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Resumo

Os modelos filogenéticos para evolução de traços (fenotípicos) permitem a estimativa
de correlações evolutivas entre um conjunto de traços observados numa amostra de or-
ganismos relacionados. Ao modelar diretamente a evolução dos traços numa árvore
filogenética num contexto Bayesiano, a estrutura do modelo nos permite controlar para
a história evolutiva compartilhada entre os organismos da amostra e evitar as inferên-
cias espúrias originadas pelo parentesco. Nestes modelos, as correlações relevantes são
definidas por meio do intervalo de credibilidade das correlações marginais. No entanto,
as correlações selecionadas por si só podem não fornecer a melhor informação sobre as
relações entre as características em estudo. A sua estrutura de associação, em contraste,
fornece uma informação clara sobre associações diretas entre os traços em estudo. A
fim de empregar um método baseado em modelo para identificar a estrutura de associ-
ação subjacente entre as variáveis, exploramos a utilização de modelos Gaussianos com
grafos (GGM) para a seleção das covariâncias. Modelamos a matriz de precisão com
a distribuição G-Wishart, uma priori conjugada que resulta em estimativas de precisão
esparsa. Avaliamos a nossa abordagem através de simulações de Monte Carlo e com-
paramos os resultados com o método padrão, onde nenhuma estrutura de associação
é explicitamente modelada. Também testamos a nossa abordagem para examinar a
estrutura de associação e correlações evolutivas em dois conjuntods de dados: um envol-
vendo traços fenotípicos dos tentilhões de Darwin e outro envolvendo traços genômicos
e fenotípicos de procariotos. A nossa abordagem fornece uma solução sistemática para
a eliminação de correlações espúrias e melhor inferência para as matrizes de precisão
e correlação, especialmente para as variáveis condicionalmente independentes, que são
o alvo da esparsidade nos GGMs. Combinar a inferência das correlações evolutivas e
da estrutura de associação permite uma seleção mais precisa das características que po-
tencialmente interagiram ou interagem ao longo do processo evolutivo dos organismos
estudados.

Palavras-chave: inferência bayesiana, modelos de evolução de traços filogenéticos, mo-
delos gaussianos com grafos, filogenética



Abstract

Phylogenetic trait evolution models allow for the estimation of evolutionary corre-
lations between a set of traits observed in a sample of related organisms. By directly
modeling the evolution of the traits on a phylogenetic tree in a Bayesian framework,
the model’s structure allows us to control for shared evolutionary history between the
organisms in the sample and avoid spurious inference that could have been originated
from common ancestors. In these models, relevant correlations are obtained through the
high posterior density interval of marginal correlations. However, the selected correla-
tions alone may not provide the best information regarding trait relationships. Their
association structure, in contrast, provide straightforward information about direct asso-
ciations. In order to employ a model based method to identify the underlying association
structure between the variables we explore the use of Gaussian graphical models (GGM)
for covariance selection. We model the precision matrix with a G-Wishart conjugate
prior which results in sparse precision estimates. We evaluate our approach through
Monte Carlo simulations and compare the results to the standard method, where no
association structure is explicitly modeled. We also test our approach to examine the
association structure and evolutionary correlations of Darwin’s finches phenotypic traits
and prokaryotic genomic and phenotypic traits. Our approach provides a systematic
solution for elimination of spurious correlations and better inference for the precision
and correlation matrices, especially for conditionally independent variables, which are
the target for sparsity in GGMs. Combining correlation and association structure infer-
ence allows for a more precise selection of candidate traits that may interact along the
evolutionary process of related organisms.

Keywords: Bayesian inference, Trait evolution model, Gaussian graphical models, phy-
logenetics
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Chapter 1

Resumo Expandido

Entender como características genotípicas e fenotípicas interagem é um dos grandes de-
safios da biologia evolutiva. Eventos como duplicação, deleção, mutação e recombinação
de sequencias genômicas são cruciais para a adaptação dos organismos vivos às mu-
danças ambientais. Neste cenário, as filogenias ajudam a compreender e correlacionar
estes fenômenos com a evolução dos traços fenotípicos (McClintock, 1984; Vulić et al.,
1999; Archibald and Roger, 2002; Logares et al., 2007; Shan and Li, 2008).

Em estudos comparativos, naturalmente surge o interesse em avaliar as relações entre
um conjunto de variáveis de interesse. Estimar e identificar correlações relevantes entre
traços fenotípicos colabora com o entendimento dos processos evolutivos potencialmente
existentes entre as variáveis em estudo. Entretanto, para estimar correlações de forma
adequada é necessário separá-las daquelas induzidas pelo parentesco genético, isto é,
remover os efeitos espúrios gerados aleatoriamente ao longo da história evolutiva com-
partilhada pelos organismos em estudo — que podem gerar vieses nas estimativas destas
correlações. Os modelos filogenéticos para evolução de traços fenotípicos são alternativas
para medir correlações evolutivas livres do efeito do parentesco.

Para modelar conjuntamente as correlações evolutivas destas características ao longo
de uma árvore filogenética desconhecida — mas estimável —, vários modelos filogenéti-
cos para a evolução de características fenotípicas tem sido propostos nos últimos anos,
com base no Threshold model de Felsenstein (2012), (Cybis et al., 2015; Hassler et al.,
2020; Zhang et al., 2021). Estes modelos assumem variáveis latentes contínuas não obser-
vadas para cada organismo amostrado que surgem por meio de um processo de difusão
Browniano multivariado (MBD) ao longo de uma árvore filogenética inferida a partir
de sequências moleculares. Este modelo MBD é caracterizado por uma matriz de pre-
cisão K = Σ−1, a inversa da matriz de covariâncias, da qual são obtidas as correlações
evolutivas entre as características fenotípicas R, o parâmetro principal nestes modelos

A correlação do processo de difusão informa a correlação entre parâmetros latentes,
que é uma aproximação para a correlação entre os traços fenotípicos observados. A
correlação do processo de difusão pode ser vista como o efeito combinado de fatores
genéticos relevantes (por exemplo, deriva genética) que afetam os traços observados
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Chapter 1. Resumo Expandido 3

após o ajuste para a história evolutiva compartilhada entre os taxa.

O Threshold model proposto por (Felsenstein, 2012) adapta o processo de difusão
browniano para permitir a estimativa de correlação entre traços fenotípicos binários e
contínuos. O objetivo de Cybis et al. (2015) foi transpor este modelo para o contexto
Bayesiano e expandi-lo ao dar origem ao modelo filogenético de variável latente — Phy-
logenetic Multivariate Latent Liability Model (PMLLM) — para a evolução de traços de
tipo misto, contabilizando dados contínuos, binários, categóricos e ordinais. A principal
contribuição de Zhang et al. (2021) foi desenvolver uma estrutura de inferência eficiente,
chamado modelo de modelo probit filogenético multivariado — Phylogenetic Multivari-
ate Probit Model (PMPM) —, baseado em um amostrador que importa ideias da física
partículas (BPS), para amostrar os parâmetros latentes a partir de uma distribuição
normal truncada com dimensionalidade, melhorando assim a eficiência do modelo em
comparação com o esquema de MCMC em Cybis et al. (2015). Além disso, Hassler
et al. (2020) ampliou o mecanismo de amostragem das variáveis latentes para computar
a verossimilhança de forma eficiente sob um cenário de traços contínuos com dados
incompletos, o que permite considerar estimativas de árvores muito maiores.

Apesar dos esforços para melhorar a eficiência e expandir a aplicabilidade do mod-
elo, os coeficientes de correlação relevantes tem sido determinados pela avaliação da sua
distribuição posteriori marginal utilizando um intervalo credibilidade (High posterior
density (HPD) interval). Uma vez que, em muitos problemas, é esperado que apenas
uma pequena porção dos traços observados seja realmente interligada, é desejável con-
trolar para sinais falsos positivos e evitar estimativas espúrias — para além daquelas
que já foram controladas por meio da árvore filogenética — especialmente em proble-
mas de alta dimensionalidade onde o número de características a serem estudadas p é
potencialmente grande.

Uma solução sistemática natural é estimar uma matriz de precisão esparsa no pro-
cesso de difusão browniano. O padrão de esparsidade desta matriz reflete na matriz de
correlação correspondente, potencialmente fixando em zero alguns dos elementos fora
da sua diagonal principal, conforme desejado. Uma forma de obter a esparsidade é
condicionando a matriz de precisão ao espaço de matrizes positivas definidas com en-
tradas zero consistentes com um grafo que retrata a estrutura de dependência entre os
traços (Dempster, 1972). Para variáveis gaussianas multivariadas com matriz de pre-
cisão K = {kij}, tais como as variáveis latentes X oriundas do MBD, esta estrutura
de associação pode ser traduzida pela (in)dependência condicional embutida na matriz
de precisão. Uma entrada kij = 0 implica que as variáveis correspondentes são condi-
cionalmente independentes dadas todas as outras variáveis do modelo (Li et al., 2020;
Mitsakakis, 2010; Talhouk et al., 2012).

Os modelos gaussianos com grafo — Gaussian graphical models (GGM) — são fer-
ramentas convenientes para modelar relações de (in)dependência condicional entre var-
iáveis (Carvalho and Scott, 2009). Um GGM é um modelo probabilístico no qual a
estrutura de (in)dependência condicional de K é também representada por um grafo
G (Atay-Kayis and Massam, 2005; Letac and Massam, 2007; Mohammadi and Wit,
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2015). Neste contexto, as entradas não-zero fora da diagonal principal de K correspon-
dem também às arestas existentes no grafo não-direcionado G. Neste grafo, as variáveis
são representadas pelos vértices (ou nós) e a presença ou ausência de arestas indica se
existe ou não uma associação direta entre elas, ou, mais tecnicamente, representa a sua
(in)dependência condicional dadas as outras variáveis.

Na inferência Bayesiana, a distribuição G-Wishart é a priori conjugada para ma-
trizes de precisão estruturadas em variáveis com distribuição normal multivariada. Por
esta razão, é uma escolha conveniente (Boom et al., 2021; Williams, 2021) e muitas
abordagens diferentes foram propostas para calcular ou aproximar a sua constante de
normalização, que é um grande desafio e o principal gargalo na eficiência computacional
dos GGMs.

A fim de utilizar um método baseado em modelos para identificar esta estrutura
de associação, exploramos a utilização de modelos Gaussianos com grafos (GGM) para
a seleção de covariâncias. Neste estudo, propomos uma abordagem Bayesiana, num
modelo chamado Sparse Phylogenetic Trait Evolution Model (SPTE), para inferência
de uma matriz de precisão esparsa K, adaptando o modelo de difusão browniano para
traços contínuos ao contexto da seleção de covariâncias. Ao fazê-lo, introduzimos outro
parâmetro de interesse, o grafo do processo de difusão G que complementa as informações
fornecidas pelas estimativas de correlação evolutivas tradicionalmente estimadas nos
modelos filogenéticos de evolução de traços fenotípicos. Implementamos nosso modelo
no módulo de desenvolvimento do software BEAST (Drummond et al., 2012).

Realizamos dois estudos de simulação para comparar o desempenho do nosso mod-
elo esparso com o do modelo filogenético tradicional de evolução de traços fenotípicos
(modelo completo), em que a (in)dependência condicional não é explicitamente mode-
lada. Adicionalmente, aplicamos o modelo esparso e completo para examinar a estrutura
de associação e a correlação evolutiva dos traços fenotípicos dos tentilhões de Darwin,
bem como das características genômicas e fenotípicas de um conjunto massivo de espécies
de procariotos.

Com base em estudos de simulação e aplicação, nossa abordagem melhora signi-
ficativamente os modelos tradicionais de evolução de traços fenotípicos em termos de
modelagem e inferência. Nosso modelo fornece melhores estimativas para a matriz de
precisão e de correlação, especialmente para variáveis independentes — que são o alvo
principal da esparsidade —, ao mesmo tempo que exibe o erros quadráticos médios
(EQM) semelhantes para variáveis dependentes. Além disso, nosso modelo pode identi-
ficar com precisão a estrutura de associação entre os traços fenotípicos, o que realça as
vantagens de uma abordagem baseada no modelo para a seleção de covariância.

Ao aplicar o modelo tradicional podemos apenas identificar traços significativamente
correlacionados, discutir a força de suas correlações, e usá-las para orientar a procura de
potenciais explicações — num correlograma possivelmente denso. Por outro lado, mais
do que simplesmente inferir as correlações evolutivas, o modelo esparso informa também
sobre a estrutura de associação entre os traços, que é codificada no grafo estimado. A
estrutura de associação pode ajudar a refinar a procura de mecanismos potenciais para
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explicar as (in)dependências condicionais reveladas pelo grafo subjacente às dependên-
cias apresentadas pelos correlogramas.

