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Neuroevolução de Estruturas de Redes Neurais usando CoDeepNEAT e Keras

RESUMO

Aprendizado de máquina é um extenso campo de estudo nas áreas de ciência da compu-

tação e estatística dedicado à execução de tarefas computacionais através de algoritmos

que não requerem instruções explícitas, mas dependem do aprendizado de padrões em

conjuntos de dados para o propósito de automatizar inferências. Grande porção do tra-

balho envolvido em um projeto de aprendizado de máquina é definir o melhor tipo de

algoritmo para resolver um dado problema. Redes neurais, especialmente redes neurais

profundas, são o tipo de solução predominante no campo de estudo de aprendizado de má-

quina, mas as próprias redes podem produzir resultados muito diferentes de acordo com

as decisões arquiteturais feitas para as mesmas. Encontrar a topologia de rede neural e as

configurações adequadas para um dado problema é um desafio que requer conhecimento

de domínio e esforços de teste devido à imensa quantidade de parâmetros que devem ser

considerados. O propósito deste trabalho de conclusão de curso é propor uma imple-

mentação adapatada de uma técnica evolutiva do campo de neuroevolução que consegue

automatizar as tarefas de seleção de topologia e hiperparâmetros, usando um framework

de aprendizado de máquina acessível e popular - Keras - como base, apresentando resul-

tados e mudanças propostas em relação ao algoritmo original.

Palavras-chave: Redes neurais, Topologia de rede neural, Técnica evolutiva, Neuroevo-

lução, Keras.



ABSTRACT

Evolution of Neural Network Architectures Using CoDeepNEAT and Keras Machine

learning is a huge field of study in computer science and statistics dedicated to the exe-

cution of computational tasks through algorithms that do not require explicit instructions,

but instead rely on learning patterns from data samples for the purpose of automating in-

ferences. A large portion of the work involved in a machine learning project is to define

the best type of algorithm to solve a given problem. Neural networks - especially deep

neural networks - are the predominant type of solution in the field, but the networks them-

selves can produce very different results according to the architectural choices made for

them. Finding the optimal network topology and configurations for a given problem is

a challenge that requires domain knowledge and testing efforts due to the large amount

of parameters that need to be considered. The purpose of this work is to propose an

adapted implementation of a well-established evolutionary technique from the neuroevo-

lution field that manages to automate the tasks of topology and hyperparameter selection,

using a popular and accessible machine learning framework - Keras - as back-end, pre-

senting results and proposed changes in relation to the original algorithm.

Keywords: Neural networks. Network topology. Evolutionary technique. Neuroevolu-

tion. Keras.
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1 INTRODUCTION

Evolutionary computation can be shortly described as the use of evolutionary sys-

tems as computational processes for solving complex problems (JONG, 2016). As dis-

cussed in Jong (2016), although one can trace its genealogical roots as far back as the

1930s, it was the emergence of relatively inexpensive digital computing technology in the

1960s that served as an important catalyst for the field. The availability of this technology

made it possible to use computer simulation as a tool for analyzing systems much more

complicated than those analyzable mathematically.

Around the same time, machine learning emerged as a branch of AI proposing a

more probabilistic approach to the search of artificial intelligence with systems that aimed

to learn and improve without being explicitly programmed. Though it had an interesting

premise, it only rose to its recent level of popularity in the last few decades, justified by

the increasing availability of large amounts of data and computing resources required for

the extremely complex algorithms the field proposed.

These two fields, evolutionary computation and machine learning, come together

in what is usually described as Evolutionary Machine Learning (EML), which presents

hybrid approaches that use algorithms from one field in the search of better solutions

in the other. These resulting approaches have been widely applied to real-world prob-

lems in various situations, including agriculture, manufacturing, power and energy, inter-

net/wifi/networking, finance, and healthcare (AL-SAHAF et al., 2019).

Out of the many branches in EML, one of the most widely studied is Neuroevo-

lution (FLOREANO; DÜRR; MATTIUSSI, 2008), which is characterized by the act

of building different aspects of neural networks through evolutionary algorithms (EAs)

(BäCK, 1996). EAs are especially well suited for this task because of their remark-

able ability to find good solutions in highly dimensional search spaces, such as explor-

ing the multiple possibilities surrounding the definition of a neural network structure.

Nonetheless, neuroevolution enables important capabilities that are typically unavailable

to the more traditional gradient-based approaches like stochastic gradient descent (SGD)

(RUMELHART; HINTON; WILLIAMS, 1986), raising the level of automation beyond

the initial perspective of only setting weights to pre-configured network topologies. These

new capabilities include the search of ideal hyperparameters, architectural parts and even

the rules for learning themselves (STANLEY et al., 2019).

