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ABSTRACT

Federated learning is a machine learning paradigm where many clients cooperatively train

a single centralized model while keeping their data private and decentralized. This novel

paradigm imposes many challenges, such as dealing with data that is not independent and

identically distributed, spread among multiple clients that are not synchronized and may

have limited computing power. These clients are often edge devices such as smartphones

and sensors, which form a system that is heterogeneous, highly distributed by nature and

difficult to manage. This work proposes an architecture for running federated learning

experiments in a distributed edge-like environment. Based on this architecture, a set of

experiments are conducted to analyze how the overall system performance is affected by

different configuration parameters and varied number of connected clients.

Keywords: Federated Learning. Edge Computing. Observability. Microservices. Perfor-

mance.



Analisando o Desempenho de Aprendizagem Federada Para Cenários Distribuídos

de Computação de Borda

RESUMO

Aprendizagem federada é um paradigma de aprendizagem de máquina onde diversos cli-

entes treinam um único modelo de forma cooperativa enquanto mantêm seus dados priva-

dos e decentralizados. Esse paradigma inovador impõe muitos desafios, como lidar com

dados que não são independentes e igualmente distribuídos, divididos entre clientes que

não estão sincronizados e possuem poder de computação limitado. Esses clientes nor-

malmente são dispositivos de borda, como celulares e sensores, que formam um sistema

que é heteorgêneo, altamente distribuído por natureza e de difícil administração. Este

trabalho propõe uma arquitetura para rodar experimentos de aprendizagem federada em

um ambiente distribuído com poder de computação limitado. Baseado nessa arquitetura,

uma série de experimentos são conduzidos para analisar como o desempenho do sistema

é afetado pelas diferentes de parâmetros e pelo variado número de clientes.

Palavras-chave: Aprendizagem Federada, Computação de Borda, Observabilidade, Mi-

crosserviços, Desempenho.
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1 INTRODUCTION

Federated Learning is a solution proposed by (MCMAHAN et al., 2016) in order

to train machine learning models while keeping the data private and decentralized. It

works by having different clients training their own models with their own data, then

averaging these trained models in a single centralized server, creating a global model.

These clients can be separated into two categories. They are either end devices, consisting

of single devices such as a smartphone, a single sensor, or another IoT device with internet

connection such as a smart TV or a smart car; or they are data silos, distributed databases

that need to keep their data private with the outside world, but are comprised of multiple

devices. Data silos examples include hospitals (XU et al., 2021) and farms (DURRANT

et al., 2021).

The clients, either data silos or end devices, train their models with their own data

and, after finished, the models are uploaded to a central server, where all the client mod-

els are aggregated, converging to a single final model made from the uploaded models.

While regular centralized machine learning may outperform federated learning in terms

of accuracy (NILSSON et al., 2018), it requires the entire data set to be public. Feder-

ated learning allows large scale data sets to be used for training models while keeping the

data private to each client. A use case example is Google’s mobile keyboard prediction

(HARD et al., 2018), which learns from every smartphone using Gboard – the Google

keyboard – without sharing user data.

Federated learning has been greatly enabled by the vast advances and abundance

of IoT devices. According to (CISCO, 2020), the number of devices connected to IP

networks will be more than three times the global population by 2023, there will be 3.6

networked devices per capita by 2023, up from 2.4 networked devices per capita in 2018,

and there will be 29.3 billion networked devices by 2023, up from 18.4 billion in 2018.

This represents a rapid increase of potential federated learning use cases, considering the

plenitude of client data to be trained in order to produce high accuracy machine learning

models.

Additionally, edge computing has been greatly enabled by the advancement in

technologies and tools such as Docker1, which allows an application to be containerized,

i.e., turned into a container, a package containing the application code and all its de-

pendencies. This way, the application can run reliably in any computing environment.

1https://www.docker.com/
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Besides portability, another important aspect of Docker vital for edge scenarios is its

small overhead (AVINO et al., 2018), making the container as lightweight as possible and

empowering it to quickly be deployed and run in every environment.

Besides Docker for containerization, there is also the need to manage and orches-

trate these created containers as simply and seamlessly as possible. Tools such as Ku-

bernetes have become the industry standard for orchestration, although there are multiple

options including Docker Swarm, which is used for this work. Container orchestration

leverages Docker container capabilities and allows the client to control the whole life-

cycle of the container: creating, updating, monitoring, and destroying. Additionally, it

also enables fast deployments for different scenarios with transparent load balancing and

horizontal scaling – adding more nodes instead of more computing power.

This work proposes an architecture that is able to run federated learning algorithms

in a distributed environment, where the clients are machines with limited power, similar to

edge devices. Then, on top of this architecture, a set of experiments have been conducted

with different configurations of data distribution for a varying number of clients, while

also changing parameters for both the client and the server. Collected data has been

analyzed in order to understand how to optimize for model accuracy while minimizing

computing resource usage on client-side.

The goal of this work is first to build an end-to-end federated learning platform

that is easy to deploy and modify. The source code for the implemented solution will

also be made available in order to facilitate extensibility. Second, the data analyzed in the

experiments will provide an understanding on how to properly increase accuracy without

overloading the limited power devices which are part of the federated learning process.

This analysis can be useful for further development in federated learning technologies,

such as orchestration between edge devices and cloud for federated learning use cases.

The remainder of this work is organized as follows. In Section 2 an overview for

edge cloud orchestration and federated learning is presented. In Section 3 the tools and

frameworks that enable the fundamental building blocks of the solution are discussed.

In Section 4 the conceptual architecture of the proposed solution is presented. Section

5 approaches the layout of the experiments and presents the obtained results. Section 6

concludes the work outlining opportunities for future research.
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2 EDGE CLOUD ORCHESTRATION AND FEDERATED LEARNING

This section approaches the main topics of this work, providing an overview of

the current state of the art of edge computing and federated learning.

2.1 Edge Computing

The need for low latency computing along the rapid advancements in telecommu-

nication services motivated the edge computing paradigm. In edge computing, instead

of having the computing resources centralized in a data center – a cloud –, the idea is to

distribute these resources in devices – the edge – closer to the final user, thus allowing

lower latency and faster connections. These edge devices can be any device with Internet

access such as smartphones, smart cars, or other IoT devices.