Os resultados das nossas aplicações indicam que a combinação da informação das
correlações com as independências condicionais do grafo, no entanto, permite uma se-
leção mais precisa dos traços candidatos a interagir ao longo do processo evolutivo dos
organismos relacionados. Por este motivo, a aprendizagem da estrutura da associação é
imperativa, particularmente quando a dimensão dos traços fenotípicos p aumenta.

Outra vantagem importante da nossa abordagem é que, com as adaptações ade-
quadas, ela pode ser integrada com uma vasta gama de modelos filogenéticos gaussianos,
devido à sua facilidade de utilização. Sob uma perspectiva computacional, incluindo a
estimativa gráfica no modelo MBD apenas requer alterações no mecanismo de atual-
ização da matriz de precisão para obter conjuntamente p(K,G). Portanto, como as
alterações consistem essencialmente em modificações na escolha das prioris e hiperpri-
oris, para além de todo o mecanismo de atualização do grafo, as abordagens empregadas
para os cálculos de probabilidade permanecem intactas. Esta é uma característica dese-
jável e conveniente porque permite que nossa abordagem potencialmente se beneficie de
qualquer melhoria computacional futura em modelos de evolução de traços fenotípicos.

Por exemplo, no estudo com os procariotos fomos capazes de efetuar a seleção de
covariância neste conjunto massivo de dados, baseando-nos na abordagem eficiente de-
senvolvida por Hassler et al. (2020) que integra os valores faltantes e permite análises
previamente intratáveis em grandes árvores. Embora não exploremos isto em simulações
ou aplicação, o modelo de evolução de traço filogenético esparso pode ser ainda adaptado
para lidar com dados binários, categóricos e ordinais como em Cybis et al. (2015); Zhang
et al. (2021), o que apenas acrescentará à ampla aplicabilidade do modelo.



Chapter 2

Phylogenetics

Bayesian phylogenetic methods for trait evolution were developed to infer the evolu-
tion between phenotypic traits while simultaneously controlling for shared evolutionary
history of sampled organisms. In this dissertation, we propose the estimation of an addi-
tional parameter — the diffusion graph G —, in the context of Bayesian trait evolution
models. Although there is still room for straightforward improvements on computa-
tional efficiency, the project presented here provides a rich contribution to modeling
and inference in phylogenetic trait evolution models and can be easily coupled with new
methodologies and benefit from future contributions in the field.

In the following sections we provide a short introduction on phylogenetic trees and
how they are estimated in a Bayesian context. Additionally, we present the basic ideas
underlying conditional independence in Gaussian variables and explain how they are
connected to a Gaussian graphical model that aims to perform covariance selection
through a graph.

2.1 Phylogenetic Trees

It is well-known that the genetic material of every living organism undergoes muta-
tions over time and that part of that variation become fixed (Cordero and Janzen, 2013;
Cvijović et al., 2015; Hössjer et al., 2021). Species that arise from a common ancestor
accumulate distinct mutations over time (Lemey et al., 2009; Carlin, 2011), and the num-
ber of accumulated mutations tends to be proportional to the divergence time between
species (Safran and Nosil, 2012)

Phylogeny is the study of the history of evolutionary relationships between genes,
species or populations which is represented by a tree diagram that explains ancestral
relationships (Nixon, 2001) through the connection of adjacent nodes (which represent
studied organisms or sequences) along branches, such as lines that interconnect these
nodes. Elucidating the evolutionary history of genes and species is one of the goals of
molecular evolution (Gillespie, 1994; Nixon, 2001; Leliaert et al., 2012). For that purpose,
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molecular phylogeny methods make it possible to reconstruct, from a set of nucleotide
or protein sequences, the history of successive divergences that cause interspecific ge-
netic variations during evolution of related taxa from a common ancestor (Nixon, 2001).
The reconstruction of phylogenetic trees is a statistical challenge, as the accuracy of
tree estimates also depends on available statistical methods. In this context, molecular
phylogenetics has focused on improving models for estimating phylogenetic trees based
on sequence alignments. Thus, phylogenies help to understand and correlate different
evolutionary phenomena and environment associations to the evolution of phenotypic
traits (McClintock, 1984; Vulić et al., 1999; Archibald and Roger, 2002; Logares et al.,
2007; Shan and Li, 2008).

A phylogenetic tree is an acyclic graph with N nodes of degree 1 — the node is only
connected to another one —, representing the N organisms in the sample. These nodes
are denoted by ν1, . . . , νN and are usually termed as tips. The tree also has N−2 internal
nodes of degree 3, denoted by νN+1, . . . , ν2N−2, that represent common ancestors to two
or more organisms in the sample. Additionally, the tree may have one root node of degree
2 denoted by ν2N−1, representing the most recent common ancestor of all N organisms,
and we say that the tree is rooted. The branch lengths of the tree t = (t1, . . . , t2N−2)
on the edges of a rooted tree represent elapsed evolutionary time between two nodes.
Figure 2.1 presents an example rooted tree with N = 3 tips.

ν5

ν4

ν1

t1

ν2

t2

ν3

t4

t3

Figure 2.1: Example rooted tree with N = 3 tips

Phylogenetic methods use sequence data S to estimate a phylogenetic tree topology
F that represents the evolutionary relationship betweenN related organisms. TheN×L
sequence matrix S = {sij} contains N aligned DNA or RNA sequences of length L from
each of the organisms in the sample. In order to estimate the tree F from sequence
data, we require a model for computing the probabilities of changes in the molecular
sequences over evolutionary time. For each site of the molecular sequence, this process is
usually modelled by a continuous time Markov chain (CTMC) defined by a infinitesimal
rate matrix Q from which the transition probabilities between the DNA/RNA basis
{A,G,C,T/U} can be obtained. The Markovian property of the base substitution process
implies that, after two lineages split, their mutation processes are independent, given
their most common recent ancestor. Propagation of this property throughout the tree
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leads to the tree likelihood for site j in the sequences Sj, where j indicates the j-
th column of genetic sequences. The tree likelihood L(Q, t,F |Sj) = p(Sj|Q, t,F )
computes the probability of the data for site j, given the molecular evolution process
on the tree. Note that as we do not observe the internal nodes, we need to integrate
over all possible base combinations for these nodes. This likelihood is computed using
a pruning algorithm that traverses the tree in post order, keeping track of conditional
probabilities, and evaluates the likelihood through O(N) operations (Felsenstein, 1981).

To obtain the likelihood for the whole matrix S, one must assume a model for molec-
ular evolution across sites. Assuming all sites to be independent and identically dis-
tributed, we compute the overall likelihood as

p(S|Q, t,F ) ∝
L∏

j=1

p(Sj|Q, t,F ). (2.1)

This independent and identically distributed model is oversimplified, but it serves as a
didactic illustration of how the likelihood is calculated for the sequence data (Felsenstein
and Felenstein, 2004).

2.2 Bayesian inference of phylogenetic trees

In a Bayesian analysis, inference on the phylogeny is based upon the posterior probability
p(θ|S) of parameters θ, given the sequence data S (Huelsenbeck and Ronquist, 2001).
Here θ collects all the phylogenetic parameters, e.g. θ = {Q, t,F}.

Through Bayes theorem, the posterior can be computed as

p(θ|S) =
p(S|θ)p(θ)

p(S)
, (2.2)

where p(θ) is the prior distribution representing our knowledge about θ and the nor-
malizing constant p(S) is the marginal likelihood of the data S. The likelihood p(S|θ)
of the molecular evolution process can be obtained through expression (2.1).

To compute the posterior in (2.2), we would also need an expression for the normal-
izing constant p(S), which can be computed as the integral

p(S) =

∫
p(S|θ)p(θ)dθ. (2.3)

However, since θ = {Q, t,F}, evaluating (2.2) requires integrating over the space of
all possible tree topologies, possible branch length combinations and base substitution
parameters. Bayesian phylogenetic inference generally relies on Markov chain Monte
Carlo (MCMC) due to the computational intractability of p(S).
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2.3 Markov chain Monte Carlo

Monte Carlo integration is a simulation method for estimating multidimensional inte-
grals. Suppose we wish to estimate the expected value of h(θ), then

E(h(θ)|S) =

∫
h(θ)p(θ|S)dθ, (2.4)

where p(θ|S) is the posterior distribution of θ. If we cannot analytically evaluate the
integral, random samples θ(1), . . . ,θ(m) from the distribution p(θ|S) can be used to
estimate h(θ) as

Ê(h(θ)) =
1

m

m∑

i=1

h(θ(i)). (2.5)

The samples can also be used to obtain the variance of the estimates and marginal
distributions on individual components of θ.

However, for phylogenetic models it is generally not straightforward to generate sam-
ples from the posterior distribution p(θ|S). MCMC methods use Markov chains to
generate dependent samples of the target distribution. These chains are constructed
to be ergodic and have equilibrium distribution p(θ|S). Consequently, the process is
asymptotically guaranteed to achieve the target distribution.

The construction of ergodic Markov chains with the correct stationary distribution
is central to MCMC. The two most used methods for producing these chains are the
Metropolis-Hastings method (Metropolis et al., 1953; Hastings, 1970) and the Gibbs
sampler (Geman and Geman, 1984). Neither method requires the evaluation of the nor-
malizing constant in expression (2.3) to generate samples from the posterior distribution.

Metropolis-Hastings algorithms rely on a two step procedure to generate consecutive
posterior samples for θ. First a new state θp is proposed according to a proposal distri-
bution qθ(k)(θp), that usually depends on the current state θ(k). Then, the new state is
accepted θ(k+1) = θp, with probability

A(θ(k),θp) = min
{

1,
qθp(θ

(k))p(θp|S)

qθ(k)(θ
p)p(θ(k)|S)

}
(2.6)

or rejected θ(k+1) = θ(k). Note that only the ratio of posterior probabilities is required
for this evaluation because the normalizing constants p(S) cancel out.

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm (Brooks
et al., 2011). In a Gibbs update the proposal is from a conditional distribution of the
desired equilibrium distribution, therefore, it is always accepted. Gibbs samplers divide
the parameter θ into M components θ = (θ1, . . . ,θM), and update each individual
component θm at a time. New samples for each θm are drawn from their conditional
distribution p(θm|θ−m,S), where θm = (θ1, . . . ,θm−1,θm+1, . . . ,θM) represents all other
component parameters in θ.
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In these complex phylogenetic models, however, full conditional distributions are not
always available for all the parameter components. Metropolis-Hastings algorithm can
be used to generate samples for individual parameter components for which a Gibbs
sampler is not available. This approach produces a “Metropolis-within-Gibbs” sampler,
in which some parameter components are updated based on full conditional probabilities,
and others are updated using Metropolis-Hastings algorithm. The phylogenetic methods
presented in this dissertation exploit the flexibility of this combination of Metropolis and
Gibbs approach.



Chapter 3

Covariance Selection and
Gaussian Graphical Models

3.1 Covariance Selection

The principle of parsimony in parametric model fitting posits that parameters should
be introduced sparingly and only when the data indicate they are required (Dempster,
1972). There should be a trade-off between costs and benefits to avoid suffering from
underfitting — by ignoring factors or variables that should be included in the model
(misspecification) —, and overfitting — by including too many redundant or unnecessary
parameters. When facing high dimensional problems, it is often useful to impose a
structure of association between analysed variables. Additionally, researchers may be
interested in comparing different hypotheses of patterns of association, or the data might
follow a natural grouping, where certain subsets of variables are likely to express higher
degree of association with each other and less association with other groups of variables
(Talhouk et al., 2012).

Consider a phenomenon modeled with a p-dimensional multivariate normal distri-
bution Np(0,Σ), then, imposing a structure on the covariance Σ (covariance selection)
or correlation matrix R (correlation selection) may help to shrink dimensionality of
the cost of estimating a covariance or correlation for every possible pair of variables
when, in fact, a significant part of them is expected to be independent and uncorre-
lated, i.e. constrained to zero, — specially when the number of variables p is large. In
sampling schemes, however, directly constraining Σ and R entries to zero may violate
the positive-definiteness of these matrix estimates. Alternatively, an easier task would
be to impose sparsity in their inverses, the precision matrix K = Σ−1 and the par-
tial correlation R−1. The zero pattern in K and R−1 can be potentially inherited by
Σ and R depending on matrix structure, e.g. block diagonal matrices. On the other
hand, sparsity in precision and partial correlations has a different interpretation as it
represents the (in)conditional dependence structure — association structure — between
the analysed variables in Gaussian models. Thereafter, although we refer to such a co-

11
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variance/correlation selection problem, it is actually their inverses (K and R−1), that
display zero constrained off-diagonal elements related to the association structure (Gask-
ins, 2019).

For Gaussian variables, Dempster (1972) proposed a parameter reduction scheme
by setting off-diagonal elements of the precision matrix K to zero. This results in
a pattern entries constraint to zero in K, and is called covariance selection model or
Gaussian graphical model as it represents a pairwise conditional independence structure
(Lenkoski and Dobra, 2008). In this case, zero entries in K indicates that corresponded
variables are conditionally independent (CI) given the remaining variables in the model,
whereas conditionally dependent variables (CD) imply direct associations between them
also given the rest.

