
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ANA LUISA VERONEZE SOLÓRZANO

A Practical Evaluation of Parallel and
Distributed Deep Learning Frameworks

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Lucas Mello Schnorr

Porto Alegre
Dezembro 2021



CIP — CATALOGING-IN-PUBLICATION

Veroneze Solórzano, Ana Luisa

A Practical Evaluation of Parallel and Distributed Deep
Learning Frameworks / Ana Luisa Veroneze Solórzano. –
Porto Alegre: PPGC da UFRGS, 2021.

84 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2021. Advisor: Lucas Mello Schnorr.

1. Distributed Deep Learning, Performance Analysis, HPC,
DDL Frameworks. I. Mello Schnorr, Lucas. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Profa. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“A ship in port is safe, but that is not what ships are built for.”

— GRACE HOPPER
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ABSTRACT

The computational power growth in the last years and the increase of data to be processed

contributed to researchers in deep learning update their models to use distributed train-

ing. Distributed Deep Learning (DDL) is essential for solving large-scale problems faster

and accurately using multiple devices to run the model in parallel. This strategy brings

challenges to improving the training performance without losing accuracy and without

increasing the overhead of exchanging data between host and devices. Frameworks for

DDL have become popular alternatives in the last years for training using multiple de-

vices, running on top of usual machine learning libraries. They are advantageous for

final users since they require only a few extra lines of code to a single-node model script.

However, from a High-Performance Computing (HPC) perspective, it is challenging to

evaluate distributed training performance since the frameworks hide the implementation’s

details. The use of performance analysis methodologies and visualization tools common

to the HPC field can benefit DDL frameworks’ users to choose the best framework for

their model and can benefit DDL frameworks’ developers by providing insights on how

to optimize their applications. This work presents a performance analysis and compari-

son of two modern frameworks: Horovod, one of the most popular DDL frameworks used

worldwide, and Tarantella, a recent framework with the same parallel strategy as Horovod

but with a different all-reduce algorithm and distributed library. Our results showed that

combining HPC and Machine Learning tools to evaluate the performance of DDL can

enrich the findings and identify bottlenecks in the frameworks. Horovod presented higher

scaling efficiency than Tarantella, with a difference of almost 50% in their efficiency scal-

ing from four to twelve GPUs. Although Horovod all-reduce algorithm trains faster than

Tarantella, the last presented higher model accuracy. Using a temporal aggregation, we

also identified the exact time spent computing and communicating during training, which

can benefit developers in improving the frameworks. Since our approach is implemented

at the DDL framework level, it can also be used to analyze the performance of other neu-

ral network models.

Keywords: Distributed Deep Learning, Performance Analysis, HPC, DDL Frameworks.



Avaliação Prática de Frameworks para Deep Learning Paralelo e Distribuído

RESUMO

O aumento do poder computacional e de dados disponíveis nos últimos anos contribuiu

para que pesquisadores em Aprendizado Profundo atualizassem seus modelos para usar

treinamento distribuído. Aprendizado Profundo Distribuído (APD) é essencial para re-

solver problemas de grande escala mais rapidamente e de forma precisa usando múltiplos

dispositivos para treinarem em paralelo. Esta estratégia traz desafios em otimizar o de-

sempenho do treino sem perder a acurácia e sem gerar sobrecarga com comunicações

entre servidor e dispositivos. Frameworks para APD se tornaram uma alternativa para

treinar redes neurais, executando sobre bibliotecas de Aprendizado de Máquina (AM).

Esses frameworks são vantajosos para usuários finais, pois requerem algumas novas li-

nhas de código no script não-distribuído. No entanto, da perspectiva the Computação de

Alto Desempenho (CAD), a avaliação do treinamento distribuído é um desafio, pois os

frameworks escondem detalhes de suas implementações. O uso de metodologias aplica-

das em análise de desempenho e ferramentas para visualização comuns à área de CAD

podem beneficiar usuários dos frameworks a escolherem o melhor para seu modelo, e

também desenvolvedores dos frameworks a identificarem indicativos de como otimizá-

los. Este trabalho apresenta uma avaliação de desempenho e comparação entre dois mo-

dernos frameworks para APD: Horovod, um dos mais populares usado mundialmente, e

Tarantella, mais recente com a mesma estratégia de paralelização que o Horovod, mas

com diferentes algoritmos e padrões para comunicação em sistemas distribuídos. Os re-

sultados mostram que combinar ferramentas de CAD e de AM para avaliar o desempenho

de frameworks para APD enriquecem a análise de desempenho e ajudam a identificar gar-

galos nos frameworks. Horovod apresentou a maior eficiência escalando de quatro à oito

GPUs, com uma diferença de quase 50% em relação ao Tarantella. Embora o algoritmo

do Horovod treine mais rápido do que o do Tarantella, este apresentou maior acurácia

do modelo. Usando agregação temporal, pode-se identificar o tempo gasto com com-

putação e com comunicação, o que pode beneficiar desenvolvedores a melhorarem seus

frameworks. Nossa abordagem pode ser usada para análise de desempenho de diversos

modelos de redes neurais artificiais, pois foi implementada a nível dos frameworks.

Palavras-chave: Distribuição de Aprendizado Profundo, Análise de Desempenho, HPC.
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1 INTRODUCTION

Artificial Neural Networks are mathematical models used by computers to handle

real-world problems inspired by the brain’s capacity to perform perceptual and cogni-

tive tasks (LAINE, 2003). It can be used for scientific research problems involving, for

example, object detection, image classification, genomics, and text categorization studies

(SZEGEDY; TOSHEV; ERHAN, 2013; KRIZHEVSKY; SUTSKEVER; HINTON, 2017;

ZHANG; ZHOU, 2006).

Deep Neural Networks (DNN), as the human brain’s biological neural network,

also have to learn from unknown data using hierarchical training. This training uses

mathematical rules to determine changes in the neuron’s connectivity. The network com-

putes predictions considering what it learned, so the first levels of the network improve

the learning of the deeper levels (LECUN; BENGIO; HINTON, 2015). Linear algebra

plays an important role in Machine Learning (ML) since the networks and parameters are

represented as matrices and vectors, suffering multiplications, transposing, pooling, and

convolution operations.

Training a DNN using big datasets can take days. Despite the training accuracy

and efficiency, researchers are also concerned about increasing the training’s performance

execution. The use of parallel and distributed environments is essential to increase the per-

formance of applications that deal with many data and perform exhaustive computations.

Moreover, DNN models perform several matrices multiplications that can be effectively

implemented in a GPU (OH; JUNG, 2004).

Different approaches have been presented over the last years to accelerate the

learning process. Initially, they rely on exploring the network parameters variation, such

as loss and activation functions (KARLIK; VEHBI, 2011). The next approaches started

exploring architectural innovations on the network design, including increasing the depth

and the width of models (ZAGORUYKO; KOMODAKIS, 2016). Libraries that are refer-

ences in ML, as TensorFlow and Theano, currently support the training distribution over

parallel resources in multi-node environments (ABADI et al., 2016; MA HEAND MAO;

TAYLOR, 2017). However, they require a deeper knowledge of parallel and distributed

models using programming paradigms as CUDA and MPI, and also new algorithms to

handle distributed computing.

Distributed Deep Learning (DDL) frameworks can take advantage of large-scale

hybrid systems (e.g., CPU and GPU) to speed up the training of DNN without extra ef-
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fort from the programmer side (BEN-NUN; HOEFLER, 2019). These tools run over ML

frameworks to distribute a single-device training to a multi-node system with multiple

devices (GPUs, TPUs, and CPUs). New DDL frameworks are being launched constantly

due to the fast development of the field with support to different ML frameworks, us-

ing different parallel programming paradigms and parallelization strategies. Horovod and

Tarantella are two modern frameworks for systems with CPUs and GPUs that offer an

interface to run over ML libraries like Keras and TensorFlow and distribute serial training

to multiple computational nodes adding few lines of code (SERGEEV; BALSO, 2018;

CCHPC, 2020). They share similarities in their installation, usage, and distribution strat-

egy, but they use different all-reduce algorithms and distributed libraries.

Performance evaluation on DDL usually focuses on weak scalability to more de-

vices and measures training time and accuracy. There is a lack of evaluations and compar-

isons of parallel and distributed frameworks from a High-Performance Computing (HPC)

perspective. As we mentioned, the frameworks usually hide details about the distribution

implementation, facilitating the user configuration using a few lines of code. From the

perspective of HPC programmers, it is a challenge to perform an in-depth analysis of how

tools as Horovod and Tarantella are taking advantage of the distributed approaches and

the devices compared to usual parallel and distributed applications.

With a practical evaluation and methodology to use state-of-the-art HPC tools and

visualization methods, we break the framework’s “black box” and better understand the

performance results, the resources usage, the frameworks synchronization algorithms, and

methods used to distribute the training. We performed experiments over four clusters with

varied NVIDIA GPU models using a Convolutional Neural Network (CNN) with varied

batch size using strong-scaling. We found that Horovod presents higher scaling efficiency

than Tarantella, up to 50% faster, and processes batches faster than Tarantella, optimizing

the time synchronizing data. Tarantella, on the other hand, presented higher accuracy for

most cases and also a faster initialization time. Using space/temporal visualizations of

the profiler and tracing measurements, we identified bottlenecks in the Tarantella imple-

mentation. Furthermore, correlating measures from different tools, we depicted the time

spent with computations in the GPUs during each epoch. These results can benefit DDL

frameworks’ developers to improve their tools.



14

1.1 Motivation

The advances of heterogeneous supercomputers and availability of big datasets,

motivated researchers in DL to innovate the field of AI by accelerating the training when

distributing it to multiple devices in an easy way to use. The advantage of using DDL

frameworks from the user side is that they can be applied over a training script for a

single device by adding a few extra lines of code. However, from the researchers’ and

developers’ perspectives, these frameworks hide details of their implementation, such

as synchronization algorithms, communication strategies, computing time and devices

usage. Performance evaluations of DDL frameworks usually focus on their scalability

to more devices and focus on measuring and evaluating the training time and accuracy

(RAVIKUMAR; S., 2020). Considering the fast advances in the field, with new DDL

frameworks being created every year, and new advances on using accelerators to process

linear algebra operations more efficiently, it is required a performance analysis of DDL

from an HPC perspective along with the training efficiency evaluation. Furthermore, it

would be necessary to start comparing these frameworks over different devices, number

of workers, and model parameters. This work performs a practical evaluation and compar-

ison of the modern DDL frameworks Horovod and Tarantella, using state-of-the-art HPC

and ML tools and methodology for performance analysis of distributed applications. We

propose the use of tracing and data science to evaluate the frameworks’ strengths and

weaknesses and depicts their distributed implementation. An evaluation as that reveal un-

covered bottlenecks that impact the performance of the frameworks, and can also benefit

users to decide which framework to use to train Convolutional Neural Networks (CNN)

on multi-GPUs and multi-node systems.

1.2 Contributions

This research proposes a performance analysis and comparison of two modern

DDL frameworks: Horovod and Tarantella. We applied a new methodology to evaluate

and compare the frameworks’ performance correlating measurements obtained with state-

of-the-art HPC and ML tools. The main contributions of this research are:

• Experiments on four clusters multi-GPUs with different GPU cards for up to 12

devices using the Lenet-5 CNN, and the MNIST dataset for evaluating Horovod
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and Tarantella training performance. We use strong-scaling varying the batch sizes

for 100 epochs. We evaluate the training time, the training accuracy, the GPUs

usage, and the scaling efficiency to more GPUs.

• Experiments using the NVProf tracing tool to obtain events within GPUs for both

frameworks. We also propose a Horovod instrumentation with Score-P to get infor-

mation about the MPI operations used in the distributed training.

• A method to correlate measurements from HPC and ML tracing and profiling tools

and visualizations using data science. We used temporal synchronization to corre-

late results captured in different tools and a temporal aggregation to measure the

frameworks’ training time in the GPUs.

1.3 Document Structure

This document is organized as follows. Chapter 2 presents a background on

DL and DDL, including methods and strategies for distributing the training. Chapter 3

presents the related work on evaluating the performance of DDL frameworks and ad-

dresses several existing frameworks and their characteristics. Chapter 4 presents the

methodology used to evaluate the framework’s performance, our experimental design,

and approaches for profiling and tracing the experiments. Chapter 5 presents the exper-

imental results for a CNN model for Horovod and Tarantella in three different NVIDIA

GPU models. Chapter 6 presents our approach to collect and analyze execution traces,

bringing insightful aspects of the framework’s functionality. Finally, Chapter 7 presents

the conclusions and future works based on our findings.
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2 BACKGROUND

Deep Learning (DL) is an area of Machine Learning that became popular in the

last fifteen years due to the increase in the amount of data available for training, and the

improvements in the hardware and in the software used for training (LECUN; BENGIO;

HINTON, 2015; DENG; YU, 2014; GOODFELLOW; BENGIO; COURVILLE, 2016).

DL consists of applying algorithms with linear algebra operations on multiple processing

layers of a model to train it using an input dataset with supervised, semi-supervised, or

unsupervised learning (DENG; YU, 2014).

Supervised learning is a method where we feed our model with representative

data of the category being analyzed, more specifically, data that is labeled (SATHYA;

ABRAHAM et al., 2013). For example, for an image classification model to classify

cats and dogs, we first train the network with many images of cats and many images

of dogs to make the network learn so it can later perform classification with new images.

Unsupervised learning receives unlabeled data, so it applies a heuristic to identify patterns

in the input data and learn from trial. Semi-supervised learning combines few labeled data

with several unlabeled data.

In this Chapter, we present a background of DL, from the fundamentals until the

advances that lead to DDL frameworks creation. Section 2.1 presents the fundamentals

of DL, Section 2.2 chronologically presents the advances in DL until it became a field ex-

plored in HPC, Section 2.3 presents DDL methods and strategies for distributing training.

2.1 Fundamentals of Deep Learning

Artificial Neural Networks (ANN) are networks of interconnected neurons that

represent mathematical functions to transform input data into the desired output, inspired

by our biological neural network (SATHYA; ABRAHAM et al., 2013). The main con-

tribution of ANN is the low level of programming complexity to solve complex and

nonlinear problems in recognition, diagnosis, classification, predictions, and filtering

(GRAUPE, 2013). For example, in a classical ML problem to classify images, the input

data can be a vector where each vector element represents a pixel, and a pixel represents

a neuron of the network.

There are different neural network architectures, with variations in their process-

ing layers, how neurons are interconnected, and how they communicate. The most pop-
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ular are feed-forward networks, composed of layers with several artificial neurons that

communicate with each other to achieve the best prediction. Figure 2.1 represents an ex-

ample of a Deep Feed Forward network for recognizing hand-written digits as a number

from 0 to 9. The first layers, closest to the input layer from left to right, are also called the

lower levels, and the last layers, closer to the output layer, are also known as the highest

levels. There are three specific layers: the input layer, hidden layers, and an output layer.

The input layer receives the training’s input data; in this case, each pixel of the input

image is mapped to a neuron. Each neuron receives and outputs to all neurons a value

representing its activation, if 1, or deactivation, if 0. It goes until achieving the output

layer. A neuron can be represented by a perceptron or a sigmoid. A sigmoid is the most

common neuron variation created to achieve more efficient learning by accepting values

between 0 and 1, so slight prediction updates can result in subtle changes in values.

Figure 2.1 – Example of a deep neural network architecture.
Input layer Hidden layers Output layer
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7
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9

Source: adapted from (ML4A, 2018)

The activation of each neuron considers the bias and weights randomly initialized.

A weight is expressed as a real number that determines the “strength” of the connections

of the neurons. The bias determines how activated the neuron should be when passing its

information through the network, helping to speed up the prediction. Linear Regression is

one of the most popular algorithms for predictive analysis based on given input variables.

Figure 2.2 represents a linear regression model applied to a NN for a single neuron. The

light gray delimits the neuron, which receives inputs associated with weights and biases

and applies a linear function. Equation 2.1 depicts the linear function, whereN represents

the total inputs, X = {Xn | 1 < n ≤ N}, with N weights associated to them, W =

{Wn | 1 < n ≤ N}. The output is applied to an activation function that will convert the

value to a new signal deciding what information will pass to the next neuron. There are
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different activation functions available, depending on the goal of the NN.

Figure 2.2 – Linear regression model applied in ANN.

