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Numerical evidence of Janssen-Oerding’s prediction in a three-dimensional spin model far
from equilibrium
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In 1994, Jansen and Oerding predicted an interesting anomalous tricritical dynamic behavior in three-
dimensional models via renormalization group theory. However, we highlight the lack of literature about the
computational verification of this universal behavior. Here, we use some tricks to capture the log corrections
and the parameters predicted by these authors using the three-dimensional Blume-Capel model. We quantify the
crossover phenomena by computing the critical exponents near the tricritical point. In addition, we also perform
a more detailed study of the dynamic localization of the phase diagram via power-law optimization.
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I. INTRODUCTION

The Blume-Capel (BC) model [1] is a spin-1 model whose
Hamiltonian is

H = −J
∑
〈i, j〉

σiσ j + D
N∑

i=1

σ 2
i − H

N∑
i=1

σ j . (1)

Here, D � 0 is the anisotropy term, σ j = 0,±1, H is the
external field that couples with each spin, and 〈i, j〉 denotes
that sum is taken only over the nearest neighbors in a d-
dimensional lattice.

Such a model in two and three dimensions presents a crit-
ical line and a first-order transition phase line, and such lines
have an intersection point known as a tricritical point (TP). It
is called that because for H > 0 and H < 0, one has two other
first-order lines in addition to one from H = 0, and all these
three lines culminate in that point. If the equilibrium studies
of this model are fascinating, their dynamic aspects are even
more so, mainly when studied at TP.

Janssen, Schaub, and Schmittmann [2], considering sys-
tems without conserved quantities, model A in the terminol-
ogy of Halperin et al. [3], proposed a dynamic scaling relation
that includes the dependence on the initial trace of the sys-
tem for the moments of the magnetization, m(k)(t, τ, L, m0) =
b− kβ

ν m(k)(b−zt, b
1
ν τ, b−1L, bx0 m0), where m(k) denotes the kth

moment of the magnetization per spin. In this case the average
considers the different time evolutions of the system and the
different initial conditions since with the same m0 (initial mag-
netization) we can have several different spin configurations.
Here, t is the time evolution, b is an arbitrary spatial rescaling
factor, τ = (T − Tc)/Tc is the reduced temperature, and L is
the linear size of the system.

This approach predicts an initial anomalous slip of magne-
tization (first moment) on the relaxation of a spin model that,
initially at high temperatures (m0 � 1), is suddenly placed at
its critical temperature. A power law with an exponent θ =

(x0 − β/ν)/z > 0 describes such behavior, which depends on
universal exponents: the dynamic one z and the static ex-
ponents β and ν, with these last ones being related to the
equilibrium of the system. An anomalous dimension x0 related
to initial magnetization completes its dependence.

Zheng and many collaborators (for a review, see Ref. [4])
numerically explored such a scaling relation via Monte Carlo
(MC) simulations under many aspects. In the sequence, many
other authors enriched the method by proposing new amounts,
refinements, and other models, including also ones without
a defined Hamiltonian, and even models with a long-range
interaction (see, for example, Refs. [5–11]).

However, the method goes beyond and such an approach
can be extended, for example, to quantum systems [12–14], to
nonequilibrium phenomena in polypeptides [15], and in time-
dependent simulations of perfect and imperfect surfaces of the
three-dimensional Ising model [16]. Some authors explored
the short-time dynamics relaxation in the context of determin-
istic Hamiltonian dynamics (see, for example, Ref. [17]).

The consequences of this theory, at criticality, are described
as a transition between two power laws:

m(t ) =
{

m0t θ for t0 < t < m−z/x0
0 ,

t−λ for t � m−z/x0
0 ,

(2)