Thus, imposing a structure of association may help achieve better modeling and
inference — and computational efficiency, depending on model context —, particularly
when some degree of sparsity is expected in the association structure between variables of
scientific interest. Also, the amount of noise in a fitted model due to errors of estimation
is substantially reduced when we favor parameter reduction. This is because the number
of free parameters to be estimated is a smaller subset of the total number of parameters
under a “full model”, where all possible associations are estimated (Dempster, 1972).

3.2 Conditional independence

We recall an important property of the Gaussian distribution that connects condi-
tional independence with the precision matrix. As in Mitsakakis (2010), consider a
p-dimensional random vector X = (X1, . . . , Xp)

t and the set of variable indices V =
{1, . . . , p} such that X ∼ Np(µ,K−1). Then K, written as

K =



k11 . . . k1p
... . . . ...
kp1 . . . kpp


 ,

is the precision matrix where, the components Xi and Xj are conditionally indepen-
dent given the rest of the components (Xh)h∈V \{i,j} if and only if kij = 0. Here the \
symbol represent the set difference. This can easily be seen if we consider the joint con-
ditional distribution of (Xi, Xj), given (Xh)h∈V \{i,j}, known to have a bivariate normal
distribution with covariance matrix

Σij.V \{i,j} =

[
kii kij
kji kjj

]−1

=
1

kiikjj − k2
ij

[
kjj −kji
−kij kii

]
.

Therefore Xi and Xj are conditionally independent given (Xh)h∈V \{i,j} if and only if
[
Σij.V \{i,j}

]
12

=
[
Σij.V \{i,j}

]
21

= 0,
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i.e. if and only if kij = kji = 0. In summary

∀ i, j ∈ V, Xi ⊥⊥ Xj|XV \{i,j} ⇔ kij = 0.

After understanding the link between conditional independence and the zero pattern in
the precision matrix K, in the following section we introduce the Gaussian Graphical
Models and show how the association structure embedded in K is modeled through a
graph.

3.3 Gaussian Graphical Models

Gaussian graphical models provide a convenient framework for imposing a conditional
independence structure of association between variables (Mohammadi and Wit, 2015;
Mohammadi et al., 2021; Williams, 2021). Here we introduce some notation and the
structure of undirected Gaussian graphical models and show how to perform covari-
ance selection for multivariate Gaussian variables X. We refer the interested reader to
Lauritzen (1996) for detailed information.

Let G = (V,E) be an undirected graph, where V = {1, 2, . . . , p} is a finite set of
vertices (or nodes) and E ⊂ V ×V is the set of existing edges. The vertices V represent
the variables X measured for each observation. Also let

W = {(i, j) | i, j ∈ V, i < j}

and E = W \ E denotes the set of non-existing edges. Without loss of generality, as in
Mohammadi and Wit (2015) and Letac et al. (2017), we define a zero mean Gaussian
graphical model (GGM) with respect to the graph G as

MG = {Np(0,Σ),K = Σ−1 ∈ PG}, (3.1)

where PG is the space of p×p positive definite matrices with zero entries (i, j) consistent
with G. Let X = (X1,X2, . . . ,Xn) be an independent and identically distributed sample
of size n from modelMG. Then, the likelihood in GGM is given by

p(X|K,G) =
|K|n/2

(2π)np/2
exp

{
−1

2
tr(UK)

}
, (3.2)

where U = X′X. The joint posterior distribution for K and G, in a Bayesian context,
can be then factored as

p(K,G|X) ∝ p(X|K,G)p(K|G)p(G). (3.3)

For simplicity, we can set a discrete uniform distribution over the graph space G —
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the space of all graphs with p edges — for the prior distribution of the graph,

p(G) =
1

|G| , (3.4)

for each G ∈ G, where |G| is the cardinality of the graph space given by |G| = 2p(p−1)/2.
For the prior distribution on the structured precision matrix p(K|G), we can use the G-
Wishart distribution (Roverato, 2002; Atay-Kayis and Massam, 2005). The G-Wishart
distribution WG(δ,D) has density

fG(K; δ,D) =
1

IG(δ,D)
|K|(δ−2)/2 exp

{
−1

2
tr(DK)

}
1K∈PG , (3.5)

with parameters δ and D, where δ > 0 represents the degrees of freedom (or shape pa-
rameter), D is a symmetric positive-definite rate matrix, 1K∈PG is the indicator function
that K is restricted to PG, and IG(δ,D) is the normalizing constant,

IG(δ,D) =

∫

K∈PG
|K|(δ−2)/2 exp

{
−1

2
tr(DK)

}
dK. (3.6)

When G is complete or decomposable, we have explicit formulas for the normalizing
constant IG(δ,D) (Roverato, 2002). For non-decomposable graphs we can approximate
IG(δ,D) using the Monte Carlo method of Atay-Kayis and Massam (2005) or the Laplace
approximation of Lenkoski and Dobra (2011). Note that the G-Wishart prior (3.5) is
conjugate to the likelihood in (3.2), conditional on graph G. Therefore the posterior
distribution of K|G is also G-Wishart WG(δ?,D?) where δ? = δ + n and D? = D + U.

Under the G-Wishart WG(δ,D) conjugate prior on K|G for the Gaussian variables
X, the joint density of (X,K,G) is

p(X,K,G) = p(X|K,G)p(K|G)p(G)

=
|K|n/2

(2π)np/2
exp

{
−1

2
tr(UK)

}
1

I(δ,D)
|K|(δ−2)/2 exp

{
−1

2
tr(DK)

}
1K∈PG

1

|G|

=
1

(2π)np/2
1

|G|
1

IG(δ,D)
|K|(δ?−2)/2 exp

{
−1

2
tr(D?K)

}
1K∈PG . (3.7)

The marginal likelihood of data X given the graph G is given by

p(X|G) =
p(X,G)

p(G)
=

∫
K∈PG p(X,K,G) dK

p(G)
. (3.8)

By replacing the kernel of the integral in Equation (3.8) by the joint density (3.7) we
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have

p(X|G) = |G| 1

(2π)np/2
1

|G|
1

IG(δ,D)

∫

K∈PG
|K|(δ?−2)/2 exp

{
−1

2
tr(D?K)

}
1K∈PG dK

=
1

(2π)np/2
IG(δ?,D?)

IG(δ,D)
, (3.9)

and the posterior density of G given X is

p(G|X) ∝ p(G)p(X|G) =
p(G)

(2π)np/2
IG(δ?,D?)

IG(δ,D)
. (3.10)

Computing the marginal likelihood (3.8) or the posterior distribution (3.10) is re-
duced to the problem of computing normalising constants of the type IG(δ,D), with
δ > 0 and D positive definite, which are sufficient conditions for convergence of the
normalizing constants, i.e. IG(δ,D) <∞ (Mitsakakis, 2010, Lemma 3.2.1).

MCMC methods for the posterior of the graph structure often aim to select graph
proposals with higher posterior probability p(G|X) (Atay-Kayis and Massam, 2005;
Mitsakakis et al., 2011). To select a new graph the posterior probability of the new
candidate, Gp is compared with the posterior probability of the “current state” graph
Gc. To perform graph selection we start with a current graph Gc, randomly select the
index of two vertices and add or delete the correspondent edge in order to switch its
current value and propose a new graph Gp. Notice that Gp and Gc differ only by a
single edge. The proposed graph Gp, can be then accepted according to the following
Metropolis-Hastings (MH) acceptance probability

α = min

{
1,
p(Gp|X)

p(Gc|X)

}
= min

{
1,
IGp(δ

?,D?)

IGc(δ,D)

IGc(δ
?,D?)

IGp(δ,D)

}
. (3.11)

The new graph is then used to sample from WG(δ?,D?) the posterior distribution of
p(K|G,X).



Chapter 4

Wishart Family Distributions

In GGM literature, a complete definition for the parametrization of Wishart and G-
Wishart distribution is often not provided. Wishart and inverse Wishart distributions
can be viewed as the generalization of gamma and inverse gamma distributions to multi-
ple dimensions. In Bayesian analysis of multivariate Gaussian variables, inverse Wishart
and Wishart are also the standard conjugate prior distributions for canonical covariance
Σ and precision matrices K = Σ−1, respectively, regarding a full model. Here we refer as
full model a model that assumes no particular association structure for the variables or,
equivalently, in a GGM context, a model where a full graph is assumed GFull = {gij = 1}
for 1 ≤ i < j ≤ p.

Both distributions are parametrized in terms of degrees of freedom or shape, and
scale matrix parameters. However, both distributions can be presented in two differ-
ent parametrizations concerning their degrees of freedom. Additionally, the scale ma-
trix can be expressed as inverse scale or rate matrix in the Wishart distribution as an
analogy to the rate and scale parameters in gamma and inverse gamma distribution
parametrizations. Here we single out both parametrizations for Wishart and inverse
Wishart distributions and their relation in terms of degrees of freedom (shape), i.e. the
induced distribution for K when Σ follows an inverse Wishart distribution and vice
versa. We also compare Wishart and G-Wishart distributions in order to elucidate their
equivalence when the graph G is complete.

4.1 Wishart and inverse Wishart

The usual parametrization for the Wishart and inverse Wishart (Muirhead, 1982; Gel-
man et al., 2013) is in terms of degrees of freedom ν. For the inverse Wishart distribution,
we write Σ ∼ IW (ν,S), with support on the space of p × p positive definite matrices,
and density

16
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fp(Σ; ν,S) =
|S|ν/2

2νp/2Γp
(
ν
2

) |Σ|−(ν+p+1)/2 exp

{
−1

2
tr(Σ−1S)

}
, (4.1)

where ν > p − 1 is the degrees of freedom (or shape parameter), S is a symmetric,
positive definite p × p scale matrix, and Γ(α) is the multivariate gamma function that
has the form Γp(α) = πp(p−1)/4

∏p
i=1 Γ

(
α− 1

2
(i− 1)

)
. On the other hand, the Wishart

distribution, also with support on the space of p×p positive definite matrices, has density

fp(K; ν,S) =
|S|−ν/2

2νp/2Γp
(
ν
2

) |K|(ν−p−1)/2 exp

{
−1

2
tr(KS−1)

}
, (4.2)

with degrees of freedom (or shape parameter) ν > p− 1 and symmetric positive definite
p× p scale matrix S.

From Dawid (1981) and Roverato (2000) we have another parametrization of Wishart
and inverse Wishart distributions in terms of the shape parameter δ that relates to ν
according to

ν = δ + p− 1. (4.3)

By replacing ν = δ + p− 1 in density (4.1), we write Σ ∼ IW (δ,S) with density

fp(Σ; δ,S) =
|S|(δ+p−1)/2

2(δ+p−1)p/2Γp
(
δ+p−1

2

) |Σ|−(δ+2p)/2 exp

{
−1

2
tr(Σ−1S)

}
, (4.4)

with degrees of freedom (or shape parameter) δ > 0 and symmetric positive-definite
p× p scale matrix S. Similarly, using density (4.2), we say K ∼ W (δ,S) and define the
Wishart density in terms of δ as

fp(K; δ,S) =
|S|−(δ+p−1)/2

2(δ+p−1)p/2Γp
(
δ+p−1

2

) |K|(δ−2)/2 exp

{
−1

2
tr(KS−1)

}
, (4.5)

with degrees of freedom (or shape) δ > 0 and symmetric, positive definite p × p scale
matrix S.

4.2 Wishart and inverse Wishart relationship

The parametrization using δ is useful because the distribution induced by Σ ∼ IW (δ =
δ,S) on K = Σ−1 is Wishart, K ∼ W (ν = δ+p−1,S−1) (Dawid, 1981; Roverato, 2000).
Notice that S−1 is the inverse of the scale parameter S of Wishart and inverse Wishart
distributions in parametrizations (4.2) and (4.1) and can also be referred to as inverse
scale or rate matrix. If we take D = S−1, we can express the Wishart density (4.5) in
terms of shape parameter δ and rate matrix D, i.e. K ∼ W (δ,D), with density
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fp(K; δ,D) =
|D|(δ+p−1)/2

2(δ+p−1)p/2Γp
(
δ+p−1

2

) |K|(δ−2)/2 exp

{
−1

2
tr(KD)

}
, (4.6)

with degrees of freedom δ > 0 and symmetric positive-definite p × p rate (or inverse
scale) matrix D. The parametrization of the Wishart distribution in (4.6) is convenient
because it emphasises the similarities between Wishart and G-Wishart distributions re-
garding a complete graph GFull.