Inputs

X

Linear model Linear function Activation function

weights,bias Y = X*W+b Activate(Y)

Source: The Author

Y =
N∑

n=1

Xn ×Wn + b (2.1)

We use a cost function, or loss function, to update the activation and make net-

works learn through data. It shows the error between the predicted output and the actual

output, determining how bad is the network classifying data using the current weights and

bias. The most common algorithm to minimize the cost function in a multi-layer network

is the Gradient Descent (GD). It considers a learning rate, and the derivative of the loss

function in terms of the weights and bias to minimize the loss function, the error of the

prediction (BENGIO, 2012). We can then adjust our weights based on that minimization

when completing a pass through the network. Figure 2.3 presents the learning rate, which

is a technique to speed the convergence to a minimum. It represents the steps taken to

reach the minimum of the cost function, so a small learning rate, as shown in the left

plot, will be more efficient in reaching a minimum. Still, the training will take longer to

achieve the minimum, and a large learning rate in the right side plot will converge faster

but can overshoot the minimum.

Considering the vast amount of data available, the more used version of Gradi-

ent Descent today is the Minibatch Stochastic Gradient Descent (SGD), which splits the

dataset into small samples of N examples, and compute the cost function over the sam-

ples until pass through all datasets (LECUN; BENGIO; HINTON, 2015). So for a pass-

through 1000 data samples and minibatch sizes of 100, there will be ten iterations to pass

and average all minibatch per epoch in the model. Equation 2.2 presents the SGD idea,

where w are the weights, initialized as the same for all minibatches, ∇l(x,wt) is the loss

function, B is a minibatch sampled from x, n is the minibatch size, which makes it equiv-

alent to the GD if set to 1, η is the learning rate, and t indicates the index of the iteration

(GOYAL et al., 2018).

wt+1 = wt − η
1

n

∑
x∈B

∇l(x,wt) (2.2)



19

Figure 2.3 – Convergence for a small and a large learning rate.

Source: (EDUCATION, 2020)

SGD is more computationally efficient than passing all dataset in the network

and storing it in memory. When n increases, we can benefit from the matrix operations

computed in the selected device, generating more stable results regarding the accuracy,

and we perform fewer updates per computation, but it makes the model converge slower

(BENGIO, 2012). A smaller n will perform more updates, converge faster, but it may

underuse the devices. The minibatch size, also called only “batch size”, is usually defined

by the user. Its choice depends on the system utilized, such as the memory limitations to

fit a minibatch in the memory.

The previous process is called forward-propagation, where the inputs from lower

hidden layers impact the signals of neurons in higher layers. A back-propagation pro-

cess is used to update the network’s weights, based on the cost function. This process

performs a pass through the network from the highest layers to the lower ones to up-

date the gradients based on the averaged loss calculated during the forward-propagation

(RUMELHART; HINTON; WILLIAMS, 1986). The forward and backward pass of the

entire input data over the network is called an epoch. Full training runs hundreds of

epochs to achieve the best prediction.

In the previous example, we showed a simple model where we map each image to

a neuron, but it is infeasible to deal with thousands of images. Convolutional Neural Net-

works (CNN), also called ConvNets, are a popular class of neural networks used for image

classification due its lower computing time and high accuracy than other models (JORDÀ;

VALERO-LARA; PEÑA, 2019). The first CNN was created in 1989, called LeNet, and
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added convolutional layers to the hidden layers of the network model (LECUN et al.,

1989). The convolutional layers process at least three basic steps: convolution, pooling,

and activation functions. In these layers, the CNN performs image transformations to be

less memory costly to pass through the network and benefit from GPUs ability to perform

matrix operations.

Figure 2.4a represents the convolution operation. Each convolution layer applies

filters to detect a pattern in the image, such as edges, corners, and objects. The filter

is represented as an N × N matrix that slides over the input image pixels performing a

convolution, updating its values based on the dot product with the image pixels. This

way, the input image will be transformed into a feature map, or activation map, which is

a matrix containing the image’s highlights, with the same or reduced size or dimensions.

The feature map is passed to a pooling layer, represented in Figure 2.4b. The pooling

applies an N × N filter over the feature map and gets the maximum value of all pixels

inside the pooling filter (max pooling) or the average of the values (average pooling).

It reduces the map dimensions by a factor of N. After these operations, the non-linear

activation functions are applied to these reduced maps at the fully connected layer to

obtain the weighted sum of multiple input elements.

Figure 2.4 – Example of the convolution (a) and pooling (b) operations.
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2.2 Advances in Deep Learning

In 1999 the launch of NVIDIA GPUs had changed the DL industry. The first CNN

was already invented in 1980, followed by the ConvNet and LeNet-5, a popular CNN still

used nowadays for image classification. Then, developers could improve their models

to take advantage of GPUs’ capabilities of processing matrix multiplications. Figure 2.5

presents a timeline of the main contributions in DL that precedes the appearance of DDL.

Figure 2.5 – A brief timeline of the contributions created in the field of Deep Learning.
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In 2009, the ImageNet was created, the first big data for computer vision contain-

ing 2.3 million colored images of different classes organized in a hierarchical structure

using subtrees (DENG et al., 2009). With more data to evaluate, new neural networks

architectures started being developed and improved. In 2010, an annual competition to

evaluate these networks started called the ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC). It evaluates how accurately new models classify ImageNet. AlexNet, a

CNN launched in 2012 with eight layers, was one of the new networks that achieved good

results in the contest. It has more convolutional layers than LeNet, and makes better us-

age of multiple GPUs, resulting in a faster convergence (KRIZHEVSKY; SUTSKEVER;

HINTON, 2017). GoogLeNet proposed Inception, a 22 convolution layers and five pool-

ing layers network that presented new features to improve training performance, such as

reducing the dimensions of the input pixels computing convolutions faster (SZEGEDY et

al., 2015). ResNet, created by the Microsoft Research team, got first place on the ILSVRC

2015 (HE et al., 2016). It uses more layers, 152 total, and it allows lower layers to ex-

change data to deeper ones, and this way, it avoids losing the gradients values throughout

the forward passing. WideResNet, created in 2017, proposes decreasing the depth and

increasing the width of a residual network to improve its accuracy, keeping a fifty-layer
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network (ZAGORUYKO; KOMODAKIS, 2016). It decreases the depth and increases the

width and the number of parameters used during training, presenting better performance

than ResNet for ImageNet.

Aligned with the increase in the GPUs usage for processing CNNs, and big data

input for the training, more sophisticated models and advances in DL were created. In

2011, one of the first frameworks for DL called DistBelief was developed by the Google

Brain team (DEAN et al., 2012). DistBelief brought the concept of using worker servers

and parameter servers to update the model parameters and be flexible to run on top of a

GPU or CPU. They also started offering parallel computing to train using one or multiple

workers in the same cluster. The more popular frameworks today are Caffee, PyTorch,

MXNET, Theano, Keras, and TensorFlow.

Keras is a library for DL launched in 2015, written in Python to support CNN

and Recurrent Neural Networks (RNN) (KERAS, 2015). It provides a high-level API

with a simpler interface for the final user to configure optimizers, and assign operations

for accelerators, for example. Keras is used as a wrapper for TensorFlow, abstracting the

training configuration to make it easier to use and extend. TensorFlow is the continu-

ous work of DistBelief launched in 2015, and it has become a widely used open-source

framework for DL (ABADI et al., 2016). It is implemented in C++ for large-scale and

heterogeneous systems, supporting models implemented in C++, Python, Java, and other

programming languages. It supports one or multiple devices GPUs, TPUs, and CPUs with

x86 and ARM architectures. It also offers a visualization toolkit called TensorBoard to

profile and visualize the performance and accuracy of the training. Tensorflow has robust

documentation, which helps users to implement their experiments.

Tensorflow uses a dataflow graph to represent the computations, communications,

dependencies, and the algorithm state, presented in Figure 2.6. It first reads and performs

a preprocessing of the input data, then it builds the model and starts the training. It can

collect checkpoints throughout execution, so users can stop and return back to a longer

training using the same parameters values. This dataflow scheme allows users to partition

the data and distribute it to be independently computed by different workers in parallel.

The edges of a TensorFlow graph, also called tensors, represent the outputs or inputs of

the computations. Tensors are multidimensional matrices used in DL to represent inputs

and outputs updated during training inside a NN. In the TensorFlow architecture, tensors

will "flow" along with the graph suffering operations along the way. The vertices represent

mathematical operators such as matrix multiplications and convolutions. Each vertice can
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have zero dimension tensors or N-dimensional tensors as input or output.

Figure 2.6 – TensorFlow dataflow graph representation.

Source: (ABADI et al., 2016)

With bigger datasets, efficient networks, and frameworks to facilitate the training,

DDL frameworks started being created. The frameworks’ main challenge to scale to

multiple nodes is to minimize the overhead with the extra computations, to take advantage

of multi-accelerator devices, and to keep a high accuracy. Some of the new frameworks

for DDL are: LBANN launched in 2015 by the Lawrence Livermore National Laboratory

(ESSEN et al., 2015), Horovod launched by Uber in 2017, and Tarantella launched in

2020 by the Fraunhofer Institute for Industrial Mathematics. Nowadays, DDL research

is increasing, so developers can take advantage of modern accelerator devices, and users

from different fields can benefit from this tools.

2.3 Distributed Deep Learning

As we presented in the previous Section 2.2, DDL frameworks for distributing

the training across computational resources are becoming popular in the last years (BEN-

NUN; HOEFLER, 2019). DNNs present aspects that motivate parallel training, such as

the SGD dataset division in minibatches, presented in Section 2.1. Minibatches represent

independent portions of the input processed by workers. Workers need to communicate

at a given moment to exchange data so the parameters update are based on gradients

averaged about all the input. This is a common scenario in parallel computing, were we

partition a problem into many tasks and distribute them accross multiple workers, and

implement synchronization points if necessary.

In DDL, three parallelization strategies were created to scale a sequential training

to multi-GPUs nodes. They consider the main challenges when designing DL frame-

works, which are massive communications among processes, the storage of the dataset

and the model on each worker depending on the strategy used, and the performance im-

provements to reduce the processing time and keep or increase the model accuracy. Figure
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2.7 presents the strategies: Data Parallelism (a), Model Parallelism (b), and Layer Pipelin-

ing (c). P1, P2, P3, and the colors represent the devices, the squares represent the dataset,

the cubes represent the network structure, and the connected circles represent the fully-

connected layer. The devices can be CPUs, GPUs, FPGAs, or other hardware we are

performing the training.

Figure 2.7 – Partitioning strategies for distributed deep learning: data parallelism, model
parallelism, and layer pipelining.

Source: (BEN-NUN; HOEFLER, 2019)

• Data parallelism consists of splitting the dataset into chunks and distribute them

among the devices, the workers. Each device will process its chunk of data in

parallel, needing to store the entire network model in each worker, so the only com-

munication point is at the end of an epoch. At the end of an epoch, the workers

average the gradients or parameters calculated in each to update the weights based

on the training of the entire dataset. This strategy is useful for overcoming insuf-

ficient GPU memory for training with larger datasets, dividing it and distributing

it to the devices, or achieving the desired accuracy faster by distributing the same

data, but shuffled, for each device. It is also the most straightforward strategy to

implement.

• Model parallelism consists of partitioning the network structure to be computed by

the devices in parallel. Each device processes some of the layers of the entire net-

work, getting a copy of the whole dataset. A challenge in this strategy is to achieve

good load balance across devices since some layers present different computations.

Also, it brings additional communication and synchronization steps at each forward

and backpropagation pass. This strategy is helpful to deal with too large models for

a single GPU. It is also harder to implement, usually via multithreading in the same

machine or across nodes and devices via message passing to decrease the latency

of data exchange.

• Pipelining, Pipelining is used to overlap communications with computations be-

tween training steps, such as forwarding evaluation, backpropagation, and weight
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update, mitigating processor idle times. For example, while a process performs

communications, another independent process can implement the forward evalua-

tion phase. This strategy is feasible since a model has a fixed number of commu-

nication points, and the source and destination processors are always known. The

disadvantages of this strategy are the difficulty of implementing since each layer

will require particular implementations and the low latency if not fully utilizing the

system.

• Hybrid: combines more than one of the strategies above. The more usual is using

data parallelism with model parallelism.

For being easier to implement, data parallelism is a common strategy in DDL

frameworks. A concern when using data parallelism is distributing the data among work-

ers, if it should use weak or strong scalability regarding the dataset distribution for more

devices. Figure 2.8 presents an example of the weak and strong scalability used in DDL

training. The weak scalability, represented in the left plot, assumes that we keep the

amount of work for each device fixed while increasing the hardware used. If we have

a fixed dataset of 512, each extra GPU will process this amount of data. In the strong

scalability, represented in the right plot, we increase the number of hardware available for

computing and fix locally the amount of work for each extra device added. This approach

can lead to performance improvements to train the same problem using more devices. In

this case, we increase the number of GPUs and divide the dataset according to the number

of devices available.

Figure 2.8 – Weak (on the left) and strong (on the right) scalability examples.

Source: The Author

Choosing weak or strong scaling depends on the training goals. Weak scaling is

used to achieve the desired accuracy faster since we will train over more data in more

devices. Strong scaling increases the performance regarding execution time, but it can

achieve lower throughput and result in underused devices (OR; ZHANG; FREEDMAN,
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2020). A work used strong scaling to train a CNN for images classification in Xeon based

systems (DAS et al., 2016). They achieved almost a linear scalability adding the double

of workers from 2 to 128, using 512 batch sizes. A smaller batch size of 256 also scales

almost linearly until 64 devices. Another work evaluated the training accuracy for weak

and strong scaling in DDL (CUNHA et al., 2018). It showed that weak scaling fails to

converge, resulting in different accuracy without adjusting learning rates and other param-

eters. Moreover, strong scaling presented good scalability achieving the same accuracy

as the sequential training.

DDL strategies are still evolving. New DDL frameworks are being created or

improved, so they can accelerate training without impacting the convergence approaches

to minimize the error of the predictions. Some aspects of the training should be noted

when scaling for more devices, such as the goals of the training, the network model used,

and the parallel strategy used by the frameworks. The next chapter depicts the state-of-

the-art DDL frameworks, their characteristics, and parallel strategies. We also present

the existing performance analysis approaches found in the literature to evaluate these new

tools and how they motivated our research.
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3 RELATED WORK

Several frameworks are being implemented and evaluated in recent years due to

the fast innovations in the field. The following sections present an overview of some

available DDL frameworks and toolkits, other works that proposed a performance analysis

comparison of distributed frameworks, and the most-used tools for evaluating distributed

training performance. Moreover, we justify the choice of the HPC tools for our evaluation

and how the current efforts and methodologies are related our new approach.

3.1 Distributed Deep Learning Frameworks

During the last years, several DDL frameworks and toolkits were created for ac-

celerating and facilitating the training of large models and huge datasets. They can be

targeted to specific scenarios, such as dealing with big data systems using data paral-

lelism or to train over big datasets (DAI et al., 2019; OOI et al., 2015), targeted to specific

devices, or to be more or less user-friendly. This section presents recent DDL frame-

works focusing on the frameworks aimed at users without deep knowledge of distributed

systems and works that evaluate and compare these frameworks.

3.1.1 Frameworks for Distributed Training

Frameworks to accelerate deep learning using multiple nodes in large-scale HPC

systems are still being created or actively improved. The first distributed training options

offered new features to users with knowledge of ML, who also needed to learn new con-

cepts on how to distribute layers and phases of the training to workers on multiple nodes.

In recent years, new frameworks have been created to prevent users from acquiring a deep

knowledge of high-performance systems to improve their training performance. These

frameworks abstract the system configurations to quickly transform a single-node train-

ing into a multi-node training. Table 3.1 summarizes the properties of the frameworks we

will present that run on top of popular ML libraries providing a user-friendly API.

Horovod was developed by the Uber Engineering team for easy-to-use data par-

allelism distribution in Python on top of TensorFlow, Keras or PyTorch (SERGEEV;

BALSO, 2018). In the backend, Horovod uses the Message-Passing-Interface (MPI) and
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pthreads for parallel computing. LBANN (Livermore Big Artificial Neural Network)

is a toolkit for accelerating the training of large neural networks on high-performance

machines using data, model, and pipelining parallelism (ESSEN et al., 2015). It uses

open-source libraries most developed by their team: DiHydrogen and Hydrogen, for dis-

tributing linear algebra operations; Aluminum, for HPC communication using MPI and

NCCL; Elemental, for distributing matrix-matrix and matrix-vector computations and the

BLAS library for node-local thread-level parallelism. Since it is focused on the internal

usage at the Lawrence Livermore Laboratory (LLNL), the instructions on how to install

and use, and documentation of LBANN and dependent software are focused on the lab-

oratories’ facilities. Tarantella is a new tool developed by the Competence Center High-

Performance Computing that applies data parallelism using the Global Address Space

Programming Interface (GASPI) standard for distributed computing (CCHPC, 2020). It

is open-source and provides a solid documentation and contact to the developers.

