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RESUMO 

 

A Indústria 4.0 é considerada a quarta revolução industrial porque utiliza uma ampla 

integração de tecnologias de informação e de operação na fabricação industrial. Apesar 

dessa perspectiva tecnológica, diversos estudos vêm evidenciando a importância de 

considerar o fator humano para o desenvolvimento de um sistema de manufatura 

inteligente. Nesse sentido, a dimensão denominada como Smart Working precisa ser 

melhor investigada, uma vez que entender como as tecnologias afetam os trabalhadores 

e as habilidades desses são cruciais para o bom desempenho das fábricas. Em razão 

disso, o objetivo desta dissertação foi entender como as Smart Working Technologies 

(SWT) podem contribuir para as atividades e as habilidades dos trabalhadores da 

manufatura. Para tanto, primeiramente foi realizada uma análise abrangente da 

literatura para identificar as SWT e seus impactos nas capacidades dos trabalhadores 

em suas atividades de manufatura. Deste modo, foram analisados 80 artigos que 

relacionam as SWT em oito atividades de manufatura. Posteriormente, foi selecionada 

uma das SWT mais relevantes conforme a literatura, os robôs colaborativos, para 

identificar os efeitos das tecnologias nas habilidades dos trabalhadores. Deste modo, 

foram analisados 138 casos de aplicação reportados por uma das empresas 

fornecedoras líderes mundiais, bem como três entrevistas com empresas adotantes da 

tecnologia. Os resultados apontam que existem 15 SWT que podem ser implementadas 

nas atividades de manufatura e relacionadas às capacidades dos trabalhadores. Além 

disso, os resultados também apontam que podem existir quatro efeitos das SWT nas 

habilidades dos trabalhadores. Estes achados demonstram que de acordo com a 

estratégia da empresa uma SWT pode impactar de diferentes formas os trabalhadores. 

 

 

Palavras-chave: Tecnologias do Trabalho inteligente; Indústria 4.0; Manufatura; 

Trabalhadores; Habilidades. 
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ABSTRACT 

 

Industry 4.0 is considered the fourth industrial revolution because it uses a broad 

integration of information and operating technologies in industrial manufacturing. 

Despite this technological perspective, several studies have highlighted the importance 

of considering the human factor to develop a smart manufacturing system. In this sense, 

the Smart Working dimension needs to be further investigated since understanding how 

technologies affect workers and their skills are crucial for factories' good performance. 

Therefore, the objective of this dissertation was to understand how Smart Working 

Technologies (SWT) can contribute to the activities and skills of manufacturing workers. 

To this end, firstly a systematic literature review was carried out to identify SWTs and 

their impacts on workers' capabilities in their manufacturing activities. Thus, 80 articles 

relating to SWT in eight manufacturing activities were analyzed. Subsequently, one of 

the most relevant SWTs according to the literature, collaborative robots, was selected 

to identify the effects of technologies on workers' skills. In this way, 138 application 

cases reported by one of the world's leading supplier companies were analyzed, as well 

as three interviews with companies that adopted the technology. The results show that 

there are 15 SWT that can be implemented in manufacturing activities and related to 

workers' capabilities. In addition, the results also point out that there may be four effects 

of SWT on workers' skills. According to the company's strategy, these findings 

demonstrate that an SWT can impact workers in different ways. 

 

Keywords: Smart working technologies; Industry 4.0; Manufacturing; Workers; Skills. 
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1 INTRODUCTION 

Industry 4.0 (I4.0) can be defined as the new industrial stage in which integrating emerging 

technologies with organizational concepts and principles is used to create industrial value (Frank 

et al., 2019; Ivanov et al., 2021).  In many situations, the technological nature of I4.0 presents 

conflicts concerning manufacturing workers, being presented as a threat to the future of jobs 

(Autor et al., 2020; Schuh et al., 2020). However, many studies suggest that this is not necessarily 

the way to go for most companies, as workers remain necessary and valuable for flexible 

operations (Fantini et al., 2020; Peruzzini et al., 2020). Therefore, although I4.0 is a trend in 

practice and research, the dimension of Smart Working, the impacts of I4.0 technologies on 

workers, and the effects on workers' skills due to I4.0 technologies are still points that deserve 

further discussion (Ivanov et al., 2021; Meindl et al., 2021). 

Given this context, it becomes relevant to investigate which technologies have the potential to 

support manufacturing workers and in which manufacturing activities these technologies can 

help workers. This is because, through the Human-Technology symbiosis, workers' capabilities 

can be leveraged, benefiting them in the various activities they need to perform (Romero et al., 

2020). With this, smart factories will act as socio-technical systems that, based on digital 

technologies, will help people perform their activities even better (Marcon et al., 2021; Romero 

et al., 2020). 

In addition to identifying technologies and potential activities in which they can help workers, it 

is also essential to understand the effects of technologies on workers when they are 

implemented. That is, considering that with the implementation of technologies, manufacturing 

activities can be modified, workers need to align their skills according to the new context (Perini 

et al., 2017). Generally speaking, the implementation of technologies can positively or negatively 

affect workers (Parker et al., 2017). Substitution, deskilling, and upskilling of workers' activities 

may occur among these effects (Dworschak & Zaiser, 2014; Hirsch-Kreinsen, 2016). In addition, 

it is also possible to identify the stage of reskilling in which, due to the implementation of the 

technology, the worker needs to develop new skills to operate it (Rangraz & Pareto, 2021). 

In this sense, we first sought to carry out a comprehensive review of Smart Working 

Technologies (SWT), showing how each of them can impact the capabilities of workers according 

to the typology by Romero et al. (2016) and for which manufacturing activities they are 

implemented (Bueno et al., 2020; Hinckeldeyn et al., 2014; Á Segura et al., 2020). Then, we 

sought to select one of the most relevant SWTs according to the literature, collaborative robots 

(Dornelles et al., 2022), to identify the effects of technologies on the activities of manufacturing 

workers considering the human-robot collaboration level (Bauer et al., 2016; Wang et al., 2019) 
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and the manufacturing workers’ activities (Bueno et al., 2020; Hinckeldeyn et al., 2014; Á Segura 

et al., 2020). 

 

1.1 OBJECTIVES 

This dissertation aims to understand how SWTs can contribute to manufacturing activities and 

affect workers’ skills in the context of Industry 4.0 in manufacturing companies. 

This general objective is built based through two specific objectives: 

 

1) To identify SWTs and define in which manufacturing activities they are implemented, 

highlighting the capabilities of workers that can be impacted. In this sense, we seek to 

answer the following questions: How can Industry 4.0 technologies contribute to 

workers' activities for a Smart Working-based manufacturing system? What are the 

contributions and limits of the use of such technologies? We used the typology by 

Romero et al. (2016) to classify the SWTs and the manufacturing activities related to the 

workers’ capabilities. 

 

2) To define the SWT effects on workers in their manufacturing activities. For this, we 

selected the collaborative robots (a relevant SWT according to the literature) to define 

the final structure of the dissertation (Figure 6). So, we sought to answer: How can the 

implementation of collaborative robots affect manufacturing workers in their activities? 

We performed a conceptualization about the effects of technologies on workers 

activities based on the types of human-robot collaboration according to Bauer et al. 

(2016) and Wang et al. (2019) considering observations, application cases of a supplier 

company, and interviews with provider managers, adopters and competitors of 

collaborative robots global Market. 

 

These two specific objectives were developed in two independent and complementary articles 

articulated around a previous study carried out by Frank et al. (2019) that present the Smart 

dimensions of Industry 4.0. In this way, we deepened our analysis in the Smart Working 

dimension and its technologies aiming at the context of manufacturing companies and workers. 
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1.2 RESEARCH METHODS 

We adopted a qualitative approach to achieve the two specific objectives of this 

dissertation. In the first article, linked to the achievement of specific objective one, we carried 

out a Systematic Literature Review (SLR) based on the five-step method of Denyer & Tranfield 

(2009), which is appropriate for research related to the area of operations management. In the 

second article, we carried out a case study with an inductive approach to conceptualize the 

effects of SWTs on the activities of manufacturing workers through document analysis, 

interviews and observations. To carry out this study, we deepened our analysis around 

collaborative robots, a prominent technology among SWTs in I4.0. Figure 1 summarizes the 

objectives of each article and the method. 

The first article, “Smart Working in Industry 4.0: How digital technologies enhance 

manufacturing workers' activities”, comprises an SLR considering the full reading of 80 scientific 

articles that contained I4.0 technologies applied in manufacturing activities. Through the SLR 

steps proposed by Denyer & Tranfield (2009), it was possible to identify 15 SWTs applied in eight 

manufacturing activities. Thus, we relate these findings to the capabilities typology by Romero 

et al. (2016), showing that different technologies can be implemented in manufacturing 

activities to improve workers. 

The second article, “Using collaborative robots to create Industry 4.0 smart working 

environments: impacts on manufacturing workers' skills”, search through a case study inductive 

approach based in documental review, interviews, and technology observation conceptualized 

the SWTs’ effects in manufacturing workers’ activities. To realize this conceptualization, we used 

collaborative robots case applications and human-robot collaboration classification by Bauer et 

al. (2016) and Wang et al. (2019) to validate the concepts. 
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Figure 1 - Methodological structure of the dissertation 

1.3 PRACTICAL AND THEORETICAL CONTRIBUTIONS 

This dissertation presents practical and theoretical contributions. Among the theoretical 

contributions, through Article 1, we show the Smart Working Technologies (SWT), we expand 

the concept of Operator 4.0 to other occupational categories, such as technicians and engineers, 

supporting the concept of Worker 4.0. In addition to these, from Article 2, we also determine 

the types of effects cobots have on worker skills and how they relate to levels of human-robot 

interaction. As practical contributions, in Article 1, we demonstrate the technologies that can 

contribute to workers and their benefits and limitations. Furthermore, we also clarified which 

manufacturing activities can be supported by these technologies helping in the design of Smart 

Working environments. Through Article 2, we built a framework that can help in the decision-

making process of implementing cobots for different activities. In addition, we clarified the kind 

of effect workers suffer from cobots. 

 

1.4 STUDY LIMITATIONS 

The main limitation of this study is to consider only one of the SWTs to validate the types of SWT 

effects on workers. Although we used collaborative robots in the analysis, a prominent 

technology in I4.0 and also relevant to supporting manufacturing workers (Dornelles et al., 2022; 

Østergaard, 2017), other studies could test with other SWT if these effects can also be related 

to them. 

Another relevant limitation is the specific analysis of traditional manufacturing activities, which, 

as suggested (Frank et al., 2021), can be modified or even extinguished as industries implement 
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digital age technologies. Thus, due to the speed in the advancement of technology 

implementation, new manufacturing activities may arise and require new studies to evaluate 

the concepts proposed in this dissertation. 

In addition, other limitations are described in the body of each of the articles in more detail and 

other suggestions for future studies. 
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ABSTRACT 

Prior studies have investigated the relationship between Industry 4.0 technologies and work. 
This paper acknowledges the contributions of such studies and builds on their perspective to 
broaden the understanding of the contribution of Industry 4.0 technologies to specific worker 
capabilities and manufacturing activities. The aim is to build a conceptual framework to 
consolidate a common view on this growing yet fragmented issue by integrating a wide range of 
findings from the literature. The study adopts a systematic literature review approach to 
systematize such knowledge in a singular and consolidated perspective on Industry 4.0 
technologies and work. The study analyzes 80 papers in this field and investigates how different 
Industry 4.0 technologies are related to workers’ manufacturing activities. Eight main 
manufacturing activities were considered to frame the analysis: assembly, maintenance, 
training, quality control, movement, machine operation, product and process design, and 
production planning and control. Eight worker capabilities that Industry 4.0 technologies can 
enhance were also considered: super-strength capability, augmented capability, virtual 
capability, healthy capability, smart capability, collaborative, social capability, analytical 
capability. Based on these 80 papers, this paper conceptualizes Smart Working-related 
technologies for Operators 4.0 and shows their benefits and limitations as described in the 
literature. The study shows how these manufacturing activities and worker capabilities can be 
supported by Industry 4.0 technologies, which is useful for future research and the design of 
operational processes in the Industry 4.0 context. 
 

Keywords: Industry 4.0; Digital technologies; Smart Working; Operator 4.0; Workforce; 

Manufacturing. 
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1. INTRODUCTION 

Industry 4.0 has been proposed as a new maturity stage of industrial activities driven by four 

base technologies: Internet of Things (IoT), Cloud Computing, Big Data, and Analytics (Frank et 

al., 2019). These technologies support other front-end Industry 4.0-related technologies such as 

robotics, virtual reality, and 3D printing to configure a cyber-physical system (Dalenogare et al., 

2018). The technological nature of Industry 4.0 has sometimes put this concept at odds with the 

workforce and jobs (Autor et al., 2020, Schuh et al., 2020). For some scholars, an advanced level 

of Industry 4.0 means high automation and independence from operational workers, using 

workers only for cognitive tasks on the shopfloor (Dinlersoz and Wolf, 2018, Fallaha et al., 2020, 

Weichhart et al., 2019). Perhaps unintentionally reflecting this perspective, the highest level of 

the German Academy of Science and Technology (ACATECH) Industry 4.0 maturity index is 

represented by autonomous production systems, which considers machines able to make 

decisions and adjust operations without workers’ intervention (Schuh et al., 2020). However, a 

growing stream of the literature has suggested that this is not necessarily the path for most 

companies to follow, as workers are still necessary and valuable for operations (e.g., Fantini et 

al., 2020, Peruzzini et al., 2020). In the Industry 4.0 context, Romero et al. (2016) dubbed these 

workers “Operators 4.0”, referring to the fact that they are enabled by smart technologies to 

perform their work. Moreover, Frank et al., 2019 called attention to the Smart Working 

dimension of Industry 4.0, suggesting that work processes can be part of the Industry 4.0 

concept and, in such a case, rather than replacing workers, Industry 4.0 should play a role in 

enabling workers for improved productivity. In the same vein, the European Commission has 

acknowledged the relevance of creating human-centered manufacturing to be more resilient 

and sustainable, which has been named Industry 5.0 and is considered a complementary and 

expanded view to Industry 4.0 (Breque et al., 2021). All these perspectives provide a similar 

argument: that workers need to be enhanced by digital technologies in this new industrial age. 

However, as recently evidenced by Meindl et al. (2021) in an extensive literature review 

(examining over 5000 papers) on the ten years of research in the Industry 4.0 field, the Smart 

Working dimension is still the least investigated one in the Industry 4.0 domain, representing 

the main gap for future research to fill in this area. Meindl et al. (2021) showed that the interface 

between Operators 4.0, the technologies used, and the several operations processes that need 

to be executed to obtain a Smart Working approach is still unclear. Other studies like those 

sponsored by the MIT Work of the Future Initiative (Autor et al., 2020) have stressed that it is 

still uncertain how advanced and digital technologies may impact or enable workers in the new 

digital transformation domain. The Initiative has empirically investigated this relationship 

showing that its effects can be twofold: jobs may be affected by technologies, but technologies 
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can also enhance workers' capabilities to achieve higher productivity levels (Autor et al., 2020). 

Recent studies in the Operations Management field have been proposed to consider aspects of 

the dynamics between Industry 4.0 digital technologies and work, shedding some light on 

themes such as human-system interfaces (Grandi et al., 2020, Longo et al., 2017, Peruzzini et al., 

2020), the different ways how humans can use wearables in the industrial context (Khakurel et 

al., 2017), and the impact of digital technologies on work design (Cagliano et al., 2019). 

Complementary studies have pointed to the contributions of technologies for cognitive aspects 

such as design (Peruzzini et al., 2018), production planning and control (Bueno et al., 2020), and 

shopfloor decision-making activities (Soban et al., 2016). These make up an incipient body of 

evidence starting to fill the gap referred by Meindl et al. (2021). 

Indeed, research on human-centered Industry 4.0 has recently grown, and some contributions 

of Industry 4.0 technologies to manufacturing work are becoming clearer (Cagliano et al., 2019). 

Nevertheless, a broader view of the relationship between these technologies and workers' 

activities is still to be consolidated (Ghobakhloo et al., 2021, Meindl et al., 2021). Because 

workers' activities need to adapt as new technologies are implemented (Trstenjak & Cosic, 

2017), it is now crucial to understand how this happens. Moreover, since the nature of work is 

complex (Longo et al., 2017), scholars should not treat operational work processes as a black 

box. Manufacturing may involve several types of activities; likewise, Industry 4.0 technologies 

can make different contributions for each of them (Frank et al., 2019). While extant studies only 

focus on the direct relationship between Industry 4.0 technologies and workers (Romero et al., 

2016, Ruppert et al., 2018), a deeper understanding demands to consider the context where it 

happens, i.e., the type of manufacturing activities (Kirikova et al., 2012). Meindl et al. (2021) 

showed that the literature responding to these challenges is growing but still fragmented in 

several unconnected streams of research. Therefore, the following research questions are 

proposed: How can Industry 4.0 technologies contribute to workers' activities for a Smart 

Working-based manufacturing system? What are the contributions and limits of the use of such 

technologies? 

Rather than following the trend of an empirical investigation on Industry 4.0 technologies and 

work (e.g., Fantini et al., 2020, Peruzzini et al., 2020), this study acknowledges the contributions 

of previous studies taking such a perspective to broaden the understanding of the contribution 

of Industry 4.0 technologies to work activities, but also remark that a better framework is 

needed to build a common view on this issue. Therefore, this study adopts a systematic 

literature review approach to answer the research question, aiming to systematize such 

knowledge in a singular and consolidated perspective on Industry 4.0 technologies and work. 

The study analyzes 80 papers in this field and investigates how different Industry 4.0 
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technologies are related to workers' manufacturing activities. Eight main manufacturing 

activities were considered to frame the analysis, namely (Bueno et al., 2020, Hinckeldeyn et al., 

2014, Segura et al., 2020): assembly, maintenance, training, quality control, movement, machine 

operation, process, and product design, and production planning and control. By analyzing these 

80 papers, the study conceptualizes Smart Working technologies for Operators 4.0 and shows 

their benefits and limitations as described in the literature. The results show how these 

manufacturing activities can be supported by Industry 4.0 technologies, which is useful for 

future research and the design of operational processes in the Industry 4.0 context. 

 

2. THEORETICAL BACKGROUND 

2.1. INDUSTRY 4.0 AND SMART WORKING 

According to Frank et al. (2019), Industry 4.0 technologies can be divided into base and front-

end technologies. Base technologies are general-purpose technologies that provide connectivity 

and intelligence for front-end technologies. Base technologies can be summarized as four: 

Internet of Things, Cloud Computing, Big Data, and Analytics (which include passive analytics 

and artificial intelligence) (Frank et al., 2019). Base technologies allow front-end technologies 

(technology applications) to be connected to a fully integrated manufacturing system (Tao et al., 

2018, Wang et al., 2016). The front-end technologies supported by base technologies consider 

four ‘smart dimensions’ – Smart Manufacturing, Smart Products and Services, Smart Supply 

Chain, and Smart Working – which become the focus of Industry 4.0 technology application 

(Meindl et al., 2021). Smart Manufacturing considers the application of technologies to make 

the production system more ‘intelligent’; Smart Product-Service System considers the provision 

of connected products and services that integrate the customer with the manufacturing activity 

(Frank et al., 2019), and Smart Supply Chain considers how to integrate the supply chain with 

manufacturing activities (Benitez et al., 2021). A final but equally important dimension is Smart 

Working, which is expected to support the other ‘smart’ dimensions (Meindl et al., 2021). The 

study focuses the attention on this dimension because it acknowledges that, as well as the other 

smart dimensions, workers may also be the focus of technology application (Frank et al., 2019). 

While the other three smarts focus technology applications on creating intelligent and 

automated systems, Smart Working enhances workers with technology-enabled capabilities 

(Romero et al., 2016, Ruppert et al., 2018). 