4.3 G-Wishart distribution

The G-Wishart distribution was fist proposed by Roverato (2000) who derived its density
from the hyper inverse Wishart distribution (Dawid and Lauritzen, 1993). We write
K ∼ WG(δ,D), with support on the space of p × p positive definite matrices, and
density

fG(K; δ,D) =
1

IG(δ,D)
|K|(δ−2)/2 exp

{
−1

2
tr(DK)

}
1K∈PG , (4.7)

with parameters δ and D, where δ > 0 (Mitsakakis, 2010, Lemma 3.2.1: IG(δ,D) < ∞
for δ > 0) is the degrees of freedom (or shape), D is a symmetric positive definite rate
matrix, PG is the space of p×p positive definite matrices with zero entries (i, j) whenever
an edge is missing in the graph G and IG(δ,D) is the normalizing constant as in Equation
(3.6). Note that when G is a complete graph, the G-Wishart WG(δ,D) reduces to a
Wishart distribution with rate matrix parametrizationWp(δ,D) as in equation (4.6) and
the normalizing constant becomes

IG(δ,D) = 2(δ+p−1)p/2|D|−(δ+p−1)/2πp(p−1)/4

p∏

i=1

Γ

(
δ + p− i

2

)
, (4.8)

which is equivalent to the normalizing constant in equation (4.6). Importantly, the rate
parameter D in the G-Wishart distribution is also equivalent to the inverse of the scale
matrix S in Wishart parametrization (4.5), i.e. D = S−1. Table 4.1 summarizes the
parametrizations of the aforementioned distributions.
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Table 4.1: Parametrizations of Wishart, inverse Wishart and G-Wishart distributions in terms of degrees of freedom or shape
parameter (ν, δ) and scale matrix S or rate matrix D parameters. The equivalence between the degrees of freedom (shape)
is ν = δ + p− 1, and D = S−1.

Distribution Notation Parameters Density function

Inverse Wishart Σ ∼ W (ν,S)
ν degrees of freedom
S p× p Scale matrix

fp(Σ; ν,S) = |S|ν/2
2νp/2Γp( ν2 )

|Σ|−(ν+p+1)/2 exp
{
−1

2
tr(Σ−1S)

}

Inverse Wishart Σ ∼ W (δ,S)
δ degrees of freedom
S p× p scale matrix

fp(Σ; δ,S) = |S|(δ+p−1)/2

2(δ+p−1)p/2Γp( δ+p−1
2 )
|Σ|−(δ+2p)/2 exp

{
−1

2
tr(Σ−1S)

}

Wishart K ∼ W (ν,S)
ν degrees of freedom
S p× p scale matrix

fp(K; ν,S) = |S|−ν/2
2νp/2Γp(ν/2)

|K|(ν−p−1)/2 exp
{
−1

2
tr(KS−1)

}

Wishart K ∼ W (δ,S)
δ degrees of freedom
S p× p scale matrix

fp(K; δ,S) = |S|−(δ+p−1)/2

2(δ+p−1)p/2Γp( δ+p−1
2 )
|K|(δ−2)/2 exp

{
−1

2
tr(KS−1)

}

Wishart K ∼ W (δ,D) δ degrees of freedom
D
p× p rate matrix

fp(K; δ,D) = |D|(δ+p−1)/2

2(δ+p−1)p/2Γp( δ+p−1
2 )
|K|(δ−2)/2 exp

{
−1

2
tr(KD)

}

G-Wishart K ∼ WG(δ,D)
δ degrees of freedom
D p× p rate matrix
IG(δ,D) is the normalizing constant
PG is the space of p×p positive definite
matrices with zero entries (i, j) when-
ever an edge is missing in the graph G

fp(K; δ,D) = 1
IG(δ,D)

|K|(δ−2)/2 exp
{
−1

2
tr(KD)

}
1K∈PG
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Abstract

Phylogenetic trait evolution models allow for the estimation of evolutionary cor-
relations between a set of traits observed in a sample of related organisms. By
directly modeling the evolution of the traits on a phylogenetic tree in a Bayesian
framework, the model’s structure allows us to control for shared evolutionary history.
In these models, relevant correlations are assessed through a post-process procedure
based on the high posterior density interval of marginal correlations. However, the
selected correlations alone may not provide all available information regarding trait
relationships. Their association structure, in contrast, is likely to express some
sparsity pattern and provide straightforward information about direct associations
between traits. In order to employ a model-based method to identify this association
structure we explore the use of Gaussian graphical models (GGM) for covariance
selection. We model the precision matrix with a G-Wishart conjugate prior, which
results in sparse precision estimates. We evaluate our approach through Monte
Carlo simulations and applications that examine the association structure and evo-
lutionary correlations of phenotypic traits in Darwin’s finches and genomic and
phenotypic traits in prokaryotes. Our approach provides accurate graph estimates
and lower errors for the precision and correlation parameter estimates, especially
for conditionally independent traits, which are the target for sparsity in GGMs.
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1 Introduction

Estimating correlations between a set of traits evolving along a phylogenetic tree has
been the focus of recent developments aiming to elucidate the association structure of
the data. Here we explicitly include the association structure, through a graph parameter,
in a Bayesian phylogenetic trait evolution model in order to improve modeling, inference,
and our ability to unravel complex trait relationships.

Phylogenetic trait evolution models are important tools for investigating the evolu-
tionary associations between a set of phenotypic and genotypic traits controlling for the
shared evolutionary history of related organisms. Failing to control for this evolutionary
history can mislead the inference of correlation between these traits as some of the asso-
ciations could be simply a result from common ancestry rather than having an specific
adaptive meaning. To jointly model the trait correlation evolution along an unknown
tree, several versions of phylogenetic trait evolution models have been proposed over the
last few years building upon the Brownian diffusion process and the threshold model
proposed by Felsenstein (2012) (Cybis et al., 2015; Hassler et al., 2020; Zhang et al.,
2021).

These models assume unobserved continuous latent variables for each tip taxon that
arise from a multivariate Brownian diffusion (MBD) process along a phylogenetic tree
inferred from molecular sequences. This MBD model is characterized by a precision ma-
trix K = Σ−1, the inverse covariance, from which the evolutionary trait correlations are
obtained. The diffusion correlation is the parameter of scientific interest and informs the
correlation between latent parameters, which is a proxy for the desired correlation be-
tween observed phenotype traits. The diffusion correlation can be viewed as the combined
effect of relevant genetic factors (e.g. selective pressures, genetic linkage) that couples the
evolution of observed traits after adjusting for the taxa shared evolutionary history.

The threshold model of Felsenstein (2012) adapted the MBD process to allow for
evolutionary correlation estimation among binary and continuous phenotypic traits. The
aim of Cybis et al. (2015) was to bring the threshold model to a Bayesian perspective
and extend it to create the phylogenetic multivariate latent liability model (PMLLM)
for the evolution of mixed-type traits, accounting for continuous, binary, categorical, and
ordinal data.

The primary contribution of Zhang et al. (2021) was to develop an efficient inference
framework, called phylogenetic multivariate probit model (PMPM), based on the bouncy
particle sampler (BPS), to sample the latent parameters from a high-dimensional trun-
cated normal distribution, thus improving mixing and efficiency compared to the MCMC
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scheme in Cybis et al. (2015). Although limited to continuous and binary outcomes,
PMPM also takes advantage of a separation strategy over the covariance matrix that
avoids the previous identifiability issue of using the Wishart distribution as the conjugate
prior on the diffusion precision in a mixed-type trait model.

Additionally, Hassler et al. (2020) extended the sampling mechanism for the latent
variables to provide a highly efficient likelihood computation under incomplete continuous
trait data scenarios. This approach tremendously increases the available information used
for phylogenetic trait correlation estimation by allowing the inclusion of both taxa with
incomplete trait measurements and trait information not yet available for all taxa.

Despite the efforts to improve efficiency and expand the model’s applicability, the sig-
nificance of correlation coefficients is still determined by the evaluation of their marginal
posterior distribution using a high posterior density (HPD) interval. Because, in many
problems, only a small portion of the observed traits are actually expected to be inter-
connected in the underlying biology, it is desirable to control for false positive signals
and avoid estimation of spurious correlation coefficients, specially for high-dimensional
problems where the number of traits p is large. Moreover, in current practice, the selected
correlations alone may not provide all available information regarding trait relationships.
Their association structure — which explores the conditional independence —, in con-
trast, is likely to express some sparsity pattern and provide straightforward information
about direct associations between traits. Additionally, one may want to favor a sparse
representation of target parameters purely based on modeling motivations.

A natural systematic solution for this is to estimate a sparse diffusion precision matrix.
The sparsity pattern on the diffusion precision reflects on the corresponding correlation
matrix potentially shrinking some of its off-diagonals towards zero, as desired. One
way to obtain sparsity is by conditioning the precision matrix to the space of positive
definite matrices with zero entries consistent with a graph that depicts the dependency
structure between traits (Dempster, 1972). In addition to impacting corresponding trait
correlations, sparse precision estimates, in combination with a graph parameter, would
also allow us to explore the underlying association structure between traits, i.e. their
conditional (in)dependence structure.

For multivariate Gaussian variables with precision matrix K = {kij}, such as the
latent parameters, this structure of association can be translated by the conditional
(in)dependence embedded in the precision matrix. Then entry kij = 0 implies that
the corresponding variables are conditionally independent given all the other variables in
the model (Li et al., 2020; Mitsakakis, 2010; Talhouk et al., 2012). We refer the inter-
ested reader to Maathuis et al. (2018, Ch.9) for detailed proofs on the connection between

3



conditional independence and the zero pattern in the precision matrix.
Gaussian graphical models (GGM) are convenient tools for modeling conditional

(in)dependence relationships among variables (Carvalho and Scott, 2009). A GGM is
a probabilistic model in which the conditional (in)dependence structure on K is also
represented by a graph G (Atay-Kayis and Massam, 2005; Letac and Massam, 2007;
Mohammadi and Wit, 2015). In this context, non-zero entries in the off-diagonal of K

also correspond to the existing edges in the undirected graph G. In this graph, variables
are represented by the vertices (or nodes) and the presence or absence of edges indicates
whether exists a direct association between them, or, more technically, represents their
conditional (in)dependence given the other variables. Because of the intricate structure
between elements in K, both Σ and the corresponding correlation matrix R do not always
inherit the exact same zero pattern from the diffusion precision. Therefore, although we
refer to such as covariance selection, it is actually the precision matrix that has the zero
elements related to conditional independence which are being directly modeled (Gaskins,
2019).

In Bayesian inference, the G-Wishart distribution is the conjugate prior for structured
precision matrices of a multivariate normal distribution. Because of its conjugacy the G-
Wishart is a convenient choice (Boom et al., 2021; Williams, 2021) despite the fact that
its normalizing constant does not have an analytical form for a general non-decomposable
graph G (Boom et al., 2021). The normalizing constant is required for G-Wishart den-
sity computations and plays an essential role in model selection — the search for graphs
(models) with high posterior density. For this reason, many different approaches have
been proposed to compute or approximate the challenging IG(δ,D). Some approaches fo-
cused on the advantages of estimating the normalizing constant for decomposable graphs
(Letac and Massam, 2007) — the constant has closed-form in this context —, whereas
others provide the pathway to its generalization to non-decomposable graphs (Roverato,
2000, 2002; Atay-Kayis and Massam, 2005), further improving or avoiding its calculation
(Lenkoski and Dobra, 2011; Letac et al., 2017; Mohammadi and Wit, 2015), or developing
closed-form expressions for specific graph configurations (Uhler et al., 2018).

In order to employ a model-based method to identify this association structure we
explore the use of Gaussian graphical models (GGM) for covariance selection. In this
study, we propose a Bayesian approach, called Sparse Phylogenetic Trait Evolution Model
(SPTE), for inference of a sparse precision matrix K by adapting the MBD model for
continuous traits to the context of covariance selection. By estimating the association
structure through the graph we aim to benefit from: i) a systematic solution for elimi-
nation of spurious correlations between phenotypic traits; ii) parameter reduction, which
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is a major gain since the number of pairwise correlations scales quadratically in trait di-
mension; iii) subsequent error reduction in diffusion precision and correlation estimation;
and iv) improving our ability to explore complex relationships between continuous traits.

The reminder of this paper proceeds as follows: In Section 2, we first describe the
MBD process on phylogenetic trees, further expand it to account for covariance selection
using GGM, and finally define the our SPTE model. In Section 3, we describe the
inference framework for the MCMC and present a joint sampling scheme for the graph
and sparse precision matrix. Section 4 presents the results from two simulation studies
conducted to compare the performances of SPTE (also referred to as sparse model) to
the ones of the traditional phylogenetic trait evolution model (full model). Then, we
apply both sparse and full model to examine the association structure and evolutionary
correlation of Darwin’s finches phenotypic traits and prokaryote genomic and phenotypic
growth properties in Section 5. Lastly, we evaluate the computational cost of our model
in Section 6, and discuss the advantages, limitations and future directions of SPTE along
with concluding remarks in Section 7.