Whale is a recent framework aimed to train giant models using data, model, and

pipelining parallelism strategies. It supports TensorFlow and NVIDIA GPUs, but it is

not available online for usage (JIA et al., 2021). Orca is part of the BigDL 2.0 project,

and it provide a easy-to-use library to scale single node training in Python to more nodes

(SONG et al., 2020; DAI et al., 2019). Since it is focused on distributing big data, Orca

is configured to run on Apache Spark, an analytics engine for large scale data processing,

and Ray, more focused on machine learning applications.

Table 3.1 – Distributed Deep Learning Frameworks Overview.
Framework Implementation ML Framework Support Parallel Strategy Open-source

Horovod Python and C++ TensorFlow, Keras, PyTorch, MXNet Data 3

LBANN C++ PyTorch Data, Model, Pipelining 3

Orca Python TensorFlow, PyTorch, Keras Data 3

Tarantella Python and C++ TensorFlow Data 3

Whale Python TensorFlow Data and Model

Source: The Author

Some ML frameworks and DDL toolkits also support distributed training under

more user configuration and knowledge of distributed systems and parallelism paradigms.

TensorFlow offers two different distributed learning approaches. The Parameter Server

Strategy was the first one created based on the technique of having one dedicated server

to receive data from workers and orchestrate the communication to the other workers to

update parameters (DEAN et al., 2012). And the recent strategy released as a stable API

in the TensorFlow 2.4.0 version in December of 2020 is called Multi Worker Mirrored

Strategy. As Horovod, this strategy is based on Baidu’s all-reduce algorithm that uses
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no dedicated server to exchange data (GIBIANSKY, 2017). It is an open-source code

in Python and C++ with support for data, model parallelism, and asynchronous and syn-

chronous communication. However, it is less intuitive to apply since the user needs to

configure the workers and parameter server and learn new concepts. SINGA was created

by Apache for training big models such as convolutional and recurrent neural networks,

over large datasets, written in C++ and Python (OOI et al., 2015). It is an open-source

tool, implements data parallelism and uses the NCCL library over its only API model,

and not run over others existing ML frameworks.

PyTorch was developed by Facebook in C++ and Python and programmable in

Python (PASZKE et al., 2019). It supports model and data parallelism, and can be used

with Apex, a tool to enabled mixed precision and optimize the use of NVIDIA GPUs

using NCCL (NVIDIA, 2020a). Microsoft Cognitive Toolkit (CNTK) was developed by

Microsoft in Python and C++ with data parallelism, is one of the first toolkits for dis-

tributed training, but is no longer actively developed (SEIDE; AGARWAL, 2016). There

is also ChainerMN, an extension of the Chainer DL framework for distributed deep learn-

ing (AKIBA; FUKUDA; SUZUKI, 2017), and MXNet framework, developed by Apache

that implements data and model parallelism (Chen et al., 2015).

3.1.2 Frameworks Evaluation and Comparison

Recent works that present a complete literature reviews and comparisons of DDL

frameworks consider aspects such as parallelization strategy used, programming language

supported, the use of communication overlapped with computation, if it is easy to use, and

portability to other architectures (RAVIKUMAR; S., 2020; HASHEMINEZHAD et al.,

2020). Overall, works that perform practical comparisons focus on the training scalability

and efficiency.

SHI et al. (SHI et al., 2018) evaluate the performance of Caffe-MPI, CNTK,

MXNet, and Tensorflow in a four-node cluster with 4 NVIDIA Tesla P40 per node. Their

methodology consists of selecting the SGD algorithm models and running tests for ana-

lyzing their performance, then implementing optimizations in the SGD model, performing

more tests, and finally analyzing the previous results in different environments. Although

this work explores the tools’ specificities, considering their parallelization algorithms,

parameter configurations, and scalability, they uncover the evaluation of the new DDL

frameworks and focus on the running time performance evaluation only. Another work
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evaluated four frameworks across HPC resources and compared their efficiency, walltime,

and speedup using CPUs and GPUs (4 Tesla V100 available per node), with MPI, for up

to 12 GPUs (MAHON et al., 2020). They evaluated Horovod with TensorFlow, Keras,

Horovod with Keras, Pytorch with a Gloo backend, and MXNET. PyTorch presented the

best results for all setups, followed by Horovod with TensorFlow. As the authors re-

ported, once you have a serial code for DL, using Horovod requires very little coding

compared to the other frameworks used, so it is highly recommended for users without

deep knowledge of DL. They did not evaluate the distribution for multiple nodes for Keras

and MXNet since it was less user-friendly to configure.

Another work explored less common tools and architectures to evaluate the weak

and strong scaling of distributed frameworks. They used Cray systems and compared

Horovod, Horovod-MLSL, which uses the Intel Machine Learning Scaling Library in-

stead of MPI, and the Cray Programming Environment plugin for ML (KURTH et al.,

2019). They evaluated the execution time and accuracy of the training and concluded

recommended Horovod with MPI because it brought the best weak scaling and because

it is available for most systems. Similarly, another work compared Caffe2, ChainerMN,

CNTK, MXNet, and TensorFlow using cloud computing with Amazon Web Service (LIU

et al., 2018). They used a ResNet-50 model on the CIFAR-10 dataset with synchronous

and asynchronous SGD updates, running instances with no dedicated host. For the multi-

node evaluation, they only use one GPU per node and compared training speed, report-

ing that the Tensorflow version requires more code changes to configure the multi-GPUs

environment due to the parameter-server setup. MXNet and ChainerML show the best

scalability among the frameworks.

No recent works have compared the modern DDL frameworks performance using

up-to-date HPC tools and methodologies for distributed applications. None of them cor-

relate profiling and tracing to compare the performance of the frameworks for the same

DL model using temporal performance analysis, crossing results among different profil-

ing and tracing tools. The same happens for works that evaluate a specific DDL frame-

work. They apply one or two tools for performance analysis, such as Horovod Timeline,

Keras callbacks, NVProf, NVSMI and NVProf, Horovod Timeline and cProfile, to pro-

file the application focusing on overall measuring about execution time and efficiency

(LAANAIT et al., 2019; CUNHA et al., 2018; SHI; CHU, 2017; WU et al., 2021; WU et

al., 2018). These tools have advantages but also some limitations, as we will present in

the following section.
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3.2 Performance Analysis of Distributed Frameworks

Performance analysis of DL models usually runs a single experiment, which can

take days to finish, and evaluate their accuracy, efficiency, and execution time using call-

backs or profiler tools. The new advances of the field started exploring high-performance

systems to partition a training phase on multi-GPUs, and more recently, to multiple com-

putational nodes. Even with this advance in the DL field, the performance analysis meth-

ods and tools used are still similar to what has been used for training in one device or

multiple devices in a single node. This section presents the most-used performance anal-

ysis tools nowadays for DL and DDL frameworks, their advantages, and limitations.

3.2.1 TensorBoard

TensorBoard is the visualization toolkit for TensorFlow to profiling and tracing

machine learning experimentation (BRAIN, 2015). It can be downloaded as a standard

Python package with the TensorFlow API, and the user needs to add the TensorBoard into

the callbacks used by the fitting function. It generates two output directories containing

measures about training and validation, and it uses the web browser to present

the visualizations. Tensorflow has robust documentation, which helps users to implement

their experiments.

Figure 3.1 presents two TensorBoard tabs, the one in the background is called

Scalars and presents interactive plots for loss and accuracy along epochs or execution

time, and the other in the front is the Graphs tab, which shows an interactive graph of

the network model used. There are also other tabs to explore, such as Time Series that

shows the metrics in Scalars per rank, more detailed, and Histograms that shows the

weights, biases, or other tensors as they change over time. This information can be used

to detect overfitting using the plots for training and validation loss or to visualize the

dataset images, text or audio (VOGELSANG; ERICKSON, 2020).

For getting GPU level information, TensorBoard uses CUPTI 1, a CUDA Profiling

Tool Interface to get traces and profile of experiment at GPU level. The tool started

supporting multi GPUs profiling and tracing in the end of 2020, but only for sampling

mode, where we perform on-demand profiling by setting the workers IP addresses and

1https://docs.nvidia.com/cuda/cupti/index.html
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Figure 3.1 – TensorBoard user interface showing the Scalars (background image) and the Graphs
(front image) tabs.

Source: The Author

the time interval to be profiled 2. To get the Profiling information we need to install the

TensorBoard plugin and configure it in the code. It can profile the training for a range of

batches specified by the user, and generates an event trace for each node that launched an

instance of TensorFlow and it detects the GPUs set visible for TensorFlow.

Figure 3.2 presents the Profile tab, which depicts the devices’ usage and kernels

execution. It shows the computing time at the host and at the device, the compilation time,

communication time, the computing time per kernel, a memory profiler for the devices,

an experimental tool to show a performance analysis summary that diagnostic the training

bottlenecks, and trace visualization. The trace visualization shows the events per stream

in the GPU and CPU. It is hard to detect overlapped operations, and we can only open

one panel per node. The training needs to be distributed using the TensorFlow APIs for

multi nodes systems to detect and show them in the same panel about a node.

3.2.2 NVIDIA Profiler and GPUs monitoring

NVIDIA System Management Interface (nvidia-smi or NVSMI), is a command-

line tool to collect information from NVIDIA GPUs (NVIDIA, 2011). It is used to

evaluate the devices power, frequency, memory utilization, and GPUs utilization. It is

a command-line tool to monitor defined queries about the devices in a defined time inter-

val, and it can output the monitoring results in the CSV file format.

2https://github.com/tensorflow/tensorflow/releases/tag/v2.4.0-rc4
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Figure 3.2 – TensorBoard user interface showing the Profile tab for trace viewer.

Source: The Author

NVIDIA Visual Profiler (NVProf) is part of the CUDA toolkit as a profiling and

tracing tool intended to optimize the performance of CUDA applications. NVProf collects

all events running in NVIDIA GPUs, enabling the user to define profiling regions to avoid

profiling all experiments. NVProf output is stored as a SQLite relational database and can

be open using the NVProf interface, that needs to be locally installed as presented in

Figure 3.3. As TensorBoard, it also uses CUPTI to collect the profiling information, so

it shows similar results regarding the GPUs usage. The opened tab display the profiling

information for one worker in a distributed training with Tarantella. The main panel

shows the event calls per computing operation, streams, and thread. It also shows the data

copy between host and devices and can generate traces in the CSV format. NVProf was

discontinued in 2019 to the creation of the NVIDIA Nsight Tool3, a new tool that offers

the same visualizations and profiling workflow, but with new features, such as support for

larger profiles (>2GB) without slowing down the visualization as NVProf, and support to

the most recent visualization tool with support to modern NVIDIA GPUs.

3.2.3 Callbacks in Python

Profiling at the Python level can gather training information about execution time,

parameters, and the training status at runtime. Python cProfile is a tool used at command

line to report statistics about the time spent with Python functions and methods (FOUN-

DATION, 2016). For DDL evaluations, it only shows the total time of the ML framework,

3https://developer.nvidia.com/nsight-systems
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Figure 3.3 – NVIDIA Visual Profiler user interface for one node profiling.

Source: The Author

without details of how it behaves during the training (WU et al., 2018)

Keras callbacks are a feature from the Keras library for DL written in Python

(KERAS, 2015). It provides a set of functions to get information about training during

runtime. Users can control the early stopping feature, checkpoints, or use custom func-

tions to get weights, accuracy, loss, and execution time, called at specific times during

execution per epoch, iteration, or for the whole training. It is a great tool to investigate the

efficiency of the training and how fast it converges. TensorFlow offers an abstraction of

the Keras callbacks more easy-to-use to pass to the Keras methods for fitting, evaluation,

and prediction for training, testing, and validation phases.

3.3 Discussion about DDL Frameworks and Performance Analysis Tools

Considering the DDL frameworks to abstract distributed training over ML li-

braries, LBANN’s advantage is the implementation of all parallel strategies, but it is

highly dependent on the frameworks targeted to LLNL systems, with a lack of details

on how to configure to other clusters. LBANN Spack package presented several incon-

sistencies in the software versions for the clusters we tested, which were challenging to

configure and use. Whale is not open-source, so it blocked us from using and exploring

its code. Horovod and Tarantella are both implemented using the same programming lan-

guage and offer the same parallel strategy. They are both open-source and have support
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for TensorFlow and CUDA.

Keras callbacks and TensorBoard offer important insights on specific aspects of

the training. NVProf is targeted to the system, being a popular profiler in HPC for GPU-

based applications. Keras callbacks are useful to evaluate the training efficiency over a

specific time interval. Still, there is a lack of details on how the model uses the devices for

training or communicating inside the time frame representing an epoch duration. NVProf

opens one file for each worker at a time, preventing us from contrasting the worker’s

execution. The recent support by TensorBoard for multiple nodes does not provide a vi-

sualization of all workers involved in the training in the same panel. Testing for Horovod,

Tensorboard generated one trace file per node, but it only shows one CPU and one GPU

in each node, even using more. For Tarantella, TensorBoard only generates traces for the

node from where we launch the script.

Recent works to evaluate and compare the performance of DDL frameworks focus

on model accuracy, scalability, execution time, and resource usage. This information is

usually analyzed individually, with different tools, visualization plots, and panels. Also,

the results are shown as an overall representation of the performance per epoch or per the

number of workers used. From the discussed works and tools, none correlated information

gathered from different tools to analyze the training in a temporal evaluation, considering

HPC methodology approaches. No methodology or tool present in the same panel a

temporal aggregation of the devices computing time and correlate it to callbacks at the

Python level to understand what those values encompass. As we presented, new tools and

methodologies are required to evaluate the usage of high-performance devices by DDL

frameworks.
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4 MATERIAL AND METHODOLOGY

This chapter presents the tools and methodology to analyze and compare the per-

formance of Horovod and Tarantella, presented in Section 4.1, to distribute the training in

different NVIDIA GPU models. Our evaluation methodology used a convolutional neural

networks model with SGD optimizer, varying the batch size training parameter, the GPUs

models, and scaling for more GPUs in the clusters. The experiments presented in this

work were carried in three clusters from the Grid’5000 (Cappello et al., 2005) testbed and

one in the PCAD1.

Table 4.1 presents the selected clusters. Hype is hosted in the PCAD and Chifflot,

Chifflet, and Gemini at the Grid’5000. The Tesla V100 GPUs are the only ones with Ten-

sor Cores available, a technology from NVIDIA that performs more matrix operations per

GPU clock. While a CUDA Core computes one single value in a 1×1 multiplication per

clock, a Tensor Core computes a 4×4 matrix multiplication and can add a third matrix of

16 or 32 floating points per clock. DNN training benefit from this multiplication and sum

of matrices for its linear algebra operations in the layers. If available, the NVIDIA CUDA

Deep Neural Network library (cuDNN) is configured to use Tensor Cores, increasing the

training throughput while keeping the accuracy. NVLink is a feature added in the board

architecture of Tesla P100 and Tesla V100 GPUs to provide higher bandwidth between

devices than using PCIe. It is available in Gemini, with a links speed of 25.781 GB/s.

#+BEGIN_EXPORT latex

Table 4.1 – Specifications for the clusters used, all with Intel CPUs and NVIDIA GPUs.
Specification Hype Chifflot Chifflet Gemini

Location PCADUFRGS Grid’5000 Grid’5000 Grid’5000
CPUs (per node) 2x Xeon E5-2650 v3 2x Xeon Gold 6126 2x Xeon E5-2680 v4 4x E5-2698 v4

Nodes 2 6 8 2
Cores 10 12 14 20

Memory 128GB 192GB 768GB 512GB
Frequency 2.3GHz 2.6GHz 2.4GHz 2.2GHz

GPUs (per node) 2x Tesla K80 2x Tesla P100 2x GTX 1080Ti 8xTesla V100
CUDA cores 2,496 3,840 3,584 5,120+640 Tensor
Frequency 560MHz 1190 MHz 1481MHz 1230 MHz
Memory 12GB GDDR5 12GB GDDR5 11GB GDDR5X 16 GB HBM2
Network Ethernet 2x 25 Gbps 2x 10Gbps 10 Gbps+3x 100Gbps InfiniBand

Source: The Author

The clusters have operating system Debian 4.19.160-2, GCC version 8.3.0, Open-

MPI 4.5.0, GPI-2 1.5.0, which is an open source implementation of the GASPI standard,

CUDA 11.3.1, and Python 3.7.3. We use Anaconda virtual environments to manage the

1http://gppd-hpc.inf.ufrgs.br/
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python packages, and Spack to manage software required in the different micro architec-

tures (GAMBLIN et al., 2015; SOFTWARE, 2016). We use Horovod version 0.22.1 and

Tarantella version 0.7.0. For data processing and analysis, we use the R programming

language with the package tidyverse2 for the data science processing and the package

ggplot2 to generate visualizations.