The concept of Multi-access Edge Computing (MEC) (GIUST; COSTA-PEREZ;

REZNIK, 2017) proposes an infrastructure that places storage and computation at the

network edge, benefiting situations where real time access to the server is required or

preferred, while also reducing the traffic to a centralized network. This creates a heavily

decentralized infrastructure that provides low latency connection to the end user, all while

minimizing centralized cloud limitations such as delay, access bottlenecks, and single

points of failure.

A MEC infrastructure is shown in Figure 2.1, where 5G IoT devices connect to a

local access network for high throughput and massive data volume in low-latency appli-

cations, while also utilizing a centralized cloud for latency-tolerant applications.

Figure 2.1: Multi-access Edge Computing Infrastructure

Source: Verizon1

Multi-access Edge Computing use cases that fully benefit from these concepts

1https://www.verizon.com/business/solutions/5g/edge-computing/multi-access-edge-computing/ (ac-
cessed October 19th, 2021)
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include autonomous driving (LIU et al., 2019), where edge devices need to process a

large amount of data from different sensors at high speed in real time in order to guarantee

the safety of the drivers; and smart city traffic monitoring (BARTHéLEMY et al., 2019),

where the decentralized and highly available nature of multi-access edge computing is

taken advantage to collect, store, and analyze city traffic data in multiple sensors.

More recently, many advances connecting edge computing to artificial intelligence

were made. (ZHOU et al., 2019) define Edge Intelligence as the union between AI and

edge computing, an opportunity that rose in virtue of the abundance of devices connected

to the internet that generate huge amounts of data on a daily basis. Edge Intelligence aims

to capitalize on this data to train machine learning models, using concepts such as Deep

Learning and Federated Learning.

Additionally, (DENG et al., 2020) further expand on Edge Intelligence and pro-

pose a conceptual difference between artificial intelligence for edge and artificial intelli-

gence on edge. The former encompasses intelligence-enabled edge computing that pro-

vides solutions to edge computing problems by utilizing artificial intelligence, while the

latter encompasses how to run artificial intelligence models on edge devices, extracting

insights from its distributed data nature. For this work, we are more interested in AI on

edge.

2.2 Federated Learning

Federated learning is a decentralized form of machine learning used to train mod-

els at scale while allowing the user data to be private. Federated learning was first intro-

duced by Google (MCMAHAN et al., 2016), which provided the first definition of fed-

erated learning, as well as the Federated Optimization (KONEčNý et al., 2016) approach

to further improve these federated algorithms. Google also explains in further detail the

concept of federated learning in the Federated Learning: Collaborative Machine Learn-

ing without Centralized Training Data blog post (GOOGLE, 2017), stating the usage to

predict keyboard words as seen in (HARD et al., 2018) and planning to also use federated

learning for photo ranking and further improving language models.

A generic federated learning infrastructure can be seen in Figure 2.2. Organiza-

tions 1, 2, and 3 represent three different clients which create their own models using

private data. These models are then sent to the Federated Server which handles the ag-

gregating and has no access to any kind of data. Then, this central server updates each
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model’s parameters with the updated values.

Figure 2.2: Federated Learning Architecture

Source: Sparkd.AI2

Federated learning deals with data that is not independent and identically dis-

tributed (non-IID). Since the data samples are distributed among multiple devices that are

not synchronized and may have limited connectivity, this also means that, besides being

non-IID, federated learning cannot simply train these devices in parallel and aggregate

them, as it cannot guarantee the device availability or the homogeneity of the data. While

advances have been made to understand the heterogeneous nature of the data samples

(ZHU et al., 2021) and how to properly average them (WANG et al., 2020), this remains

the main challenge for federated learning.

The difference between an IID dataset as usually found in standard machine learn-

ing scenarios, and a non-IID dataset, found in federated learning scenarios, is illustrated

in Figure 2.3. In the left is illustrated the standard IID dataset: every data point is rep-

resented for every client, meaning that every client will have data for how the numbers

from 0 to 9 look like. In the right we see the opposite; for the Non-IID dataset, clients

may have heterogeneous data samples with few or no matches between clients.

In order to properly define and further advance in the non-IID subject, the FedML

Research Library and Benchmark (HE et al., 2020) has been proposed to facilitate fed-

erated algorithm development and performance comparison. FedML provides an open-

2https://sparkd.ai/archives/4444 (accessed April 8th, 2022)



17

Figure 2.3: Illustration of IID vs. non-IID for MNIST dataset

Source: (HELLSTRöM et al., 2020)

source framework that allows the development and evaluation of novel federated algo-

rithms. Similarly, the Flower Learning Research Framework (BEUTEL et al., 2021) also

provides heterogeneous environments that allow experimentation with non-IID data and

algorithms. FlowerML is used as the federated learning infrastructure facilitator for this

work.

Despite the novelty and the myriad of challenges, federated learning adoption is

rising. Besides Google’s keyboard, (JI et al., 2019) proposes a novel optimized model

aggregation for keyboard suggestion that considers each client contribution to the global

model and weighs them instead of simply averaging. Federated learning is also key to

fully utilize machine learning capabilities in scenarios where the data cannot be shared

due to sensitivity such as for the health industry (RIEKE et al., 2020).

Google, along researchers from many universities, at the workshop on feder-

ated learning and analytics, states that federated learning is inherently interdisciplinary

(KAIROUZ et al., 2021), encompassing techniques and methods from other fields such

as cryptography, security, differential privacy, fairness, compressed sensing, systems, in-

formation theory, and more, requiring a collaborative effort in order to further advance the

subject. For this work, we are notably interested in the intersection that federated learning

has with edge computing.
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3 TOOLS AND FRAMEWORKS

This section provides an overview of the tools and frameworks that are used to

enable the fundamental architectural blocks for the solution.

3.1 Docker

Docker is an open platform for developing, shipping, and running applications1.

Docker is a staple for microservices development as it enables to separate the applications

from the infrastructure so the software can be delivered regardless of the underlying host

machine.

Docker provides the ability to package and run an application in a loosely isolated

environment called a container. The isolation and security allows to run many contain-

ers simultaneously on a given host. Containers are lightweight and contain everything

needed to run the application, making it a good and portable solution to run applications

on different edge devices.

Docker application specifications are called images. Images are templates with

instructions to create the containers, which are usually based on another images. The im-

ages created for this work, for example, are based either on top of the Python or Javascript

image which, in turn, may be based on Alpine Linux or other lightweight operating sys-

tem as such.

To build an image, it is require to specify a Dockerfile with the steps to create

it. There, it is specified the base image and other dependencies such as packages or

data. Each instruction in a Dockerfile creates a layer in the image. When a Dockerfile

is changed, only those layers which have changed are rebuilt, which allows for faster

development iterations.

