
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GABRIEL AMMES PINHO

A Two-Level Approximate Logic Synthesis
Method Based on Insertion and Removal of

Cubes

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Renato Perez Ribas

Porto Alegre
July 2021

CIP — CATALOGING-IN-PUBLICATION

Pinho, Gabriel Ammes

A Two-Level Approximate Logic Synthesis Method Based
on Insertion and Removal of Cubes / Gabriel Ammes Pinho. –
Porto Alegre: PPGC da UFRGS, 2021.

106 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2021. Advisor: Renato Perez Ribas.

1. Approximate computing. 2. Approximate logic synthesis.
3. Literal count. 4. Two-level circuit. I. Ribas, Renato Perez.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“It’s okay to lose your way. . . just don’t lose sight of what you have decided.”

— RORONOA ZORO (EIICHIRO ODA)

ACKNOWLEDGMENT

Inicio os agradecimentos pela minha mãe, Tanira, e meu dois pais, Nauro e Silvio,

que mesmo estando longe sempre me apoiaram nos diversos desafios enfrentados durante

minha formação. Continuando, agradeço a minha namorada Elisandra, que sempre esteve

comigo durante esta jornada, sempre foi uma companheira para todas as horas e aguentou

minhas atividades acadêmicas madrugada a dentro, esta inclusive, e aos meus sogros,

Nilda e Dalvo, que me acolheram como filho desde o dia que os conheci.

Gostaria de agradecer muito aos professores Renato Ribas e Paulo Butzen e ao

Walter Lau Neto (Casão), pelas reuniões semanais durante o desenvolvimento remoto

deste trabalho, sugerindo temas e abordagens, ajudando na elaboração e correção de tra-

balhos (este inclusive). Tenho certeza que sem estas reuniões este trabalho não chegaria

nem perto do que se tornou.

Agradeço a todos que mantiveram comigo conversas e discussões dos diversos

assuntos, principalmente durante esta etapa remota, entre estes, Ribas, Butzen e Casão

citados anteriormente; aos amigos, Adão, Andre, Chico, Duda, Matheus, Tibu e Zancan;

e à Elisandra, além dos tantos outros anos, compartilhou comigo também estes últimos

anos de isolamento social.

Por fim, agradeço aos aos membros da banca, os professores José Rodrigo Furlan-

etto Azambuja e Leomar Soares da Rosa Junior e o Dr. Felipe dos Santos Marranghello,

por terem aceitado o convite de avaliar este trabalho e pelas dicas valiosas dadas na cor-

reção.

ABSTRACT

Approximate computing is a design paradigm that allows systems to have imprecise or

inexact execution, aiming to optimize performance and power dissipation. When ap-

proximate computing is applied to systems that perform error-resilient applications, it is

possible to optimize without critically degrading the expected application operation. The

presented work focuses on exploring approximate computing at the circuit level, more

specifically, digital integrated circuits (IC). Electronic design automation tools provide a

highly automated IC design flow, which may be roughly divided into three main steps:

high-level synthesis, logic synthesis and physical synthesis. The logic synthesis step has

as a goal the gate network building and optimization targeting a given technology. The

logic synthesis is performed over two-level (2L) or multiple-level topologies of combi-

national blocks. The employment of approximate computing at the circuit level consists

of deriving a gate network implementation that is not logically equivalent to the original

circuit behavior specification but can improve area, performance and power dissipation.

Several works propose techniques to approximate circuits automatically by systematically

modifying a general logic behavior without exceeding a given error threshold. Due to the

similarity among those techniques, the adopted data structures and optimization goals

through logic synthesis, the automatic construction of approximate circuits at this design

phase is called approximate logic synthesis (ALS). Conventional logic synthesis methods

to build two-level circuits are employed as part of multilevel synthesis methods and for

synthesizing systems over CPLD architectures. Besides the benefits of approximate sum-

of-products (SOP) and product-of-sums (POS), the approximation of 2L circuits can be

exploited in both applications. Moreover, investigations over 2L-ALS methods represent

an important contribution to further advancements also on multilevel ALS. This work

proposes a two-level approximate logic synthesis method that receives an SOP expres-

sion and a given error rate threshold as inputs and generates an approximate SOP with

an optimized number of literals. In this work, we also intend to derive a scalable method

that allows the insertion of more errors than is observed in existing 2L-ALS works. The

experimental results show that the proposed approach can derive SOPs with fewer liter-

als compared to the state-of-the-art method for the same amount of errors. The obtained

solutions reach an average literal count reduction of circa 38% with an error rate of 1%,

56% with an error rate of 3%, and up to 93% with an error rate of 5%. Moreover, as it

is unknown how approximations made in two-level structures impact the quality of mul-

tilevel circuit design, we have carried out some experiments that apply two-level, and

multilevel ALS approaches interchangeably to build approximate circuits and so analyze

the obtained solutions.

Keywords: Approximate computing. approximate logic synthesis. literal count. two-

level circuit.

Método de Síntese Lógica Aproximada Dois-Níveis Baseado na Inserção e Remoção

de Cubos.

RESUMO

Computação aproximada é um paradigma que permite que um sistema tenha uma execu-

ção imprecisa ou inexata com o objetivo de otimizar o seu desempenho e sua eficiência

energética. Quando este paradigma é aplicado em sistemas que executam funções resi-

lientes a erros, é possível otimizar o sistema sem degradar de forma crítica a operação

desejada. Este trabalho foca no uso de computação aproximada no nível de circuitos,

em particular, nos circuitos integrados digitais (CI). Ferramentas de projeto de circuitos

integrados fornecem um fluxo altamente automatizado para do projeto de CIs. Este fluxo

pode ser dividido em três passos principais: síntese de alto nível, síntese lógica e síntese

física. A síntese lógica tem como objetivo otimizar a lógica do circuito e implementá-lo

em uma dada tecnologia alvo. A síntese lógica é executada sobre representações dois-

níveis ou multinível que implementam a lógica combinacional de um dado circuito. A

aplicação de computação aproximada no nível de circuitos consiste em obter uma im-

plementação que não é logicamente equivalente à especificação mas consegue realizar

otimizações em área, desempenho e consumo de energia. Diversos trabalhos propõem

técnicas para aproximar um circuito de forma automática através de modificação siste-

mática do funcionamento de um circuito genérico sem exceder uma dada restrição de

erro. Devido à similaridade em técnicas, estruturas de dados e objetivos de otimização

com a etapa de síntese lógica, a geração automática de circuitos aproximados é frequente-

mente chamada de síntese lógica aproximada. Métodos de síntese lógica tradicional para

construção de circuitos dois-níveis podem ser utilizados para síntese de componentes pro-

gramáveis CPLDs, bem como parte de métodos para síntese de circuitos multinível. Além

da geração de expressões aproximadas do tipo somas-de-produtos (SOP) e produtos-de-

somas (POS), técnicas de aproximação para circuitos dois-níveis poder ser exploradas

nesses dois canários. Além disso, o entendimento dos conceitos e técnicas relacionados à

aproximação dois-níveis pode contribuir significativamente para futuros estudos sobre a

aproximação de circuitos multinível. Este trabalho propõe um método para aproximar cir-

cuitos dois-níveis que tem como entrada uma SOP e um dado limite de frequência de erro,

e gera uma expressão aproximada com um número de literais reduzido e que respeita o

dado limite de erro. O método proposto foi desenvolvido com a intenção de ser escalável

em relação à quantidade de erros permitidos, possibilitando uma inserção de mais erros

do que é observado em outros trabalhos que abordam o mesmo problema. Nos resultados

experimentais obtidos, o método proposto gerou SOPs aproximadas com menos literais

do que o obtido pelo método considerado estado-da-arte nesta tecnologia, para a mesma

quantidade de erros. Comparando com a SOP original, o presente método obteve uma

redução de literais média de 38% com frequência de erro de 1%, 56% com frequência

de erro de 3%, e de até 93% frequência de erro de 5%. Como o impacto das aproxima-

ções feitas em uma representação dois-níveis na qualidade de um circuito multinível, e

vice-versa, é desconhecido, foram feitos experimentos explorando técnicas de aproxima-

ção dois-níveis e multinível em conjunto para geração de circuitos aproximados, e para

análise das soluções obtidas.

Palavras-chave: Computação aproximada, síntese lógica aproximada, número de literais,

lógica dois-níveis..

LIST OF ABBREVIATIONS AND ACRONYMS

ADD Algebraic Decision Diagrams

AIG And-Inverter Graph

ALS Approximate Logics Synthesis

ASIC Application-specific integrated circuit

BDD Binary Decision Diagram

CNF Conjunctive Normal Form

COM Cover Once Minterm

CPLD Complex Programmable Logic Device

CPU Central Process Unit

CSBF Completely Specified Boolean Function

DAG Direct Acycle Graph

EDA Electronic Design Automation

EIC Erronous Input Combination

ER Error Rate

FA Full-Adder

FPGA Field Programmable Gate Array

GPU Graphic Process Unit

IC Integrated Circuit

IoT Internet of Things

ISA Instruction Set Architecture

ISBF Incompletely Specified Boolean Function

LUT LookUp Table

MAE Mean Absolute Error

MRE Mean Relative Error

MSE Mean Square Error

NoE Number of Errors

NPU Neural Process Unit

NVM Non-Volatile Memory

PAL Programmable Array Logic

PI Primary Input

PLA Programmable Logic Array

PO Primary Output

POS Product-of-Sums

RAM Random Accedd Memory

RMS Recognition, Mining and Synthesis

ROBDD Reduced Ordered Binary Decision Diagram

RTL register transfer level

SAT Satisfiability

SCA Symbolic Computer Algebra

SCT SICC-cube tree

SICC Set of Input Combinations for 0-to-1 output Complement

SOP Sum-of-Products

WBF Worst Bit-Flip Error

WCE Worst Case Error

WRE Worst Relative Error

LIST OF FIGURES

Figure 2.1 PLA format representation of the function described in Table 2.1................25
Figure 2.2 PLA architecture configuration for the function presented in Table 2.1.26
Figure 2.3 BDD representation of the function described in Table 2.1.26
Figure 2.4 Optimized ROBDD of the function described in Table 2.1...........................27
Figure 2.5 Two Boolean network representations of the function described in Table

2.1...28
Figure 2.6 AIG representation of the function described in Table 2.1............................29
Figure 2.7 Karnaugh map representation of the function described in Table 2.1.30
Figure 2.8 Karnaugh map with all possible cubes highlighted.30
Figure 2.9 Karnaugh map containing the SOP !x0∗!x1 + x0 ∗ x1 + x0 ∗ x231

Figure 3.1 Example of two miter structures..47
Figure 3.2 Karnaugh map containing the cover used on examples. The SOP repre-

sented by this Karnaugh map is !x0∗!x1 + x0 ∗ x1 + x0 ∗ x250
Figure 3.3 Example of an approximation done by a cube insertion technique.51
Figure 3.4 Example of an approximation done by a cube removal technique.51
Figure 3.5 Hasse diagram for a function with 2 inputs and 2 outputs.52
Figure 3.6 Hasse diagram of 3-inputs 1-output function with the cubes that can be

enumerated by the exhaustive technique when using C as the original function
highlighted in green. ..53

Figure 3.7 Hasse diagram of 3-inputs 1-output function with the cubes that an ex-
pansion technique can enumerate over the cubes in C highlighted in blue..............54

Figure 4.1 Approximate covers examples comparing cube insertion, cube removal
and both approaches together. ...57

Figure 4.2 The behavior of the iterative partial solutions generation, considering
a limit of 4 NoE. Each partial solution generates two new partial solutions,
increasing NoE in 1 and 2 until it reaches the NoE limit...61

Figure 4.3 Graph showing the number of solution generated with each NoE for an
approximation with a limited to 8 NoE, totalizing 87 partial solutions.62

Figure A.1 Exemplos de coberturas aproximadas comparando o uso da inserção de
cubos, da remoção de cubos e de ambas em conjunto. ..99

LIST OF TABLES

Table 2.1 Example of a truth table for a 3-inputs CSBF. ..22
Table 2.2 Example of a truth table for a 3-inputs 2-outputs CSBF.22
Table 2.3 Example of a truth table for a 3-inputs 2-outputs ISBF.22
Table 2.4 Example of finding all prime implicants of the function described in Ta-

ble 2.1...31

Table 3.1 Example of Boolean relation...48
Table 3.2 Example of converting a 2-bit adder with WCE threshold of 1 in a Boolean

relation. ..49

Table 5.1 Comparison to Su’s approach (SU et al., 2020) in IWLS’93 benchmark
suite considering NoE threshold of 16...74

Table 5.2 Results from proposed method considering ER threshold in IWLS’93
benchmark suit. ..77

Table 5.3 Post Processing..79

Table 6.1 Two-Level approximation impact on multilevel circuits.................................84

Table A.1 Comparação do método proposto com o método de Su (SU et al., 2020)
sobre os circuitos do conjunto de benchmarks do IWLS93 considerando ER
como métrica de erro..104

Table A.2 Resultados do método proposto sobre os circuitos do conjunto de bench-
marks do IWLS93 considerando ER como métrica de erro...................................105

CONTENTS

1 INTRODUCTION...15
1.1 Motivation and Proposed Work...17
1.2 Text Organization ...19
2 PRELIMINARIES..20
2.1 Boolean Function Definition ..20
2.2 Boolean Function Representation ...21
2.2.1 Truth Table ...21
2.2.2 Boolean Expression ...23
2.2.3 Programmable Logic Array ...24
2.2.4 Binary Decision Diagram ..25
2.2.5 Boolean Networks..27
2.2.6 AND-Inverter Graph ..28
2.3 Two-level Logic Optimization ..29
2.4 Boolean Satisfiability ..33
2.5 Espresso Tool ...33
3 APPROXIMATE COMPUTING PARADIGM ...35
3.1 Error-Resilient Application..35
3.2 Approximate Computing..36
3.3 Approximate Circuits ...37
3.4 Approximate Logic Synthesis ..39
3.5 Error Modeling ...42
3.5.1 Error Metrics..42
3.5.2 Error Calculation Methods...44
3.6 Two-Level Approximate Logic Synthesis..48
3.6.1 ER and WCE Bounded Methods ...48
3.6.2 ER Bounded Methods ..50
4 PROPOSED 2L-ALS METHOD...56
4.1 Su’s Cube Insertion Approach...56
4.2 Data Structure...59
4.2.1 Cover..59
4.2.2 SICC-cube tree (SCT)..60
4.2.3 Solutions ..60
4.3 General Description ..60
4.4 Cube Insertion Procedure ..63
4.4.1 SICC Cube-Tree Generation..64
4.4.2 Combine and Estimate ...65
4.5 Cube Removal Procedure...67
4.5.1 Speed-Up Optimization ...69
4.6 Post-Processing Tools..71
4.7 Time Complexity Analysis ...72
5 EXPERIMENTAL RESULTS ...73
5.1 Comparison to the State-of-Art Approach ...73
5.2 Insights About the Runtime Reduction ..74
5.3 Results with Error Rate..76
5.4 Post-Processing Result ..78
6 MULTILEVEL COMPARISON ...81
7 CONCLUSION ...87
REFERENCES...88

APPENDIX A — RESUMO DA DISSERTAÇÃO..94
A.1 Introdução...94
A.1.1 Motivação e Proposta ..94
A.2 Conceitos Preliminares ..95
A.3 Estado-da-Arte ...96
A.4 Trabalho Proposto..98
A.4.1 Descrição Geral...99
A.4.2 Método de Inserção de Cubos...100
A.4.3 Função de Remoção de Cubos ..101
A.5 Resultados Experimentais ...102
A.5.1 Comparação com o Estado-da-Arte ..103
A.5.2 Resultados Considerando a Frequência de Erro ...104
A.6 Conclusão..106

15

1 INTRODUCTION

In the current world, applications that use digital signal processing, multimedia

processing, WEB search, data analytics, RMS (recognition, mining and synthesis), ma-

chine learning, and sensors, as Internet-of-Things (IoT) applications, are increasingly

present in our live. These applications have a common characteristic: they are error-

resilient applications. An error-resilient application is an application that can produce

acceptable results even with errors happening during its execution. For instance, those

errors can occur by hardware faults or noisy data in the input signals (CHIPPA et al.,

2013).

On the other hand, approximate computing is a paradigm that allows a system to

have an imprecise or inexact execution, aiming to optimize performance and power dis-

sipation. When approximate computing is applied to systems that perform error-resilient

applications, it is possible to optimize the system without critically degrading the expected

application operation (HAN; ORSHANSKY, 2013; MITTAL, 2016; XU; MYTKOWICZ;

KIM, 2016).

The concept of approximate computing can be applied in different computational

levels from the higher abstraction views, like algorithms and compilers, passing through

the architectural and reaching the circuit level. The presented work focuses on the appli-

cation of approximate computing at the circuit level.

The circuit level of computer designs is composed of integrated circuits (IC). Since

the beginning of ICs fabrication in 1958, the number of components per area in an IC has

doubled every 18 months (WESTE; HARRIS, 2010). In the beginning, the IC design has

been handmade by the designer. With the continuous increase in the circuit design com-

plexity, this approach became impracticable (RABAEY; CHANDRAKASAN; NIKOLIC,

2002). Computer-aided design (CAD) tools started to be used to handle the crescent

number of components. Such CAD tools compose electronic design automation (EDA)

environments, indispensable for any modern electronic system.

Currently, several CAD tools are applied at different phases of the IC design and

organized inside EDA frameworks. The ASIC (application-specific integrated circuit)

design flow can be roughly divided into three main phases (MICHELI, 1994):

• High-level synthesis is responsible for translating the circuit behavior, described

algorithmically as in System C language, into a hardware description format, like

register transfer level (RTL), which represents the circuit behavior at the architec-

16

tural level.

• Logic synthesis comprises the circuit logic building at the gate level, usually focus-

ing on optimizing area, performance, and power consumption in a target technol-

ogy.

• Physical synthesis assigns physical resources to specific positions on the chip and

routes internal interconnection wire aiming the final fabrication.

The presented work is related to the logic synthesis phase. This phase consist of

three main steps (MICHELI, 1994):

• Technology-independent optimization step aims to optimize the hardware descrip-

tion using generic Boolean data structures, abstracting physical characteristics of

the final circuit technology.

• Technology mapping step binds the optimized Boolean structure to the logic cells

containing details about the circuit physical characteristics.

• Technology-dependent optimization step optimizes the mapped circuit considering

its physical building characteristics.

Moreover, a circuit can be seen comprising sequential and combinational blocks

(MICHELI, 1994). In this sense, the sequential synthesis deals with the register elements

on the design, whereas the combinational synthesis aims to optimize the existing logic

operations between sequential elements. In this work, we focus on the combinational

synthesis field. One of the main tasks of the technology-independent optimization step

over combinational circuits is to find a representation in a Boolean data structure that is

logically equivalent to the circuit specification that optimizes metrics related to area and

performance.

Furthermore, the circuit construction can be done at two levels or multi levels

(three or more) of logic depth. Two-level (2L) circuits are usually composed of two logic

operations divided into two layers. The most used two-level representations are sum-of-

products (SOP) and products-of-sums (POS). Multilevel circuits do not have a limitation

related to a specific logic operation structure. There are several Boolean structures to

represent multilevel circuits. One of the most used multilevel representations is Boolean

networks, which uses directed acyclic graph (DAG) to represent the logic operations and

their interconnections. The two-level circuit optimization focuses on reducing the number

of operations in SOP/POS expressions. The multilevel optimization objective may vary

according to the used Boolean structure, but, in general, it aims to reduce the number of

17

operations and levels.

The application of approximate computing at circuit level consists of deriving

a circuit implementation that is not logically equivalent to the original circuit behavior

specification but can present further optimizations in area, performance and power dissi-

pation (SCARABOTTOLO et al., 2020). This approximate implementation is called an

approximate circuit. In that way, techniques of technology-independent optimization and

approximate circuit generation address related problems. The major difference between

these techniques is the possibility of deriving a final circuit implementation that is not

equivalent to the specification.

The first works on approximate circuit approximation focused on manually ap-

proximating the target design. Such a handcrafted approximation demands the circuit

designer to have deep knowledge about the circuit behavior to make approximations that

optimize the circuit but do not degrade the output quality-of-results (QoR). The main

application of manual approximation has been arithmetic designs because those circuit

regular structures are extensively studied in literature and are widely used in multiple de-

signs (JIANG; HAN; LOMBARDI, 2015; JIANG et al., 2016). The main drawback of

this approach is the required expertise on the circuit behavior to approximate it, turning

it into a design-specific technique. The automatic circuit approximation approach aims to

overcome these drawbacks.

The automatic circuit approximation consists of automatically modifying a gen-

eral circuit logic behavior without knowing implementation details. It is done by sys-

tematically modifying the circuit logic behavior without exceeding a given error thresh-

old. Due to the similarity in techniques, data structures, and optimization objectives with

technology-independent optimization techniques, the automatic generation of approxi-

mate circuits is commonly called approximate logic synthesis (ALS).

1.1 Motivation and Proposed Work

Methods to synthesize 2L circuits are employed as part of multilevel synthesis

methods (UMANS; VILLA; SANGIOVANNI-VINCENTELLI, 2006) and also for syn-

thesizing logic over CPLDs architectures (KUBICA; KANIA, 2019). Besides the ap-

proximate SOP/POS generation, the approximation of 2L circuit techniques can be used

in both applications. Moreover, understanding techniques and concepts of 2L-ALS meth-

ods represent an important advancement for future investigation on multilevel ALS.

18

The works that address the 2L-ALS problem focus on approximate an SOP ex-

pression (SHIN; GUPTA, 2010; MIAO; GERSTLAUER; ORSHANSKY, 2013; ZOU;

QIAN; HAN, 2015; SU et al., 2020). The optimization of 2L circuits focuses on reducing

the number of cubes or the number of literals. In general, 2L-ALS tools focus on literal

reduction. There ate two main ways to perform it: the insertion and removal of SOP cubes

(SHIN; GUPTA, 2010). The first one inserts new cubes that could not be included without

resulting in errors. If the cube insertion is done cleverly, it implies removing some cubes

and optimizing the SOP expression in terms of literal count. The second one consists

of directly removing cubes from the SOP without previously inserting a new cube. The

optimization on the SOP is proportional to the number of operations of the removed cube,

i.e., to the reduced number of literals.

In (SHIN; GUPTA, 2010), the authors present some experiments suggesting that

the cube insertion technique results are better than the cube removal procedure. Based on

this experiment, the subsequent works presented in the literature have focused just on the

cube insertion technique (ZOU; QIAN; HAN, 2015; SU et al., 2020).

This work proposes a two-level approximate logic synthesis method that receives

an SOP and generates the approximate SOP with an optimized number of literals respect-

ing a given error rate threshold. To perform that, we apply cube insertion and removal

procedures together. Such a strategy leads to better or equal solutions when compared

to the only cube insertion technique, as done by other approaches, without a significant

run-time penalty.

A bottleneck observed on existing 2L-ALS methods is the scalability when the

quantity of allowed error increase. In this work, we intend to derive a scalable method

with the capability to insert more errors than other 2L-ALS approaches. For instance, in

(SHIN; GUPTA, 2010) and in (SU et al., 2020), the authors limit the number of allowed

errors to 8 and 16 due to the prohibitive execution time. The development of a scalable

method allows us to derive an approximate circuit using a percentage error rate threshold,

as many approximate circuits works use. Using a percentage error threshold implies that

the number of allowed errors depends on the number of input combinations in a circuit

instead of instead of a fixed error number.

As mentioned, methods of 2L logic synthesis can be exploited as part of the multi-

level circuit synthesis. Currently, it is unknown how approximations made over 2L repre-

sentation impact the QoR of multilevel topology. To understand the relationship of 2L and

multilevel approximations impact each other, we propose an experiment that applies both

19

ALS approaches together to generate approximate circuits and evaluate the solutions.

1.2 Text Organization

The remaining of this manuscript is organized as follows:

Chapter 2 reviews the background concepts for a better understanding of the pro-

posed method. There are basic definitions and nomenclatures used in Boolean functions

and the main Boolean structures. It is also presented some details about synthesizing an

SOP expression.

Chapter 3 presents a broad review of the approximate computing paradigm and

related works. It begins by presenting the concepts of error-resilient applications and

approximate computing. A quick review of works that applies approximate computing

over different computational levels is also shown. Next, it focuses on approximate circuits

and how to generate them, starting from the handcraft approximation works until the

ALS. At first, are presented a list of multilevel ALS approaches, with some details of

each one. Then, we discuss how the error inserted during the circuit approximation is

calculated, linking to the presented ALS works. At the end, a detailed explanation of

2L-ALS approaches is given, relating it to the proposed method.

Chapter 4 describes the proposed 2L-ALS method. It starts given the main idea

of our approach. Then, the data structures used to implement the method are shown.

The general flow of the method is presented, followed by details about the cube insertion

and the cube removal procedures. At the end, some post-processing techniques and time

complexity analysis are presented.

Chapter 5 presents the experimental results. This chapter compares our solutions

to the ones obtained by the state-of-art approach, and shows how our method behaves

with a percentual error threshold. It is also presented some insights about the runtime and

a discussion about the post-processing tools.