Of course, despite the great benefits described of using neuroevolution, gradient-
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based methods still dominate many areas in machine learning where classification prob-

lems are easily differentiable with known topologies, as calculating weights through gra-

dient descent methods is frequently more efficient than most evolutionary techniques.

Still, neuroevolution finds its niches in domains where ideal topologies are yet to be

discovered, such as in the meta-learning field (PAPPA et al., 2014) and the reinforce-

ment learning field (SUCH et al., 2017), proving to be a scalable option in these domains

(SALIMANS et al., 2017).

A great example of early neuroevolution approach successfully applied to a wide

range of problems is the NeuroEvolution of Augmenting Topologies (NEAT) algorithm

(STANLEY; MIIKKULAINEN, 2001), which is the starting point of this work. NEAT’s

main idea was to generate neural networks by associating similar parts of different neural

networks through mutations (adding or removing nodes and connections) and crossovers

(swapping nodes and connections) with a historical markings mechanism that simplified

the identification of network similarities. Most importantly, it managed to implement a

remarkable diversity preservation mechanism (named speciation), enabling the evolution

of increasingly complex topologies by allowing organisms to compete primarily within

their own niches instead of with the population at large.

But NEAT did not age well throughout the last decade, despite of its remark-

able success in multiple use cases (STANLEY et al., 2019) - like the notorious discov-

ery through NEAT of the most accurate measurement yet of the mass of the top quark,

which was achieved at the Tevatron particle collider (AALTONEN, 2009) - where min-

imal structure was a lot more of a priority. Considering the state of art in modern deep

learning research, the networks generated by the original NEAT algorithm are easily sur-

passed in dimension and consequently effectiveness when compared to networks used in

currently popular problems like image recognition or text recognition, where thousands

of nodes and hundreds of thousands to millions of connections are necessary to process

information of complex data sources accordingly. The growth tendency in network di-

mensions comes directly from the availability of unprecedentedly cheap and powerful

computing resources and large datasets as seen in the latest years, not only reducing the

need for minimal structures in standard neural networks but also resulting in the perfect

conditions for the practical usage and consequent popularization of all sorts of creative

solutions involving different approaches to the traditional neural network topology, such

as deep networks, convolutional networks, LSTM networks, graph networks, relational

networks and more, contributing to yet one more weakness in standard NEAT.
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This rapid popularization of different types of neural networks brought into the

neuroevolution field challenges to try new techniques by combining and expanding these

varied components into appropriate topologies and configurations to solve problems even

more effectively, being also referred as the neural architecture search problem (ZOPH;

LE, 2016). Adaptations in the traditional neuroevolution algorithms to face this evolv-

ing environment of possibilities and need for larger structures are largely popular at the

moment (STANLEY et al., 2019).

These adaptations can be seen in succesful recent approaches like network gen-

eration and feature selection in highly dimentional datasets (Watts; Xue; Zhang, 2019),

applications to the identification of gene expression patterns in cancer research (GRISCI;

FELTES; DORN, 2019), reinforcement learning tasks (SALIMANS et al., 2017), learn-

ing policies for data augmentation (CUBUK et al., 2018) and in the multiple successors of

NEAT throughout the years, like the notorious HyperNEAT (STANLEY; D’AMBROSIO;

GAUCI, 2009), DeepNEAT and CoDeepNEAT variations (MIIKKULAINEN et al., 2017),

which are the focus of this work.

1.1 Motivation

Although algorithms like NEAT and its variations have existing implementations

directly from its authors, they consist of self-contained code that can be expanded but

presents barriers in terms of directly connecting to other popular Machine Learning frame-

works that researchers, students or scientists are more likely to be familiar with. Keras

(CHOLLET et al., 2015), Tensorflow (ABADI et al., 2015), PyTorch (PASZKE et al.,

2017) and other similar frameworks contain a number of functionalities that may come

in handy when developing or analyzing machine learning models, which is a key element

in validating the resulting models from neural architecture search algorithms in practical

scenarios.

As of the moment of this work, both NEAT and HyperNEAT have been explored

in public implementations 12 using these frameworks but few or lacking implementations

of CoDeepNEAT have been found, presenting an opportunity to bring this method to a

more accessible context. On the other hand, it is quite unclear from the original work (MI-

IKKULAINEN et al., 2017) whether the algorithm is suitable for practical applications

1https://github.com/crisbodnar/TensorFlow-NEAT
2https://pypi.org/project/neat-python/
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and can be used in simple hardware environments or not. Verifying these aspects allows

us to identify possible improvements to the base algorithm, such as different crossover

operations, or mutation operations. Additionally, having an implementation based on a

widespread framework facilitates these experiments for the overall scientific community.