Figure 4.1 presents an overview of our methodology workflow. We first selected

Tarantella and Horovod and configured them in the clusters used. We applied an in-

cremental methodology, performing constant experiments and post-execution evaluations

and analysis using visualizations with R and ggplot2. We selected parameters for varying

the batch size, the input size, and the number of workers in training. After finishing the ex-

periments for a complete first methodology cycle collecting measurements with NVSMI

and Keras for overall performance analysis, we started applying Keras and NVProf to col-

lect execution tracing and profiling. We also applied the Score-P trace system for Horovod

experiments. Performance analysis using data science and visualization was carried after

running the experiments.

Figure 4.1 – Our methodology workflow. The black arrows represent the main workflow cycle,
constantly reproduced. The dashed arrows represent new steps added incrementally. First, by

performing experiments with NVSMI and Keras, with NVProf, and with Score-P for Horovod.
The other incremental step regards our performance analysis using data science and visualization.
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Source: The Author

The performance analysis experiments generate three output files: a CSV file for

monitoring the devices’ usage, a CSV file containing callbacks related to the model train-

ing stages, and a log file with the performance results for the training obtained with Keras

function at the Python level. We monitored the GPUs usage using the NVSMI. We col-

lected the following set of parameters every second: GPU index, timestamp, the power

draw for the board, the frequency of the Steaming Multiprocessors, the frequency of mem-

2https://cran.r-project.org/web/packages/tidyverse/index.html
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ory and graphics clocks, the PCIe bus ID, memory used, memory available, GPU utiliza-

tion, memory, utilization, and temperature. The training stages were obtained with Keras

callbacks functions, which capture the training status in specific moments, such as at the

initialization and end of an epoch or a batch.

These tools help us to understand the overall performance of the training and mea-

sure the devices’ usage. However, none of them provides enough information to under-

stand which events are computed in the devices during training. For example, with Keras

callbacks, we have the duration of an epoch, but there are no details of what is happening

inside this time interval. NVProf and Nsight captures traces for NVIDIA GPUs. Since

our approach did not generate much data, we used our previous experience with NVProf

to our analysis. With this, our approach was to correlate the results from the Keras call-

backs and NVSMI with the results with NVProf, so we have a temporal vision of what

is happening inside the frameworks’ “black-box”. Moreover, we used the Score-P li-

brary, in its version 6.0, to record traces focusing on the MPI communication for Horovod

(KNÜPFER et al., 2012).

4.1 Selected Frameworks

Tarantella and Horovod are open-source frameworks that implement data paral-

lelism and support TensorFlow and Keras training on GPUs and CPUs using CUDA-

based implementation. They are both written in C++ and Python programming languages

but use different programming paradigms for distributed computing. They also have

solid documentation and developers actively available to help. This section presents the

DDL frameworks selected for this work: Horovod (Section 4.1.1) and Tarantella (Sec-

tion 4.1.2). We will present the framework’s characteristics, usage, parallelization strat-

egy, and algorithms used, and a brief overview of the most important aspects of each

framework selected for this work in Section 4.1.3.

4.1.1 Horovod

Horovod is an open-source library written in C++ and in Python, with support for

data parallelism, developed by Uber in 2017 (SERGEEV; BALSO, 2018). It has support

to run on top of TensorFlow, Keras, PyTorch, or Apache MXNET. It can be downloaded
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as a stand-alone python package or installed and compiled via source code, available in

the official repository: <https://github.com/horovod/horovod>. Horovod’s documentation

presents strong support on how to install and use the framework for all libraries and soft-

ware required, but little information on concepts and about the algorithms implemented:

<https://horovod.readthedocs.io/en/stable>. It has been constantly updated, and it has

been compatible with all TensorFlow versions since it was launched.

The framework uses MPI to find the machines and coordinate operations from

hosts to devices. If available, the reduction operations and communication across devices

use the NVIDIA Collective Communication Library (NCCL) to perform collective com-

munication between NVIDIA GPUs and multi-nodes over PCIe and NVLink intercon-

nections. Otherwise, it requires communications between the host and devices. It works

with proprietary and open-source MPI implementations, and for GPU programming, it

uses CUDA.

Horovod launches multiple copies of the training script, one for each worker.

Horovod developers recommend the data distribution strategies presented in Figure 4.2.

In data partitioning, users must implement the data partitioning strategy by passing the

desired dataset_size considering the number of workers. In random sampling, the

workers randomly read data from the total dataset, the same amount of data shuffled

differently. The script recommendation to use Horovod implements random sampling.

Therefore, to achieve any acceleration with more workers, we need to split data across

workers by manually implementing the data distribution strategy.

Figure 4.2 – Recommended strategies for data distribution in Horovod.
Data Partitioning Random Sampling

Source: (SERGEEV, 2017)

Horovod implements a ring-allreduce algorithm where the gradients computed on

different devices are averaged by the workers and distributed to all nodes for weights

update during backpropagation. This approach improves performance compared to the

TensorFlow strategy, which allocates one process to be the parameter server, responsible

for averaging gradients calculated in different processes, called workers and broadcasting

https://github.com/horovod/horovod
https://horovod.readthedocs.io/en/stable
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them to all (SERGEEV; BALSO, 2018). The Horovod reduction algorithm was inspired

in an article published by Baidu (GIBIANSKY, 2017). Figure 4.3 presents the algorithm

idea, divided into three steps. In the first step, the user’s manual dataset partition guaran-

tees each process (P1, P2, P3, and P4) will work over part of the data. The data shuffling

implemented with TensorFlow ensure the processes will deal with different data. Each

device will compute the gradients (A, B, C, and D) for their chunks during the epochs.

The all-reduce algorithm starts in the second step, where the processes share their gradi-

ents with their neighbor using a ring communication and reduce the received data with

the gradients for that chunk. Each process will have reduced one chunk gradients at the

end of this step. In the third step, each process shares its reduced gradients chunk with

the others.

Figure 4.3 – The Horovod ring-allreduce algorithm, for four processes (P1, P2, P3, and P4), each
working over part of the dataset, computing gradients (A, B, C and D).
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The total communication cost of the ring all-reduce algorithm is 2× ((N
P
)× (P −

1)), where N is the number of chunks and P is the number of workers. Considering
N
P
× (P −1) for the reduction phase, and N

P
× (P −1) for exchange the reduced gradients.

This algorithm uses the NCCL library, which supports point-to-point primitives execution

multi-GPU and multi-node, such send, receive, scatter, gather, and all to
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all, and optimize operations such as merge, reduction, and aggregation.

In practice, the ring-allreduce algorithm can generate several all reduce opera-

tions for application with many tensors, increasing the time spent with communication

(SERGEEV; BALSO, 2018). The first versions of Horovod implemented a greed fusion

algorithm to do small all-reduce operations when detecting tensors that are ready to be re-

duced, so gradient transfer can be done right after the calculation is finished (HOROVOD,

2019). Horovod then proposed the Tensor Fusion technique to fuse small all-reduce ten-

sors operations into larger ones, and this way, interleave communication with computation

and gain performance. As presented in the Horovod documentation, the Tensor Fusion

works by determining the tensors available to be reduced, allocating a fusion buffer to

store the tensors, running the all reduce operation over the buffer, copying the results to

the output tensors, and repeating it until detecting more tensors to reduce that fit in the

buffer. This results in fewer reduction operations at a time. The Tensor Fusion buffer size

can be adjusted by the user.

Distributing a training script with Horovod requires a few lines of code, as pre-

sented in Listing 4.1 (more information in the comments of the code snippet). We need

to import the library to the script, initialize Horovod, and pin each GPU available to a

process. We scale the learning rate linearly with the number of workers to improve the

model convergence rate compared to a single device training, as presented in (GOYAL

et al., 2018). Then we wrap the optimizer, in this case, the Stochastic Gradient Descent,

to use the Horovod optimizer, which will apply the ring-allreduce algorithm. A wrapper

function is a subroutine in a software library to call a second subroutine with additional

computation. To guarantee the parameters and weights are correctly initialized, we use a

Horovod callback function to broadcast global variables from rank 0. The Horovod execu-

tion can be done by calling a python script horovodrun or directly using the mpirun

command. We pass the number of workers and the host file as parameters as in usual MPI

programs.

Listing 4.1 – Example of using Horovod in a training script with TensorFlow and Keras.

...

# Import Horovod library

import horovod.tensorflow as hvd

#Initialize Horovod

hvd.init()
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# Check GPUs available and pin one per process

gpus = tf.config.experimental.list_physical_devices(’GPU’)

if gpus:

tf.config.experimental.set_visible_devices(

gpus[hvd.local_rank()], ’GPU’)

...

# Create the Keras model

...

# Add the Horovod Distributed Optimizer to distribute the

# gradients and set the gradients averaging allgather

# the model update

opt = keras.optimizers.SGD(

learning_rate=args.learning_rate * hvd.size())

opt = hvd.DistributedOptimizer(opt)

# Compile the model using the Horovod optimizer

model.compile(optimizer = opt, ... )

# Broadcast initial variable states from rank 0 to all

# other processes

callbacks = [

hvd.callbacks.BroadcastGlobalVariablesCallback(0),]

...

Horovod also offers a native profiler tool called Horovod Timeline. When passing

the parameter to collect the timeline data, the execution generates a .JSON that is com-

patible with the Google Chrome chrome://tracing viewer, as seeing in Figure 4.4.

It offers an interactive view where the user can pan in the visualization, zoom parts of the

timeline, use a checkbox to select the operations displayed, and select specific regions to

get detailed textual information. In the Figure, the region selected in the red annotation

opens a new panel with the total execution time and the number of calls and execution

time for each operation inside the region. Log visualization is helpful to evaluate the

training efficiency and the training time. It facilitates the identification of epochs, MPI

and NCCL operations, and bugs related to Horovod. However, it hides information about

the C++ operations to launch the ring-allreduce algorithm and the device’s utilization. It

also presents limitations to open and navigate in large log files in the browser. A train-

ing in four workers in 100 epochs and 100 batch size generated a trace with more than

300MB, for example.
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Figure 4.4 – The Horovod Timeline view.

Source: The Author

4.1.2 Tarantella

Tarantella is an open-source framework developed at the Competence Center for

High-Performance Computing, part of the Fraunhofer Institute for Industrial Mathematics

(CCHPC, 2020). It is written in C++ and Python with support to TensorFlow models in

clusters with CPU and GPU, or CPU only. The major goal of the tool is to provide strong

scaling efficiency in an easy-to-use way, even for people without parallel programming

knowledge. Using Tarantella, users can distribute the training by adding a few code lines

to their model without configuring parallel computing details.

The framework implements the data parallelism strategy, using synchronous com-

munication to keep results as accurate as training in a single device. It uses the GPI-

23 communication library, based in the Global Address Space Programming Interface

(GASPI) API and high-performance communication between devices, with support for

CPUs, GPUs and FPGAs (GRÜNEWALD; SIMMENDINGER, 2013). GASPI imple-

ments one-sided asynchronous communication, allowing Tarantella to overlap the com-

munication during all-reduce with computation in the backpropagation. As MPI,

GASPI uses a C++ interface to implement collective operations.

Tarantella’s approach for data parallelism implements a class that subclasses the

3https://github.com/cc-hpc-itwm/GPI-2
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Keras model.fit function, used to train the model for a fixed number of epochs. This

way, Tarantella implements its data partitioning while benefiting from the Keras call-

backs and batches distribution. The Keras fit function receives the dataset as raw data

or in the tf.data.Dataset format. However, Tarantella fit allows datasets only in

the tf.data.Dataset format, representing a large set of tensor elements that passed

through transformations (shuffling, batching) before applying the model. The dataset size

must be a multiple of the batch size for correct data partitioning.

Tarantella data parallelism is implemented automatically, or by explicitly passing

tnt_distribute_dataset = True to its model.fit function. The dataset size

is always fixed, and it is split among the participating ranks. That means that the more

ranks are available, the more images you can process concurrently, and thus the faster

your training (for one single epoch) should be. Tarantella uses the shard function to

divide the data. It creates a dataset of size 1/num_shards associated with the index

parameter, called as shown in Listings 4.2.

Listing 4.2 – Dataset partitioning operation in Tarantella.

dataset = dataset.shard(

num_shards = self.num_ranks,

index = self.rank)

Tarantella uses a strategy called micro-batches, to automatically scales the

minibatch sizes with the number of devices used. It splits each minibatch into a number

of called micro-batches of size equal to the minibatch divided by the total number

of ranks, and distribute the micro-batches to be run in parallel. To apply strong

scaling, where we increase the number of workers and keep the input constant, users need

to increase the minibatch size linearly with the number of ranks. For example, if for a

single rank you use a minibatch size of 128, then for N ranks, you should use 128 × N .

Also, the minibatch size has to be a multiple of the number of ranks to run because of the

micro-batch default implementation.

Tarantella averages the gradients calculated in different workers at the end of an

epoch using reduce-scatter and allgather algorithms. Figure 4.5 presents the algorithms

used by Tarantella to perform the gradients reduction. It is divided into two all-to-one, and

one one-to-all collective algorithms pointed in the Figure: (1) Butterfly Reduce-Scatter,

which is a combination of the reduce and the scatter communication models, and (2)

the Butterfly Allgather, which is a combination of a gather and a broadcast. In the first

phase, the processes share chunks of their data with others and reduce the values obtained,
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resulting in a total communication cost of logP × α + s × β, where P is the number of

processes, s the message size, α the latency and β the bandwidth. In the second phase,

the processes perform a reverse communication to have the same reduced gradients, with

an equal communication cost of logP×α+s×β. This way, the total cost of this approach

is 2× (logP × α + s× β) + reduction.

Figure 4.5 – The Tarantella Butterfly Reduce-Scatter and Butterfly Allgather algorithms.
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Listings 4.3 presents an example of the Tarantella usage. It automatically broad-

cast the initial weights of the DNN to all workers without user intervention. It also iden-

tifies the available GPUs and makes them visible to TensorFlow automatically during the

framework initialization, being easier to use than Horovod. It only requires importing the

library and wrapping the Keras model to use the Tarantella model, using the tnt.Model

function. Tarantella detects and initializes the devices and broadcast the DNN initial

weights automatically. To run Tarantella, we need to call an executable script called

tarantella and, similarly to the Horovod execution using the MPI standard, we need

to pass the number of devices per node, the hostnames, and the execution script. Under

tarantella, the program calls the GASPI API, with an gaspi_run command.

Listing 4.3 – Example of using Tarantella in a training script with TensorFlow and Keras.

...

# Import Tarantella library

import tarantella as tnt

...

# Create a Keras model

...

# Create a Tarantella model from the Keras model

model = tnt.Model(lenet5_model_generator())

# Compile the wrapped model

model.compile(optimizer = opt, ... )

...
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4.1.3 Frameworks Overview

Table 4.2 summarizes the characteristics of the frameworks. We select Horovod

and Tarantella based on the programming languages they are implemented, support for

GPUs, NCCL, and cuDNN, for multi-node environments with multi-GPUs, and available

documentation. Despite that, they use different distribution libraries and all-reduce al-

gorithms for the same data parallelization strategy. So we can evaluate the performance

of each implementation and compare them for the same experimental setup. Horovod is

a more stable framework, in its 65th release, popular in several courses and tutorials on

DDL (NVIDIA, 2020b; Microsoft, 2020; AWS, 2020), while Tarantella is a most recent

framework, in its 4th public release. Also, Tarantella automatically initializes the GPUs

with TensorFlow and provides a data partitioning approach considering the number of the

available ranks. Horovod users need to partition the data, explicitly call the broadcast

function and initialize the devices using TensorFlow.

Table 4.2 – Overview of the selected frameworks: Horovod and Tarantella.

