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Abstract 
This work presents a scalar self-consistent quantum model for molecular si-
mulation. This model employs Bäcklund transformations to eliminate the 
wave function from Klein-Gordon and Schrödinger-type equations. The non-
linear PDE obtained after coupling the quantum model with the Gauss law of 
electromagnetism contains only the interaction potential. The analytical solu-
tions obtained reproduce some relevant effects related to the evolution of the 
electronic clouds induced by nonlinear scattering. One of the most relevant 
results obtained from this new formulation is to confirm and fully justify the 
fact that Cl2 molecules do not react directly with aromatic rings. This result 
cannot be reproduced by classical models for molecular simulation. On the 
other hand, quantum chemistry only furnishes indicia that such electrophilic 
reactions may not occur, but does not shows explicitly how the electronic 
clouds evolve along the chemical process. 
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1. Introduction 

Scattering processes and transitions between quantum states are strongly de-
pendent phenomena usually treated as uncorrelated events. It occurs because the 
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coupling between quantum and electromagnetic models produces sets of high- 
order nonlinear partial differential equations. These equations describe the evo-
lution of the electronic cloud of the atoms whose interaction with radiation ge-
nerates scattering and electron transitions. 

The most traditional quantum methods employed in molecular simulation are 
based on iterative schemes such as LCAO-MO and DFT formulations [1] [2] [3]. 
These schemes generate very accurate results in chemistry, furnishing excellent 
estimations for bond orders, electron densities and bond lengths for a wide class 
of molecules [4]. However, these variational formulations usually generate 
computational codes whose time processing required becomes extremely high 
for many important applications in Chemical and Nuclear Engineering [5]. It 
occurs because the total wavefunction for the chemical system consists in linear 
combinations containing hundreds or thousands of terms, even for relatively 
simple reactants. For this reason, investigating reaction mechanisms and esti-
mating final products via quantum models often require a considerable compu-
tational effort. Moreover, the corresponding computational codes demand a 
time processing which grows with the square of the total number of electrons. It 
is important to take in mind that the total wavefunction is usually a linear com-
bination of eigenfunctions of the Hamiltonian operator. Each eigenfunction 
represents a single electron, so a typical molecule of a regular organic compound 
must be represented by a linear combination containing thousands of basis 
functions. 

In order to overcome this difficulty, some classical nonlinear models [6] [7] 
[8] generated ingenious computational codes conceived to simulate the interac-
tion of large populations of molecules and microorganisms. Although these sys-
tems can produce important results in biological sciences and Statistical Ther-
modynamics, the quantum effects describing the rearranging of electronic 
clouds during reactions are absent in the corresponding classical models. It oc-
curs that, in Organic Chemistry, the heart of the matter is an unexplored theme 
in both areas: the rearranging of electron clouds. This subject lies at the interface 
between classical Molecular Simulation and Quantum Physics.  

For quantum models, there are no simple ways to reduce the computational 
effort for most applications in molecular simulation. We have no information 
about the existence of analytical or even hybrid methods capable to produce 
self-consistent closed-form solutions in cases where the interaction potential va-
ries over time.  

Our first attempt to simulate chemical reactions employed fractional deriva-
tives to describe the evolution of a free radical reaction [9]. Nevertheless, frac-
tional derivatives do not seem to be a suitable approach for nonlinear scattering 
processes. 

However, after solving a particular version of the Klein-Gordon equation and 
finding some encouraging results in Nuclear Physics [10], we worked with some 
factorizations of this model, in order to obtain new analytical solutions. It occurs 
that some factorizations of the Klein-Gordon equation may produce a system of 

https://doi.org/10.4236/oalib.1108659


J. Zabadal et al. 
 

 

DOI: 10.4236/oalib.1108659 3 Open Access Library Journal 
 

first-order PDEs which is more general than the Dirac equations. The most gen-
eral first-order system of PDEs obtainable via factorization of the Klein-Gordon 
model is the bi-quaternion Lanczos equation [11] [12] [13] [14]. This equation 
allows coupling the electronic cloud and the nucleus of a given atom in a unique 
structure, which can be describable by a single wave function. This characteristic 
reduces significantly the number of basic functions necessary to describe the 
chemical system. Each function represents an entire atom.  