The Smart Working dimension is especially important when companies aim to increase their 

manufacturing system's flexibility because it considers the workers the most adaptable and 

resilient element in the manufacturing socio-technical system (Marcon et al., 2021). Smart 
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Working can be considered an expansion of the Operator 4.0 concept proposed by Romero et 

al. (2016) and is in line with the human-centered manufacturing proposed by those that 

suggested a new emergent Industry 5.0 concept (Breque et al., 2021). While the Operator 4.0 

perspective is centered on workforce capacity, the Smart Working dimension takes a broader 

outlook on the work processes and the way tasks are executed in the manufacturing field (Frank 

et al., 2019, Meindl et al., 2021). It borrows the concept from the organizational management 

literature, in which Smart Working focuses on 'doing the work differently' and is enabled by 

digital tools (Bednar & Welch, 2020). The study follows this view because it considers 

operational and managerial manufacturing activities in the Industry 4.0 context, involving 

cognitive and routine processes demanded by workers. In this sense, the Smart Working 

dimension can reach a broader understanding that considers the activities of operators, 

managers, and engineers in the manufacturing field. Additionally, while the Industry 5.0 concept 

has embraced society development together with the human role in manufacturing systems 

(Breque et al., 2021), the Smart Working concept preserves the Industry 4.0 concept, but it 

enhances the worker role into this concept, which is still emerging (Meindl et al., 2021). 

The Smart Working dimension of Industry 4.0 considers a set of technologies that can support 

workers to increase their productivity and flexibility to meet the manufacturing system's 

requirements (Kagermann et al., 2013, Stock et al., 2018). For instance, augmented reality may 

be used in design projects (Bruno et al., 2019), assembly operations (Lai et al., 2020), training 

(Tao et al., 2019, Tao et al., 2019), and quality control (Tarallo et al., 2018). Similarly, virtual 

reality may be used for training and assembly (Gorecky et al., 2017, Roldán et al., 2019). 

Collaborative robots, in turn, have diverse applications, including movement, operation, 

assembly (Calzavara et al., 2020, Cherubini et al., 2019, Weckenborg et al., 2020), and 

maintenance (Koch et al., 2017). These are just a few examples of technologies that support the 

worker and are part of the Smart Working dimension. The concept of 'Operator 4.0′ by Romero 

et al. (2016) describes typologies of operators that use different advanced technologies to 

improve physical, sensory, and cognitive capabilities in integration with the human cyber-

physical system. The interactions between operators and machines, wearable technologies, 

sensors, or other technologies increase operator capabilities, enabling a better adaptation to 

the new work environment recreated by Industry 4.0 (Fallaha et al., 2020). However, although 

digital technologies are presented as useful for Smart Working, the literature has also suggested 

some limitations. For instance, it has been observed that the effects of smart glasses may be 

either positive or negative depending on the type of activity and each worker's profile 

(Dalenogare et al., 2019). Studies on other wearables also reported similar constraints (e.g., 

Longo et al., 2020, Simões et al., 2019). Therefore, the Smart Working literature also presents 
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challenges that should be investigated before assuming this as an always positive approach for 

workers (Meindl et al., 2021). Therefore, this study collects evidence from both positive and 

negative perspectives to pursue a better understanding of the relationships between emerging 

technologies in Industry 4.0 and particular work settings. 

 

2.2. SMART WORKING AND MANUFACTURING ACTIVITIES 

Industry 4.0 has been related to operational or manufacturing activities in prior studies (Romero 

et al., 2016, Ruppert et al., 2018). Romero et al. (2016) considered different workers' capabilities 

that can be enabled by Industry 4.0 technologies: (i) the super-strength operator considers 

technologies such as exoskeleton to support physical-dependent activities, increasing strength 

and resistance; (ii) the augmented operator uses augmented reality to enrich workers' 

interaction with their real manufacturing environment; (iii) the virtual operator, considers the 

use virtual reality tools to create an immersive interaction and simulate the manufacturing 

environment virtually; (iv) the healthy operator uses wearable devices to measure health-

related conditions, location, and personal data; (v) the smarter operator is supported by an 

intelligent personal assistant to improve the human–machine interface; (vi) the collaborative 

operator uses collaborative robots to perform joint activities; (vii) the social operator is 

supported by social networks to quickly address any challenges arising in the activities; and (viii) 

the analytical operator uses tools like big data and artificial intelligence to support decision-

making processes. 

Complementarily to this view from Romero et al. (2016), this present paper analyzes Smart 

Working in the Industry 4.0 context from another point of view by including the main 

manufacturing activities. Segura et al. (2020) described the manufacturing activities of the 

Operators 4.0 in six main types: assembly, maintenance, quality control, training, inventory (or 

material movement), and machine operation. In order to detail these six manufacturing 

activities, the assembly activity can be defined as the set of operations (actions) performed on 

a series of components (resources) that must follow a particular order and certain conditions 

(Tarallo et al., 2018). Maintenance comprises planned and unplanned actions taken to keep the 

equipment in acceptable operating conditions (Wang et al., 2007). Quality control is an activity 

to ensure the stability of process parameters by evaluating the actual performance and 

comparing it with specifications (Juran & De Feo, 2010). Training is a necessary activity to 

transfer knowledge and skills to new workers, which in the manufacturing field has a strong 

learning-by-doing component (Marchi et al., 2019; Peniche et al., 2012). Material movement 

activities consider handling materials, components, and products on the shop floor to keep the 

inventory organized (Hicks, 2007). Machine operations consider one of the operators' main 
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activities: using their skills and knowledge to handle the production equipment to execute 

operational processes (Seider et al., 2019). 

In addition to the routine (and sometimes non-cognitive) activities described above, work can 

also involve cognitive and non-routine activities (Autor and Handel, 2013, Frey and Osborne, 

2017). Therefore, the study extends these manufacturing activities to two additional aspects 

considered in the operations management literature: production planning and control (Bueno 

et al., 2020) and product and process design (Hinckeldeyn et al., 2014), which are also 

considered fundamental activities for smart manufacturing systems and can be supported by 

digital tools. Production planning and control activities involve cognitive activities necessary to 

define how, when, and how much to produce in the manufacturing activities. Then, the 

production execution follows up to verify any differences from the initial plan (Stevenson et al., 

2005). Bueno et al. (2020) have shown that smart production planning and control is also a key 

activity in the Industry 4.0 model, which can be supported by a human–machine interface for its 

execution. Besides, process and product design are also activities of the Industry 4.0 field since 

the end-to-end engineering principle proposed by the Industry 4.0 concept requires product 

design to be connected with the manufacturing activities (Dalenogare et al., 2018). This activity 

is also highly dependent on workers, but these are different from the workers involved in the 

manufacturing routine since they execute highly cognitive, non-routine, and creative activities 

that also require the support of digital tools (Frey & Osborne, 2017). Therefore, this paper 

integrates these eight manufacturing activities, six from Segura et al. (2020) and two from 

complementary literature, to consider how Industry 4.0 technologies can support such activities. 

This study also aims to relate these manufacturing activities with the enhanced worker 

capabilities proposed by Romero et al. (2016) to provide a better overview of the use of Industry 

4.0 technologies in work. 

 

3. RESEARCH METHOD 

A Systematic Literature Review (SLR) was conducted to systematize the body of research on 

Industry 4.0 technologies and work (Okoli & Schabram, 2010). Five stages of SLR proposed by 

Denyer & Tranfield (2009) were adopted, which are (i) Research formulation; (ii) Studies 

identification; (iii) Selection and evaluation of studies; (iv) Analysis and synthesis of results and; 

(v) Presentation of results (the latter is presented in Section 4). Scholars have successfully 

implemented this method in the Operations Management field and the Industry 4.0 context 

(Liboni et al., 2019, Núñez-Merino et al., 2020, Rauch et al., 2020). 
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3.1. RESEARCH FORMULATION 

Regarding the formulation of the research question, two main questions were defined, as 

presented in the introduction: How can Industry 4.0 technologies contribute to workers’ 

activities for a Smart Working-based manufacturing system? Moreover: What are the 

contributions and limits of the use of such technologies? A conceptual framework was 

formulated to support the analysis of the research questions (Section 2). Eight manufacturing 

activities of workers were considered (Segura et al., 2020, Bueno et al., 2020, Hinckeldeyn et al., 

2014): (i) assembly, (ii) maintenance, (iii) quality control, (iv) materials movement, (v) training, 

(vi) machine operation, (vii) production planning and control, and (viii) product and process 

design. Additionally, eight technology-enabled workers’ capabilities proposed by Romero et al. 

(2016) for the Operators 4.0 were considered. The conceptual framework supported the 

investigation of technologies and data analysis. 

 

3.2. IDENTIFICATION OF STUDIES 

The second stage of the SLR method aimed to locate studies related to the research question 

and relevant to the intended analysis. Thus, an essential step comprised choosing the 

appropriate search engines, defining search queries, and using the conventions for search 

(Denyer & Tranfield, 2009). Scopus and Web of Science (WoS) databases were adopted as search 

engines because they comprehend most of the operations management and industrial 

engineering journals that comprise this study's scope (Meindl et al., 2021). As search queries, 

keywords and titles were reviewed to identify a set of Industry 4.0 and work terms. The search 

queries were defined based on keywords used in previous literature reviews addressing topics 

related to smart manufacturing and work (Kamble et al., 2018, Liao et al., 2017, Liboni et al., 

2019, Núñez-Merino et al., 2020, Rauch et al., 2020, Zarte et al., 2020, Zheng et al., 2021). 

Furthermore, seminal studies in the Industry 4.0 field were included based on the number of 

citations and alignment with the research topic (e.g., Dalenogare et al., 2018, Frank et al., 2019, 

Romero et al., 2016). Hence, as the research objective of this paper is to offer an overview of 

Industry 4.0 technologies and manufacturing work activities, the research strings were designed 

to find the documents included in this intersection. 

The search string was constructed using logical and Boolean operators to find studies with at 

least one of the keywords in each of the two main search query groups in the title, abstract, or 

keywords for Scopus database, and in the topic (title, summary, author's keywords, expanded 

keywords) in WoS. A total of nine keywords for the smart manufacturing set and nine for the 

work set were used. These keywords, as well as the strings used in the databases, are shown in 
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Table 1. The table also shows that the Industry 4.0 term was limited to the manufacturing 

domain since broader concepts may include the other smart dimensions described by Frank et 

al. (2019). However, this present study aimed to consider only the internal manufacturing 

processes in which Industry 4.0 technologies may support workers. 

 

Table 1 - Search keywords and strings 

Industry 4.0 Worker 

"industry 4.0" "work 4.0" 

"industrie 4.0" "operator 4.0" 

"industrial internet" "cyber physical human system" 

"smart factory" "human cyber physical system" 

"smart manufacturing" "smart work" 

"digital manufacturing" "work place" 

"intelligent manufacturing" Worker 

"factory 4.0" Employee 

"smart production" "human-centred" 

"industry 4.0" OR "industrie 4.0" OR "industrial internet" OR "smart factory" OR "smart 
manufacturing" OR "digital manufacturing" OR "intelligent manufacturing" OR "factory 4.0" OR "smart 
production" AND "work 4.0" OR "operator 4.0" OR "cyber physical human system" OR "human cyber physical 
system" OR "smart work" OR "work place" OR worker OR employee OR "human-centred" 

 

By using these keywords and search terms, a total of 2307 articles were identified in the 

databases consulted, 842 of them in WoS and 1465 in Scopus. The terms used in the search were 

all in English, except for the German term Industrie 4.0, included because the concept was 

coined in Germany, and some papers still use the term in the original language. 

 

3.3. SELECTION AND EVALUATION OF STUDIES 

The next step aimed to filter the studies found in the previous step and select relevant ones for 

the subsequent analysis (Okoli & Schabram, 2010). Fig. 1 represents the selection flow, in which 

some inclusion and exclusion criteria were defined to address the research questions. These 

criteria must be explicit so that decisions can be evaluated and updated (Denyer & Tranfield, 

2009). First, some filters were applied in the databases to export the studies subject to more 

careful evaluation. Thus, the search was limited to studies published from 2011 to April 2021, 

i.e., from when the Industry 4.0 concept was coined at the Hannover Fair (Pfeiffer, 2017) until 

the date when this present research was performed. A filter was then used to limit the search 

fields to manufacturing, engineering, management, business, and applied computer sciences, 

which are the most commonly focused on the investigated topics (Meindl et al., 2021). 

Additionally, the document type filter was applied, selecting the option 'article' since these are 

the most relevant, peer-reviewed works to reinforce the scientific nature of this systematic 

review. Finally, a language filter was applied because the most relevant studies in the research 
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area were published in English. Based on these filters, 152 articles were initially extracted from 

WoS and 383 from the Scopus database. Upon extraction, these studies were entered into a 

reference manager in which 125 duplicate articles were eliminated, resulting in a set of 410 

studies. Next, the procedure was to verify whether the studies in the set had the full text 

available or not. Eight documents were removed because the full text was not available (only 

title, abstract, and keywords), resulting in 402 articles. Subsequently, the title, abstract, and 

keywords of the articles were manually analyzed. Studies that were not related to the research 

questions (322 exclusions) were excluded. In this case, articles that did not address Industry 4.0 

technologies and/or manufacturing activities were excluded. As a result, 80 articles were read 

in full for the stage of analysis and detailed synthesis. The manual analysis of the initial refined 

sample (402 articles) and the complete review of the final 80 articles were performed by three 

researchers with the support of two research assistants. Fig. 2 summarizes the systematic review 

method adopted in this study, covering all stages and applied filters. 

 

 

 

Figure 2 - Summary of the systematic review method 
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3.4. ANALYSIS AND SYNTHESIS OF THE RESULTS 

The analysis and synthesis of results aimed to group the individual studies, describing their 

relations. Thus, information was first extracted and stored according to the investigated issues 

and the details observed were included (Denyer & Tranfield, 2009). Thus, this step was carried 

out by reading the selected documents in full, seeking to identify the intended elements of the 

research. In this sense, the procedure to identify and analyze Smart Working technologies and 

associate them with manufacturing activities and workers' capabilities was based on a content 

analysis approach in which the meaning and the categorization rules were used (Bardin, 1977). 

The meaning rule considers identifying common issues that are clustered according to the 

interpretation given to their meaning (Bardin, 1977). The categorization rule adopted defines 

the name of the groups at the end of the construction, according to the semantic criteria, and 

classified according to the general meaning of the elements from each category (Bardin, 1977). 

Thus, we grouped Industry 4.0 technologies cited in the work context to define their meanings 

and names at the end of the grouping process. The establishment of meanings supported by 

previous seminal studies related to smart, such as Romero et al., 2016, Frank et al., 2019, and 

Meindl et al. (2021). These studies helped create the initial meanings that define Smart Working 

technologies and workers' capabilities potentially enhanced by these technologies. The initial 

labels were expanded by reviewing the identified papers. The meaning rule demanded that the 

papers mention specifically Industry 4.0 technologies that help manufacturing workers. Thus, 

Industry 4.0 technologies were included in the Smart Working technologies list only when 

associated with workers. 

Moreover, the meaning rule also considered manufacturing activities and workers' capabilities 

as described in Section 2.2. Synonyms related to these labels were used to capture the context 

described in the paper. For instance, when the technology was described as being used by 

workers to support their interaction with machines, better manufacture product parts, operate 

the production process, or any similar meaning, it was attributed to the 'machine operation' 

manufacturing activity. The description of what technologies do in such context also helped to 

classify the relationships. For instance, a paper describing how the worker handles equipment 

through a technology to manufacture a component was associated with 'machine operation' 

given its clear context-relation. Complementary information about these technologies' positive 

and negative impacts was extracted from those papers that mentioned such characteristics. 

Again, a meaning rule was used to adopt synonyms to positive or negative impacts, such as 

benefits and problems, advantages and disadvantages, etc. Some examples of excerpts that 

explain the positive effects of technologies on manufacturing processes are cited: “the 

collaborative robot enables the manipulation of large and heavy objects”, “augmented reality 
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improves the efficiency and learning of workers”, “through the use of wearable devices, 

production planning, and control workers can control and access real-time location information 

improving planning and control” and “through industrial social networks companies can 

establish and continuously update a repository of best practices for engineering problems”. 

Some examples of excerpts collected in industry 4.0 technology studies that negatively impact 

workers are cited: “collaborative robots can reduce task efficiency since the robot can be slower 

than human”, “with augmented reality the operator uses instructions in the field of view when 

performing an assembly task; however when the worker already knows the process it can 

generate worse results”, “the size and culture of the company can impact the good use of 

wearable devices by operators” and “workers may hesitate to share knowledge through 

industrial social networks”. 

Three researchers helped to review the papers and classify the contents using these rules. Two 

of them had the main role of clustering technologies and relating them to manufacturing 

activities and workers' capabilities. At the same time, the third researcher acted as a judge of 

when different interpretations were given to a specific technology. After the second round of 

review, all cases achieve convergency between the researchers. An additional external validity 

approach was employed to reinforce the correct interpretation and ensure that there was no 

bias by the three researchers. The researchers compared the obtained results with empirical 

evidence from 46 business reports on Industry 4.0 and work to check for external validity. The 

most important reports from this list were: a) “MIT Work of the Future Final Report: The Work 

of the Future: Building Better Jobs in an Age of Intelligent Machines” (Autor et al., 2020), b) 

“Workforce of the future: The competing forces shaping 2030″ (PWC, 2018), c) ”Preparing Brazil 

for the future of work: jobs, technology and skills“ (Mckinsey, 2018), d) ”The Future of Jobs 

Report“ (WEF, 2018), e) ”The Future of Jobs: Employment, Skills and Workface Strategy for the 

Fourth Industrial Revolution“ (WEF, 2016). Since such business Workforce report detailed case 

studies on different technologies, they were used to double-check the coherence of the analyses 

performed in this present study. 

 

4. RESULTS AND DISCUSSION 

The results were divided into three subsections. The first subsection conceptualizes each of the 

Industry 4.0 Smart Working technologies described in the literature. The second section shows 

how these technologies are related to the different workers’ manufacturing activities. Finally, in 

the last section, several benefits and impacts described in the literature were analyzed and 

connected to the findings with the worker capabilities described by Romero et al. (2016). 
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4.1. WHICH INDUSTRY 4.0 TECHNOLOGIES CONTRIBUTE TO SMART WORKING 

In the studies analyzed in this SLR (see Appendix), 15 technologies related to manufacturing 

work were identified, all Smart Working technologies, as shown in Table 2. Table 2 presents the 

technologies, their definitions concerning workers, and the studies in the sample citing these 

technologies. 

 

Table 2 - Technologies related manufacturing activities 

Technologies Definitions Studies 

Augmented 
reality (AR) 

The workplace is improved by facilitating the visualization of 
information from factory data relevant for the performance of 
workers' activities (Álvaro Segura et al., 2020). 

[2] [3] [4] [8] [10] [11] 
[13] [14] [15] [16] [17] 
[18] [21] [23] [25] [27] 
[28] [29] [32] [34] [40] 
[48] [49] [50] [56] [60] 
[62] [74] [77] [78] 

Collaborative 
robots (CR) 

A collaborative robot (cobot) is a complex machine that can 
physically interact with operators during assembly and 
manufacturing activities by sharing the workspace safely and 
assisting repetitive and non-ergonomic tasks (Calzavara et al., 
2020; Romero et al., 2016). 

[1] [9] [11] [15] [20] [24] 
[31] [35] [38] [39] [41] 
[49] [52] [59] [60] [64] 
[65] [70] [79] [80] 

Virtual reality 
(VR) 

The virtual reality (VR) technology enables immersive interaction 
and simulation with security and real-time feedback, enabling the 
safe use of dangerous equipment and improving the learning of 
procedures (Romero et al., 2016; Álvaro Segura et al., 2020). 

[10] [12] [17] [32] [37] 
[59] [60] [68] [69] [73] 

Wearable 
devices (WD) 

A wearable technology or wearable device can be described as a 
piece of clothing, bracelet, or smartwatch designed to collect 
workers' health data and track operator movement, promoting the 
best management of this information (Longo et al., 2020; Romero 
et al., 2016). 

[3] [8] [33] [46] [55] [57] 
[59] [66] [67] [76] 

Environment 
and machine 
sensors (SENS) 

Sensors are used to capture data and communicate between 
various actors (machines, equipment, and people). Together with 
the IoT (Internet of Things), it allows for the detection of any object 
and its connection to a wider system allowing the operator to 
discover useful information and predict relevant events in real time 
(Boyes et al., 2018; Romero et al., 2016). 

[7] [8] [24] [42] [53] [75] 
[76] 

Automation 
(AUT) 

Automation, also known as advanced robotics, can be 
characterized as adaptable and flexible robots without human 
intervention. The machines operate autonomously, guided by pre-
established parameters, improving performance and enriching the 
work of operators (Margherita & Braccini, 2020; Sacomano et al., 
2018). 

[19] [36] [45] [49] [63] 

Voice-enabled 
assistant (VEA) 

Voice-enabled assistants (VEA) are technologies to interact with 
workers using voice, giving them intuitive access to varied 
information and improving the human-machine interface and 
information management (Longo & Padovano, 2020; Romero et al., 
2016).  