Containers are runnable instances of these images. Many tools are available to

better manage the containers. For this work, Docker Swarm2, which is included with

Docker, is used due to its simplicity and light weight. As the use cases here are mainly for

easiness to deploy and observation purposes, there is no need to use more complex and

robust solution such as Kubernetes.

A Docker Swarm is a group of machines that are running the Docker containers

1https://docs.docker.com/get-started/overview/
2https://docs.docker.com/engine/swarm/ (Accessed April 8th, 2022)
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and have been configured to form a cluster together. Once the machines are clustered,

every Docker command can be carried out to the other machines in the cluster. Machines

can be set to be workers or managers and, from the manager machine, the whole cluster

can be accessed. This, in practice, allows for one-line deployments, while also enabling

simpler observability as it can be done from one node only.

What makes Docker Swarm and Docker even more powerful is that containers

can be connected together in a network managed by the Swarm. After defining the net-

work, the services can communicate with each other using their canonical names (e.g.

my-server, my-client). Swarm specifically creates a network in overlay mode, which en-

ables communication through different host machines clustered together. Then, Docker

transparently handles routing of each packet to and from the correct Docker daemon host

and the correct destination container. This makes deploying a full end-to-end federated

learning system, after creating the image for each service and creating a cluster, as easy

as declaring in a single file which images will be used, the name of the containers, the

network, and telling docker to deploy them.

3.2 Flower

The birth of federated learning and its subsequent adoption stems from the need to

utilize data from multiple devices while maintaining it private at the same time, as men-

tioned throughout this work. However, despite usual machine learning which is already a

complex subject, other two fundamental issues are introduced when it comes to federated

learning experiments: scaling to multiple clients and data heterogeneity.

Flower3 (flwr) is an open-source framework for building federated learning sys-

tems which aims to solve these problems. Flower delivers two main interfaces: the client

and the server. These interfaces allow for usual, standard centralized machine learning

solutions to be easily decentralized by implementing the required methods.

By having a centralized machine learning algorithm implement the federated client

interface, and running a server containing an averaging strategy, also provided by the

Flower Framework, it makes it possible to run this client multiple times – even on the

same machine – and Flower handles the client-server communication, as well as the aver-

aging, parameter updates, and accuracy measurements.

Figure 3.1 shows the Flower Federated framework architecture when running with

3https://flower.dev (Accessed November 22nd, 2021)
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multiple edge clients. Each device is running a Flower client containing a regular, cen-

tralized machine learning solution while implementing the needed methods for the client

interface. Flower provides a transparent connection from the clients to the server via the

Edge Client Proxy utilizing an RPC protocol – gRPC, for instance. The server applica-

tion is responsible for the top half of the diagram: it creates the global model by averaging

the parameters from the clients utilizing a pre-defined strategy, and communicates these

parameters back to the clients through the Edge Client Proxy connection.

Figure 3.1: Flower Federated framework client-server architecture for edge devices

Source: Flower Documentation4

4https://flower.dev/docs/architecture.html (accessed April 18th, 2022)
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It is also key to note the importance of Flower being open source and the impor-

tance for open source tools in general when dealing with federated learning: as privacy is

the main concern, the usage of tools that contain open code is vital to ensure user trust and

enable anyone interested in checking and evaluating whether the tool actually guarantees

data privacy among clients.

Flower originated from a research project at the Univerity of Oxford, so it was

built with AI research in mind. It enables experiments with federated learning without the

budget of a major technology company, allowing researchers around the world to further

advance federated learning knowledge.
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4 SOLUTION

This section presents the solution implemented in order to run fully functional

federated learning scenarios with multiple clients with different data distributions. It in-

cludes details about the underlying server infrastructure, the implemented architecture

with containerized microservices, including how the communication and observability is

done, and the data that has been used for training.

Figure 4.1 shows the full solution diagram in a scenario running with ten different

clients. We can see the underlying infrastructure, i.e., the server and the VMs, and on

top of that the docker containers running each application: the server, the client, and the

observer. Further subsections will further expand on each part of this diagram. First, the

underlying infrastructure where the solution is running is presented. Then, the solution

architecture and its components are presented. Finally, the data that will be used for the

experiments is covered.

Figure 4.1: High-level diagram of the implemented solution when running with ten clients

Source: Image provided by the author

4.1 Infrastructure

To achieve the desired infrastructure, multiple machines are required. For this

work, we are interested in both how the centralized server and how the distributed clients

function.

For the server, ideally we have a powerful machine. The centralized server, in

an ideal federated learning scenario, runs on a traditional cloud; a powerful computer
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capable of more complex operations. To achieve this, a VM main runs exclusively the

server and observer applications and is twice as powerful as the VMs running the clients,

having 4GB RAM.

For the clients, as we are simulating an edge environment, we will utilize VMs

with limited power which run more than one client at once. We will call them work-

ers; machines with 2GB RAM that will run from zero to four federated clients at once

depending on the experiment.

The infrastructure components are described on table 4.1, which highlights the

available computing resources for each machine used for the implemented solution.

Table 4.1: VMs used for the solution infrastructure
VM RAM CPUs Disk space
main 4GB 2vCPU 50GB
worker1 2GB 1vCPU 50GB
worker2 2GB 1vCPU 50GB
worker3 2GB 1vCPU 50GB

Source: Table provided by author

4.2 Architecture

The solution has three architectural components. These are the server, the client,

and the observer services, which are all containerized services that can run in any under-

lying infrastructure. Each client trains a local model and uploads this model to the server

which averages and returns the updated parameters. Meanwhile, the observer retrieves

and persists to a volume metrics of every running container besides itself.

Figure 4.2 shows the high-level architecture of the solution, highlighting each of

the aforementioned architectural components and their dependencies. The microservices

with their respective applications and dependencies are individually defined and deployed

together in a Docker Swarm using a docker-compose file. To the right in the figure, each

dependency for the Docker containers is explicit.

It should be noted that, while there will be multiple client services and only one

server and one observer, the clients will be treated as a single service while explaining

in this section for simplicity purposes. Since the only difference, application-wise, be-

tween one client and the other is the data in the storage, there is no need to analyze them

differently when looking at them on a service level.

These services will be then deployed to the infrastructure previously defined.
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Figure 4.2: Solution architecture with the services and their dependencies

Source: Image provided by the author

Server and observer services are exclusively deployed to the main VM, while the client

services are distributed among the workers.