With these aspects in mind, this work stablishes the implementation of an algo-

rithm based on CoDeepNEAT in an accessible and popular framework and adapted based

on different approaches seen in literature. The objective is to validate the complexity of

the process of implementing such algorithm and to verify in practice if this type of so-

lution is useful without massive hardware requirements. The framework of choice for

this implementation is Keras, a user-friendly and high-level Python package for machine

learning development and management, as opposed to the low-level and complex usabil-

ity found in other popular options like directly using Tensorflow or Pytorch, for instance.

Still, the backend used for Keras is Tensorflow.

1.2 Proposed methodology

The implementation requires the following fundamental working parts before ini-

tial testing:

• Genetic algorithm structure (to support iterations).

• Graph generation structure (to generate graphs for modules and blueprints).

• Module population management structure (to generate modules, manage speciation,

fitness sharing).

• Blueprint population management structure (to generate blueprints, manage speci-

ation, assembling, trainings, fitness evaluation and fitness sharing).

• Similarity metric and clusterization technique used for speciation (to compare indi-

viduals).

• Crossover technique used for reproduction (to evolve individuals through sexual

reproduction).

• Mutations (to evolve individuals through asexual reproduction).

• Logging structure (to follow up the iteration process).

Additional changes are expected to be explored during development, such as:

• Alternative crossover operations.
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• Alternative mutation techniques.

• Alternative similarity metrics.

Once the implementation is defined, initial experimentations will be done using

the MNIST (Lecun et al., 1998) dataset. Final experiments will be executed using the

CIFAR-10 (KRIZHEVSKY; NAIR; HINTON, 2009) dataset as done in the original pa-

per to compare results and discuss the amount of time and computing power required for

this approach considering academic use. Preliminary tests point that the required time

for complete runs of the implementation using these datasets vary around 6 and 12 hours,

considering limited hardware configurations and reduced parameters which will be de-

scribed in the process. Most of the computation necessary is dedicated to training the

networks for fitness evaluation during generations.

Chapter 2 will explore the necessary algorithms and concepts to develop the pro-

posed work. Chapter 3 will detail the implementation and define the usage of the concepts

described in chapter 2, while chapter 4 will describe the experimentation performed using

the implementation and discuss the results, comparing them to the original CoDeepNEAT

experiments and highlighting possible improvements.
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2 COMPUTATIONAL METHODS AND CONCEPTS

This chapter briefly describes the most important algorithms and concepts related

to the execution of this work and similar works in the EML field. Most recurrent terms

are explained here and referenced in the next chapters.

2.1 Genetic algorithms

Genetic algorithms (GAs) are computational methods whose basic principle is

the evolution of candidate solutions over iterations. Strongly based on behaviours of

populations of biological organisms, they represent a predominant type of evolutionary

algorithm (EA) in the evolutionary computation field, having been applied for decades in

the solution of optimization problems since their first concrete description by J.H. Holland

(HOLLAND, 1992).

As described in Beasley, Bull and Martin (1993), in nature individuals in a popula-

tion compete with each other for resources such as food, water and shelter. Also members

of the same species often compete to attract a mate. Those individuals which are most

successful in surviving and attracting mates will have relatively larger numbers of off-

spring. Poorly performing individuals will produce few or even no offspring at all. This

means that the genes from the highly adapted or "fit" individuals will spread to an in-

creasing number of individuals in each successive generation. The combination of good

characteristics from different ancestors can sometimes produce "superfit" offspring whose

fitness is greater than that of either parent. In this way species evolve to become more and

more well suited to their environment.

Adapting these concepts into a generalistic environment, standard GAs work with

populations of "individuals" that represent solutions to a given problem. During multiple

generations, these individuals are evaluated by a fitness function and are assigned a score.

The scores are then used to decide what are the most "fit" individuals for reproduction

or simply survival. Through reproduction, "offspring" is generated by combining the

"genetic" features of their parents, occasionally generating better scoring solutions in the

process. Individuals not fit enough for reproduction usually represent "bad" solutions,

being less favored during the reproduction processes and commonly replaced by new

individuals.

With the iteration of generations, genetic features that produce good solutions
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are likely to spread across the population of individuals, being passed on to offspring

generated through reproduction or simply by preservation mechanisms such as elitism,

which consists in preserving a portion of the best scoring solutions over generations. GAs

tend to converge over generations to optimum solutions, but require attention to questions

such as keeping diversity (or, in other words, avoiding solutions to become extremelly

similar genetic representations). To address these matters, additional techniques can be

implemented, such as preserving groups of similar solutions as "species", or including

"mutations" by altering genetic features in a defined fashion and consequently introducing

changes to the populations. A pseudocode representing a standard procedure for GAs

based on Davis (1991) can be seen in Algorithm 1, employing fitness evaluation, elitism,

crossovers and mutations to individuals over generations.