[50] [56] [59] [61] 

Digital Twin 
(DT) 

Digital twins can be thought of as computer models with accurate 
virtual copies of machines or systems that use data collected from 
sensors in real time, reflecting almost every facet of a product, 
process, or service. They support workers in conducting processes 
without blocking real production capacities (Horváthová et al., 
2019; Tao et al., 2019). 

[26] [30] [56] [58] [75] 

Smart decision 
support systems 
(SDSS) 

Smart decision support systems use learning and problem-solving 
techniques to solve complex problems in real contexts. They 
improve operator performance by providing detailed process 
optimization instructions. Some examples are machine learning, 

[5] [36] [43] [44] [72] 
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neural networks, and data mining (Margherita & Braccini, 2020; 
Russell & Norvig, 2016). 

Automated 
Guided Vehicle 
(AGV) 

The AGV (Automated Guided Vehicle) is a self-guided vehicle with 
an integrated magnetic or optical sensor that follows a prescribed 
path and performs turning and parking functions. It is used in 
industrial applications, freeing the operator from activities that do 
not add value (Le-Anh & De Koster, 2006; Nunes & Barbosa, 2020). 

[15] [36] [47] [70] [71] 

Computer 
Vision (CV) 

Computer vision can be defined as a technology for acquisition, 
analysis, and synthesis of visual data using computers that provide 
tools relevant to the analyzed context. This improves the 
operator’s cognitive process involved in understanding and gaining 
manufacturing data (Posada et al., 2015; Álvaro Segura et al., 
2020). 

[4] [22] [54] 

Industrial social 
networks (ISN) 

Industrial social networks function as social media in 
manufacturing. They can strengthen corporate collaboration and 
provide a mechanism to capture knowledge that processes 
data/information and produces valuable knowledge to support 
operators in decision-making (Li & Parlikad, 2016; Romero et al., 
2016). 

[6] [60] 

Exoskeletons 
(EXO) 

An exoskeleton assists workers through a device that acts on the 
body mechanically in order to assist or increase the operator’s 
strength (Constantinescu et al., 2016; Romero et al., 2016). 

[15] 

Visual Analytics 
(VA) 

The analytical view helps operators interpret and understand large 
amounts of data and relationships through intuitive 
representations (Álvaro Segura et al., 2020). 

[60] 

Artificial 
intelligence (AI) 

Artificial intelligence (AI) can be defined as a technology capable of 
developing thought processes like learning, reasoning, and self-
correction similarly to humans in order to supplement and increase 
worker capabilities (Russell & Norvig, 2016; Zolotová et al., 2020). 

[51] 

 

As shown in Table 2, the most cited technology in the studies is augmented reality. AR is 

commonly used to assist operators and technicians in performing complex tasks more quickly 

and assertively (Uva et al., 2018). An additional, less common application of AR is to assist 

engineers in planning activities to improve the productivity and efficiency of these workers 

(Wang et al., 2020b). This leads to the understanding that the use of technologies that mix real 

and virtual environments can improve workers' performance (Lai et al., 2020, Segura et al., 2020, 

Uva et al., 2018). 

Collaborative robots were also closely linked to manufacturing. Although applied in different 

activities, collaborative robots showed lower diversification in their application. This technology 

is commonly used to assist operators in repetitive tasks, freeing them to perform activities that 

require greater flexibility (Koch et al., 2017). Another relatively unusual application is in process 

design activities, helping engineers redesign workstations (Gualtieri et al., 2021). However, the 

fact that collaborative robots are used in activities indicates that companies understand that 

using robots with humans safely enhances productivity (Cherubini et al., 2019, Koch et al., 2017, 

Weckenborg et al., 2020). 

Although not cited as often as AR and collaborative robots, virtual reality and wearable devices 

are also highlighted as technologies that support workers. These technologies have rather 
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diversified applications, with VR being more versatile than collaborative robots in terms of their 

activities. The main use of VR is to assist operators and technicians in conducting and practicing 

their activities, making it possible to “learn by doing” (Abidi et al., 2019). Another application, 

although less usual, is the use of VR to assist engineers in the design and reconfiguration of 

products (Damiani et al., 2018). Wearable devices are commonly used to collect health and 

movement data from operators to improve their health and ergonomics (Guo et al., 2019, Sun 

et al., 2020, Sun et al., 2020). However, a not-so-common application assists engineers in 

locating operators, facilitating the allocation of multifunctional operators according to the 

nearest workstations (Kymäläinen et al., 2017). Therefore it is possible to affirm that the use of 

VR and WDs in manufacturing is a trend that is here to stay, given its potential to increase 

productivity in workers' activities and, more specifically, to enhance training in the case of VR 

(Gorecky et al., 2017, Muñoz-Saavedra et al., 2020, Roldán et al., 2019), and increase efficiency, 

improve workers' physical well-being and reduce workplace accidents, in the case of wearable 

devices (Khakurel et al., 2017, Knoch et al., 2020, Sun et al., 2020, Sun et al., 2020). 

Automation and sensors were rarely mentioned by studies linking technologies to workers' 

activities, although they can be applied in a wide range of activities. This may be due to a lack of 

focus on how these technologies directly benefit workers. Automation is usually referred to in 

terms of production performance, without consideration to its potential benefits for workers 

(Atack et al., 2019, Atlas et al., 1996, Dinlersoz and Wolf, 2018). Nevertheless, automation can 

protect operators from difficult working conditions and ergonomic risks (Klumpp et al., 2019). 

Environment sensors can benefit operators by helping in the maintenance and improvement of 

the working environment, collecting, for instance, air quality information (Papetti et al., 2021). 

Machine sensors, in turn, help establish an effective human–machine interaction system by a 

precise recognition of human movements that will promote operators' safety and well-being 

(Wang et al., 2018). It should be noted, however, that although such uses are still largely 

unexplored in the literature, studies on the benefits of sensors for workers are expected to 

become more common as their prices decrease, and more companies and workers can reap the 

benefits of automatic assessment in their activities (Cheng et al., 2013, Schuh et al., 2020). 

The same can be said about digital twins and smart decision support systems. Even though these 

are more commonly connected to advantages for the production line, the systematic review has 

evidenced advantages for workers (Horváthová et al., 2019, Margherita and Braccini, 2020, 

Peruzzini et al., 2020). Digital twins can help engineers find more efficient ways to conduct 

processes without blocking real production capabilities (Horváthová et al., 2019). Smart Decision 

Support Systems can help operators and managers analyze data in real-time to improve 

production time and costs (Margherita & Braccini, 2020). 
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Voice-enabled assistant technology was also rarely related to manufacturing activities in the 

literature. This can be explained by the fact that it is still little explored for these activities (Longo 

& Padovano, 2020). However, as it will be seen in the next subsection, this technology can offer 

several advantages to workers in manufacturing systems and be applied in different activities. 

For example, this technology commonly supports technicians and specialists during 

maintenance tasks at the factory by providing information and tips on how to act (Longo et al., 

2020). The same can be said about the Industrial Social Network: although still rarely applied in 

manufacturing systems, it can strongly support workers' activities by, for instance, improving 

the exchange of information on issues and experiences between engineers (Mourtzis et al., 

2016). 

Finally, computer vision, exoskeleton, visual analytics, and artificial intelligence technologies 

were the least mentioned in the studies and few applications in different activities. Surprisingly, 

computer vision and visual analytics, i.e., visual computing technologies, were rarely mentioned 

despite their potential to support workers' decision-making (Posada et al., 2015, Segura et al., 

2020, Soban et al., 2016). Such a scarcity of studies may be due to a lack of interest by scholars 

in surveying the impacts of these technologies on activities or to a lack of widespread 

implementation of these technologies in the industries. A possible reason for the little 

expressiveness of exoskeletons in the results is that their cost of implementation is still high, 

and its advantages as yet unknown (Calzavara et al., 2020, Spada et al., 2017). Besides, there are 

few implementation cases in the industries, which leads to an even smaller number of cases 

studied. The low number of studies on the applications of artificial intelligence in manufacturing 

activities may be related to the low degree of maturity of companies in Industry 4.0, since 

companies at more advanced maturity levels are the ones that implement this technology in 

their activities and still rather restrictedly, as pilot solutions (Frank et al., 2019, Longo et al., 

2020). 

The following section will present details on where each of these technologies is used in each 

activity. 

 

4.2. WHERE INDUSTRY 4.0 TECHNOLOGIES CONTRIBUTE TO SMART WORKING 

The data analysis identified the technologies cited in the literature to be used in each specific 

manufacturing activity, as shown in Table 3. The cells represent the association between the 

activity and the technology. They are filled in with the corresponding references listed in detail 

in Appendix A. Empty cells mean that no reference was identified in the literature for this 

relationship between the specific technology and the manufacturing activity. 
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Table 3 - Smart Working technologies and manufacturing activities 

 
 

AR CR VR WD AUT SENS VEA DT SDSS AGV/AMV ISN CV EXO VA AI 

Assembly 

[2] [8] [10] [14] 
[15] [16] [18] 
[23] [27] [32] 
[48] [49] [60] 
[74] [78] 

[1] [15] [20] 
[24] [31] [35] 
[39] [41] [49] 
[52] [59] [60] 
[64] [65] [79] 
[80] 

[4] [10] [12] 
[32] [37] 
[59] [60] 
[68] [69] 

[8] [46] 
[55][57][59] 
[66] [67] 

[36] 
[49] 
[63] 

[7] [8] 
[24] 
[75] 
 

 [26] 
[30] 
[75] 

 [15][36]  [4] [15]   

Machine 
Operation 

 [1] [11] [15] 
[38] [59] [60] 

[32] [59] 
[60] 

 [36] 
[49] 

 [50] [56] 
[59] [61] 

[56] [5] 
[36] 

  [22]  [60]  

Maintenance 
[18] [25] [29] 
[32] [50] [56] 
[60] [62] 

[9] [59] [60]     [50] [56] 
[59] [61] 

[56]      [60] [51] 

Training 

[2] [8] [18] [32] 
[50] [60] [74] 

 [12] [32] 
[37] [59] 
[60] [68] 
[69] [73] 

[8] [59]  [8] [50] [59] 
[61] 

       [51] 

Quality 
control 

[18] [21] [25] 
[27] [40] [49] 
[77] 

   [19] 
[49] 

      [4] 
[54] 

   

Materials 
movement 

 [1] [15] [70]  [33] [76] [45] [7] 
[42] 
[76] 

   [15] [47] 
[70] [71] 

  [15]   

Process and 
product 
design 

[13] [16] [17] 
[18] [34] 

[35] [17]   [53]     [6] 
[60] 

    

Production 
planning and 
control 

[3] [17] [28]   [3]    [58] [43] 
[44] 
[72] 

      

Note: AR (Augmented reality); CR (Collaborative robots); VR (Virtual reality); WD (Wearable devices); AUT (Automation); SENS (Environment and machine sensors); VEA (Voice-enabled assistant); 
DT (Digital twin); SDSS (Smart Decision Support Systems); AGV (Automated guided vehicle); AMV (Autonomous Mobile Vehicle); ISN (Industrial Social Networks); CV (Computer vision); EXO 
(Exoskeleton); VA (Visual analytics); AI (Artificial Intelligence). 
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The Assembly activity is carried out by shop floor operators and is the activity in which more 

technologies are implemented. In this activity, augmented reality is used for indicating the 

stages in the assembling of real objects (De Pace et al., 2019), signaling and preventing errors, 

and putting the operator in remote communication with a specialist in case of doubts (Calzavara 

et al., 2020), eliminating the need for face-to-face supervision of operators with disabilities 

(Simões et al., 2019) and assisting experienced operators in complex assemblies (Lai et al., 2020). 

Collaborative robots are used for handling large and heavy objects and performing difficult tasks 

(Cherubini et al., 2019), assisting the operator in assembling a product according to 

personalization requirements and in unknown work situations (Wang et al., 2019), intelligently 

distributing assembly tasks according to the skills of operators and machines (Scholer & Müller, 

2017), and transforming complex assembly tasks into semi-automatic ones (Pérez et al., 2020). 

Virtual reality is one of the most versatile technologies for application in manufacturing 

activities. This technology is especially used in the assembly activity to guide operators through 

the correct sequence of operations (Tarallo et al., 2018). Several studies consider it part of both 

assembly and training activities, for example, in cases where its functionality may eliminate the 

need for expert instruction in assembly tasks (Roldán et al., 2019). Wearable devices are applied 

in the assembly to collect operator data in real-time, mainly related to movements and 

workflows (Knoch et al., 2020). This leads to optimizing operators' activities and the elimination 

of waste (Guo et al., 2019). Besides efficiency gains, real-time data collection provides direct 

feedback on ergonomics during the assembly activity (Römer & Bruder, 2015). Automation 

works in a complementary way in assembly: on the one hand, operators supervise automatic 

assembly operations and adjust them according to production needs; this, on the other hand, is 

reflected in significant changes in operators' skills and operations (Margherita & Braccini, 2020). 

The digital twin acts as an interface for the operator, enabling the monitoring of assembly 

activities and aggregating useful information such as postural assessment (Peruzzini et al., 2020). 

Sensors complement other technologies such as wearable devices and collaborative robots and 

are mainly applied to precisely measure operators' movements (Tao et al., 2019, Tao et al., 2019, 

Wang et al., 2018). AGV in the assembly activity acts as a facilitator, i.e., it helps assembly 

operators by transporting the parts and tools necessary for the performance of their activities 

(Margherita & Braccini, 2020). Computer vision in the assembly activity supplements 

information with multimedia details, improving operator support (Tarallo et al., 2018). Lastly, 

exoskeletons in the assembly activity facilitate operators' activities by increasing their strength 

and productivity (Calzavara et al., 2020). 
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Machine Operation activities are carried out by shop floor operators. As shown in the results, a 

large set of technologies can be implemented in this activity. In the case of collaborative robots, 

they are used for operating activities to simplify operators' activities and perform less ergonomic 

tasks (Calzavara et al., 2020). Virtual reality is used in operating activities to visualize operating 

scenarios from different points of view (Segura et al., 2020). Automation technologies are useful 

to increase operators' productivity, for instance, by making more cuts than in a process without 

technology's assistance. This implies a change in the responsibilities of the operators, who start 

supervising rather than u just operating the machines (Margherita & Braccini, 2020). Operators 

can use voice-enabled assistants to acquire information using a question-and-answer approach 

(Longo et al., 2017) to learn, for instance, how to conduct a machine correctly and safely (Longo 

& Padovano, 2020). A digital twin can be applied together with other technologies such as 

augmented reality in operational activities. It can streamline operations, avoiding delays in 

decision making due to questions such as “how to configure the printing machine for the next 

batch?” or asymmetric information like “what is the next batch to produce?” (Longo et al., 2019). 

The smart decision support system supports operators for the proper performance of their 

operating activities, for instance, by monitoring activities below expected standards of 

machinery operation or operator performance (Margherita & Braccini, 2020). Computer vision 

and visual analytics are used in operational activities to help operators understand the 

information generated from data or images (de Araujo and Lins, 2020, Segura et al., 2020). 

Maintenance is an activity performed by technicians that include six applications of 

technologies. Augmented reality is used for maintenance activities mainly because it guides the 

technician in carrying out their activities (Segura et al., 2020) and communicating remotely and 

intuitively between the technician and a remote specialist (Park et al., 2020). Collaborative 

robots, in turn, are used for maintenance activities because they can do maintenance work while 

the technician works elsewhere. For example, a robot can perform the screwing activity while a 

technician performs other activities that the machine cannot execute (Koch et al., 2017). Voice-

enabled assistants can be used in conjunction with augmented reality to support technicians 

and specialists during maintenance tasks (Longo et al., 2020). A digital twin is used in 

maintenance activities with other technologies, such as augmented reality and voice-enabled 

assistants. This technology is used to plan maintenance operations according to customer orders 

and production schedules (Longo et al., 2019). Visual analytics is often used for maintenance 

because it easily detects defective production situations or defines abnormal production 

conditions, for example, by evaluating the correlation of various production variables with a key 

performance indicator (Segura et al., 2020). Lastly, artificial intelligence is used for maintenance 
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because it analyzes root causes, enabling predictive maintenance instead of preventive 

maintenance (Foresti et al., 2020). 

Training activities are transversal to the other manufacturing activities. Therefore, they impact 

all workers, especially operators and technicians, including six applications of technologies. 

Augmented reality is used to train operators and technicians about their activities quickly and 

intuitively (Longo et al., 2017). Besides, with augmented reality in training, the performance of 

operators and technicians is leveled because it no longer depends on a worker remembering all 

the operations necessary to assemble a certain product, now that the augmented reality system 

can guide the worker (Segura et al., 2020). Virtual reality had the largest number of studies when 

it came to the training activity. This is because its main role is to simulate immersion in the real 

factory and emulate the decision-making process without interrupting production and 

equipment activities and without exposing the operator to risky situations before the necessary 

training base (Roldán et al., 2019). For the training activity, wearable devices and environment 

sensors complement the augmented reality functionality by collecting information from workers 

to improve their training (Tao et al., 2019, Tao et al., 2019). As in other activities that implement 

voice-enabled assistants, this technology is used to communicate between humans and 

machines, especially robots, so that instructions can help the workers' learning process (Longo 

& Padovano, 2020). On the other hand, artificial intelligence applied to the training activity 

eliminates the need for personnel training, replacing it with methods conducive to self-learning 

(Foresti et al., 2020). 

Inspection operators carry out Quality Control activities. Three Industry 4.0-related technologies 

are cited in the literature as useful to this activity. The main use of augmented reality for quality 

control activities is the elimination of document checklists and the release of operators' hands 

at the moment of the verification (Ruppert et al., 2018), and the automatic detection of defects 

(Muñoz et al., 2019). In the case of automation, it is used in the quality control activity to detect 

product defects in synchrony with the camera system of the autonomous machine (Erasmus et 

al., 2018). As well as automation, computer vision is used in quality control activity to detect 

errors in real-time and synchronize quality-control data (Tarallo et al., 2018). These applications 

facilitate and improve operators' activities. 

The Product and Process Design activities are performed by engineers. Five Industry 4.0 

technologies are cited in the literature to support this activity. Augmented reality is used to 

anticipate potential problems and design changes, and obtain accurate feedback on human–

machine interaction before product realization (Grandi et al., 2020) or to build a collaborative 

design of the process for workers' well-being (Peruzzini et al., 2018). In this activity, collaborative 

robots are used to design a more flexible process, including them in the production line, for 
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example, to develop new means of interaction (Weichhart et al., 2019). Virtual reality and 

augmented reality are used for the design and reconfiguration of the product before it is 

manufactured (Damiani et al., 2018). Sensors are an element of manufacturing systems that, in 

the case of the product and process design activity, capture information to allow for the 

necessary adjustments in process and product design (Kareem, 2019). Finally, industrial social 

networks are used for communication within a company regarding ideas, suggestions, or 

solutions in a context of continuous improvement (Mourtzis et al., 2016). 

The Production Planning and Control activity is carried out mainly by engineers. Five 

technologies were identified for this activity. Augmented reality can be used to access the 

automation system remotely (Kymäläinen et al., 2017). Besides, shop floor workers receive 

information, instructions, and guidance from the engineers according to schedules prepared in 

real-time (Wang et al., 2020). Wearable devices are used to collect information to enable 

operator monitoring and, together with other technologies, such as augmented reality, 

anticipate potential disruptions, record the operator's troubleshooting activities, and suggest 

various solutions that the engineer can choose from (Kymäläinen et al., 2017). In this activity, a 

digital twin allows to find more efficient ways of conducting processes without blocking real 

production capacities (Horváthová et al., 2019), while a smart decision support system is used 

to consolidate information from process planning, operation sequencing, and programming, 

automating the decision-making process as much as possible (Trstenjak & Cosic, 2017). 