In the following sections, the individual components of the architecture will be

further presented.

4.2.1 Server

The server is a containerized Python application with the FlowerML server frame-

work as dependency. The server is responsible for receiving the models being trained by

the clients, averaging the received parameters, then updating the clients’ models with the

averaged parameters. The average is done by the server using Federated Average – Fe-

dAvg –, which is a standard federated learning averaging method, also used by Google

Keyboard, which simply averages the parameters received by the clients without attribut-

ing weights. The server connects to the clients through a gRPC connection and performs
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a pre-defined number of averaging rounds. The algorithm is outlined in Algorithm 1.
Algorithm 1: Server service loop

1 open connection in ddress;

2 while mnmm_cents have not yet connected do

3 wait;

4 for ← ronds to 0 do

5 receive parameters from clients;

6 average client parameters;

7 send updated parameters back to clients;

8 evaluate current accuracy from two random clients;

9 log timestamp and accuracy;

The server address, number of rounds, and minimum number of connected clients

are parameterized for the server application and can be changed in each deployment. The

full code for the server can be found in the server module in the Github repository1.

4.2.2 Client

The client is a containerized Python application with the FlowerML client frame-

work, Pytorch2, and the data that will be used as dependencies. The client is responsible

for training a local model with local data in a convolution neural network, then uploading

the model to a server which in turn returns updated values for the sent parameters.

The client connects to the server through a gRPC connection and performs a pre-

defined number of epochs, which is the number of times that the data set passes through

the neural network. When multiple clients are running, an individual client is oblivious to

the existence of the other clients – it can only communicate with the server. The algorithm

1https://github.com/remde/federated-learning/tree/main/server
2An open source machine learning framework: https://pytorch.org/ (Accessed April 21st, 2022)
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for the client service can be seen in Algorithm 2.
Algorithm 2: Service service loop

1 start connection with server in ddress;

2 while server connection is open do

3 for ← epochs to 0 do

4 iterates through dataset training the local model;

5 upload model to server;

6 receive updated parameters;

7 update local parameters;

It should be noted that, while the above algorithm is a good representation of the

client service lifecycle, the client is ultimately controlled by the server. The client will

only upload the model when the server requests the models, and the loop will end when

the server finishes its rounds.

The client epochs and the address which they will connect are parameterized for

the client application and can be changed in each deployment. The code for the client

can be found in the client module in the Github repository3, which contains two client

examples without any data.

4.2.3 Observer

The observer is a containerized JavaScript application with axios4 as dependency.

The observer is responsible for logging information about the other containers – namely

the server and clients. The observer is the only container which does not stop unless

when forced to do so; it keeps continuously retrieving data of every other container in

the Swarm and persisting the data to the Docker volume when these other containers are

stopped.

The observer has a volume which is mapped directly to a folder in the main VM.

In practice, every data that is persisted to an observer container is also persisted to the host

VM. Observer services allow for an EXPERIMENT_NAME parameter, which is the folder

where the data will be saved. This can be changed in each deployment. The observer loop

3https://github.com/remde/federated-learning/tree/main/client
4Promise based HTTP client for the browser and node.js: https://axios-http.com/ (Accessed April 18th,

2022)
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can be seen in Algorithm 3.
Algorithm 3: Observer service loop

1 initialization;

2 previous← get active container IDs;

3 while any container is running do

4 current← get active container IDs;

5 get current container stats for each ID;

6 if ID in current is not in previous then
/* Container retrieved for the first time */

7 create entry in hashmap ID: stats[];

8 else
/* Existing container was retrieved */

9 append stats to existing entry in hashmap;

/* If container stopped between loop executions, stats are

persisted to disk */

10 if ID in previous is not in current then

11 get container service name;

12 get container host;

13 get current timestamp;

14 create folder EXPERMENT_NAME/SERVCE;

15 persist hashmap entry with timestamp-host filename;

16 remove entry from hashmap;

17 previous← current;

To collect containers stats, the observer leverages the Docker stats API5, with the

server accuracy being a separate case. As the accuracy is a metric created by the server

application, to retrieve the accuracy the observer looks at the container logs API instead of

using the stats API. Every request is done via HTTP requests do the Docker APIs, being

completely decoupled from the other services logic. The logic used to retrieve container

5https://docs.docker.com/engine/api/v1.21/ (accessed February 22nd, 2022)



28

stats is deeper described in Algorithm 4.
Algorithm 4: Retrieving container information

1 initialize hashmap;

2 for host in hosts do

3 retrieve contners in host;

4 for contner in contners do

5 get stats for contner;

6 if contner = serer then

7 retrieve server container logs;

8 extract timestamp and accuracy values;

9 add values to stats object;

10 save values to hashmap entry;

11 return hashmap;

The stats retrieved by the Docker API include, but are not limited to, network

information such as bytes received and transmitted, and memory and CPU usage infor-

mation. The result of each observer run is a HashMap which holds the container IDs as

keys mapping to an array of stats of the container through time. These entries are then

persisted to a JSON file according to their experiment name, separated in folders accord-

ing to the service name (e.g. server, client-0, client-1...), with the timestamp and host as

the filename.

This allows for an easy visibility of the logs and, since the observer never dies,

it also allows for multiple runs of the same experiment without having to worry about

reboots: the other containers start and stop automatically as the observer obtains metrics

for all of them. The full code for the observer can be found in the observability module

in the Github repository6. It should be noted for module reusability and future work

purposes that the docker-service.js file, responsible for the majority of the important logic

such as retrieving container stats, is thoroughly documented using JSDocs7.

Figure 4.3 shows an example of a docker-service API documentation generated

using JSDocs. getAllContainerInfos, on the right, is the method used to retrieve a list of

the container information, i.e., Array<ContainerInfo>. The ContainerInfo custom type is

explicit in the left; also generated with JSDocs.

6https://github.com/remde/federated-learning/tree/main/observability
7Markup language used to annotate JavaScript source code files: https://jsdoc.app/ (Accessed February

23rd, 2022)



29

Figure 4.3: docker-service API documentation generated with JSDocs

(a) ContainerInfo type definition, used for
the return type of getAllContainerInfos

(b) getAllContainerInfos JSDocs documen-
tation

Source: Images provided by author

4.3 Data

The dataset used for the experiments is the CIFAR dataset (KRIZHEVSKY; HIN-

TON et al., 2009). The CIFAR-10 dataset consists of 60000 32x32 colour images in 10

classes, with 6000 images per class. There are 50000 training images and 10000 test

images.