This work presents a new scalar quantum model based on an exact factoriza-
tion for Klein-Gordon and Schrödinger-type equations. The new model differs 
from the standard ones in a fundamental way: it consists in a self-consistent 
nonlinear PDE whose dependent variable is the zeroth component of the Max-
well vector potential (A0 = V). 

In order to eliminate the wave function from a given quantum model, a 
straightforward procedure based on Bäcklund transformations allows reformu-
lating the target equation in such a way that a nonlinear one emerges. In the next 
section, it will be shown that some scalar quantum models can be obtained when 
a Bäcklund transformation is applied over a nonlinear model expressed only in 
terms of the interaction potential. 

2. The Lorentz Force as a “Hydrodynamic” Model 

When one choose the Lorentz gauge by imposing that the Maxwell vector poten-
tial obeys a differential constraint given by a continuity equation, namely 

0 1 2 3

0A A A A
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
,                   (2.1) 

it is implicitly assumed that the gauge potential interacting with the molecules of 
the reactants behaves essentially as a compressible fluid. Hence, (2.1) represents 
a conservation law for a dynamic equation based on the Lorentz force: 

( )vm q E v B
t
∂

= + ×
∂

,                     (2.2) 

where m and q are, respectively, the mass and the charge of the electron, v stands 
for the electron velocity vector, E represents the electric field and B the magnetic 
induction. This equation can be writing in terms of the Maxwell vector potential 
as 

i
iv Am q v A

t t
χ∂ ∂

= − −∇


−


 


×∇
∂ ∂ 

× .              (2.3) 

Here Ai is the Maxwell vector potential and χ represents a gauge potential. 
This system of partial differential equations implicitly states that the photon field 
interacts with the electronic clouds in such a way that Equations (2.1) and (2.2) 
can be regarded, respectively, as a continuity equation and a hydrodynamic 
model. This apparently naive analogy comes directly from a rigorous formalism, 
where dynamic equations arise from operator identities. These identities are 
commutation relations remaining valid even when dynamic equations and con-
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servation laws break down. 

2.1. The Maxwell Potential and the “Position” Photon Field 

Since conservation laws come from a commutation relation between the time 
derivative and the divergent operator, namely 

, 0
t
∂ ∇ ⋅ = ∂ 

.                        (2.4) 

Then there exists a field X defined by 

iX A
t

∂
=

∂
                          (2.5) 

and 
0X A∇⋅ = − ,                        (2.6) 

reducing the Lorentz gauge to the following identity:  

, 0X
t
∂ ∇ ⋅ ≡ ∂ 

.                      (2.7) 

Thus, Equations (2.4) and (2.5) represent solvability conditions for (2.1). The 
vector field X and the wave function play analogous roles in different areas of 
Physics. The field X is as a boson “position” vector whose diffuse character justi-
fies the probabilistic approach of the traditional quantum mechanics. Moreover, 
it allows interpreting the minimal coupling as a natural consequence of the in-
terplay between two velocity fields. The total momentum is defined as 

ip mv qA= + .                      (2.8) 

In this equation, the first term stands for the fermion contribution to the total 
momentum, while the second one is the respective boson counterpart. Roughly 
speaking, an electron is a vortex structure in a photon flow, so the electronic 
cloud has a structure whose qualitative features resembles a Kolmogorov cas-
cade.  

2.2. The Schrödinger Postulates as Solvability Conditions 

The variables momentum and energy are defined in terms of the wave function 
as 

p i= − ∇Ψ ,                       (2.9) 

and 

E i
t

∂Ψ
=

∂
.                       (2.10) 

These definitions may be considered as a set of integrability conditions for the 
following partial differential equation: 

p E
t

∂
= −∇

∂
.                      (2.11) 

In a sense, this equation constitutes a version of the second Hamilton’s equa-

https://doi.org/10.4236/oalib.1108659


J. Zabadal et al. 
 

 

DOI: 10.4236/oalib.1108659 5 Open Access Library Journal 
 

tion. Notice that p is the gradient of a given scalar field and E is a time derivative 
of the same field. As in the former case, since the time derivative and the gra-
dient operator commute, the definitions (2.8) and (2.9) are identically satisfied. 