The Materials Movement activity is performed by shopfloor operators. The literature cites six 

technologies for this activity. Collaborative robots, when applied to the movement activity, 

serve to provide mobility in dynamic environments and to handle and transport bulky objects 

(Cherubini et al., 2019). In this activity, wearable devices are used to collect real-time data that 

will support decisions on measures to improve the work environment and locate operators on 

the shop floor (Sun et al., 2020). Automation in this activity protects operators in difficult 

working conditions and with major ergonomic challenges (Klumpp et al., 2019). Environment 

sensors applied in movement activities locate and track machines and equipment, like forklifts 

(Barral et al., 2019). Automated Guided Vehicles (AGV) and their derivatives – Autonomous 

Mobile Vehicles (AMV) – have the function of transporting materials on the shop floor, for 

example, from the warehouse to assembly stations (Nunes & Barbosa, 2020). Finally, in the 

movement activity, exoskeletons provide ergonomic assistance in handling activities, mainly 

heavy lifting and aerial work (Calzavara et al., 2020). 
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4.3. HOW INDUSTRY 4.0 TECHNOLOGIES CONTRIBUTE TO SMART WORKING 

Table 4 summarizes all the related impacts of Industry 4.0 Smart Working technologies according 

to the investigated papers. The analysis was divided into positive and negative impacts of these 

technologies on manufacturing activities. As the table shows, although the literature 

acknowledges the contribution of these tools to workers’ manufacturing activities, they also 

have several limitations that should be considered before implementing them in a company’s 

manufacturing processes. 

 

Table 4 - Impacts of Smart Working technologies on manufacturing activities 

Industry 4.0 
Technologies 

Positive impacts Negative impacts 

Augmented reality Training effectiveness; Improvement in the 
teaching and supervision of workers; 
Reduction in task completion time and 
number of errors; Reduction of cognitive 
load; Facility of performing tasks; 
Simplification of necessary skills; Improved 
security; Increased performance; Increased 
worker satisfaction; Supports decision-
making; Facilitates error diagnosis; Facilitates 
the provision of information; Improves 
information exchange between 
professionals. 

Visual fatigue; Distractions during use; 
User resistance; Lack of familiarity with 
the technology; Occlusion problems; 
Impairs vision; Unknown physical and 
psychological effects; Weight and 
discomfort of the device; Impoverishment 
of work; Increased pressure/stress; 
System failure may impair worker 
performance; Cybersecurity. 
 

Collaborative 
robots 

Simplifies operators' tasks; Replaces 
operators in less ergonomic tasks; 
Productivity improvement; Improves the 
safety of operation; Handles large and heavy 
objects; Performs difficult tasks; Reduces 
errors; Cost economy; Reduces manual labor; 
Assists workers with physical disabilities; 
Improves the ability to respond to market 
changes. 

Collision control problems; Safety and 
ergonomics problems in the interaction; 
High investment; Increased anxiety; Lack 
of confidence in technology; Problems 
with the manipulation of deformable 
objects; Limited applicability; Slowness 
due to legislation and security issues. 

Virtual reality Helps to execute the correct sequence of 
operations; Improves speed in the execution 
of tasks; Reduces cost; Reduces time and 
errors; Facilitates knowledge transfer; 
Increases the cognitive abilities of workers 
and speed of learning; New solutions can be 
created quickly, easily, and intuitively; 
Reduces the stress produced in the man-
machine interactions; Eliminates the need for 
written documents. 

Problems related to field of view and 
device battery; Operators can ignore 
digital instructions and security; 
Decreases workers’ ability to make 
decisions; Difficulty in the integration of 
corporate data sources; Difficulty in 
defining the authorship of the manuals; 
Difficulty in preparing the simulations; 
High cost of equipment; Uncomfortable 
due to weight and gesture interface; 
Difficulty in wearing glasses with safety 
helmets; Impairs visual acuity; 
Compromises the visual field and vision. 

Wearable devices Improvement of training and simulations; 
Real-time control of workers' location 
information; Improvement of safety at work; 
Increased movement recognition accuracy; 
Assists in decision making on health actions; 
Improvement of the operator's working 
conditions; Improved operator health and 
safety; Increased empowerment and 
engagement; Assists the measurement of 

Data privacy concerns; Limited 
applicability due to company size and 
culture; Data integration problems; Fear 
or reluctance of operators; Difficulty in 
adapting to different body types; 
Psychophysical measurement may be 
invasive. 
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time and quality in real time; Improved 
awareness of ergonomics at work. 

Automation Maximize process flexibility and efficiency; 
Increased productivity; Reduction of human 
effort; Downtime reduction; Reduction of 
mental and body stress; Occupational health 
risk reduction; Lead time reduction; Defect 
rate reduction; Optimized use of production 
resources; Improved monitoring of the 
production process; Improved product 
tracking; Waste reduction; Improved product 
quality; Increased competitive advantage; 
Increased employee engagement and 
motivation; Increased attractiveness of jobs. 

Limited speed for some processes; 
Replacement of some workers; 
Dependence on the robotic systems' 
proper functioning; Security issues; 
Complexity of workforce activities is 
increased; Difficulty in workers’ 
acceptance. 

Voice-enabled 
assistant 

Intuitive access to information and 
knowledge; Maximizes users' cognitive 
efficiency; Facilitates information retrieval; 
Reduces the time to set up the operation; 
Waste reduction; Guides on the correct use 
of tools; Increases safety and decreases 
worker stress; Improves the operator's 
learning curve; Amplifies the learning effect; 
Accelerates the learning process. 

Limited utility and acceptance by 
workers; Data corruption; Potential 
serious risks to the operation; Problems 
related to information reliability; 
Employees’ resistance to change; Need 
for long technology configuration times; 
May discriminate against some workers 
for cultural and language reasons; 
Workers’ dependence on technology; 
Need for fault tolerance and data recovery 
plans; Rapid prototyping tools are lacking. 

Digital twin Helps in planning operations; Facilitates 
information visibility; Minimizes the impact 
of unexpected disturbances; Improves the 
efficiency of daily tasks; Facilitates the 
reproduction of simulated actions 
realistically; Reduction of maintenance costs; 
Reduction of tasks execution time; Resource 
optimization; Reduction of setup times and 
cycle times; Reduction in the waste 
production rate; Reduction of configuration 
time; Better enjoyment of knowledge. 

High initial investment; Problems with 
light interference and calibration 
problems can interfere with the model's 
construction; Difficulty in managing 
unexpected disturbances; Difficulty in 
data management and analysis; Cyber-
attacks can steal industrial knowledge. 

Environment and 
machine sensors 

Early identification of worker fatigue or 
injury; Improves worker safety; Reduced 
downtime; Improves accuracy in recognizing 
human movements; Improves training; 
Improves accuracy in locating materials; 
Waste reduction; Reduction in the 
percentage of defective products; 
Optimization of resource usage. 

High dependency on connectivity; High 
initial investment for connectivity. 

Smart decision 
support system 

Makes production more efficient; Improves 
coordination between units; Waste 
reduction; Decreases the defect rate; 
Decreases the time spent in the production 
stages; Increased speed of adjustment of 
production planning and control; Helps in 
obtaining quick responses to unforeseen 
incidents in manufacturing; Improves control 
and decision making; Facilitates real-time 
data recognition and analysis; Generates 
knowledge for continuous process 
improvement and optimization. 

Workers’ resistance to change and new 
operating processes; Complexity, 
usability, and acceptability can be 
challenging; Resistance of specialists to 
the need for change; Time-consuming 
deployment; High investment cost; 
System security concerns. 

AGV/AMV Improves efficiency; Time-saving; Avoids 
musculoskeletal disorders; Low investment; 
Possibility of use in confined spaces; 
Eliminates worthless activities like 
transportation, inventory, and waiting; 
Reduces the cycle time of factory processes; 

Potential movement restrictions; Lack of 
system availability may compromise the 
operation; Operators are more stationary. 
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Improves materials tracking; Reduces 
inaccuracy in order fulfillment. 

Industrial social 
network 

Establishes and continually updates the best 
practices repository; Reduces the training 
curve for new employees; Decreases the 
incidence of recurring problems; Boosts the 
continuous improvement process. 

Potential hesitation of workers to share 
knowledge; Lack of commitment to 
reporting new problems; Distraction with 
the use of mobile devices on the factory 
floor; Business intelligence protection 
issues. 

Exoskeletons Ergonomic assistance in weight lifting and 
overload; Reduction of the operator's 
physical effort; Reduction of work injuries; 
Improves operator productivity in a safe way; 
Benefits aging workers. 

Investment is medium-high; Limits some 
body movements; Weight and discomfort 
may reduce operator acceptability; 
Existence of unanswered security issues; 
Increased worker anxiety about the use of 
technology on their bodies. 

Computer vision Reduction of measurement uncertainties; 
Low cost to perform configuration tasks; 
Improves operational efficiency; Improves 
task accuracy; Eliminates the requirement for 
a highly trained worker for inspection tasks. 

N/R 

Visual analytics Improves the cognitive process; Helps to 
analyze data quickly and interactively; 
Extends the perception of data in less time; 
Improves efficiency in decision making; 
Enables a quick view of the complexities of 
performance tuning. 

N/R 

Artificial 
intelligence 

Reduction of downtime; Reduction of 
failure; Reduction of training costs; Increased 
productivity; Reduction in after-sales 
assistance; Reduced activity costs. 

Limited confidence on the part of 
workers; Ethical concerns. 

Note: N/R corresponds to No Record in sample. 

 

Amongst the several impacts mentioned in the literature, some positive and negative impacts 

stand out. The main positive impacts are waste reduction, improved workers' health and safety, 

time reduction, training effectiveness, and easy access to real-time information on activities. 

Waste reduction is related to improved use of materials and production resources, which 

eliminates defective products and reduces time spent in production activities (Longo et al., 2019, 

Margherita and Braccini, 2020, Nunes and Barbosa, 2020). The improvement of workers' health 

and safety derives from efficient use of information for the monitoring and improvement of 

working conditions (Klumpp et al., 2019; S. Sun et al., 2020), as well as to increase safety and 

reduce occupational accidents and ergonomics problems (Erasmus et al., 2018, Peruzzini et al., 

2020). Time reduction means greater agility in processes due to technologies, including 

reductions in time for learning, task completion, and information analysis (Calzavara et al., 2020, 

Mourtzis et al., 2016, Tao et al., 2019, Tao et al., 2019). Training effectiveness means that one 

of the main benefits of technologies is related to the training of workers, including advantages 

such as effective knowledge transfer and retention, the release of specialists for the training of 

new operators, and avoiding unnecessary interruptions in production to conduct a training 

(Gorecky et al., 2017, Roldán et al., 2019). Finally, the facility of real-time access to information 
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refers to simple and quick data access, allowing for viewing and analyzing large amounts of data 

about machines and operators in real-time (Guo et al., 2019, Knoch et al., 2020, Longo et al., 

2020). 

In contrast, the major negative impacts of technologies on manufacturing activities are worker 

resistance, device discomfort, technology failure, high investment, and a high level of technical 

skills required. Worker resistance is linked to fear or insecurity about technology, including fear 

of substitution, insecurity in use, reluctant acceptance of changing processes, and cultural 

aspects (Longo et al., 2020, Longo and Padovano, 2020, Römer and Bruder, 2015). As many of 

the technologies to support workers' activities require the use of devices, discomfort in device 

usage is a factor that can be interpreted negatively because their weight or imposed limitations 

can interfere with the good performance of the workers' activities (Calzavara et al., 2020, Herzog 

et al., 2018). Technology failure is also a negative impact caused by its implementation. With 

such systems remodeling, any failure can result in losses to the process and interfere with 

workers' performance (Cañizares et al., 2018, Longo et al., 2020). Another negative impact of 

these technologies is the high initial investment often required to implement them in 

manufacturing, involving actual technology costs and the investments required to set up the 

infrastructure necessary for their functioning (Calzavara et al., 2020, Kareem, 2019, Trstenjak 

and Cosic, 2017). With the implementation of technologies in activities, there is an increase in 

the complexity of tasks, which leads to the need for highly skilled workers to monitor the 

technical information and program technologies for substantial gains to be achieved 

(Margherita and Braccini, 2020, Pérez et al., 2020). 

 

4.4. A FRAMEWORK OF INDUSTRY 4.0 SMART WORKING TECHNOLOGIES IN MANUFACTURING ACTIVITIES 

As a final result of this SLR on manufacturing activities and Smart Working technologies, a 

framework was elaborated, shown in Table 5, which summarizes the applications of 

technologies in each manufacturing activity impacting workers. In this table, the worker 

capabilities enhanced by Industry 4.0 technologies (Romero et al., 2016) were related to the 

findings reported in Table 3 on the type of Smart Working technologies used in each 

manufacturing activity. For instance, Table 3 shows that the smart capability and the social 

capability are not highlighted in the literature addressing assembly capacity and Smart Working 

technologies. On the other hand, assembly activities require several worker capabilities and, 

consequently, many Industry 4.0 Smart Working technologies can support these activities to 

enhance capabilities. 
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Table 5 - How Industry 4.0-smart working technologies are related to manufacturing activities and workers’ occupations 

 Type of  
worker 

Operators  Operators/ 
Technicians 

 Technicians Engineers 

  Manufacturing  
activity  

Assembly Machine 
Operation 

Materials 
Movement 

Quality control  Training  Maintenance Planning  
and control 

Product and  
process design 

W
o

rk
e

r 
ca

p
ab

ili
ty

 

Super-strength capacity AUT; EXO AUT AUT; EXO AUT           

Augmented capability AR     AR  AR  AR AR AR 

Virtual capability VR VR      VR  VR   VR 

Healthy capability WD; SENS   WD; SENS    WD; SENS  WD; SENS WD SENS 

Smart capability   VEA      VEA  VEA     

Collaborative CR; AGV CR CR; AGV         CR CR 

Social capability                 ISN 

Analytical capability DT; CV DT; CV; VA   CV  AI  AI DT; SDSS   

Note: AR (Augmented reality); CR (Collaborative robots); VR (Virtual reality); WD (Wearable devices); AUT (Automation); SENS (Environment and machine sensors); VEA 
(Voice-enabled assistant); DT (Digital twin); SDSS (Smart Decision Support Systems); AGV (Automated guided vehicle); AMV (Autonomous Mobile Vehicle); ISN (Industrial 
Social Networks); CV (Computer vision); EXO (Exoskeleton); VA (Visual analytics); AI (Artificial Intelligence). 
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Furthermore, according to the literature, the framework (Table 5) also highlights the main 

occupation of workers related to each manufacturing activity. Operators are related to 

assembly, machine operations, materials movement, and quality control (Cherubini et al., 2019, 

Marino et al., 2021, Sun et al., 2020, Sun et al., 2020). Since they are more often involved in 

handwork, robotics, for instance, is more used by this type of worker. Technicians, on the other 

hand, are more often related to artificial intelligence tools since they usually make operational 

decisions that can be supported by these tools (Shin & Prabhu, 2018). Table 5 shows that 

Engineers are dedicated to cognitive tasks and activities, such as production planning and 

control and product and process design, where augmented reality tools are much more used 

than other activities (Wang et al., 2020). These are just some examples of a complete picture 

shown in the table. It is worth noting that this final framework does not describe ideal 

relationships but the state-of-the-art of literature. Therefore, an unfilled box does not mean that 

a given capacity is not necessary for a specific type of worker and activity, but rather that the 

investigated papers did not introduce the use of any Industry 4.0 technology for that 

relationship. In this sense, the empty cells may represent opportunities for future research. 

 

5. CONCLUSIONS 

By reviewing 80 papers on Industry 4.0 and work, this paper answered two main questions: how 

Industry 4.0 technologies contribute to workers’ activities for a Smart Working-based 

manufacturing system and what are the contributions and limits of the use of such technologies. 

Fifteen technologies were identified that make direct or indirect contributions to workers’ 

activities, namely: augmented reality, collaborative robots, virtual reality, wearable devices, 

environment and machine sensors, task automation, voice-enabled assistant, digital twin, smart 

decision support systems, automated guided vehicles/ autonomous mobile vehicle, computer 

vision, industrial social networks, exoskeletons, visual analytics, and artificial intelligence. This 

paper showed how these technologies contribute to eight different manufacturing activities, 

namely: assembly, machine operation, maintenance, training, quality control, materials 

movement, process and product design, production planning and control. This paper also 

showed how these technologies create positive impacts on workers, but also carry some 

limitations in their usage, which is still a challenge in many manufacturing applications. Lastly, 

these technologies were related with the required enhanced capabilities of workers (i.e., super-

strength capability, augmented capability, virtual capability, healthy capability, smart capability, 

collaborative, social capability, analytical capability), and with workers’ occupational categories 

(operators, technicians, and engineers). This was all summarized in a final framework which 

brings contribution to both scholars and practitioners. 
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5.1. THEORETICAL CONTRIBUTIONS 

As main theoretical contribution, this study is the first one that provides a wide and 

comprehensive concept of Smart Working in the manufacturing Industry 4.0-related field. From 

one hand, Smart Working has been previously addressed in managerial fields considering 

cognitive-related tasks that could be supported by digital tools. From the other hand, recent 

advances have considered the Operator 4.0 view by analyzing technological aspects that 

influence on manufacturing operational workers. This study provides a bridge between both 

perspectives by analyzing all types of digital enabled technologies that can support a large range 

of manufacturing activities, including both cognitive tasks (e.g., planning and design) and non-

cognitive (e.g., machine operations) and at different hierarchical levels (e.g., operators, 

technicians, engineers). In this sense, we attend to the call for future research suggested by 

Cagliano et al. (2019), who pointed out the need of more research on the integration of smart 

manufacturing and workers’ activities by clustering technologies on the basis of their different 

purposes and on the basis of associated tasks characteristics. The same need has been recently 

addressed by Meindl et al. (2021) when they showed that the interconnections between 

workers and technologies are still spread and not well connected, especially in the operations 

management literature. This study attends to such research gap and provides a big picture on 

how Industry 4.0-related technologies is being used for different purpose regarding the support 

of manufacturing workers. The created framework that connects technologies with occupations 

and workers required capabilities provides an integrative view on what has been investigated in 

the literature. It also enables new opportunities for scholars, since it shows ‘empty cells’ that 

opens opportunities for future investigation. Moreover, the results also showed limitations of 

Smart Working technologies, which is also important for the literature to avoid considering 

Industry 4.0 technologies as the remedy to any manufacturing challenge. The results shed light 

on these technologies' current problems, which can also help researchers focus on overcoming 

technological barriers in workers' activities. Still, Marcon et al. (2021) provided evidence on the 

role of considering socio-technical aspects in the Industry 4.0 implementation, especially 

regarding how workers adapt to technologies that can enrich and improve their activities. The 

present results complement such findings by providing details of the technologies used for 

specific purposes when manufacturing work is designed. The combination of such views helps 

to achieve a broader theoretical understanding of how to develop human-centered smart 

manufacturing systems, which is also a new trend in what some scholars and institutions have 

called Industry 5.0 (Breque et al., 2021). 
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5.2. PRACTICAL CONTRIBUTIONS 

Practitioners can learn how to apply the Smart Working concept to develop an Industry 4.0 

journey concerned with manufacturing workers. In this sense, the Smart Working concept calls 

the attention to practitioners to think Industry 4.0 not only as a set of technologies that will 

increase process efficiency but also as a set of technologies that can support the company's 

workers. Consequently, practitioners can learn through this study, firstly, the technologies that 

can contribute to the workers of their companies, the benefits and limitations of such 

technologies, and how manufacturing activities can be supported with these technologies. In 

this sense, practitioners can find in this paper several examples of the use of such technologies. 

This can help to increase practical understanding of several different potential applications. 

Secondly, the structured way the technologies were provided in this study can help practitioners 

develop a step-by-step analysis of their manufacturing activities for the potential development 

of Smart Working. For instance, operations managers can take the list of manufacturing 

activities and workers' capabilities provided in this study to investigate how these aspects 

happen in their field. Then, they can use the technologies presented in this paper to define how 

such technologies can enhance these manufacturing activities and workers' capabilities in their 

companies. Therefore, the structured analysis presented here to analyze the literature can also 

become a practical guideline for empirical designs of Smart Working environments. 

 

5.3. LIMITATIONS AND FUTURE RESEARCH 

This study is limited to journal papers and two specific journals’ databases. Many industrial 

reports and conference papers could also be useful for this type of research, including, for 

instance, the recently launched MIT Work of the Future final report (Autor et al., 2020). 

However, the present research scope was delimited only to scientific journals to handle this 

growing literature appropriately. Future studies can complement the findings of this study with 

other sources of empirical evidence, including business reports or case studies that can expand 

the vision on Smart Working and Industry 4.0. 

Meindl et al. (2021) have shown that the greatest potential for future studies on Smart Working 

is considering the interfaces between smart manufacturing and smart supply chain or smart 

product-service systems. Such interfaces were not possible to explore in this study, but they 

hold great potential for future investigation. In this sense, future works can investigate how 

Smart Working would look in the context of the service operator for smart product-service 

systems or the supply chain worker in smart supply chains. One may expect that digital 

technologies may be different in such environments than those considered here, especially 
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because different operational activities must be executed and different workers’ capabilities are 

required. Future research can explore more these fields of Smart Working. 