The original dataset is divided into five training batches and one test batch, each

with 10000 images. The test batch contains exactly 1000 randomly-selected images from

each class. The training batches contain the remaining images in random order, but some

training batches may contain more images from one class than another. Between them,

the training batches contain exactly 5000 images from each class. A dataset sample with

the classes can be seen in figure 4.4, with 10 rows of images, one row for each class as

stated in the first column.

In order to properly divide this data between multiple clients, the five original data

batches have been divided into 500. This enables a higher level of granularity for testing

federated learning scenarios, as we are able to precisely state a percentage of data overlap

between clients. Additionally, for scenarios of more than five clients, the original five

batches wouldn’t be sufficient for having every client with a different dataset.

To separate the batches, the Python package Pickle9 was used for the marshalling

and unmarshalling of the data. In the new batches, similar to the original five, each of

8https://www.cs.toronto.edu/ kriz/cifar.html (accessed April 10th, 2022)
9Module for serializing and de-serializing Python object structures:

https://docs.python.org/3/library/pickle.html (Accessed February 2nd, 2022)
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Figure 4.4: CIFAR-10 Dataset Sample

Source: University of Toronto Department of Computer Science8

the 500 batches has exactly the same amount of images – 100 per batch, with classes

randomly distributed among them. The total number of images remains the same, 50000

total, being 5000 images from each class. The test batch remain the same. The code can

be found in the utilities module in the Github repository10.

10https://github.com/remde/federated-learning/tree/main/utilities
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5 EXPERIMENTS

5.1 Layout

Each experiment has been ran at least two times, with some being ran for up to

sixteen times. The results have been averaged to try to minimize any randomness. Every

experiment utilizes homogeneous client configurations, which means that every client

involved in a given experiment is exactly the same, except for the data that it contains

and the host in which it runs. Since every worker VM has the same specification, we can

assume that only the data is different between clients for any given experiment.

It also should be noted that, while absolute accuracy is an extremely important

metric for any machine learning algorithm, it isn’t the focus of this work. The goal is to

analyze how different parameters impact accuracy and resource usage. Higher accuracy

numbers would require a much higher amount of training time, which would make having

this many experiments not viable due to the time constraints of writing this article. It

would also require further tweaks on the CNN, which is out of scope as far as we are

concerned.

There are different parameters that can be modified in order to test the system

performance which will be covered in the next sections. These are the number of clients,

the data distribution, the client epochs, and the server rounds.

Each experiment will run for 2, 4, 6, 8, and 10 different clients. They will be

named client-0, client-1, up to 9. When not all clients are used (e.g. when only 4 clients

are part of the experiment), the clients that are part of the experiment will be chosen

randomly.

The data distribution has been separated into color codes: green and red. Both

green and red will have available the 500 batches mentioned in the previous section.

What differs between them is the amount of data each client will have. Green clients

have 50 batches, which means that for the experiment with 10 clients, every batch will

be used without any overlap. Red clients have 100 batches, so there will be data overlap

between clients, with 50% of the data being replicated for the 10 clients participating in

the experiment. Table 5.1 shows the data distribution layouts for the ran experiments as

described.

The number of epochs of the client is how many times the whole dataset is passed

in the CNN. Four different configurations will be tested: 1, 5, 10, and 25 epochs. Ad-
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Table 5.1: Data distribution layouts for the ran experiments
Experiment color Batches per client Total batches Maximum data overlap
Green 50 500 0%
Red 100 500 50%

ditionally, each number of epochs configuration will have a matching number of server

rounds. Respectively, the maximum number of rounds is 100, 35, 20, and 10. This match-

ing is mainly to guarantee that every experiment converges, but also that the experiments

do not run for over one hour due to time constraints. Table 5.2 shows the layouts for

number of rounds and number of epochs for the ran experiments as described.

Table 5.2: Layouts for number of rounds and number of epochs for the ran experiments
Number of client epochs Number of server rounds
1 100
5 35
10 20
25 10

There are two different data distributions, five number of clients possibilities, and

four layouts for number of rounds and epochs. In total, 40 different experiments layouts

have been ran, with 270 total ran experiments as most layouts were executed multiple

times, generating over 1.25GB of plain text files containing observability logs.

5.2 Results

In total, 1633 containers of a client or a server application were ran. For each one

of these, a log file was generated containing stats information through time. From these

1633 files, 80 were created to generate the results.

As previously mentioned, when it comes to computing resource usage, we can

safely assume that clients are homogenous. In an experiment, while the data content is

different between clients, the amount of data is the same and, while the host machine is

different, clients are always ran on worker VMs which have the same specs and servers

are always ran on the main VM.

This makes so that one client file and one server file were generated for each of the

40 experiments, making 80 total files. To achieve this, using Python scripts and pandas1,

the logs for each were all averaged and converged into one file. This one file also contains

1Open source data analysis and manipulation tool: https://pandas.pydata.org/ (accessed April 17th,
2022)
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an array of stats through time, but instead of the entire log that Docker generates, only 8

properties were inserted. These are:

• memory_percentage: current memory percentage usage. This is not originally re-

trieved by the Docker Stats API, it is calculated from the logs using resource usage

formulas2.

• cpu_percentage: current CPU percentage usage. Also calculated using resource

usage formulas.

• time_from_start: time in seconds since the start of the experiment. Calculated using

the timestamps retrieved with the Docker Stats API.

• bytes_received: current amount of received bytes.

• bytes_transmitted: current amount of transmitted bytes.

• packets_received: current amount of received packets.

• packets_transmitted: current amount of transmitted packets.

• accuracy: current accuracy. This stat is only shown for server logs. Retrieved using

Docker Logs API.

The code for extracting information from the logs, averaging, as well as for plot-

ting, can be found in the plotting module in the Github repository3.

5.3 System Accuracy

5.3.1 Effects of Replicating Data Between Clients

The first question to be answered regarding server is if data replication impacts

the accuracy of the system. To answer this, a plot of accuracy through time has been done

for both red and green data distributions with ten clients. Green will have the 500 batches

with 50 unique batches per client, totaling the 500; and red, while having the same 500

batches available, will have 100 batches per client, with 50% of them being overlap data.

There were four total experiment layouts for green and four for red that match

this specification. The difference between them is the number of client epochs and server

rounds. These four averages were further averaged and converged into one, resulting in

one for green and one for red.