2 Modeling

In this section we show how we connect the continuous p-dimensional observed traits Y

and correspondent latent variables X to the phylogenetic tree F using the multivariate
Brownian diffusion model to control for shared evolutionary history of N analysed taxa
in the estimation of trait correlations R. We explain how we adapt the MBD model
to the context of covariance selection to finally present the Sparse Phylogenetic Trait
Evolution Model (SPTE). We also provide details on graph estimation (model selection)
and sampling strategy for our Bayesian inference framework.

2.1 Multivariate Brownian diffusion on Trees. Consider a data set of N aligned
molecular sequences S from related organisms and N continuous p-dimensional trait
observations Y = (Y1, . . . ,YN)

t, where Yk = (Yk1, . . . , Ykp)
t for k = 1, . . . , N . We

assume that Y arises from a partially observed multivariate Brownian diffusion process
along a phylogenetic tree F . The tree F = (V, t) is a directed bifurcating acyclic graph
with node set V and branch lengths t. The node set V = (v1, . . . , v2N−1) contains N tip
nodes of degree-1 (v1, . . . , vN), N−2 internal nodes of degree 3 (vN+1, . . . , v2N−2) and one
root node v2N−1 of degree 2. The branch lengths t = (t1, . . . , t2N−2) denote the distance
in real time from each node to its parent.

We associate each node h in F with a latent variable Xh ∈ Rp for h = 1, . . . , 2N−1. A
multivariate Brownian diffusion process on F characterizes the evolutionary relationship
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between latent variables X and acts conditionally independently along each branch, such
that Xh is multivariate normally distributed,

Xh ∼ Np(Xpa(h), thK
−1), (1)

centered at realized value Xpa(h), where pa(h) denotes the parent node of h, with variance
proportional to a p × p positive definite covariance matrix K−1 that is shared by all
branches of F . At the tips of F , we collect the N × p matrix X = (X1, . . . ,XN)

t,
where Xk = (Xk1, . . . , Xkp)

t for k = 1, . . . , N , and map it to the observed traits Y

through a stochastic link p(Yk|Xk). The form of the stochastic link varies depending
on the nature of Y. In the case of continuous traits, p(Yk|Xk) has a degenerate density
at Xk (i.e. Yk = Xk with probability 1), when there are no missing data. When trait
measurements are missing, we employ the pre-order missing data augmentation algorithm
developed by Hassler et al. (2020, Section 2.2.1) in order to compute likelihood presented
in (3). For models with mixed-type traits, such as PMLLM of Cybis et al. (2015) or
PMPM of Zhang et al. (2021), p(Yk|Xk) stems from a deterministic mapping function
Yk = g(Xk), that maps the elements of the continuous latent variables Xk at the tips to
its corresponding categories for non-continuous traits. Nevertheless, here we restrict our
model to continuous traits only. This is because allowing for mixed-type traits introduces
an identifiability issue for the diffusion precision — when using conjugate priors directly
on K. We discuss this limitation, that can be overcome with different modeling strategies,
in Section 7.

Because we only need the latent parameters X at the tips of F , i.e. (X1, . . . ,XN)
t, to

map Y, we can compute the likelihood of X by integrating out XN+1, . . . ,X2N−1. In order
to do so we adopt a conjugate prior on the root of the tree, X2N−1 ∼ Np(µ0, τ

−1
0 K−1)

with prior mean µ0 and prior sample size τ0 (Pybus et al., 2012). Hence, X follows a
matrix-normal distribution,

X ∼MNN×p(M,Υ,K−1), (2)

where M = 1Nµ
t
0 is an N×p mean matrix, 1N is a vector of length N populated by ones,

K−1 is the p × p across-trait covariance matrix, and Υ = V(F ) + τ−10 JN is an N × N
across-taxa tree covariance matrix. The tree diffusion matrix V(F ) is a deterministic
function of F , and JN = 1N1tN is an N × N matrix of all ones and the term τ−10 JN

comes from the integrated-out tree root prior (for further details on V(F ), see Zhang
et al., 2021, Figure 1). Combining the stochastic link p(Y|X) and Equation (2) we can
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consider an augmented likelihood of Y and X through the factorization

p(Y,X|K,F ,µ0, τ0) = p(Y|X)p(X|K,F ,µ0, τ0). (3)

Building upon the tree and matrix-normal structures, several algorithms were devel-
oped to evaluate the trait likelihood keeping the linear scale with the number of taxa in
complete data set scenarios (Tung Ho and Ané, 2014; Tolkoff et al., 2018; Bastide et al.,
2018). When dealing with missing data, however, scalability becomes a bottleneck as the
model requires data imputation or integration. To bypass this limitation, Hassler et al.
(2020) propose an inference technique that integrates out missing values analytically that
scales linearly with the number of taxa by using a post-order traversal algorithm under
a MBD model to characterize trait evolution.

In the following section we describe how to incorporate sparsity on the diffusion pre-
cision to perform covariance selection using Gaussian graphical models for this trait evo-
lution model. We further close this section declaring the prior specifications for the
parameters in the model.

2.2 Model extension: Covariance Selection with Gaussian Graphical Model.
Gaussian graphical models provide a simple and convenient framework for imposing a
conditional independence structure of association between variables (Mohammadi and
Wit, 2015; Williams, 2021). Here we introduce some basic notation and the structure of
undirected Gaussian graphical models. We refer the interested reader to Lauritzen (1996)
for detailed information.

Let G = (V,E) be an undirected graph defined by a finite set of vertices (or nodes)
V = {1, 2, . . . , p} that represent the Gaussian variables, and a set of existing edges
E ⊂ {(i, j)|1 ≤ i < j ≤ p} that represent links among the nodes i, j ∈ V . We define a µ0

mean Gaussian graphical model with respect to the graph G as the set of all Gaussian
models such that

MG = {Np(µ0,K
−1),K ∈ PG}, (4)

where PG is the space of p× p positive definite matrices with zero entries (i, j) consistent
with G, i.e. kij = 0 whenever (i, j) /∈ E. Hence, in GGM, we assume that the precision
matrix K depends on the graph G.

2.3 Sparse Phylogenetic Trait Evolution Model (SPTE). Importing the GGM
approach to the phylogenetic context we then restrict the precision matrix of the Brownian
diffusion process to PG. This gives rise to the diffusion graph G, a relevant parameter that
represents the association structure of the partial correlations between the p components
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of the latent parameter X.
We complete our model specification by choosing the prior distributions for the graph

G and for the structured precision matrix K|G. For simplicity, we place a discrete
uniform prior distribution over G, the space of all graphs with fixed p edges (Mohammadi
and Wit, 2015; Mohammadi et al., 2021), such that

p(G) =
1

|G| , (5)

for each G ∈ G, where |G| = 2p(p−1)/2 is the cardinality of the graph space. One can
rather choose a different prior favoring denser or sparser graphs in the light of better
knowledge about the association structure (Mohammadi and Wit, 2015).

For the prior distribution of the precision matrix p(K|G), we use the G-Wishart dis-
tribution (Roverato, 2002; Atay-Kayis and Massam, 2005), which is the conjugate prior,
under Gaussian models, for structured precision matrices. The G-Wishart distribution
WG(δ,D), with support on the space of p× p positive definite matrices, has density

fG(K; δ,D) =
1

IG(δ,D)
|K|(δ−2)/2 exp

{
−1

2
tr(DK)

}
1K∈PG

, (6)

with parameters δ and D, where δ > 0 (Mitsakakis, 2010, Lemma 3.2.1: IG(δ,D) < ∞
for δ > 0) represents the degrees of freedom (or shape parameter), D is a symmetric
positive-definite rate matrix, and IG(δ,D) is the normalizing constant,

IG(δ,D) =

∫

K∈PG

|K|(δ−2)/2 exp
{
−1

2
tr(DK)

}
dK. (7)

We use the Monte Carlo method of Atay-Kayis and Massam (2005) to numerically approx-
imate the prior and posterior normalizing constants required for graph updates during
MCMC.

3 Inference

We single out the diffusion correlation R and the diffusion graph G as the primary
parameters of scientific interest. The model is parametrized, however through the dif-
fusion precision K which indirectly shapes the correlations according to the conditional
(in)dependencies in the graph. We drop the posterior’s dependence on the hyperparame-
ters (Υ,µ0, τ0, δ,D) to ease notation. Connecting the likelihood (3) to the priors (5) and
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(6), we finally arrive at the posterior factorization

p(K,G,F |Y,S) ∝ p(Y|K,F )p(K|G)p(G)p(S,F )

=

(∫
p(Y|X)p(X|K,F ) dX

)
p(K|G)p(G)p(S,F ). (8)

The joint posterior factorizes because sequences S only affect the parameters of pri-
mary interest through F , since we assume S to be conditionally independent of all other
parameters given F (Zhang et al., 2021). To obtain the posterior for this model we
must integrate over the possible values for the unobserved latent variables at the tips of
the tree. For the simple MBD with continuous traits and no missing data, nevertheless,
there is no need to perform integration over X because of the nature of the link function.
To approximate the posterior distributions via MCMC simulation, we apply a random
scan Metropolis-within-Gibbs (Liu et al., 1995) approach by which we sample parameter
blocks one at a time at random, using Gibbs steps whenever a known full conditional
distribution is available.

3.1 Sampling scheme. We employ standard Bayesian phylogenetic algorithms to ob-
tain p(F ,S) when the tree is unknown (Suchard et al., 2018). Alternatively, F can be
fixed, in which case there is no need for sequence data S. If trait data Y is incomplete,
we draw from the full conditional distribution of X using the pre-order missing data
augmentation algorithm developed by Hassler et al. (2020) with overall computational
complexity O(Np3).

A joint updating scheme, inspired by the factorization p(G,K) = p(G)p(K|G), is
considered for K and G. First, the graph G is updated through a Metropolis-Hastings
step whose target distribution is the marginal distribution of the graph. Then, K is
updated conditional on the new G through a Gibbs step.

To update the graph G we need to compute the marginal distribution of G, given
all other parameters except K (see Supplementary Information (SI 2)). This marginal
distribution is given by Equation (SI.8) as

p(G|X, δ,D,F ) ∝ p(G|δ,D)p(X|G, δ,D,F ) =
p(G|δ,D)

(2π)Np/2
IG(δ +N,D + ∆)

IG(δ,D)
, (9)

where ∆ = (X− 1Nµ
t
0)
t (

Υ + τ−10 JN
)−1

(X− 1Nµ
t
0), comes from integrating F with

GGM. As in Hassler et al. (2020), we follow the methods in Tung Ho and Ané (2014)
to compute ∆ via post-order traversal of the tree, which has computational complexity
O(Np2).
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Based on this target distribution, the current graph Gc is updated using a Metropolis-
Hastings step with new graph proposals Gp generated by switching the value of a ran-
domly selected edge in Gc. We set Gc = Gp by accepting the proposed graph with
probability

α = min

{
1,
IGp(δ +N,D + ∆)

IGc(δ +N,D + ∆)

IGc(δ,D)

IGp(δ,D)

}
. (10)

After the update, Gc is then used to sample from the posterior distribution of (K|X,Gc,

δ,D,F ) in Equation (11).
Since we place a G-Wishart conjugate prior WG(δ,D) on the structured diffusion

precision matrix K|X,Gc, δ,D,F , the full conditional distribution of diffusion precision
is also G-Wishart

K|X,Gc, δ,D,F ∼ WG (δ +N,D + ∆) . (11)

3.2 Parameter Estimates. After running the MCMC we process the posterior dis-
tributions of the parameters of scientific interest, namely G, K and R. We estimate
the entries of the posterior graph Ĝ = {ĝij} from its MCMC iterations, after warm-up,
through

ĝij =




1, if BF (ij)

1:0 ≥ 101/2

0, otherwise
, (12)

where BF (ij)
1:0 is the Bayes factor calculated to evaluate the evidence in favor of including

edge (i, j) in the posterior graph Ĝ, i.e. evidence for conditional dependence between i-th
and j-th traits. A Bayes factor above the threshold 101/2 indicates substantial evidence
for the hypothesis according to the criteria in Jeffreys (1998). We compute the Bayes
factor as

BF
(ij)
1:0 =

p(ĝij = 1|Y,X)

p(ĝij = 0|Y,X)

p(ĝij = 0)

p(ĝij = 1)
=

p̂eij
(1− p̂eij)

, (13)

where the estimated posterior edge inclusion probability p̂eij is the proportion of posterior
samples with graph entry gij = 1, for 1 ≤ i < j ≤ p. Equivalently, the threshold 101/2

corresponds to p̂eij ≈ 0.76. We assume equally likely models p(ĝij = 1) = p(ĝij = 0) =

1/2. Alternatively, one may want to favor different criteria for the threshold in the Bayes
factor.