After this relatively long digression we are in position to find a possible struc-
ture for the interaction term in a scalar quantum model. Once the Maxwell po-
tential is a photon velocity field, it seems reasonable to infer that both kinetic 
and potential energy can be expressed as quadratic forms. Suppose that a linear 
operator maps the potential into the wave function. Therefore, the equation 
written in terms of the potential function must present the same linear part of 
the original quantum model (Schrödinger or Klein-Gordon). In order to obtain 
a differential operator mapping the potential into the wave function it is conve-
nient to find a Bäcklund transformation between some self-consistent equation 
and the original scalar quantum model.  

2.3. Bäcklund Transformations as Mappings between PDEs 

In order to eliminate the wave function from the Schrödinger equation, let us 
suppose that the potential function obeys the following quasi-linear second or-
der model: 

2
2

2

1 1
2 2

V VV i
tx

∂ ∂
− + =

∂∂
                   (2.12) 

This model can suffer a reduction of order via Bäcklund transformations, ge-
nerating a set of two auxiliary equations: 

V
x

ϕ∂
=

∂
                         (2.13) 

and  

21 1
2 2

Vi V
t x

ϕ∂ ∂
= − +

∂ ∂
                   (2.14) 

In fact, (2.12) is obtained by replacing (2.13) in (2.14). Imposing the consis-
tency between the definitions of the cross derivatives, it yields 

( )
2

21 1
2 2

Vi V i
x t x x t

ϕ ϕ∂ ∂ ∂ ∂ = − + = ∂ ∂ ∂ ∂ ∂ 
             (2.15) 

Hence, the following second order PDE for the wave function arises from this 
integrability condition: 

2

2

1
2

VV i
x tx

ϕ ϕ∂ ∂ ∂
− + =

∂ ∂∂
                  (2.16) 

Finally, replacing (2.13) in (2.16), the one dimensional time dependent 
Schrödinger equation is obtained: 

2

2

1
2

V i
tx

ϕ ϕϕ∂ ∂
− + =

∂∂
                   (2.17) 

In this Equation (expressed in atomic units) the parameters m and h are ab-
sent, because m = h = 1. 
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This process can be readily applied to the corresponding two dimensional 
Schrödinger equation. In this case, the starting point is the following two dimen-
sional nonlinear model: 

2 2
2

2 2

1 1
2 2

V V VV i
tx y

 ∂ ∂ ∂
− + + =  ∂∂ ∂ 

               (2.18) 

The corresponding auxiliary system becomes 

V Vi
x y

ϕ∂ ∂
+ =

∂ ∂
                      (2.19) 

and 

21 1
2 2

Vi i V
t x y

ϕ ϕ ∂ ∂ ∂
= − − + ∂ ∂ ∂ 

.                (2.20) 

In this case the linear differential operator which maps the potential into the 
wave function is defined by 

L i
x y
∂ ∂

= +
∂ ∂

                      (2.21) 

Since the time derivative commutes with operator L, it becomes possible to 
obtain the two dimensional Schrödinger equation after applying L over (2.21). 
Differentiating (2.19) respect to time, substituting in (2.20) and subtracting the 
resulting equations, it yields  

1
2

i LM V
t
ϕ ϕ ϕ∂
= − +

∂
.                  (2.22) 

In this equation, M represents the complex conjugate of L: 

M i
x y
∂ ∂

= −
∂ ∂

.                     (2.23) 

Hence, LM is the two dimensional Laplacian operator. 
Notice that operators L and M contain only spatial derivatives. Thus, the 

mapping φ = LV is identical for the Schrödinger and Klein-Gordon equations. 
In other words, the Klein-Gordon equation arises by applying the same differen-
tial operator over the nonlinear model given by 

2 2 2
2

2 2 2

1
2

V V V V mV
t x y

∂ ∂ ∂
− − = − −

∂ ∂ ∂
.             (2.24) 

In practice, since the mapping between the potential and the corresponding 
wave function does not specify the scalar quantum model employed, it becomes 
possible to choose a differential constraint to specify the particular physical sce-
nario to simulate. Since our focus consists in describing the rearranging of the 
electronic cloud during a chemical reaction, it is possible to find a suitable diffe-
rential constraint in electromagnetic theory: the Gauss law.  