where λ = z−1β/ν and m(t ) is the magnetization per spin,
which corresponds to the first moment m(1)(t ). One way to
check the second tail m(t ) ∼ t−λ of this behavior is to pre-
pare systems from a wholly ordered initial system (m0 = 1).
In the two-dimensional Blume-Capel model, time-dependent
MC (TDMC) simulations show exactly such behavior of its
critical points (D � 0). However, for the TP, such simulations
show that θ is negative as theoretically predicted by Janssen
and Oerding [18] and via time-dependent MC simulations
by da Silva et al. [19]. This previous work showed that the
magnitude of this exponent is more than double the ones
found for the critical ones (Ising-like points).
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Grasberger [20] and Jaster et al. [21] initially studied
the tridimensional kinetic spin-1 Ising model (Blume-Capel
model for D = 0) using TDMC simulations to obtain the
exponents of the model for the critical point of this model.
However, what happens when D > 0? Does the behavior
described by Eq. (2) remain valid for critical and tricritical
points? Can TDMC simulations show the crossover effects
between the critical line (CL) and tricritical point (TP)?

This paper will explore the critical behavior of the three-
dimensional Blume-Capel model compared with the results
from its version in two dimensions via TDMC. We will show
solid numerical evidence of the log corrections for the TP
in its three-dimensional version theoretically predicted by
Janssen and Oerding [18]. We complete our study estimat-
ing critical and tricritical parameters with a refinement of
the power laws. The computation of critical exponents along
the critical line captures the crossover effects at proximities of
the tricritical point.

II. RESULTS

We start our study by computing the coefficient of determi-
nation that here measures the “quality” of the power law [22],

r =

tmax∑
t=tmin

(ln m − a − b ln t )2

tmax∑
t=tmin

[ln m − ln m(t )]2

, (3)

with ln m = 1
(tmax−tmin )

∑tmax
t=tmin

ln m(t ). After a previous study
of size systems, one used systems with a linear dimension L =
40 (N = L3 = 6.4 × 104 spins). Here, m(t ) = 1

N

∑N
i=1〈σi〉 =

1
NrunN

∑Nrun
j=1

∑N
i=1 σi, j (t ) with σi, j (t ) denoting the ith spin state

at the jth run, at time t . We obtained such an amount by
performing averages over Nrun = 300 different runs (time evo-
lutions). We also used tmin = 10 and tmax = 100 MC steps for
our estimates.

We vary kBT/J from 1.218 until 1.618, from D/J = 2.645
until 3.040 with values spaced at � = 2.5 × 10−3 for both
parameters. This diagram (Fig. 1) shows a suggestive narrow
region (blue) that includes the critical line since it contains the
points with the highest coefficients of determination, i.e., can-
didates to the critical points. The region becomes narrower as
it approaches the TP [see, for example, D/J = 2.844 79(30)
and kBT/J = 1.4182(55) [23]] for the tricritical coupling ra-
tio, which is a “foreshadowing” of the crossover effects. After
this point, it becomes even narrower, and this is only an
“echo” of the critical region since one expects only a first-
order transition for D/J � 2.8502 [24] and in this case, out of
the Fig. 1 since this first-order transition point corresponds to
temperature kBT/J = 0.221(1).

In addition, it is essential to mention that if we perform a
severe restriction to the coefficient of determination, 0.9998 <

r < 1, one does not observe points after D/J > 2.844 79 (TP),
as observed in the inset plot in Fig. 1. This corroborates
the fact that these extra blue points found in the original
figure were, as previously mentioned, only a “reverberation”
of the critical region and that the method of the coefficient of
determination is reliable indeed.

FIG. 1. Coefficient of determination for different parameters
kBT/J and D/J . Until the point kBT/J ≈ 1.418 and D/J ≈ 2.845
(TP according to literature estimates), the narrow blue region con-
tains the critical line. The inset plot shows the reminiscent points over
a significantly restricted situation, 0.9998 < r < 1, showing that the
optimization does not find other points after the TP point in this
situation.

Nevertheless, are the optimal points indeed the critical line
points? By using the critical points presented in Butera and
Pernici [24] obtained via low- and high-temperature expan-
sions (see Table 5 in Ref. [24]), we can check if our critical
points are precisely well estimated.

We fixed some values of D/J picked up from this same
table. For each input D/J , we obtained the optimal corre-
sponding value kBT/J , which corresponds to the maximal r
value [see Fig. 2(a)]. With these points in hand, we compared
with the critical line obtained by Butera and Pernici [24]
as described in Fig. 2(b), who used equilibrium numerical
methods. We observed an excellent match with such a results
method, showing that we can obtain the critical values of the
three-dimensional Blume-Capel model using time-dependent
MC simulations with the refinement method based on the
coefficient of determination.