Algorithm 1: Basic genetic algorithm structure
Data: N : number of generations, S: population size, E: elitism rate, C:

crossover rate, M : mutation rate
Result: evolved candidate solutions

1 begin
2 initialize population with S individuals;
3 for individual in population do
4 evaluate fitness;
5 end
6 for generation in N do
7 apply elitism to E × S most fit individuals;
8 apply crossover to C × S most fit individuals;
9 apply mutations to M × S random individuals;

10 for individual in population do
11 evaluate fitness;
12 end
13 end
14 end

Being an extremelly popular algorithm branch, GAs have evolved over time to

different approaches and have been succesfully applied to a wide variety of optimization

problems, such as protein folding (UNGER; MOULT, 1993), selection of subsets of fea-

tures to represent classification patterns (YANG; HONAVAR, 1998), optimum container

placement in container loading problems (BORTFELDT; GEHRING, 2001), optimiza-

tion of bank lending decisions (METAWA; HASSAN; ELHOSENY, 2017), increasing

the longevity of wireless sensor networks (YUAN et al., 2017) or approximating the mass

of the top quark, which was achieved at the Tevatron particle collider through NEAT

(AALTONEN, 2009).
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2.2 Clustering algorithms

Clustering algorithms are a class of methods that focus on grouping or classifying

representations of data in a common environment to sets of members called "clusters".

They are well suited for data domains with no pre-defined classes, generating classifica-

tions based on custom metrics that evaluate the distance or similarity between the data

samples.

One specific clustering method used in this study is K-means (LLOYD, 2006), a

popular partitioning algorithm based on specifying an initial number of groups, and iter-

atively reallocating objects among these groups until convergence. The algorithm assigns

each data vector to the cluster whose center (also called "centroid") is nearest to the sam-

ple in the dimensional space that represents the data. The center is the average of all the

points in the cluster, which means that its coordinates are the arithmetic mean for each di-

mension separately over all the points in the cluster (MADHULATHA, 2012). Algorithm

2 adapted from (MADHULATHA, 2012) describes the standard procedure for K-means.

Algorithm 2: K-means algorithm
Data: K: number of clusters, samples: vectors representing the data,

tolerance: minimum improvement rate to continue processing
Result: Clusterization of the vectors

1 begin
2 Initialize the vectors of the K clusters (randomly, for instance);
3 while not converged according to tolerance do
4 for every sample vector in samples do
5 Compute the distance between the sample vector and every

cluster’s vector;
6 Re-compute the closest vector to the sample vector, using a

learning rate that decreases in time;
7 end
8 end
9 Return the clusterization;

10 end

After clusters are defined, new samples of data can be integrated without the need

of recreating the clusters. This can be done simply by using the nearest centroid method,

which is the execution of Algorithm 2 from the while step in line 3, without initializing

the K clusters (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

Specifically in GAs, clustering algorithms can be applied to generate species or

groups that share similar genetic information in the individual population. The species
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then can be used in multiple strategies such as increasing population sizes without increas-

ing the amount of fitness evaluations (Hee-Su Kim; Sung-Bae Cho, 2001), by evaluating

one representative of the species at a time, or to ensure diversity by preserving different

groups of solutions, as in the case of NEAT (STANLEY; MIIKKULAINEN, 2001).

2.3 Artificial neural networks

Artificial neural networks (or directly "neural networks") are machine learning

models composed of multiple information-processing units called "neurons", which are

connected in varying fashions to represent and approximate mathematical functions. Based

on human biology, these models aspired to mimic the capability of the human brain to or-

ganize its structural constituents, known as neurons, so as to perform certain computations

(e.g., pattern recognition, perception, and motor control) many times faster than the fastest

digital computer in existence today (HAYKIN, 2009).

In practice, the neurons (also called nodes) that constitute neural networks are

simple representations of mathematical functions that process the inputs they receive and

output a value. They are composed of three main parts:

• A set of synaptic weights, each representing a value to be multiplied by the input

signal of each connection they are assigned to.

• Summing junction, usually a linear combiner that sums the weighted input signals

from the connections.

• Activation function, which models the output signal of the neuron to a defined am-

plitude. One of the most common activations functions, the sigmoid function, is

represented in Figure 2.2.

In addition to the described components, Figure 2.1 also displays the presence of a

bias factor. The bias has the effect of increasing or lowering the net input of the activation

function, depending on whether it is positive or negative, respectively (HAYKIN, 2009).