3. Analytical Solutions 

The self-consistent potential is obtained by solving a steady form of the two di-
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mensional Gauss law in complex variables. The exact solution obtained can be 
generalized in order to generate closed-form ones for the relativistic version of 
the model.  

Solving the Two Dimensional Nonlinear Gauss Law 

It is possible to solve the Gauss law, given by 
2

2
2

V V
t

ρ∂
−∇ = −

∂
                      (3.1) 

using complex variables for time independent interaction potentials. This model 
reduces to the following equation: 

2V LVMVρ∇ = = .                     (3.2) 

Once LM is the Laplacian operator, this equation can be written in the for 
LMV = (LV)(MV), where L and M are respectively defined by (2.21) and (2.23). 
These operators are expressed in terms of the complex variables r = x + iy and s 
= x − iy as 

2L i
x y s
∂ ∂ ∂

= + =
∂ ∂ ∂

                     (3.3) 

and 

2M i
x y r
∂ ∂ ∂

= − =
∂ ∂ ∂

.                   (3.4) 

Thus, Equation (3.2) assumes the form 
2V V V
r s r s
∂ ∂ ∂

=
∂ ∂ ∂ ∂

.                     (3.5) 

It is possible to solve this equation directly by integration. Dividing by V
s

∂
∂

 

and integrating in r, it yields  

( )( )ln lnV V f s
s

∂  ′= + ∂ 
,                 (3.6) 

Here f'(s) is an arbitrary function of s. This first-order partial differential equ-
ation can be promptly solved for V. Since 

( )eVV f s
s

∂ ′=
∂

,                      (3.7) 

the potential function is obtained by multiplying both sides by e V−  and inte-
grating in s: 

( ) ( )e V f s g r−− = + .                   (3.8) 

Hence, 

( ) ( )( )lnV a r b s= − + ,                  (3.9) 

where a(r) and b(s) are arbitrary functions of its arguments. A natural extension 
of this solution to four dimensions naturally arises by defining a new set of va-
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riables, namely 

p z t= +                          (3.10) 

and 

q z t= − .                         (3.11) 

Therefore, an exact four-dimensional solution is obtained: 

( ) ( )( )ln , ,V a r p b s p= − + .                 (3.12) 

Naturally, the former result could be generalized using Lie symmetries admit-
ted by Equation (3.5). However, as will be showed in the next section, this sub-
space solution yet satisfies a wide class of initial states and boundary conditions.  

4. A Bi-Quaternion Model for the Potential 

The bi-quaternion quantum model conceived by C. Lanczos in 1929 [11] [12] 
[13] [14] was initially ignored due to the rapid acceptance of the Dirac equa-
tions, which is widely recognized as the most important factorization of the 
Klein-Gordon equation. However, there are some interesting features in com-
plex quaternion formulations. These features allow interpreting the scattering 
process as a boson gas flow. This point of view furnishes a more intuitive ap-
proach to Quantum Field Theory and provides a new method for finding 
self-consistent scattering potentials.  

This section presents a new quantum model based on a simplified version of 
the Lanczos bi-quaternion formulation, which constitutes a new reduction of 
order for Klein-Gordon type equations. Such a factorization produces a set of 
first-order nonlinear PDEs containing the four vector Maxwell potential.  

4.1. Mapping Four Vectors into Spinors via Bi-Quaternion  
Operators 

In previous sections, it was demonstrated that the operators L e and its conju-
gate, namely M map interaction potentials into scalar wave functions, by con-
verting the nonlinear partial differential equation given by 

2 2
2

2 2

1 1
2 2

V V VV i
tx y

 ∂ ∂ ∂
− + + =  ∂∂ ∂ 

                  (4.1) 

into the corresponding two-dimensional Schrodinger model  
2 2

2 2

1
2

V i
tx y

ϕ ϕ ϕϕ
 ∂ ∂ ∂

− + + =  ∂∂ ∂ 
.                  (4.2) 

This mapping is identically satisfied by LV = φ. Since LM is the two-dimensional 
Laplacian operator, it is possible to generalize the scalar model by reformulating 
it in quaternion variables. In this four dimensional model, LM represents the 
D’Alembertian operator. In quaternion variables, the four vector LAµ µϕ =  is 
given by  