What about the crossover effects? How is the sensitivity
of these exponents as they approach the tricritical point? For
that, we look at different time evolutions. First, to calculate the
exponent θ , we should study the system with varying values
of m0 by performing an extrapolation m0 → 0.

We used a more accessible alternative proposed by Tome
and Oliveira [25] by calculating

C(t ) = 1

N2

〈(
N∑

i=1

σi(t )

)(
N∑

i=1

σi(0)

)〉

= 1

N2Nrun

N∑
i=1

N∑
k=1

Nrun∑
j=1

σi, j (t )σk, j (0). (4)

Such an estimate considers σi, j (0) randomly drawn (0,
−1, or +1, with probability 1/3), such that m(0) =

1
NrunN

∑N
i=1

∑Nrun
j=1 σi, j (0) ≈ 0, which yields C(t ) ∼ t θ when

Nrun is large enough.
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FIG. 2. (a) Curves r × (kBT )/J for some values of D/J . (b) The
points obtained with the optimization in (a) compared with the curve
obtained by Butera and Pernici [24].

For this experiment, one used Nrun = 30 000 runs, and we
measured the slopes in the interval [30,150] MC steps. The
exponent λ was obtained by performing simulations start-
ing with m0 = 1 of m(t ). In this case, one used Nrun = 300
runs since simulations with m0 = 1 require many fewer runs.
In order to obtain the exponent z, one simulates m(2)(t ) =

1
NrunN2

∑Nrun
j=1(

∑N
i=1 σi, j (t ))2 by starting with m0 = 0, and thus

one considers the ratio [26]

F2(t ) = m(2)(t )m0=0

[m(t )m0=1]2 , (5)

which behaves as F2(t ) ∼ t d/z. For m(2)(t )m0=0, only Nrun =
1000 runs are enough for good estimates. For estimates of λ

and z, we performed fits in the interval [10,100] MC steps.
Figures 3(a)–3(c) show the time evolutions of C(t ), m(t )

for m0 = 1, and F2(t ), respectively, for D/J = 0, 1, 1.434 74,
1.689 34, 1.8397, 2, 2.2, 2.613 61, and 2.826 93, correspond-
ing to the critical temperatures given respectively by kBT/J =
3.196 22, 2.877 369, 2.7, 2.579 14, 2.5, 2.407 314, 2.275 495,
1.9, and 1.5. It is interesting to observe those power laws
present changes when they approach the tricritical point:
D/J = 2.844 79kBT/J = 1.4182. These crossover effects, vi-
sually observed in these plots, can also be numerically
checked.

1 10 100

1

1.5

2

2.5
 0

 1

 1.43474

 1.68934

 1.8397

 2

 2.2

 2.61361

 2.82693

 

 

C
(t)

t

crossover effects

critical behavior 

D/k
B
T :

(a)

1 10 100

0.2

0.4

0.6

0.8

1

  0

  1

  1.43474

  1.68934

  1.8397

  2

  2.2

  2.61361

  2.82693

m
(t)

t

D/k
B
T crossover effects

(b)

critical behavior

1 10 100
10-5

10-4

10-3

10-2

10-1

F 2
(t)

t

 0

 1

 1.43474

 1.68934

 1.8397

 2

 2.2

 2.61361

 2.82693

D/kBT :

(c)

crossover effects

critical behavior 

FIG. 3. (a) Time evolution of C(t ). (b) Time evolution of m(t )
for m0 = 1. (c) F2(t ) × t . The used points are the same ones that we
refined in Fig. 2.

To do that, let us check the exponents shown in Table I
analyzing their universality. One has only values for D = 0
in the literature. For example, θ calculated by Jaster et al.
[21] by directly analyzing the initial slip of the magnetiza-
tion m(t ) = m0t θ , performing m0 → 0 yields θ = 0.108(2),
which is in agreement with our estimate. Similarly, these same
authors obtained z = 2.042(6) that agrees with our estimate
with two uncertainty bars. By using MC simulations [27] and
ε expansion [28] similar estimates are found, z = 2.0245(15),
and z = 2.0235(8), respectively.