2https://docs.docker.com/engine/api/v1.41/#operation/ContainerStats (accessed February 22th, 2022)
3https://github.com/remde/federated-learning/tree/main/plotting
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Figure 5.1 shows the results of the proposed experiment. The X axis indicates

the time in seconds, while the Y axis indicates the accuracy. There is a red line, which

represents the averages for the red experiments with ten clients; and a green line which

represents the averages for the green experiments with ten clients. Even with twice the

number of batches, there wasn’t significant difference for the red experiments, not even

in experiment time. The curves are essentially the same. This indicates that what matters

to the total accuracy is the unique data spread among clients.

Figure 5.1: Plot for the average accuracy for red and green experiments with ten clients
through time

Source: Image provided by the author

To further confirm this, a similar experiment will be made but this time using red

and green experiments containing four clients. Four has been chosen because it is a middle

point. Green will contain 200 batches total, and red 400, both with no overlap whatsoever.

Similar to the previous experiments, there are four green and four red layouts with four

clients which have been averaged and converged to one for each data distribution.

Figure 5.2 shows the results of the proposed experiment. The X axis indicates

the time in seconds, while the Y axis indicates the accuracy. There is a red line, which

represents the averages for the red experiments with four clients; and a green line which
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represents the averages for the green experiments with four clients.

Figure 5.2: Plot for the average accuracy for red and green experiments with four clients
through time

Source: Image provided by the author

The behavior seen for this experiment is much different. The green experiments,

due to having less data overall, increase their accuracy faster. However, red then surpasses

green and outperforms it by a significant margin, being 10% superior in the second 3000

(50 minutes). This confirms the proposed idea that the impact in accuracy is from total

unique data spread among clients.

5.3.2 Effects of Client Epochs and Server Rounds Layouts

Another experiment done to understand impact in accuracy is according to client

epochs and server rounds. To accomplish this, using exclusively experiments with ten

clients, red and green were averaged and split into four categories, one for each client

epoch and server round configuration.

Figure 5.3 shows the results of the proposed experiment. The X axis indicates

the time in seconds, while the Y axis indicates the accuracy. There is a blue line, which
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represents the averages for the experiments with ten clients with 1 client epoch and 100

server rounds; an orange line which represents the averages for the experiments with

ten clients with 5 client epochs and 35 server rounds; a green line which represents the

averages for the experiments with ten clients with 10 client epochs and 20 server rounds;

and a red line which represents the averages for the experiments with ten clients with 25

client epochs and 10 server rounds.

Figure 5.3: Plot for the average accuracy for experiments with ten clients split by client
epoch and server round configurations through time

Source: Image provided by the author

First thing that can be noted is that client epoch per client and server rounds are

not equal; at least not in a one-to-one relation. We cannot simplify the rounds as a multi-

plication of client epochs and server rounds. If they had the same effect on accuracy and

experiment time, the plots would indicate the green line as having the same result as the

blue one in half the time, for instance.

By looking more closely at the red line, it rises to a maximum accuracy in very

few server rounds, three or four, but the accuracy doesn’t reach the same values as the

other configurations. Moreover, it is possible to observe that the blue and orange line

outperform the green and red lines by a wide margin. The blue line, despite having
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the least epochsXronds, takes the least time and achieves the highest frequency.

Additionally, different from the others, the experiment appears to not have reached the

maximum accuracy by the end of its run.

The mentioned points indicate that, to achieve the maximum accuracy, and disre-

garding other aspects that may come with this decision, if choosing between client epochs

and server rounds, one should increase server rounds as it is the more effective option. It

should be noted that this assumption for now only holds truth when observing impact on

accuracy in a vacuum.

5.4 Transmitted Data

The first analysis for network stats will be done by understanding how the server

transmits data, i.e., packets and bytes, and if it is possible to understand a trend while

changing number of clients, epochs, and amount of data in the system.

Figure 5.4 shows a scatter plot for the many different server layouts that were run.

The X axis indicates the total amount of bytes transmitted, while the Y axis indicates the

total amount of packets transmitted. The different epochs and server round layouts are

organized as follows: 1 client epoch with 100 server rounds is represented by a star. 5

client epochs with 35 server rounds is represented by an arrow pointing right. 10 client

epochs with 20 server rounds is represented by an octagon. 25 client epochs with 10

server rounds is represented by an arrow pointing left. Green data distributions are in

the color green, while red data distributions are in the color red. Finally, on top of each

scatter, there is the amount of clients involved in the experiment.

This plot, while containing a lot of information, can be broken down and analyzed.

Three different aspects can be inferred that contribute to higher data transmission.

5.4.1 Effects of Number of Clients Involved

The more clients involved in the experiment, the more total data is transmitted.

To an experiment with the same layout for data distribution, client epochs and server

rounds, there will be a linear proportion relation between the number of clients involved

in the experiment and the total amount of transmitted data. This happens because, with

more clients involved, the server has more clients to update parameters after having them
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Figure 5.4: Plot for the total amount of bytes and packets transmitted by the server appli-
cations

Source: Image provided by the author

averaged, requiring a higher amount of network usage.

Figure 5.5 further demonstrates this point, breaking down the original plot in Fig-

ure 5.4, showing a scatter plot for only the red configuration with 1 client epoch and 100

server rounds. The X axis indicates the total amount of bytes transmitted, while the Y

axis indicates the total amount of packets transmitted. On top of each dot, there is the

amount of clients involved in the experiment. In this plot it is possible to see more clearly

the aforementioned linear relationship between transmitted data and clients, as a virtually

straight line can be crossed between the five points.

The decision for the client epochs and server rounds layout chosen being 1 and

100, as well as the decision to use red data distributions, is random – it is merely to pin a

variable to prove the affirmation with a simpler plot. This tendency can be analyzed for

any client epoch and server round configurations, both green and red.
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Figure 5.5: Plot for the total amount of bytes and packets transmitted by the server appli-
cations with red data distributions, 1 client epoch and 100 server rounds

Source: Image provided by the author

5.4.2 Effects of Total Amount of Data

The higher the total amount of data involved in the system, the higher is the total

transmitted data by the server. This can be seen because red experiments are transmitting

more data than their counterpart green experiments. Having this difference in the exper-

iment with ten different clients as well means that every data matters for the increase in

transmitted data, not only unique data as previously seen in the accuracy results. This may

happen because the amount of parameters to update for clients with models that were built

with more data are larger than similar ones built with less data.