( )( )
0

0 0, , ,A Ai A A i A i A i A
t t

 ∂ ∂
∂ ∇ = − ∇ ⋅ + ∇ + ∇× ∂ ∂ 

.         (4.3) 
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Hence, the corresponding complex conjugate MAµ  results 

( )( )
0

0 0, , ,A Ai A A i A i A i A
t t

 ∂ ∂
∂ − ∇ = + ∇ ⋅ − ∇ − ∇× ∂ ∂ 

.         (4.4) 

In these equations, A stands for the three-dimensional vector part of Aµ , so 
the standard quaternion notation was adopted. Once the D’Alembertian opera-
tor is factorized as 

( )( )
2

2
2 , ,i i LM

t
∂

−∇ = ∂ ∇ ∂ − ∇ =
∂

,                (4.5) 

the set of four equations representing Gauss and Ampere’s laws, namely 
2

2
2

A A j
t

µ
µ∂

−∇ = −
∂

                       (4.6) 

can be recast as  

( )( )LMA LA MAµ µ µ= − .                    (4.7) 

In this equation, the right-hand side denotes the quaternion product between 
the four vectors LAµ µϕ =  and MAµ µϕ = : 

( )( ) ( )0 0 0 0 0 0, , ,ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − ⋅ + + ×           (4.8) 

Here µϕ  and µϕ  represents the four vector wave function and its conju-
gate bi-quaternion. Therefore, Equation (2.8) can also be express as a first-order 
system of nonlinear PDEs in these fields. Since L and M commute,  

( )( )MLA LA MAµ µ µ= − .                   (4.9) 

Thus, Equation (4.9) is written in the form 

( ) ( )( )0 0 0, , ,M ϕ ϕ ϕ ϕ ϕ ϕ= − ,                (4.10) 

or 

( ) ( )( )0 0 0, , ,L ϕ ϕ ϕ ϕ ϕ ϕ= − ,                (4.11) 

which corresponds to the original form of (4.9). Here the right hand side of both 
equations represents the quaternion definition of the current j appearing in 
Gauss and Ampere’s laws. 

4.2. The Influence of Gauge Potentials in the Interaction between  
Radiation and Matter 

The properties of the operators L and M allows obtaining an explicit solution for 
the scalar self-consistent potential V = A0. Once 

LVϕ = ,                        (4.12) 

the Gauss law can be written as 

LMV ϕϕ= − .                      (4.13) 

However, 

MV ϕ= ,                        (4.14) 
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so Equation (4.14) can be express as 

Lϕ ϕϕ= − .                        (4.15) 

Hence, 

Lϕϕ
ϕ

= − .                        (4.16) 

Since L is a first-order linear operator with constant coefficients,  

( )lnLϕ ϕ= −                        (4.17) 

Replacing (4.12) in the left hand side of (4.17), it yields 

( )lnLV L ϕ= − .                      (4.18) 

Therefore, 

( )ln 0V l Llϕ= − + = .                  (4.19) 

Since L and M commute, Equation (4.13) can assume the form  

MLV ϕϕ= −                        (4.20) 

or 

Mϕ ϕϕ= − .                       (4.21) 

Thus, 

( )lnM Mϕϕ ϕ
ϕ

= − = − .                   (4.22) 

Using (4.14), it results 

( )lnMV M ϕ= − .                     (4.23) 

Hence, 

( )ln 0V m Mmϕ= − + = .                 (4.24) 

In Equations (4.19) and (4.24), the functions l and m are gauge fields specify-
ing the radiation interacting with the scattering medium. It occurs because these 
functions belong to the null space of the Laplacian operator. In other words, 
since LM = ML is the Laplacian operator and Ll = Mm = 0, then MLl = LMm = 
0. Solving, (4.24) for the wave function and (4.9) for its complex conjugate, it 
yields 

( )e 0m V Mmϕ −= = .                  (4.25) 

and 

( )e 0l V Llϕ −= = .                   (4.26) 

Before interpreting these results, it becomes convenient to employ (4.12) and 
(4.14) to eliminate the wave function from this system of equations:  

em VLV −=                        (4.27) 

and 

el VMV −= .                       (4.28) 
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But L and M can be written in terms of complex variables: 