Finally, these authors obtained β/ν = 0.517(2) which
agrees with our estimates. It is essential to mention that we
obtained larger error bars, considering five different bins, cor-
responding to five different exponents, that, when averaged,
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TABLE I. Exponents of the Blume-Capel model along the critical line obtained with TDMC simulations. The bold results highlight the
crossover effects.

D
J 0 1 1.43474 1.68934 1.8397 2.0 2.2 2.61361 2.82693

λ 0.2492(14) 0.2536(11) 0.2565(15) 0.2585(13) 0.26164(74) 0.2651(13) 0.26873(82) 0.2984(10) 0.3035(64)
z 2.068(14) 2.051(14) 2.037(13) 2.022(12) 2.029(18) 2.005(26) 2.006(19) 1.928(12) 1.8865(66)
θ 0.111(16) 0.091(16) 0.114(11) 0.112(14) 0.112(13) 0.110(15) 0.1080(68) 0.081(15) 0.003(11)
β/ν 0.5153(45) 0.5201(46) 0.5225(45) 0.5227(39) 0.5309(49) 0.5315(74) 0.5391(54) 0.5753(41) 0.573(23)

yield our final estimate with respective uncertainty. It is im-
portant to mention that if we consider a unique time series
with uncertainties of the points and only then, calculating
an exponent whose uncertainty comes from the linear fit, we
obtain smaller error bars. Here, we opted by using the more
conservative method (first) with larger error bars.

We observe a slight variation of the exponents λ, z, θ ,
and β/ν up to 2.2. However, after this value, the crossover
effects are fairly sensitive for D

J = 2.613 61 and 2.826 93,
which corroborates the one visually observed in Fig. 3. Thus
one can conclude that the law described by Eq. (2) is suitable
to describe the critical points of the Blume-Capel model in
three dimensions and crossover effects with θ > 0. It would
be suggestive to think that for the tricritical point as in two
dimensions, we should find a similar law to Eq. (2) but
with θ < 0. However, it does not occur for tricritical points
from three-dimensional systems. Janssen and Oerding [18]
demonstrated that such a problem demands logarithmic cor-
rections to explain the relaxation dynamics. Nevertheless, the
question is as follows: Can we observe this behavior via time-
dependent MC simulations? The answer is positive, and we
will show how to perform it, which is the most important point
of this paper, and it requires a suitable numerical exploration.

The results obtained by Janssen and Oerding [18], using
methods of renormalized field theory, suggest (after some sim-
ple manipulations) that magnetization, for three dimensions,
at the tricritical point, behaves as

m(t ) = m0
ln(t/t0)−a

{1 + t[ln(t/t0)]−(1+4a)m4
0}

1/4 . (6)

According to this theory, a is precisely given by 3
40π

. Thus
the order parameter (magnetization) must present a crossover
between a pure logarithmic behavior for short times followed
by a power law with logarithmic corrections:

m(t ) =
{

m0[ln (t/t0)]−a for t0 < t � m−4
0 ,(

t
ln (t/t0 )

)− 1
4 for t � m−4

0 .
(7)

Here, t0 is the microscopic timescale. Nevertheless, we per-
form time-dependent MC simulations for the TP of the
three-dimensional Blume-Capel model. Thereby, we analyzed
the relaxation from m0 = 1, in order to capture the behavior
m(t ) ∼ ( t

ln(t/t0 ) )−
1
4 . In this case, it is interesting to change t0

to observe the law for short times as observed in Fig. 4(a). It
is most important here to use the correct scale. For that we
performed a plot of ln[m(t )] vs ln[ t

ln(t/t0 ) ]. We can observe
that for lower t0 values, we observe prolonged linear behav-
ior. Figure 4(b) shows the particular case (t0 = 0.1) used to
measure the slope that must be 1/4 according to the prediction

obtained by Janssen and Oerding. One finds ξ = 0.250 34(53)
corroborating the prediction. This value was obtained in the
time interval 5–100 MC steps with the goodness of fit (Q)
equal to 0.72. We obtained the most acceptable value for the
interval 10–100 MC steps ξ = 0.2505(19), with Q = 0.99. It
is important to notice that for tmax > 100, the results were
unsatisfactory. For example, for 10–200, one obtains ξ =
0.267 17(82) with Q = 5.2 × 10−9.