Chapter 6 presents the experiments to analyze the impact of using the proposed

2l-ALS method to approximate multilevel circuits. It also presented results of using 2L

and multilevel ALS methods together to generate approximate circuits.

Finally, in Chapter 7, the contributions of this work are summarized and we con-

clude with final considerations.

20

2 PRELIMINARIES

This chapter introduces the adopted notation and preliminaries useful for a better

understanding of this work. It gives the reader a brief description of Boolean functions,

Boolean structures, and synthesis of 2L circuits.

2.1 Boolean Function Definition

An n-input Boolean function f (X) defined by the variable (support) set X =

{x0, ..., xn−1} is a mapping

f (X) : Bn → B

where B = {0, 1} and n ∈ N. This Boolean function is also defined as a completely

specified Boolean function (CSBF). An element m ∈ Bn, i.e., an n-bit vector is called

minterm. There are 2n minterms in Bn. The on-set of function f comprises all minterms

m such that f (m) = 1 and is denoted ON-SET(f). Conversely, the set representing all

minterms such that f (m) = 0 is called the off-set and is denoted OFF-SET(f). Notice

that a CSBF can be uniquely represented by its on-set or off-set. A constant function one

(1) has an empty off-set, while the constant function zero (0) contains no element in the

on-set.

A multiple-output Boolean function f (X), defined by the variable set X , is a map-

ping

f (X) : Bn → Bm

where n and m ∈ N. Each minterm is mapped to an m-bit vector o ∈ Bm. An n-input

m-output Boolean function can be split into m n-input Boolean functions, each one with

its on-set and off-set.

An n-input incompletely specified Boolean function (ISBF) f (X), defined by the

variable set X , is a mapping

f (X) : Bn → Y

where Y = {0, 1, -}. Notice that ISBF differs from CSBF in the fact that the former

may also assume don’t care (-) values, besides the binary values 0 and 1 (BRAYTON et

21

al., 1984). Besides ON-SET(f) and OFF-SET(f), an ISBF also contains a DC-SET(f),

which comprises all minterms m such that f (m) = -. An ISBF can be uniquely represented

by a pair of its on-set, off-set and dc-set. An multiple-output ISBF f (X), defined by the

variable set X , is a mapping

f (X) : Bn → Ym

where n and m ∈ N and each minterm is mapped to an m-bit vector o ∈ Ym.

In this work, the terms "function" and "Boolean function" are used interchange-

ably, unless otherwise stated.

The relationship between the domain and the image sets of a CSBF is usually

done by logic operations over the variables from X. There are some basic operators, such

as AND (∧ or *), OR (∨ or +) and NOT (¬ or !). The AND operator evaluates the function

to 1 when all n variables are true (i.e., equal to 1). Otherwise, the function is evaluated

to 0. The OR operator, in turn, evaluates to 0 when all variables are false (i.e., equal to

0). Otherwise, the function is evaluated to 1. The NOT operator, also known as negation,

performs over only a single variable and returns 0 if the variable is 1, and vice-versa. As

this work focuses on CSBF, it is not defined operations over ISBF.

2.2 Boolean Function Representation

There are several ways to represent Boolean functions, differing in the trade-off

between simplicity and scalability. Therefore, this section presents an overview of struc-

tures and formats for representing Boolean functions used or referred to in this work.

2.2.1 Truth Table

The most straightforward way of representing functions is the truth table. In this

representation, the output value of a function is specified for each possible combination

of Boolean values assigned to the input variables. For a function with n inputs, the truth

table is composed of 2n rows and, consequently, by 2n minterms, which are the product

over the variables. For instance, let the function f (x0 , x1 , x2) be represented by the truth

table shown in Table 2.1. The minterms !x0∗!x1∗!x2, !x0∗!x1 ∗x2, x0∗!x1 ∗x2, x0 ∗x1∗!x2

22

and x0 ∗x1 ∗x2 are in the on-set of f while !x0 ∗x1∗!x2, !x0 ∗x1 ∗x2 and x0∗!x1∗!x2 are in

the off-set. For the rest of this work, we refer to the minterms on the on-set of a function

as minterms for simplicity. A truth table can also represent multiple-output completely

and incompletely specified functions. In Figure 2.2 is shown the truth table of a 3-input

2-output CSBF, and the truth table of a 3-input 2-output ISBF is illustrated in Figure 2.3.

Table 2.1 – Example of a truth table for a 3-inputs CSBF.
x0 x1 x2 f minterm
0 0 0 1 !x0∗!x1∗!x2

0 0 1 1 !x0∗!x1 ∗ x2

0 1 0 0 !x0 ∗ x1∗!x2

0 1 1 0 !x0 ∗ x1 ∗ x2

1 0 0 0 x0∗!x1∗!x2

1 0 1 1 x0∗!x1 ∗ x2

1 1 0 1 x0 ∗ x1∗!x2

1 1 1 1 x0 ∗ x1 ∗ x2

Table 2.2 – Example of a truth table for a 3-inputs 2-outputs CSBF.
x0 x1 x2 y0 y1
0 0 0 1 1
0 0 1 1 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

Table 2.3 – Example of a truth table for a 3-inputs 2-outputs ISBF.
x0 x1 x2 y0 y1
0 0 0 1 -
0 0 1 1 -
0 1 0 0 0
0 1 1 - 0
1 0 0 - -
1 0 1 1 1
1 1 0 - 1
1 1 1 1 1

23

2.2.2 Boolean Expression

Another way to represent a CSBF is through a mathematical expression. Such an

expression consists of a mathematical formula comprising Boolean operators and input

variables. Each input variables instance is called a literal. The expression logic depth, in

turn, consists of the number of nested Boolean operations, disregarding the NOT opera-

tion. In general, literals and logic depth are quality metrics for Boolean expressions, and

usually, it aims to make these values as small as possible.

Boolean expressions have two main classifications: two-level (2L) expressions

and multilevel expressions.

A 2L expression, as the name suggests, limits the expression logic depth in two.

Sum-of-products (SOP) and product-of-sums(POS) are examples of 2L expressions. Both

patterns use an operation over the literals and another one to link them. The SOP (POS)

expression uses ANDs (ORs) over the inputs and ORs (ANDs) to link. In an SOP, a

set of literals linked by an AND operator is called a cube. This work focuses on SOP

expressions. This SOP is canonical when all cubes of an SOP represent all minterms on

the ON-SET(f). However, it is usually of interest to represent the SOP of a given function

with the minimal number of cubes and literals.

The canonical SOP representation for the function described in Table 2.1 is

!x0∗!x1∗!x2+!x0∗!x1 ∗ x2 + x0∗!x1 ∗ x2 + x0 ∗ x1∗!x2 + x0 ∗ x1 ∗ x2,

while the SOP for the same function with the minimal number of literals is

!x0∗!x1 + x0 ∗ x1 + x0 ∗ x2.

A set of cubes covering all ON-SET(f) minterms and not covering any OFF-

SET(f) minterms is called a cover for the function f . So, an SOP is a way to represent a

cover of a given function.

An implicant is a cube the covers one or more ON-SET(f) minterms and do not

cover any OFF-SET(f) minterms. A prime implicant is an implicant that is not covered

by any other implicant of the function. An essential prime implicant is a prime impli-

cant covering at least one ON-SET(f) minterm that no other prime implicant covers. An

irredundant cover is a cover where removing any cube implies at least one ON-SET(f)

minterm uncovered. An irredundant cover only containing prime implicants is also called

24

an ISOP.

Using some of the previous definitions to represent a multiple-output function is

possible. Still, it is necessary to modify the literal, minterm, and cube definitions to handle

multiple-output functions. Besides an instance of an input variable, the literal definition

must also encompass the output variables. So, there are two types of literals: the input

literals, representing an instance of an input variable, and the output literal, representing

an instance of an output variable. For a cube to be used in a multiple-output function

representation, the output literals must also be used in the product. In that way, if the

output yi is in the cube, the i-th output is just 1 when the cube evaluates to 1. Otherwise,

the i-th output does not depend on the cube value. With this notation, a minterm contains

all input literals and only one output literal. As an SOP represent a single-output function,

an m-output function can be represented as a set of m SOPs, where each one represents

an output. For example, the first line of the truth table in Table 2.2 presents two minterms,

with the minterm y0∗!x0∗!x1∗!x2 related to the output y0 and y1∗!x0∗!x1∗!x2 related to the

output y1. The cube y0 ∗ y1∗!x0∗!x1∗!x2 represents both minterms. Taking into account

this notation, the multiple-output cover for the function described in Table 2.2 is

{y0 ∗ y1∗!x0∗!x1∗!x2, y0∗!x0∗!x1 ∗ x2, y1 ∗ x0∗!x1∗!x2, y0 ∗ y1 ∗ x0∗!x1 ∗ x2,

y0 ∗ y1 ∗ x0 ∗ x1∗!x2, y0 ∗ y1 ∗ x0 ∗ x1 ∗ x2}.

A multilevel expression does not have any limitation regarding its logic depth.

Thus, these expressions do not have a strict structure, and it is possible to nest multiple

Boolean operations. In general, a multilevel expression of f decreases the number of

literals at the cost of increasing the logic depth compared to a two-level expression of f .

A multilevel expression representing the function described in Table 2.1 is

!x0∗!x1 + x0 ∗ (x1 + x2).

2.2.3 Programmable Logic Array

The programmable logic array (PLA) format was thought to describe circuits im-

plemented in related AND-OR structure(CHEN, 2006). This technology consists of a

fixed configurable architecture, which can be programmed to compute combinational

25

logic. The architecture comprises an array of AND logic gates connected to the circuit

inputs, followed by an array of OR logic gates connected to the circuit outputs. In PLAs

structure, both arrays are programmable, differing from other architectures, such as PALs

where only the AND array is configurable (CHEN, 2006). There are 2n logic gates in the

AND plane, one for each minterm, and m OR gates, where m is the number of outputs on

the functions. Each input can be connected to an AND gate directly or through the inverter

connected to them. Therefore, the PLA format representing a function implemented in

such technology comprises the function on-set of cubes. It is also possible to describe an

ISBF with the PLA format by setting outputs as dont’t care by using the sign "-". Figure

2.1 shows the PLA file representing the circuit configuration in Figure 2.2.

number of inputs

.i 3

number of outputs

.o 1

input signals name

.ilb x0 x1 x2

output signals name

.ob y0

on−set

000 1

001 1

101 1

110 1

111 1

.e

Figure 2.1 – PLA format representation of the function described in Table 2.1.

2.2.4 Binary Decision Diagram

Although it is a simple way of representing Boolean functions, the truth table

data structure is not scalable since it always uses 2n bits to store the information. So,

the adoption of truth table data structure for Boolean functions representation are not

indicated for functions with a high number of input variables. In order to overcome this

limitation, Akers proposed the concept of decision diagrams (AKERS, 1978).

A binary decision diagram (BDD) is a rooted, directed acyclic graph used to repre-

sent Boolean functions. The graph vertex set V accepts three types of vertices. A terminal

vertex v may denote a TRUE or FALSE decision, through the values 1 and 0, respec-

26

y0

AND plane

OR plane

x0 x1 x2

Figure 2.2 – PLA architecture configuration for the function presented in Table 2.1.

tively. On the other hand, a non-terminal vertex v has as attribute an input variable xi and

represents a decision node with two children. If xi = 1, go to high(v), else go to low(v).

Finally, there is the function node, which has one incoming edge and no outgoing edges,

and denotes the represented function. Figure 2.3 illustrates the BDD representation of the

function described in Table 2.1, respecting the variable order x0 < x1 < x2 . The F node

denotes the represented Boolean function. The dashed edges refer to the low(v) nodes.

1 1 1 1 10 0 0

Figure 2.3 – BDD representation of the function described in Table 2.1.

To make the BDD a canonical representation, the concept of reduced and ordered

27

binary decision diagram (ROBDD) was introduced in (BRYANT, 1986), being a more

compact way to represent BDDs. The canonicity is related to a given order of variables in

the graph, which directly impacts the ROBDD size (HACHTEL; SOMENZI, 2006). For

a given order, it may be the case that it is impossible to derive an ROBDD. For a given

variable ordering, non-terminal nodes controlled by the same variable and pointing to the

same child in both values (xi = 1 and xi = 0) are removed. Moreover, nodes controlled by

the same variable and pointing to the same left and right child are merged. A ROBBD for

the same function described in Table 2.1 is shown in Figure 2.4.

1

F

1

10

0

x0

x1
x1

x2

Figure 2.4 – Optimized ROBDD of the function described in Table 2.1.

2.2.5 Boolean Networks

A Boolean network is a directed acyclic graph (BRAYTON; HACHTEL; SANGIOVANNI-

VINCENTELLI, 1990). A Boolean operation is associated with each node in the graph.

A directed arc from node i to node j means that the i-th function output is an input of the j-

th function. Some of the graph nodes are designated as inputs and outputs to the network,

called the primary inputs and primary outputs, respectively. Any node that has input and

output arcs is an intermediate node. A node can be both an output and an intermediate

node. In general, a Boolean network is an implementation or representation of a set of

Boolean functions. The Boolean network can be directly derived from the Boolean ex-

pression. Moreover, representing a function as a Boolean network shows the importance

of reducing the number of literals in the corresponding mathematical expression. Figure

2.5 shows two Boolean networks implementation for the function represented in Table

2.1. Figure 2.5a presents a Boolean network for an SOP expression and Figure 2.5b a

28

Boolean network for a multilevel expression.

x0x1 x2

f

OR

AND AND AND

INV INV

(a) Boolean network for a SOP expression.

x0x1 x2

f

OR

AND

AND

OR

INV INV

(b) Boolean network for a multilevel expression.
Figure 2.5 – Two Boolean network representations of the function described in Table 2.1.

2.2.6 AND-Inverter Graph

The AND-Inverter Graph (AIG) is the most common data structure for performing

logic synthesis, even though it was first proposed to perform combinational equivalence

checking (KUEHLMANN; KROHM, 1997). An AIG is a directed acyclic graph (DAG)

used to represent Boolean functions, and its nodes have zero or two incoming edges.

Nodes with zero incoming edges are primary inputs (PI), and nodes with two incoming

edges represent the 2-input AND logic operator (AND2). Moreover, nodes can be marked

to represent primary outputs (PO). The operators may or may not be inverted. The inver-

sion is represented by complementing the graph edges. An AIG is a particular case of a

Boolean network.

In the adoption of AIG structure for logic synthesis algorithms, it is very com-

mon to compute k-cuts (PAN; LIN, 1998; MISHCHENKO; CHATTERJEE; BRAYTON,

2006). For a given AIG node n, its cut C is a set of nodes in the network, also known as

leaves of the cut, such that every path from a PI to n comprises at least one node in C. An

AIG node n can comprise multiple cuts. A cut is said to be k-feasible if it comprises no

more than k nodes. Otherwise, the cut is discarded. Usually, the k-cuts are computed into

a single pass from PIs to POs, and the computation is performed as follows. If the node

29

is a PI, it has a trivial cut, i.e., the node itself is the cut. The k-cuts of an AND2 node are

given by the Cartesian product between the cut sets in each of its inputs and its trivial cut.

Figure 2.6 presents the AIG of the function represented in Table 2.1. The dashed lines

represent inverters.

Figure 2.6 – AIG representation of the function described in Table 2.1.

2.3 Two-level Logic Optimization

As two-level expressions have fixed logic depth, the main objective of optimiza-

tion techniques is to minimize the number of literals and the number of cubes in an SOP

context or sums in a POS context. This work focuses on optimizing the number of literals

in a cover.

A well-known approach to represent and synthesize a Boolean function in an opti-

mized cover is the Karnaugh map (KARNAUGH, 1953). In a Karnaugh map each line of

a truth table is mapped into a cell, and the cell value is the output for the respective line.

The cells in the Karnaugh map are ordered using the Gray code, such that the position of

neighbor cells differs by exactly one bit, i.e., the Hamming distance equals to one. Figure

2.7 shows the Karnaugh map for the function described in Table 2.1.

The main idea of using a Karnaugh map to optimize a cover is to use rectangles

to cover all minterms of ON-SET(f). A rectangle must contain a power of two minterms

(i.e., 1, 2, 4, 8, and so on), and each rectangle represents a cube. If a minterm is inside

30

x0x1

x2
00 01 11 10

0 1 0 1 0

1 1 0 1 1
Figure 2.7 – Karnaugh map representation of the function described in Table 2.1.

a rectangle, this minterm is covered by the cube represented by the rectangle. The size

of a cube is the number of minterms covered by it. The bigger the cube (rectangle) is,

the fewer literals are needed to represent it. In general, the Karnaugh map objective is

to select the cover that minimizes the literals count. Figure 2.8 presents the Karnaugh

map in Figure 2.7 with all rectangles that cover more than one literal highlighted. Some

rectangles only cover one minterm, but as a bigger rectangle covers these cubes, they do

not result in the best cover and can be ignored. Note that for this function it is impossible

to place a rectangle that covers four minterms.

x0x1

x2
00 01 11 10

0 1 0 1 0

1 1 0 1 1
Figure 2.8 – Karnaugh map with all possible cubes highlighted.

Although these cubes are the biggest ones possible, that is not the best cover so-

lution. Note that the rectangles in blue and red only cover minterms that are also covered

by other cubes. In this way, by removing one of these cubes do not uncover any minterm

and reduce the number of literals of the cover. Figure 2.9 shows an optimal cover for the

function after removing the blue rectangle.

In the Karnaugh map approach is easy to visualize the optimization and it can

reach an optimal cover, but it is challenging to apply in functions with more than six

variables. The Quine-McCluskey algorithm (MCCLUSKEY, 1956), also known as the

method of prime implicants, utilizes the same concepts of the Karnaugh map approach

without representing the function with the Veitch diagram. This algorithm comprises two

phases: (1) finding all prime implicants of the function, and (2) use those prime implicants

31

x0x1

x2
00 01 11 10

0 1 0 1 0

1 1 0 1 1
Figure 2.9 – Karnaugh map containing the SOP !x0∗!x1 + x0 ∗ x1 + x0 ∗ x2

to cover the function.

To find all prime implicants is necessary to combine the previous implicants until

any new implicant can be generated. The procedure to find the prime implicants is the

following. At first, all minterms are listed and considered as implicants. In the next, it tries

to combine every possible pair of neighbor implicants, i.e., two implicants that contain

identical literals with only one of them with different polarity. They can be combined,

generating a new implicant that does not contain this literal, as in the following example:

!x0 ∗ x1 ∗ x2 + x0 ∗ x1 ∗ x2 = (!x0 + x0) ∗ x1 ∗ x2 = x1 ∗ x2.

The new implicants are stored for the next iteration, while the original implicants

that generated these new implicants are not. When it is not possible to combine neighbor

implicants, the remaining implicants are the prime ones. In Table 2.4 is presented the im-

plicants generated in the synthesis of the function described in 2.1. The first column shows

the implicants of the function minterms with an identifier in parentheses. The second col-

umn presents the new implicants and the identifiers corresponding to the implicants that

were combined. There are also the minterms covered by the implicant.

Table 2.4 – Example of finding all prime implicants of the function described in Table 2.1
First Iteration Second Iteration

(1) !x0∗!x1∗!x2 (1+2) !x0∗!x1

(2) !x0∗!x1 ∗ x2 (2+3) !x1 ∗ x2

(3) x0∗!x1 ∗ x2 (3+5) x0 ∗ x2

(4) x0 ∗ x1∗!x2 (4+5) x0 ∗ x1

(5) x0 ∗ x1 ∗ x2

Note that in the second iteration, only the implicants !x0∗!x1 and x0 ∗ x1 contain

the identical literals. However, as the number of literals with different polarities is more

than one, it is impossible to combine them. Hence, the implicants of the second iteration

are prime implicants.

32

The objective of the second phase is to select a set of prime implicants that cover

the function and minimizes the number of literals. As essential prime implicants must be

in the cover, it inserts them in the solution. The minterms covered by the essential prime

implicants are already covered. Then a subset of the remaining prime implicants must be

selected to cover the uncovered minterms. The final cover must be irredundant. In Table

2.4, the prime implicants !x0∗!x1 and x0 ∗ x1 are essential as the minterms !x0∗!x1∗!x2 is

only covered by the first and the minterm x0 ∗ x1∗!x2 by the second. When the essential

cubes are inserted in the cover, the only minterm not covered is x0∗!x1 ∗ x2 and can be

covered by both prime implicants !x1 ∗ x2 and x0 ∗ x2. As both prime implicants contain

two literals, choosing any of them to be added to the cover results in the same number of

literals.

The Quine-McCluskey approach focuses on just one function (or output), but the

concepts on this approach can be extended to synthesize multiple-output circuits. The

main difference between single- and multiple-output functions is the possibility of having

output literals on the cubes (implicants). The number of literals in a cube is the sum of

the input and output literals. Note that when an output literal is inserted in an implicant,

its size doubles. So, the cube size and number of output literals are directly proportional,

unlike input literals whose number is inversely proportional to the cube size. When two

implicants have identical input literals but different output ones, it is possible to combine

them in an implicant containing the input literals and merging the output literals. More-

over, two implicants with identical output literals and input literals with only one input

literal with different polarities can be combined. The basic Quine-McCluskey algorithm

can be applied considering these modifications, generating the prime implicants by com-

bining them, inserting the essential prime implicants, and selecting the cubed to cover the

uncovered minterms. The optimized cover for the multi-output circuit described in Table

2.2 is

{y0∗!x0∗!x1, y1∗!x1∗!x2, y0 ∗ y1 ∗ x0 ∗ x2, y0 ∗ y1 ∗ x0 ∗ x2}.

It is also possible to adapt the basic Quine-McCluskey approach to synthesize

ISBF. In the basic approach, finding prime implicants starts considering the minterms of

the ON-SET(f) as implicants. When an ISBF is synthesized, the ON-SET(f) and DC-

SET(f) minterms are considered the initial implicants. The remaining approach to find

the prime implicant is the same as the basic approach. For the second phase, the main

difference is that it only has to cover the ON-SET(f) minterms. In other words, the ON-

33

SET(f) and DC-SET(f) minterms are used to obtain the prime implicants, but only the

minterms of the ON-SET(f) need to be cover. When the objective is to synthesize a multi-

output circuit, the use of the DC-SET(f) is done over the multi-output approach. The

optimized cover for the multi-output circuit described in Table 2.3 is

{y0∗!x1, y0 ∗ y1 ∗ x0}.

2.4 Boolean Satisfiability

Boolean satisfiability (SAT) is the decision problem to determine whether there

exists an assignment to the input variables that makes the output of a given Boolean for-

mula evaluates to true. If such an assignment exists, then the formula is satisfiable. Other-

wise, the formula is unsatisfiable. Conventionally, SAT problem instances are represented

by a formula in the conjunctive normal form (CNF).

A problem that is closely related to SAT is the model counting, sometimes also

referred to as SAT counting or #SAT, which computes the number of satisfiable assign-

ments for a given formula. SAT solvers are tools implementing advanced techniques for

deciding whether a given SAT instance is satisfiable or unsatisfiable (EéN; SöRENSSON,

2004). Many practical problems can be modeled using SAT and efficiently solved by

modern SAT solvers. This work refers to a tool used to solve the #SAT problem as an

#SAT solver.

2.5 Espresso Tool

The ESPRESSO logic minimizer is a framework using heuristic and specific al-

gorithms to optimize two-level circuits efficiently (BRAYTON et al., 1984). ESPRESSO

receives as inputs the cube covers of the ON-SET and the DC-SET of an incompletely

specified Boolean function. It returns a minimized cover as its output. The objectives

of ESPRESSO are to minimize the number of product terms in the cover, the number of

literals in the input parts of the cover, and the number of literals in the output parts. The

sequence of operations carried out by ESPRESSO is outlined below.

1. Complement: Compute the complement of the ON-SET and the DC-SET, i.e., com-

pute the off-set.

34

2. Expand: Expand each implicant into a prime and remove covered implicants.

3. Essential Primes: Extract the essential primes and put them in the don’t-care set.

4. Irredundant Cover: Find a minimal (optionally minimum) irredundant cover.

5. Reduce: Reduce each implicant to a minimum essential implicant.

6. Iterate 2, 4, and 5 until none of the three metrics have been improved.

7. Lastgasp: Try reduce, expand and irredundant cover one last time using a different

strategy. If successful, continue the iteration.

8. Makesparse: Include the essential primes back into the cover and make the its struc-

ture as sparse as possible.

35

3 APPROXIMATE COMPUTING PARADIGM

This chapter presents some concepts and techniques about approximate comput-

ing. Initially, error-resilient applications are defined. Then, the approximate computing

paradigm is introduced, reviewing some definitions and the different computational levels

where approximate computing techniques can be exploited. At the end, the application

on the gate level is discussed, presenting existing approaches for building approximate

circuits.

3.1 Error-Resilient Application

Error resilience is the characteristic of an application that produces acceptable re-

sult besides its execution is incorrect or approximated. Such a characteristic appears in a

broad spectrum of applications, such as digital signal processing, image, audio and video

processing, graphics, wireless communications, web search, data analytics, RMS (recog-

nition, mining and synthesis), machine learning, sensor-driven application and Internet-

of-Things (IoT) (CHIPPA et al., 2013). There are some behaviors that may contribute to

the error resilience propriety, which can be roughly divided into five groups:

• Noisy input data: Applications that work over noisy or eventually incorrect in-

put data tend to be robust and generate valid outputs to those erroneous inputs.