Furthermore, the entries of the posterior precision estimate K̂ = {k̂ij} are computed
as the mean of the precision samples kij for all MCMC iterations whose corresponding
graph edge gij is consistent with the marginal posterior graph ĝij. We keep all MCMC
samples, after warm-up, when computing the posterior mean correlation estimate r̂ij.
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3.3 Implementation. We have implemented the proposed model in the development
version (v1.10.5) of BEAST (Suchard et al., 2018).

4 Simulation Study

In order to understand the behavior of the proposed model (SPTE), alternatively referred
to as sparse model, and its ability to recover the true graph structure, trait precision and
correlation underlying the observed data, we conduct a simulation study consisting of two
scenarios (Sim 1 and Sim 2) that combine different graph structures G0 and precision
matrices K0. We also compare these results to the ones obtained from the full model, in
which the association structure is not explicitly modeled through a graph. We use N = 50

and p = 5 for Sim 1, and N = 100 and p = 10 for Sim 2. The diffusion precision K0

used to generate the continuous trait observations in each simulation scenario and the
corresponding diffusion correlation R0 are available in the Supplementary Information
(SI 1). The true graph structure G0 can be directly recovered from the respective K0.

For each scenario, we simulate RE = 1000 Monte Carlo data sets and run MCMC
chains to fit both sparse and full models. As non-informative priors, we take a uniform
distribution over the graph space on G, and a G-Wishart WG(3, Ip) on K|G for the
sparse model, whereas we assume a WishartWp(2+ p, Ip), with rate parametrization, on
K for the full model, where Ip denotes the identity matrix of dimension p. The Wishart
and G-Wishart hyperparameters are equivalent since ν = δ + p − 1, where ν and δ are
the degrees of freendom of Wishart and G-Wishart distributions, respectively. For each
Monte Carlo replication, we generate a random tree, F , of size N and simulate the
latent variables Xh, h = 1, . . . , 2N −1, traversing the tree from root X2N−1 to tips, using
Equation (1) with diffusion precision K0. We set Yk = Xk for the tips k = 1, . . . , N .

We approximate the posterior distribution of the graph structure G for the sparse
model and the posterior distribution of the diffusion precision K and diffusion correlation
R for both models. Simulations are tailored to reach an effective sample size ESS ≈
500 after warm-up. For each Monte Carlo replication re = 1, . . . , RE, we estimate the
posterior graph Ĝ(re) using the Bayes factor criteria and threshold in Eq. (12).

Figure 1 presents the Monte Carlo posterior graph ĜMC = {ĝMC
ij }, calculated as

ĜMC = (RE)−1
∑RE

re=1 Ĝ(re) and the respective true graph structure for both simulation
scenarios. Note that the Monte Carlo graph is a summary measure for the graph estimates
in each Monte Carlo replication, not a direct estimate itself. Therefore, in Figure 1a, edge
thickness and transparency represent ĝMC

ij , i.e. the proportion of Monte Carlo replicates
that include edge (i, j) in the posterior graph.
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In Sim 1, ĜMC perfectly matches the true graph structure, which means that, on
average, the Monte Carlo replicates correctly estimate the association structure. In Sim 2,
however, edges (8, 9) and (8, 10) are not always included in the posterior graphs replicates
(Figure 1a).

To help elucidate the inconsistencies in graph estimation, we also show, in Figure 1b,
the posterior edge inclusion probabilities for each Monte Carlo replication p̂e(re)ij (colored
dots), as well as their means p̂eMC

ij (black dots). We stratify the edges by conditional
(in)dependence type — as conditionally independent (CI), when g0(ij) = 0, or condition-
ally dependent (CD), when g0(ij) = 1 —, and simulation (Sim 1 or Sim 2), and plot
them against the true correlation strength R0. The last grid in Figure 1b combines p̂e
from both simulations to facilitate the visualization, but should be interpreted with care,
since sample sizes and trait dimensions are different between simulations.

We single out a few edges in Figure 1b in order to highlight a couple of model features.
We point out that edge (1, 3) in Sim 1 has mean posterior edge inclusion probability
p̂eMC

13 = 0.372 (black dot for (1, 3) in Figure 1b), and mean posterior graph entry ĝMC
13 =

0.051, which indicates that only 5.1% of the Monte Carlo replications display posterior
edge inclusion probability greater than or equal to 0.76 (see the proportion of colored
dots above the dashed lines in Figure 1b). This is relevant because it suggests that the
absence of edges for CI variables can be correctly estimated even when the respective
true correlation is very strong (r0(13) = −0.89).

For CD variables, one can see that posterior edge inclusion probabilities are high
for strong true correlations, but decrease as the true correlations approach zero (Figure
1b). This result suggests that even CD variables tend to have their posterior graph edge
inclusion probabilities shrunk towards zero in the sparse model if the respective true
correlations are weak. This is the case of the two edges in Sim 2 that display weak
correlations, namely, −0.25 and 0.08 for edges (8, 9) and (8, 10), respectively.

Figure 2 presents the log mean squared-error (logMSE) for K̂(re) and R̂(re) estimates
in both models. For this analysis we classify each parameter entry accordingly to its
conditional (in)dependence type (CI or CD) and, additionally, by its dependence type
(as independent (I), if r0(ij) = 0 or dependent (D), if r0(ij) 6= 0). Then, the categories
are conditionally independent and independent (CI-I), conditionally independent and
dependent (CI-D), and conditionally dependent and dependent (CD-D).

As expected, in both simulation scenarios, the mean precision logMSE for CI variables
(CI-D and CI-I) is significantly lower in the sparse model, specially for the independent
ones (CI-I), when compared to the full model estimates. This is an important result
since CI variables are the main target for sparsity in GGM. Note that, for CD variables,
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Figure 1: Monte Carlo graphs and posterior edge inclusion probabilities for Sim 1 and Sim 2.
(1a) Monte Carlo posterior graph ĜMC and true graph G0 in both simulations scenarios. Edge
thickness and transparency represent the proportion of Monte Carlo replicates that include edge
(i, j) in the posterior graph. (1b) Monte Carlo posterior edge inclusion probabilities p̂e across
R0. Colored points depict the proportion of edges ĝij = 1 in the 1000 Monte Carlo replicates.
The black points represent the p̂eMC

ij of each pairwise correlation. Edges (1, 3) from Sim 1
and (5, 7), (8, 9) and (8, 10) from Sim 2 are indicated to illustrate important features of graph
estimation.
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the logMSE are equivalent between the models, which is consistent with the fact that
Wishart and G-Wishart sampling processes are the same for CD variables (for details,
see Atay-Kayis and Massam, 2005). The mean correlation logMSE for CI-I variables
are also lower in sparse models. This result suggests that the better the estimates for
precision matrices in the sparse model, the lower the correlation’s logMSEs for this class
of variables. Additionally, note that correlations between independent variables display
similar log mean squared-errors regardless their conditional (in)dependence status, in
both simulations.

Additionally, since full models rely on a post-process procedure over the posterior
distribution of R to perform correlation selection, and sparse models directly estimate
Ĝ, we calculate the accuracy, sensitivity, specificity, precision and F1-Score (see the con-
fusion matrix and Table 1 in SI 1 for detailed definitions) for the respective model target
parameter in order to establish a fair comparison between models. These metrics depict
the overall performance of joint estimation of entries for each parameter. However, since
they derived from confusion matrices, which are proper to evaluate binary classification
systems, for full models, the target parameter in each Monte Carlo iteration is actu-
ally R̂H , that is obtained by the classification of each marginal correlation into zero or
non-zero using a specific HPD criteria. We define

r̂
H(re)
ij =




1, if 0 /∈ HPDγ%(r

(re)
ij )

0, otherwise,

where γ indicates the chosen percentage for HPD criteria.
Table 1 reports the comparisons of our sparse model with the full model applying

HPD90% and HPD95% criteria. Our method performs well overall as its specificity, F1-
score, precision and accuracy are higher than the full model in both simulations. Sen-
sitivity is one for all models and criteria in Sim 1, which means that all the true edges
are correctly identified in the sparse model as well as all the true non-zero correlations in
the full model for both HPD criteria. In Sim 2, sensitivity is higher for the full model
with HPD90% (0.91± 0.054) mainly because of the lower percentage of posterior density
required to define correlations as non-zero. Since R0 in Sim 2 (see SI.4) displays some
weak correlations that tend to be shrunk by HPD correlation selection in the full model
— or equivalently, whose corresponding graph entries is pushed towards zero in the sparse
model —, the apparent best performance in sensitivity of HPD90% criteria is actually a
consequence of its less strict interval that favors non-zero correlation classifications, even
for weak true correlations, at the cost of less specificity (0.85± 0.093).

Overall, the sparse model is better at identifying CI and CD variables than the HPD
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criteria are at discriminating between correlated and uncorrelated variables in the full
model. This is particularly the case for the precision metric, that depicts the proportion
of true positives in the confusion matrix among all predicted as true (including the false
positives), and F1-Score, which summarizes the performances by balancing sensitivity
and precision. One can see that, across simulations, the precision metric for Ĝ(re) is at
least 0.99 in the sparse model, but lies under 0.78 for R̂H(re) in the full model, indicating
that the number of false positives is relatively high for post-process HPD procedures.

Table 1: Summary of performance measures for decision criteria in sparse and full models. In
the full model, the decision is to classify the correlations as zero or non-zero according to a chosen
HPD; in the sparse model, it is whether the edges should be included in the posterior graph or
not. The table presents the mean (and standard deviation) for sensitivity, specificity, precision,
F1-score, and accuracy of posterior graph estimates Ĝ(re) (sparse model) and post-processed
diffusion correlation estimates R̂H(re) (full model). The F1-score reaches its best score at 1 and
its worst at 0. The best model for each statistic is boldfaced.

Sim Parameter Criteria Sensitivity Specificity Precision F1-Score Accuracy

Sim 1
Ĝ GGM 1.00 (0.000) 0.99 (0.032) 0.99 (0.056) 0.97 (0.059) 0.98 (0.042)
R̂H HPD90% 1.00 (0.000) 0.72 (0.266) 0.66 (0.155) 0.79 (0.132) 0.81 (0.186)
R̂H HPD95% 1.00 (0.000) 0.78 (0.210) 0.70 (0.127) 0.81 (0.107) 0.84 (0.147)

Sim 2
Ĝ GGM 0.82 (0.055) 1.00 (0.005) 1.00 (0.018) 0.90 (0.034) 0.96 (0.014)
R̂H HPD90% 0.91 (0.054) 0.85 (0.093) 0.70 (0.132) 0.78 (0.092) 0.87 (0.072)
R̂H HPD95% 0.90 (0.055) 0.91 (0.072) 0.78 (0.120) 0.83 (0.079) 0.91 (0.056)

We also compute the accuracy of Ĝ and R̂H directly on each parameter entry, strati-
fying the results by the combination of conditional (in)dependence type (CI or CD) and
dependence type (I or D). This statistic provides better insight about how the conditional
(in)dependence structure and correlation type can affect the model ability to estimate
the association structure (sparse model) or perform correlation selection (full model with
post-process HPD procedure).

In both simulation scenarios, the overall accuracy for each entry is higher for Ĝ in
the sparse model than it is for the analogous R̂H in the full model (Table 2). The
sparse model also displays higher average accuracy for CI-I variables, which is one of
the substantial gains of including the graph estimation in the MBD model. Note that
the difference in accuracy between the models is highlighted by the fact that standard
deviations in CI-I variables are relatively small in both simulation scenarios. On the other
hand, for CI-D variables, the average accuracy is larger for the full model. The reason
for that is the underlying strong correlation of CI-D variables in our simulation settings
(see edges (1, 3) in Sim 1, and (5, 7) in Sim 2, Figure 1b), and how they negatively affect
only sparse model performance. Although the final Monte Carlo graph matches the true
graph structure, in Sim 1 (Figure 1b), the bias in edge (1, 3) affects the average accuracy
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statistic for CI-D, mainly because (1, 3) is the only edge in this classification. The same
conclusion holds for edge (5, 7), in Sim 2, which is also the only edge in this category in
its simulation. This is the reason we are not able to display standard deviations for this
category in Table 2.

In addition, both models and criteria performed well in terms of pairwise accuracy
for CD-D variables. Despite the better accuracy for R̂H with the HPD90% criteria in the
full model, all three statistics are similar, specially when considering their high standard
deviations. Finally, in a general perspective, these accuracy results corroborate the ones
obtained for the logMSE of K̂ where better estimates for the sparse model are associated
with CI-I and similar results between models are obtained for dependent variables (CI-D
and CD-D).

Table 2: Summary of Monte Carlo accuracy measures on each parameter entries in two sim-
ulations scenarios for sparse and full models. The table presents the average (and standard
deviation) accuracy for posterior graph Ĝ(re) edges in the sparse model, and for post-inference
posterior correlation R̂H(re) entries in the full model. The number of pairwise entries classified
in each category according to the conditional (in)dependency (CD or CI) and dependency types
(D or I) is indicated by n. The best models are boldfaced.