Feature Horovod Tarantella

Year of launch 2017 2020
Distributed library MPI GPI

Programming language Python and C++ Python and C++
Parallelization strategy Data parallelism Data parallelism

Data distribution Manually Automatically
Devices support CPU, GPU CPU, GPU
Interconnection Ethernet, Infiniband Ethernet, Infiniband

All-reduce Algorithm Ring-AllReduce Butterfly
Versions used 0.22.1 0.7.0

Source: The Author

Horovod and Tarantella implement data parallelism, where we copy the DNN

model for each allocated device and average all partial gradients during the backprop-

agation phase. Equation 4.1 shows that the total gradients calculated with the ∂Loss

over the training parameters ∂w, is equivalent to computing local gradients in parallel in

P workers (LE et al., 2018). In Equations 4.2 we represent that the total dataset, rep-

resented by s, can also be represented as the sum of partial and independent data from

this dataset (d1...dP ), calculated in different P devices. Equation 4.3 proves that the data

parallelism strategy results in the same gradients as using serial training. In this Equation,

∂f(xi, yi) represents the partial derivatives of the loss function with respect to the weights

∂w (VIVIANI et al., 2019). We assume the same parameters and model in each device
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but different chunks of data.
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4.2 Frameworks Stack

Figure 4.6 presents the execution stack for Horovod and Tarantella. At the Python

application level, we define the framework chosen in an existing training script using

Tensorflow and Keras. We need to add and modify some lines of code to guarantee the

model will use distributed training for the workers selected in the command line. The

inter-node communication to train the network using clusters multi-node with multiple

GPUs will use an API for distributed computing. Horovod uses MPI and Tarantella GPI-2.

The frameworks are responsible for managing the resources used to train ML frameworks.

At the HPC architecture level, the frameworks use CUDA and can use the NCCL and

cuDNN NVIDIA libraries to optimize operations in NVIDIA GPUs.

4.3 Model and Parameters Selection

Image classification is one of the most representative and popular models for per-

formance evaluation since it requires a higher computational process, memory, and ex-

ecution time to achieve more accurate results. We selected a Lenet-5 model with the

Modified National Institute of Standards and Technology (MNIST) dataset (LECUN et
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Figure 4.6 – Distributed Deep Learning frameworks execution stack.
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al., 1998). Figure 4.7 presents the LeNet-5 architecture, implemented as five layers con-

taining the training parameters, including three convolutional layers (C1, C3, and C5), two

sub-sampling layers (S2, S4), and one fully-connected layer (F6). The convolutions apply

filters of 5×5 size. The first convolution layer (C1) results in six feature map of 28×28

size. In the second layer (S2), the feature map is reduced by half its size. In the second

convolutional layer (C3), we have 16 filters, resulting in 10×10×16 filtered map. Then an-

other sub-sampling (S4), reducing the size to 5×5×16. Finally, a last convolutional layer

with 120 filters resulting in 120 values. MNIST is a popular image classification dataset

composed of 60,000 handwritten digits images, more 10,000 examples for testing, of size

28×28 (784 pixels) and 10 output classes (LECUN; CORTES, 2010).

Figure 4.7 – LeNet-5 architecture.

Source: (LECUN et al., 1998)

In CNNs, data is split by the sample dimension and gradients computed in par-

allel are averaged after each epoch. (DETTMERS, 2016). Smaller batch sizes are rec-

ommended for achieving higher accuracy, so the gradients are averaged over fewer data
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(MASTERS; LUSCHI, 2018). Bigger batch sizes result in gradients less representative

of the entire dataset, achieving lower accuracy. Considering our goal to compare the

frameworks algorithms and strategies to train in different devices, we selected different

minibatch sizes, which can reflect the parallelism decisions inside a minibatch, between

minibatches, and between epochs for each framework on each GPU model. For the mini-

batch sizes selection, we consider the data parallelism for Tarantella, where the minibatch

size must be a multiple of the number of ranks because of the micro-batches ap-

proach, as explained in Section 4.1.2. Otherwise it drops the remainder data. Also, we

considered the maximum minibatch size according to the GPUs memory, and the number

of GPUs available to have at least one batch per GPU in all cases.

Table 4.3 present the minibatch sizes selected for the Lenet-5 model and the num-

ber of minibatches processed per epoch. We use 54,000 images for training and 6,000

images for validation. Validation is a process to evaluate the model fit at the end of each

epoch and tune the model hyperparameters if necessary. It is recommended to choose

validation data different from the training and testing data to result in unbiased train-

ing. Keras directly incorporate these values in the model.fit function. For testing the

model, we used 10,000 different images. Since we want to measure the performance gains

scaling the training for more devices in terms of execution time, we use strong scaling,

which can achieve the same accuracy as the sequential training for small datasets, as in

the case of MNIST (CUNHA et al., 2018).

Table 4.3 – Minibatch sizes for the Lenet-50 with MNIST dataset.

Minibatch size Batches per epoch

100 540

180 300

360 150

720 75

1500 36

2250 24
Source: The Author

We configured full-factorial experimental designs using Jain’s methodology for

computer systems performance analysis (JAIN, 1991). The factors are grouped into two

categories: (i) related to the training and (ii) related to the environment. For the first,

we consider the DL frameworks, models, datasets, and minibatch sizes. For the second,

we consider the number of nodes and GPUs. Different from most works that analyze
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a single experiment, we performed ten repetitions for each case with experiments order

listed randomly. It resulted in 84 experiments. We use a learning rate of 0.01, linearly

scaling by the total number of workers, since it helps to match the accuracy and learning

curves between using small and large minibatches using SGD models (GOYAL et al.,

2018).

We run the frameworks over TensorFlow, since Tarantella only has support for it,

and it is a well documented tool, with several tutorials available on the internet. We used

bash scripts to launch our experiments with each full-factorial entry and parse the proper

parameters for each experiment considering the number of workers. We set the same seed

to be used by TensorFlow in the weights initialization and the dataset shuffling for each

experiment. It restricts the same results for the same experiment repetition and case for

different clusters and frameworks. Listing 4.4 presents our approach to randomize the

dataset.

Listing 4.4 – TensorFlow functions used to shuffle and batch the dataset.

train_dataset = tf.data.Dataset.from_tensor_slices(

(x_train, iy_train))

train_dataset = train_dataset.shuffle(

len(x_train), shuffle_seed)

train_dataset = train_dataset.batch(

args.batch_size)

train_dataset = train_dataset.prefetch(

buffer_size = tf.data.experimental.AUTOTUNE)

The shuffle function is used to ramdomize the elements of the dataset using

a seed. We pass the size of the entire dataset since the shuffle creates a buffer with

buffer_size of the first parameter, which ideally has the same size of the dataset.

In our experiments, we set the shuffle_seed according to the GPU identificator, and

repetition, to ensure the same repetition with the same amount of GPUs will train over

the same data for different frameworks and batch sizes. The batch function will group

the dataset into batches of size minibatch size, set as argument by the user in the

run line. It results in an additional outer dimension to the dataset of size batch_size.

They recommend to use drop_remainder parameter set to true, to deal with dataset

not multiple of the batch size. The default is false, and can lead to an unknown dimen-

sion for the entire dataset type. Finally, the prefetch function is used to increase

the performance of memory access, improving latency and throughput. It prefetches

later elements from the dataset while the current element is being processed. If the
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dataset was previously batched, it uses a buffer of size buffer_size. We apply the

tf.data.experimental.AUTOTUNE option, which will prompt the tf.data run-

time to tune the number of values prefetched dinamically at runtime. Then we pass the

train_dataset to the Tarantella model.fit function, as presented in Listings 4.5.

Listing 4.5 – Keras model.fit function used to train the batched model.

model.fit(train_dataset,

use_multiprocessing = False,

callbacks=callbacks,

tnt_distribute_dataset = True,

validation_data = val_dataset,

epochs = args.number_epochs,

verbose = 0)
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5 RESULTS: COMPARING HOROVOD AND TARANTELLA

Our performance analysis methodology consisted of performing experiments with

the selected models and environments considering the DDL framework’s algorithms and

strategies. We compared Horovod and Tarantella in three clusters chifflot, chifflet,

and gemini, using a full-factorial design with different batch sizes, with one network

model, and one dataset. We selected 100 epochs for the training, which was sufficient for

achieving high accuracy in an acceptable execution time.

All experiments collected the Keras callbacks and NVSMI traces. The difference

in runtime with and without the logs was small, up to 4% of the entire execution time for

the smaller batch size for Tarantella and up to 2.5% for Horovod. Due to the variability

in the overhead, in practice, this difference remains unnoticeable. Also, the callbacks

generate small datasets, from 20KB to 80KB for the NVSMI log, and from 40KB to 8MB

for the callbacks.

The main contribution of this Chapter is a comparison of two DDL frameworks

that applies data parallelism for distributing the training for up to 12 workers in three

different clusters. Horovod presented the best performance regarding execution time,

achieving higher efficiency scaling than Tarantella. On the other hand, Tarantella achieved

higher and more stable training accuracy. We found a bottleneck in Tarantella’s imple-

mentation when leaving the framework set up for sequential training and not distributing

test batches. The time with initialization of the frameworks before starting the model fit-

ting is similar for both frameworks. Horovod made higher usage of GPUs during training,

but this value drops for the cluster Gemini, with the most recent GPU cards. Using Keras

callbacks, we found that Horovod faster training is because it computes an epoch faster.

It also revealed a space for improvement in Horovod initialization time compared with

Tarantella.

Section 5.1 presents the training time comparison between Horovod and Tarantella

for our full-factorial design. Section 5.2 shows the frameworks scaling efficiency when

adding more GPUs. Section 5.3 compares the loss and accuracy to verify if distributing

the training can impact the model prediction. Section 5.4 presents our findings using

Keras callbacks for profiling the training.
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5.1 Training Time Performance Analysis

Figure 5.1 presents the mean execution time for all setups, where each vertical

facet represents a cluster and the horizontal facets represent the minibatch sizes. We use a

confidence interval of 99.97% for 10 repetitions each, showing the mean time and the error

bar in black. Horovod presented the best performance using four or more GPUs compared

to Tarantella for all cases. It also scales until 12 GPUs, different from Tarantella, which

perform similarly when increasing from 6 to 12 devices.

Figure 5.1 – Execution time for LeNet-5 over MNIST. Each facet represents a batch size.
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Comparing the clusters used, even having the overhead of making a copy of the

entire model in each worker to run a distributed training with data parallelism, the frame-

works achieved similar results for all GPU models, except for using two GPUs in a 100
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batch size. This similarity happens since the MNIST dataset size does not explore the

GPUs memory and the Lenet-5, a model with few layers, does not explore all the GPUs

power to run. Figure 5.2 presents the maximum power and memory achieved for the case

that explores these factors the most, with a batch size of 2250 images. We had less than

50% maximum use of the total memory for the GPUs, and less than 300W consumed for

all GPUs. The variation in the maximum power can be explained by the frequency for

the GPU models in each cluster, the lower frequency for Chifflot of 1190MHz limited the

power to less than 200W, and the highest power for the Chifflet was possible due to its

frequency of 1481MHz. The power variation did not impact the overall execution time.

Figure 5.2 – Peak memory and power for one experiment with batch size 2250.
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The batch size defines the number of image samples that will be propagated

through the network during training at the same time. Smaller batches finish faster, but

they increase the latency of data sent from host and device and between devices, without

taking advantage of the GPUs processing potential and taking longer time to execute. Us-

ing larger batches decrease the execution time and increase the throughput by processing

more data at a time. The GPUs will perform fewer iterations per epoch to pass through

all dataset, decreasing the communication between devices. We notice this behavior in

Figure 5.1, where the smaller batches took longer to execute for the all number of GPUs

set, compared to bigger batch sizes. A network traffic analysis about this higher through-

put using smaller batches was reported before for a CNN architecture in three nodes with

CPUs (ASPRI; TSAGKATAKIS; TSAKALIDES, 2020).

We run the experiments with one GPU using the frameworks to evaluate their over-

head comparing to the pure Tensorflow execution, since Horovod, for example, reports no

overhead if applied to a single-worker execution. Figure 5.3 presents the overhead of

using the frameworks for a non-distributed training with one GPU compared to the pure

TensorFlow implementation. Horovod, as expected, had a similar execution time as the
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experiments using pure TensorFlow. The smallest batch sizes of 100 and 180 for Gemini,

and 100 for Chifflet present the same execution time for Horovod and pure TensorFlow,

considering the measurement variability in the experiments with 10 repetitions. Tarantella

added a significant overhead of up to 160 seconds for the smaller batch size in the Gemini

cluster. Investigating the Tarantella source code, we observed it does not implement a ver-

ification if the training is using more than one GPU. Tarantella initializes the Gaspi library

and starts distributing the training for the GPUs listed by tnt.get_size() normally.

Figure 5.3 – Overhead of using the DDL frameworks for a single GPU training.
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We supposed that the extra time in Tarantella for one GPU could affect other ex-

periments if related to an initialization phase, especially when scaling for more devices.

Figure 5.4 presents the total time between the training script initialization and the be-

ginning of the first batch for an experiment with a batch size of 100 images. For each

setup, we show the percentage it represents over all execution time. Before starting the

script, the frameworks’ initialization time was measured separately, around 0.14 seconds

for Horovod and 0.33 for Tarantella. The frameworks spent similar time before training,

Horovod spent 7.7% of the time with initialization for 12 GPUs at Gemini, which is a

high percentage since the training time was very low, as shown in Figure 5.1. This visual-

ization indicates that Tarantella’s extra execution time compared to Horovod is not related

to its initialization.

The Horovod execution time increased with minibatch size 100, when going from

one node with one GPU to two nodes, one GPU each, as presented in Figure 5.1. Figure

5.3 shows that Horovod had no overhead in a non-distributed training, which means its

execution time is dedicated on training. This execution time increase can be explained

by Horovod start applying its reduction algorithm and NCCL operations when using dis-

tributed training. Figure 5.5 presents the maximum GPUs usage achieved during training

captured with NVSMI. For a DL training, the higher the usage of a GPU the better the
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Figure 5.4 – Time spent with initialization for an experiment with batch size 100, and the
percentage of time it represents over the execution makespan.
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algorithm is, spending fewer time with the work outside the devices with communication,

for example. Here we confirm Horovod starts more the device when distributing the train-

ing in Chifflet, and Chifflot clusters. An unexpected behavior in the Gemini cluster was

that Horovod made fewer usage of the GPUs when distributing to more devices. Taran-

tella on the other side, presented higher GPU usage when adding more than four GPUs

to in Gemini, training. Since it runs over a non-distribute training, the peak GPU drops

going from one to two GPUs. It also presented a high variation in the Chifflet and Chifflot

clusters for more than eight GPUs.

5.2 Frameworks Scaling Efficiency

Using multiple GPUs located in different computational nodes can lead to data

transfer overhead. To guide our investigation of how the frameworks could be improved

in their current implementation, we represented their expected gains if they scale linearly

based on the serial training, presented in Figure 5.6. It is calculated as the ratio between

the time training in one GPU with the framework over the number of devices added.

Horovod approached the expected gain for 4 GPUs or more for larger batches, with more

than 180 images (Figure 5.6a). For smaller batches, with more data transferred through

the network, Horovod performance in the Gemini cluster, with the newest GPUs used,

is significantly higher than in the other clusters. Performance for Chifflet and Chifflot
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Figure 5.5 – Horovod and Tarantella peak GPUs usage when scalling more devices and larger
batches.
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could still improve the performance until ≈105 seconds for 6 nodes and ≈81 seconds for

6 nodes.

Tarantella (Figure 5.6b), could gain from ≈26 seconds to almost ≈170 seconds

if achieved the expected gain for 4 GPUs. Of course, a linear speedup is hard to accom-

plish since adding more devices will increase the communication overhead and the time

processing synchronization algorithms. Still, when comparing Tarantella with Horovod,

we notice that the last approximates the expected gain, especially for larger batch sizes.

For Tarantella, experiments in Gemini with batches of size 720 or greater take longer ex-

ecution time than using the other clusters. The Gemini cluster has two nodes with eight

GPUs each and four GPUs per NUMA node, impacting long memory latency compared

to the other clusters, with two GPUs per NUMA node. Even though Horovod benefit from

using the V100 GPU cards. Figure 5.7 compares the scaling efficiency for Horovod and

Tarantella. We used the Equation 5.1 to calculate it, where T1 is the execution time with

one GPU, and Tn with n GPUs. In our strong scaling approach, Horovod achieved higher

efficiency for all cases with more than 6 GPUs, with a difference of almost 50% in the

efficiency between Tarantella and Horovod, indicating that Tarantella could potentially

improve its performance.