Another limitation of this present study is that the way the workers adopt these technologies 

were not considered. The study pointed out some limitations regarding the normal use of such 

technologies, but some may need larger adaptation than others. Marcon et al. (2021) called 

attention to this point when they showed that the social manufacturing environment strongly 

influences adapting to new technologies. Moreover, Dalenogare et al. (2019) showed that smart 

glasses performance has high variation among workers, depending on the workers' individual 

characteristics. Therebefore considering these characteristics of the adoption of Smart Working 

tools, future research can investigate learning curves during the adoption of the considered 

technologies, individual characteristics that help or hinder such adoptions, or other social or 

cultural characteristics that need to be considered when such technologies are designed for 

their use in manufacturing activities. 

Finally, as already highlighted in the theoretical contributions section, the empty cells of the 

framework proposed in this study are already suggestions for future research. Each empty cell 

indicates potential fields that are underexplored. For instance, the silence on artificial 

intelligence for Smart Working in machine operation is a surprising result. It is well known that 

artificial intelligence is used in the Industry 4.0 domain to increase machine processing capacity 

(Dalenogare et al., 2018). However, the findings suggest that the literature tends to focus on 

using this technology in the manufacturing process, overlooking its interaction with workers as 

a supportive tool. The same could be said about many other tools showing no relation to certain 

activities in the framework (e.g., few studies of the sample have investigated industrial social 

networks or visual analytics). Hence, our framework is also instrumental in identifying many 

opportunities for future research to define whether such absent relationships mean no actual 

contribution or a research gap on the topic. 
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ABSTRACT 

We analyze the impact of collaborative robots (cobots) – substitution, deskilling, reskilling, and 
upskilling – on workers in quality control, assembly, material movement, and machine or manual 
operation of manufacturing processes, and through four levels of human-robot interaction – 
coexistence, synchronism, cooperation, and collaboration. We conduct a case study of a global 
cobot provider using technical reports on the implementation of 138 cobots implementation, 
interviews with two managers, and three manufacturing customers. We also followed a cobot 
implementation for six months and validated the results through interviews with two other 
competitors. Our results show that, in quality control, cobots are predominantly used to 
substitute workers, while in the other activities, cobots can also be used for deskilling and 
upskilling workers, or they can demand workers’ reskilling to perform new activities like cobot 
programming and maintenance. Cooperation and collaboration are present in a few cases, and 
upskilling only happens in these two interaction types. Our findings show that, besides cobots 
implementation, these two interaction levels require a complete redesign of the workflow 
process from an anthropocentric perspective of the shop floor. We propose future pathways for 
advancing the contribution that cobots can make to Industry 4.0 smart working environments.  

Keywords: Industry 4.0; Collaborative robots; Smart Working; Workers; Manufacturing. 
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1. INTRODUCTION 

Digital transformation has triggered the fourth industrial revolution, also called 

Industry 4.0 (I4.0). Like prior industrial revolutions, I4.0 is rapidly changing the role of workers 

in manufacturing (Dornelles et al., 2022; Neumann et al., 2021). Although I4.0 is widely 

recognized for the integration of core technologies such as the Internet of Things, Cloud 

Computing, Big Data, and Artificial Intelligence, and of supporting technologies such as robotics, 

virtual and augmented reality, and wearable devices (Dalenogare et al., 2019; Frank et al., 2019), 

studies have shown that human work is still an essential part of smart factories (Fantini et al., 

2020; Peruzzini et al., 2020). Therefore, recent studies on I4.0 have acknowledged the central 

role of workers in manufacturing systems and the need to empower workers through I4.0 

technologies. This has been emphasized in different interrelated concepts such as the Operator 

4.0 or Worker 4.0 (Romero et al., 2016), Smart Working 4.0 (Frank et al., 2019; Meindl et al., 

2021), or Industry 5.0 (Breque et al., 2021). Dornelles et al. (2022) reviewed these different 

streams of the literature and integrated them under the conceptual umbrella of the Industrial 

Smart Working dimension of I4.0, showing that I4.0 can provide several technologies to enhance 

workers' activities and capabilities, and that these technologies can be used in several different 

manufacturing activities. Complementarily, Meindl et al. (2021) have investigated the literature 

of the last ten years of I4.0 and have called attention to the need for further understanding of 

the smart working dimension, which is the least investigated and the most promising area for 

the new generation of studies in this stream of research. There are many opportunities to 

investigate smart working technologies since current studies on I4.0 have not deeply assessed 

how technologies can affect workers, which is problematic for the success of I4.0 approaches or 

for workers who will have to deal with these technologies (Marcon et al., 2021; Neumann et al., 

2021). 

A prominent example of technology supporting manufacturing workers in the I4.0 

context is collaborative robots (cobots), i.e., robots that can physically interact with operators 

during manufacturing activities, sharing the workspace safely with workers and assisting them 

in their tasks (Dornelles et al., 2022). This technology promotes human-robot collaboration, in 

which workers and robots can work side by side and share the same workspace, the same 

resources, and even the same tasks (Wang et al., 2019). The increased demand for cobots, which 

are expected to account for 13% of the global robotics market in 2022, evidences their 

contribution to industrial activities in the I4.0 context (Statista, 2021). However, despite the 

relevance of cobots to manufacturing activities, the current literature on this technology is 

mainly focused on practical aspects such as acquisition and development (Cohen et al., 2021; 

Ferraguti et al., 2019; Peron et al., 2020). On the other hand, there is a lack of studies 
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investigating how this technology can impact workers in their activities, capabilities, and work 

environment (Neumann et al., 2021). In this sense, the MIT Work of the Future Initiative report, 

which summarizes a major initiative in the US on the impact of digital technologies on work, has 

highlighted that more investigation is needed in this direction since there is a common 

understanding that robots can replace jobs. Meanwhile, empirical evidence tends to show that 

workers and robots coexist in the same environment (Autor et al., 2020). Therefore, the 

following research question is proposed: How can the implementation of collaborative robots 

(cobots) impact manufacturing workers' activities? 

To answer this question, this paper aims at understanding the impact of cobots on 

manufacturing workers’ activities by considering effects such as substitution, deskilling, 

reskilling, and upskilling of workers when this technology is implemented in the manufacturing 

environment. To this aim, we conduct an inductive qualitative study combining documentary 

and empirical research related to one of the leading global providers of cobots. We use technical 

documents reporting on 138 cases of cobots implementation in manufacturing companies. In 

addition to these reviews, interviews were conducted with technology managers from the 

company and with three manufacturing customers. We followed the implementation of one 

cobot application for six months to understand the use of this technology in practice. Finally, we 

also interviewed two other robot and cobot providers to contrast and validate our findings. Our 

main findings show that, in quality control, cobots are predominantly used to substitute 

workers. In contrast, in the other activities, cobots can also be used for deskilling and upskilling 

workers, or they can demand a reskilling to perform new activities like cobot programming and 

maintenance. Cooperation and collaboration are present in a few cases, and upskilling only 

happens in these two interaction types. Our findings show that these two interaction levels 

require, besides cobot implementation, a complete redesign of the workflow process from an 

anthropocentric perspective of the shop floor. The main contribution of this study is that we 

provide an analytical framework for the implementation of cobots, which allows us to propose 

future pathways for advancing the implementation and contribution that cobots can provide for 

Industry 4.0 smart working environments. Scholars can learn the different impacts of cobots on 

workers and how these impacts happen. On the other hand, practitioners can learn about all the 

potential uses of cobots in smart working environments and what to consider to achieve higher 

levels of human-robot integration through the use of cobots in smart working environments. 
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2. THEORETICAL BACKGROUND 

2.1. COBOTS IN MANUFACTURING ACTIVITIES 

Manufacturing companies are continually seeking flexibility, versatility, and adaptability of their 

processes in response to different challenges imposed by the market, including mass 

customization, increased competition, and product complexity (Brettel et al., 2014). Faced with 

these challenges, one strategy is to implement advanced manufacturing technologies that can 

collaborate with workers safely and flexibly, combining the efficiency of robots with human 

cognitive abilities and skills (Sherwani et al., 2020). Among the advanced manufacturing 

technologies that companies implement to enable productivity improvement, flexibility, and 

quality, we have cobots (Bauer et al., 2016; Charalambous et al., 2016). Cobots are an 

automation technology designed to collaborate with humans in a safety approach, with easier 

programming features than usual robots, lightweight design, and implementation flexibility, 

primarily serving as a tool to assist manufacturing workers (Østergaard, 2017). Cobots can be 

integrated into manufacturing activities such as assembly, processing operation, maintenance, 

material movement, and product design (Dornelles et al., 2022). Within these activities, they 

can do tasks such as picking, packing, assembling parts, palletizing, welding, handling material, 

inspecting parts and products, machine tending, cleaning parts, finishing and bin picking and 

kitting, without needing to be isolated from the human workplace for compliance with safety 

standards (Antonelli & Bruno, 2019; Banaś & Olender, 2019; Vojić, 2020). 

Due to the human-robot interaction capabilities provided by cobots, workers and robots can 

operate in a collaborative smart working configuration (Cohen et al., 2019, 2021; Ivanov et al., 

2021). However, the literature still lacks an understanding of the different approaches that can 

be used to integrate cobots and workers in a smart working environment (Wang et al., 2019). 

The first contribution in this direction was made by Bauer et al. (2016), who conducted a study 

based on 25 applications of cobots in manufacturing activities and identified the main levels of 

interaction between workers and cobots: Coexistence, Synchronized, Cooperation, and 

Collaboration (Table 6). 

 

Table 6 - Summary of levels of human-robot interaction 

Levels of human-robot collaboration Description 

Coexistence Workers and robots perform different activities in the same physical 

space without direct contact. 

Synchronized Workers and robots perform the same activity sequentially. While one 

works the other remains idle. 
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Cooperation Workers and robots work on the same part sharing productive resources 

based on the programming design. 

Collaboration Workers and robots act simultaneously (real-time response) on the same 

part to complete the activity. 

Source: Adapted from Bauer et al. (2016) and Wang et al. (2019). 

 

Workers and cobots work side by side at the Coexistence level, but they do not share the same 

activities (Bauer et al., 2016). This means that both cobots and workers share the same physical 

space. However, the process is executed independently by each of them without direct contact 

(Wang et al., 2019). At the Synchronized level, workers and cobots share a workplace, but only 

one of them actually operates at each time in the activity (Bauer et al., 2016). In this case, the 

interaction occurs through an alignment between cobot and worker, with one of them guiding 

or controlling the other. Thus, they perform the same activity but complete each task 

sequentially (Wang et al., 2019). At the Cooperation level, the worker and the robot perform 

tasks simultaneously in the working area. However, they do not act on the same object (Bauer 

et al., 2016). Therefore, in cooperation, there is a sharing of productive resources in seeking to 

complete the tasks of both workers and robots without direct contact, and, although in some 

cases they work simultaneously, they may need to wait for the availability of productive 

resources (Wang et al., 2019). Finally, at the Collaboration level – the highest level of 

integration– both the worker and the cobot work simultaneously on the same object (Bauer et 

al., 2016). Therefore, collaboration implies that workers and cobots, guided by the same 

objective, carry out tasks jointly, coordinately, and synchronously (Wang et al., 2019). This 

highest level represents what the norm ISO 10218-2 (ISO, 2011) considers a human-robot 

collaboration system in the production context, which is defined as a situation where worker 

and robot can work in the same collaborative space, performing tasks simultaneously or 

together. 

Moreover, Dornelles et al. (2022) conducted a deep investigation on I4.0 smart working 

technologies and showed the current association of cobots with different manufacturing 

activities. This means that, besides the levels of human-cobot interaction, cobots can be used 

for different manufacturing processes. The analysis of Dornelles et al. (2022) built on prior 

studies from Segura et al. (2020), Bueno et al. (2020) and Hinckeldeyn et al. (2014) to study eight 

manufacturing activities in which digital technologies can support workers, namely: assembly, 

machine/manual operation, maintenance, training, quality control, materials movement, 

process and product design, and production planning and control. According to Dornelles et al. 

(2022), most studies on cobots have highlighted their applications for activities such as 
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assembly, machine operation, maintenance and material movement. However, as pointed out 

in their literature review, there is a lack of empirical investigation in the several other potential 

applications and limits of such applications. 

 

2.2. DIGITAL TECHNOLOGIES IMPACTING WORKERS' SKILLS 

A smart working environment enabled by I4.0 digital technologies aims to influence workers' 

skills to increase outputs such as productivity, quality, and flexibility (Dornelles et al., 2022; Frank 

et al., 2019). Therefore, it is important to evaluate the best way to share tasks between humans 

and technology to take the advantages that each of them can provide to the manufacturing 

system (Sheridan, 1995). In this sense, digitally-enabled technologies can create three situations 

in manufacturing activities. They can substitute tasks performed by workers, simplify workers' 

tasks (deskilling) or enrich workers' tasks (upskilling) (Dworschak & Zaiser, 2014; Hirsch-

Kreinsen, 2016).  

In the case of Substitution, the digitally-enabled technologies take on workers' tasks, resulting 

in the transfer of workers to other functions or, eventually, in workers' layoff (Frey & Osborne, 

2017; Pfeiffer, 2018). A case of Substitution is the case of an Italian manufacturer of custom 

kitchen furniture that transformed the movement of furniture parts inside the warehouse into 

an autonomous process. In the warehouse, finished products are sorted and grouped according 

to customer order and delivery destination to optimize space. In this case, the technology 

replaced the workers, which were relocated to other, manual functions (Margherita & Braccini, 

2020). In an I4.0 factory concerned with socio-technical factors, Substitution should be seen as 

a strategy to increase workers' safety and life quality by allocating them to better activities and 

adopting technologies to replace them in harmful tasks (Marcon et al., 2021). In the case of 

Deskilling, digitally-enabled technologies simplify workers' tasks, allowing workers to focus on 

specialized tasks and become more productive (Jarrahi, 2019; Wurhofer et al., 2018). This 

simplification of tasks is used when workers' activities are very complex and affect productivity 

or increase the risk of human mistakes. In other cases, the companies may want to become less 

dependent on highly specialized and experienced workers. One example of this approach is the 

case of Airbus. The company's automation system is designed to prevent the pilot from 

exceeding safety limits. The system automatically performs activities that should normally be 

done by a pilot, obliging the pilot to follow the decisions made by the automated system (Young 

et al., 2007). Upskilling occurs when the technology helps the worker to execute an activity even 

better (Kagermann, 2015; Pfeiffer, 2016). One example is Boeing, which strongly advocates self-

awareness and promotes more human-centric automation as a tool to help pilots gain ultimate 
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control of the automation system by preventing the system from overriding the pilot's decision 

(Young et al., 2007). 

In addition to these three situations (substitution, deskilling and upskilling), the increase in 

complexity caused by the implementation of digital technologies can demand a requalification 

of workers (reskilling) to build their capacities to develop new tasks in interaction with the 

technology (Margherita & Braccini, 2021; Romero et al., 2020; Vanderstraeten, 2018). In a 

reskilling situation, the worker needs to learn new skills to perform activities with the new 

technology (Waschull et al., 2020). An example is the case of a small factory that produces parts 

for small and medium-sized engines. The factory changed its manual assembly line to one with 

automated robotic systems. With this modification, shop floor workers in the assembly line, who 

had no experience working with robots and automation technology, needed to learn new skills 

to adapt to the new system and work environment. Thus, they developed skills to understand 

the process, the robotic system, the screen-based system information, and systematic and 

analytical skills for problem-solving (Rangraz & Pareto, 2021). 

Cobots can be used for different purposes in the smart working environment of I4.0 (Dornelles 

et al., 2022). The literature has evidenced the contribution of this technology to increase the 

operational performance of manufacturing companies (Dalenogare et al., 2018; Frank et al., 

2019). Some empirical studies have argued that, in a broader sense, this new generation of 

robots is not massively substituting workers (Autor et al., 2020), which may suggest that other 

purposes, including the support of existing workers, are being pursued with this technology. 

However, the literature lacks a detailed investigation of how cobots are used in practice. This 

study aims to fulfil this gap by considering the different levels of human-machine interaction 

involved in the use of cobots for manufacturing activities (Section 2.1) and the purposes of their 

application in smart working activities (Section 2.3). 

 

2.3. A CONCEPTUAL FRAMEWORK OF COBOTS AND SMART WORKING 

Based on the concepts introduced in Sections 2.1. and 2.2, we built a conceptual framework to 

guide our empirical investigation. The framework is shown in Figure 1 and summarizes three 

main dimensions that we combine to investigate the use of cobots in an I4.0 smart working 

environment. Firstly, the framework considers the human-robot interaction types proposed by 

Bauer et al. (2016), which presents maturity levels ranging from less integrative to more 

integrative interaction processes. Secondly, our framework acknowledges that the use of cobots 

can happen in different manufacturing activities, as pointed out previously by Dornelles et al. 

(2022). Finally, by relating manufacturing activities with human-robot interaction types, the 
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framework analyses the impact of the technology on workers' skills, considering that workers 

can be reskilled, upskilled, deskilled, or substituted by cobots.  

 

Figure 3 - Conceptual framework for the analysis of the use of cobots in smart working environments 

 

3. RESEARCH METHOD 

Recent studies in the I4.0 literature have adopted a technology provider perspective to 

investigate how digital technologies are developed and implemented in practice. This view 

allows to obtain a broader perspective on the wide range of I4.0 technology applications 

(Benitez et al., 2020). We followed this perspective to investigate how cobots are used in 

practice to create smart working environments in several manufacturing activities. Moreover, 

we aimed to understand how the implementation of this technology affects workers' skills. Thus, 

we adopted an inductive qualitative case study approach (Yin 2009). This methodological 

approach allows to obtain detailed information to build a theory and expand the understanding 

of a phenomenon (Voss et al., 2002). In this case, cobots contribute smart working practices, as 

described in the conceptual research framework that guided our investigation (Figure 3). 

 

3.1. CASE STUDY SELECTION AND DATA TRIANGULATION 

The case study was conducted in a multinational company that is one of the world's largest 

suppliers of cobots and a leader in innovation in this market. The selected case is representative 

since this company holds one of the largest shares in the market of cobots for the manufacturing 

sector, thus ensuring access to a diversity of cases of cobot application in manufacturing 
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activities. Moreover, as the cobots provided by this company are considered some of the most 

flexible for manufacturing activities, we could observe a wide range of situations in which they 

can be used, as proposed in our conceptual framework of manufacturing activities and human-

robots interaction (Figure 3). Finally, we aimed to investigate multiple sources of information 

(triangulation) to ensure reliability, data consistency, and construct validity in this qualitative 

study (Goffin et al., 2019; Yin, 2009). In this sense, we selected this company because we had 

access to technical reports on cobot applications since the company used a structured business 

case report. The company also provided us access to managers and customers so that we could 

interview them and learn how they are implementing the technologies in different applications. 

The main data sources used in this case study are represented in Figure 4 and explained next. In 

sum, the representativeness of this case and the necessary data accessibility defined this as an 

appropriate case for investigation. 

  

 

 

Figure 4 - Main sources of data triangulation for the case study research 

 

To establish the case study scope, we focus our analysis on cases in which cobots were 

implemented in manufacturing activities as a smart working technology (Dornelles et al., 2022). 

This means that we did not analyze any cases from other industry sectors where these cobots 

could be applied. Besides, we did not analyze activities in which interaction between workers 

and cobots was not intended (In some situations, companies acquire cobots to expand to new 
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activities to be performed without workers, such as new tests and new processing operations. 

Such types of implementation were ignored in our study). Within this scope, we selected 138 

successful cases of the company (i.e., implementation was finished and the outputs were 

measurable), implemented in 34 different countries and 17 manufacturing sectors (see 

Appendix A). We also interviewed two managers from the company to obtain more details on 

the documentary analysis conducted in the company. We interviewed the provider’s sales 

development manager and the company's business development manager for Latin America 

(approximately 1 hour each interview). They provided us with complementary supplementary 

information about the business cases and the profile of cobot implementation in the 

manufacturing field. 

Additionally, we interviewed three manufacturing customers of the cobots companies with 

advanced factories in Brazil (Figure 4). The cases are from companies considered leaders in 

Industry 4.0 implementation in this country, with advanced implementation of cobots. We 

aimed to complement our documentary analysis with the 'customer voice', considering 

particularities of cobots' utilization in their factories. The contacts were provided by the cobots 

vendor, but we made independent contact with them to avoid any conflict of interest between 

the vendor and the customer. We interviewed the person in charge the ideation, adoption, and 

implementation of cobots in Brazilian plants. Details on these three customers (Companies A, B, 

and C) are provided in Table 7. 