This behavior is common in applications that interact with real-world data, such as

sensor-driven applications.

• Redundant input data: In applications where similar data are processed several

times (redundancy), small changes on input data may not impact that result quality.

Neural networks is an example of application with this behaviour.

• A golden output does not exist or it is not necessary: The applications with this

behavior contain a range of acceptable output values. It is common in applications

where the human perception measures the quality of the output information, such

as image and audio processing.

• Statistical or probabilistic computation: Applications that use statistical or prob-

abilistic methods tend to attenuate or cancel errors, avoiding eventual erroneous

output. The majority of machine learning applications fit in this category.

• Self-healing methods: these applications present an iterative nature of computa-

36

tions, where errors due to approximations in one iteration can potentially get healed

or recovered in subsequent iterations. An example of a self-healing method is neu-

ral networks with incremental learning.

3.2 Approximate Computing

Approximate computing is a computational paradigm that allows a system to present

imprecise or inexact behavior aiming to simplify the system complexity, making it faster

or cheaper. Surveys about approximate computing techniques can be found in (HAN;

ORSHANSKY, 2013; MITTAL, 2016; XU; MYTKOWICZ; KIM, 2016). When approx-

imate o computing is applied on error-resilient applications, it is possible to optimize the

system without impacting the quality of results.

This paradigm can be applied on several computational levels, from a high level

as algorithms and compilers, passing through the architectural level to the circuit level in

both logic gates and transistors levels. In general, the approximate approach, the number

of allowed errors, and the aimed optimization depend on the approximation level (MIT-

TAL, 2016; XU; MYTKOWICZ; KIM, 2016). The final application characteristics may

also impact the approximation approach, but we do not present any application-specific

technique in this work. Next, some approaches of approximated computing on each com-

putational level are presented. The approximation on circuit level is shown in Section

3.3.

At algorithm level, it is possible to modify the exact behavior of a program to

speed up its execution and reduce the energy consumed. An example of this approxi-

mation is using loop perforation (SIDIROGLOU-DOUSKOS et al., 2011), which skips

some iterations of a loop, reducing the computation cost. Also exist specific programming

languages to approximate computing, being used, for instance, to execute code partition

in a probabilistic way (GORDON et al., 2014) or to annotated portions of code that can

be (or not) approximated, called critical and not critical regions (SAMPSON et al., 2011;

BORNHOLT; MYTKOWICZ; MCKINLEY, 2014).

The approximation at compiler level is made by modifying the program behavior

considering the annotations made by the programming language or by selecting where

the approximation can be made (XU; MYTKOWICZ; KIM, 2016). The approximations

in this level can be modifications on the machine code (MISAILOVIC et al., 2010) or

pointing code parts to be executed on approximate hardware (MISAILOVIC et al., 2014),

37

for instance.

The approximation can be made in different ways at architectural level, such as

modifying the exact behavior of components, like processors, storage and graphic pro-

cessing unit (GPU), and using neural processing unit (NPU) to perform approximate ex-

ecutions. The change of behavior in almost all components can be made by reducing the

voltage supply. Change the voltage supply reduces energy consumption in exchange for

errors due to timing in most cases (MITTAL, 2016; XU; MYTKOWICZ; KIM, 2016).

The approximation in a processor can be made by creating operations at the in-

struction set architecture (ISA) that compute approximate operations, which can use ap-

proximate hardware or the original approximate operation (VENKATARAMANI et al.,

2013; ESMAEILZADEH et al., 2012b). A processor can be provided with both precise

and approximate data paths or even whole approximate cores (ESMAEILZADEH et al.,

2012b; KARPUZCU; AKTURK; KIM, 2014). Hence, it is possible to interchange exact

and approximate operations at the same processor, being also possible to have multiple

paths with approximation strategies with different error constraint.

Some examples of approximation on storage elements are observed by chang-

ing the DRAM refresh rate (CHO et al., 2014), changing error correction algorithms in

SSD memories (XU; HUANG, 2015), and modifying allocation algorithms in non volatile

memory (NVM) by using blocks with exhausted error-correction resources to store error-

resilient data (SAMPSON et al., 2013).

An NPU is a specialized circuit applied to optimize the execution of machine

learning algorithms. It can be used to execute an approximate version of a set of CPU

operations (ESMAEILZADEH et al., 2012a; AMANT et al., 2014). This approximation

is made by training a neural network that mimics the exact behavior of the set of CPU

operations and executing on the NPU. The NPU execution tends to be faster and consumes

less energy than the CPU but presents an error rate equals to the neural network accuracy.

3.3 Approximate Circuits

The main focus of the present work is to use approximate computing at circuit

level, the called approximated circuits. The approximation at circuit level includes ap-

proximation at gate level and transistor level. It consists of deriving a circuit with a

Boolean behavior different from the original specification. When the approximation is

made in a good way, it is possible to obtain optimizations in area, performance and

38

energy efficiency compared to an implementation Boolean equivalent to the specifica-

tion (SCARABOTTOLO et al., 2020; HAN; ORSHANSKY, 2013; XU; MYTKOWICZ;

KIM, 2016; MITTAL, 2016).

There are two main approaches to approximate a circuit: by modifying the voltage

supply, similar to the architectural level approaches, and by modifying the Boolean func-

tion implemented by the circuit, aiming at a function that can be represented in a more

optimized way. The latter one can be made by approximating manually or automatically

the circuit design.

The first efforts in circuit approximation were the result of manually approximat-

ing the target design. Such a handcrafted approximation demands the circuit designer to

have deep knowledge about the circuit behavior to make approximations that optimize it

but do not degrade the output quality.

The main application of manual approximation is arithmetic designs. There are

numerous efforts to approximate adders and some works that aim at multipliers and di-

viders. Reviews comparing different approximation approaches of adder and multiplier

designs can be seen in (JIANG; HAN; LOMBARDI, 2015) and in (JIANG et al., 2016),

respectively. In (MRAZEK et al., 2017), the authors present a library with different ap-

proximate adders and multipliers.

Many approximation schemes have been proposed by reducing the critical path

and hardware complexity with respect to accurate adder. There are two main strategies to

approximate an adder circuitry: by modifying the carry chain structure, mainly to reduce

the propagation delay or the cost of carry prediction calculation, and by approximating the

full-adder (FA) design as it represents the basic block for adder designs (JIANG; HAN;

LOMBARDI, 2015).

In (MOHAPATRA et al., 2011), the authors approximate an adder circuitry by

segmenting it to reduce the carry chain delay. An N-bits adder is split into K sub-adder of

N/K bits, reducing in K times the adder delay. This work also proposes the use of multi-

plexers (MUX) between the sub-adders to select a fixed carry-in or the carry-out from the

last sub-adder, and so controlling the error introduced by the segmentation. Moreover, the

approximation of FA behavior in the least significant bits (LSBs) of the adder structure to

perform an OR operation is proposed in (MAHDIANI et al., 2010). The FA approxima-

tion procedure has been also applied to create approximate floating-point adder (LIU et

al., 2014).

Multiplier designs can employ 2x2 elementary multiply modules to generate par-

39

tial products. An adder tree is used to add the partial products and obtain the product result

for multiply operations (REHMAN et al., 2016). In (KULKARNI; GUPTA; ERCEGO-

VAC, 2011), it is presented the design of an inexact 2x2 multiplier that represents the

multiplication of 310 ∗ 310 with 710, instead of 910. In other words, 112*112 is represented

by 1112 instead of 10012, which uses three bits instead of four. For the remaining 15

input combinations, the multiplier provides the correct output. Thus, while still providing

a correct output for 15 out of 16 input combinations, their inexact multiplier reduces the

area by half compared to the exact version, leading to a shorter and faster critical path. In

(BHARDWAJ; MANE; HENKEL, 2014), the authors present an approximate multiplier

design by approximating the x-LSBs related partial products of the adders to optimize the

target design.

As done in approximate multiplier designs, approximate dividers can also be de-

rived using approximate adders (PARHAMI, 2009) and approximate elementary divider

modules (CHEN et al., 2016). In (SAADAT; JAVAID; PARAMESWARAN, 2019), it is

proposed a modification on the approximate log-based divider technique, a classical tech-

nique to create approximate dividers, to reduce the amount of inserted error, and derive

optimized integer and floating-point approximate dividers.

3.4 Approximate Logic Synthesis

Section 3.3 presented the basic concepts about approximate circuits and the ex-

isting works that propose approximations on arithmetic designs by manually modifying

the circuit structure. The main drawback of this approach is that it is necessary design

expertise knowledge about the circuit behavior to approximate it, turning it into a design-

specific technique. On the other hand, the automatic circuit approximation approach aims

to overcome these drawbacks.

The synthesis of approximate circuits consists of automatically modifying a gen-

eral logic behavior without knowing the implementation details. It is done by systemati-

cally modifying the behavior without exceeding a given error threshold. Such a system-

atic manipulation is usually similar to problems tackled in logic synthesis tools. In that

way, the automatic generation of approximate circuits is usually called approximate logic

synthesis (ALS) (SCARABOTTOLO et al., 2020).

In general, ALS methods apply modifications to the logic behavior iteratively until

it is impossible to modify the circuit without exceeding the error threshold. Hence, besides

40

the systematic approximation approach, it is needed to apply techniques to calculate the

error. The error calculation method is usually applied over each possible modification

during the approximation process and depends on the error metric applied. The most

adopted error metrics in ALS and the different approaches to calculate the introduced

error during approximation task are presented in Section 3.5.

In literature, there are ALS efforts to approximate combinational circuits for both

two-level and multilevel representations as well as for sequential circuits. The rest of

this section focus on ALS works for combinational multilevel circuits at first and then

sequential circuits. The works that focus on the approximation of two-level combinational

blocks are presented in Section 3.6.

In (SHIN; GUPTA, 2011), it is proposed the first ALS method focusing on multi-

level circuits. This work applies hardware testing techniques to enumerate the modifica-

tions performed on the circuit, which can be seen as possible errors in the test of hardware

context. It is done by selecting the changes that lead to optimizations on the circuit with

little impact on the resulting output quality.

In (VENKATARAMANI et al., 2012), two significant contributions can be found:

it formulates the ALS problem and it is the first approach that applies logic synthesis

techniques to approximate the circuit. This work performs the approximation process by

exploiting some concepts and techniques of optimizations through don’t cares, a recurrent

problem on conventional logic synthesis. In (MIAO; GERSTLAUER; ORSHANSKY,

2014), the authors propose an ALS approach that also uses these concepts and techniques.

An ALS approach that identifies pairs of internal signals, i.e., that assume the same

value with high probability and substitute one for the other, is presented in (VENKATARA-

MANI; ROY; RAGHUNATHAN, 2013). While these substitutions introduce functional

approximations, they may result in some logic to be eliminated from the circuit. A mod-

ification on this approach that uses a more precise error calculation method, leading to

better circuit optimization for the same error threshold, is presented in (SU; WU; QIAN,

2018).

In (SOEKEN et al., 2016) and in (WENDLER; KESZOCZE, 2020), the authors

propose approaches to approximate circuits represented by BDDs. These works detail

procedures to modify the BDD structure as well as to estimate the inserted error over

BDDs.

An ALS approach over Boolean networks with approximation being made in a

two-level representation is proposed in (WU; QIAN, 2016). For a logic behavior rep-

41

resented by a Boolean network, subcircuits in the networks are selected and converted

into a two-level Boolean expression. The obtained expression is approximated by remov-

ing literals and then is returned to a multilevel representation, substituting the original

subcircuit. An extension of this work is presented in (WU; QIAN, 2020).

(WU et al., 2017) proposes an ALS approach focusing on FPGA mapped circuits.

During the mapping to FPGA, subcircuits of the original circuit are mapped on LUTs,

which have a limited number of inputs. In that way, the main idea is to remove input

signals in subcircuits that lead to multiple LUTs to reduce the number of LUTs needed to

map the circuit.

In (LIU; ZHANG, 2017), it is presented a framework that approximate the circuit

by using stochastic heuristic and by apply statistical test during the approximation pro-

cess in order to obtain a solution that respects the error threshold with a high degree of

confidence. It represents the first work to take into account different input distributions at

the input during the approximation task.

In (YAO et al., 2017), the authors present an ALS approach to approximate a

Boolean function aiming to turn it on a maximally disjoint bi-decomposable Boolean

function. When a Boolean function represents a maximally disjoint bi-decomposable,

the circuit may have a more optimized implementation. In that work, the objective is to

modify the function characteristic instead of modifying the circuit representation, as done

in other works.

In (CHANDRASEKHARANA et al., 2016) and in (ZHOU et al., 2018), the au-

thors propose ALS methods that focus on critical paths of AIG, aiming to reduce the

circuit logic depth. Both approaches select subgraphs on the AIG critical path to replace

for a constant value, so reducing the logic depth and the number of nodes. The difference

between these works is that the subgraph selection is optimized on the latter one.

An ALS approach proposed to optimize AIG by focusing on the number of nodes

is presented in (MENG; QIAN; MISHCHENKO, 2020). The optimizations in this work

are related to a set of input simulation vectors and comprise two phases. The first one

identifies signal pairs that assume the same values over the input simulation vectors and

substitute one for the other. The second phase optimizes a subgraph comprising the sub-

stituted signal by using the Espresso tool. Such an optimization is done over a truth table

inducted by observing the inputs and the respective output on the subgraph while simu-

lating it. If an input combination does not occur in the subgraph, it is considered a don’t

care.

42

When the objective is to approximate sequential circuits, there are a limited num-

ber of works in the literature. The main reason for this tiny amount of efforts is the

difficulty of calculating and controlling the error introduced during approximation be-

cause the circuit approximation can result in an error after multiple clock cycles or only

in a specific circuit state. In (RANJAN et al., 2014), it is proposed an ALS approach for

sequential circuits that applies combinational multilevel ALS approaches, as proposed

by (VENKATARAMANI et al., 2012), and voltage scaling approximate techniques to

approximate more proper circuit regions. This work also proposes a specific method to

calculate the error introduced over sequential circuits. In (CHANDRASEKHARAN et

al., 2016), it is proposed the use of approximate combinational circuits in a sequential

circuit, and also presents an error calculation technique.

3.5 Error Modeling

Independent of the ALS approach, whether it focuses on two-level or multilevel

representation or which Boolean structure is adopted to represent the circuit, it is nec-

essary to define a way to quantify (and control) the amount of error inserted during the

approximation procedure. This section presents the error metrics used to quantified the

error and the main methods to calculate it during the circuit approximation.

3.5.1 Error Metrics

Many error metrics have been proposed in the literature to control the error in-

serted in approximate circuits. The error metrics to approximate circuits can be di-

vided into general purpose metrics, which are related to the error occurrence, and arith-

metic metrics, which are related to the error magnitude (VASICEK, 2019). This sub-

section presents the seven most common error metrics adopted (MRAZEK et al., 2017;

FROEHLICH; GROßE; DRECHSLER, 2019a). For the expressions presented in the next,

n represents the number of circuit inputs, Bn represents all possible input combinations,

f(x) and f̂(x) represent the output value in the original and approximate circuit, respec-

tively, for the input combination x, with fi(x) and f̂i(x) representing the i-th output bit.

The first two error metrics are for general propose and the five remaining for arithmetic

propose:

43

• Worst Bit Flip (WBF): Also referred to as the worst Hamming distance (WHD). It

represents the greatest Hamming distance between the original and the approximate

output. It is used to verify which is the worst-case in the number of erroneous output

bits. WBF is calculated by

WBF = max
∀x∈Bn

n−1∑
i=0

fi(x)⊕ f̂i(x).

• Error Rate (ER): Represents the frequency or the probability of observing one or

more erroneous output bits. ER is the most common error metric for circuit approx-

imation, widely used in general and arithmetic circuits. ER is calculated by

ER =
1

2n

∑
∀x∈Bn

f(x) 6= f̂(x).

• Worst-Case Error (WCE): It consists of the greatest absolute difference in magni-

tude between the original and the approximate circuit output. It is the most common

metric for arithmetic circuits. WCE is calculated by

WCE = max
∀x∈Bn

|f(x)− f̂(x)|.

• Mean Absolute Error (MAE): It consists of the average absolute difference in mag-

nitude between the original and the approximate circuit outputs regarding all input

combinations. MAE is calculated by

MAE =
1

2n

∑
∀x∈Bn

|f(x)− f̂(x)|.

• Worst-Case Relative Error (WCRE): It consists of the greatest relative difference in

magnitude between the original and the approximate circuit outputs. Relative error

metrics are interesting because it is a percentual value, making it possible to analyze

circuits with a different number of inputs without defining a fixed magnitude value.

WCRE is calculated by

WCRE = max
∀x∈Bn

|f(x)− f̂(x)|
max(1, f(x))

,

with the division by max(1, f(x)) being used to prevent a division error when the

original output is zero.

44

• Mean Relative Error (MRE): It consists of the average relative difference in magni-

tude between the original and the approximate circuit outputs over all input combi-

nations. MRE is calculated by

MRE =
1

2n

∑
∀x∈Bn

|f(x)− f̂(x)|
max(1, f(x))

.

• Mean Squared Error (MSE): It consists of the average quadratic difference in mag-

nitude between the original and the approximate circuit outputs. The average quadratic

error is used to prevent large errors from occurring, as each error is squared. MSE

is calculated by

MSE =
1

2n

∑
∀x∈Bn

(f(x)− f̂(x))2.

3.5.2 Error Calculation Methods

At the end of Section 3.4, it is mentioned that the main limitation for sequential

circuits is the error calculation. In combinational circuits, the error calculation is less

complex than for sequential ones because the error does not depend on clock cycles.

Nevertheless, the error calculation during the approximation of combinational blocks is

the basis and the most computationally expensive phase in ALS procedure.

Some ALS methods calculate in an accurate way the error by using formal proce-

dure, whereas others calculate an imprecise error value. In this work, the approaches for

precise error calculation are called error calculation methods, while the imprecise error

calculation ones are denominated error estimation methods. The error calculation meth-

ods are implemented using formal procedures, like Boolean satisfiability (SAT), symbolic

computer algebra (SCA), and binary decision diagram (BDD), or even all possible inputs

combination, such as truth tables and exhaustive simulations. The error estimation meth-

ods are usually implemented by applying Monte Carlo simulation, although there are

other works that propose specific approaches.

The choice of which error method is the most appropriate has to take into account

a trade-off between quality of results and computational complexity. A precise error

calculation tends to result in a better circuit approximation because it leads to a better

choice of which approximation is applied during the ALS execution (SU; WU; QIAN,

2018). Formal approaches usually present a high computational cost, and their execution

45

over each possible modification on the circuit may result in high computational overhead

on the ALS method.

When error estimation methods are adopted during the circuit approximation,

there is no guarantee that the final solution respects the error constraint. In this case, it is

interesting to apply an error calculation method to formally verify if the error constraint is

satisfied (VASICEK, 2019). This section presents the main strategies to calculate and es-

timate the errors during the circuit approximation, associating to the ALS approach where

it is applied. Some ALS methods apply specific strategies to estimate the error, and that

will not be discussed in this section (SHIN; GUPTA, 2011; VENKATARAMANI et al.,

2012; VENKATARAMANI; ROY; RAGHUNATHAN, 2013; MIAO; GERSTLAUER;

ORSHANSKY, 2014; WU; QIAN, 2016; WU et al., 2017; YAO et al., 2017).

Techniques based on Monte Carlo simulation are the most common error estima-

tion methods in ALS approaches (LIU; ZHANG, 2017; SU; WU; QIAN, 2018; ZHOU

et al., 2018; MENG; QIAN; MISHCHENKO, 2020). The techniques that use Monte

Carlo simulation consist of simulating the circuit with random stimuli that do not cover

all possible input combinations. The higher is the number of simulations, the greater is the

confidence degree that the behavior observed by simulation is equal to the circuit behav-

ior. In other words, using more simulations leads to a more precise error estimation. As

expected, more simulations increase the computational overhead. This freedom to trade-

off precision and scalability is the main reason for the popularity of Monte Carlo based

techniques. For instance, in (SU; WU; QIAN, 2018), the authors propose an approach

based on Monte Carlo simulation that focuses on DAG Boolean structures. This approach

only simulates DAG regions modified by an approximation, so reducing the simulation

overhead and increasing the number of interactions.

A miter is a structure frequently used to verify the Boolean equivalency of two

circuits (BRAND, 1993). It consists of two circuit implementations connected to the

same inputs and with exclusive-OR (XOR) gates at the outputs, pair-by-pair. The XOR

outputs are connected to an OR gate. If any XOR output is a true value for a given

input combination, the miter output is true, and so not equivalent. In opposite, if any

XOR output results in a false value for all input combinations, the circuits are logically

equivalent. A recurrent concept in many error calculation methods is the approximate

version of a miter, called approximate miter. An approximate miter is similar to the miter,

with two circuits connected at the same inputs, but it does not connect the outputs of

the circuits through an XOR gate. The outputs of the circuits are connected to specific

46

circuits, which only results in a true value when a given error constraint is exceeded. In

Figure 3.1a is shown the structure of a miter.

Multiple ALS approaches that adopt SAT-based error calculation methods use ap-

proximate miter to build the input CNF for the SAT-solver (CHANDRASEKHARANA

et al., 2016; RANJAN et al., 2014; CHANDRASEKHARAN et al., 2016; ČEšKA et al.,

2017). In general, the circuit of the approximated miter is converted into a CNF by using

the Tseitin transformation (TSEITIN, 1983). In that way, if the SAT-solver finds an input

combination where the generated CNF is satisfied, the error between the two circuits in

the approximate miter exceeds the error threshold. If the CNF is not satisfiable, the error

threshold is not exceeded. The use of formal techniques over an approximate miter is also

called relaxed equivalence checking (VASICEK, 2017). In the next, it is presented some

examples of calculating ER and WCE metrics using SAT and approximate miter.

For the ER constraint, it is used the same miter as in Boolean equivalence check-

ing, as shown in Figure 3.1a, but it is considered the #SAT problem. In that way, the

#SAT-solver does not return all input combinations that result in different outputs. The

ER is the number of input combinations divided by the number of possible input combi-

nations.

For the WCE constraint, the outputs are connected to a subtractor, obtaining the

difference in magnitude between the circuits. The subtractor output is connected to a

circuit to calculate the absolute value. The approximate miter output consists of a com-

parator that results in a true value if the absolute difference is greater than a fixed value k,

where k is the WCE threshold. This structure is illustrated in Figure 3.1b. The SAT-solver

is applied over the obtained CNF. If the CNF is satisfiable, the circuits exceed the defined

WCE.

When BDDs are used to represent the circuit, there are two ways to calculate

the error: using an approximate miter (VASICEK; SEKANINA, 2016), and traversing

the BDD (SOEKEN et al., 2016; WENDLER; KESZOCZE, 2020). In the first case, the

approximate miter is constructed through the BDD representation, connecting the original

and the approximate BDDs. Then an SAT-solver or #SAT-solver is applied over the BDD.

Most BDD packages support SAT operation directly over the DAG, being unnecessary to

obtain a CNF. The second case modifies the BDD and uses operations over this DAG to

calculate the error. As in approximate miter, the modification over the BDD is specific for

each error metric.

Symbolic computer algebra (SCA) is a computational area that addresses symbol-

47

X0 X1 X2 X0 X1 X2

Y0 Y1Y0 Y1

Circuit 1 Circuit 2

(a) The miter structure used to check if two circuits
are logically equivalent. It can be used to calculate

the ER between two circuits.

X0 X1 X2 X0 X1 X2

Y0 Y1Y0 Y1

Circuit 1 Circuit 2

SUB

CMP >

ABS /k

(b) An approximate miter used to check if two
circuits do not exceed a WCE threshold k.

Figure 3.1 – Example of two miter structures.

ically by manipulating mathematical equations and expressions without defining values

for the variables. SCA is applied in techniques of Boolean verification by dividing the

polynomial representation of circuit specification and the corresponding implementation.

When the division remainder is zero, the circuit specification and implementation are

equivalent. In the context of approximate circuits, the remainder that is not equal to zero

represents the difference between the circuits, and can be analyzed considering a given

error metric (FROEHLICH; GROßE; DRECHSLER, 2018). In (FROEHLICH; GROßE;

DRECHSLER, 2019a), it is presented a technique based on SCA to calculate all error

metrics presented in Subsection 3.5.1 by representing the remainder with algebraic deci-

sion diagrams (ADD) and traversing it to calculates the different error metrics.

The previously presented error estimation and calculation methods are used on

multilevel ALS approaches. Although they can be used in 2L-ALS methods, it is com-

monly not done because the two-level approaches usually store the function truth table

during the circuit approximation (SHIN; GUPTA, 2010; MIAO; GERSTLAUER; OR-

SHANSKY, 2013; ZOU; QIAN; HAN, 2015; SU et al., 2020). In that way, the error

calculation is done by comparing the truth tables of the original and the approximated

circuit. As the truth table contains the output results for all possible input combinations,

48

it is equivalent to an exhaustive simulation.