Figure 5.6 further demonstrates this point, breaking down the original plot in Fig-

ure 5.4, showing a scatter plot for both data distributions with eight clients involved. The

X axis indicates the total amount of bytes transmitted, while the Y axis indicates the total

amount of packets transmitted. Additionally, green dots represent green data distribution

experiments, while red dots represent red data distribution experiments. In this plot it is

possible to see the aforementioned relationship between transmitted data and total amount
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of data in the system, as the red experiment always transmits more bytes and packets than

its green counterpart since it contains more data batches per client.

The decision for the number of clients involved being 8 is random – it is merely to

pin a variable to prove the affirmation with a simpler plot. This tendency can be analyzed

for any number of clients.

Figure 5.6: Plot for the total amount of bytes and packets transmitted by the server appli-
cations with green and red data distributions with 8 clients involved

Source: Image provided by the author

5.4.3 Effects of Server Rounds

A higher amount of server rounds accounts to a higher amount of data transmitted

by the server. The impact client epochs may have for server transmission data will be

mostly indirectly related, as the client epochs will affect the local model, which may

affect the server data that is transmitted. Server rounds, however, is the moment the server

updates the parameters in the clients, so there is a greater impact in the total amount of

transmitted data.

Figure 5.7 further demonstrates this point, breaking down the original plot in Fig-
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ure 5.4, showing a scatter plot for the green data distribution with six clients involved

for varying client epochs and server rounds configurations. The X axis indicates the to-

tal amount of bytes transmitted, while the Y axis indicates the total amount of packets

transmitted. Further client epochs and server rounds legends can be seen in the upper left

corner.

The decision for the number of clients involved being 6, as well as the decision

to use green data distributions, is random – it is merely to pin a variable to prove the

affirmation with a simpler plot. This tendency can be analyzed for any number of clients

involved, both green and red. In this plot it is possible to see more clearly the afore-

mentioned linear relationship between transmitted data and number of server rounds, as a

virtually straight line can be crossed between the four points.

Figure 5.7: Plot for the total amount of bytes and packets transmitted by the server appli-
cations with green data distribution with 6 clients involved

Source: Image provided by the author
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5.5 Received Data

Similar to transmitted data, a second analysis for network stats will be done by

understanding how the server receives data, i.e., packets and bytes, and if it is possible to

understand a trend while changing number of clients, epochs, and amount of data in the

system.

Figure 5.8 shows a scatter plot for the many different server layouts that were run.

The X axis indicates the total amount of bytes transmitted, while the Y axis indicates the

total amount of packets transmitted. The different epochs and server round layouts are

organized as follows: 1 client epoch with 100 server rounds is represented by a star. 5

client epochs with 35 server rounds is represented by an arrow pointing right. 10 client

epochs with 20 server rounds is represented by an octagon. 25 client epochs with 10

server rounds is represented by an arrow pointing left. Green data distributions are in

the color green, while red data distributions are in the color red. Finally, on top of each

scatter, there is the amount of clients involved in the experiment.

Figure 5.8: Plot for the total amount of bytes and packets received by the server applica-
tions

Source: Image provided by the author
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Received data follows a similar pattern that transmitted does. Data received scales

linearly with the number of clients involved in the experiment, as the more clients, the

more parameters the server receives. Similarly, the more server rounds in the experiment,

the more are the times where the server receives the data from the clients in order to

average the data and update the clients.

Figure 5.9 shows data received more clearly, by showing only for red and green

data distributions with 1 client epoch and 100 server rounds. The X axis indicates the

total amount of bytes transmitted, while the Y axis indicates the total amount of packets

transmitted. Green data distributions are in the color green, while red data distributions

are in the color red. On top of each scatter, there is the amount of clients involved in the

experiment.

Figure 5.9: Plot for the total amount of bytes and packets received by the server applica-
tions with 1 client epoch and 100 server rounds

Source: Image provided by the author

The decision for the number of client epochs and server rounds being 1 and 100 is

random – it is merely to pin a variable to prove the affirmation with a simpler plot. This

tendency can be analyzed for any layout of client epochs and server rounds.

The only difference from the data transmitted is that the amount of data in the
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clients has no effect in the bytes received by the server, only slightly in the packets re-

ceived. This can be seen by noticing that, for each red marker, there is a green one right

next to it with the exact same configuration. This discrepancy in packets received may be

related to how the clients batch their data to send to the server, although it is curious as to

why there is no effect in received data, only when transmitting afterwards.

5.6 CPU and Memory

To better understand CPU and memory usage on the client side, the chosen ex-

periment is the red data distribution with ten clients, 25 client epochs and 10 server

rounds. The client epochs and server round configuration has been chosen as it contains

the smaller numbers, making the plot more easily understandable. Red data distribution

and ten clients were chosen as it contains the more available data in the experiment, so

theoretically it is the experiment which stressed the applications the most regarding re-

source usage.

Figure 5.10 shows the results of the proposed experiment. The X axis indicates the

time in seconds, while the Y axis indicates average resource usage in percentage. There

is an orange line, which represents the average CPU usage for the clients of the given

experiment layout; and a blue line which represents the average memory usage for the

clients of the given experiment layout.

The CPU usage in the plot varies from 10% to 30%, with some spikes going up

to 50%. These spikes might have been caused by some external factor such as the server

being overloaded, or some other outlier being accounted for in the averages. However,

there is a tendency of periods in the CPU usage that lasts for approximately 1000s that

the usage is increased, then it drops to 10%, then repeat. There are ten of these periods in

the experiment, which is the number of server rounds. When the CPU is 30%, the client

is training the local model; when it is 10%, it is sending or receiving data from the server.

The memory, on the other hand, demonstrates a flat usage throughout the experiment,

being close to 10% from start to finish.
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Figure 5.10: Plot for the average CPU and memory used by clients with red data distribu-
tion with 25 client epochs and 10 server rounds

Source: Image provided by the author

5.6.1 Client CPU Usage

To better understand tendencies regarding client CPU usage, a deeper dive will be

taken taking into account every experiment scenario.

Figure 5.11 shows a scatter plot with the proposed experiment. The X axis in-

dicates the total time in seconds that the experiment took, while the Y axis indicates

average CPU used in percentage throughout the experiment. The different epochs and

server round layouts are organized as follows: 1 client epoch with 100 server rounds is

represented by a star. 5 client epochs with 35 server rounds is represented by an arrow

pointing right. 10 client epochs with 20 server rounds is represented by an octagon. 25

client epochs with 10 server rounds is represented by an arrow pointing left. Green data

distributions are in the color green, while red data distributions are in the color red. Fi-

nally, on top of each scatter, there is the amount of clients involved in the experiment.