 

Table 7 - Companies interviewed (customers and competitors of the focal company investigated) 

Companies Sector 
Country of 

Origin 

Global 

Number of 

Employees 

Plant 

Location 

(State) 

Interviewee's 

Position 

Interview 

Time 

Company A Industry and 

Commerce of 

Health Products 

USA 128,000 Amazonas Production 

Manager 

50 minutes 

Company B Truck and Bus 

Manufacturing 

Germany 289,000 São Paulo Manufacturing 

engineering 

manager 

59 minutes 

Company C Computer 

Equipment 

Manufacturing 

China 54,000 São Paulo System & 

Automation 

Manager 

45 minutes 

Company D Robots and 

Cobots 

manufacturer 

Germany 5,000 São Paulo Sales Manager 55 minutes 
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Company E Robots and 

Cobots 

manufacturer 

Japan 40,000 São Paulo Sales Manager 47 minutes 

 

As a third source of data for triangulation (Figure 4), we followed the implementation of a cobot 

in an Industry 4.0 manufacturing project. In this project, eight companies contributed with 

different resources to develop a joint solution, and the cobot provider was one of these 

companies. The other companies were 3D printing, SCADA/MES, classic automation and sensors 

providers, all collaborating to implement an integrated manufacturing production cell for an 

electronics assembly company. The project was developed by an industry-university partnership 

in Brazil that aims to evaluate Industry 4.0 technologies in real-world cases. We followed the 

cobot implementation since the first step, when the technology utilization was designed. We 

followed the definition of requirements, cobot programming, preliminary tests and the final 

application in the manufacturing cell where it interacted with workers. This participant 

observation aimed to identify the limitations and implementation characteristics of this 

technology in real-world situations (Yin et al., 2009). Finally, to reduce potential bias from using 

a single case study, we interviewed two competitors who also produce cobots for the global 

market (Table 7). These interviews provided a comparative overview of how cobots are used in 

smart working environments. 

 

3.2. RESEARCH INSTRUMENTS AND DATA COLLECTION PROCEDURES 

The documentary analysis (Figure 4) consisted of 160 reported cases with a written structured 

report and audiovisual content. The written report contains the following main topics: (i) 

challenges to be solved, (ii) solutions developed, (iii) tasks impacted, and (iv) identification data 

of the adopting company and its production characteristics. Complementary videos about the 

implementation cases support the written reports. After reading all the cases in full and 

watching the available videos, we discarded 22 cases that did not fit our scope (for example, we 

excluded cases of application in educational institutions and testing laboratories in the 

manufacturing environment). After raw data extraction, each case was classified according to 

its identified impact typology and related manufacturing activity, following the categories 

proposed by Dornelles et al. (2022) in Appendix A. The researchers carried out this classification 

jointly, according to the constructs described in the conceptual framework of Figure 1. 

Regarding the semi-structured interviews with customers (Figure 4 and Table 7), we followed an 

interview guideline (Appendix B) to analyze the phenomenon and understand the elements of 

the conceptual framework (Figure 3). Complementary interviews (Figure 4) were conducted 
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with two competitors, as described in Section 3.1 and following similar procedures. The 

interviews were conducted via videoconference and had an average duration of 50 minutes 

each. At least two researchers participated in each interview, one of the researchers being the 

interview moderator and the other acting as an assistant and taking notes. The interviews were 

recorded and fully transcribed for further content analysis. 

Finally, the participant observation was conducted by two of the main researchers of this study 

with the support of three research assistants. The activity involved a weekly interaction with the 

implementation team, which considered full days in the factory and regular videoconference 

meetings to decide on the steps of the implementation project. The team collected notes and 

insights by introducing questions and discussions during the sessions. During the six months of 

interaction, the collected data were recorded in electronic notes and processed by the main 

research team. 

 

3.3. DATA ANALYSIS 

We used the content analysis technique to analyze the collected data, following Miles & 

Huberman (1994). According to these authors, content analysis should be carried out in three 

steps: (i) data reduction, (ii) data display expansion, and (iii) conclusion drawing and verification. 

These steps will be described for each of the data sources. Regarding external validity, the desk 

research results were presented to respondents from the three multinational companies 

participating in the study that implemented cobots with different types of impact of 

technologies on workers' skills. In addition, to present their vision and reality with this 

implementation, the interviewees also validated the classifications according to the constructs 

defined for each of them. In addition to the interviewees from the adopting companies, two 

managers technological responsible from the supplier company were interviewed. They also 

confirmed the constructs and suggested the aforementioned companies for validation. 

3.3.1. ANALYSIS OF DOCUMENTS 

In the data reduction stage, business case reports data were disaggregated in a summarized 

format based on the sets of challenges to be solved, solutions developed using the cobot, and 

impacted tasks. By analyzing the data from these three dimensions, in the stages of expansion 

of data display and conclusion drawing and verification, we sought to identify the impacts 

resulting from the implementation of cobots on workers' skills as presented in Section 2.2. The 

cases were allocated according to the main manufacturing activities in which the cobots were 

used (Dornelles et al., 2022), linked to a typology of technologies impact on workers' skills and 

type of interaction between the workers and cobots. Regarding the impact on workers, 
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Substitution happens when the operator is replaced by the cobot and moved to a new activity, 

unrelated to the cobot. In the case of Deskilling, the operator will perform an easier task than 

before, such as feeding the cobot that will perform what used to be the worker's task. In the 

Reskilling situation, workers learn how to perform another activity to handle the cobot. This is 

the case when the operator receives training to program cobots. In Upskilling, cobots should 

collaborate with workers, for instance, when the cobot does not replace human presence but 

rather helps the operator in welding tasks or component assembly. 

Regarding the interaction types, in the case of coexistence, the cobot carries out its work 

without interaction with the worker. In the synchronized type, the activity is conducted 

sequentially by cobot and worker. In the cooperation type, the cobot and the worker do not 

work on the same part, although they are working in the same activity. Finally, in the 

collaboration type, both the worker and the cobot perform the same activity and work 

simultaneously on the same part. We used these rules to codify the interactions and 

conceptually define what happens in each business case analyzed. 

3.3.2. ANALYSIS OF INTERVIEW DATA 

Again, we used content analysis to analyze the interview data (Miles & Huberman, 1994). We 

analyzed recordings and transcriptions, and common phrases were highlighted for each of the 

questions addressed. From the reductions carried out, it was possible to organize the findings in 

terms of the types of application and interaction types of each company. Thus, it was possible 

to draw conclusions that, together with the documentary analysis, provided this study's main 

findings. As shown in Appendix B, the interviews were guided to answer questions raised in the 

previous stage of documentary analysis. Therefore, unlike the first stage, content analysis 

focused mainly on the aim of answering the questions raised in this research, as the documents 

had not been originally prepared to do so. 

3.3.3. ANALYSIS OF PARTICIPANT OBSERVATIONS 

Participant observations were used to enlighten practical issues that were unclear to the team 

in the former two stages, especially regarding cobots limitations and detailed aspects that need 

to be considered for their integration with workers on the shop floor. The codification of our 

notes followed the structure of the conceptual framework described in Figure 3. In this sense, 

the observations were guided by the framework, and notes were taken regarding unclear 

specificities in the documents and interviews.  
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4. RESULTS 

Table 8 summarizes the observed frequencies of each human-robot interaction situation in the 

138 business cases reviewed (documentary analysis). As detailed in Appendix A, several cases 

presented more than one interaction situation (observed frequency), especially when several 

cobots are implemented in the same case for a mix of activities. In this table, it is possible to 

observe that most applications were for material movement (28.5%), machine operation (38%), 

and substitution purposes (70%). The coexistence between workers and robots is the most 

frequent interaction type (83.5%). Such descriptive data suggests that companies are using 

cobots mostly to replace workers in workplaces where cobots can coexist with other workers. 

Yet, we also identified more advanced types of interaction, evidencing the possibility of such use 

to create smart working environments. The only case containing only basic levels of interaction 

(coexistence) was in quality control, where cobots are used for substitution. It is worth noting 

that deskilling and reskilling impacts were similar in terms of frequency of observation (14% and 

13%, respectively), while upskilling was the least observed (3%) in the business cases analyzed.  

 

Table 8 - Observed frequencies of cases in the data analysis* 

 
 Interaction Type 

Manufacturing  

Activities 

Workers’ impact 
Coexistence Synchronized Cooperation Collaboration Totals 

Material  

movement 

Substitution 41 2 - - 

57 

(28.5%) 

Deskilling 2 1 - - 

Reskilling 8 2 - - 

Upskilling - - 1 - 

Machine  

operation 

Substitution 49 2 - - 

76 

(38%) 

Deskilling 9 2 1 - 

Reskilling 12 - - - 

Upskilling - - 1 - 

Manual  

operation 

Substitution 12 - - - 

18 

(9%) 

Deskilling - 3 1 - 

Reskilling 1 1 - - 

Upskilling - - - - 

Assembly 

Substitution 14 2 2 - 

33 

(16.5%) 

Deskilling 1 4 4 - 

Reskilling 2 - - - 

Upskilling - - 2 2 

Quality  

control 

Substitution 16 - - - 
16 

(8%) 
Deskilling - - - - 

Reskilling - - - - 
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Upskilling - - - - 

 Totals 167 (83.5%) 19 (9.5%) 12 (6%) 2 (1%)  

 

Totals 
Substitution = 

140 (70%) 

Deskilling = 

28 (14%) 

Reskilling = 

26 (13%) 

Upskilling = 

6 (3%) 
 

* Note: Frequencies are above the 138 business cases because some cases contain more than one 

observed situation about human-robot interaction 

 

To discuss the documentary observations of the frequencies reported in Table 8, we 

complemented them with interviews with manufacturing customers, as described in Table 9. In 

the case of Company A, three impact types on workers' skills were identified considering the 

pick-and-place tasks (packaging) and palletizing of products. In the cell where the pick-and-place 

task is performed, before cobot implementation, there were three workers to carry out the 

packaging of the products, that is, place the bottles (primary packaging) inside the cardboard 

box (secondary packaging) and seal this box. Two workers were reassigned to other cells when 

the cobot was implemented in this cell, which characterizes a substitution effect. In contrast, 

the worker who remained in the cell where the cobot was deployed was affected in two ways: 

deskilling and reskilling. First, the cobot was designed to perform the primary and secondary 

packaging tasks, and the worker remained to seal the boxes. In this case, by staying in the cell, 

the worker began to perform fewer tasks (deskilling) and serve the cobot to ensure that the 

necessary supplies for its operation were available. However, this same worker also needed 

reskilling to learn how to operate the cobot. Regarding the palletizing task, a single worker was 

previously responsible for the cell, performing all the necessary manual tasks. After cobot 

implementation, this same worker underwent a reskilling to learn some commands to operate 

the cobot and supervise its operation. Regarding the type of human-robot interaction 

(considering the operators who work in the same cell as the cobot), we identified that 

synchronized interaction occurs in all analyzed situations (packing and palletizing) because the 

interaction occurs through the command given by the operator to the cobot, and the activities 

performed in the cell are performed sequentially. 

Regarding Company B, the four effects of technologies on workers were identified, considering 

the tasks of dispensing glue (manual operation) and assembling the general switch (assembly). 

Regarding the glue dispensing task, three effects were identified. Before the cobot was 

implemented, the worker performed the tasks of dispensing glue and then welding in the same 

production line. After the cobot implementation, the worker remained in the same operator 

station. However, he was replaced by the cobot in the glue dispensing task and continued to 

perform the subsequent task, which is welding. In addition, this worker also experienced 



83 

 

deskilling, as he started to serve the cobot to supply it with the necessary inputs to dispense 

glue. On the other hand, this same worker also experienced reskilling as he had to learn new 

skills to operate the cobot. Regarding the general switch assembly activity, the implementation 

of this cobot has enabled people with special needs to perform this complex assembly, which 

consists of handling parts for assembly. In this case, we identified an upskilling effect because, 

without the help of technology, it would not be possible for people with certain limitations to 

perform such a complex assembly task. For the glue dispensing task, the type of interaction is 

Synchronized, as the cobot performs one part of the activity (glue distribution and parts 

handling), and then the worker performs another part of the activity (welding). As for the 

general switch assembly activity, the interaction type is Cooperation. This is because the cobot 

moves and reaches the parts while the operator performs the assembly without acting on the 

same part simultaneously. 

Finally, in the case of Company C, we only identified the effect of substitution when the 

technology was implemented. This is because, by implementing the cobot, the company seeks 

to eliminate a human worker from the screwing activity. This elimination consists of relocating 

the worker to another manual activity or another production line. However, although the 

company seeks to replace workers in the activity in which the cobot is implemented, the 

interaction between humans and cobots is synchronized because production is in line and the 

cobot performs one of the tasks of assembling the final product. 

 

Table 9 - Summary of interview findings 

Company Sector Manufacturing 

activity 

Task Impact Typology Interaction 

Type 

Company 

A 

Industry and Commerce 

of Health Products 

Material 

movement 

Packaging 

 

Substitution 

Reskillling 

Deskilling 

Synchronized 

Palletizing Reskillling Synchronized 

Company 

B 

 

Truck and Bus 

Manufacturing 

Manual 

operation 

Dispense 

glue  

Substitution 

Reskilling 

Deskilling 

Synchronized  

Assembly General 

switch 

assembly 

Upskilling Cooperation 

Company 

C 

Computer Equipment 

Manufacturing 

Assembly Screwing Substitution Synchronized 
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The documental analysis summarized in Table 8 and the interviews summarized in Table 9 were 

complemented with the interview with competitors and the participant observation of the cobot 

implementation, as explained in the methodological procedures of Section 3. In the next 

subsections, we summarize the qualitative findings regarding these different impacts on 

workers through the different ways cobots are used. 

 

4.1. COBOTS AND HUMAN-ROBOT INTERACTION LEVELS 

As shown in Table 8 and corroborated by the interviews, most cobot applications focus on 

coexistence and synchronized activities. Few cases are reported for cooperation (6%) and even 

fewer for collaboration (1%). As explained by one of the managers of the cobot vendor, there 

are important barriers to implementing higher levels of interaction in a smart working 

environment. The first barrier is that manufacturers need to look at cobots as a technology 

different from traditional robots with different capabilities. As explained by this manager: "Many 

companies adopt cobots because they think that they can reduce their workforce payroll, and 

we have the challenge of showing them that cobots can do something much better than 

competing with workers". As explained in this interview, the second barrier is that higher levels 

of interaction require redesigning of the workflow process and manufacturing tasks and 

activities. As mentioned by the interviewee: "It is different how you will perform an activity 

synchronized with a cobot and how you will effectively collaborate in the same activity with the 

cobot". Therefore, higher levels of interaction like cooperation and collaboration demand that 

workers' activities be designed for cobots. As few companies have such skills and vendors are 

more concerned with selling cobots than supporting such activities redesign, the resulting 

scenario is presented in Table 8, where workers' substitution and coexistence of cobots with 

workers are highly correlated and concentrated in terms of observed cases. These results were 

also evidenced in the three cases of adopters. They stated that the smart working approach was 

something new for the companies, although they have been implemented for almost eight years 

in Industry 4.0 related technologies. These companies are currently more concerned with the 

increased flexibility of their operations and decided to focus mainly on smart working 

technologies. However, as this journey is new for them and they also need convergence 

between their cobots activities, operations management methods, and worker practices, they 

consider the human-robot integration to be still in its early stages.  

It is also worth noting that, when collaboration occured in the human-robot interaction (two 

cases of the documentary analysis), the activities were related to assembly and involved 

workers' upskilling. In the first case, the company (Company 38, Appendix A) implemented a 

collaborative approach for handling glue dispensing in the manufacture of door handles. In this 
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case, the cobot now dispenses the glue with speed and precision, working in perfect 

collaboration with the operator who places the button on the rod after the glue is applied. This 

joint effort doubled person-hour output on the high-volume/low-volume production line. The 

second case (Company 85, Appendix A) was from a metal and machining company that uses 

cobots to assemble dental sterilization equipment in collaboration with the workers. In this case, 

the cobot is equipped with a force sensor enabling the operator to simply touch the cobot to 

activate it. Upon being touched, the cobot positions and holds the part for the operator to insert 

the pin into the assembled part, acting in a combined assembly process. 

 

4.2. COBOTS AND SUBSTITUTION OF WORKERS 

From the information analyzed, and as mentioned above in the human-robot interaction types, 

we found that substitution is the most common typology among cobot applications in 

manufacturing industries, and it can occur in activities such as quality control, material 

movement, assembly, and machine or manual operation. In the case of quality control, the cobot 

can autonomously inspect parts and tests, eliminating the need for a worker. To do so, it can 

use the support of other technologies such as visual computing and artificial intelligence. To 

exemplify the integration of these other technologies, in case 18, the cobot can be integrated 

into a vision system that, with the help of artificial intelligence, guides the cobot to the correct 

position for the expansion of the copper tube. In material movement, the cobot can replace the 

worker in pick and place, palletizing, labelling, machine feeding, and packaging, for example. In 

assembly, the cobot can replace the worker using box assembly, bolting, glue dispensing 

functions for joining product parts and labelling products. In machine and manual operation, the 

cobot can replace the worker in the autonomous operation of a CNC machine by loading the raw 

material into the machine and unloading the finished machine parts, operating injection 

moulding machines, and performing naturally manual operations such as welding and finishing. 

Among the types of interaction that can occur within the substitution type, cases of coexistence, 

synchronized, and cooperation were identified. Coexistence cases are the most common within 

this typology, and they cover all types of activities related to substitution. This happens, for 

instance, when the cobot performs an autonomous inspection of a product (e.g., Company 1, 

and 64, Appendix A), when it takes the boxes from a conveyor and places them on a pallet (e.g., 

Company 10 and 22, Appendix A). Also, when it screws a part (e.g., Company 69, and 97, 

Appendix A) or when it performs the entire machining process of a component (e.g., Company 

23, and 39, Appendix A) without any direct contact with the worker, this technology is replacing 

a worker in a coexistence mode. Another type of interaction that can occur in substitution is 

synchronized in assembly, machine and manual operation, and material handling. In this case, 
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for example, when the cobot performs the dispensing of glue and joining the pieces (e.g., 

Company 12, Appendix A), when it operates a press or welding equipment (e.g., Company 112, 

Appendix A), or when they choose parts from the manufacturing line and place them in boxes 

(e.g., Company 111, Appendix A), completing each step sequentially, worker replacement takes 

place synchronously. As for cooperation, it can happen in an assembly activity in which the cobot 

works side by side with operators in a shared space (e.g., Company 113, Appendix A). 

All the three companies interviewed have at least one substitution case. In the application of 

Company A, for the material handling activity, only one out of three operators remained at the 

station, i.e., two operators were replaced in that activity. In the application of Company B, for 

the glue dispensing, the cobot acts this task in the place of the welder, so the cobot performs 

the activity that another operator could perform. In Company C, for the assembly activity, the 

cobot acts instead of an operator. In this case, operators are reallocated to other manual 

activities, which is the main purpose of implementing cobots in this company's production line. 

Several cases and interviews report that the operator is removed from repetitive, stressful, or 

tedious tasks to perform a better role when substituted by cobots, assuming more complex 

activities that actually require human skills, such as control, supervision, and problem-solving. 

In this sense, all interviewees (suppliers, adopters and competitors) emphasized that the 

implementation of the technology is usually not focused on dismissing workers, but rather aims 

at automating dangerous or excessively repetitive activities so that workers be of more benefit 

in activities that really add value to the process and increase work quality and satisfaction. 

 

4.3. COBOTS AND DESKILLING 

According to the information analyzed, it was found that workers' deskilling is the second most 

common typology among cobot applications in the manufacturing industries, and that it can 

happen in the activities of assembly, material movement, and machine or manual operation. 