3.6 Two-Level Approximate Logic Synthesis

Currently, there are four works that propose approaches to approximate two-level

circuits. In general, the objective of these works is to obtain an approximate SOP ex-

pression (cover) with a minimized number of literals that respect a giver error constraint

concerning the original SOP expression (cover). Among these works, one considers WCE

and ER metrics together as the error constraint (MIAO; GERSTLAUER; ORSHANSKY,

2013), and the other three ones only consider the ER metric (SHIN; GUPTA, 2010; ZOU;

QIAN; HAN, 2015; SU et al., 2020). In this section, we present details on these four

2L-ALS approaches, starting with the WCE and ER approach and then presenting the

fundamental behavior of the three ER approaches.

3.6.1 ER and WCE Bounded Methods

The approach presented in (MIAO; GERSTLAUER; ORSHANSKY, 2013) per-

forms the approximation in two phases. The first phase approximates the circuit focusing

on the WCE constraint, whereas the second phase undoes approximations realized on the

first until the ER constraint is satisfied.

The approximation strategy in the first phase is based on mapping the approxi-

mation with the WCE constraint in a Boolean relation problem. The Boolean relation

problem is a widely studied problem on synthesis logic. It consists of a two-level circuit

where the input combinations can lead to one or more output values. The ISBFs are a

specific case of a Boolean relation as the output can assume both logic values. In Table

3.1 is presented an example of a Boolean relation. Note that the possible output for the

first input combination can be represented by using the ISBF notation (0-), but it cannot

be done for the outputs of the third and fourth input combinations.

Table 3.1 – Example of Boolean relation.
x0, x1 Possible outputs (y0, y1)

00 {00, 01}
01 {11}
10 {00, 11}
11 {01, 10}

49

This work shows that the problem of approximating a cover with WCE by apply-

ing the error constraint is isomorphic to the Boolean relation problem. When the WCE is

taken into account as the error metric, the magnitude difference between the approximate

circuit and the original outputs must be less or equal to a given magnitude value M for any

input combination. In other words, for each input combination, the approximate circuit

output must be into the range (O-M, O+M), where O is the output in the original circuit

for the same input combination.

The mapping of the approximation problem into the Boolean relation is done by

setting the output value of each input combination to all values into the range (O-M,

O+M). In Table 3.2 is shown how this mapping is done, considering a 2-bit adder and

the WCE threshold M of 1. After obtaining the Boolean relation, a solver is applied to

obtain an optimized cover. Boolean relation solvers aim to select the outputs for each

input combination that minimize the literal count in that cover. Several solvers have

been proposed as exact approaches based on the Quine-McCluskey algorithm (BRAY-

TON; SOMENZI, 1989), and heuristics with more scalable behavior (BANERES; COR-

TADELLA; KISHINEVSKY, 2019).

Table 3.2 – Example of converting a 2-bit adder with WCE threshold of 1 in a Boolean relation.
a, b Original outputs (c, s) Possible outputs (c, s)
00 00 {00,01}
01 01 {00,01,10}
10 10 {00,01,10}
11 11 {01,10,11}

As Boolean relation does not have any restriction with respect to the ER. The

second phase consists of undoing approximations made in the first phase until the ap-

proximate circuit satisfies the ER threshold. It is done by uncovering minterms in which

the output value changed from 0 to 1. Similarly, it has to cover the minterms that have

changed their output value from 1 to 0. When a correction is done, all outputs of a given

input combination must be corrected at the same time to prevent changing the WCE. Thus,

this work proposes a greedy procedure to select the input combinations that the correction

inserts few literals until the ER constraint is satisfied.

The error calculation used in this work compares the original truth table with the

approximate one after the first phase to obtain the ER. The WCE is controlled by con-

structing the Boolean relation and by correcting all outputs simultaneously in the second

phase. Hence, the WCE does not need to be further verified. The error rate is reduced in

the second phase based on how many input combinations are corrected, until the threshold

50

is reached, and there is no explicit error calculation method execution.

3.6.2 ER Bounded Methods

This subsection presents the 2L-ALS approaches that consider ER as the error

constraint. For a given cover C and an ER threshold TE, the problem addressed by these

works consists of obtaining an approximate cover C ′ that minimizes the number of literals

still respecting the ER threshold. In general, the ER threshold TE is a percentage value,

but the works presented here approximate the cover using a fixed number of errors (NoE)

value as the error threshold. Considering an NoE threshold e, the relation between e and

TE are given by e = TE ∗ 2n, where n is the number of inputs of the function. When

the approximation is done over an single-output function, it can be represented by an

SOP expression. The examples in this subsection will consider the cover presented in the

Karnaugh map shown in Figure 3.2 as the original cover C.

x0x1

x2
00 01 11 10

0 1 0 1 0

1 1 0 1 1
Figure 3.2 – Karnaugh map containing the cover used on examples. The SOP represented by this

Karnaugh map is !x0∗!x1 + x0 ∗ x1 + x0 ∗ x2

There are two main techniques to perform the approximation by considering the

ER metric: the insertion and removal of cover cubes (SHIN; GUPTA, 2010). The first

one inserts new cubes that cannot be inserted without adding errors. If the cube insertion

is done cleverly, it implies removing cubes and optimizing the cover. In general, this

technique is performed by complementing the output value of minterms from 0 to 1, and

verifying which new cubes can be included after such a complement. In Figure 3.3 is

shown one possible approximation on C with an NoE threshold of 1. In Figure 3.3a, the

minterm !x0∗x1∗!x2, in red, is chosen to have its output complemented from 0 to 1. When

this is done, it is possible to insert some new cubes, and the cubes x1 and !x0 are added in

the cover. These cube insertions makes that the cubes x0∗x1, x0∗x2 and !x0∗!x1 becomes

redundant, so allowing their removal. These insertions and removals of cubes create an

approximate cover C ′, shown in Figure 3.3b. Note that the number of literals is reduced

51

from six to two with one inserted error.

x0x1

x2
00 01 11 10

0 1 0 1 1

1 1 0 1 1

(a) The minterm !x0 ∗ x1∗!x2 is chosen to have its
output complemented from 0 to 1, inserting one

error

x0x1

x2
00 01 11 10

0 1 0 1 1

1 1 0 1 1

(b) Approximate cover C′ resulting from the
application of the cube insertion technique. The

SOP of C′ is x0+!x1

Figure 3.3 – Example of an approximation done by a cube insertion technique.

The second technique removes cubes directly from C without previously insert-

ing new cubes. The number of errors added by removing a cube equals the number of

minterms that only the removed cube covers on the cover. This technique can be per-

formed by complementing the output value of minterms from 1 to 0, and verifying which

new cubes can be removed from C. In Figure 3.4 is shown an approximation on the C

with an NoE threshold of 1. In Figure 3.4a, the minterm !x0 ∗ x1∗!x2 is chosen to have its

output complemented from 1 to 0. When this is done, the cube x0 ∗ x1 can be removed

from C. After the cube removal, the resulting cover is the approximate cover C ′, shown in

the Figure 3.4b. In that case, the number of literals is reduced from six to four with one

inserted error.

x0x1

x2
00 01 11 10

0 1 0 0 0

1 1 0 1 1

(a) The minterm x0 ∗ x1∗!x2 is chosen to have its
output complemented from 1 to 0, inserting one

error

x0x1

x2
00 01 11 10

0 1 0 0 0

1 1 0 1 1

(b) Approximate cover C′ resulting from the
application of the cube removal technique. The

SOP of C′ is !x0∗!x1 + x0 ∗ x2

Figure 3.4 – Example of an approximation done by a cube removal technique.

In (SHIN; GUPTA, 2010), it is presented an experiment showing that the cube

insertion technique results in an optimization equivalent or better in comparison to the

cube removal technique. In the examples show in Figure 3.3 and in Figure 3.4 confirms

the advantage of the cube insertion technique. Based on this experiment, the subsequent

works focused on the cube insertion technique (ZOU; QIAN; HAN, 2015; SU et al.,

2020).

52

Based on the approaches presented in the works addressed by this subsection,

some steps are recurrent on cube insertion techniques: enumeration of the cube to be

inserted without exceeding the error threshold, the combination of these cubes to utilize

all allowed errors, the identification of cubes to be removed after the cube insertion, and

the calculation of literal reduction after the cube insertions and removals.

The straightforward way to enumerate the cubes to be inserted into cover is to

consider all possible cubes for a function and verify which cubes do not exceed the error

threshold. This enumeration can be done by exhaustively traversing a Hasse diagram,

which consists of a DAG where the vertices are the cubes of a function with n-inputs and

m-outputs. The vertices are placed in layers based on their size, with the largest cube

on the top and the smallest cubes at the bottom. The top cube is the cube that covers all

minterms, and the bottom cubes are the minterms. Exist an edge between two vertices

if the cubes differ in only one literal. In Figure 3.5 in shown a Hasse diagram for a 2-

inputs 2-outputs function. Note that for a cube in a given layer, the cubes connected to

it on the below layer contain one more input literal or one less output literal. Figure 3.6

shows the Hasse diagram for a function with thee inputs and one output, where the cubes

in C and the covered minterms are highlighted in red and orange, and the cubes in green

represent the cubes enumerated by an exhaustive search. This technique guarantees that

the best possible solution can be obtained as it tests every possible cube. As this approach

is exhaustive, it can be computationally costly as for a function with n-inputs and m-

outputs, being the number of cubes proportional to 3n ∗ 2m. The approaches presented

in (ZOU; QIAN; HAN, 2015) and in (SU et al., 2020) apply Hasse diagram traversing

techniques in the cube enumerate phase.

Y0X1

Y0X0X1 Y0X0X1Y0X0X1 Y0X0X1

Y0Y1X0X1 Y0Y1X0X1 Y0Y1X0X1 Y0Y1X0X1

Y0Y1X0 Y0Y1X0 Y0Y1X1 Y0Y1X1 y0 y1

Y0Y1

Y0X0 Y1X0 Y0X0 Y1X0 Y0X1 Y1X1 Y1X1

Y1X0X1 Y1X0X1Y1X0X1 Y1X0X1

Figure 3.5 – Hasse diagram for a function with 2 inputs and 2 outputs.

53

X0X1X2 X0X1X2X0X1X2 X0X1X2 X0X1X2 X0X1X2X0X1X2 X0X1X2

X0X1 X0X1 X0X1 X0X1 X0X2 X0X2 X1X2 X1X2 X0X2 X0X2 X1X2 X1X2

X0 X0 X1 X1 X2 X2

1

Figure 3.6 – Hasse diagram of 3-inputs 1-output function with the cubes that can be enumerated
by the exhaustive technique when using C as the original function highlighted in green.

Another way to enumerate the cube to be inserted is by expanding the cubes on

the cover. Expand a cube consists of removing input literals or adding output literals to

increase the cube size, i.e., to cover more minterms. An enumeration based on the cube

expansion technique is used in (SHIN; GUPTA, 2010). In a Hasse diagram, expanding a

cover cube is equivalent to obtain all cubes in paths between the cube to be expanded and

the cube on the top. It is possible to restrict the number of expanded cubes by limiting

the number of literals modified in a given cube. For instance, when it is possible only to

modify one literal of a cube, the cubes connected with this cube in the one layer above

are obtained. Figure 3.7 shows the Hasse diagram of a 3-inputs 1-output function with

the cubes that an expansion technique can enumerate over the cubes in C. The cubes in

blue in the second layer were obtained by expanding the cubes in C, which are in red.

The cube on the top is obtained by expanding the cubes in the second layer. The cube

expansion technique is interesting because each cube obtained indeed removes at last one

cube in the cover. In (SHIN; GUPTA, 2010), it is applied an expansion approach being

said that there is no guarantee to the best approximation attains by using it. Nevertheless,

we could not find an example that confirms it, and a formal proof is out of the scope of

this work.

The enumeration phase execution results in a set of cubes that inserts at most

the error threshold. In this way, there are multiple cubes which add fewer errors than

the threshold. As inserting a cube with less error than the threshold can be a waste of

optimization, it is interesting to insert a set of cubes that respect the error threshold instead

of only one cube. Hence, finding an approximate cover that minimizes the number of

54

X0X1X2 X0X1X2X0X1X2 X0X1X2 X0X1X2 X0X1X2X0X1X2 X0X1X2

X0X1 X0X1 X0X1 X0X1 X0X2 X0X2 X1X2 X1X2 X0X2 X0X2 X1X2 X1X2

X0 X0 X1 X1 X2 X2

1

Figure 3.7 – Hasse diagram of 3-inputs 1-output function with the cubes that an expansion
technique can enumerate over the cubes in C highlighted in blue.

literal depends on selecting the set of cubes that, when inserted, leads to the greatest

reduction on cover literal count. The sets of cubes are obtained by combining the cubes

until no new set can be found. The main problem of this combination is that the number

of cubes grows exponentially with the number of allowed errors.

After obtaining the sets of cubes that can be inserted, it is necessary to calculate

the literal reduction for each set. In (SU et al., 2020), it is presented a procedure that

efficiently estimates the literal reduction. It consists of identifying which cubes in the

cover can be removed when a given set of cubes are inserted. A cube can be removed from

the cover when there is no minterm only covered by this cube. This identification consists

of finding the cover cubes where all minterms exclusively covered by it are also covered

by the cubes to be inserted. In (SHIN; GUPTA, 2010), it is applied an expansion approach

that stores all cover cubes that result in the same expanded cubes. As the expansion of a

cube generates an expanded cube that covers the original one, when the expanded cube is

inserted in the cover, the original cube can be removed. The number of reduced literals

is equal to the difference between the literal count in the removed cubes and the inserted

cubes.

In (ZOU; QIAN; HAN, 2015), the proposed approach does not present a specific

combination and literal reduction estimation procedures as it chooses the cubes to be

inserted in a dynamic programming approach. The selection of the cubes to be inserted

is based on a metric that considers the cube size and the number of literal. Nevertheless,

this metric has a weak correlation to the literal reduction when the set of cubes is added

into the original cover, and not always is proportional to the literal reduction.

55

As stated at the end of Section 3.5, all 2L-ALS methods use truth tables to cal-

culated the inserted error. It is valid for these three works, but neither applies an explicit

error calculation method to verify the ER constraint. These methods control the number

of inserted errors by verifying how many input combinations are modified in the truth

table when inserting a cube.

In this work, we propose a 2L-ALS approach that approximates a cover taking

into account the ER metric as the constraint. Our approach seems to be the first one in

applying both cube insertion and removal techniques to approximate a cover. The basic

flow for cube insertion technique presented in this subsection is adopted in our work, with

the addition of a cube removal approach. The details of our approach are shown in the

next section.

56

4 PROPOSED 2L-ALS METHOD

This work focuses on the approximation of a cover considering ER as error con-

strain. As shown in Subsection 3.6.2, the works which address this problem apply the

cube insertion technique to approximate the cover. These works only consider this tech-

nique based on the experiment presented in (SHIN; GUPTA, 2010), which shows that the

cube insertion technique leads to a better approximation than the cube removal technique.

Note that any of these works consider using both techniques together.

Thus, a motivational example about using both techniques together is shown in

Figure 4.1, which considers the approximation of the cover presented in 4.1a with the

possibility to insert two errors at most. In Figure 4.1b and in Figure 4.1c is shown the

approximation using the cube insertion technique. In Figure 4.1d and in Figure 4.1e is

shown the approximation using the cube removal technique. In Figure 4.1f and in Figure

4.1f is shown the approximation using both techniques together. The resulting covers

show that using both techniques together leads to a more significant optimization in the

number of literals when compared to their application alone. Hence, the use of both

techniques together in an ALS method seems to be promising.

This work presents a 2L-ALS method that applies the cube insertion and cube

removal techniques to approximate a cover with ER as error constraint. At first, in this

chapter, is is presented some details of the Su’s cube insertion procedure that are used on

the proposed approach. Next, it is presented the primary data structure used to develop the

proposed method. Then, a general description of the proposed method is shown, mention-

ing the main stages of the algorithm and the data structure of applications. Afterwards,

the main stages are detailed, focusing on the cube insertion and the cube removal proce-

dures. Besides the proposed method, the use of Espresso as a tool for post-processing is

also discussed. At the end, a time complexity analysis for the proposed method is shown.

4.1 Su’s Cube Insertion Approach

In (SU et al., 2020), Su et al. present a heuristic search method to solve the 2L-

ALS problem taking into account ER constraint. This work can be considered as the

state-of-the-art method in the subject.

The main goal of the Su’s approach is to identify the set of input combinations

for 0-to-1 output complement (SICC) that maximize the literal count reduction on an

57

x0x1

x2
00 01 11 10

0 0 1 1 0

1 0 0 1 1

(a) Karnaugh map representation of the original
cover. The SOP expression of this cover is

x0 ∗ x2 + x1∗!x2

x0x1

x2
00 01 11 10

0 0 1 1 1

1 0 1 1 1

(b) Minterms to be complemented using cube
insertion approach

x0x1

x2
00 01 11 10

0 0 1 1 1

1 0 1 1 1

(c) Approximate cover by cube insertion approach.
The SOP expression of this cover is x0 + x1

x0x1

x2
00 01 11 10

0 0 0 0 0

1 0 0 1 1

(d) Minterms to be complemented using cube
removal approach

x0x1

x2
00 01 11 10

0 0 0 0 0

1 0 0 1 1

(e) Approximate cover by cube removal approach.
The SOP expression of this cover is x0 ∗ x2

x0x1

x2
00 01 11 10

0 0 0 1 1

1 0 0 1 1

(f) Minterms to be complemented using both
approaches

x0x1

x2
00 01 11 10

0 0 0 1 1

1 0 0 1 1

(g) Approximate cover by both approaches. The
SOP expression of this cover is x0

Figure 4.1 – Approximate covers examples comparing cube insertion, cube removal and both
approaches together.

58

approximate cover. It is similar to select the set of EICs that results in the most compact

cover. They propose an SICC-cube tree (SCT) data structure, which groups a set of EICs

to a set of cubes that depends on these EICs to be inserted into the cover. It comprises a

two-level tree where the root contains the EICs and the leaves represent the cubes to be

added into the cover.

Two conditions must be satisfied to ensure that SCT leaves lead to the optimization

of the literal count. Firstly, at least one cube must be removed from the cover when a new

cube is inserted. Secondly, the literal count in the removed cubes must be greater than the

literals present in inserted cube.

Their initial task enumerates all possible multiple-output cubes of a function through

the Hasse diagram structure. These cubes are used to build a set of SCTs. In the next, the

SCTs are combined because there are some with fewer errors than the maximum number

allowed. After that, it is necessary to select the SCT that reduces the greatest number of

literals.

A straightforward way to calculates the literal reduction in a given SCT is by

using the Espresso tool (BRAYTON et al., 1984), taking into account the EICs on the

root as don’t cares to obtain an approximate cover. The calculation of the literal reduction

with Espresso presents a precise result, but the impact on the runtime is quite significant.

Hence, a procedure that avoids the use of Espresso for estimating such a reduction is

presented.

The procedure to predict the literal reduction on an SCT comprises main three

steps. As the insertion of leaf cubes into the cover does not guarantee a reduction in

literal count, it first identifies the set of cubes that may be removed when the leaf cubes

are inserted. Moreover, inserting all leaf cubes may increase the cover literal count. Thus,

it identifies the set of leaf cubes necessary to be inserted before removing the first set of

cubes. Finally, it calculates the literal reduction between the sets of cubes removed and

inserted.

In (SU et al., 2020), the authors present four speed-up techniques to extend the

application of their approach to large circuits.

1. As the basic algorithm time complexity grows exponentially with the NoE, the er-

rors allowed for each execution is limited to two, so generating partial approxi-

mate covers. All partial covers are approximated again until the accumulated NoE

reaches the threshold allowed.

2. With the first speed-up technique, an exponential quantity of partial approximate

59

covers is created, so impacting the final runtime. In order to reduce the number

of partial covers, only the two expressions with the fewest number of literals are

approximate again for a given partial NoE.

3. To reduce the number of combined SCTs, only a subset of all generated SCTs

are taken into account. At first, it estimates the literal count of all SCTs without

combining them. In the next, for combining two SCTs, the first SCT must be on

25% with the fewest number of literals whereas the second SCT must be on 80% of

these ones.

4. The treatment of all cubes present on the Hasse diagram implies in a high computa-

tional cost. In order to reduce such a cost, they only take the cubes on the diagram

that are the parents of the cubes on the cover, since it is improbable that other than

a parent of a cover cube inserts less than two errors.

4.2 Data Structure

This work uses three main data structures: the first one stores the cover during

the approximation, the second stores and organize the cubes which can be inserted on the

cover, and the third contains information used to modify the original cover, preventing the

creation of a new cover to each approximation.

4.2.1 Cover

As discussed previously, a cover comprises the cube prime implicants needed to

cover all minterms of a given function. During this chapter, the cube prime implicants are

called only by cubes. A map is used to stores each cube from the cover and their respective

covered once minterms (COM). As COMs are used in many operations, storing them with

the respective cube accelerates these operations.

Besides the cover cubes, the adopted data structure also uses a map to store the

minterms covered and the cubes covering each minterm. Although it seems to be redun-

dant, storing cubes and minterms in that way prevents operations related to find the cubes

that cover a minterm, which could be very time-consuming.

This structure is modified when the cover has cubes inserted or removed. In that

way, updating such a structure computational cost is smaller than computing the COMs

60

and cubes that cover a minterm when necessary.

4.2.2 SICC-cube tree (SCT)

To store and organize the cubes which can be inserted on the cover during the

approximation the SICC-cube tree (SCT) data structure proposed in (SU et al., 2020) is

used.

As said before, an SCT comprises a two-level tree where the root contains a set

of erroneous input combinations (EIC), and the leaves contains new cubes that may be

inserted in the cover when the input combination in the root are approximated.

When the leaves cubes are inserted in the cover, the number of errors inserted is

equal to the number of EICs in the root. The leaf cubes are sorted because they will be

used in a greedy optimization. This sort considers their size and the number of cubes

removed from the cover when the cube is inserted, in decreasing order.

4.2.3 Solutions

The approximation procedure generates multiple partial solutions, creating a new

cover for each partial solution. As the cover data structure contains a large quantity of

information, storing multiple cover during the approximation is unfeasible. Thus, instead

of storing a cover, only the difference between the approximated cover and the original

one is stored.

The data structure solutions stores these differences. The main differences be-

tween the covers are the cubes that they contain. In that way, this data structure contains

two sets of cubes, the cubes to be inserted and the cubes to be removed. A set of EICs

introduced by the approximation is also stored. In the last step, the number of literal

reduced by the approximation is stored.

4.3 General Description

The problem addressed in this method is to identify an approximate cover C ′ with

the fewest literal count for a given original cover C and an ER threshold TE. Instead

of using a percentage TE during the approximation, the method limits the number of

61

errors (NoE) e inserted, which is given by e = TE ∗ 2n. The presented method is a two-

phased method that utilizes a cube insertion approach and then a cube removal approach to

synthesize an optimized cover C ′. The cube insertion approach is made first because of its

potential to generate better solutions. A problem here is how many NoE each approach is

allowed to insert in order to generate a minimized cover and not exceed the NoE threshold.

The simple answer to this problem is that it depends on the original cover, and it is hard to

define a value for any expression. In that way, the proposed method considers all values

of ei and er in the range (0,e) that satisfy the equality e = er + ei, where ei and er are the

error thresholds allowed to the cube insertion approach and to cube removal approach,

respectively. The strategy is to apply a cube insertion approach that generates partial

solutions with crescent NoE and then apply the cube removal approach over these partial

solutions with the remaining NoE. In that way, each cube removal execution is allowed

to insert e− ei NoE. Works that utilize cube insertion procedures usually generate partial

solutions while deriving the approximate solution C ′.

The generation of partial solutions is done by limiting the NoE that each cube in-

sertion execution can insert. Each execution is allowed to insert two errors, and results

in two partial solutions with one and two errors. In that way, when the cover C is ap-

proximated, two partial solutions are generated with one and two errors. Then the partial

solution with one error is approximated, and two partial solutions with 2 and 3 errors

concerning C are created. This process continues to every generated partial solution until

it reaches the NoE threshold. This behavior is based on the first speed-up technique pre-

sented on Section 4.1. An example of this process for the NoE threshold of 4 is illustrated

in Figure 4.2, where each square represents a solution and its value the solution NoE.

0
2

1 3

2

4

3

4

3

4

4

4

Figure 4.2 – The behavior of the iterative partial solutions generation, considering a limit of 4
NoE. Each partial solution generates two new partial solutions, increasing NoE in 1 and 2 until it

reaches the NoE limit.

Using this limitation on the NoE inserted by each cube insertion execution gener-

ates a high partial solution quantity. In fact, the number of partial solutions for a given

NoE follows the the Fibonacci sequence. This behavior for an NoE equals to 8 is shown

62

in Figure 4.3. As the cube insertion procedure is executed over each generated partial

solution, its high quantity impacts the method scalability. Instead of considering all gen-

erated partial solutions, the method selects only the two best partial solutions for each

NoE. With this greedy selection, it will be generated at most four partial solutions with

each NoE. This greedy selection is based on the second speed-up technique presented on

Section 4.1.