In mathematical terms, the neuron k depicted in Figure 2.1 is described in Haykin

(2009) by the three equations:

uk =
m∑
j=1

wkjxj (2.1)

where x1, x2, ..., xm are the input signals, wk1, wk2, ..., wkm are the respective synaptic
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Figure 2.1: A visualization of the components of a neural network.

Source: (HAYKIN, 2009)

Figure 2.2: A sigmoid function for varying slope parameter a.

Source: (HAYKIN, 2009)

weights of neuron k, uk is the linear combiner output due to the input signals;

vk = (uk + bk) (2.2)

where bk is the bias and vk is the resulting value from the summing junction after including

the bias to uk; and

yk = φ(vk) (2.3)

where φ is the activation function and yk is the output signal of the neuron. One example

of activation function is depicted in Figure 2.2, where a sigmoid function is applied to an

output signal generating a new output signal contained inside a restricted amplitude.

The interconnections of the signals inside neurons and between neurons can be

easily represented as signal-flow graphs (Mason, 1953), where the neurons are usually

defined as "nodes". The connections can take multiple forms and are ruled by the synaptic

weights. The synaptic weights that regulate these connections are subject to adjustments
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through procedures called "learning algorithms", and represent the knowledge acquired

during the learning process. The learning algorithms are constituted frequently by the

act of exposing the model to data samples and modifying the synaptic weights as the

model "learns" the patterns of the data. This procedure of exposing the model to data

and evaluating its response is called supervised learning, the most common approach to

"training" neural networks to date.

Network architectures resulting from the interconnection of nodes can be classi-

fied in multiple definitions, but the most important initial taxonomies for this study are the

feedforward networks and the multilayer feedforward networks. Feedforward networks

are simply networks organized in a way that input nodes connect to output nodes in a di-

rect way to produce output signals, as in Figure 2.3a. Multilayered feedforward networks

implement the same logic, but include nodes in divisions called "layers", representing

sets of nodes that connect to other layers. Intermediate layers are commonly addressed as

"hidden layers". An example can be seen in Figure 2.3b, where the input nodes connect

to an intermediate layer, which connects to the output layer.

Figure 2.3: A classic feedforward network structure (a) and a classic multilayer feedfor-
ward network structure (b).

(a) (b)

Source: (HAYKIN, 2009)

From this initial notion of stacking layers was created, for example, the cur-
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rently extremelly popular deep learning branch (DENG; YU, 2014) in the machine learn-

ing field. Deep learning architectures are commonly characterized by the connection

of multiple layers of neurons in neural networks that take profit of extracting differ-

ent levels of patterns in the input data with each layer. These architectures have been

applied to fields including speech recognition (AMODEI et al., 2016), image classifica-

tion (RAWAT; WANG, 2017), natural language processing (GOLDBERG; HIRST, 2017),

medical image analysis (LITJENS et al., 2017) and more, in some cases reaching levels

of confidence superior to those of human experts (Ciregan; Meier; Schmidhuber, 2012).

2.4 Neuroevolution algorithms

Neuroevolution is a field of study dedicated to the generation and improvement of

neural networks using evolutionary algorithms (EAs). Traditionally associated with the

generation of neuron weights through evolution, current approaches associated with the

field focus on multiple aspects of the construction of a network, such as learning their

building blocks (for example activation functions), hyperparameters (for example learn-

ing rates), architectures (for example the number of neurons per layer, how many layers

there are, and which layers connect to which) and even the rules for learning themselves

(STANLEY et al., 2019).

One famous neuroevolution approach called Neuroevolution of Augmenting Topolo-

gies (STANLEY; MIIKKULAINEN, 2001) and some of its variations will be explored in

the next subsections and exemplify some use cases that benefit from the capacity of EAs

to find adequate solutions for extremelly complex problems, like the weight search, topol-

ogy search and hyperparameter search topics for neural networks.

2.4.1 NEAT

Neuroevolution of Augmenting Topologies (STANLEY; MIIKKULAINEN, 2001),

also called NEAT, is an algorithm designed for neural network topology construction.

NEAT uses a genetic algorithm structure to generate small initial networks that evolve and

grow over generations by adding neurons and connections and adjusting their weights to

generate structures capable of performing well while keeping them minimal in size. This

minimalist aspect of NEAT is one of its core differences to other neuroevolution algo-
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rithms, as it focuses on only adding neurons or connections when they have an active

impact in the network’s performance (STANLEY; MIIKKULAINEN, 2001).

Starting with an initial population of small networks based on a common topology,

NEAT evaluates changes to these networks iteratively by adding and removing neurons

and connections across generations. The algorithm defines the genome that describes the

nodes and connections by a mechanism called genetic encoding, used in the operations

that modify the network structures through classic genetic algorithm operators such as

crossover and mutations.