Criteria G0 R0

Sim 1 Sim 2

n Accuracy (sd) n Accuracy (sd)

GGM CD D 3 1.00 (0.000) 11 0.82 (0.348)
HPD90% CD D 3 1.00 (0.000) 11 0.91 (0.236)
HPD95% CD D 3 1.00 (0.000) 11 0.90 (0.264)

GGM CI D 1 0.95 - 1 0.99 -
HPD90% CI D 1 1.00 - 1 1.00 -
HPD95% CI D 1 1.00 - 1 1.00 -

GGM CI I 6 1.00 (0.001) 33 1.00 (0.001)
HPD90% CI I 6 0.84 (0.007) 33 0.88 (0.010)
HPD95% CI I 6 0.90 (0.007) 33 0.94 (0.007)

GGM Overall Overall 10 1.00 (0.016) 45 0.96 (0.183)
HPD90% Overall Overall 10 0.91 (0.082) 45 0.89 (0.115)
HPD95% Overall Overall 10 0.94 (0.050) 45 0.93 (0.128)

5 Applications

We apply our method to two data sets to showcase the benefits of including graph esti-
mation in the MBD model and to demonstrate how the association structure represented
by the graph can lead to richer discussions when compared to traditional trait evolution
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models. For each application, we run both sparse and full models in equivalent setups.
We choose HPD95% as the criteria for post-process correlation selection.

5.1 Darwin’s Finches. Evolution of Darwin’s finches (Fringillidae, Passeriformes) is a
classical example of adaptive radiation under natural selection. There are thirteen species
in the Galápagos archipelago and another one on Cocos island. The wide variation in beak
morphology is associated with the exploitation of a variety of ecological niches, because
it allows finches to access particular types of food — including seeds, insects, and cactus
flowers (Abzhanov et al., 2004, 2006) —, and likely played a role in the diversification
of avian species (Mallarino et al., 2011). To assess the phenotypic correlations and the
association structure between morphometric variables, we use the data set of 13 species of
Darwin’s finches in the study of Drummond et al. (2012). The data consist of a 2,065-bp
partial nucleotide alignment of the mitochondrial control region and cytochrome b genes
and five continuously measured phenotypic traits: culmen length (CulmenL), beak depth
(BeakD), gonys width (GonysW), wing length (WingL), and tarsus length (TarsusL). We
estimate the posterior graph Ĝ for the sparse model and the diffusion correlation R̂ in
both sparse and full models in order to illustrate the gain of explicitly accounting for the
association structure in our inference framework.

Figure 3a displays the estimated posterior graph Ĝ for the association structure be-
tween Darwin’s finches trait measurements, whereas Figures 3b, and 3c present the evo-
lutionary correlation between those traits in the sparse and full models, respectively. The
numbers above diagonal in each correlogram represent the posterior edge inclusion prob-
abilities pe in the sparse model, and the posterior probability that correlations are of the
same sign of its mean ps, which is a proxy for the percentage whose HPD interval would
not contain zero.

The correlograms of both sparse and full models show similar estimates, although
pairwise correlations are slightly stronger in the full model (Figure 3b and 3c). From the
full model perspective, all ten pairwise correlations are significant, since ps = 1 for each
trait combination (Figure 3c). Correlations are all positive and relatively strong, varying
between 0.65 and 0.99. Interestingly, note that stronger correlations correspond to the
pairwise variables that share an edge in the sparse model graph. Notice also that the
association structure represented by the estimated graph strongly enhances our ability to
interpret and translate the intricate correlations presented in the correlograms.

From Figure 3a one can see that the wing length is directly associated with tar-
sus length (r̂WingL,TarsusL = 0.84, pe = 0.99), culmen length (r̂WingL,CulmenL = 0.83,
pe = 0.97), and gonys width (r̂WingL,GonysW = 0.74, pe = 0.76). However, conditioning
on the wing length and the remaining variables, culmen length and tarsus length and
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gonys width are pairwise independent, which suggest that there is no evidence for di-
rect interaction between these traits during their evolution among analysed finch species.
Additionally, the beak depth is directly and exclusively associated with gonys width
(r̂BeakD,GonysW = 0.98, pe = 1), highlighting their decisive conditional dependency given
the other variables in the sparse model. The conditional independence found between cul-
men length and beak depth (pe = 0.06) and culmen length and gonys width (pe = 0.07)
couple with the findings of a sequence of studies on the identification of a regulatory net-
work governing the morphology of the prenasal cartilage (pnc) (Abzhanov et al., 2004,
2006), and another one controlling the premaxillary bone (pmx ) (Mallarino et al., 2011).
The modularity embedded in these conditional independencies might help explain how the
Finches evolutionary system lead to so much phenotypic variability in beak morphology.

First, Abzhanov et al. (2004) found that the expression of the bone morphogenetic
protein 4 (Bmp4 ) in the mesenchyme of the upper beaks strongly correlated with deep and
broad beak morphology, explaining the linkage in their variation. This Bmp4 regulatory
pathway could explain why beak depth and gonys width share an edge in the posterior
graph. However, it is important to consider that those results were obtained for the
upper beak only, and our finches data set provide only: i) gonys width measures, which
correspond to the lower beak; and ii) beak depth without discriminating between upper
and lower parts. Therefore, a more detailed data set is required to build a proper causal
connection between the conditional dependency found in the posterior graph and the
Bmp4 regulatory pathway in lower beaks measurements. Additionally, Abzhanov et al.
(2006) found that local upregulation of the calmodulin-dependent pathway is likely to
have been a component of the evolution of Darwin’s finch species with elongated beak
morphology and provide a mechanistic explanation for the conditional independence of
beak evolution between length and width/depth axes. Both Bmp4 and CaM regulate
morphogenesis of the prenasal cartilage (pnc) in early development, which forms the
initial beak skeleton. However, much of the beak diversity in birds depends on variation
in the premaxillary bone (pmx ), that forms later in development and becomes the most
prominent functional and structural component of the adult upper beak/jaw.

Second, Mallarino et al. (2011) found that TGFβIIr, β-catenin, and Dickkopf-3 are
differentially expressed in the developing premaxillary bone of embryos of species with
different beak shapes affecting beak length and depth, which might explain how the
tightly coupled depth and width dimensions can evolve to some extent conditionally in-
dependently. Altogether, the two-module program of development involving independent
regulating molecules offers unique insights into how different developmental pathways
may be modified and combined to induce multidimensional shifts in beak morphology.
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
W

ing
L

Ta
rs

us
L

Culm
en

L

Bea
kD

Gon
ys

W

WingL

TarsusL

CulmenL

BeakD

GonysW

1 0.97

0.18

0.42

0.19

0.06

0.76

0.21

0.07

1

(b) Sparse model R̂ and pe

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
W

ing
L

Ta
rs

us
L

Culm
en

L

Bea
kD

Gon
ys

W

WingL

TarsusL

CulmenL

BeakD

GonysW

1 1

1

1

1

1

1

1

1

1

(c) Full model R̂ and ps

Figure 3: Association structure and correlation between Darwin’s Finches morphometric traits
in sparse and full models. Graph edge thickness and transparency represent the posterior edge
inclusion probability pe in the sparse model. The ellipses below correlogram diagonal summarize
the posterior mean correlations r̂ij between each pair of traits. In the sparse model, the numbers
above the diagonal report the posterior edge inclusion probability pe (Figure 3b), while in the full
model they report the posterior probability that the correlation is of the same sign as its mean
ps, as an alternative visualization of HPD (Figure 3c). Highlighted numbers above diagonal
indicate included edges in the posterior graph (sparse model) or significant correlations using
HPD95% (full model). 20



This hypothesis, however, might explain just a part of the complex beak measurement
variation, since in the graph the edge between BeakD and GonysW display the high-
est posterior inclusion probability peBeakD,GonysW = 1, and the strongest correlation
r̂BeakD,GonysW = 0.98, revealing a decisive support in favor of the conditionally dependence
structure between these traits.

5.2 Prokaryotes. We revisit the application of Hassler et al. (2020) concerning correla-
tion estimates among a set of genotypic and phenotypic prokaryote traits. Our approach
extends the MBD model for phenotypic trait evolution in Hassler et al. (2020) to include
the estimation of the diffusion graph representing the underlying association structure
between traits.

Hassler et al. (2020) collect data for N = 705 prokaryotes, combining cell diameter
(CellD), cell length (CellL), optimum temperature (Topt), and pH measurements from
Goberna and Verdú (2016), as well as data on genome length (GenL), coding sequences
length (CDS), and GC content (GC) from the prokaryotes table in NCBI Genome. As
in Hassler et al. (2020), we use 16S sequences to infer the phylogeny. After fitting sparse
and full models, according to model setup described in Hassler et al. (2020, Section 7.2),
we obtain posterior samples for parameters of scientific interest. We discard the first 20%
of the samples as warm-up. From the posterior distribution of R and G we estimate the
posterior graph Ĝ, and the posterior correlation R̂.

Figure 4a displays the estimated posterior graph structure Ĝ with the associations
between trait measurements, and Figure 4b and 4c present the posterior evolutionary cor-
relation R̂ between those traits in both sparse and full models. In the full model, marked
ellipses and upper diagonal numbers single out significant correlations using HPD95% cri-
teria to perform correlation selection, whereas, in the sparse model, they indicate that
corresponding edges are included in the posterior graph.

By comparing both correlograms, one can see that correlations are similar for most
pairs of traits. However, we see an important divergence between the models in the corre-
lation of pH with both genome length and coding sequence length. While the full model
identifies those correlations as significant (r̂pH, genL = −0.20, HPD95% = [−0.34,−0.05]
and r̂pH, CDS = −0.20, HPD95% = [−0.35,−0.06]), the sparse model shrinks them towards
zero (r̂pH, genL ≈ r̂pH, CDS = −0.04). The posterior graph shows that pH is conditionally
independent to all other traits in the sparse model (Figure 4a), suggesting that pH may
have not coupled with any of them during prokaryote evolution.

We focus on the results obtained from the sparse model and take advantage of the
information in the graph structure to drive our interpretations of the diffusion correla-
tions. The graph structure suggests that the temperature might play an important role
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as a selective pressure in prokaryote evolution, since prokaryote optimum temperature
are directly associate with two well discussed hypothesis, namely genome streamlining
(Sela et al., 2016) and thermal adaptation (Bernardi and Bernardi, 1986).

One can see that higher optimal temperatures are directly associated with smaller
genome length (r̂Topt,genL = −0.56, pe = 0.80) and smaller genomes are also directly asso-
ciated with reduced coding sequences (CDS), as informed by their conditional dependence
with high edge inclusion probability in the graph, and the extreme positive correlation
between those traits (r̂genL,CDS = 0.99, pe = 1). Although CDS and optimal tempera-
ture display a relatively strong negative correlation (r̂Topt,CDS = −0.56), the estimated
graph indicates that they might actually be conditionally independent given the genome
length and the remaining traits in the model (peTopt,CDS = 0.44). In addition, genL is
also directly associated and positively correlated with the cell length (r̂genL,cellL = 0.32,
pe = 0.82). This result suggest that optimal temperature indirectly affects CellL and CDS
through its direct effect on genome length. Those results corroborate with the genome
streamlining hypothesis which states that certain prokaryotic genomes tend to be small
in size, due to selection against the retention of non-coding DNA, and in favor of faster
replication rates (Sela et al., 2016).

Moreover, we find optimal temperature to be also directly associated with the GC
content in prokaryotic genomes displaying a positive correlation (r̂Topt,GC = 0.21, pe =

0.96). This result points to the polemic thermal adaptation hypothesis which posits that
higher GC content is involved in adaptation to high temperatures because it may offer
thermostability to genetic material (Bernardi and Bernardi, 1986).

Hurst and Merchant (2001) refuted the thermal adaptation hypothesis by founding
no correlation between optimal temperatures and GC3 content which would provide a
strong evidence for the hypothesis. Nevertheless, data from only 100 prokaryotes were
used to achieve this result. Additionally, in a recent study, Hu et al. (2022) showed
positive correlations between optimal growth temperature (Topt) and GC content both
in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences,
chromosomal sequences, plasmid sequences, core genes, and accessory genes, providing
additional support for the thermal adaptation hypothesis.
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Figure 4: Association structure and correlation among prokaryotic growth properties. See
Figure 3 for caption. In the sparse model, marked ellipses and numbers correspond to the edges
included in the marginal posterior graph G, while in the full model they highlight the significant
correlations according to the HPD95% criteria.
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6 Computational Efficiency

Here we provide a summary of the computational cost of including graph estimation in
SPTE model. We formalize our comparison by computing parameter update cost the
proportion of time spent updating the parameter of interest (K in full model and (K,G)

in sparse model) and the minimum and median effective sample size (ESS) per minute
for the diffusion correlation under both sparse and full models (Table 3).