1 2 3
5

8

13

21

34

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

N
u
m
b
er

o
f
So
lu
ti
o
n
s

Number of Erros

Figure 4.3 – Graph showing the number of solution generated with each NoE for an
approximation with a limited to 8 NoE, totalizing 87 partial solutions.

Algorithm 1: Proposed Two-Level ALS Method
Input: A simplified cover C and ER threshold TE
Output: An approximated cover C’

1 e← TE ∗ 2n;
2 Solutions0→e sets of solutions;
3 Solutions0 ← � (empty solution);
4 for i← 0 to e do
5 topS← two best results in Solutionsi;
6 for each Solution s in topS do
7 ModifyCover(C,s);
8 (s1,s2)← CubeInsertion(C,2,s);
9 Solutionsi+1 ← Solutionsi+1 ∪ s1;

10 Solutionsi+2 ← Solutionsi+2 ∪ s2;
11 s3← CubeRemoval(C,e-i,s);
12 sMax← max(s1,s2,s3);
13 if sMax > best then best←sMax;
14 RestoreCover(C,s);
15 end
16 end
17 return espresso(ModifyCover(C,best));

The overall flow of our proposed method is illustrated in Algorithm 1. In line

2, the set of Solutions comprises all the partial solutions obtained, whereas the set of

63

Solutionsi comprises the partial solutions with i errors inserted. To modify the cover C

taking into account a solution s, it is applied the ModifyCover function, corresponding

to the line 7 in Algorithm 1, which inserts and removes cubes in C. On the other hand,

the RestoreCover function, in the line 14, undo these modifications, inserting the cubes

that have been removed and removing the ones that have been inserted. The insertion

procedure, in the line 8, returns two solutions (s1 and s2) that are stored in Solutionsi+1

and Solutionsi + 2, in the lines 9 and 10, respectively. In the removal procedure, in

the line 11, for a given NoE e, it is allowed to insert e − i errors, returning the solution

s3. The best solution is then updated with the one that contains the most significant literal

reduction. At the end, the best solution is applied to C, which is optimized by the Espresso

tool (BRAYTON et al., 1984).

4.4 Cube Insertion Procedure

In this section is described the cube insertion procedure, detailing how it works.

Our cube insertion procedure are based on the one presented by Su’s (SU et al., 2020),

presented in Section 4.1. The main idea is to generate SCTs from cubes that do not exceed

the threshold number of EICs and then select the SCT with the most significant literals

reduction. Algorithm 2 presents the cube insertion flow.

Algorithm 2: CubeInsertion Procedure
Input: A simplified cover C and the current solution s
Output: Two solutions with error 1 and 2

1 trees← generateSCT(C,s.EIC);
2 augment(trees);
3 (s1,s2)← combineAndEstimate(C,trees);
4 s1← updateSolution(s1,s);
5 s2← updateSolution(s2,s);
6 return (s1,s2);

In the line 1, it generates all SCTs. This procedure is detailed in Subsection 4.4.1.

For SCTs sct1 and sct2 containing 1 and 2 EICs in the root, respectively, if the

sct2 root comprises the sct1 root, the leaves of the sct1 are inserted in the sct2 leaves.

This updated sct2 is called an augmented SCT, and this process is done in the line 2.

The line 3 performs the combination of SCTs and the estimation of literal reduc-

tion. This procedure is detailed in Subsection 4.4.2. The two solutions that reduce more

literals with 1 and 2 NoE are returned and stored in s1 and s2.

64

The solutions s1 and s2 are updated in the lines 4 and 5. This update consists of

adding the cubes inserted and removed within solution s into solutions s1 and s2, estimat-

ing the new literal reduction, and updating the EICs. At the end, this procedure returns

the solutions s1 and s2.

In multilevel ALS methods, it is usually necessary to estimate the error for each

possible approximation by using SAT, BDD or simulation, for instance. The proposed

approach does not need continuous error checking for each possible approximation be-

cause the error control is done by the number of EICs in the SCT root. It is essential to

mention that it is only possible because all input-output relationship is known during the

approximation.

4.4.1 SICC Cube-Tree Generation

Introduced in Subsection 4.2.2, the SICC-cube tree (SCT) is a data structure ap-

plied to enumerate the cubes that can be inserted in the cover for a set of EICs. To

enumerate the cubes to be inserted in the cover, we use a cube expansion approach al-

lowing only one literal removing. In other words, it is only considered the cubes on the

Hasse diagram that are direct parents of the cover cubes. As the NoE for each execution

is limited to two, the set of EICs is at most two input combinations. It is improbable that

cubes found many levels above the cover cubes in the Hasse diagram inserts two or few

errors, so using the proposed enumeration strategy seems appropriate.

For an enumerated cube to be inserted as an SCT leaf, it must satisfy some condi-

tions. At first, the cube insertion must need the insertion of more than zero and at most

two new EICs. If a cube needs zero new EICs, it does not approximate the cover and is

ignored. It is also necessary that the number of literals on the expanded cube are equal

to or greater than the number of literals removed by its insertion. This number of literals

removed is estimated considering the cubes that all COMs are covered by the expanded

cube. This verification prevents the insertion of cubes that do not optimize the literals

number.

When a cube satisfies these restrictions, it can be inserted as a leaf in an SCT,

which has the EICs needed by this cube as root. If this SCT does not exists, it is con-

structed. The general flow of this procedure is shown in Algorithm 3.

65

Algorithm 3: generateSCT Procedure
Input: a cover C and a set of used EICs eics
Output: A set of SCT

1 set of SCT scts;
2 for each cube C in C do
3 for each expanded cube Ce from C do
4 EIC← getEIC(Ce, C, eics);
5 if EIC.size in interval [0,2) then
6 if Ce removes more literals than it inserts then
7 if exists SCT s with root EIC in scts then
8 insert Ce as leaf of s;
9 end

10 else
11 create new sct s with EIC as root;
12 insert Ce as leaf of s;
13 insert s in scts;
14 end
15 end
16 end
17 end
18 end
19 return scts;

4.4.2 Combine and Estimate

After getting all feasible SCTs, it is needed to verify which two SCTs with one and

two errors lead to the most significant minimization of literals count. Initially, it estimates

how many literals are reduced by each SCT. Then, the SCTs with one EIC are combined

two by two, generating more SCTs with two EIC. The combination of the two SCTs is

done by merging the root EICs and the cubes on the leaves. The literal count estimation

is done over the combined SCTs. The generation of all possible combinations may lead

to a significant impact on performance. In that way, only subsets of SCTs are selected to

be combined, based on its literal reduction. For the two SCT sct1 and sct2, sct1 must be

in the 25% best SCTs and sct2 in the 80% SCTs. By making this selection, the number

of combined SCTs is reduced by 80% when compared to the combination of all SCTs.

Algorithm 4 presents the flow explained above.

To estimate the literal reduction it is necessary to identify which cubes are inserted

in the cover and removed from the cover. To identify the cubes to be removed, we obtain

a set with all minterms covered by the leaves cubes in the SCT. Then, if a cover cube has

all its COMs in the minterms set, it is removed from the cover. The idea is that if a cube

66

Algorithm 4: combineAndEstimate
Input: a cover C and a set of SCT scts
Output: Pair of solutions with 1 and 2 NoE

1 for each SCT sct in scts do
2 sct.reduction = estimateLiterals(sct, C);
3 end
4 scts1← SCTs in scts with 1 root’s EIC;
5 scts2← SCTs in scts with 2 root’s EIC;
6 sort scts1 in decrescent order of literal reduction;
7 for each SCT scta in the first 25% positions of scts1 do
8 for each SCT sctb in the first 80% positions of scts1 do
9 sctc← combine(scta, sctb);

10 sctc.reduction = estimateLiterals(sctc, C);
11 insert sctc in scts2;
12 end
13 end
14 best1← SCT with greater literal reduction in scts1;
15 best2← SCT with greater literal reduction in scts2;
16 return (best1,best2);

has all COMs covered, this cube is redundant and can be removed without modifying the

Boolean function. Thus, when all leaves cubes are inserted, these cubes become redundant

and can be removed. After each cube removal, all COMs are updated. This update is done

because when we remove a cube, other COMs may change. If it is not done, it can lead to

an erroneous cube removal and inserting more errors than expected. In Subsection 4.4.1,

a literal estimation that does not update the COMs is used when a cube may be inserted

in an SCT because it is an initial estimation. And modifying the cover for each possible

cube could be computationally expensive. The removed cube COMs are stored to be used

later in the process.

After getting the cubes to be removed, the next step is to select the cubes to be

inserted. The SCT leaves are used to select the removed cubes, and they need to be in-

serted in the cover to guarantee that all uncovered COM are covered again. Nevertheless,

if all leaf cubes are inserted, it may result in new redundant cubes. Hence, in this step,

the main objective is to obtain the subset of SCT leaves cubes necessary to cover the

uncovered COMs without generating new redundant cubes.

In Subsection 4.2.2, it was defined that the cube leaves are sorted in decreasing

order based on its size and number of removed cubes when this cube is inserted. In that

way, the set of cube leaves are traveled in order, with the cubes that cover more minterms

and removes more cubes at the beginning. If a cube covers at least one of the uncovered

67

COMs, it is inserted in the cover, and the covered ones are marked. This procedure is

done until all COMs are covered.

In special cases, even after this procedure, some redundant cubes are inserted in

the cover. These cases are solved by verifying in the inversed order of insertion if a cube

has no COMs. As mentioned before, if a cube has no COMs, it can be removed from the

cover.

The number of literals that a given SCT removes is equal to the number of literals

in removed cubes minus the number of literals in the obtained subset of leaves cubes. At

the end, the number of literals is returned.

Algorithm 5 presents the procedure to estimate the literal reduction for an SCT.

The minterms covered by the SCT leaves are got in the lines 4-6. The cubes to be removed

are obtained in the lines 7-13. The subset of cubes in SCTs inserted in the cover is

obtained in the lines 14-20. In the lines 21-25 are verified whether there are redundant

cubes. In the line 26 are calculated the literal count reduction, which is returned at the

end.

4.5 Cube Removal Procedure

The cube removal procedure is a greedy algorithm that selects the cube with the

highest score. The score is the ratio between the number of literals and the number of EICs

of the cube to be removed. While removing a cube, its EICs is given by the number of

minterms covered only by this cube which is not contained in the newEIC set. Algorithm

6 shows the flow of this procedure.

In the loop in line 3, the cube is chosen to be removed. For that, the EICs are

obtained in the line 4 and the score in the line 5. If the score is greater than the current

best, it is stored in the line 7. In the line 12, the best cube is removed from C, updating the

COMs of other cubes. Then, the set of the removed cube, the set of EICs, and the errors

number are updated.

When the allowed NoE is reached, no more cubes can be removed, and the main

loop ends. At the end, the cubes are re-inserted in C, and the solution s3, comprising the

removed cubes, the inserted EICs, and an updated literal reduction count is returned.

68

Algorithm 5: estimateLiterals
Input: An SCT sct and a cover C
Output: The SCT literal reduction

1 set of minterms leavesMinterms;
2 set of COMs removedCOMs;
3 set of cubes removedCubes and insertedCubes;
4 for each cube c in sct leaves do
5 insert minterms covered by c into leavesMinterms;
6 end
7 for each cube c in C do
8 if leavesMinterms contains all COMs of c then
9 insert c COMs in removedCOMs;

10 remove c from the cover and update the COMs;
11 insert c in removedCubes;
12 end
13 end
14 for each cube c in sct leaves do
15 if c covers at least one COM in removedCOMs then
16 insert c in insertedCubes;
17 remove from removedCOMs the covered COMs;
18 insert c in C;
19 end
20 end
21 for each cube c in insertedCubes in reverse insertion order do
22 if c do not have any COM then
23 remove c from C;
24 end
25 end
26 literalReduction← number of literals in removedCubes − number of literals

in insertedCubes;
27 return literalReduction;

69

Algorithm 6: cubeRemoval Procedure
Input: A simplified cover C, an NoE threshold e and the current solution s
Output: A solution s3 with at most e errors

1 error← e, newEIC← s.EIC;
2 while error > 0 do
3 for each cube C in C do
4 cubeEIC← getCubeEIC(C, C, newEIC);
5 score← LitCount(C)/#cubeEIC;
6 if score > bestScore and error ≥ #cubeEIC then
7 bestScore← score;
8 bestCube← cube;
9 bestEIC← cubeEIC;

10 end
11 end
12 removeCubeFromCover(bestCube, C);
13 removedCubes← removedCubes ∪ bestCube;
14 newEIC← newEIC ∪ bestEIC;
15 error← error - #bestEIC;
16 end
17 insertCubes(C, removedCubes);
18 s3← updateSolution(removedCubes, newEic, s);
19 return s3;

4.5.1 Speed-Up Optimization

The cube removal procedure is relatively straightforward and simpler than the

cube insertion procedure. Besides that, the cube removal procedure does not have a limit

in the NoE inserted per execution, impacting the proposed method performance. A way

to accelerate this procedure is to prevent the score recalculation in cubes that the EICs

were not modified, i.e., when the score does not change the value. Moreover, the current

scores are sorted in decrescent order, with the first cube being removed in each iteration.

The removeCubeFromCover function is modified to return the cubes in which the

EICs are modified. Only these cubes have their score recalculated. To link the cubes and

the scores it is used two Maps. The Map cubesToScore stores the relation between the

cubes in the cover and their scores. The Map scores is an ordered map that maintains

the values sorted in decrescent order and stores the relation between the score and the

cubes to be removed. The Map cubesToScore may seem redundant, but its use simplify

the score update.

The optimized cube removal procedure is shown in Algorithm 7. The loop in Lines

4 -9 calculates the score for each cube in the SOP and stores it in Maps cubesToScore

70

and scores. Then, inside the loop in Lines 10-22 are performed the cube removal until the

error limit is reached. It starts selecting the first entry of the Map scores as bestScore. This

entry in scores and the respective entry in the cubesToScore are removed. If the number of

EICs in the selected cube is less than the available error, the cube can be removed. When

a cube is removed, the set of cubes that had their EICs modified is returned and then used

to update the scores. The rest of the Algorithm has the same behavior as the Algorithm 6.

Algorithm 7: CubeRemoval Procedure Optimized
Input: A simplified cover C, an NoE threshold e and the current solution s
Output: A solution with at most e errors

1 error← e, newEIC← s.EIC;
2 Ordered Map scores;
3 Map cubeToScore;
4 for each cube C in C do
5 cubeEIC← getCubeEIC(C,C,newEIC);
6 score← LitCount(C)/cubeEIC.size;
7 insert in scores the entry (score,C);
8 insert in cubeToScore the entry (C, score);
9 end

10 while error > 0 do
11 bestScore← first score in scores;
12 remove first score from scores;
13 remove bestScore.cube from cubesToScore;
14 cubeEIC← getCubeEIC(bestScore.cube,C,newEIC);
15 if cubeEIC.size < error then
16 modifiedCubes← removeCubeFromCover(bestCube,C,newEIC);
17 updateScores(cubeToScore, scores, modifiedCubes, newEIC, C);
18 removedCubes← removedCubes ∪ bestCube;
19 newEIC← newEIC ∪ bestEIC;
20 error← error - sizeof(bestEIC);
21 end
22 end
23 insertCubes(C,removedCubes);
24 s3← updateSolution(removedCubes,newEic,s);
25 return s3;

The updateScore procedure is shown in Algorithm 8. For each cube with its EICs

modified, the set of modified EICs is obtained, and a new score is calculated considering

the number of literals and these new EICs. The entry of the maps with the old score

for the cube is removed, and a new one with the updated score is inserted. The entry

in the cubesToScore has the respective score updated. This Algorithm shows how the

cubesToScore facilitates the scores update.

71

Algorithm 8: updateScore
Input: A Map cubeToScore, an Ordered Map scores, a set of cubes

modifiedCubes, a set of EICs eics, a cover C
1 for each cube C in modifiedCubes do
2 cubeEIC← getCubeEIC(C,C,eics);
3 newScore← LitCount(C)/cubeEIC.size;
4 oldScore← cubeToScore at cubeEIC;
5 remove scores at oldScore;
6 insert in scores the entry (newScore,C);
7 update cubeToScore at C with newScore;
8 end

4.6 Post-Processing Tools

At the end of Algorithm 1, which presents the general flow of the proposed method,

the best solution is optimized using the Expresso tool. This optimization is needed be-

cause the insertion and removal of cubes modify the Boolean function and may exist a

new cover with fewer literals than the one obtained.

Besides optimizing the generated cover with Espresso, it is also possible to modify

the cover and optimize it as an ISBF. An ISBF can be seen as a cover where some input

combination does not have a defined Boolean value, and both 0 and 1 are valid, calling

this input a don’t care. When the Espresso is used to optimize an ISBF, it selects the

output value for the don’t care inputs that lead to a cover with fewer literals.

To modify a cover into an ISBF, we use the concepts of EIC and ER. An EIC is

an input combination that results in one or more erroneous output bits, and the ER metric

is the number of EICs divided by the number of input combinations. Note that even if

multiple output bits have an erroneous value for an EIC, the ER is not changed. Thus, we

can assume that all outputs bits resulted from an EIC are don’t care because they do not

affect the ER value.

In that way, the input of the Espresso is the cover obtained by the approximation

and each EIC generated is set as don’t cares, allowing the Espresso to manipulate their

outputs in order to optimize the final cover. It is interesting to observe that depending on

the choices made in the Espresso optimization, the output for some EICs may be set as

the original output value, so reducing the final cover ER.

72

4.7 Time Complexity Analysis

This section presents the time complexity analysis of the proposed method. The

Algorithm 1 presents the general flow of the method, so the analysis starts in this algo-

rithm and then focuses on each of its functions. Algorithm 1 has two main loops, the first

with e+1 iterations and the second with only two. The inner loop contains three main

tasks: the cover modification, the cubeInsertion procedure, and the cubeRemoval proce-

dure. As the cover modification has significantly less time impact than the approximation

procedures, it has been ignored in this analysis. For the sake of simplicity, we are omitting

the Espresso complexity.

The combineAndEstimate task in the cubeInsertion procedure is the most time

consuming one. The most expensive phase of this procedure is to combine two by two

the SCTs with one EIC on the root and estimate their literal count reduction. To generate

the SCTs, the cubes on the SOP are expanded. As the expansion generates a new cube

for every literal in a cube, the number of expanded cubes is equal to the number of literals

in the SOP, represented by L. The worst-case number of SCTs with one EIC is reached

when each expanded cube generates one of them. Thus, the number of SCTs that have

their literals estimated is up to O(L2). The literal estimation depends on obtaining the

covered minterms of each leaf cubes. As the number of covered minterms by a cube is

at most O(m ∗ 2n), where n and m are the number of inputs and outputs of the function,

respectively, the worst-case time complexity of the cubeInsertion procedure is O(L2 ∗m∗

2n).

The cubeRemoval procedure, in turn, estimates the score of removing each cube,

represented by C, and removes the one with more score until the limit error is reached.

The score depends on the number of EICs and cube literals. As obtaining the EICs relies

on hash structures, its time complexity can be taken as constant. To obtain literal count,

the cube are iterated O(n + m) times. Therefore, the worst-case time complexity of the

cubeRemoval procedure is O(e ∗ C∗(n+m)).

The complete worst-case time complexity of the proposed method is O(e∗(L2 ∗

m ∗ 2n + e ∗ C (n+m))).

73

5 EXPERIMENTAL RESULTS

The proposed algorithms have been implemented in C++ programming language.

Our experiments have been carried out over the IWLS’93 benchmark suite (MCELVAIN,

1993), in a laptop with a dual-core i7-7500U processor @ 2.70GHz and 16GB of RAM.

The Espresso tool has been applied to optimize the approximate cover to generate results

shown in Table 5.1, and both approximate cover and related ISBF version are optimized

as shown in Table 5.2, which presents the best solution between them. In Section 4.6, the

use of each optimization is discussed.

5.1 Comparison to the State-of-Art Approach

The Su’s method, proposed in (SU et al., 2020), can be considered as the state-

of-the-art for 2L-ALS, so it has been taken into account herein as the golden reference.

Unfortunately, the code of Su’s approach is not publicly available, being the values pre-

sented in this section obtained from the Su’s work. Also, we do not have access to a

computer with the exact specifications used to generate their experimental results. To

present a fair comparison, the CPU used in this experiment has a similar performance

to their CPU, even though it was launched more recently. The experiments consider the

same circuits and NoE threshold as in Su’s work in order to allow a fair comparison. Thus,

the designs have more than 6 and fewer than 20 inputs, and the NoE threshold equals 16.

Table 5.1 shows the comparison results between Su’s method and our proposed

approach. Column 1 presents the name of the circuits, as well as the number of inputs

(i) and the outputs (o). Column 2 shows the number of literals of the original circuits,

whereas column 3 and column 4 present the number of literals of the approximate circuits

presented in (SU et al., 2020) and obtained from our method, respectively. Column 5

shows the literal reduction rate between the literal count from the approximate cover

generated by our approach and the one presented in (SU et al., 2020). Column 6 shows

the number of cuber of the original circuits, whereas column 7 and column 8 present the

number of cubes of the approximate circuits presented in (SU et al., 2020) and obtained

from our method, respectively. Column 9 shows the cube reduction rate between the

cubes count from the approximate cover generated by our approach and the one presented

in (SU et al., 2020). Column 10 and column 11 present the runtime for both methods.

Our method presented better results for all circuits treated, except the b12 one

74

Table 5.1 – Comparison to Su’s approach (SU et al., 2020) in IWLS’93 benchmark suite
considering NoE threshold of 16.

Circuit
Literals Cubes Time(s)

Orig. Su’s Ours Ours/Su’s Orig. Su’s Ours Ours/Su’s Su’s Ours
con1 i:7;o:2 32 32 24 0.75 9 9 7 0.77 0.38 0.02
rd73 i:7;o:3 903 578 556 0.96 127 88 88 1.00 1.48 1.37
inc i:7;o:9 198 156 125 0.80 30 25 20 0.80 0.49 0.18

5xp1 i:7;o:10 347 235 202 0.85 65 49 41 0.83 0.72 0.48
sqrt8 i:8;o:4 188 98 83 0.84 38 22 21 0.95 0.58 0.24
rd84 i:8;o:4 2070 1578 1511 0.95 255 218 209 0.95 6.52 4.51

misex1 i:8;o:7 96 96 77 0.80 12 12 10 0.83 0.50 0.02
clip i:9;o:5 793 588 584 0.99 120 93 93 1.00 1.99 1.36

apex4 i:9;o:19 5419 5040 5024 0.99 436 421 418 0.99 109 31.9
sao2 i:10;o:4 496 231 165 0.71 58 29 22 0.75 2.48 1.47

ex1010 i:10;o:10 2718 2693 2636 0.97 284 283 278 0.98 14.30 2.05
alu4 i:14;o:8 5087 4904 4847 0.98 575 562 559 0.99 298 14.06

misex3 i:14;o:14 7784 7446 7242 0.97 690 656 635 0.96 693 11.99
table3 i:14;o:14 2644 2459 2347 0.95 175 165 159 0.96 513 5.47

misex3c i:14;o:14 1561 1239 1115 0.89 197 163 153 0.93 252 19.29
b12 i:15;o:9 207 207 207 1.00 43 43 43 1.00 249 1.69
t481 i:16;o:1 5233 5105 4975 0.97 481 473 463 0.97 1570 3.41

table5 i:17;o:15 2501 2410 2270 0.94 158 154 147 0.95 7868 22.07
Average 2126 1949 1888 0.90 208.5 192.5 186,9 0.92 643 6.75

that could not optimize by both approaches. The circuits con1, misex1 and b12 could

not be approximated by the Su’s method, as presented in (SU et al., 2020), as it does

not have SCT with size equals to 1 or 2. On the other hand, con1 and misex1 have been

approximated by our method due to the cube removal phase. Results for literal and cubes

reduction are similar. Our method presented results better or equal to Su’s approach in

every circuit for both cubes and literals.

Moreover, the proposed method presents a better efficiency in general, with av-

erage runtime around 6.75s compared to 643s presented by the Su’s approach. Such

a difference is observed for circuits with more than ten inputs, where our method has

a scalable temporal behavior, whereas the Su’s approach presents a highly exponential

trend.

5.2 Insights About the Runtime Reduction

In the presented work, the cube insertion procedure is based on the Su’s approach

and does not contain any specific speed-up techniques to accelerate it. Hence, the runtime

75

of the proposed method was expected to be comparable or even greater than the presented

by Su when considering the computational impact of the cube removal procedure. In that

way, the runtime reduction, shown in Section 5.1, is due to details on the implementation

of both methods. As Su’s approach implementation code is not available, it is hard to

know which implementation decisions lead to the runtime optimization. It is improba-

ble that only one implementation details lead to the runtime optimization, but probably

multiple details together have done it. Thus, this section aims the give some insights into

which implementation decisions may reduce the final runtime.

In general, it is used as much as possible vectors and non ordered maps to stores

different sets of data in the proposed method. Vectors are used because they have a con-

stant access time when the integer key is known and are stored contiguously in memory,

which optimizes the cache use. Non ordered maps are applied to store a key and a value,

with the key not necessarily being an integer position as vectors. This structure has a

constant time to access and insert elements on average. In some cases, it is used ordered

maps and sets, which present a logn time access and insertion time, but allows the sorting

of the map elements, which can be helpful in some procedures.