Mutation operators in NEAT work by adding nodes and connections or by dis-

abling existing connections, avoiding changes that affect the functionality of the network.

Crossover operators, on the other hand, are a much more complicated operation as it re-

quires huge exchanges of genetic information that may cause resulting networks to not

work correctly. To solve this, NEAT implements a historical markings mechanism, iden-

tifying nodes and connections with numerical identifiers. Parts of networks that share the

same origin will share the same identifiers, thus the algorithm is able to recognize com-

mon structures in a simple way and exchange genetic informations without generating

defective networks (Figure 2.4).

Before applying crossover operations between networks, NEAT must ensure that

the chosen networks are compatible to a certain degree. The algorithm manages this

situation by applying a speciation technique to the population of solutions, dividing it in

different species generated by similarity, allowing organisms to compete primarily within

their own niches instead of with the population at large. With this factor, different network

topologies have a chance to evolve in their own pace instead of being instantly replaced

by fast-converging networks that achieve better results in early generations.

After its conception, NEAT was used in a wide variety of use cases, specially in

settings where small networks were required because of performance constraints, such as

in robotics (D’SILVA, 2006), physics (AALTONEN, 2009), content generation for video

games (HASTINGS; STANLEY, 2010) and more, as well as inspiring multiple variations

of its core ideas, as explored in the next subsections.

2.4.2 HyperNEAT

HyperNEAT or hypercube-based NEAT (STANLEY; D’AMBROSIO; GAUCI,

2009) is probably the major extension of NEAT to date, having become a complex topic
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Figure 2.4: NEAT crossover operation example. Although Parent 1 and Parent 2 look dif-
ferent, their historical markings (shown at the top of each gene) tell us which genes match
up with which. Even without any topological analysis, a new structure that combines the
overlapping parts of the two parents as well as their different parts can be created. Match-
ing genes are inherited randomly, whereas disjoint genes (those that do not match in the
middle) and excess genes (those that do not match in the end) are inherited from the more
fit parent.

Source: (STANLEY; MIIKKULAINEN, 2001)

on its own and inspiring multiple approaches based on its success. Using connective

CPNNs (Compositional Pattern Producing Networks) to represent connectivity patterns

as functions of the Cartesian space (STANLEY; D’AMBROSIO; GAUCI, 2009), Hyper-

NEAT exploits regularities in the data domain to evolve larger neural networks. In other

words, the use of CPNNs enables indirect encoding, a principle based on attributing the

discovery of patterns and regularities to the algorithm itself, relying as little as possible in

direct encoding from designers.

Moreover, indirect encoding aims to access regularities not commonly addressed

by conventional neural network learning algorithms, being capable of inferring construc-

tions like, for instance, convolution. Examples of node configurations obtained using

HyperNEAT are shown in Figure 2.5.

HyperNEAT also means a breakthrough from NEAT by allowing the evolution of

much larger neural networks than the previous algorithm. By abstracting the mapping

of spatial patterns generated by small CPNNs into connectivity patterns, HyperNEAT al-
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Figure 2.5: Examples of configurations obtained using HyperNEAT. This figure shows (a)
a traditional 2D substrate of connections, (b) a three-dimensional configuration of nodes,
(c) a “state-space sandwich” configuration in which a source sheet of neurons connects
directly to a target sheet, and (d) a circular configuration. Different configurations are
likely suited to problems with different geometric properties.

Source: (STANLEY; D’AMBROSIO; GAUCI, 2009)

lows the generated networks to be scaled in a customizable manner (up to millions of

connections, for instance), better adapting to more complex applications such as evolv-

ing controller parts of legged robots (Clune et al., 2009), learning to play Atari games

(HAUSKNECHT et al., 2013), combining SGD and indirect encoding for network evo-

lution (FERNANDO et al., 2016) and even directly evolving modularity of components

(VERBANCSICS; STANLEY, 2011).

2.4.3 DeepNEAT and CoDeepNEAT

Alternatively, a more recent path taken from NEAT was the DeepNEAT variation

and, subsequently, the CoDeepNEAT variation (MIIKKULAINEN et al., 2017). Both

cases, which are very tied, differ from HyperNEAT in that they don’t aim to learn con-

nectivity from geometric regularities in the data, but instead in assembling nodes based

more directly in adaptations of the fitness evaluation process of NEAT.

DeepNEAT can be summarized as an extension of NEAT that considers entire lay-

ers as genes instead of considering single neurons when forming structures. The focus

now is to define compositions of layers instead of picking neurons and their connections

one by one, generating larger and deeper networks suited to solving larger scale problems

then the ones NEAT was meant to solve in the past, while not minding the indirect en-

coding factor of HyperNEAT and considering pre-established components like different
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types of layers.