The plot indicates a correlation between clients involved in the experiment, CPU

usage and experiment time. Experiments with fewer clients are able to utilize more CPU
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Figure 5.11: Plot for the average CPU used by clients according to total experiment time

Source: Image provided by the author

power, allowing the experiment to finish faster. This can be seen, for example, looking

at the cluster in the top left corner, all of them being experiments with two clients. The

faster to finish, and using nearly 100% CPU. From there, around the 50% mark is the ex-

periments with four clients. Bottom right shows mainly the experiments with ten clients,

taking longer to finish and using less CPU. This makes clear the relationship between

CPU usage and time to finish the experiment.

Figure 5.12 shows this relationship more clearly by showing only experiments

with 1 client epoch and 100 server rounds. The X axis indicates the total time in seconds

that the experiment took, while the Y axis indicates average CPU used in percentage

throughout the experiment. Green data distributions are in the color green, while red data

distributions are in the color red. On top of each marker, there is the amount of clients

involved in the experiment.

The tendency appears to be logarithmic curve: if there was an experiment with

only one client, it would use 200% of the CPU and finish in half the time. Likewise, if

there was an experiment with eleven clients, it wouldn’t be that much different from the

experiment with ten.
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Figure 5.12: Plot for the average CPU used by clients according to total experiment time
for clients with 1 epoch and 100 server rounds

Source: Image provided by the author

As noted in Figure 5.10, the CPU is mainly used in the period where the clients

are training their models locally. With more available CPU power, the clients are able to

finish their local training faster, making the client-server exchange faster and ending the

experiment sooner.

5.6.2 Client Memory Usage

To better understand tendencies regarding client memory usage, a deeper dive will

be taken taking into account every experiment scenario.

Figure 5.13 shows a scatter plot with the proposed experiment. The X axis indi-

cates the total time in seconds that the experiment took, while the Y axis indicates average

memory used in percentage throughout the experiment. The different epochs and server

round layouts are organized as follows: 1 client epoch with 100 server rounds is repre-

sented by a star. 5 client epochs with 35 server rounds is represented by an arrow pointing

right. 10 client epochs with 20 server rounds is represented by an octagon. 25 client
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epochs with 10 server rounds is represented by an arrow pointing left. Green data distri-

butions are in the color green, while red data distributions are in the color red. Finally, on

top of each marker, there is the amount of clients involved in the experiment.

Figure 5.13: Plot for the average memory used by clients according to total experiment
time

Source: Image provided by the author

For memory, there is a clear difference between red and green experiments. As

the red clients carry more data, they require more memory to perform, with a difference

of up to 10% to their green counterparts. However, apart from that, there is not much to

be taken from the plot. The difference in experiment time for more clients is due to the

CPU, as previously observed, so it reflects in memory but is not directly related to it.
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6 CONCLUSION

This work achieves the intended proposal by laying the foundation for federated

learning experiments and further understanding how the system scales when adding more

clients in regards to computing resources, and how this affects the overall system accu-

racy. The findings can be useful to further improve federated learning technologies, using

the knowledge on the application behavior to build, for instance, an edge-cloud orchestra-

tor specifically for federated learning use cases. Moreover, it helps the design of federated

learning systems that may scale to multiple clients.

The main takeaway point is that the system allows for horizontal scaling by adding

more client nodes in order to utilize more unique data and achieve higher accuracy num-

bers. By adding more nodes, however, the load in the server application will keep scaling

linearly, to the point where it may become the bottleneck for the system. Server rounds,

while previously mentioned to be more effective to increase accuracy, not only will even

further increase the server load as the server will have to average and update parameters

more frequently, but it will also make so that the clients will have to send their data more

frequently as well. The latter can be an issue especially for edge devices with limited

connectivity, because it cannot be guaranteed continuous access internet access in order

to match the frequency the server will expect.

All of the above indicate that, in order to have good federated learning use cases,

first a good strategy to train the local client model is required. For scenarios with a

huge amount of clients, placing some of the load on the clients and improving their local

model training allows the clients to make fewer connections, even if it may not be optimal

considering only the accuracy as previously analyzed. This also alleviates the load on the

server that having these many clients involved in the system will cause.

This trade-off, however, has to be considered on a case by case basis. If the clients

are guaranteed to always have good internet connectivity, for instance, and the cost of

maintaining a server that is powerful enough to scale as the number of clients increase is

not an issue, the load can be better placed in the server, allowing the clients to train less

rounds themselves. This option may also make sense to federated learning scenario with

fewer number of clients, e.g., the clients being a few different sensors in a farm.

This work also opens up opportunities to further experiment with federated learn-

ing scenarios. All of the code is publicly available and has been developed with extensi-

bility in mind, with well defined methods while prioritizing clean code, modularity, and
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documentation as much as the time constraints allowed. The observability and plotting

modules have been thoroughly developed with the possibility of further advancement in

mind.

Regarding limited connectivity scenarios, one path would be to see how the sys-

tem would behave for clients with slow internet connection, and that may lose internet

connection between training. Fault tolerance, especially in the server, is an important as-

pect, since as it is right now the server application is a single point of failure in the system,

and if one of the clients fail the experiment stops until the connection is retrieved. An op-

timization idea is for the server to be a distributed system that retrieves client information

based on geographic proximity to alleviate network calls for clients while avoiding the

single point of failure, then averages the data.

Regarding client configurations, an interesting study is to create heterogeneous

clients and see the effects on accuracy and resource usage. In the real world, the devices

will hardly have the same specifications, so it is important to properly understand if, for

instance, a device much slower than the rest becomes a bottleneck for the experiment

running time. Utilizing datasets with real world data, as well as improving the model,

may lead to additional findings regarding system accuracy. Additionally, scaling to a

larger amount of clients, e.g., thousands, may also provide more data to analyze federated

leraning in large scale distributed systems.
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APPENDIX A — WRGS PAPER SUBMISSION

The following appended document is currently a working paper, submitted to the

XXVII Workshop de Gerência e Operação de Redes e Serviços (WGRS) that has been

pre-approved for publication.

WGRS is part of the SBRC, Brazilian Symposium on Computer Networks and

Distributed Systems, which is an annual event held by the Brazilian Computer Society

(SBC) and the National Laboratory of Computer Networks (LARC). WGRS has the goal

to showcase research and relevant activities related to the management and operation of

networks and services.
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