( )2L i s x iy
x y s
∂ ∂ ∂

= + = = −
∂ ∂ ∂

                (4.29) 

and 

( )2M i r x iy
x y r
∂ ∂ ∂

= − = = +
∂ ∂ ∂

.               (4.30) 

Therefore, Equations (4.27) and (4.28) can be expressed, respectively, as 

2 em VV
s

−∂
=

∂
                       (4.31) 

and 

2 el VV
r

−∂
=

∂
.                      (4.32) 

Rearranging terms, it yields 

1e e
2

V mV
s
∂

=
∂

                      (4.33) 

and 

1e e
2

V lV
r
∂

=
∂

.                     (4.34) 

Since Ll = Mm = 0, l is an arbitrary function of r and t, while m is another ar-
bitrary function of s and t. Hence, after integrating (4.33) respect to s, it results 

( ) ( ),1e e d ,
2

m s tV s a r t= +∫ .                 (4.35) 

Analogously, integrating (4.34) respect to r, an equivalent definition for V 
arises: 

( ) ( ),1e e d ,
2

l r tV r b s t= +∫ .                 (4.36) 

In these equations, a(r, t) and b(r, t) are arbitrary functions of its correspond-
ing arguments. Once both definitions for the potential must be identical,  

( ) ( ),1 e d ,
2

m s t s b s t=∫ .                  (4.37) 

and 

( ) ( ),1 e d ,
2

l r t r a r t=∫ .                   (4.38) 

Finally, the general solution of the Gauss law for the potential function,  

( ) ( )( )ln , ,V a r t b s t= + ,                 (4.39) 

emerges as a generalization of the scalar solution (3.12). Thus the two dimen-
sional formulation can be employed to generate preliminary results. 

The corresponding wave function is readily obtain from (4.25): 
( ) ( )( )ln , ,em a r t b s tϕ − += .                   (4.40) 
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But m(s, t) can be written in terms of b(s, t) using (4.37):  

ln 2 bm
s
∂ =  ∂ 

.                     (4.41) 

Therefore, 

2 b
a b s

ϕ ∂
=

+ ∂
.                     (4.42) 

Similarly,  

2 a
a b r

ϕ ∂
=

+ ∂
.                     (4.43) 

5. Results and Discussion 

In this section, the analytical solutions given by Equations (3.9) and (3.12) are 
employed to simulate two basic scenarios in Quantum Chemistry. It is worth 
mentioning that the scale of the graphs presented is in Ångström. 

The first describes the process in which a typical ionic bonding arises between 
Potassium and Fluorine. Figure 1(a) show a Potassium atom, whose electron 
cloud suffers a slight shift towards the right direction. The cloud is migrating 
towards the Fluorine atom, which was intentionally not shown in both figures. 
This was done in order to emphasize the fact that the rearranging of the electron 
cloud occurs faster than the migration of the nuclei, which is consistent with the 
Born-Oppenheimer approximation. The electron cloud of the Fluorine atom be-
gins to appear only in Figure 1(b).  

In Figure 1(b) the Fluorine atom finally appears. Although the Fluorine nuc-
leus suffers attraction by the Potassium cloud, it slowly moves due to its rela-
tively large mass. Notice that the cloud is distributed between the atoms in such 
a way that produces an ionic bond electron configuration. 

The second scenario illustrates the stability of aromatic rings. Two isolated 
chlorine atoms begin to attack the Hydrogen ones belonging to a benzene mole-
cule as shown in Figure 2(a). These Chlorine atoms are initially positioned in 
order to induce an interaction. Despite the apparently favorable attack position, 
the reaction does not occur. Instead, the electron cloud is attracted to the carbon 
atoms of the benzene ring. This electrophilic behavior is noticed by the intense 
blue region arising in Figure 2(b).  

The second scenario illustrates the stability of aromatic rings. Two isolated 
chlorine atoms begin to attack the Hydrogen ones belonging to a benzene mole-
cule as shown in Figure 3.  

These Chlorine atoms are initially positioned in order to induce an interac-
tion. Despite the apparently favorable attack position, the reaction does not oc-
cur. Instead, the electron cloud is attracted to the carbon atoms of the benzene 
ring. This electrophilic behavior is noticed by the intense blue region arising in 
Figure 4. In addition, we can see in Figure 5 the Chlorine atoms attracting each 
other. 
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(a)                                   (b) 

Figure 1. (a) and (b): electronic cloud migrating from K to F. 
 