The implementation details that are the most probable impact factor for the run-

time reduction is the cover data structure. As shown in Subsection 4.2.1, the cover data

structure comprises two non ordered maps, one that relates the cubes with their respective

COMs and the other that associate the minterms to the cubes that cover each of them. If

the COMs and the minterms coverage have not been stored, it could be costly to runtime.

For instance, to get the cubes that cover a minterm would be necessary to iterate over all

cover cubes and to verify whether the minterm is covered by each one to get them. In the

same way, to get a cube COMs, it would be needed to get all minterms covered by the

cube, get all cover cubes that cover each minterm, and verify whose minterms are covered

only one time to obtain them. In that way, the manner of storing the cover may increase

the space complexity but may reduce the runtime complexity of two actions that are used

multiple times during the approximation approach.

The Solutions structure is used to lessen the impact of the cover size by storing

only the differences between the original cover and each partial solution. Even that the

primary objective of using the Solutions data structure is to decrease the space complexity,

the construction and storing of multiple and complete cover also impacts the runtime.

Thus, the use of Solutions may be another reason to reduce the method runtime. It has

been also intended to avoid passing the cover as a parameter to functions in the proposed

76

approach. As the cover is the biggest structure used, the main functions that use cover

data are implemented inside the covers data structure, preventing copying the cover or

memory indirections when passed as a parameter, so reducing the runtime impact.

The Su’s initial approach uses Hasse diagrams to enumerate all possible cubes to

generate the SCTs. As speed-up technique, Su proposes only considering the parents of

each cube on the cover to generate the SCTs. If there are parent cubes with only one

EIC, its parents are also considered. There are two differences between the Su’s method

and the proposed approach. The first one is that it has been verified that a search for

the parent cubes of parent cubes with one EICs could increase the runtime but resulting

in few optimizations on the final cover. As this case happens only in few circuits, it is

disregarded in the proposed approach. The second difference is that the proposed work

does not use the Hasse diagram concept, limiting the cubes enumeration to the cubes

expansion. Depending on how the Hasse diagram is applied in Su’s approach, it could

increase the runtime.

It may have more reasons that lead to the runtime optimization, but as mentioned

before, without the implementation code of Su’s approach it is hard to be sure about which

details have more or less impact on the associated runtime.

5.3 Results with Error Rate

Fixing an NoE threshold may be a problem because the ER depends on the number

of input combinations related to the target circuit. For instance, the 16 NoE applied before

corresponds to an ER of 12,5% for a circuit with 7 inputs but 0.0001% for a circuit with

17 inputs. As our method presents a good runtime efficiency, it is possible to apply a

higher NoE and consequently allow the use of percentage error rate as the error metric.

In Table 5.2 is shown the approximate cover results considering ER of 1%, 3% and 5%

in benchmark circuits with more than 10 inputs. We have focused on these circuits to get

NoE thresholds greater than 16. Column 1 presents the circuits and their input and output

number. Column 2 and column 3 provide the ER in percentage and the corresponding

NoE, respectively. Column 4 presents the number of literals for the respective circuit

without approximations. Column 5 shows the literal count of the approximate covers

obtained from our method and the literal reduction. Column 6 presents the number of

cubes for the respective circuit without approximations. Column 7 shows the cubes count

of the approximate covers obtained from our method and the cube reduction. Column 8

77

provides the runtime, whereas Column 9 provides the cube insertion procedure saturation.

Table 5.2 – Results from proposed method considering ER threshold in IWLS’93 benchmark suit.

Circuit ER NoE
Literals Cubes

Time (s) Saturation
Original Approximate Original Approximate

sao2 1% 10
496

273 (0.55)
58

33 (0.56) 0.83 No
i: 10 3% 30 75 (0.15) 12 (0.20) 3.14 No
o: 4 5% 51 31 (0.06) 7 (0.12) 4.74 40

ex1010 1% 10
2718

2659 (0.97)
284

279 (0.98) 1.27 No
i: 10 3% 30 2588 (0.95) 273 (0.96) 3.92 No
o: 10 5% 51 2510 (0.92) 267 (0.94) 6.93 No
alu4 1% 163

5087
3732 (0.73)

575
461 (0.80) 148.22 135

i: 14 3% 491 2693 (0.52) 356 (0.62) 286.48 135
o: 8 5% 819 2139 (0.42) 297 (0.51) 429.81 135

misex3 1% 163
7784

6253 (0.80)
690

554 (0.80) 154.03 No
i: 14 3% 491 4796 (0.61) 436 (0.63) 217.58 199
o: 14 5% 819 3749 (0.48) 350 (0.50) 253.85 199
table3 1% 163

2644
1271 (0.48)

175
93 (0.53) 32.59 118

i: 14 3% 491 536 (0.20) 42 (0.24) 36.56 118
o: 14 5% 819 189 (0.07) 17 (0.10) 44.44 118

misex3c 1% 163
1561

499 (0.32)
197

89 (0.45) 133.55 54
i: 14 3% 491 469 (0.30) 85 (0.43) 229.03 54
o: 14 5% 819 447 (0.28) 82 (0.41) 342.40 54
b12 1% 372

207
193 (0.93)

43
40 (0.93) 2.34 0

i: 15 3% 983 167 (0.80) 35 (0.81) 7.52 0
o: 9 5% 1638 145 (0.70) 28 (0.65) 15.71 0
t481 1% 655

5233
1992 (0.38)

481
212 (0.44) 4.67 12

i: 16 3% 1966 942 (0.18) 120 (0.24) 6.00 12
o: 1 5% 3276 578 (0.11) 84 (0.17) 8.85 12

table5 1% 1310
2501

720 (0.28)
158

55 (0.34) 152.81 49
i: 17 3% 3932 278 (0.11) 24 (0.15) 302.28 49
o: 15 5% 6553 152 (0.06) 14 (0.08) 375.89 49

Our method reaches an average literal reduction of 37% with ER of 1%, 54% with

ER of 3%, and 63% with an ER of 5%. For table3 and t481 circuits, we have obtained

a literal count reduction close to 90% with an ER of 5%, and up to 94% with the same

ER for sao2 and table5 circuits. The results of cube reduction tend to be similar to the

literal reduction. Moreover, even though the b12 could not be approximated with a 16

NoE, when the ER percentage is used as a constraint, it can be approximated with a literal

count reduction up to 30%. Even with a higher NoE in circuits with many inputs, the

runtime remains under 8 minutes.

The runtime draws attention because it is not correlated to the number of in-

puts/outputs or literals of the circuit. Besides the specific characteristics of each circuit,

the saturation of the cube insertion procedure is another explanation. This saturation con-

78

sists in the NoE which the cube insertion procedure stops generating new partial solutions

because it is not possible to obtain SCTs with one or two EICs. If the result is "No",

the insertion method included all available NoE. In general, the NoE defines the number

of times the cubes insertion and removal approaches are executed. As only the best two

partial solutions are approximated, the number of executions of each approach is close to

2 ∗NoE, which occurs in cases where there is no saturation. When there is an saturation

value S that is less than the NoE threshold, the number of both approaches executions is

up to 2 ∗ S. In the extreme case where S is equal to zero in b12 circuit, each approach is

applied only once. In that way, saturation has a substantial impact on the runtime of this

method because it limits the number of executions of each approach.

5.4 Post-Processing Result

As shown in Section 4.6, it is possible to apply the Espresso tool to optimize

the approximate cover and an ISBF version of that one. The approximate cover and the

ISBF version are referred to as CSBF and ISBF for simplicity. This section presents

the experimental results of using each optimization approach and some discussions about

them. These experimental results are shown in Table 5.3, and have been obtained by

applying both optimization approaches in the resulting approximate cover considering

the same circuits and ERs taken into account in Table 5.2. The circuits name are in the

first column in Table 6.1. Column 2 contains the ERs and the respective NoE. Columns

3, 4 and 5 present the number of literals, number of cubes and the final value of ER and

NoE obtained using the Espresso over the CSBF, whereas column 6, 7 and 8 present the

results obtained using the Espresso over the ISBF.

In Table 5.3, the executions for each optimization that result in fewer literals are

highlighted in bold. ISBF optimization results in fewer literals than the CSBF optimiza-

tion in more than half of executions, whereas the CSBF optimization leads to better results

in only three executions. In cases where the CSBF leads to better results, the difference

between the optimization results is only a few literals, with the most significant differ-

ence being nine literals. In contrast, when the ISBF optimization leads to better results,

it presents a literal difference of up to 179 literals, which represents 26% of reduction

concerning the CSBF optimization result.

The ER and NoE presented in Table 5.3 for CSBF optimization are the same as the

approximation result, while the ISBF optimization can reduce these error metrics. The ER

79

Table 5.3 – Post Processing

Circuit ER (NoE)
Espresso over CSBF Espresso over ISBF

Literals Cubes ER (NoE) Literals Cubes ER (NoE)
sao2 1% (10) 274 33 1.0% (10) 273 33 1.0% (10)

i = 10 3% (30) 79 33 3.0% (30) 75 12 2.8% (29)
o = 4 5% (51) 37 7 4.9% (50) 21 7 3.6% (37)

ex1010 1% (10) 2659 279 1.0% (10) 2659 279 1.0% (10)
i = 10 3% (30) 2588 273 3.0% (30) 2588 273 2.7% (28)
o = 10 5% (51) 2511 267 4.9% (50) 2510 267 4.9% (50)
alu4 1% (163) 3732 461 1.0% (163) 3741 461 1.0% (163)

i = 14 3% (491) 2693 356 3.0% (491) 2693 356 3.0% (491)
o = 8 5% (819) 2139 297 4.9% (798) 2139 297 4.9% (798)

misex3 1% (163) 6253 554 0.9% (159) 6258 555 0.9% (153)
i = 14 3% (491) 4978 459 2.9% (477) 4796 436 2.8% (461)
o = 14 5% (819) 3974 379 4.9% (796) 3749 350 4.8% (788)
table3 1% (163) 1286 93 0.9% (159) 1271 93 0.9% (159)
i = 14 3% (491) 536 42 2.9% (489) 536 42 2.9% (489)
o = 14 5% (819) 198 17 4.9% (809) 189 17 4.9% (809)

misex3c 1% (163) 678 112 0.8% (140) 499 89 0.5% (84)
i = 14 3% (491) 572 98 2.9% (474) 469 85 1.5% (244)
o = 14 5% (819) 514 90 4.7% (766) 447 82 2.3% (376)

b12 1% (372) 193 40 0.7% (256) 195 40 0.7% (256)
i = 15 3% (983) 171 36 2.9% (960) 167 35 2.9% (960)
o = 9 5% (1638) 154 33 4.9% (1600) 145 28 4.7% (1536)
t481 1% (655) 1992 212 0.9% (649) 1992 212 0.9% (649)

i = 16 3% (1966) 942 120 2.9% (1956) 942 120 2.9% (1956)
o = 1 5% (3276) 578 84 4.9% (3221) 578 84 4.9% (3221)
table5 1% (1310) 720 55 0.9% (1292) 720 55 0.9% (1292)
i = 17 3% (3932) 280 24 2.9% (3836) 278 24 2.9% (3836)
o = 15 5% (6553) 153 14 4.9% (6396) 152 14 4.9% (6396)

80

and NoE values highlighted in bold represent the execution where the ISBF optimization

reduced the error inserted by the approximation. This error reduction is not the main ob-

jective of the optimization. However, it can be seen as a secondary optimization as fewer

errors mean that the circuit is closer to the original behavior without increasing the literal

count. The present work does not address approximate circuits already approximated,

which could further reduce the number of literals in the cases where the error is reduced.

In particular, the misex3c circuit presents a significant reduction in errors, inserting less

than half of the allowed errors. In this case, if another approximation were made, it could

be approximated with an NoE threshold of 443.

Hence, if it had to choose only one optimization approach to be used as post-

processing, the ISBF approach would be more suitable because it leads to more literal

reduction and can allow more approximation rounds by reducing the ER and NoE.

81

6 MULTILEVEL COMPARISON

This section presents a discussion about the impact of using two-level approxima-

tion tools to obtain an approximate multilevel circuits. Some of the existing multilevel

papers propose the use of traditional two-level optimizations to approximate a multilevel

circuit. Our objective in this section is not to analyze the use of two-level optimization

inside a multilevel tool but to apply a complete two-level tool to approximate an two-

level circuit, and then generate a final approximate multilevel circuit. We will refer a the

two-level representation of the circuit as a 2L cover.

To represent the final multilevel circuit, we have adopted AIGs. There is a mis-

correlation between optimizations realized in a 2L cover and a multilevel circuit based on

this two-level description. For instance, optimizations on two-level circuit literals may not

reduce node count in the AIG. The main reason for this miscorrelation is the differences

between the characteristics of these two Boolean structures. While an 2L cover com-

prises a fixed number of levels and does not limit the number of literals in a cube (AND

gates), an AIG does not limit the number of levels, and each AND gate must have only

two inputs. The flexibility on levels allows optimizations in the number of AIG nodes by

reusing logic structures and preventing redundant subcircuits. In another way, the use of

AND2 represents, in a certain manner, the worst-case implementation of each cube.

Even with the mentioned miscorrelation between two-level and multilevel opti-

mizations, it is interesting to investigate how significant the literals optimization is ob-

tained through two-level approximation, as discussed in Section 5, when it is translated to

AIG. It is also interesting to compare these AIGs with the ones approximated by applying

only multilevel approximation tools and mixing these two approximations, using a two-

level and a multilevel approximation tool together. To realize this experiment, it is applied

the two-level approach presented in this work, called herein as 2LALS, and the state-of-

the-art multilevel approximation tool ALSRAC (MENG; QIAN; MISHCHENKO, 2020).

The ALSRAC are presented in Section 3.4 and we will give more details about this ap-

proach in the next.

The ALSRAC method approximates an AIG considering ER and other two magni-

tude metrics as the error constraint, but we are taking into account only the ER constraint

in this work. The ALSRAC comprises of two main phases.

The first one enumerates to each AIG node n the other nodes ia that may substi-

tute one input of n without modifying the AIG logic behavior considering N simulation

82

rounds, without changing the other input io of n. The nodes ia could be any node in the

AIG, but for scalability reasons, ALSRAC only considers the nodes in paths between n

and the primary inputs. The traditional logic synthesis also uses substitution techniques

but for that it is applied a formal method, like SAT, to guarantee the logic equivalence of

circuits before and after substitutions. Since it is an ALS method, the logical equivalence

verification through simulations is enough.

The second phase consists of obtaining a subcircuit for each possible substitution

enumerated where the subcircuit output and inputs are the output of node n and the inputs

of io and ia. Then a truth table is constructed by considering the input/output relationship

observed by simulating the circuit. If a given input combination does not happen during

simulation, it is considered a don’t care. At the end, an optimized cover for this truth

table is obtained using the Espresso tool, and then it is converted to an AIG, replacing the

original subcircuit.

These two phases are executed iteratively, choosing the subcircuit replacement

that leads to a more significant node reduction that does not exceed the ER threshold

until this ER limit is reached. It is worth mentioning that the approximations performed

during the ALSRAC execution are dependent on the simulation vectors selected. As these

vectors are selected randomly, so this method can result in different approximations for

the same circuit and ER threshold.

The approximate AIG is optimized using the ABC tool. For that, we execute the

resyn2 script iteratively until no more gains in the number of nodes or levels are obtained

for ten consecutive iterations. The conversion from the 2L cover to AIG is also done using

ABC.

To analyze the impact of two-level approximation in multilevel circuits and the

use of 2LALS and ALSRAC together, we have distributed the ER threshold between

these approximation tools. The ER allowed in 2LALS is called ER2L, and in ALSRAC

is ERML, with both values being integers between 0 and ER. In that way, ER = ER2L+

ERML. The flow 1 regarding this analysis has the following sequence:

1. The initial 2L cover is approximated with 2LALS with ER threshold of ER2L.

2. The approximated 2L cover is converted to AIG using the ABC tool.

3. The ALSRAC approximates the AIG with ER threshold of ERML.

4. The approximated AIG is optimized with ABC.

5. Converts the final AIG to a 2L cover using ABC.

83

6. Optimize the 2L cover with Espresso.

The cover obtained at the end of the process described in flow 1 is used to get

data regarding the number of literals, which will be compared to the results obtained with

flow 2. Although the objective of this investigation is to analyze the resulting multilevel

circuit, the data about literals count was accessible and may help the understanding of

some behaviors and fits into the general context of this work. The flow 2 that inverts the

sequence of approximation tools is presented in following:

1. Convert the original 2L cover in AIG using ABC.

2. The ALSRAC approximates the AIG with ER threshold of ERML.

3. The approximated AIG is optimized with ABC.

4. Converts the optimized AIG to 2L cover using ABC.

5. Optimize the 2L cover with Espresso.

6. The 2L cover is approximated with 2LALS with ER threshold of ER2L.

7. The final 2L cover is converted into a final AIG using the ABC tool.

To get an reasonable amount of data the ER threshold is fixed in 5% with the

following distribution of ER2L and ERML: (5% - 0%), (4% - 1%), (3% - 2%), (2%

- 3%), (1% - 4%) and (0% - 5%). Note that the distribution (5% - 0%) implies only

approximate the circuit with 2LALS and (0% - 5%) in only with ALSRAC. At the end of

each flow, we compare the truth table of the approximate circuit and the original circuit

to guarantee that the ER of 5% threshold is satisfied.

In Table 6.1 is presented the data obtained with both flows. The circuits used in

this experiment are the same as used in Table 5.2 with their name in the first column in

Table 6.1. The first column also contains the partial ER ER2L and ERML, respectively.

In columns 2, 3 and 4, are the cover literals, and the number of nodes and levels of the

AIG are obtained by flow 1. With the same sequence in columns 5, 6, and 7 are the data

about flow 2. In the lines containing the circuit name are its original values of the number

of literals, nodes and levels. The numbers in bold represents the best solution for the

metric for the associate circuit.

Looking at Flow 1 AIG results, it is clear that does not exist a correlation between

the ER distribution and the number of nodes and levels, and it is possible to note three

distinct behaviors:

1. The best results are obtained when only ALSRAC is applied to approximate the

84

Table 6.1 – Two-Level approximation impact on multilevel circuits
Circuit Flow 1 Flow 2

ER2L-ERML literal and level literal and level
sao2 496 134 10 496 134 10

5% - 0% 49 15 5 37 15 5
4% - 1% 34 14 5 41 16 6
3% - 2% 37 16 6 58 26 6
2% - 3% 67 27 7 52 23 6
1% - 4% 88 35 7 5* 1* 1*
0% - 5% 85 30 8 85 29 8
ex1010 2718 1895 14 2718 1895 14

5% - 0% 6706* 1735 14 2511 1735 14
4% - 1% 2614 1735 14 2568 1794 14
3% - 2% 2694 1744 13 2624 1820 14
2% - 3% 2695 1762 14 2707 1830 14
1% - 4% 2777* 1765 14 2775 1847 14
0% - 5% 2912* 1774 14 2912* 1848 14

alu4 5087 1138 19 5087 1138 19
5% - 0% 2239 611 13 2139 611 13
4% - 1% 2290 578 14 2247 585 14
3% - 2% 2428 604 15 2267 597 14
2% - 3% 2534 535 15 2450 692 16
1% - 4% 2742 472 14 2750 671 14
0% - 5% 3042 437 15 3042 643 16
misex3 7784 1955 20 7784 1955 20

5% - 0% 6599 1268 17 3974 1268 17
4% - 1% 4553 1111 19 4186 1355 20
3% - 2% 4971 1010 19 4470 1349 19
2% - 3% 5395 883 19 4838 1389 19
1% - 4% 5789 686 19 5587 1549 20
0% - 5% 6217 473 14 6217 1511 19

table3 2644 1511 20 2644 1511 20
5% - 0% 470 155 11 198 155 11
4% - 1% 261 174 12 246 179 12
3% - 2% 313 190 13 360 253 12
2% - 3% 299 178 12 364 257 13
1% - 4% 270 164 9 381 253 12
0% - 5% 399 183 10 399 203 11
misex3c 1561 553 18 1561 553 18
5% - 0% 641 254 11 514 254 11
4% - 1% 491 243 11 537 268 11
3% - 2% 523 254 10 488 242 10
2% - 3% 523 253 10 472 233 10
1% - 4% 554 261 11 508 246 10
0% - 5% 577 260 11 577 269 11

b12 207 54 6 207 54 6
5% - 0% 165 45 5 153 45 5
4% - 1% 165 49 7 170 55 7
3% - 2% 171 52 7 160 52 7
2% - 3% 156 45 7 164 48 7
1% - 4% 154 42 6 189 49 6
0% - 5% 165 41 6 165 43 6

t481 5233 52 10 5233 52 10
5% - 0% 578 69* 9 578 69 9
4% - 1% 588 48 7 631 69 10
3% - 2% 601 36 6 799 57 9
2% - 3% 613 33 6 793 69 10
1% - 4% 1217 43 6 1607 74 10
0% - 5% 2113 24 7 2113 24 7

table5 2501 1326 21 2501 1326 21
5% - 0% 412 86 8 153 86 8
4% - 1% 170 70 9 196 89 10
3% - 2% 177 76 9 200 107 10
2% - 3% 195 89 9 264 159 12
1% - 4% 248 101 11 275 159 12
0% - 5% 290 120 10 290 129 10

85

circuit, as in misex3. In that case, the optimizations performed in 2LALS do not

lead to optimizations on the AIG. The best number of level in t481 are obtained in

when ERML is 4, but it also fits on this behavior.

2. The optimizations performed by running 2LALS and ALSRAC together lead to the

best AIG, as in sao2, misex3c, table5. In this case, the optimizations realized by

2LALS are not undone when the 2L cover is converted in AIG, working together

with optimizations made by ALSRAC to optimize the final circuit.

3. The last behavior consists of the best number of nodes appearing with high ER2L

and the best number of levels in high ERML, and vice-versa, as in alu4, table3 e

b12. This one is hard to figure out the impact of each ALS tool, requiring further

investigation considering the characteristics of each circuit.

It is worth to mention that the gain during the executions is dependent on the cir-

cuit characteristics, which explain these different behaviors. When comparing both flows

related to AIG data, in 7 of 9 circuits, the best results in nodes and levels are obtained ac-

cording to the flow 1, showing that applying 2LALS initially and then using the ALSRAC

to approximate the AIG leads to the best results. Similarly, in only one circuit the best

literals count has resulted from Flow 1. Moreover, in 7 of 9 circuits, the best literals count

obtained by adopting the flow 2 has been resulted from executing only 2LALS, showing

that the approximation on multilevel does not impact the final 2L cover.

Three cases catch out attention because they do not fit on other execution behav-

iors. These cases are marked with an asterisk and will be discussed below.

The first case happens in ex1010 circuit solutions. The marked numbers of literals

are higher than the original number of literals. The (5% - 0%) execution in particular

results is more than double the number of literals in the original circuit. Note that the ap-

proximation is only made by applying 2LALS. In that way, this worsening may be caused

by the conversion to AIG, optimizing it, and returning to a 2L cover. This behavior exem-

plifies a miscorrelation between the optimizations in AIG and final 2L cover. Moreover,

in this circuit, the results from flow 1 related to AIG metrics do not fit the three groups

discussed before. The better results happen with high ER2L, which may mean that the

approximations in the 2L cover have a better impact than those done in the AIG. We have

not mentioned this behavior before because the difference between the best and the worst

number of nodes is about 2%, difficulting a more detailed analysis.

The second case is about flow 1 in t481 circuit with (5% - 0%) ER distribution. The

approximates AIG contains more nodes (69) than the original AIG (52). As 2LALS only

86

make the approximation, this worsening happens because the 2L cover approximations

limit the optimizations on the AIG. This case is an example of the miscorrelation between

optimization on the 2L cover and final AIG.

The last case is about the results from flow 2 related to sao2 circuit approximation

with (1% - 4%) ER distribution. These results have shown a huge reduction in both

2L cover and AIG metrics. Such a reduction is contrary to two trends: the first one

looking to only sao2 results, where the greater is the ERML the worst is the quality

of the approximated circuit, and the second one, as discussed before, the best results

for the number of literals happens with high ERML. We have made a more detailed

analysis in this circuit to understand why such a reduction has been obtained. We have

concluded that the significant optimizations are done with ALSRAC with 4% of ERML.

It is expected that when the ERML is 5%, the result would be at least equal to the one with

4%. However, as ALSRAC presents a stochastic behavior, this optimization could not be

seen during our execution but may be possible. Due to this stochastic behavior, it is hard

for us to understand which approximations have been made to optimize the circuit in this

execution more than others. Another interesting point about this execution is that both

2L cover and AIG are probably the exact solution for sao2 with 5% ER. This exactness

shows how far other executions, even the results for 2LALS in Table 5.2, can be from the

best possible approximation. Probably, the other approximated circuits are also far from

the exact solution.

With the presented experiment, it is possible to state three main conclusions.

When the objective is an approximate multilevel circuit, using two-level and multilevel

ALS methods to approximate multilevel circuits leads to better results than by applying

a multilevel approximation method itself in most of the considered circuits, which sug-

gests that the use of 2L-ALS methods can result in better approximate multilevel circuits.