Similarly to the original NEAT algorithm, DeepNEAT follows a standard genetic

algorithm structure to find its solutions: it starts by creating an initial population of indi-

viduals, each represented by a graph, and evolves them over generations. During these

generations, the individuals are recreated by adding or removing structural parts (nodes

and edges) from their graphs through mutation, while keeping track of changes through

a historical markings mechanism. Using the historical markings, chromosomes are com-

pared in every generation using a similarity metric, being classified into subpopulations

called species. Each species is evaluated by the shared fitness of its individuals, calcu-

lated by a fitness sharing function. This shared score is used to evaluate the quality of

the species in each generation. Finally, the surviving species evolve separately from each

other through crossovers (exchanging genetic information) among its constituent individ-

uals, and the next generation takes place.

The changes to the main algorithm of NEAT in how nodes now represent layers

imply additional aspects that must be considered when defining a layer in DeepNEAT:

what is the type of layer (convolutional, dense, recurrent), the properties of the layer

(number of neurons, kernel size, stride size, activation function) and how nodes connect

to each other. This is handled by considering a table of possible hyperparameters as the

chromosome map for each node and an additional table of global parameters applicable

to the entire network (such as learning rate, training algorithm, and data preprocessing)

(MIIKKULAINEN et al., 2017). This makes the algorithm not only define topological

information, but diverse network configurations more broadly.

Investing in the same perspective of focusing on layers instead of single neurons,

CoDeepNEAT extends DeepNEAT by dividing the construction of a topology into two

different levels: module chromosomes and blueprint chromosomes (Figure 2.6). Modules

are graphs representing a small structure of connected layers. Blueprints are graphs rep-

resenting a composition of connected nodes that point to module species, which can be

assembled into complete networks by joining a sample of the module species pointed by

each node. In other words, instead of evolving network species, CoDeepNEAT evolves

module species and blueprint species which are assembled together into networks. The

algorithm is inspired mainly by Hierarchical SANE (MORIARTY; MIIKKULAINEN,

1997) but is also influenced by the component-evolution approaches called Enforced Sub-

populations (ESP) (GOMEZ; MIIKKULAINEN, 1999) and Cooperative Synapse Neu-

roevolution (CoSyNE) (GOMEZ; SCHMIDHUBER; MIIKKULAINEN, 2008).
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Figure 2.6: A visualization of how CoDeepNEAT assembles networks for fitness evalua-
tion. Modules and blueprints are assembled together into a network through replacement
of blueprint nodes with corresponding modules. This approach allows evolving repetitive
and deep structures seen in many successful recent DNNs.

Source: (MIIKKULAINEN et al., 2017)

Considering these two different chromosome types, CoDeepNEAT requires evolv-

ing separate populations for each one of them and scoring them individually. The genetic

algorithm behind this is very similar to the one described for DeepNEAT, with the only

effective changes being the population management and the assignment of scores by the

fitness function. Now, instead of having one score for each individual and a shared score

for its species, the score needs to be assigned both to the blueprint and to the modules

used in its composition, and later shared between their respective species. At the same

time, when modules are used in multiple blueprints, all the respective blueprint scores

must be considered when assigning a score to a module (averaging them, for instance).

Apart from these changes, CoDeepNEAT works very similarly to DeepNEAT while also

bringing module evolution as an addition to the standard evaluation process.

The original paper presents results showing that CoDeepNEAT can indeed be im-

plemented and generate high scoring networks for simple datasets such as CIFAR-10

and much more complex problems like image captioning using MSCOCO (CHEN et al.,

2015). Of course, large datasets require longer training times and more computing re-

sources, which lead CoDeepNEAT to be recently expanded to a platform called Learning

Evolutionary AI Framework, or LEAF (Liang et al., 2019), taking advantage of cloud

computing services to parallelize the algorithm for demanding use cases like pulmonar

desease detection on high-resolution chest x-ray images (RAJPURKAR et al., 2017).
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2.5 Keras framework

Keras (CHOLLET et al., 2015) is a popular 1 and high-level neural networks API,

written in Python and capable of running on top of TensorFlow (ABADI et al., 2015) and

other lower level frameworks. It was developed with a focus on enabling fast experimen-

tation and allows for easy and fast prototyping (through user friendliness, modularity, and

extensibility). Keras supports multiple types of neural network components 2, such as

dense layers, convolutional layers, recurrent layers, dropout layers, and supports combi-

nations of them.

The framework automatically manages resources such as CPU and GPU, making

efficient use of them. It also has implementations of activation functions 3, optimizers 4,

metric calculations 5 and procedures needed to manage training sessions with ease.