E =
T1

n · Tn
100% (5.1)
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Figure 5.6 – Execution time (coloured lines) and expected gains (black dashed lines) for the
frameworks if they scale linearly for more GPUs.
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Figure 5.7 – Efficiency scaling for more GPUs.
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Horovod efficiency improves when increasing the batch sizes, 80% for Chifflet

and Chifflot for 2250 batch size, and 76% for 1500 batch size. The same happens for
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Tarantella, but more slightly, with ≈41% for Chifflet and Chifflot, 2250 batch size, and

≈39% for 1500 batch size. Both frameworks achieve lower scaling efficiency for more

than 6 GPUs for minibatch sizes of 100 and 180 since the batches are not large enough

to enable further gains. Horovod is ≈84% faster for 4 GPUs in all clusters for 2250

batch size, the highest efficiency, and for 12 GPUs achieved 68% in Chifflot, 65% for

Chifflet, and 53% in Gemini. Tarantella’s maximum scaling efficiency is 78% for Chif-

flot with 1500 batch sizes with 2 nodes, and it is only ≈23% faster for 12 nodes in all

clusters. Overall, Horovod efficiency is higher than Tarantella for 4 GPUs or more, and

both frameworks scale up to 12 GPUs for a batch size larger than 720. Chapter 6 presents

reasons of why Tarantella is slower than Horovod even with the same DDL strategy.

5.3 Loss/accuracy

Even though our research focuses on evaluating and comparing the performance

of the frameworks from an HPC perspective, we believe it is important to measure the ac-

curacy of the models since it will impact the users’ choice of the best DDL framework for

CNNs. The accuracy represents the percentage of the data correctly classified from the

total data used for data classification problems. The loss presents the distances between

true and predicted values, the probability of making correct classifications. Increasing

the batch size, we increase the number of data treated simultaneously per iteration, so the

prediction of many examples will be less representative than using smaller batches, which

is why we have a lower accuracy when using larger batches.

Figure 5.8 presents the final accuracy achieved for training and for the test phase,

which uses 10,000 images different from the training. Horovod decreased its accuracy

more than Tarantella when scaling, and in general, Tarantella achieved higher and more

stable accuracies for the setups. There are some very low cases for 360 and 720 batch

sizes only that stand out. We did not tuned hyperparameters for scaling the global batch

size up as recommended when focusing on the model accuracy (GOYAL et al., 2018).

Figure 5.9 presents the final train and test loss. The Horovod loss achieved a

higher variation for 8 and 10 nodes with all machines and batch sizes. The test loss kept

a similar value for Tarantella, but not for Horovod, behaving better than during training.

Even though we shuffle the dataset so the same experiment case with different frameworks

will work over the same dataset order, we can not control the averaging algorithms and

optimizations for distributed training with the frameworks. Also, we notice an anoma-
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Figure 5.8 – Test and train accuracy obtained at the execution end for Horovod and Tarantella in
all setups.
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lous case for Tarantella with 8 GPUs in the Gemini clusters, with the highest loss. We

conclude that Horovod’s prediction for the image classification model is less stable than

Tarantella scaling for more devices, and in some cases, also scaling for larger batches,

while Tarantella behaved well for all cases, for the train and test predictions.

Figure 5.10 shows the accuracy and the loss variation through the training epochs

for the smallest and the bigger batch sizes, on all machines, for 4 and 12 GPUs. We

only show the first 50 epochs out of 100 since it stops converging after 40 epochs. As

expected, predictions over small batch sizes converge faster than averaging gradients over

bigger batch sizes. Loss started presented slight variability for 12 GPUs with 100 batch

sizes with Tarantella and higher variability for 2250 batch sizes. Using fewer devices,

they achieved a similar convergence rate. For the larger batch size, both frameworks

presented several loss and accuracy variations until epoch 20. Still, they converge almost

at the same time, between epoch 20 and 30. The huge loss for the first epochs using batch

size 2250 is also expected due to several data being classified. Tarantella kept more stable

accuracy when scaling to more devices (Figure 5.8), but when looking at the accuracy for
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Figure 5.9 – Test and train loss obtained at the execution end for Horovod and Tarantella in all
setups.
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each epoch along with the training time, Tarantella presented more variability to converge

than Horovod.

5.4 Training workflow

We saw in the previous Sections (5.1 and 5.2) that Horovod scales better than

Tarantella and has a lower total execution time in all cases for more than four workers.

This section depicts this total execution time for Horovod and Tarantella using the Keras

callbacks to get the time spent processing epochs and batches to identify the synchro-

nization methods used by each framework. With this, we can understand the training

workflow for DDL frameworks and start classifying the time spent with computation and

communication.

Table 5.1 presents the execution time processing batches during testing (Test

Batches), during training (Train Batches), and the overall execution time of each case

(Total Time). We also present the time difference (Difference) between the Total Time,
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Figure 5.10 – Training loss and accuracy comparison for Horovod and Tarantella for some cases
throughout the epochs. Lower loss is better. Higher accuracy is better, up to 1.

4 GPUs 12 GPUs

Horovod Tarantella Horovod Tarantella

100 B
atch size

2250 B
atch size

G
T

X
1080

P
100

V
100

G
T

X
1080

P
100

V
100

0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Epoch

Accuracy Loss

Source: The Author

not considering the Train and Test Times. We selected the oldest and most recent GPU

versions, with the smallest and biggest batch size for 2 and 12 GPUS. Our goal was to

understand if Horovod is faster than Tarantella for processing the batches faster or if the

time processing batches are similar, so the difference comes from other reasons. Both

frameworks decrease their total execution time when scaling for more workers. For time

computing batches during training, Horovod is 9.88 times faster for Chifflot and 8.82

times faster for Gemini going from 2 GPUs to 12 with 100 batches size. The maximum

that Tarantella goes is 3.73 times faster for 100 batch sizes in Chifflot. We notice that

the time testing drops when scaling the training in all cases for Horovod, but it remains

similar or even increases for Tarantella. It indicates that Tarantella does not distribute the

testing batches as it does for the training batches.

Using Keras callbacks, we can start to investigate the amount of time that is not

spent with computing during distributed training. In the “Difference” column, we present

the amount of time the experiment is not processing batches. Scaling DDL for more
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Table 5.1 – Total execution time processing batches during testing (Test Batches), during
training (Train Batches), the total execution time for running the experiment (Total Time), and

the time that the experiment is not computing batches (Difference).

Horovod

Cluster Batch GPUs Test Batches Train Batches Total Time Difference
(TrB) (TeB) (TT) TT - (TrB + TeB)

Chifflot 100 2 6.89 544.93 564.69 12.87
Chifflot 100 12 0.98 55.21 59.36 3.17
Chifflot 2250 2 2.68 76.42 90.96 11.86
Chifflot 2250 12 0.61 13.09 16.6 2.9
Gemini 100 2 7.41 299.37 320.61 13.83
Gemini 100 12 1.36 33.94 41.97 6.67
Gemini 2250 2 2.01 73.61 88.51 12.89
Gemini 2250 12 0.64 17.54 23.93 5.75

Tarantella

Chifflot 100 2 11.68 342.75 370.1 15.67
Chifflot 100 12 10.67 91.79 117.6 15.14
Chifflot 2250 2 4.44 66.7 84.85 13.71
Chifflot 2250 12 4.42 26.25 45.29 14.62
Gemini 100 2 13.2 340.29 370.42 16.93
Gemini 100 12 15 128.43 164.28 20.85
Gemini 2250 2 3.24 69.53 88.11 15.34
Gemini 2250 12 4.35 34.9 58.78 19.53

Source: The Author
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workers can accelerate training time since each worker will process the smallest amount of

data, but it also increases the time spent with communication among devices to update the

gradients. When we scale with Horovod, the time not processing batches also drops, up

to 4.08 times slower for Chifflot with 2250 batch size. It indicates Horovod optimizations

for Horovod communication have a good result over our model. However, for Tarantella,

the time not processing batches remained similar for Chifflet, and it even increases for

Gemini.

To understand what was causing the differences for Horovod and Tarantella in

different clusters, we present the batches execution for the first epochs in Chifflot and

Gemini using a temporal visualization. Figure 5.11 shows the first two epochs and batches

for batches of size 100, and Figure 5.12 the first three epochs for 2250 batch size, both

with 6 GPUs. The colors represents the batches for each case, 4 batches for 2250 batch

size, and 11 out of 45 for 100 batch size (5400 images total). The first batch of the first

epoch took much longer than the others to execute, that indicates the initialization time is

also considered training execution time for Keras callbacks. Only with the traces, we can

not know for sure. Also, the first batch of other epochs took longer, as we can more easily

identify in Figure 5.12 since it only computes two batches of size 2250 per epoch.

Figure 5.11 – Space/Time view for the first two batches with a batch size of 100 and 6 GPUs.
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We saw in pink in Table 5.1, that Horovod runs faster for 2250 batch size in Chif-

flot than in Gemini. In the plots, we notice this behavior is due to the faster initialization
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Figure 5.12 – Space/Time view for the first three batches with a batch size of 2250 and 6 GPUs.
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time, which is 1.8 times faster, since the time processing other epochs is similar. The

opposite happens for a smaller batch of 100 (yellow values in the table) for Horovod. The

total training is faster in Gemini, even though the initialization in Chifflot is 1.97 times

faster than Gemini, but the time computing the other epochs for a small batch size is faster

at Gemini. That is because V100 GPUs are faster than P100, bringing optimizations to

computer tensor operations. The colored values in Table 5.1 for Tarantella show it com-

putes faster for both cases in Chifflot. For smaller batch sizes, the total time processing an

epoch is similar, but, as Horovod, the initialization time in Gemini is very time demand-

ing. Tarantella also had a long time between epochs than Horovod, with around 2 seconds

between the first and second epoch at Gemini for batch size 100.

The GPU warm-up time is a possible reason for a long time in the first batch of

each epoch. Without a persistence mode enabled, the GPUs are unloaded when their file

descriptor is not open by another process, generating a possible delay when initializing the

GPUs with TensorFlow (TESSER; MARQUES; BORIN, 2021). Looking at Figure 5.11,

Horovod time for the first batch of the second epoch is almost the same for processing the

other batches. Also, the execution time for the first batches differs between frameworks.

Therefore, it is necessary an investigation of watch this initialization time represents.

Zooming into the temporal visualizations of the callbacks, we identify the frame-

works synchronization between epochs. Figure 5.13 presents a time interval for training
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with 720 minibatch size in 2 GPUs. Both frameworks had a synchronization point at

the end of an epoch when they average gradients among all. Horovod let workers that

updated their gradients start processing the next epoch, different than Tarantella, which

also looked to have a synchronization point at the beginning of an epoch. This approach

decreases the time between epochs for Horovod, as shown in Figures 5.11 and 5.12.

Figure 5.13 – The frameworks synchronization for workers between epochs detected with Keras
callbacks.
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Zooming into one batch processing for the same case in Figure 5.14, we con-

firmed that there is no synchronization between workers for processing the batches. Even

using the micro-batches strategy, Tarantella still has long synchronization points between

epochs. We believe they implemented Tarantella with micro-batches since they are work-

ing on providing pipelining parallelism in the tool, which is not available in the version

used. Further investigation needs to be done to identify what is considered the first batch

for high-level profilers in ML.

Figure 5.14 – The frameworks synchronization for workers between batches detected with Keras
callbacks.
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6 RESULTS: BREAKING THE FRAMEWORKS BLACK-BOX

Measuring accuracy and execution time is important in DL to evaluate the effi-

ciency of a model. Using distributed training adds new concerns when evaluating DL, to

understand if the training is taking advantage of the computing resources and minimizing

the communication overhead, adding more workers. We applied tools for performance

analysis of distributed applications on Horovod and Tarantella and correlated with results

presented by the Keras Callbacks. We used execution traces, profiling, and visualization

to break the DDL framework’s black-box, written in Python and C++/C programming

languages. Section 6.1 introduces Score-P and presents our results using it with Horovod

for code instrumentation. Section 6.2 presents our findings combining the frameworks

instrumentation with NVProf to our evaluation.

6.1 Instrumenting Deep Learning with Score-P

Score-P is a performance measurement infrastructure to instrument applications

with different programming paradigms (KNÜPFER et al., 2012). It generates event traces

in the Open Trace Format Version 2 (OTF2), and profile in the CUBE4 format (KNÜPFER

et al., 2012). Score-P allows instrumentation at the user level, through manual code instru-

mentation, or it can collect events of multi-process, thread-parallel and accelerator-based

application.

A literature review of parallel and distributed deep learning frameworks applied in

DNNs shows that the Message Passing Interface (MPI) is the most-used communication

standard for implementing parallel strategies in DDL (BEN-NUN; HOEFLER, 2019).

That is the case of Horovod, but not Tarantella, which uses GPI-2. Score-P has support

for MPI, but not for GPI-2. Extrae has a branch 1 developed by the Supercomputing

Center in Barcelona (BSC) with support to GPI-2/Gaspi. We installed and tested, but

it fails to collect Tarantella traces. A possible reason is that both frameworks wrap the

C++ code with Python. For Score-P we can get MPI information for Horovod only if

configuring Score-P Binding Python2, a Score-P implementation for Python. In this work

we performed compiler-based instrumentation only for Horovod with Score-P.

Horovod instrumentation with Score-P required installing and configuring Score-P

1https://github.com/bsc-performance-tools/extrae/tree/GASPI
2https://github.com/score-p/scorep_binding_python
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and scorep-binding-python, and manually installing and configuring Horovod with sup-

port to Score-P tracing. We used Score-P 6.0 from the official VI-HPS repository3 and

installed it with support to the gcc-compiler plugin. After, we installed the Score-

P Binding Python, which recognizes the installation of Score-P. Horovod is a standalone

Python library, so usually installed with pip, the package installer for Python.

We downloaded and extracted the Horovod source code to our approach and con-

figured the compilation file to use Score-P for MPI and CUDA instead of pure MPI and

CUDA compilers. Horovod uses CMake to compile the code, so a usual addition of the

“scorep” command as a prefix for the compiler call does not work. We used the Score-P

Compiler Wrapper 4, which replaced the application’s compiler with the corresponding

wrapper with Score-P. For a code wrapped in Python, only instrumenting at C++ level

does not work. Score-P requires the scorep_subsystems variable defined in an in-

strumented executable, which will not add it if is not instrumented at the Python level.

Fit large amounts of data on small screens is a challenge in the performance visual-

ization of parallel applications (SCHNORR; LEGRAND, 2013). An execution collecting

all traces for events in C++ and Python for two GPUs, batch size of 64 and 150 epochs

generated a trace of 3.4GB, which demands time and computational power to process and

analyze using visualizations. It also correlates with the limitations presented for Horovod

Timeline in Section 4.1.1.

Vampir is an event trace visualization tool to OTF2 files, as outputed by Score-P,

with spatial and time visualizations such as Gantt charts, bar charts, and summaries to

show the trace events information. Tools as Vampir are insightful to identify patterns in

parallel applications and the communication flow between processes. Visualization for

Horovod with Vampir for an experiment with two GPUs, one node each, in the Hype

cluster with 720 batch size in 10 epochs is presented in Figure 6.1. Panel 1 shows an

overview of the application execution time, Panel 2 presents it per process, and Panel 3

presents the different levels of function calls in a bar chart for a single process where we

identify the 10 epochs. Panel 4 presents the MPI latencies for each process, where we

identify that each process launches a thread to control the MPI operations, with one rank

having higher latency, and Panel 6 presents a system tree with accumulated latencies for

each process. Panel 5 presents the accumulated execution time for each function, and

we obtain that from the 97 seconds running, 109 seconds (sum of both ranks) were spent

with MPI all reduce operations. If they processed similarly, as shown in Panel 2, it is

3https://www.vi-hps.org/cms/upload/packages/scorep/
4https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/scorepwrapper.html
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most than half of the execution time with reductions. However, for a DDL framework

trace analysis, Vampir limits correlating the Score-P measurements with the tracing at the

Python level. This limitation motivated our analysis using data processing to generate our

own visualizations.

Figure 6.1 – Vampir visualization tool for the Score-P traces collected for Horovod.
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We used two nodes of the Hype cluster setting, two NVIDIA Tesla K80 each, to

perform experiments with ten epochs. We converted the Score-P trace file to CSV using

otf2utils 5, so we could process with R. Table 6.1 presents the total training time dura-

tion, and the total time spent with the MPI_Allreduce operation for each node for one

execution with batch size 720, which is representative enough. The percentage of time

with MPI Allreduce represents 73.62% to 82.30% of the total training time in the respec-

tive ranks. These high values come from the Horovod feature called Tensor Fusion, that

performs constant asynchronous all-reduce operation during the training, as presented in

Section 4.1.1. TensorFlow stores the tensors ready to be reduced in a queue, and Horovod

launches a thread to combine these tensors and reduce them in one reduction operation.