For the second part, we performed simulations for small
values of m0. However, obtaining reasonable estimates for
small values of m0 is numerically complicated due to the
fluctuations. Thus, we used m0 = 0.08, 0.06, 0.04, and 0.02.
We show the time evolutions in Fig. 5(a).

Thus we measured the slopes in the possible regions where
one observed a reasonably short duration linear behavior in
the plot of ln[m(t )] × ln[ln(t )], for different values of m0.
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FIG. 4. (a) Time evolution of m(t ) at the tricritical point, con-
sidering different values of t0. (b) Time evolution of m(t ) for the
particular case t0 = 0.1.
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(a)

(b)

FIG. 5. (a) Time evolutions at the tricritical point for values
m0 = 0.02, 0.04, 0.06, and 0.08. (b) Numerical extrapolation of the
exponent a.

See the straight lines (in red) as indicated in Fig. 5(a). The
slopes supposedly supply the value of the exponent a ac-
cording to Eq. (7). We also observe a linear behavior of a
as a function of m0 [see Fig. 5(b)]. With this in hand, one
can perform an extrapolation for m0 → 0. Such an extrap-
olation yields our estimate aestimated = 0.023 93(13), in good
agreement when compared with the theoretical prediction,
a = 3

40π
≈ 0.023 873.

It is also interesting to use the decay m(t ) ∼ ( t
ln(t/t0 ) )−

1
4

expected from ordered initial states (m0 = 1) to obtain the
tricritical parameters. In this case, we must change the coeffi-
cient of determination to

r =

tmax∑
t=tmin

[
ln m − a − b ln

(
t

ln (t/t0 )

)]2

tmax∑
t=tmin

[ln m − ln m(t )]2

. (8)

Based on this amount, obtained in Ref. [23], we performed
two experiments: one fixed D/J = 2.844 79 by varying
kBT/J , and alternatively by fixing kBT/J = 1.4182, one
varies D/J . Figures 6(a) and 6(b) show both situations, re-
spectively. The optimal values correspond to the maximal r,
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FIG. 6. (a) Coefficient of determination as a function of kBT/J
considering D/J fixed in 2.844 79. (b) Coefficient of determination
as a function of D/J fixing kBT/J = 1.4182.

corroborating the estimates for the TP from literature (see, for
example, Refs. [23,24]), showing that our refinement method
can be modified to attend the temporal laws at TP, i.e., includ-
ing the log corrections.

It is interesting to observe that if the magnetization relaxes
at TP as a power-law t−1/4 with additional logarithmic correc-
tions, starting from m0 = 1, the system seems to predict what
happens in the mean-field regime, since in a recent work, we
considered that evolution of magnetization in such a regime
follows the differential equation [29]

dm

dt
= −m + 2e−βD sinh(βJzm)

2e−βD cosh(βJzm) + 1
. (9)

From a very simplified point of view, such an equation leads
to a crossover between a power-law m(t ) ∼ t−1/2 at the CL
to a power-law m(t ) ∼ t−1/4 at the TP. Thus, the “trace” of
this exponent 1/4, which must occur for d � 4 [30,31], would
already appear in three dimensions but with logarithmic cor-
rections.

III. CONCLUSIONS

In summary, this paper verifies the theoretical predictions
which suggest log corrections for the tricritical point [18]. We
also obtained the critical exponents for the critical line in three
dimensions. One observes the crossover effects using time-
dependent Monte Carlo simulations, considering the time
evolution of different amounts as the time correlation, the ratio
that considers the first and second moment of magnetization
with different initial conditions, and the direct time evolution
of magnetization. Our predictions suggest that the mean-field
behavior has some brief similarities with three-dimensional
results suggested by a recent mean-field study developed in
Ref. [29] .
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