 3, p. 2978–2993, 12 2017. ISSN 0035-8711. Disponível em: https://doi.org/10.1093/mnras/stx3298>.

Fuentes, O. Automatic determination of stellar atmospheric parameters using neural networks and instance-based machine learning. *Experimental Astronomy*, v. 12, n. 1, p. 21–31, Feb 2001.

Genest-Beaulieu, C.; Bergeron, P. Comparison of atmospheric parameters determined from spectroscopy and photometry for da white dwarfs in the sloan digital sky survey. *The Astrophysical Journal*, American Astronomical Society, v. 796, n. 2, p. 128, Nov 2014. ISSN 1538-4357. Disponível em: http://dx.doi.org/10.1088/0004-637X/796/2/128>.

Gratton, R.; Sneden, C.; Carretta, E. Abundance variations within globular clusters. *Annual Review of Astronomy and Astrophysics*, v. 42, n. 1, p. 385–440, 2004. Disponível em: https://doi.org/10.1146/annurev.astro.42.053102.133945>.

Gray, R. O. SPECTRUM: A stellar spectral synthesis program. 1999. ascl:9910.002 p.

Huang, Y. et al. Empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs and giants based on interferometric data. *Monthly Notices of the Royal Astronomical Society*, v. 454, n. 3, p. 2863–2889, 10 2015. ISSN 0035-8711. Disponível em: https://doi.org/10.1093/mnras/stv1991.

Kang, W.; Lee, S.-G. Tool for automatic measurement of equivalent width (tame). *Monthly Notices of the Royal Astronomical Society*, Oxford University Press (OUP), v. 425, n. 4, p. 3162–3171, Sep 2012. ISSN 0035-8711. Disponível em: ">http://dx.doi.org/10.1111/j.1365-2966.2012.21613.x>.

Kirby, E. N. et al. Catalog of chromium, cobalt, and nickel abundances in globular clusters and dwarf galaxies. *The Astrophysical Journal Supplement Series*, American Astronomical Society, v. 237, n. 1, p. 18, jul 2018. Disponível em: https://doi.org/10.3847/1538-4365/aac952>.

Kou, R. et al. Deep learning determination of stellar atmospheric fundamental parameters. In: Di Matteo, P. et al. (Ed.). *SF2A-2018: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics*. [S.l.: s.n.], 2018. p. Di.

Kurucz, R. ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. *ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13. Cambridge*, v. 13, jan. 1993.

Lebigot, E. O. Uncertainties: a Python package for calculations with uncertainties. 2019.

Magrini, Laura et al. Fama: An automatic code for stellar parameter and abundance determination. *A&A*, v. 558, p. A38, 2013. Disponível em: https://doi.org/10.1051/0004-6361/201321844>.

Matteucci, F. What determines galactic evolution?, v. 284, n. 2, p. 539–548, abr. 2003.

Matteucci, F.; Brocato, E. Metallicity Distribution and Abundance Ratios in the Stars of the Galactic Bulge. , v. 365, p. 539, dez. 1990.

Mo, H.; van den Bosch, F. C.; White, S. Galaxy Formation and Evolution. [S.l.: s.n.], 2010.

Nidever, D. L. et al. Tracing chemical evolution over the extent of the milky way's disk with apogee red clump stars. *The Astrophysical Journal*, American Astronomical Society, v. 796, n. 1, p. 38, Nov 2014. ISSN 1538-4357. Disponível em: http://dx.doi.org/10.1088/0004-637X/796/1/38>.

Nissen, P. E.; Schuster, W. J. Two distinct halo populations in the solar neighborhood. *Astronomy Astrophysics*, EDP Sciences, v. 530, p. A15, Apr 2011. ISSN 1432-0746. Disponível em: http://dx.doi.org/10.1051/0004-6361/201116619>.

Önal Taş, Ö. et al. Local Stellar Kinematics from RAVE data—VII. Metallicity Gradients from Red Clump Stars. , v. 33, p. e044, set. 2016.

Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies. [S.l.: s.n.], 1997.

Perryman, M. A. C. et al. The Hipparcos Catalogue. , v. 500, p. 501–504, jul. 1997.

Ramirez, I.; Meléndez, J. The effective temperature scale of fgk stars. i. determination of temperatures and angular diameters with the infrared flux method. *The Astrophysical Journal*, v. 626, p. 446–464, 2005.