When it comes to assembly, the cobot performs a part of the assembly, for example, tightening 

screws or gluing parts, tasks that the operators would previously perform (e.g., Company 49, 

Appendix A). In addition, worker's deskilling can also happen when, instead of carrying out the 

activity, the operator starts to feed the cobot with the items necessary to carry out the tasks, 

which can be made to increase productivity (e.g., Company 128, Appendix A). In material 

movement, workers undergo deskilling when they need to feed cobots to carry out handling 

tasks such as packaging, palletizing, pick and place, and labelling. In these cases, the operator 

acts as an assistant to the cobot, preparing what is necessary for the cobot to perform the 

activities to which it was deployed (e.g., Company 111, Appendix A). In the case of machine or 

manual operation activities, worker's deskilling happens when the worker only delivers and 
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collects boxes with the elements that need to be processed instead of being present in the 

machines and equipment for operation (e.g., Company 6, and 11, Appendix A). In these cases, 

an example is filling a container with parts that correspond to several hours of cobot operation 

and randomly checking the task status. There are also cases of deskilling in welding tasks, where, 

for example, instead of the welder performing the manual operation, he watches the cobot 

move and weld. In this case, an operator can take care of the cobot welder, which characterizes 

a case of deskilling (e.g., Company 47, 82, and 99, Appendix A). 

The coexistence, synchronized, and cooperation types were identified when it comes to the 

types of interaction in which deskilling can occur. Coexistence cases are the most common 

within the deskilling impact, followed by synchronized cases. Coexistence cases occur in 

assembly, material movement, and machine operation. For example, when the cobot performs 

bolting tasks using the parts package provided by the worker while the worker performs other 

activities outside the cobot's operating area (e.g., Company 100, Appendix A). Or when the cobot 

performs its tasks, such as packaging, palletizing, pick and place, in a workspace not shared with 

the worker (e.g., Company 22, Appendix A). Another case is when the operator only powers the 

cobot, and the operator performs his activities independently and simultaneously without 

sharing the same workspace (e.g., Company 100, Appendix A). In deskilling with synchronized 

interaction, the reported cases refer to assembly activities, material movement, and machine or 

manual operation. It happens, for instance, when the cobot performs one part of an assembly 

and the operator performs another (e.g., Company 49, Appendix A); when the cobot performs 

the packaging, and the operator performs the closing of the boxes (e.g., Company 111, Appendix 

A; or when the cobot performs a part of the welding, and then the operator performs another 

part (e.g., Company 82, Appendix A). In these cases, the cobot and the worker share the same 

workspace but work sequentially, characterizing cases of synchronized interaction. When it 

comes to cooperation, it can occur in the assembly and machine or manual operation. An 

example is when, while a cobot uses the pre-assembled package positioned by the operator, it 

performs marking and screwing activities (e.g., Company 55, Appendix A). During the process, 

the worker folds the shipping boxes and cleans the finished parts with a cloth (e.g., Company 5, 

Appendix A). In these cases, the worker and the cobot operate in the same workspace and are 

dedicated to completing the same task. However, they are not simultaneously working on the 

same part/product, which characterizes a case of cooperation. 

Among the companies interviewed, Company A and B have cases of deskilling. In the case of 

Company A, the application was carried out in the material movement activity, in the packaging 

task. According to the respondent, the deskilling case happened because the operator is 

responsible for ensuring that everything necessary for the cobot to operate is available. In this 
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case, the operator acts as the cobot’s feeder instead of carrying out the activities. The 

application of Company B is in manual operation, specifically in the task of dispensing glue for 

sealing. In the case of glue dispensing, before implementing the cobot, the welder was 

responsible this task, for the sealing, and then for the welding of components to the vehicle. 

After implementation, one of the welder’s functions became to supply the cobot so that it would 

perform the glue dispensing activity, resulting in improved quality, ergonomics, and 

productivity. 

Although most cases of deskilling occur with the cobot being fed by the operator to carry out 

activities in his stead, these applications can increase worker productivity by allowing the same 

worker to work at different stations, ensuring that cobots have the necessary inputs to carry out 

the activities for which they are intended. Still, as in substitution cases, even when cobots cause 

the deskilling of the worker, most of the tasks that the cobot performs are repetitive, exhausting, 

and difficult to access for the worker, or require great worker precision during processing. 

Furthermore, it is important to point out that deskilling cases often happen together with 

substitution and reskilling cases, impacting operators differently. This happens because, when  

a technology is implemented to perform a certain activity, the way people are considered in 

these projects will vary, causing different types of impacts. 

 

4.4. COBOTS AND RESKILLING 

The results show that reskilling is the third most common impact on workers from cobot 

applications. As in deskilling, the reskilling effect occurs in assembly, material movement, and 

machine or manual operation (Table 3). In assembly activities, cobots carry out the assembly, 

but workers keep their positions for programming and operating activities 'on' the cobots. In 

this case, the operators' scope of work changes through requalification with training about how 

to program and operate cobots, including tasks such as program cycles, performing adjustments, 

and identifying the central point of gravity of the tool in the cobot (e.g., Company 13, and 26, 

Appendix A). In material movement, packaging, palletizing, and pick-and-place tasks, workers 

start the program, operate, and supervise the execution of these tasks by the cobot (e.g., 

Company 93, Appendix A). These activities performed by the workers allow to develop and raise 

the level of professional qualification of employees through interaction with the cobot. In 

machine or manual operation activities, workers also undergo Reskilling for cobot programming, 

operation, and supervision. For example, in some cases, a welder operator is re-qualified and 

starts programming and operating the cobot that performs the welding task (e.g., Company 7, 

Appendix A). In addition, due to the reskilling, workers start to operate, program, and supervise 

the cobots in more than one machine on the shop floor, becoming multifunctional. 
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Regarding the types of interaction identified through case analysis and interviews, it was verified 

that coexistence and the synchronized type could occur. The cases of coexistence are triggered 

by the ones that occur the most within this typology. For instance, although workers are 

responsible for operating, scheduling, and supervising the cobots, the latter can carry out the 

tasks to which they have been deployed autonomously. As a result, workers no longer need to 

share the workspace with the cobot (e.g., Company 50, Appendix A), since now repetitive tasks 

are carried out by the cobot while the worker can engage in different tasks. In cases where the 

synchronized interaction type exists, for example, when a batch is completed, the cobot directly 

alerts the operator responsible for supervising it about the completion. In this way, the cobot 

communicates with the worker, and the worker decides on the next steps to be taken, modifying 

the cobot's programming or operating mode (e.g., Company 7, Appendix A). 

Regarding the interviews with adopters, the companies that presented cases of reskilling were 

Company A and Company B. In Company A, the case of reskilling took place within the activity 

of moving materials in the packaging and palletizing tasks. In the packaging task, the operator 

who remained at the workstation (two others were removed to other production lines) was 

retrained to learn how to operate and supervise the cobot. In the case of the palletizing task, 

the workers needed to learn how to supervise and operate the cobot. As reported by the 

respondent, “this is the least 'noble' application of a cobot because it is used only for this 

purpose. However, it is the workplace where workers are most satisfied with their work”. An 

interesting issue highlighted by the respondent is that the company is considered one of the 

best places to work in Brazil according to the Great Place to Work survey (GPTW, 2020), and one 

of the difficulties the company faces is in the availability of training outside the company to help 

meet today's technological demands. Thus, the company created an internal team of three 

employees to develop solutions, program, and train operators to operate and supervise the 

cobots. The application of Company B was carried out in a manual operation activity, specifically 

in the task of dispensing glue. In this case, the welder responsible for the activity was requalified 

to operate the cobot in addition to welding, while the cobot took over the glue dispensing 

activity. In this case, as highlighted by the interviewee, in addition to employee safety and 

product quality, they observed that they are developing other skills in the team, not only for 

production but also in monitoring and operating the cobot. 

When it comes to reskilling, companies choose not to incorporate highly specialized people to 

handle a state-of-the-art cobot but rather to develop capacities and train internal team 

specialists, thereby increasing the level of workers’ skills. One of the managers of the cobot 

vendor interviewed explained that such a strategy allows the company to increase productivity 

in the production process and also helps to preserve the essence of teamwork by valuing the 



90 

 

workers that have been part of the operations. In this sense, the reskilling approach is not only 

focused on the benefits of cobot adoption but also on a socio-technical perspective of the 

factory. This aims to evaluate workers and their history in the company, which should also result 

in more openness to the adoption of new technologies, as stated by Company B. However, we 

also observed some cases of reskilling that happen together with cases of substitution. In these 

cases, not all workers in the production line were qualified to operate, program, and supervise 

the cobots. In such cases, the reallocation strategy was adopted in factories where job 

preservation was a value of the company. 

 

4.5. COBOTS AND UPSKILLING 

According to the cases and interviews, the upskilling typology is the least recurrent among the 

typologies and it can occur in assembly and material movement activities. In assembly, the 

upskilling situation occurs when the cobot performs activities collaborating with the workers 

and helping them to do the activity even better, for instance, helping to put components 

together or supporting the part while the worker performs a task on it (e.g., Company 87, 

Appendix A). In the case of material movement, the cobot performs activities that do not add 

value to the process, such as moving parts removed from an injection molding machine for the 

operator to carry out inspection activities (e.g., Company 71, Appendix A). In this case, the 

operator continues to perform the activity, but with the cobot helping to move the parts. 

Cooperation and collaboration were identified as the two human-robot interaction types related 

to upskilling. In cooperation cases, both the cobot and the worker perform the activity 

simultaneously in the same workspace and share resources, although they do not act 

simultaneously on the same part. For example, while cobots perform high-risk tasks such as 

welding and separating cut parts, workers may be in the same workspace performing less 

dangerous tasks to complete the same activity (e.g., removing burrs from the metal parts welded 

by the cobot) (e.g., Company 103, Appendix A). In cases where collaboration occurs, both the 

cobot and the worker act on the same part simultaneously, for example, in assembly cases 

where the cobot dispenses glue so that the operator can fit the part (Company 38) or when the 

cobot reaches and holds the part for the operator to assemble (Company 85). 

Among the companies interviewed, just Company B presented an upskilling situation. In this 

company, the activity in which the Upskilling took place is assembly, specifically in the complex 

task of assembling a vehicle's general switch. In this case, the cobot helps the operator in 

complex manual assembly to such an extent that now it is possible for operators with special 

needs to perform one of the most complex tasks within an automotive assembly line, with the 

cobot moving and reaching the parts for the operator to make the assembly. 
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These results show that upskilling is highly correlated with the cooperation and collaboration 

human-robot interaction types. In Section 4.1. we explained the difficulties and challenges of 

implementing cooperation and collaboration interaction types in manufacturing due to the need 

of redesigning the manufacturing workflow. Therefore, although cobots can help workers be 

upskilled, this can only happen when the complete system is designed for smart working 

between workers and cobots, requiring an anthropocentric perspective on the use of cobots on 

the shop floor.  

This was also evidenced during the follow-up of the implementation project in which the 

researchers were involved. The manufacturing company wanted to develop an Industry 4.0 

production line that supported its workers in the assembly and production decision-making. One 

of the technologies considered for the production line was cobots, but the company was only 

interested in this technology after it moved to a new plant, where the production line could be 

redesigned from the ground up. The cobots were integrated into a new modular production cell 

in which both cobots and workers’ stations are flexible to be added or retired based on the 

production routes and capacity available. The combination was designed for collaboration on 

the same component: while the worker assembles the components, the cobot activates the 

quality and reliability tests on the component, thus requiring less of the worker’s attention to 

those repetitive, simpler tasks of the assembly activity. Upskilling was possible in such a situation 

because now less of the worker’s attention is required to complementary tasks, and thus he can 

execute the main activities faster and assemble a greater variety of components in the same 

production line. However, the company only considered such an integration because it 

redesigned its layout. As stated by the operations manager: “our previous production line was 

rigid, we could not use the same workplace to have both a cobot and a worker. The production 

line was linear”. 

   

5. DISCUSSIONS 

Our main findings are summarized in Figure 5, which represents the conceptual framework from 

Figure 3 revisited based on the empirical results described in Section 4. This figure shows the 

impacts on workers that were possible to observe in the qualitative research reported. Next, we 

discuss the main findings obtained. 
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Figure 5 - Main findings about the impact of cobots on operators in smart working environments 

 

Firstly, our findings showed that quality control is dominated by the implementation of cobots 

to substitute workers in an environment where cobots can coexist with other workers. In this 

manufacturing activity that is necessary but does not add value to the manufactured product, 

companies aim to reduce worker activity and focus on automating repetitive inspection tasks. 

This is in line with other quality control-oriented Industry 4.0 solutions. The literature has also 

reported the adoption of automated processes rather than workers supported by technologies 

(Hrehova et al., 2021). Furthermore, our results described substitution of workers also in 

assembly, material movement, and machine operation, usually when there are highly repetitive 

and/or dangerous tasks. In such cases, we observed that cobots are no different from traditional 

robots, except that they can coexist with other workers in the manufacturing environment 

(Dornelles et al., 2022). Thus, we present the following proposition: 

 

Proposition 1: Cobots are used for substituting purposes when there are highly repetitive and/or 

dangerous activities and tasks. In such situations, the coexistence of cobots with human 

operators characterizes the type of interaction that differentiates cobots from traditional robots. 

 

In the case of substitution of workers and coexistence of the implemented cobots with other 

operators in the assembly, material movement and machine or manual operation activities, we 

also observed complementary or collateral impacts related to the deskilling or reskilling of 

workers that remained in the production line, as described in Figure 2. When the cobot 
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substituted a worker, we also observed that other workers needed to be trained to provide 

support to the cobot (for instance, in programing or maintenance), i.e., they were upskilled. In 

other cases, the activities of the worker who remained in that task became simpler, like checking 

the cobot’s execution of the tasks (deskilling). Therefore, as previously suggested in the socio-

technical theory of manufacturing systems (Marcon et al., 2021), cobots should not be seen in 

coexistence interactions as an isolated and independent technology that simply substitutes 

workers. Instead, they can produce changes in the environment, demanding broader 

adaptations of the workers that are coexisting with the cobots. As pointed out by recent studies 

in the Industry 4.0 context, social aspects of the workers coexisting with a new digital technology 

need to be considered, especially regarding the new skills they will need to acquire (Marcon et 

al., 2021; Neumann et al., 2021). Thus, our observations lead to the following proposition: 

 

Proposition 2: When cobots are used for substituting purposes, coexisting with workers who 

remain, they can generate collateral impacts on them. Such impacts can be related to reskilling 

or deskilling, depending on how workers will coexist with the cobot. Therefore, a broader analysis 

needs to be considered to assess the impact on the substituted workers and on the remaining 

workers as well. 

 

Regarding the synchronized and cooperation interaction types, Figure 1 shows that they 

presented the highest variation in the types of impacts for three of the four manufacturing 

activities. As these are the two main ways in which human-robot interaction happens, they are 

rather flexible to attend numerous options of applications, pointing to the flexibility of cobots 

(Enrique et al., 2022). However, while cooperation presented the four types of interaction in the 

observed cases, synchronized interaction did not show upskilling situations. This is because 

there is sequential activity between worker and cobot in synchronized activities, but the cobot 

does not directly support the worker to improve task execution. As upskilling involves an 

enhancement of workers’ capabilities through digital technologies (Dornelles et al., 2022), 

cobots are not in touch with the worker in synchronized activities but focused on a specific task, 

which is complementary to the one performed by the worker, and this impact is not present. 

Thus, we summarize this situation in the following proposition: 

 

Proposition 3: When cobots are used for synchronized and cooperation interaction types, the 

highest variation of types of impacts on manufacturing workers can be present. However, 

synchronized interaction does not comprise workers' upskilling, remaining this one only for 

cooperation activities where the cobot will support the worker. 
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Finally, for the collaboration situation, our findings showed only upskilling impacts on workers. 

The collaboration type of interaction is focused on producing a smart working environment in 

which the cobot supports the worker so that the worker can better execute the manufacturing 

activities (Frank et al., 2019; Dornelles et al., 2022). The literature has already suggested that 

this is one of the least explored aspects in the Industry 4.0 domain (Meindl et al., 2021), which 

is corroborated by the fact that our investigation found only two cases. Recent studies have 

shown that when cobots collaborate with workers, productivity can be increased, and workers' 

learning curve to implement new tasks can be reduced in the workstations (Cohen et al., 2021). 

Besides, cobots can help increase operational flexibility in the production line, since they can 

adapt workers' activities and provide more flexibility for the worker execute a wider range of 

tasks, while the cobot is focused on complementary repetitive operations (e.g., the worker 

assembles different product parts while the cobot helps the worker by tightening the screws in 

such product parts) (Enrique et al., 2022). Thus, we propose: 

 

Proposition 4: Collaboration interaction between workers and cobots is intrinsically related to 

upskilling situations. Cobots are used as assistants to workers' tasks and activities so that 

workers can enhance their capabilities and take more advantage of capabilities that differentiate 

human workers from automation technologies. 

 

6. CONCLUSIONS 

This study investigated the use of cobots to create an Industry 4.0 smart working environment 

in different manufacturing activities. We used a large amount of qualitative data on the 

application of cobots to analyze how cobots are used in manufacturing activities for different 

types of human-robot interactions to understand how such configurations can impact workers' 

skills. Our findings show that this Industry 4.0 technology presents different impacts on workers' 

skills, ranging from the substitution of workers to their deskilling, reskilling and upskilling. Our 

results suggest that this will depend on the type of manufacturing activity in which the cobot 

will be used and on the level of interaction with operators for which the working process was 

designed. Our study brings important contributions to the Industry 4.0 theory, as it sheds light 

on the various ways cobots can be used in manufacturing activities. In this sense, this study 

meets the demand for more research on Industry 4.0 smart working technologies, as recently 

suggested by Meindl et al. (2021). Moreover, a recent literature review from Dornelles et al. 

(2022) on smart working technologies showed that cobots are one of the emerging technologies 

most commonly used in manufacturing applications, and called for deeper investigation into the 
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details of how such cobots are used. Our findings help to fulfil these gaps and demonstrate how 

cobots can be effectively adopted in smart working environments. We also provide propositions 

that can drive future empirical studies on cobots adoption in smart working environments. 

 

6.1. MANAGERIAL IMPLICATIONS 

Practitioners can use this study as a guideline for the implementation of cobots. The proposed 

framework can help in the decision-making process of implementing cobots for different 

activities. Practitioners can learn what kinds of training they will need for their workers and what 

kinds of impact their workers will suffer from cobots implementation. Moreover, they can also 

learn what is required in each level of human-robot interaction since the applications with the 

highest level of collaboration are the least explored. Our results also reported the difficulty of 

convincing companies to think of the adoption of cobots in another way, which can also be 

useful to help practitioners reflect on how they will adopt cobots in the manufacturing system.  

 

6.2. LIMITATIONS AND FUTURE RESEARCH 

One limitation of this study is that we used a single cobot provider as source of evidence. 