   
(a)                                  (b) 

Figure 2. (a) and (b): consolidation of the ionic bond K-F. 
 

 

Figure 3. Chlorine atoms positioned to attack a benzene ring. 
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Figure 4. Chlorine atoms attracting each other. 
 

 

Figure 5. Chlorine atoms producing a covalent bond. 
 

It is important to point out that the potential function describing atoms and 
molecules are approximate by truncated Laurent series. This representation de-
mands a small computational effort to obtain the analytical solutions. The aver-
age time processing required to simulate a typical chemical reaction is about 3 
seconds per atom (Macbook pro 2017, 16 GB RAM, using Maple).  

6. Conclusions 

The quantum model presented, although scalar, can be indirectly employed to 
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infer some fermion issues in the chemical scenarios. It occurs because it becomes 
possible to identify regions presenting high vorticity in the boson field represented 
by the potential function.  

This analogy with fluid mechanics is not incidental. Notice that the photon 
field reveals much more about the molecular structure than the corresponding 
electron field because of the wide range of the boson action. In other words, the 
potential function allows showing some nonlocal effects that the fermion coun-
terpart of the quantum model does not necessarily exhibit.  

There are several other advantages of using quantum models written exclu-
sively in terms of the potential function, in order to simulate chemical reactions: 

1) The number of functions required to represent molecular systems is drasti-
cally reduced—typically one function per atom, while wave functions demand 
one function per electron. Eventually, some organic chains may be represented 
as truncated Laurent series containing few terms. In some cases, one function in 
complex variables is capable to approximate the potential of an entire organic 
chain or even a polymer. 

2) The maps depicting the level curves of the total potential are considerably 
easier to interpret than the ones generated by total wave functions. 

3) The formulation avoids some practical difficulties associated with the initial 
methods. As a result, the computational codes produced are small and easy to 
depurate. 

4) The prescription of the initial state of the system becomes a simple task 
since all atoms involved present essentially the same shape, namely, the classical 
Lennard-Jones one. 

5) For educational purposes, there exist exact solutions written in terms of the 
Weierstrass P function, whose behavior explains some interesting features of the 
so-called “quantum chaos” in a deterministic way. 

6) Equation (2.1) admits solutions obtained through certain nonlinear com-
binations of previous exact ones. As a nontrivial consequence, it becomes possi-
ble to investigate whether two compounds react with each other.  

7) The last advantage has an interesting application in catalysis. It occurs that 
if a and b are exact solutions of Equation (2.1), a new solution can be defined by 
V = a + b + h, where h is a particular solution of the corresponding linear model, 
namely  

2

0h
r s
∂

=
∂ ∂

                         (6.1) 

This is the Laplace equation written in complex variables, so the solution h is a 
particular harmonic function that accounts for the gauge potential associated 
with the radiation that must be added to the compounds a and b in order to def-
lagrate the reactive process. It is easy to show that when V = a + b + h is replaced 
in Equation (2.18), a new solution emerges: 

2 2V a b= + .                       (6.2) 
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This function stands for a final bound containing less energy than the sum of 
the energies of the isolated original reactants. Hence, even adding the gauge field 
h in order to promote the reaction between the compounds represented by the 
potentials a and b, the final result is a bound state that is less energetic than the 
initial configuration of the system. In other words, even after adding the activa-
tion energy, represented by the field h, the system evolves and reaches a final 
state described by Equation (6.2). 

Bearing in mind all the practical advantages of using quantum models ex-
pressed in terms of the potential function, we step forward by formulating new 
vector and tensor models, in order to improve and generalize the results ob-
tained. In future works, we intend to implement new software based on the bi-
quaternion formulation, which allows simulating the time evolution of the elec-
tron cloud and the subtle corresponding perturbations in the nuclei structure. 
From this coupling between nuclei and electronic clouds, we expect that new re-
levant information about the spin-orbital interaction will finally emerge in a 
simple way. Considering the encouraging preliminary results yet obtained, we 
hope that some a priori unintuitive features of Quantum Field Theory will also 
elucidate after being analyzed under this point of view.  
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