Ramya, P.; Reddy, E.; Lambert, D. Chemical compositions of stars in two stellar streams from the galactic thick disk. *Monthly Notices of the Royal Astronomical Society*, v. 425, 07 2012.

Roederer, I. U.; Lawler, J. E. Detection of al ii in the ultraviolet spectra of metal-poor stars: An empirical LTE test of NLTE aluminum abundance calculations*,*The Astrophysical Journal*, *AmericanAstronomicalSociety*, *v*, 912, *n*, 2, *p*, 119, *may*2021 <>.

Rumsey, D. *Statistics For Dummies*. Wiley, 2011. (–For dummies). ISBN 9781118012062. Disponível em: https://books.google.com.br/books?id=kpMFklYskF8C.

Schlegel, D. J.; Finkbeiner, D. P.; Davis, M. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. , v. 500, n. 2, p. 525–553, jun. 1998.

Searle, L.; Zinn, R. Composition of halo clusters and the formation of the galactic halo. , v. 225, p. 357–379, out. 1978.

Silva, W.; Silva, C. Lab fit curve fitting software (nonlinear regression and treatment of data program) v 7.2.50b. (1999–2021). Available from world wide web: <www.labfit.net>.

Sneden, C. A. *Carbon and Nitrogen Abundances in Metal-Poor Stars*. Tese (Doutorado) — THE UNIVERSITY OF TEXAS AT AUSTIN., jan. 1973.

Sousa, S. G. Ares + moog: A practical overview of an equivalent width (ew) method to derive stellar parameters. *GeoPlanet: Earth and Planetary Sciences*, Springer International Publishing, p. 297–310, 2014. ISSN 2190-5207. Disponível em: http://dx.doi.org/10.1007/978-3-319-06956-2_26>.

Sousa, S. G. et al. A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES). , v. 469, n. 2, p. 783–791, jul. 2007.

Sousa, S. G. et al. Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes. , v. 487, n. 1, p. 373–381, ago. 2008.

Stetson, P. B.; Pancino, E. Daospec: An automatic code for measuring equivalent widths in high-resolution stellar spectra. *Publications of the Astronomical Society of the Pacific*, IOP Publishing, v. 120, n. 874, p. 1332–1354, Dec 2008. ISSN 1538-3873. Disponível em: http://dx.doi.org/10.1086/596126>.

Tabernero, H. M. et al. Stepar: an automatic code to infer stellar atmospheric parameters. *A&A*, v. 628, p. A131, 2019. Disponível em: https://doi.org/10.1051/0004-6361/201935465>.

Tinsley, B. M. Stellar lifetimes and abundance ratios in chemical evolution. , v. 229, p. 1046–1056, maio 1979.

Tody, D. The IRAF Data Reduction and Analysis System. In: Crawford, D. L. (Ed.). *Instrumentation in astronomy VI*. [S.l.: s.n.], 1986. (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, v. 627), p. 733.

Tolstoy, E.; Hill, V.; Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the local group. *Annual Review of Astronomy and Astrophysics*, v. 47, n. 1, p. 371–425, 2009. Disponível em: https://doi.org/10.1146/annurev-astro-082708-101650>.

TOLSTOY, E. et al. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. implications for understanding galaxy evolution. *The Astronomical Journal*, American Astronomical Society, v. 125, n. 2, p. 707–726, feb 2003. Disponível em: <https://doi.org/10.1086%2F345967>.

van Altena, W. F.; Lee, J. T.; Hoffleit, D. VizieR Online Data Catalog: Yale Trigonometric Parallaxes Preliminary (van Altena+ 1991). *VizieR Online Data Catalog*, p. 1/174, out. 1995.

Yong, D. et al. Chemical abundances in bright giants of the globular cluster M62 (NGC 6266). *Monthly Notices of the Royal Astronomical Society*, v. 439, n. 3, p. 2638–2650, 02 2014. ISSN 0035-8711. Disponível em: https://doi.org/10.1093/mnras/stu118>.

Árnadóttir, A. S.; Feltzing, S.; Lundström, I. The ability of intermediate-band strömgren photometry to correctly identify dwarf, subgiant, and giant stars and provide stellar metallicities and surface gravities *. *A&A*, v. 521, p. A40, 2010. Disponível em: https://doi.org/10.1051/0004-6361/200913544>.