Although we took some caution by interviewing two competitors to validate our findings, we 

believe that future studies should consider the nuances and differences between cobots 

providers. There is a risk that some cobots can be more useful for collaborative activities than 

others. Such undesirable effects on the research can be only fully controlled when several 

brands are compared. On the other hand, our study has the advantage of capturing a very deep 

analysis based on the multiple and extensive sources of qualitative data we used. Second, we 

provided four propositions in this study that should open opportunities for future research. Such 

propositions can be deployed in hypotheses to be tested with empirical data from survey 

studies. Finally, more research is needed in the smart working context of Industry 4.0 since the 

literature lacks knowledge on how smart working technologies like cobots can be integrated and 

connected to other smart working tools to create a really immersive experience for workers on 

the shop floor. Today, cobots and most smart working technologies focus on the workers, but 

they are not interconnected to create a fully integrated smart working experience. A study on 

how cobots can be integrated with other tools would be valuable for production research. 
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APPENDIX A - BUSINESS CASES OF COBOT APPLICATION OF THE SUPPLIER COMPANY 

Companies Country Sector Manufacturing activities Typologies Types of Interaction 

Company 1 India Metal and machining Quality control Substitution Coexistence 
Company 2 USA Metal and machining Manual operation Substitution Coexistence 
Company 3 Germany Electronics and Technology Assembly Deskilling Cooperation 
Company 4 USA Electronics and Technology Material movement Substitution Coexistence 
Company 5 Japan Automotive and subcontractors Machine operation Deskilling Cooperation 
Company 6 Poland Metals and Treatment, and Polymers Machine operation Substitution Coexistence 
Company 6 Poland Metals and Treatment, and Polymers Machine operation Deskilling Coexistence 
Company 7 Finland Metal and machining Manual operation Reskilling Synchronized 
Company 8 New Zealand Furniture and equipment Assembly Deskilling Coexistence 
Company 9 Czech Republic Automotive and subcontractors Machine operation Substitution Coexistence 
Company 10 India Science and research Material movement Substitution Coexistence 
Company 11 Czech Republic Metal and machining Machine operation Substitution Coexistence 
Company 11 Czech Republic Metal and machining Machine operation Deskilling Coexistence 
Company 12 Romania Furniture and equipment Assembly Substitution Synchronized 
Company 13 Thailand Electronics and Technology Assembly Substitution Coexistence 
Company 13 Thailand Electronics and Technology Assembly Reskilling Coexistence 
Company 14 Poland Metal and machining Machine operation Substitution Coexistence 
Company 14 Poland Metal and machining Machine operation Reskilling Coexistence 
Company 15 New Zealand Metal and machining Assembly Substitution Coexistence 
Company 16 Germany Electronics and Technology Assembly Deskilling Cooperation 
Company 17 Denmark Metal and machining Manual operation Substitution Coexistence 
Company 17 Denmark Metal and machining Machine operation Substitution Coexistence 
Company 18 India Electronics and Technology Manual operation Substitution Coexistence 
Company 19 Germany Automotive and subcontractors Material movement Substitution Coexistence 
Company 19 Germany Automotive and subcontractors Quality control Substitution Coexistence 
Company 20 France Automotive and subcontractors Machine operation Substitution Coexistence 
Company 20 France Automotive and subcontractors Machine operation Reskilling Coexistence 
Company 21 France Metal and machining Machine operation Substitution Coexistence 
Company 21 France Metal and machining Quality control Substitution Coexistence 
Company 22 Italy Food and agriculture Material movement Substitution Coexistence 
Company 22 Italy Food and agriculture Material movement Deskilling Coexistence 
Company 23 Great Britain Plastic and polymers Machine operation Substitution Coexistence 
Company 24 Spain Automotive and subcontractors Material movement Substitution Coexistence 
Company 24 Spain Automotive and subcontractors Quality control Substitution Coexistence 
Company 25 USA Electronics and Technology Assembly Substitution Coexistence 
Company 26 USA Electronics and Technology Assembly Substitution Coexistence 
Company 26 USA Electronics and Technology Material movement Reskilling Coexistence 
Company 26 USA Electronics and Technology Material movement Substitution Coexistence 
Company 27 Czech Republic Plastic and polymers Machine operation Substitution Coexistence 
Company 27 Czech Republic Plastic and polymers Material movement Reskilling Coexistence 
Company 28 USA Metal and machining Machine operation Substitution Coexistence 
Company 28 USA Metal and machining Machine operation Reskilling Coexistence 
Company 29 Sweden Food and agriculture Material movement Substitution Coexistence 
Company 30 India Automotive and subcontractors Material movement Substitution Coexistence 
Company 30 India Automotive and subcontractors Machine operation Substitution Coexistence 
Company 30 India Automotive and subcontractors Assembly Deskilling Cooperation 
Company 31 United Kingdom Plastic and polymers Manual operation Substitution Coexistence 
Company 31 United Kingdom Plastic and polymers Machine operation Deskilling Synchronized 
Company 32 Singapore F&B, home care, personal care, oils Material movement Substitution Coexistence 
Company 33 Czech Republic Metal and machining Machine operation Substitution Coexistence 
Company 33 Czech Republic Metal and machining Machine operation Deskilling Coexistence 
Company 34 USA Pharma and chemistry Material movement Substitution Coexistence 
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Company 35 India Automotive and subcontractors Machine operation Substitution Coexistence 
Company 35 India Automotive and subcontractors Quality control Substitution Coexistence 
Company 36 USA Electronics and Technology Material movement Substitution Coexistence 
Company 37 USA Plastic and polymers Machine operation Substitution Coexistence 
Company 37 USA Plastic and polymers Assembly Deskilling Synchronized 
Company 38 USA Furniture and equipment Assembly Upskilling Collaboration 
Company 39 Germany Metal and machining Machine operation Substitution Coexistence 
Company 40 India Metal and machining Machine operation Substitution Coexistence 
Company 40 India Metal and machining Machine operation Reskilling Coexistence 
Company 40 India Metal and machining Machine operation Deskilling Coexistence 
Company 41 Norway Metal and machining Machine operation Substitution Coexistence 
Company 41 Norway Metal and machining Manual operation Substitution Coexistence 
Company 41 Norway Metal and machining Material movement Substitution Synchronized 
Company 42 Canada Furniture and equipment Material movement Substitution Coexistence 
Company 43 USA Plastic and polymers Assembly Substitution Cooperation 
Company 43 USA Plastic and polymers Material movement Substitution Coexistence 
Company 44 Germany Metal and machining Manual operation Substitution Coexistence 
Company 44 Germany Metal and machining Quality control Substitution Coexistence 
Company 45 Netherlands Metal and machining Machine operation Substitution Coexistence 
Company 45 Netherlands Metal and machining Assembly Substitution Coexistence 
Company 46 Switzerland Metal and machining Machine operation Substitution Coexistence 
Company 47 USA Metal and machining Machine operation Substitution Coexistence 
Company 47 USA Metal and machining Manual operation Deskilling Synchronized 
Company 47 USA Metal and machining Manual operation Reskilling Coexistence 
Company 48 Romania Automotive and subcontractors  Manual operation Substitution Coexistence 
Company 48 Romania Automotive and subcontractors Quality control Substitution Coexistence 
Company 49 Switzerland Furniture and equipment Assembly Deskilling Synchronized 
Company 50 Germany Metal and machining Machine operation Reskilling Coexistence 
Company 51 USA Metal and machining Machine operation Substitution Coexistence 
Company 52 Denmark Furniture and equipment Material movement Substitution Coexistence 
Company 52 Denmark Furniture and equipment Manual operation Substitution Coexistence 
Company 53 Japan Automotive and subcontractors Assembly Substitution Coexistence 
Company 53 Japan Automotive and subcontractors Quality control Substitution Coexistence 
Company 54 USA Pharma and chemistry Machine operation Substitution Coexistence 
Company 55 France Automotive and subcontractors Assembly Deskilling Cooperation 
Company 56 China Metal and machining Machine operation Substitution Coexistence 
Company 57 Germany Electronics and Technology Material movement Substitution Coexistence 
Company 58 Germany Metal and machining Material movement Substitution Coexistence 
Company 59 Netherlands Metal and machining Machine operation Reskilling Coexistence 
Company 60 Germany Electronics and Technology Machine operation Substitution Coexistence 
Company 61 Singapore Metal and machining Machine operation Substitution Coexistence 
Company 62 USA Metal and machining Machine operation Substitution Coexistence 
Company 63 Denmark Electronics and Technology Material movement Substitution Coexistence 
Company 63 Denmark Electronics and Technology Machine operation Substitution Coexistence 
Company 64 Slovenia Electronics and Technology Quality control Substitution Coexistence 
Company 65 Austria Metal and machining Material movement Substitution Coexistence 
Company 65 Austria Metal and machining Machine operation Substitution Coexistence 
Company 66 Finland Metal and machining Machine operation Substitution Coexistence 
Company 67 Finland Metal and machining Machine operation Substitution Coexistence 
Company 68 Japan Automotive and subcontractors Quality control Substitution Coexistence 
Company 69 Germany Automotive and subcontractors Manual operation Substitution Coexistence 
Company 70 Sweden Metal and machining Machine operation Substitution Coexistence 
Company 71 Italy Plastic and polymers Material movement Upskilling Cooperation 
Company 71 Italy Plastic and polymers Machine operation Substitution Coexistence 
Company 72 Italy Electronics and Technology Manual operation Substitution Coexistence 
Company 73 Czech Republic Automotive and subcontractors Manual operation Deskilling Cooperation 
Company 74 Denmark Plastic and polymers Machine operation Substitution Coexistence 
Company 75 USA Automotive and subcontractors Quality control Substitution Coexistence 
Company 76 India Pharma and chemistry Material movement Substitution Coexistence 
Company 77 Slovakia Automotive and subcontractors Assembly Substitution Coexistence 
Company 78 Spain Automotive and subcontractors Machine operation Deskilling Synchronized 
Company 78 Spain Automotive and subcontractors Machine operation Upskilling Cooperation 
Company 79 Italy Pharma and chemistry Assembly Substitution Coexistence 
Company 80 Austria Electronics and Technology Material movement Substitution Coexistence 
Company 81 Island Food and agriculture Material movement Substitution Coexistence 
Company 82 USA Metal and machining Manual operation Deskilling Synchronized 
Company 83 Czech Republic Metal and machining Machine operation Substitution Coexistence 
Company 84 Brazil Pharma and chemistry Material movement Substitution Coexistence 
Company 85 France Metal and machining Material movement Substitution Coexistence 
Company 85 France Metal and machining Machine operation Substitution Coexistence 
Company 85 France Metal and machining Assembly Upskilling Collaboration 
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Company 86 Japan Pharma and chemistry Material movement Substitution Coexistence 
Company 86 Japan Pharma and chemistry Assembly Substitution Coexistence 
Company 87 Japan Automotive and subcontractors Assembly Upskilling Cooperation 
Company 88 Sweden Food and agriculture Quality control Substitution Coexistence 
Company 88 Sweden Food and agriculture Material movement Substitution Coexistence 
Company 89 Norway Food and agriculture Material movement Substitution Coexistence 
Company 90 India Automotive and subcontractors Machine operation Substitution Coexistence 
Company 90 India Automotive and subcontractors Machine operation Reskilling Coexistence 
Company 91 Denmark Metal and machining Machine operation Substitution Coexistence 
Company 91 Denmark Metal and machining Machine operation Reskilling Coexistence 
Company 92 Germany Automotive and subcontractors Assembly Substitution Coexistence 
Company 92 Germany Automotive and subcontractors Assembly Reskilling Coexistence 
Company 93 Sweden Food and agriculture Material movement Reskilling Coexistence 
Company 94 Denmark Plastic and polymers Machine operation Substitution Coexistence 
Company 94 Denmark Plastic and polymers Material movement Substitution Coexistence 
Company 95 Denmark Plastic and polymers Machine operation Substitution Coexistence 
Company 96 Canada Electronics and Technology Manual operation Substitution Coexistence 
Company 97 China Automotive and subcontractors Manual operation Substitution Coexistence 
Company 98 USA Metal and machining Quality control Substitution Coexistence 
Company 98 USA Metal and machining Material movement Substitution Coexistence 
Company 99 USA Metal and machining Manual operation Deskilling Synchronized 
Company 99 USA Metal and machining Machine operation Substitution Synchronized 
Company 100 Sweden Metal and machining Machine operation Deskilling Coexistence 
Company 100 Sweden Metal and machining Machine operation Reskilling Coexistence 
Company 101 Switzerland Plastic and polymers Machine operation Substitution Coexistence 
Company 102 Australia Plastic and polymers Assembly Substitution Coexistence 
Company 103 Indonesia Electronics and Technology Assembly Upskilling Cooperation 
Company 104 Czech Republic Pharma and chemistry Material movement Substitution Coexistence 
Company 105 Spain Cosmetics and fragrances Material movement Reskilling Synchronized 
Company 106 Poland Metal and machining Quality control Substitution Coexistence 
Company 106 Poland Metal and machining Material movement Substitution Coexistence 
Company 107 USA Furniture and equipment Machine operation Substitution Coexistence 
Company 108 Italy Furniture and equipment Assembly Substitution Synchronized 
Company 109 France Health Care Material movement Substitution Coexistence 
Company 110 Denmark Food and agriculture Material movement Substitution Coexistence 
Company 111 Bulgaria Electronics and Technology Material movement Substitution Synchronized 
Company 111 Bulgaria Electronics and Technology Material movement Deskilling Synchronized 
Company 111 Bulgaria Electronics and Technology Material movement Reskilling Synchronized 
Company 112 USA Electronics and Technology Machine operation Substitution Synchronized 
Company 113 Spain Automotive and subcontractors Assembly Substitution Cooperation 
Company 114 USA Aerospace and defense Machine operation Substitution Coexistence 
Company 115 Singapore Metal and machining Machine operation Deskilling Coexistence 
Company 115 Singapore Metal and machining Machine operation Reskilling Coexistence 
Company 116 India Machines and equipment Material movement Reskilling Coexistence 
Company 117 Denmark Plastic and polymers Machine operation Deskilling Coexistence 
Company 117 Denmark Plastic and polymers Machine operation Reskilling Coexistence 
Company 118 Czech Republic Metal and machining Machine operation Substitution Coexistence 
Company 119 Denmark Metal and machining Material movement Reskilling Coexistence 
Company 120 USA Automotive and subcontractors Material movement Substitution Coexistence 
Company 120 USA Automotive and subcontractors Material movement Reskilling Coexistence 
Company 121 New Zealand Plastic and polymers Machine operation Substitution Coexistence 
Company 122 USA Metal and machining Machine operation Deskilling Coexistence 
Company 123 New Zealand Plastic and polymers Assembly Substitution Coexistence 
Company 124 Taiwan Electronics and Technology Machine operation Substitution Coexistence 
Company 125 Germany Metal and machining Machine operation Substitution Coexistence 
Company 126 USA Automotive and subcontractors Machine operation Substitution Coexistence 
Company 126 USA Automotive and subcontractors Assembly Deskilling Synchronized 
Company 126 USA Automotive and subcontractors Quality control Substitution Coexistence 
Company 127 USA Metal and machining Machine operation Substitution Coexistence 
Company 128 USA Metal and machining Assembly Deskilling Synchronized 
Company 129 USA Metal and machining Machine operation Substitution Coexistence 
Company 130 Korea Automotive and subcontractors Machine operation Reskilling Coexistence 
Company 130 Korea Automotive and subcontractors Machine operation Deskilling Coexistence 
Company 131 Taiwan Plastic and polymers Material movement Substitution Coexistence 
Company 131 Taiwan Plastic and polymers Material movement Deskilling Coexistence 
Company 132 Poland Food and drinks Material movement Substitution Coexistence 
Company 132 Poland Food and drinks Material movement Reskilling Coexistence 
Company 133 Japan Food and agriculture Material movement Substitution Coexistence 
Company 133 Japan Food and agriculture Material movement Reskilling Coexistence 
Company 134 Vietnam Metal and machining Material movement Substitution Coexistence 
Company 135 USA Plastic and polymers Material movement Substitution Coexistence 
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Company 136 China Furniture and equipment Material movement Substitution Coexistence 
Company 136 China Furniture and equipment Assembly Substitution Coexistence 
Company 137 Japan Metal and machining Material movement Substitution Coexistence 
Company 138 USA Automotive and subcontractors Material movement Substitution Coexistence 
Company 138 USA Automotive and subcontractors Quality control Substitution Coexistence 
Company 138 USA Automotive and subcontractors Assembly Substitution Coexistence 

 

APPENDIX B – INTERVIEW GUIDELINE 

1) We would like to ask you to introduce yourself and talk a little about your experience 

with technology and cobots. 

2) According to your experience, what is the main use of cobots in relation to workers? For 

example, does the robot do some of the work and then the operator does it, or do they 

work together, moving the same part simultaneously? Do you have any examples of 

this? 

3) In your perception, what normally happens to workers when a cobots is implemented? 

For example, is the worker replaced, or can he perform the same task better using the 

cobot? Can you name a case? 

4) According to your experience, what is companies' main motivation for adopting 

technologies such as cobots? For example, do they seek to improve conditions for 

workers, increase product quality, reduce labor, create better jobs? 

5) How do you believe cobots can impact workers' skills? For example, can they lose some 

of their skills because the cobot simplifies their work, or can they improve their skills 

with retraining? 

6) Our study analyzed 138 cobot application cases in companies worldwide. We verified 

that there are four potential impacts on workers with implementing this technology. 

One is substitution, where the cobot starts doing the operator's task, and it is shifted to 

another function or laid off. Another is deskilling, in which the operator starts to serve 

the cobot, which simplifies his task. Another is reskilling, where, due to the 

implementation of the cobot, the operator learns how to perform a new role to use the 

technology. The last one is an upskilling, in which the cobot helps the operator to do the 

same activity he was already doing but better. Based on your experience, have you ever 

witnessed any of these cases? Could you describe? 

7) Could you name the main challenges with the process of ideation, implementation, and 

post-implementation of cobots?
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4. FINAL CONSIDERATIONS 

4.1. CONCLUSIONS 

This dissertation brings contributions to the development of Smart Working environments in 

manufacturing industries, especially related to the activities of workers and the effects that 

technologies can generate. In the first paper, we sought to identify the SWT related to the main 

manufacturing activities. As a result, we obtained 15 SWTs that support workers in eight 

manufacturing activities. In addition, we also identify the possible negative and positive impacts 

of these technologies on workers. From this, we were able to link the SWTs to the capabilities 

of the workers, according to Romero et al. (2016), showing that the implementation of such 

technologies can contribute to the improvement and empowerment of workers. As the main 

theoretical contribution of the first article, we point out the 15 main SWTs applied in 

manufacturing activities, and that contribute to the support of workers, according to the 

literature: augmented reality, collaborative robots, virtual reality, wearable devices, 

environment sensors and machines, automation, voice-enabled assistant, digital twin, smart 

decision support systems, automated guided vehicles/autonomous mobile vehicle, computer 

vision, industrial social networks, exoskeletons, visual analytics, and artificial intelligence. As a 

main practical contribution, we emphasize that managers interested in implementing 

technologies can use the study to identify ways to apply these technologies, i.e., in which 

manufacturing activities there are cases of application as well as the impacts that each of them 

can generate on workers, which can better prepare them to face the uncertainties of a 

technological application. 

The second paper investigated in depth the effects of SWTs on the manufacturing workers' 

activities, i.e., what can happen to these workers when these technologies are implemented in 

their processes. We carried out a case study focused on collaborative robots, as this technology 

is one of the most relevant for workers and manufacturing (Dornelles et al., 2022). In this way, 

we investigated application cases and conducted interviews and observations regarding 

technology implementation in workers' manufacturing activities. From this, we conceptualized 

four types of SWT effects on workers: Substitution, Deskilling, Reskilling, and Upskilling. This 

classification is the main theoretical contribution of this paper and the dissertation since it 

demonstrates how the same technology can have different effects on workers' skills according 

to the way and strategy with which it is implemented. As practical contributions of this paper, 

we highlight that the classification of effects can help industries that want to implement 

technologies understand how companies have been implementing technologies and bring to 

light the importance of aligning strategy with the effects of technology implementation. Along 
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with this, it is also useful for SWT providers to offer their products, considering that 

technologies, in addition to improving the process, can also impact workers and outline 

strategies to provide more complete solutions.  

The results obtained in the second article, which used the initial conceptual base from Article 1, 

were focused on collaborative robots as a mean to analyze in depth the contributions of a smart 

technology on workers. As a conceptual extension of the study presented in Article 2, the final 

conceptual framework represented in Figure 6 shows how the analysis of collaborative robots 

could be extended to any kind of smart working technology (SWT). These means that this 

dissertation opens an avenue to replicate our study in other types of technologies related to 

workers in the Industry 4.0 context. Therefore, as final contribution, this study provides a 

framework useful to conduct similar studies but applied to other technologies in which the 

impact on workers’ skill can be very different from those observed in this dissertation for 

collaborative robots. 

 

Figure 6 - Final generic conceptual framework 

 

4.2. FUTURE RESEARCH 

Our findings can provide support for future work. In this sense, new studies can identify new 

manufacturing activities that will arise from the technology’s implementation. With this, other 

effects of technologies on workers can appear. 

It is also important to investigate whether the effects elucidated in this dissertation apply to 

another SWT since the concepts were validated considering cobots. Despite having relative 

importance among SWTs, they have specific characteristics and are not applied to all 
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manufacturing activities previously analyzed in Article 1. Therefore, other studies could validate 

these concepts to consolidate the previously proposed classification. 

Based on this, other studies could verify if and how SWTs interact with each other to create an 

anthropocentric environment. That is, to investigate whether technologies can be integrated to 

create a smart work environment that empowers workers in real-time. This premise analyzes 

from another perspective the I4.0 maturity model proposed by the German Academy of Sciences 

and Engineering (ACATECH) (Schuh et al., 2020), in which the highest level would be autonomous 

targeting the so-called “dark factories” without the need of the worker. On the contrary, the 

anthropocentric perspective aims to place the worker at the centre of the production system, 

i.e., as the main resource of the organization, and the integrated technologies used to improve 

the activities performed by workers aiming at greater productivity, quality, and flexibility of the 

process. 

Finally, this dissertation also serves as a subsidy for other studies to identify the skills that must 

improve in workers, both dealing with technologies and adapting to the new type of production 

system. As mentioned by (Frank et al., 2021), new professions will emerge through the 

implementation of technologies, which leads to the belief that new skills will also be necessary 

for adapting workers to this context. Therefore, it would be interesting to identify the required 

skills and training workers. 

 