We fixed the phylogenetic tree in the simulation study, whereas estimate F in the
application data sets. Notice that, in the simulation data, we can directly compare the
computational cost of equipping the MBD model with GGM because we only update
(K,G) in the sparse model and K in the full model. This is the reason why parameter
update cost is 100% in both Sim 1 and Sim 2. When the tree F is fixed, we see that ESS
per second decreases between 76 and 82%. Indeed, sparse models are computationally
more expensive compared to full models due to the graph update burden.

On the other hand, when the tree is simultaneously estimated, most of the computa-
tional effort involve the phylogenetic tree estimation such that the computational cost of
structure learning decreases compared to the global MCMC cost. One can see that the
computational cost of updating the diffusion graph is less than 5% in the worst scenario.
The Darwin’s Finches and Sim 1 are both p = 5 data sets, but the speed-down for the
median ESS/minute drops from 76.5% in Sim 1 to 20.3% in finches data. Note also that
in the prokaryotes application, although updating (K,G) requires more computational
effort than updating K only (full model), both update costs are negligible compared to
the global update cost of MCMC (1.26% and 1.30%, respectively).
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Table 3: Computational cost of graph estimation. We report MCMC sampling efficiency
through the update parameter cost, which is the proportion of time spent to update
the parameter of interest in comparison to global MCMC cost, and by computing the
minimum and median effective sample size (ESS) per minute.

Data set F N p Model
Update R ESS/minute

parameter cost minimum median

Sim 1 Fixed 50 5
Full K 100% 4445.59 5069.41
Sparse (K,G) 100% 1053.96 1189.19
Speed-down - - 76.3% 76.5%

Sim 2 Fixed 100 10
Full K 100% 1606.49 2273.61
Sparse (K,G) 100% 285.94 426.14
Speed-down - - 82.2% 81.3%

Darwin’s finches Estimated 13 5
Full K 0.66% 1244.43 1244.43
Sparse (K,G) 4.83% 887.56 992.03
Speed-down - - 28.7% 20.3%

Prokaryotes Estimated 705 7
Full K 1.26% 1.02 2.45
Sparse (K,G) 1.30% 0.35 1.84
Speed-down - - 66.1% 24.8%

7 Discussion

We present a Bayesian inference framework to perform a model-based covariance selec-
tion, using Gaussian graphical models, in order to learn the association structure between
continuous traits while jointly inferring the trait evolutionary correlations and the phy-
logenetic tree of related taxa through sequence data. By doing so, we introduce another
parameter of scientific interest, the diffusion graph G that complements the information
provided by the trait correlations estimated in these phylogenetic trait evolution models.

Our approach significantly improves upon traditional trait evolution models in terms
of modeling and inference. As shown in the simulation study, our model also provides
better estimates for the diffusion precision and diffusion correlation, specially for inde-
pendent variables — which are the main target for sparsity —, while displaying similar
logMSE for dependent variables (CI-D and CD-D). Additionally, SPTE model can accu-
rately identify the association structure between traits. The statistical performance for
graph estimation in the sparse model is better than the one for post-process correlation
selection in the full model, which highlights the advantages of a model-based approach
for covariance selection.

When applying the full model we can merely identify significantly correlated traits,
discuss the strength of these correlations, and use it to guide the search for potential
explanations — in a possibly dense correlogram. On the other hand, more than simply
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inferring the evolutionary correlations, the sparse model additionally informs about the
association structure between traits, which is encoded in the estimated diffusion graph.
The association structure can help us refine the search for potential mechanisms to ex-
plain the conditional (in)dependencies revealed by the diffusion graph underlying the
dependencies presented by the correlograms.

By analyzing the correlograms alone we are not able to understand the nuances in
trait relationships. In many cases, the correlations might capture indirect effects of the
association structure itself rather than translate biological phenomenon. For example, if
we have two variables A and B each independently associated with a third variable C,
the changes in C might affect the variation in both A and B. These changes in A and B,
thereafter, are likely to express some indirect pattern due to their individual connection
to C. This indirect pattern can, ultimately, be captured by a correlation coefficient.
This could explain why it is difficult to distinguish the correlations directly originated
from causal relationships between traits in the study to the ones representing indirect
effects of the underlying association structure — or the ones mediated by phenomena not
considered in the study —, by just relying on the correlations.

The results from our applications indicate that combining information from correla-
tions with the conditional independencies in the diffusion graph, however, allows for a
more precise selection of candidate traits that may interact along the evolutionary process
of related organisms. For this reason, learning the association structure is imperative,
particularly when trait dimension p increases.

Another important advantage of our approach is that, with the appropriate adapta-
tions, it can be integrated to a broad range of Gaussian models due to its readily use
feature. Under a computational perspective, including graph estimation in the MBD
model only requires changes in the precision matrix update mechanism to jointly obtain
p(K,G). The proposed novelty does not make any impact on model likelihood, since
model dependence on G is completely mediated by K, i.e. p(X|K,G,F ) = p(X|K,F ).
Therefore, as the changes consists on prior and hyperprior structure choices, the ap-
proaches employed for likelihood computations remain intact. This is a desirable and
convenient feature because it enables our GGM approach to potentially profit from any
future computational improvement in trait evolution models. For example, in the prokary-
otes application we were able to perform covariance selection on this massive data set by
building upon the efficient approach developed by Hassler et al. (2020) which integrates
out missing values and allows for previously intractable analyses on large trees.

The sparse model is computationally more expensive than the full model due to the
additional steps required for graph estimation such as the computation of G-Wishart
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prior IG(δ,D) and posterior IG(δ + N,D + ∆) normalizing constants to perform graph
updates. Additionally, chains must be run longer to account for increased complexity in
the parametric space. This restriction, however, is not overly limiting because when we
simultaneously estimate the phylogenetic tree, the computational cost of graph estimation
pales in comparison to the global cost of MCMC.

One possible future improvement for our approach lies in the mechanism choice to per-
form graph updates. Graph estimation is incredibly challenging given the dimensionality
of the graph space. The employed graph updates using the ratio of normalizing con-
stants are convenient because they do not require any additional implementations, since
G-Wishart normalizing constant approximations should be mandatorily implemented for
G-Wishart likelihood computations. In spite of convenience, this is one of the early ap-
proaches to tackle this expensive step in GGM. Algorithms such as birth-death MCMC
(BDMCMC) (Mohammadi and Wit, 2015) or G-Wishart weighted proposal algorithm
(WWA) (Boom et al., 2021) are potential directions to explore.

Additionally, we did not perform extensive simulations to characterize the performance
of the presented methodology. Examining a broader range of simulation conditions such
as different graph structures G0 and trait dimension p, is an important future direction
to improve SPTE.

Finally, while we do not explore this in simulations or application, as presented in
Section 4 and 5, the sparse phylogenetic trait evolution model can be further adapted
to deal with binary, categorical, and ordinal data as in Cybis et al. (2015); Zhang et al.
(2021), which will only add to the model’s broad applicability. The biggest challenge for
this extension is how to bypass the identifiability issue on the diffusion precision. One way
to achieve that is using a parameter expansion for data augmentation (PXDA) approach
(Chib and Greenberg, 1998; Talhouk et al., 2012).
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Supplementary Information

SI 1 Simulation Study

Here we provide more the details for the simulations conducted to compare the perfor-
mances of both sparse and full models. First we present the true diffusion precision
matrices and the corresponding diffusion correlation matrices for simulation Sim 1 and
Sim 2. For Sim 1 we define K0 and R0 as

K0 =




3.87 3.62 0 0 0

3.62 8.50 −4.87 0 0

0 −4.87 5.13 0 0

0 0 0 6.55 −6.29
0 0 0 6.29 6.55



, (SI.1)

and

R0 =




1.00 −0.93 −0.89 0 0

−0.93 1.00 0.95 0 0

−0.89 0.95 1.00 0 0

0 0 0 1.00 0.96

0 0 0 0.96 1.00




(SI.2)

For Sim 2 we define

K0 =




9.52 −7.26 4.25 −3.64 0 0 0 0 0 0

−7.26 8.17 −3.55 2.34 0 0 0 0 0 0

4.25 −3.55 10.3 3.34 0 0 0 0 0 0

−3.64 2.34 3.34 4.46 0 0 0 0 0 0

0 0 0 0 0.59 −0.59 0 0 0 0

0 0 0 0 −0.59 2.91 −1.54 0 0 0

0 0 0 0 0 −1.54 1.35 0 0 0

0 0 0 0 0 0 0 7.84 1.12 0.12

0 0 0 0 0 0 0 1.12 2.86 1.18

0 0 0 0 0 0 0 0.12 1.18 3.16




,

(SI.3)

1



and

R0 =




1 0.6 −0.96 0.97 0 0 0 0 0 0

0.6 1 −0.41 0.43 0 0 0 0 0 0

−0.96 −0.41 1 −0.98 0 0 0 0 0 0

0.97 0.43 −0.98 1 0 0 0 0 0 0

0 0 0 0 1 0.72 0.62 0 0 0

0 0 0 0 0.72 1 0.87 0 0 0

0 0 0 0 0.62 0.87 1 0 0 0

0 0 0 0 0 0 0 1 −0.25 0.08

0 0 0 0 0 0 0 −0.25 1 −0.4
0 0 0 0 0 0 0 0.08 −0.4 1




.

(SI.4)
Table 1 show the definifion of the statistics used to evaluate the performances of both

full and sparse models presented in Section 4, based on the following confusion matrix

True
Predicted 1 0

1 TP FP
0 FN TN

where TP is the true positives, FP is the false positives, FN is the false negatives and
TN represent the true negatives. In our model, the variables are correspond to presence
or absence of edges in sparse models or non-zero or zero correlations.

Table 1: Definition of the statistics used to assess the performances of graph estimation in the
sparse model and post-process correlation selection with HPD criteria in the full model. TP =
True Positive; TN = True Negative; FP = False Positive; FN = False Negative.

Statistic Definition

Accuracy
TP + TN

TP + FP + FN + TN

Sensitivity
TP

TP + FN

Specificity
TN

TN + FP

Precision
TP

TP + FP

F1-Score
2TP

2TP + FP + FN

2



SI 2 Graph updates

Here we present further details to obtain the marginal distribution of G given all the
other parameters in the model, except K. Under the non-informative prior choices for
diffusion graph in (5) and diffusion precision (6), the joint density p(X,K,G|F , δ,D) is
given by

p(X,K,G|δ,D,F ) = p(X|K,F )p(K|G, δ,D,F )p(G|δ,D)

=
|K|n/2
(2π)np/2

exp

{
−1

2
tr(UK)

}

× 1

I(δ,D)
|K|(δ−2)/2 exp

{
−1

2
tr(DK)

}
1K∈PG

1

|G|

=
1

(2π)np/2
1

|G|
1

IG(δ,D)
|K|(δ?−2)/2 exp

{
−1

2
tr(D?K)

}
1K∈PG

. (SI.5)

where δ? = δ +N , D? = D + ∆, and ∆ = (X− 1Nµ
t
0)
t (

Υ + τ−10 JN
)−1

(X− 1Nµ
t
0). In

order to obtain the marginal distribution of X, given all other parameters except K, we
integrate the joint distribution (SI.5) over the possible values for K,

p(X|G, δ,D,F ) =
p(X,G|δ,D,F )

p(G|δ,D,F )
=

∫
K∈PG

p(X,K,G|δ,D,F ) dK

p(G|δ,D,F )
. (SI.6)

By replacing the joint density (SI.5) in the kernel of the integral in Equation (SI.6), we
have

p(X|G, δ,D,F ) = |G| 1

(2π)Np/2
1

|G|
1

IG(δ,D)

∫

K∈PG

|K|(δ?−2)/2 exp
{
−1

2
tr(D?K)

}
1K∈PG

dK

=
1

(2π)Np/2
IG(δ

?,D?)

IG(δ,D)
. (SI.7)

Note that the kernel of the integral in Equation (SI.7) corresponds to the posterior of the
diffusion precision, whose distribution is WG(δ

? = δ + N,D? = D + ∆). Therefore the
marginal distribution of G, given all other parameters except K,

p(G|X, δ,D,F ) ∝ p(G|δ,D)p(X|G, δ,D,F ) =
p(G|δ,D)

(2π)Np/2
IG(δ +N,D + ∆)

IG(δ,D)
. (SI.8)

Hence, computing the marginal likelihood (SI.6) or the posterior distribution (SI.8) is
reduced to the problem of computing normalising constants of the type IG(δ,D), with
δ > 0 and D positive definite, which are sufficient conditions for convergence of the
normalizing constants (Mitsakakis, 2010, Lemma 3.2.1: IG(δ,D) <∞ for δ > 0).
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