When the objective is an approximate two-level circuit, a multilevel ALS method does

not lead to a better approximate 2L cover than a 2L-ALS method alone, showing that the

use of multilevel ALS is not indicated to generate two-level approximate circuits. The

procedure described in flow 1 generates the best AIG results, whereas the one from flow 2

has provided the best 2L cover results, suggesting that approximating the aimed structure

in the final may leads to improvement.

87

7 CONCLUSION

With the growing use of error-resilient applications, it is interesting to design cir-

cuits that take advantage of this application characteristic to optimize its cost and per-

formance. In that way, the development of tools to synthesize approximate circuits that

generate a more optimized circuit in a scalable way is aimed.

In this work, we proposed the first two-level approximate logic synthesis method

that exploits both insertion and removal of cubes to approximate a cover considering ER.

Experimental results have shown that our method surpasses the previous state-of-the-art

method in quality of results and scalability. Our source code, the applied benchmark cir-

cuits to generate the experimental results, and their approximate descriptions are publicly

available on GitHub (AMMES, 2020).

We also presented an investigation about using two-level and multilevel ALS ap-

proaches together. This investigation leads to three main conclusions.

• When the objective is an approximate multilevel circuit, using two-level and multi-

level ALS methods to approximate multilevel circuits tends to provide better results

than applying just a multilevel approximation approach.

• When the objective is to approximate two-level circuits, using just a 2L-ALS ap-

proach leads to better approximate 2L cover. It shows that the use of multilevel

ALS is not indicated to generate two-level approximate circuits.

• Approximating the target structure in the final of the execution flow leads to better

solutions, e.g., if the target structure is a multilevel circuit, using an ML-ALS tool

in the final is the better choice.

We want to expand this work in two directions as future works:

• Modify the proposed approach to approximate functions using different magnitude

error metrics as the error constraint. The use of magnitude error metrics is interest-

ing to allow a more detailed approximation of arithmetic circuit designs.

• Apply the proposed method as the local approximation approach of a multilevel

ALS approach. Some works use traditional two-level techniques to assist the local

approximation of a multilevel circuit. The use of an ALS approach in subcircuits

of a multilevel circuit can be relevant.

88

REFERENCES

AKERS, S. Binary decision diagrams. IEEE Transactions on computers, IEEE, C-27,
n. 6, p. 509–516, 1978.

AMANT, R. S. et al. General-purpose code acceleration with limited-precision analog.
In: 2014 International Symposium on Computer Architecture (ISCA). [S.l.: s.n.],
2014.

AMMES, G. A Two-Level Approximate Logic Synthesis Combining Cube Insertion
and Removal. 2020. Available from Internet: <https://github.com/GabrielAmmes/
2LALS-IR>.

BANERES, D.; CORTADELLA, J.; KISHINEVSKY, M. A recursive paradigm to solve
boolean relations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE, v. 58, n. 4, p. 512–527, 2019.

BHARDWAJ, K.; MANE, P. S.; HENKEL, J. Power- and area-efficient approximate
wallace tree multiplier for error-resilient systems. In: International Symposium on
Quality Electronic Design. [S.l.: s.n.], 2014.

BORNHOLT, J.; MYTKOWICZ, T.; MCKINLEY, K. S. Uncertain<t>: a first-order type
for uncertain data. ACM SIGARCH Computer Architecture News, ACM, v. 42, n. 1,
2014.

BRAND, D. Verification of large synthesized designs. In: 1993 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 1993.

BRAYTON, R.; HACHTEL, G.; SANGIOVANNI-VINCENTELLI, A. Multilevel logic
synthesis. Proceedings of the IEEE, IEEE, v. 78, n. 2, p. 264–300, 1990.

BRAYTON, R.; SOMENZI, F. An exact minimizer for Boolean relations. In: 1989
International Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 1989.

BRAYTON, R. K. et al. Logic Minimization Algorithms for VLSI Synthesis. [S.l.]:
Kluwer Academic Publishers, 1984.

BRYANT, R. E. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, IEEE, v. 100, n. 8, p. 677–691, 1986.

CHANDRASEKHARAN, A. et al. Precise error determination of approximated
components in sequential circuits with model checking. In: 2016 Design Automation
Conference (DAC). [S.l.: s.n.], 2016.

CHANDRASEKHARANA, A. et al. Approximation-aware rewriting of AIGs for
error tolerant applications. In: 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 2016.

CHEN, L. et al. On the design of approximate restoring dividers for error-tolerant
applications. IEEE Transactions on Computers, IEEE, v. 65, n. 8, p. 2522–2533, 2016.

CHEN, W.-K. The VLSI Handbook. [S.l.]: CRC Press, 2006.

https://github.com/GabrielAmmes/2LALS-IR
https://github.com/GabrielAmmes/2LALS-IR

89

CHIPPA, V. et al. Analysis and characterization of inherent application resilience for
approximate computing. In: 2013 Design Automation Conference (DAC). [S.l.: s.n.],
2013.

CHO, K. et al. edram-based tiered-reliability memory with applications to low-power
frame buffers. In: 2014 International Symposium on Low Power Electronics and
Design (ISLPED). [S.l.: s.n.], 2014.

ESMAEILZADEH, H. et al. Neural acceleration for general-purpose approximate
programs. In: 2012 Symposium on Microarchitecture (MICRO). [S.l.: s.n.], 2012.

ESMAEILZADEH, H. et al. Quality programmable vector processors for approximate
computing. In: 2012 Architectural Support for Programming Languages and
Operating Systems (ASPLOS). [S.l.: s.n.], 2012.

EéN, N.; SöRENSSON, N. An extensible sat-solver. Giunchiglia E., Tacchella A.
(eds) Theory and Applications of Satisfiability Testing, Springer, Berlin, Heidelberg,
v. 2919, p. 502–518, 2004.

FROEHLICH, S.; GROßE, D.; DRECHSLER, R. Approximate hardware generation
using symbolic computer algebra employing gröbner basis. In: 2018 Design,
Automation and Test in Europe Conference and Exhibition (DATE). [S.l.: s.n.],
2018.

FROEHLICH, S.; GROßE, D.; DRECHSLER, R. One Method - All Error-Metrics: A
Three-Stage Approach for Error-Metric Evaluation in Approximate Computing. In: 2019
Design, Automation and Test in Europe Conference and Exhibition (DATE). [S.l.:
s.n.], 2019.

FROEHLICH, S.; GROßE, D.; DRECHSLER, R. One Method - All Error-Metrics: A
Three-Stage Approach for Error-Metric Evaluation in Approximate Computing. In: 2019
Design, Automation and Test in Europe Conference and Exhibition (DATE). [S.l.:
s.n.], 2019.

GORDON, A. D. et al. Probabilistic programming. In: 2014 Future of Software
Engineering (FOSE) Proceedings. [S.l.: s.n.], 2014.

HACHTEL, G. D.; SOMENZI, F. Logic synthesis and verification algorithms. [S.l.]:
Springer Science & Business Media, 2006.

HAN, J.; ORSHANSKY, M. Approximate computing: An emerging paradigm for
energy-efficient design. In: Proc. 18th IEEE Eur. Test Symp. (ETS). [S.l.: s.n.], 2013.

JIANG, H.; HAN, J.; LOMBARDI, F. A Comparative Review and Evaluation of
Approximate Adders. In: Great Lakes Symposium on VLSI (GLSVLSI). [S.l.: s.n.],
2015.

JIANG, H. et al. A comparative evaluation of approximate multipliers. In: 2016
International Symposium on Nanoscale Architectures (NANOARCH). [S.l.: s.n.],
2016.

90

KARNAUGH, M. The map method for synthesis of combinational logic circuits. IEEE
Transactions of the American Institute of Electrical Engineers, IEEE, v. 72, n. 5, p.
593–599, 1953.

KARPUZCU, U.; AKTURK, I.; KIM, N. S. Accordion: Toward soft near-threshold
voltage computing. In: 2014 International Symposium on High Performance
Computer Architecture (HPCA). [S.l.: s.n.], 2014.

KUBICA, M.; KANIA, D. Graph of outputs in the process of synthesis directed at cplds.
Mathematics, v. 7, p. 1171, 12 2019.

KUEHLMANN, A.; KROHM, F. Equivalence checking using cuts and heaps. In: 1997
Design Automation Conference (DAC). [S.l.: s.n.], 1997.

KULKARNI, P.; GUPTA, P.; ERCEGOVAC, M. Trading Accuracy for Power with an
Underdesigned Multiplier Architecture. In: 2011 International Conference on VLSI
Design. [S.l.: s.n.], 2011.

LIU, G.; ZHANG, Z. Statistically certified approximate logic synthesis. In: 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). [S.l.:
s.n.], 2017.

LIU, W. et al. Inexact floating-point adder for dynamic image processing. In:
International Conference on Nanotechnology. [S.l.: s.n.], 2014.

MAHDIANI, H. R. et al. Bio-inspired imprecise computational blocks for efficient vlsi
implementation of soft-computing applications. IEEE Transactions on Circuits and
Systems, v. 57, n. 4, p. 850 – 862, 2010.

MCCLUSKEY, E. J. Minimization of boolean functions. The Bell System Technical
Journal, v. 35, n. 6, p. 1417–1444, 1956.

MCELVAIN, K. IWLS93 Benchmark Set: Version 4.0. 1993. Available from Internet:
<https://ddd.fit.cvut.cz/prj/Benchmarks/IWLS93.pdf>.

MENG, C.; QIAN, W.; MISHCHENKO, A. ALSRAC: Approximate Logic Synthesis by
Resubstitution with Approximate Care Set. In: 2020 Design Automation Conference
(DAC). [S.l.: s.n.], 2020.

MIAO, J.; GERSTLAUER, A.; ORSHANSKY, M. Approximate logic synthesis under
general error magnitude and frequency constraints. In: 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2013.

MIAO, J.; GERSTLAUER, A.; ORSHANSKY, M. Multi-level approximate logic
synthesis under general error constraints. In: 2014 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2014.

MICHELI, G. D. Synthesis and Optimization of Digital Circuits. [S.l.]: McGraw-Hill
Higher Education, 1994.

MISAILOVIC, S. et al. Chisel: reliability- and accuracy-aware optimization of
approximate computational kernels. In: 2014 International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA). [S.l.: s.n.],
2014.

https://ddd.fit.cvut.cz/prj/Benchmarks/IWLS93.pdf

91

MISAILOVIC, S. et al. Quality of service profiling. In: 2010 International Conference
on Software Engineering. [S.l.: s.n.], 2010.

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. Improvements to technology
mapping for lut-based fpgas. In: 2006 International symposium on Field
programmable gate arrays (FPGA). [S.l.: s.n.], 2006.

MITTAL, S. A survey of techniques for approximate computing. ACM Computing
Surveys, ACM, v. 48, n. 4, 2016.

MOHAPATRA, D. et al. Design of voltage-scalable meta-functions for approximate
computing. In: 2011 Design, Automation and Test in Europe Conference and
Exhibition (DATE). [S.l.: s.n.], 2011.

MRAZEK, V. et al. Evoapprox8b: Library of approximate adders and multipliers
for circuit design and benchmarking of approximation methods. In: 2017 Design,
Automation & Test in Europe Conference & Exhibition (DATE). [S.l.: s.n.], 2017.

PAN, P.; LIN, C.-C. A new retiming-based technology mapping algorithm for lut-based
fpgas. In: 1998 International symposium on Field programmable gate arrays
(FPGA). [S.l.: s.n.], 1998.

PARHAMI, B. Computer Arithmetic: Algorithms and Hardware Designs. [S.l.]:
Oxford University Press, 2009.

RABAEY, J.; CHANDRAKASAN, A.; NIKOLIC, B. Digital integrated circuits. [S.l.]:
Prentice hall Englewood Cliffs, 2002.

RANJAN, A. et al. ASLAN: Synthesis of approximate sequential circuits. In: 2014
Design, Automation and Test in Europe Conference and Exhibition (DATE). [S.l.:
s.n.], 2014.

REHMAN, S. et al. Architectural-space exploration of approximate multipliers. In: 2016
International Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2016.

SAADAT, H.; JAVAID, H.; PARAMESWARAN, S. Approximate integer and floating-
point dividers with near-zero error bias. In: 2019 Design Automation Conference
(DAC). [S.l.: s.n.], 2019.

SAMPSON, A. et al. Enerj: approximate data types for safe and general low-power
computation. In: 2011 Conference on Programming Language Design and
Implementation (PLDI). [S.l.: s.n.], 2011.

SAMPSON, A. et al. Approximate storage in solid-state memories. In: 2013 Symposium
on Microarchitecture (MICRO). [S.l.: s.n.], 2013.

SCARABOTTOLO, I. et al. Approximate logic synthesis: A survey. Proceedings of the
IEEE, v. 108, n. 12, p. 2195–2213, 2020.

SHIN, D.; GUPTA, S. K. Approximate logic synthesis for error tolerant applications. In:
2010 Design, Automation and Test in Europe Conference and Exhibition (DATE).
[S.l.: s.n.], 2010.

92

SHIN, D.; GUPTA, S. K. A new circuit simplification method for error tolerant
applications. In: 2011 Design, Automation and Test in Europe Conference and
Exhibition (DATE). [S.l.: s.n.], 2011.

SIDIROGLOU-DOUSKOS, S. et al. Managing performance vs. accuracy trade-offs
with loop perforation. In: 2011 Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering. [S.l.: s.n.], 2011.

SOEKEN, M. et al. BDD minimization for approximate computing. In: 2016 Asia and
South Pacific Design Automation Conference (ASP-DAC). [S.l.: s.n.], 2016.

SU, S.; WU, Y.; QIAN, W. Efficient Batch Statistical Error Estimation for Iterative
Multi-level Approximate Logic Synthesis. In: 2018 Design Automation Conference
(DAC). [S.l.: s.n.], 2018.

SU, S. et al. A novel heuristic search method for two-level approximate logic synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE, v. 39, n. 3, p. 654–669, 2020.

TSEITIN, G. S. On the complexity of derivation in propositional calculus. [S.l.]:
Springer Berlin Heidelberg, 1983.

UMANS, C.; VILLA, T.; SANGIOVANNI-VINCENTELLI, A. Complexity of two-level
logic minimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE, v. 25, n. 7, p. 1230–1246, 2006.

VASICEK, Z. Relaxed equivalence checking: a new challenge in logic synthesis. In:
2017 IEEE International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS). [S.l.: s.n.], 2017.

VASICEK, Z. Formal methods for exact analysis of approximate circuits. IEEE Access,
IEEE, v. 7, p. 177309 – 177331, 2019.

VASICEK, Z.; SEKANINA, L. Evolutionary design of complex approximate
combinational circuits. Genetic Programming and Evolvable Machines, Springer,
v. 17, p. 169–192, 2016.

VENKATARAMANI, S. et al. Quality programmable vector processors for approximate
computing. In: 2013 International Symposium on Microarchitecture (MICRO). [S.l.:
s.n.], 2013.

VENKATARAMANI, S.; ROY, K.; RAGHUNATHAN, A. Substitute-and-simplify: A
unified design paradigm for approximate and quality configurable circuits. In: 2013
Design, Automation and Test in Europe Conference and Exhibition (DATE). [S.l.:
s.n.], 2013.

VENKATARAMANI, S. et al. SALSA: Systematic logic synthesis of approximate
circuits. In: 2012 Design Automation Conference (DAC). [S.l.: s.n.], 2012.

WENDLER, A.; KESZOCZE, O. A fast BDD Minimization Framework for Approximate
Computing. In: 2020 Design, Automation and Test in Europe Conference and
Exhibition (DATE). [S.l.: s.n.], 2020.

93

WESTE, N.; HARRIS, D. Cmos vlsi design. A circuits and systems perspective. [S.l.]:
Addison-Wesley Publishing Company, 2010.

WU, Y.; QIAN, W. An efficient method for multi-level approximate logic synthesis under
error rate constraint. In: 2016 Design Automation Conference (DAC). [S.l.: s.n.], 2016.

WU, Y.; QIAN, W. Alfans: Multilevel approximate logic synthesis framework by
approximate node simplification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, IEEE, v. 39, n. 7, p. 1470 – 1483, 2020.

WU, Y. et al. Approximate logic synthesis for FPGA by wire removal and local function
change. In: 2017 Asia and South Pacific Design Automation Conference (ASP-DAC).
[S.l.: s.n.], 2017.

XU, Q.; MYTKOWICZ, T.; KIM, N. S. Approximate computing: A survey. IEEE
Design & Test, IEEE, v. 33, n. 1, p. 8–22, 2016.

XU, X.; HUANG, H. H. Exploring data-level error tolerance in high-performance
solid-state. IEEE Transactions on Reliability, IEEE, v. 64, n. 1, p. 15–30, 2015.

YAO, Y. et al. Approximate Disjoint Bi-Decomposition and Its Application to
Approximate Logic Synthesis. In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 2017.

ZHOU, Z. et al. DALS: Delay-driven Approximate Logic Synthesis. In: 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). [S.l.:
s.n.], 2018.

ZOU, C.; QIAN, W.; HAN, J. DPALS: A dynamic programming-based algorithm for
two-level approximate logic synthesis. In: 2015 IEEE 11th International Conference
on ASIC (ASICON). [S.l.: s.n.], 2015.

ČEšKA, M. et al. Approximating Complex Arithmetic Circuits with Formal Error
Guarantees: 32-bit Multipliers Accomplished. In: 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2017.

94

APPENDIX A — RESUMO DA DISSERTAÇÃO

Método de Síntese Lógica Aproximada Dois-Níveis Baseado na Inserção

e Remoção de Cubos.

A.1 Introdução

Computação aproximada é um paradigma que permite que um sistema tenha uma

execução imprecisa ou inexata com o objetivo de otimizar o seu desempenho e sua efi-

ciência energética. Quando este paradigma é aplicado em sistemas que executam funções

resilientes a erros, é possível otimizar o sistema sem degradar de forma crítica a operação

desejada. Este trabalho foca no uso de computação aproximada no nível de circuitos, em

particular, nos circuitos integrados digitais.

Ferramentas computacionais fornecem um fluxo altamente automatizado para o

desenvolvimento de projetos de circuitos integrados (CIs). Este fluxo pode ser dividido

em três passos principais: síntese de alto nível, síntese lógica e síntese física. A síntese

lógica, em particular, tem como objetivo otimizar a lógica do circuito e implementá-lo

em uma dada tecnologia alvo. Esta etapa do fluxo de projeto é executada sobre represen-

tações dois-níveis ou multinível que implementam os blocos combinacionais de um dado

circuito.

A aplicação de computação aproximada no nível de circuitos consiste em obter

uma implementação que não é logicamente equivalente à especificação mas consegue

realizar otimizações em área, desempenho e consumo de energia. Diversos trabalhos

propõem técnicas para aproximar um circuito de forma automática através de modificação

sistemática do funcionamento de um circuito genérico sem exceder uma dada restrição de

erro. Devido à similaridade em técnicas, estruturas de dados e objetivos de otimização

com a etapa de síntese lógica, a geração automática de circuitos aproximados é frequente-

mente chamada de síntese lógica aproximada.

A.1.1 Motivação e Proposta

Métodos de síntese lógica tradicional para construção de circuitos dois-níveis po-

dem ser utilizados para síntese de componentes programáveis CPLDs, bem como parte

95

de métodos para síntese de circuitos multinível. Além da geração de expressões aprox-

imadas do tipo soma-de-produtos (SOP) e produto-de-somas (POS), técnicas de aproxi-

mação para circuitos dois-níveis poder ser exploradas nesses dois cenários. Além disso,

o entendimento dos conceitos e técnicas relacionados à aproximação dois-níveis pode

contribuir significativamente para futuros estudos sobre a aproximação de circuitos mult-

inível.

Este trabalho propõe um método para aproximar circuitos dois-níveis que tem

como entrada uma SOP e um dado limite de frequência de erro, e gera uma expressão

aproximada com um número de literais reduzido e que respeita o dado limite de erro. O

método proposto foi desenvolvido com a intenção de ser escalável em relação à quanti-

dade de erros permitidos, possibilitando uma inserção de mais erros do que é observado

em outros trabalhos que abordam o mesmo problema.

A.2 Conceitos Preliminares

Uma breve revisão de fundamentos de síntese lógica aproximada e de métricas

de erro é apresentada a seguir, bem como a terminologia adotada, buscando facilitar o

entendimento do método de síntese lógica aproximada dois-níveis proposto.

Uma variável corresponde ao símbolo utilizado para representar sinais de entrada

e saída. A ocorrência de uma variável é chamada de literal, podendo ser um literal de

entrada ou de saída, depende da respectiva variável. Um literal de entrada pode ser direto

ou complementado (negado). Um produto de literais onde cada variável aparece no máx-

ima uma vez é chamado de cubo. O caso particular onde um cubo contém um literal para

cada literal de entrada e somente um literal de saída é chamado de mintermo. Um con-

junto de cubos que cobre todos os mintermos é chamado de cobertura. O caso especial

de cobertura onde todos os cubos são referentes a mesma saída, ou seja, uma cobertura de

saída única, pode ser representado por uma soma-de-produtos (SOP). Em geral, quando

se representa a cobertura com uma SOP os literais de saída são omitidos. O tamanho

de um cubo é igual ao número de mintermos cobertos por ele. A expansão de um cubo

consiste em remover um de seus literais de entrada, tornando-o em um cubo maior.

No contexto da aproximação de circuitos, múltiplas métricas foram propostas com

o objetivo de quantificar e controlar a quantidade de erro inserido (FROEHLICH; GROßE;

DRECHSLER, 2019b). Neste trabalho utilizamos a métrica de Error Rate (ER) para limi-

tar a ocorrência de erros. A métrica ER consiste na frequência em que os erros ocorrem ou

96

na probabilidade de um erro ocorrer para um dada combinação de entrada. Desta forma,

esta métrica é calculada considerando a razão entre o número combinações de entrada que

levam a erros e o número total de possíveis combinações de entrada.

Considerando a síntese lógica aproximada, uma combinação de entrada que leva

a uma ou mais saídas incorretas é definida como uma combinação de entrada errônea

(EIC, do inglês erroneous input combination). Por exemplo, se dois mintermos levam a

saídas incorretas mas contém os mesmo literais de entrada, somente um EIC será levado

em conta. Além disso, o número de erros (NE) em uma dada cobertura é igual aos seu

número de EICs. Quando o NE é utilizado como métrica de erro, o seu valor pode ser

tanto arbitrário quanto relativo ao número de entradas do circuito. Para o segundo caso, o

NE é igual a 2n ∗ er, onde n é o número de entradas e er o limite de ER.

A.3 Estado-da-Arte

Em (SU et al., 2020), Su et al. apresentam um método de busca heurística para

resolver o problema de síntese lógica aproximada dois-níveis (2L-ALS) usando ER como

métrica de erro. Este trabalho pode ser considerado o estado-da-arte para este problema e

é apresentado a seguir.

O principal objetivo do método de Su é identificar um conjunto de combinações

de entrada para terem sua entrada complementada de 0 para 1 que maximize a redução de

literais da cobertura. Este conjunto de combinações é chamada de SICC e é equivalente

a um conjunto de EICs. Eles propõe neste trabalho a estrutura de dados SICC-cube tree

(SCT) que agrupa um conjunto de EICs com os cubos dependem destes EICs para serem

inseridos na cobertura. Uma SCT consiste em uma árvore de dois-níveis, onde a raiz

contém o conjunto de EICs e as folhas contém os cubos a serem inseridos na cobertura.

O número de EICs na raiz é igual ao número de erros inseridos na cobertura.

Um cubo deve satisfazer duas condições para ser inserido como folha de uma

SCT. Inicialmente, pelo menos um cubo deve ser removido da cobertura quando este é

adicionado na cobertura. Por fim, o número de literais do cubo removido deve ser maior

do que do cubo a ser inserido. Estas condição são impostas para garantir que os cubos nas

folhas da SCT levem a otimizações no número de literais.

Inicialmente, todos os possíveis cubos de uma dada função utilizando um dia-

grama de Hasse. Esses cubos são utilizados para construir as SCTs. Em seguida, as SCTs

obtidas são combinadas, pois existem SCTs com menos erros que o limite estabelecido.

97

Por fim, a SCT que leva a maior redução de literais é escolhida.

O procedimento para estimar a redução de literais de uma dada SCT contém três

passos principais. Como a inserção de um cubo não garante que outros sejam removidos,

o primeiro passo consiste em identificar quais cubos da cobertura podem ser removidos

quando todos os cubos folhas de uma SCT são inseridos na cobertura. Além disso, inserir

todos os cubos folhas pode aumentar o número de literais. Desta forma, o segundo passo

é identificar quais cubos folhas são necessários para remover os cubos identificados no

primeiro passo. Por fim, a redução de literais é calculada subtraindo o número de literais

nos cubos removidos e nos cubos inseridos.

Além deste método base, os autores apresentam quatro técnicas de aceleração para

permitir o uso em circuitos maiores.

1. Como a complexidade temporal do algoritmo-base cresce exponencialmente com o

número de erros, o número de erros permitidos para cada execução é limitado em

dois, gerando assim coberturas parcialmente aproximadas. Todas estas soluções

parciais geradas são aproximadas iterativamente até que o erro máximo permitido

seja atingido.