This process can make the training faster since it uses the time TensorFlow is comput-

ing operations in the backward propagation step to advance the reductions processing

(KURTH et al., 2019). Still, overlapping the computations with communications needs

to be well used since spending more than 80% of the time with reductions can indicate a

performance bottleneck.

5https://github.com/schnorr/otf2utils
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Table 6.1 – Horovod time with MPI_Allreduce for 720 batch size in 4 GPUs (2 nodes).

MPI Rank Training MPI_Allreduce Percentage
(seconds) (seconds) of Time

0 84.84 62.46 73.62%
1 85.19 70.11 82.30%
2 84.97 65.34 76.89%
3 85.12 69.63 81.80%

Source: The Author

The Tensor Fusion technique is suitable to improve the performance of large mes-

sages. Tensor Fusion disabled for a batch size 2250 increases ≈10% of the execution

time, and for a batch size 720, it decreases ≈3.5% for 4 workers in 10 epochs. Fused ten-

sors can better use the network bandwidth, but the time to start the all-reduce is delayed

depending on the buffer size, impacting the total execution time (DAS et al., 2016). It

explains the performance decrease for our experiment with a batch size of 720 and the

default buffer of 64MB for small messages. Lenet-5 uses 54,000 images of size 32×32

for the MNIST dataset, which is small compared to other popular networks as ResNet-50

with Imagenet dataset, with more than 10 million images of size 224x224x3. Testing the

Tensor Fusion feature with the last model will be considered in our future work.

Each epoch of the total training will suffer the same computations but over up-

dated parameters. From a performance analysis perspective, we can trace a few epochs

and get a representative picture of the total training execution. Figure 6.2 presents a

temporal visualization of the MPI_Allreduce operations that took place during one

epoch for training with 4 workers and batch size 1500 using Horovod. The blue color

in the background represents the batches process captured with Keras callbacks. The

MPI_Allreduce operations are executed throughout all batches with small and bigger

data volume. We zoomed in a time slice to investigate the reductions inside two batches.

The vertical green lines represent the time beginning and ending a batch, which occurs

subsequently. We identified a pattern where MPI_Allreduce processes bigger mes-

sages inside each batch, starting around the middle of its execution, and that the rank 0

processes fewer reductions inside the batch. Right after the batch beginning and end, all

ranks process faster reductions, making them narrow in the plot. This Figure exposes the

challenge of fitting one epoch training in a visualization, even for a small dataset, and

zooming into a few batches.
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Figure 6.2 – MPI_Allreduce operations during one epoch of the training in red. In blue, in the
background, the batches execution. The green lines represent the delimitation of a batch

initialization and end. We zoom for two batches.
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6.2 Instrumenting Deep Learning with NVProf

NVProf can output traces in the CSV file format or its default file format, with a

.nvvp extension, which stores the CUDA operations as an SQLite file, interpreted by the

NVProf visualization tool. Considering our data analysis using R, our first approach was

to output CSV files. However, it shows the relative time of each event without revealing

what they are relative to. It is essential to know the base timestamp of all measurement

tools to correlate information as we collected for the Keras callbacks. We found it is a

particularity of the traces in the CSV format, so our solution was also to output a .nvvp file

and use the RSQLite package6 to process the data with R and get the absolute timestamp.

Figures 6.3 and 6.4 present a correlation between the results obtained with Keras

callbacks and NVProf. The panel on the top shows the epochs with Keras callbacks for

the whole execution. Below, the NVprof panel shows the GPU Stream processing, with

synchronized X-axis to the Keras callbacks. The two panels in the bottom present a zoom

into the first epoch for NVProf, and into one batch of this epoch. The vertical dotted lines

in red mark the zoomed parts. Looking at the two panels on the top, we identified the

computing time at the devices during what is considered an epoch to Keras. The call-

backs encompass more than the actual training time in the devices for all epochs and both

frameworks. Works that only use tracing at the high-level programming language skip the

first iterations or the first epoch of the training to avoid measuring the initialization time

(LIU et al., 2018; SHI et al., 2018). The presented correlation confirmed we can identify

6https://db.rstudio.com/databases/sqlite/
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the actual training time using the NVProf and consider the entire training time.

Figure 6.3 – Correlating Keras callbacks and NVProf traces to investigate the trainining for
Horovod.
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Horovod’s experiment runs 10 epochs with 12 batches in each. In Figure 6.3, in

the NVProf panel, we notice the origin of the longer initialization time for Horovod. Be-

fore the first red dashed line, the time computing in GPU is 0.29 seconds, so most of the

6.65 seconds of initialization before the first epoch is performed in the host. Zooming in

the first epoch, we noticed the asynchronous execution of the batches. We also identified

only 11 batches because the first batch of this epoch, which does GPUs initialization, runs
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Figure 6.4 – Correlating Keras callbacks and NVProf traces to investigate the trainining for
Tarantella.
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before the time interval selected. Zooming in one batch in the last panel, we can also iden-

tify the operations performed per batch. They are mostly cuDNN operations, followed by

pooling operations, Eigen operations, a library to perform linear algebra operations, Ten-

sorFlow operations, and SGEMM for matrix-matrix operations in single precision.

Tarantella’s experiment runs 10 epochs with 24 batches in each. The two panels

on the top of Figure 6.4 showed the shorter initialization time for Tarantella compared

to Horovod. From the first 3 seconds of initialization, only 1.42 milliseconds are inside

the devices. Zooming into one batch, we identified the 24 batches and that the interval

between the first and the second batches is smaller compared to Horovod, where the first
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batch was computed between 4 and 5 seconds (Figure 6.4). We also noticed synchronicity

between batches on different workers. Zooming into one batch, we identified the same

operations performed inside a batch for Horovod, as expected for the training using the

same model.

We used the Keras callbacks and the NVProf measurements to perform a tem-

poral aggregation considering the time of an epoch. Figure 6.5 presents the results for

Horovod and Figure 6.6 for Tarantella. The X-axis represents the total time executing an

epoch, operations inside the GPU, and outside the GPU, and there are only two ranks. We

summed the time with operations in GPU and got the time processing out of the devices

for each epoch. The long time processing outside the GPUs for the first epoch reflects the

initialization time considered by the Keras callbacks. Here we confirmed that Horovod

processes more time inside and outside of the devices to work on initialization, which

leaves space for investigating if initialization in Horovod could be improved. The other

epochs performed very similarly for Tarantella, while Horovod spent almost all the epoch

time processing inside the GPU 0 for epochs 1, 3, and 4. It is a result of the asynchronous

reductions performed by the framework. Synchronicity in Tarantella needs to be explored

so that it can reduce the time out of the GPU.

Figure 6.5 – Training time processing in GPU and outside the devices for each epoch using 2
GPUs distributed with Horovod.
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The presented results contribute to the performance analysis of DDL training, con-

firming that tracing events at the device level is complementary to the profiling at the high-

level programming language only. Performing a temporal synchronization of the execu-

tion time of the Keras callbacks and the CUDA operations obtained with NVProf reveals

the time performing the calculation. With a temporal aggregation, we can also measure

during the training steps (epochs and batches). Moreover, tracing the DDL frameworks

reveals the standard’s overhead for message passing to average gradients computed in

different nodes.
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Figure 6.6 – Training time processing in GPU and outside the devices for each epoch using 2
GPUs distributed with Tarantella.
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7 CONCLUSIONS

With the increase of datasets to feed DNN and advances in DL and HPC, DDL

frameworks started to be created. They facilitate the usage by people without experi-

ence in distributed systems. Still, they hide details about their algorithms and parallel

strategy, wrapping the final code to be easily installed using high-level programming lan-

guages. For being very recent, there is a lack of studies comparing the performance of

these frameworks. Even more, to correlate information from different performance anal-

ysis tools for different hardware and software configurations. We selected Horovod and

Tarantella frameworks for DDL and state-of-the-art ML and HPC performance analysis

tools to characterize the frameworks. We presented a methodology to perform temporal

analysis correlating information from different tracing and profiling tools.

Horovod is one of the most-used tools for DDL, with support to more ML frame-

works. It proposes improvements in its ring-allreduce algorithm that performs asyn-

chronous communications inside and epoch to accelerate the reduction computations.

Because of that, it makes higher usage of the devices. Horovod’s longer time with initial-

ization is compensated by its optimizations to process batches faster. It presented higher

scaling efficiency for strong scaling than Tarantella for our experiments, with a 48% dif-

ference for the larger batch size of 2250 in the Chifflot and Chifflet clusters.

Tarantella is a comprehensive tool for users starting in DDL. It requires even fewer

configuration than Horovod to distribute a sequential code and provides complete docu-

mentation. However, it limited our performance analysis with state-of-the-art tracing tools

as Score-P to get the communication time with the GPI-2 pattern. Tarantella’s interface

limits command-line configurations. We needed to modify the application source code to

test TensorBoard, perform measurements with NVProf, and communicate among nodes

in the Grid’5000 tested with the OAR task manager that uses the OARSH patter to connect

to resources, instead of the usual SSH for what Tarantella was configured.

For a small CNN as Lenet-5, the GPU version is not significant important when

choosing between Tarantella and Horovod. If using a more complex network, with more

layers requiring more matrix operations, we could benefit from Tensor Cores technolo-

gies present in recent devices and both NCCL and cuDNN usage by Horovod. Both

frameworks stop scaling after six GPUs, since the dataset is not large enough to enable

further gains. Correlating measurements with Keras Callbacks and NVProf enhance the

performance analysis of Tarantella and Horovod, providing better application execution
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comprehension. We could identify the time the frameworks spend with computation in-

side and outside the device during the epochs. Which can benefit frameworks developers

on finding performance improvements spots, such as for improving the Horovod initial-

ization and the Tarantella batches processing. We proposed a temporal aggregation for

measuring the computing time in the GPUs considering the time processing an epoch.

Our methodology based on popular ML and HPC tools measurements is easy to

use for researchers with some HPC experience. Since our approach is implemented at

the DDL framework level, it can also be used to analyze the performance of other neural

network models. It should be considered that we had access to a dedicated environment

to perform our experiments. We acknowledge that the available computational resources

limit DDL research. Another approach could be considered for limited access to re-

sources, such as using cloud environments and virtual machines. However, it should

consider the resources sharing and communication bottlenecks in these environments.

7.1 Future work

Performance analysis of DDL still needs investigation. New parallel strategies

are being applied to frameworks, and new frameworks are being created, but no standard

methodology or specific tools to analyze the performance of the frameworks considering

HPC were proposed. A temporal aggregation approach correlating different tracing and

profiling measurements can benefit frameworks developers to evaluate their tools. As

future work, we plan to create a more automatic methodology, perhaps using a high-level

programming language, so users without experience with DDL can benefit from tracing

tools at the system-level, and get a diagnosis about their training using multiple nodes. An

in-situ analysis considering the first epochs of a distributed training can evaluate longer

training-time models without generating much data to be analyzed.

Furthermore, we aim to evaluate Horovod, Tarantella, and other DL frameworks

with support to distributed computing. We will consider varied NN models, more complex

CNNs, and larger datasets. In these future experiments, we will consider the usage of

optimizations at the GPU level, such as using Tensor Cores and cuDNN during training.
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7.2 Publications

• Solórzano, A. L. V., Schnorr, L. M. "Proposta de Avaliação Prática de Frameworks

para a Distribuição de Redes de Aprendizado Profundo". In Anais da XXI Es-

cola Regional de Alto Desempenho da Região Sul (ERAD/RS-2021), pp. 129-130.

Porto Alegre: SBC. doi:10.5753/eradrs.2021.14803

The following papers were also published during my research. They are not di-

rectly related to the Distributed Deep Learning field, but they are a result of other projects

in High-Performance Computing I was involved with. Furthermore, the methods em-

ployed and published in these papers have been part of our main investigation in DDL.

• Solórzano, A. L. V.; Charão, A. S. “BlocklyPar: from sequential to parallel with

block-based visual programming”. In the IEEE Frontiers in Education Conference

(FIE 2021). 1-8. DOI: 10.1109/FIE49875.2021.9637261.

• Solórzano, A. L. V.; Schnorr, L. M.; Navaux, P. O. A. “Temporal Load Imbalance

on Ondes3D Seismic Simulator for Different Multicore Architectures”. In the 2020

International Conference on High Performance Computing Simulation (HPCS’20).

• Solórzano, A. L. V.; Nesi, L. L.; Schnorr, L. M. “Using Visualization of Perfor-

mance Data to Investigate Load Imbalance of a Geophysics Parallel Application”.

In: Practice and Experience in Advanced Research Computing (PEARC). ACM,

NY, USA, 518–521. DOI: 10.1145/3311790.3400844.

• Solórzano, A. L. V.; Nesi, L. L.; Schnorr, L. M. "Evaluation of Load Imbalance

Metrics for Homogeneous and Heterogeneous Platforms." In: Concurrency and

Computation: Practice and Experience (CCPE) (Submitted).

https://doi.org/10.5753/eradrs.2021.14803


79

REFERENCES

ABADI, M. et al. Tensorflow: A system for large-scale machine learning. In: Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation.
USA: USENIX Association, 2016. (OSDI’16), p. 265–283. ISBN 9781931971331.

AKIBA, T.; FUKUDA, K.; SUZUKI, S. Chainermn: Scalable distributed deep learning
framework. In: Proceedings of Workshop on ML Systems in The Thirty-first Annual
Conference on Neural Information Processing Systems (NIPS). [S.l.: s.n.], 2017.

ASPRI, M.; TSAGKATAKIS, G.; TSAKALIDES, P. Distributed training and inference
of deep learning models for multi-modal land cover classification. Remote Sensing,
v. 12, n. 17, 2020. ISSN 2072-4292. Available from Internet: <https://www.mdpi.com/
2072-4292/12/17/2670>.

AWS. Deep Learning AMI. 2020. <https://docs.aws.amazon.com/dlami/latest/devguide/
activate-horovod.html>. Accessed: 2020-11-10.

BEN-NUN, T.; HOEFLER, T. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Comput. Surv., Association for Computing Ma-
chinery, New York, NY, USA, v. 52, n. 4, aug 2019. ISSN 0360-0300. Available from
Internet: <https://doi.org/10.1145/3320060>.

BENGIO, Y. Practical recommendations for gradient-based training of deep architectures.
In: MONTAVON, G.; ORR, G. B.; MÜLLER, K.-R. (Ed.). Neural Networks: Tricks of
the Trade: Second Edition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p.
437–478. ISBN 978-3-642-35289-8. Available from Internet: <https://doi.org/10.1007/
978-3-642-35289-8_26>.

BRAIN, G. TensorBoard: TensorFlow’s visualization toolkit. 2015. <https://www.
tensorflow.org/tensorboard>. Accessed: 2021-11-06.

Cappello, F. et al. Grid’5000: a large scale and highly reconfigurable grid experimental
testbed. In: The 6th IEEE/ACM International Workshop on Grid Computing, 2005.
Washington, US: IEEE, 2005. p. 8.

CCHPC. Tarantella: Distributed Deep Learning Framework. [S.l.]: Compe-
tence Center for High Performance Computing, 2020. <https://github.com/cc-hpc-itwm/
tarantella>. Accessed: 2020-11-14.

Chen, T. et al. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

CUNHA, R. L. de F. et al. An argument in favor of strong scaling for deep neural networks
with small datasets. CoRR, abs/1807.09161, 2018. Available from Internet: <http://arxiv.
org/abs/1807.09161>.

DAI, J. J. et al. Bigdl: A distributed deep learning framework for big data. In: Proceed-
ings of the ACM Symposium on Cloud Computing. New York, NY, USA: Association
for Computing Machinery, 2019. (SoCC ’19), p. 50–60. ISBN 9781450369732. Available
from Internet: <https://doi.org/10.1145/3357223.3362707>.

https://www.mdpi.com/2072-4292/12/17/2670
https://www.mdpi.com/2072-4292/12/17/2670
https://docs.aws.amazon.com/dlami/latest/devguide/activate-horovod.html
https://docs.aws.amazon.com/dlami/latest/devguide/activate-horovod.html
https://doi.org/10.1145/3320060
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-35289-8_26
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://github.com/cc-hpc-itwm/tarantella
https://github.com/cc-hpc-itwm/tarantella
http://arxiv.org/abs/1807.09161
http://arxiv.org/abs/1807.09161
https://doi.org/10.1145/3357223.3362707


80

DAS, D. et al. Distributed deep learning using synchronous stochastic gradient descent.
ArXiv, abs/1602.06709, 2016.