2. Com a utilização da primeira técnica, é gerada uma quantidade muito grande de

soluções parciais é criado, tornando custosa a aproximação de todas estas soluções.

Desta forma, somente as duas soluções parciais com a maior redução de literais

para um dado número de erros são aproximadas.

3. Como o número de erros permitidos para cada aproximação é dois, é necessário

combinar as SCTs que inserem somente um erro. Para diminuir o número de SCTs

combinadas, somente um subconjunto de todas as SCTs são utilizadas na etapa de

combinação. Para isso, inicialmente são estimados os literais das SCTs geradas sem

combinação. Em seguida, duas SCTs são combinadas caso a primeira esteja entre

as 25% melhores e a segunda entre as 80% melhores SCTs.

4. Considerar todos os cubos em um diagrama de Hasse implica em um alto custo

computacional. Para reduzir este custo, eles consideram somente os cubos do di-

agrama de Hasse que são parentes dos cubos presentes na cobertura. Estes cubos

podem ser vistos como os cubos obtidos removendo literais de entrada ou inserindo

literais de saídas nos cubos da cobertura.

Os valores utilizados na três primeiras técnicas de aceleração foram obtidas uti-

lizando análises empíricas. Mesmo com a utilização destas técnicas, o aumento no número

98

de erros permitidos continua sendo um desafio importante no tempo de execução desta

técnica.

A.4 Trabalho Proposto

Em (SHIN; GUPTA, 2010), os autores apresentam duas técnicas para a aproxi-

mação de SOPs: a inserção de cubos na SOP, invertendo as saídas de mintermos de 0

para 1, e a remoção de cubos da SOP, modificando estas saídas de 1 para 0. Eles também

propõem um experimento para comparar estas duas técnicas e sugerem que a inserção

de cubos leva a resultados melhores do que a sua remoção. Baseado nessa conclusão,

trabalhos relacionados subsequentes têm focado prioritariamente na inserção de cubos. A

seguir, apresentamos um exemplo de aproximação utilizando estas duas técnicas individ-

ualmente e em conjunto.

Para a SOP x1 ∗ x2 + x0 ∗ x2 representada pelo mapa de Karnaugh (diagrama de

Veitch) ilustrado na Figura A.1a, suas aproximações considerando um limite de número

de erros igual a dois através da inserção de cubos, da remoção de cubos e de ambas

em conjunto, são mostradas na Figura A.1b, na Figura A.1c e na Figura A.1d, respecti-

vamente. Os mintermos destacados nos mapas de Karnaugh representam os mintermos

aproximados. Na Figura A.1b, quando os mintermos x0 ∗x1 ∗x2 e x0 ∗x1 ∗x2 têm a saída

complementada de 0 para 1, é possível inserir os cubos x0 e x1. Esta inserção implica na

remoção dos cubos x1∗x2 e x0∗x2, reduzindo o número de literais de 4 para 2. Na Figura

A.1c, quando os mintermos x0 ∗ x1 ∗ x2 e x0 ∗ x1 ∗ x2 têm a saída complementada de 1

para 0, é possível remover diretamente o cubo x1 ∗ x2, reduzindo o número de literais de

4 para 2. Na Figura A.1d, quando os mintermos x0 ∗ x1 ∗ x2 e x0 ∗ x1 ∗ x2 têm a saída

complementada de 0 para 1 e de 1 para 0, respectivamente, é possível inserir o cubo x1 e

remover os cubos x1 ∗ x2 e x0 ∗ x2, reduzindo o número de literais de 4 para 1.

No presente trabalho é proposta uma abordagem para a resolução do problema de

2L-ALS usando ER como restrição de erro e que utiliza a inserção e remoção de cubos

de forma conjunta como técnica de aproximação. O circuito dois-níveis é representado

por um cobertura C e o limite de ER por er. Conforme mostrado na Figura A.1, aplicar

as duas técnicas em conjunto pode levar a melhores resultados do que utilizar somente a

inserção de cubos, como é feito em outros trabalhos.

Inicialmente, apresentamos uma descrição geral do método de 2L-ALS proposto.

Em seguida, os algoritmos para aproximar a cobertura são mostrados.

99

x0x1

x2
00 01 11 10

0 0 1 1 0

1 0 0 1 1

(a)

x0x1

x2
00 01 11 10

0 0 1 1 1

1 0 1 1 1

(b)

x0x1

x2
00 01 11 10

0 0 0 0 0

1 0 0 1 1

(c)

x0x1

x2
00 01 11 10

0 0 0 1 1

1 0 0 1 1

(d)
Figure A.1 – Exemplos de coberturas aproximadas comparando o uso da inserção de cubos, da

remoção de cubos e de ambas em conjunto.

A.4.1 Descrição Geral

O fluxo geral é mostrado no Algoritmo 9. A cobertura é armazenada usando dois

mapas da Karnaugh. O primeiro mapa liga os cubos aos mintermos que são cobertos

por somente este cubo. O segundo mapa liga cada mintermo coberto pelo procedimento,

contendo os cubos da solução que o cobrem. O método proposto aplica inicialmente um

procedimento de inserção de cubos, gerando múltiplas coberturas parcialmente aproxi-

madas com menos do limite de número de erros. A cobertura inicial C é aproximada

utilizando um método de inserção com o limite de dois erros, criando duas coberturas

parcialmente aproximadas (soluções parciais) com um e dois erros, respectivamente. Este

comportamento é similar a primeira técnica de aceleração apresentada na Seção A.3. Para

cada solução parcial, o método de remoção de cubo é aplicado, considerando o número

de erros ainda disponível, que corresponde a diferença entre o erro máximo permitido e o

erro já inserido na solução parcial. Esta estratégia permite escapar de mínimos locais que

ocorrem quando somente a técnica de inserção é aplicada.

Para evitar um aumento substancial na complexidade de tempo e de espaço, so-

mente a cobertura inicial e as modificações necessária para transformá-la nas soluções

parciais são armazenadas. Para isso, uma solução contém os cubos que devem ser inseri-

dos e removidos da cobertura, além da redução de literais e dos EICs inseridos. Na linha

2, o vetor de sols contém todas as soluções parciais obtidas, enquanto o vetor solsi con-

tém as soluções parciais com i erros. Desta forma, como o vetor sols0 não insere nenhum

100

Algoritmo 9: Método de 2L-ALS Proposto
Entrada: Uma cobertura otimizada C e um limite de ER er
Saída: Cobertura aproximada C’

1 e← er ∗ 2n ;
2 Vetor sols com e+1 vetores de Soluções;
3 sols0 ← � (solução vazia);
4 para i← 0 até e faça
5 topS← as duas melhores soluções em solsi;
6 para cada solution s em topS faça
7 modifyCover(C, s);
8 (s1, s2)← cubeInsertion(C, 2, s);
9 solsi+1 ← solsi+1 ∪ s1;

10 solsi+2 ← solsi+2 ∪ s2;
11 s3← cubeRemoval(C, e-i, s);
12 sMax← max(s1, s2, s3);
13 se sMax > bestSol então bestSol← sMax;
14 restoreCover(C, s);
15 fim
16 fim
17 retorna espresso(modifyCover(C,best));

erro na cobertura, sendo ele iniciado como vazio. Para cada vetor solsi, as duas melhores

soluções são selecionadas na linha 5 para serem aproximadas, similar a segunda técnica

de aceleração apresentada na Seção A.3.

Para modificar a cobertura C considerando uma solução s é aplicada a função

modifyCover na linha 7 do Algoritmo 9. Esta função insere e remove os cubos da solução

da cobertura inicial, tornando-a uma cobertura aproximada. Na direção contrária, a função

restoreCover desfaz estas modificações presentes. O método de inserção de cubos, na

linha 8, retorna duas soluções (s1 e s2) com um e dois erros que são armazenadas em

solsi+1 e solsi+2, na linha 9 e 10. O método de remoção de cubos, na linha 11, pode

inserir até e − i, onde e é o número máximo de erros permitidos, retornando a solução

s3. Caso umas das três soluções geradas reduza mais literais do que a melhor solução

obtida até o momento, esta solução é armazenada em bestSol. No final, a melhor solução

encontrada é aplicada na cobertura inicial C e otimizada utilizando a ferramente Espresso

(BRAYTON et al., 1984).

A.4.2 Método de Inserção de Cubos

O método de inserção de cubos desenvolvido é baseado no método de busca

heurística apresentado em (SU et al., 2020). Desta forma, a principal estrutura de da-

dos para realizar a aproximação é a SICC-cube tree (SCT). A ideia geral é gerar múltiplas

101

SCTs com cubos que insiram até dois erros e selecionar as SCTs que levam a uma maior

redução de literais.

Algoritmo 10: Função cubeInsertion
Entrada: Uma cobertura otimizada C, um limite de número de erros e e a

solução atual s
Saída: Duas soluções com erro 1 e 2

1 trees← generateSCT(C, e, s.EIC);
2 (s1, s2)← combineAndEstimate(C, trees);
3 s1← updateSolution(s1, s);
4 s2← updateSolution(s2, s);
5 retorna (s1, s2);

O Algoritmo 10 apresenta o fluxo do método de inserção de cubos. Na linha

1, as SCTs são geradas. Os cubos utilizados para a geração destas SCTs são todos os

cubos obtidos através da expansão dos cubos da cobertura C. A utilização da expansão

de cubos é uma simplificação da quarta técnica de aceleração apresentada na Seção A.3.

Quando um cubo expandido é usado como folha de uma SCT, é garantido que este cubo

irá remover pelo menos um cubo da cobertura e irá reduzir o número de literais. Desta

forma, a verificação a ser feita é relacionada ao número de erros inseridos. O número

de erros inseridos por um cubo é igual ao número de mintermos cobertos por ele que

não são cobertos por C que não tiveram a combinação de entrada considerada como EIC

anteriormente.

Na linha 2, a combinação de SCTs e a estimativa da redução de literais de todas

as SCTs é realizada. Inicialmente, todas as SCTs obtidas sem combinação têm a redução

de literais estimada. As SCT que inserem somente um erro são combinadas dois-a-dois,

considerando a quarta técnica de aceleração apresentada na seção A.3. As SCTs com um

e dois erros que removem mais literais são utilizadas para criar as soluções s1 e s2, que

são retornadas ao final.

A.4.3 Função de Remoção de Cubos

Remover um cubo implica que os literais deste cubo são removidos da cobertura.

Sendo assim, o método de remoção de cubos escolhe de forma gulosa o cubo com maior

razão entre número de literais e número de erros inseridos para ser removido a cada iter-

ação. O Algoritmo 11 mostra o fluxo deste método.

No laço da linha 3, é realizada a escolha de qual cubo será removido. Para isso,

os EICs de cada cubo de C na linha 4 e o ganho de remover este cubo é calculado na linha

102

5. No contexto da remoção de cubos, o EIC de um cubo é dado pelos mintermos que

somente são cobertos por este cubo em C que a combinação de entrada não foi adicionada

como EIC anteriormente. Estes mintermos estão armazenados junto com cada cubo no

primeiro mapa da estrutura de dados de C. Caso o ganho de remover o cubo atual seja

maior que o melhor ganho encontrado até o momento, o ganho, o cubo e os EICs são

armazenados. Caso o cubo não tenha EICs, o ganho é maximizado. Na linha 12, o cubo

com maior ganho é removido de C. Quando um cubo é removido, os mintermos que são

cobertor por somente um cubo são atualizados, impactando nas iterações seguintes. Em

seguida, o vetor de cubos removidos, número de erros acumulados nesta etapa e os EICs

são atualizados.

Algoritmo 11: Função cubeRemoval
Entrada: Uma cobertura otimizada C, um limite de número de erros e e a

solução atual s
Saída: Uma solução com no máximo e erros

1 error← e, newEIC← s.EIC;
2 enquanto error > 0 faça
3 para each Cube in C faça
4 cubeEIC← getCubeEIC(cube, C, newEIC);
5 gain← litCount(cube) / max(0.01, #cubeEIC);
6 se gain > bestGain and error ≥ #cubeEIC então
7 bestGain← gain;
8 bestCube← cube;
9 bestEIC← cubeEIC;

10 fim
11 fim
12 removeCubeFromCover(bestCube, C);
13 removedCubes← removedCubes ∪ bestCube;
14 error← error - #bestEIC;
15 newEIC← updateEICs(newEIC, bestEIC);
16 fim
17 insertCubes(C, removedCubes);
18 s3← updateSolution(removedCubes, newEic, s);
19 retorna s3;

Quando no erro máximo é atingido, o laço principal acaba. No fim, os cubos

removidos são reinseridos em C e a solução s3, contendo os cubos removidos, os EICs

atualizados e a redução de literais, é retornada.

A.5 Resultados Experimentais

Os algoritmos propostos foram implementados utilizando a linguagem de progra-

mação C++. Nossos experimentos foram executados utilizando o conjunto de benchmarks

do IWLS’93 (MCELVAIN, 1993), em um computador com um processador quad-core i5-

103

2400 @ 3.10GHz e 8GB de RAM. As tabelas utilizadas nesta seção estão simplificadas.

As versões originais e outras análises podem ser vistas na dissertação,

A.5.1 Comparação com o Estado-da-Arte

O método de Su (SU et al., 2020) pode ser considerado o estado-da-arte e será

adotado aqui como a principal referência. Os circuitos utilizados são os mesmos utiliza-

dos por Su com uma restrição fixa de 16 erros. Como o código-fonte do método de Su não

está publicamente disponível, nós comparamos os nossos resultados com os apresentados

por ele no artigo (SU et al., 2020).

A Tabela A.1 mostra a comparação dos resultados obtidos pelo método de Su e

do método proposto. Coluna 1 apresenta o nome dos circuitos utilizados, assim como o

número de entradas (i) e saídas (o). Coluna 2 apresenta o número de literais da cobertura

original, enquanto a Coluna 3 e a Coluna 4 o número de literais do circuito aproximado

por Su e pelo método proposto, respectivamente. Coluna 5 apresenta a razão entre o

número de literais da nossa aproximação e da aproximação de Su. Coluna 6 apresenta o

número de cubos da cobertura original, enquanto a Coluna 7 e a Coluna 8 o número de

cubos do circuito aproximado por Su e pelo método proposto, respectivamente. Coluna

9 apresenta a razão entre o número de cubos da nossa aproximação e da aproximação de

Su. Coluna 10 e Coluna 11 apresentam os tempos de execução da cada método.

O nosso método apresentou melhores resultados para todos os circuitos utilizados,

com excessão do b12 onde nenhum dos dois métodos foi capaz de aproximar. Os circuitos

con1, misex1 e b12 não foram aproximados pelo método de Su pois não existem SCTs

com dois ou menos erros. Apesar disso, os circuitos con1 e misex1 puderam ser aproxi-

mados pelo nosso método através da etapa de remoção de cubos. Em geral, os resultados

da redução no número dos cubos é similar a redução no número de literais.

O método proposto apresenta um menor tempo de execução em todos os circuitos,

com um tempo de execução médio de 6,75 segundos em comparação com 643 segundos

obtido por Su. Esta diferença de tempo é observada principalmente nos circuitos com

mais de dez entradas, mostrando que o nosso método tem uma escalabilidade melhor.

104

Table A.1 – Comparação do método proposto com o método de Su (SU et al., 2020) sobre os
circuitos do conjunto de benchmarks do IWLS93 considerando ER como métrica de erro.

Circuito
Literais Cubos Tempo (s)

Orig. Su Prop. Prop./Su Orig. Su Prop. Prop./Su Su Prop.
con1 i:7;o:2 32 32 24 0.75 9 9 7 0.77 0.38 0.02
rd73 i:7;o:3 903 578 556 0.96 127 88 88 1.00 1.48 1.37
inc i:7;o:9 198 156 125 0.80 30 25 20 0.80 0.49 0.18

5xp1 i:7;o:10 347 235 202 0.85 65 49 41 0.83 0.72 0.48
sqrt8 i:8;o:4 188 98 83 0.84 38 22 21 0.95 0.58 0.24
rd84 i:8;o:4 2070 1578 1511 0.95 255 218 209 0.95 6.52 4.51

misex1 i:8;o:7 96 96 77 0.80 12 12 10 0.83 0.50 0.02
clip i:9;o:5 793 588 584 0.99 120 93 93 1.00 1.99 1.36

apex4 i:9;o:19 5419 5040 5024 0.99 436 421 418 0.99 109 31.9
sao2 i:10;o:4 496 231 165 0.71 58 29 22 0.75 2.48 1.47

ex1010 i:10;o:10 2718 2693 2636 0.97 284 283 278 0.98 14.30 2.05
alu4 i:14;o:8 5087 4904 4847 0.98 575 562 559 0.99 298 14.06

misex3 i:14;o:14 7784 7446 7242 0.97 690 656 635 0.96 693 11.99
table3 i:14;o:14 2644 2459 2347 0.95 175 165 159 0.96 513 5.47

misex3c i:14;o:14 1561 1239 1115 0.89 197 163 153 0.93 252 19.29
b12 i:15;o:9 207 207 207 1.00 43 43 43 1.00 249 1.69
t481 i:16;o:1 5233 5105 4975 0.97 481 473 463 0.97 1570 3.41

table5 i:17;o:15 2501 2410 2270 0.94 158 154 147 0.95 7868 22.07
Média 2126 1949 1888 0.90 208.5 192.5 186,9 0.92 643 6.75

A.5.2 Resultados Considerando a Frequência de Erro

Utilizar um limite de erros fixo pode ser um problema pois o ER depende do

número de combinações de entrada do circuito. Por exemplo, o limite de 16 erros utiliza-

dos anteriormente representam um ER de 12.5% nos circuitos de 7 entradas mas somente

0.0001% em um circuito de 17 entradas. Como o método proposto consegue atingir

um boa escalabilidade temporal, é possível utilizar um número maior de erros durante a

aproximação, permitindo utilizar um limite de ER em porcentagem. A Tabela A.2 ap-

resenta os resultados de aproximações considerando um limite de ER de 1%, 3% e 5%,

utilizando os circuito utilizados anteriormente com mais de dez entradas. Coluna 1 ap-

resenta o nome dos circuitos utilizados com o número de entradas e saídas. Coluna 2

apresenta o limite de ER, enquanto a Coluna 3 apresenta o número de erros (NE) utiliza-

dos na aproximação. Coluna 4 apresenta o número de literais do circuito original. Coluna

5 apresenta o número de literais do circuito aproximado pelo método proposto e a por-

centagem de redução entre parênteses. Coluna 6 apresenta o número de cubos do circuito

original. Coluna 7 apresenta o número de cubos do circuito aproximado pelo método

proposto e a porcentagem de redução entre parênteses. Coluna 8 apresenta o tempo de

105

execução.

Table A.2 – Resultados do método proposto sobre os circuitos do conjunto de benchmarks do
IWLS93 considerando ER como métrica de erro.

Circuitos ER NE
Literais Cubos

Tempo (s)
Orig. Aproximado Orig. Aproximado

sao2 1% 10
496

273 (0.55)
58

33 (0.56) 0.83
i: 10 3% 30 75 (0.15) 12 (0.20) 3.14
o: 4 5% 51 31 (0.06) 7 (0.12) 4.74

ex1010 1% 10
2718

2659 (0.97)
284

279 (0.98) 1.27
i: 10 3% 30 2588 (0.95) 273 (0.96) 3.92
o: 10 5% 51 2510 (0.92) 267 (0.94) 6.93
alu4 1% 163

5087
3732 (0.73)

575
461 (0.80) 148.22

i: 14 3% 491 2693 (0.52) 356 (0.62) 286.48
o: 8 5% 819 2139 (0.42) 297 (0.51) 429.81

misex3 1% 163
7784

6253 (0.80)
690

554 (0.80) 154.03
i: 14 3% 491 4796 (0.61) 436 (0.63) 217.58
o: 14 5% 819 3749 (0.48) 350 (0.50) 253.85
table3 1% 163

2644
1271 (0.48)

175
93 (0.53) 32.59

i: 14 3% 491 536 (0.20) 42 (0.24) 36.56
o: 14 5% 819 189 (0.07) 17 (0.10) 44.44

misex3c 1% 163
1561

499 (0.32)
197

89 (0.45) 133.55
i: 14 3% 491 469 (0.30) 85 (0.43) 229.03
o: 14 5% 819 447 (0.28) 82 (0.41) 342.40
b12 1% 372

207
193 (0.93)

43
40 (0.93) 2.34

i: 15 3% 983 167 (0.80) 35 (0.81) 7.52
o: 9 5% 1638 145 (0.70) 28 (0.65) 15.71
t481 1% 655

5233
1992 (0.38)

481
212 (0.44) 4.67

i: 16 3% 1966 942 (0.18) 120 (0.24) 6.00
o: 1 5% 3276 578 (0.11) 84 (0.17) 8.85

table5 1% 1310
2501

720 (0.28)
158

55 (0.34) 152.81
i: 17 3% 3932 278 (0.11) 24 (0.15) 302.28
o: 15 5% 6553 152 (0.06) 14 (0.08) 375.89

O método proposto alcança uma redução de literais média de 38% com ER de 1%,

56% com ER de 3% e 64% com ER de 5%. Nos circuitos sao2, table3, t481 e table5, foi

possível obter perto de 90% de redução de literais com 5% de ER e de 93.9% no circuito

table5 com o mesmo ER. Além disso, o circuito b12 que não pôde ser aproximado com

16 erros, foi aproximado neste experimento, devido ao número maior de erros permitidos,

alcançando até 26.1% e redução de literais. Mesmo nos circuitos com um número maior

de erros devido ao número de entrada, o método de manteve escalável, executando em

menos de 5 minutos.

106

A.6 Conclusão

Com o uso crescente de aplicações resilientes a erro, é de interesse o projeto de

circuitos integrados utilize esta característica para otimizar área, desempenho e consumo

energético dos circuitos. Desta forma, é importante focar no desenvolvimento de ferra-

mentas para síntese de circuitos aproximados otimizados e que sejam escaláveis.

Neste trabalho, foi proposto um método escalável para síntese de circuitos aprox-

imados dois-níveis considerando a métrica ER que utiliza as técnicas de inserção e re-

moção de cubos. Os resultados experimentais mostraram que o trabalho proposto supera

o método estado-da-arte em qualidade de resultados e em escalabilidade. O código-fonte

desenvolvido, os circuito originais utilizados e os circuitos aproximados gerados estão

disponíveis no GitHub 1.

Pretende-se estender este trabalho em duas direções futuras:

• Modificar o método utilizado para gerar circuitos aproximados considerando difer-

entes métricas que adotem a magnitude do erro. O uso dessas métricas é interes-

sante para a aproximação de circuitos aritméticos.

• Utilizar o trabalho proposto como um "aproximador local" de um método ALS

multinível. Ou seja, o uso de um método de ALS dois-níveis para aproximar sub-

circuitos de um circuito multinível pode ser relevante.

1<https://github.com/GabrielAmmes/2LALS-IR>

https://github.com/GabrielAmmes/2LALS-IR

	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation and Proposed Work
	1.2 Text Organization

	2 Preliminaries
	2.1 Boolean Function Definition
	2.2 Boolean Function Representation
	2.2.1 Truth Table
	2.2.2 Boolean Expression
	2.2.3 Programmable Logic Array
	2.2.4 Binary Decision Diagram
	2.2.5 Boolean Networks
	2.2.6 AND-Inverter Graph

	2.3 Two-level Logic Optimization
	2.4 Boolean Satisfiability
	2.5 Espresso Tool

	3 Approximate Computing Paradigm
	3.1 Error-Resilient Application
	3.2 Approximate Computing
	3.3 Approximate Circuits
	3.4 Approximate Logic Synthesis
	3.5 Error Modeling
	3.5.1 Error Metrics
	3.5.2 Error Calculation Methods

	3.6 Two-Level Approximate Logic Synthesis
	3.6.1 ER and WCE Bounded Methods
	3.6.2 ER Bounded Methods

	4 Proposed 2L-ALS Method
	4.1 Su's Cube Insertion Approach
	4.2 Data Structure
	4.2.1 Cover
	4.2.2 SICC-cube tree (SCT)
	4.2.3 Solutions

	4.3 General Description
	4.4 Cube Insertion Procedure
	4.4.1 SICC Cube-Tree Generation
	4.4.2 Combine and Estimate

	4.5 Cube Removal Procedure
	4.5.1 Speed-Up Optimization

	4.6 Post-Processing Tools
	4.7 Time Complexity Analysis

	5 Experimental Results
	5.1 Comparison to the State-of-Art Approach
	5.2 Insights About the Runtime Reduction
	5.3 Results with Error Rate
	5.4 Post-Processing Result

	6 Multilevel Comparison
	7 Conclusion
	References
	Appendix A — Resumo da Dissertação
	A.1 Introdução
	A.1.1 Motivação e Proposta

	A.2 Conceitos Preliminares
	A.3 Estado-da-Arte
	A.4 Trabalho Proposto
	A.4.1 Descrição Geral
	A.4.2 Método de Inserção de Cubos
	A.4.3 Função de Remoção de Cubos

	A.5 Resultados Experimentais
	A.5.1 Comparação com o Estado-da-Arte
	A.5.2 Resultados Considerando a Frequência de Erro

	A.6 Conclusão