DEAN, J. et al. Large scale distributed deep networks. In: Proceedings of the 25th In-
ternational Conference on Neural Information Processing Systems - Volume 1. Red
Hook, NY, USA: Curran Associates Inc., 2012. (NIPS’12), p. 1223–1231.

DENG, J. et al. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2009. p. 248–
255.

DENG, L.; YU, D. Deep learning: Methods and applications. Found. Trends Signal
Process., Now Publishers Inc., Hanover, MA, USA, v. 7, n. 3–4, p. 197–387, jun. 2014.
ISSN 1932-8346. Available from Internet: <https://doi.org/10.1561/2000000039>.

DETTMERS, T. 8-bit approximations for parallelism in deep learning. In: 4th Inter-
national Conference on Learning Representations, Conference Track Proceedings.
[s.n.], 2016. Available from Internet: <http://arxiv.org/abs/1511.04561>.

EDUCATION, I. C. Gradient Descent. 2020. <https://www.ibm.com/cloud/learn/
gradient-descent>. Accessed: 2021-06-22.

ESSEN, B. V. et al. LBANN: Livermore big artificial neural network hpc toolkit. In:
Proceedings of the Workshop on Machine Learning in High-Performance Comput-
ing Environments. New York, NY, USA: Association for Computing Machinery, 2015.
(MLHPC ’15). ISBN 9781450340069.

FOUNDATION, P. S. Python Profilers. 2016. <https://docs.python.org/2/library/profile.
html>. Accessed: 2021-06-20.

GAMBLIN, T. et al. The spack package manager: Bringing order to hpc software chaos.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. New York, NY, USA: Association for Computing
Machinery, 2015. (SC ’15). ISBN 9781450337236. Available from Internet: <https://doi.
org/10.1145/2807591.2807623>.

GIBIANSKY, A. Bringing HPC Techniques to Deep Learning. 2017.
<https://web.archive.org/web/20180128132031/http://research.baidu.com/
bringing-hpc-techniques-deep-learning>. Accessed: 2020-10-01.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge, MA,
USA: MIT Press, 2016. <http://www.deeplearningbook.org>.

GOYAL, P. et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.
2018.

GRAUPE, D. Principles of artificial neural networks. [S.l.]: World Scientific, 2013.

GRÜNEWALD, D.; SIMMENDINGER, C. The gaspi api specification and its implemen-
tation gpi 2.0. In: In 7th International Conference on PGAS Programming Models.
[S.l.: s.n.], 2013. v. 243.

https://doi.org/10.1561/2000000039
http://arxiv.org/abs/1511.04561
https://www.ibm.com/cloud/learn/gradient-descent
https://www.ibm.com/cloud/learn/gradient-descent
https://docs.python.org/2/library/profile.html
https://docs.python.org/2/library/profile.html
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://web.archive.org/web/20180128132031/http://research.baidu.com/bringing-hpc-techniques-deep-learning
https://web.archive.org/web/20180128132031/http://research.baidu.com/bringing-hpc-techniques-deep-learning
http://www.deeplearningbook.org


81

HASHEMINEZHAD, B. et al. Towards a scalable and distributed infrastructure for deep
learning applications. 2020 IEEE/ACM Fourth Workshop on Deep Learning on Su-
percomputers (DLS), IEEE, Nov 2020. Available from Internet: <http://dx.doi.org/10.
1109/DLS51937.2020.00008>.

HE, K. et al. Deep residual learning for image recognition. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2016. p. 770–778.

HOROVOD. Tensor Fusion. 2019. <https://horovod.readthedocs.io/en/stable/
tensor-fusion_include.html>. Accessed: 2021-10-29.

JAIN, R. The art of computer systems performance analysis: techniques for experi-
mental design, measurement, simulation, and modeling. [S.l.]: Wiley New York, 1991.

JIA, X. et al. Whale: Scaling Deep Learning Model Training to the Trillions. 2021.

JORDÀ, M.; VALERO-LARA, P.; PEÑA, A. J. Performance evaluation of cudnn convo-
lution algorithms on nvidia volta gpus. IEEE Access, v. 7, p. 70461–70473, 2019.

KARLIK, B.; VEHBI, A. Performance analysis of various activation functions in gener-
alized mlp architectures of neural networks. International Journal of Artificial Intelli-
gence and Expert Systems (IJAE), v. 1, n. 4, p. 111–122, 2011.

KERAS. Keras. 2015. <https://github.com/keras-team/keras>. Accessed: 2020-11-26.

KNÜPFER, A. et al. Score-p: A joint performance measurement run-time infrastructure
for periscope,scalasca, tau, and vampir. In: BRUNST, H. et al. (Ed.). Tools for High
Performance Computing 2011. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
p. 79–91. ISBN 978-3-642-31476-6.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. Commun. ACM, Association for Computing Machinery,
New York, NY, USA, v. 60, n. 6, p. 84–90, may 2017. ISSN 0001-0782.

KURTH, T. et al. Tensorflow at scale: Performance and productivity analysis of dis-
tributed training with horovod, mlsl, and cray pe ml. Concurrency and Computation:
Practice and Experience, v. 31, n. 16, p. e4989, 2019. E4989 cpe.4989.

LAANAIT, N. et al. Exascale Deep Learning for Scientific Inverse Problems. 2019.

LAINE, A. Neural networks. In: . Encyclopedia of Computer Science. GBR: John
Wiley and Sons Ltd., 2003. p. 1233–1239. ISBN 0470864125.

LE, T. D. et al. Involving cpus into multi-gpu deep learning. In: Proceedings of the
2018 ACM/SPEC International Conference on Performance Engineering. New York,
NY, USA: Association for Computing Machinery, 2018. (ICPE ’18), p. 56–67. ISBN
9781450350952. Available from Internet: <https://doi.org/10.1145/3184407.3184424>.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, 2015.

LECUN, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural
Computation, v. 1, n. 4, p. 541–551, 1989.

http://dx.doi.org/10.1109/DLS51937.2020.00008
http://dx.doi.org/10.1109/DLS51937.2020.00008
https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://github.com/keras-team/keras
https://doi.org/10.1145/3184407.3184424


82

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, v. 86, n. 11, p. 2278–2324, 1998.

LECUN, Y.; CORTES, C. MNIST handwritten digit database. 2010. Available from In-
ternet: <http://yann.lecun.com/exdb/mnist/>.

LIU, J. et al. Usability study of distributed deep learning frameworks for convolutional
neural networks. In: . [S.l.: s.n.], 2018.

MA HEAND MAO, F.; TAYLOR, G. W. Theano-mpi: A theano-based distributed train-
ing framework. In: Euro-Par 2016: Parallel Processing Workshops. Cham: Springer
International Publishing, 2017. p. 800–813. ISBN 978-3-319-58943-5.

MAHON, S. et al. Performance analysis of distributed and scalable deep learning. In:
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). [S.l.: s.n.], 2020. p. 760–766.

MASTERS, D.; LUSCHI, C. Revisiting Small Batch Training for Deep Neural Net-
works. 2018.

Microsoft. Deep learning with Horovod for distributed training. 2020. <https://docs.
microsoft.com/en-us/learn/modules/deep-learning-with-horovod-distributed-training/>.
Accessed: 2020-11-10.

ML4A. Looking inside neural nets. 2018. <https://ml4a.github.io/ml4a/looking_inside_
neural_nets/>. Accessed: 2021-06-22.

NVIDIA. NVIDIA System Management Interface. 2011. <https://developer.download.
nvidia.com/compute/DCGM/docs/NVSMI-367.38.pdf>. Accessed: 2020-05-10.

NVIDIA. Apex. [S.l.]: NVIDIA, 2020. <https://github.com/nvidia/apex>. Accessed:
2020-11-14.

NVIDIA. Deep Learning at Scale with Horovod. 2020. <https://courses.nvidia.com/
courses/course-v1:DLI+L-FX-23+V1/about>. Accessed: 2020-05-10.

OH, K.-S.; JUNG, K. Gpu implementation of neural networks. Pattern Recognition,
v. 37, n. 6, p. 1311 – 1314, 2004. ISSN 0031-3203. Available from Internet: <http://
www.sciencedirect.com/science/article/pii/S0031320304000524>.

OOI, B. C. et al. Singa: A distributed deep learning platform. In: Proceedings of the 23rd
ACM International Conference on Multimedia. New York, NY, USA: Association for
Computing Machinery, 2015. (MM ’15), p. 685–688. ISBN 9781450334594.

OR, A.; ZHANG, H.; FREEDMAN, M. J. Resource elasticity in distributed deep learn-
ing. In: DHILLON, I. S.; PAPAILIOPOULOS, D. S.; SZE, V. (Ed.). Proceedings of Ma-
chine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020.
mlsys.org, 2020. Available from Internet: <https://proceedings.mlsys.org/book/314.pdf>.

PASZKE, A. et al. Pytorch: An imperative style, high-performance deep learning li-
brary. In: Thirtd-three Annual Conference on Neural Information Processing Sys-
tems (NeurIPS). [S.l.: s.n.], 2019.

http://yann.lecun.com/exdb/mnist/
https://docs.microsoft.com/en-us/learn/modules/deep-learning-with-horovod-distributed-training/
https://docs.microsoft.com/en-us/learn/modules/deep-learning-with-horovod-distributed-training/
https://ml4a.github.io/ml4a/looking_inside_neural_nets/
https://ml4a.github.io/ml4a/looking_inside_neural_nets/
https://developer.download.nvidia.com/compute/DCGM/docs/NVSMI-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/NVSMI-367.38.pdf
https://github.com/nvidia/apex
https://courses.nvidia.com/courses/course-v1:DLI+L-FX-23+V1/about
https://courses.nvidia.com/courses/course-v1:DLI+L-FX-23+V1/about
http://www.sciencedirect.com/science/article/pii/S0031320304000524
http://www.sciencedirect.com/science/article/pii/S0031320304000524
https://proceedings.mlsys.org/book/314.pdf


83

RAVIKUMAR, A.; S., H. A comprehensive review and evaluation of distributed deep
learning on cloud environments. In: Journal of Critical Reviews. [S.l.]: Journal of Crit-
ical Reviews, 2020. p. 9519–9538.

RUMELHART, D.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by back-
propagating errors. Nature, v. 323, p. 533–536, 1986.

SATHYA, R.; ABRAHAM, A. et al. Comparison of supervised and unsupervised learning
algorithms for pattern classification. International Journal of Advanced Research in
Artificial Intelligence, Citeseer, v. 2, n. 2, p. 34–38, 2013.

SCHNORR, L. M.; LEGRAND, A. Visualizing more performance data than what fits on
your screen. In: Tools for High Performance Computing 2012. [S.l.]: Springer, 2013.
p. 149–162.

SEIDE, F.; AGARWAL, A. Cntk: Microsoft’s open-source deep-learning toolkit. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: Association for Computing Ma-
chinery, 2016. (KDD ’16), p. 2135. ISBN 9781450342322. Available from Internet:
<https://doi.org/10.1145/2939672.2945397>.

SERGEEV, A. Uber’s Distributed Deep Learning Journey. 2017. <https://www.
hpcadvisorycouncil.com/events/2018/stanford-workshop/pdf/DayTwo_Wed21Feb2018/
ASergeev_UberEng_DistributedDeepLearning_KeynoteDayTwo_21Feb2018.pdf>.
Accessed: 2021-07-24.

SERGEEV, A.; BALSO, M. D. Horovod: fast and easy distributed deep learning in Ten-
sorFlow. arXiv preprint arXiv:1802.05799, 2018.

SHI, S.; CHU, X. Performance modeling and evaluation of distributed deep learning
frameworks on gpus. CoRR, abs/1711.05979, 2017. Available from Internet: <http:
//arxiv.org/abs/1711.05979>.

SHI, S. et al. Performance modeling and evaluation of distributed deep learning frame-
works on gpus. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Se-
cure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl
Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech). [S.l.: s.n.], 2018. p. 949–957.

SOFTWARE, C. Anaconda Software Distribution. 2016. <https://anaconda.com/>. Ac-
cessed: 2020-05-10.

SONG, J. et al. Cluster serving: Distributed model inference using big data streaming in
analytics zoo. In: . [S.l.]: USENIX Association, 2020.

SZEGEDY, C. et al. Going deeper with convolutions. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2015. p. 1–9.

SZEGEDY, C.; TOSHEV, A.; ERHAN, D. Deep neural networks for object detection. In:
BURGES, C. J. C. et al. (Ed.). Advances in Neural Information Processing Systems.
[S.l.]: Curran Associates, Inc., 2013. v. 26, p. 2553–2561.

https://doi.org/10.1145/2939672.2945397
https://www.hpcadvisorycouncil.com/events/2018/stanford-workshop/pdf/DayTwo_Wed21Feb2018/ASergeev_UberEng_DistributedDeepLearning_KeynoteDayTwo_21Feb2018.pdf
https://www.hpcadvisorycouncil.com/events/2018/stanford-workshop/pdf/DayTwo_Wed21Feb2018/ASergeev_UberEng_DistributedDeepLearning_KeynoteDayTwo_21Feb2018.pdf
https://www.hpcadvisorycouncil.com/events/2018/stanford-workshop/pdf/DayTwo_Wed21Feb2018/ASergeev_UberEng_DistributedDeepLearning_KeynoteDayTwo_21Feb2018.pdf
http://arxiv.org/abs/1711.05979
http://arxiv.org/abs/1711.05979
https://anaconda.com/


84

TESSER, R. K.; MARQUES, A.; BORIN, E. Selecting efficient vm types to train deep
learning models on amazon sagemaker. In: 2021 IEEE 32nd International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD).
Los Alamitos, CA, USA: IEEE Computer Society, 2021.

VIVIANI, P. et al. Deep learning at scale. In: 2019 27th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP). [S.l.: s.n.],
2019. p. 124–131.

VOGELSANG, D. C.; ERICKSON, B. J. Magician’s corner: 6. tensorflow and tensor-
board. Radiology: Artificial Intelligence, v. 2, n. 3, p. e200012, 2020. PMID: 33937828.
Available from Internet: <https://doi.org/10.1148/ryai.2020200012>.

WU, J. et al. Performance analysis of graph neural network frameworks. In: 2021 IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS). [S.l.: s.n.], 2021. p. 118–127.

WU, X. et al. Performance, power, and scalability analysis of the horovod implementation
of the candle nt3 benchmark on the cray xc40 theta. In: Proceedings of SC18 Workshop
on Python for High-Performance and Scientific Computing. [S.l.: s.n.], 2018.

ZAGORUYKO, S.; KOMODAKIS, N. Wide residual networks. In: WILSON, E. R. H.
R. C.; SMITH, W. A. P. (Ed.). Proceedings of the British Machine Vision Conference
(BMVC). BMVA Press, 2016. p. 87.1–87.12. ISBN 1-901725-59-6. Available from In-
ternet: <https://dx.doi.org/10.5244/C.30.87>.

ZHANG, M.-L.; ZHOU, Z.-H. Multilabel neural networks with applications to functional
genomics and text categorization. IEEE Transactions on Knowledge and Data Engi-
neering, v. 18, n. 10, p. 1338–1351, 2006.

https://doi.org/10.1148/ryai.2020200012
https://dx.doi.org/10.5244/C.30.87

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Document Structure

	2 Background
	2.1 Fundamentals of Deep Learning
	2.2 Advances in Deep Learning
	2.3 Distributed Deep Learning

	3 Related Work
	3.1 Distributed Deep Learning Frameworks
	3.1.1 Frameworks for Distributed Training
	3.1.2 Frameworks Evaluation and Comparison

	3.2 Performance Analysis of Distributed Frameworks
	3.2.1 TensorBoard
	3.2.2 NVIDIA Profiler and GPUs monitoring
	3.2.3 Callbacks in Python

	3.3 Discussion about DDL Frameworks and Performance Analysis Tools

	4 Material and Methodology
	4.1 Selected Frameworks
	4.1.1 Horovod
	4.1.2 Tarantella
	4.1.3 Frameworks Overview

	4.2 Frameworks Stack
	4.3 Model and Parameters Selection

	5 Results: Comparing Horovod and Tarantella
	5.1 Training Time Performance Analysis
	5.2 Frameworks Scaling Efficiency
	5.3 Loss/accuracy
	5.4 Training workflow

	6 Results: Breaking the Frameworks black-box
	6.1 Instrumenting Deep Learning with Score-P
	6.2 Instrumenting Deep Learning with NVProf

	7 Conclusions
	7.1 Future work
	7.2 Publications

	References