2.6 Chapter summary

In this chapter were presented the basic concepts of genetic algorithms and some of

its applications, as well as a brief description of clustering algorithms, which can be used

in genetic algorithms for aggregating solutions in similarity groups. In the subsequent

sessions, were presented basic concepts of neural networks, the neuroevolution field and

finally, in more detail, the NEAT algorithm and some of its most succesful variants. The

next chapter will describe the usage of these concepts in the work proposed in the previous

chapter.

1https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
2https://keras.io/layers/about-keras-layers/
3https://keras.io/activations/
4https://keras.io/optimizers/
5https://keras.io/metrics/
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3 IMPLEMENTATION

The general structure of Algorithm 3 is derived directly from the descriptions pre-

sented in the original NEAT paper (STANLEY; MIIKKULAINEN, 2001), the CoDeep-

NEAT paper (MIIKKULAINEN et al., 2017) and its latest implementation, the LEAF

platform (Liang et al., 2019).

Algorithm 3: Genetic algorithm structure for implementation
Data: hyperparameter tables, global parameter tables
Result: evolved candidate solutions

1 begin
2 initialize module and blueprint populations considering parameter tables;
3 initialize module and blueprint species;
4 for generation in generations do
5 for individual in individual population do
6 assemble respective blueprint;
7 generate Keras model;
8 score model;
9 assign score to blueprint and modules;

10 end
11 for species in module species do
12 calculate shared fitness;
13 apply elitism;
14 reproduce through crossover and mutation considering parameter

tables;
15 end
16 for species in blueprint species do
17 calculate shared fitness;
18 apply elitism;
19 reproduce through crossover and mutation considering parameter

tables;
20 end
21 speciate modules;
22 speciate blueprints;
23 end
24 end

Even though the algorithms are described in detail in the original work, a formal

pseudo-algorithm is not specified, thus the procedure described in Algorithm 3 is an ab-

straction of that description. Specific genetic algorithm parameters such as elitism rate,

crossover rate, mutation rate, number of allowed species, minimum and maximum num-

ber of individuals per species, etc., are not described in depth in the original work and

are implemented as adjustable parameters, as are the tables of possible components of
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modules (layer types, layer sizes, kernel sizes, strides, activation functions) and hyperpa-

rameters (learning rates, optimizers, loss functions).

The general procedures referenced in the algorithm are described in the following

subsections, making references to algorithms described in chapter 2.

3.1 Initializing populations

Populations in genetic algorithms are groups of a certain type of individual that

will be evolved over generations (section 2.1). Initializing populations requires a clear

description of the involved entities that represent their respective individuals. In the case

of the proposed algorithm, these individuals are module entities and blueprint entities,

each one being initialized in their respective population (Section 2.4.3).

Module and blueprint entities are represented by a common graph design, only

differing in the semantics of their nodes. Even though they represent different levels of

abstraction of a single neural network, the graph structures of these entities are generated

by a common graph generation procedure, as both , they need to follow a shared set of

rules designed to correctly project a NN structure. At the same time, they need to respect

Keras limitations when it comes to properly connecting layers.

The graph structures are generated according to the set of rules:

• The base structure of graphs are directed acyclic graphs that map the flow of signals

from the input layer to the output layer.

• Graphs must follow the limitations stablished in parameter tables (as showed in

Table 3.1), such as the allowed range of nodes.

• Graphs must have exactly one input node and one output node. Both nodes are used

to connect graphs to other graphs, despite the internal structure of the graph. This

connection takes place in Module to Module connections (in the case of Blueprint

graphs) or Layer to Layer connections (in the case of Module graphs). This, in

other words, implies the graph can only be connected through its input or through

its output, not through intermediate nodes.

• Nodes in graphs must receive at most two input edges. One input edge directed to a

input node means the origin output node can be directly connected to the input node,

but more than one input edges connecting to an input node require the inclusion of

a merge procedure between them, merging the edges into a single connection, as
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Layers in Keras can only receive one input signal. For this purpose, Merge layers

are implemented in Keras supporting the merging of two input signals each time,

meaning that multiple input signals would require constructions of multiple Merge

layers. For simplification purposes, this rule guarantees we only have one or two

input edges at a node.

• Nodes can have multiple output edges. Multiple output signals don’t require special

treatment.

The graphs are managed in the implementation with the support of NetworkX

(HAGBERG; SCHULT; SWART, 2008), an open-source framework for graph operations

in Python, but the rules and graph structure definitions are implemented apart.

Along with structural definitions, graph creation must also handle definitions for

the content represented by their nodes and edges. Nodes in these graphs are generated by a

common routine designed for the creation of node content using custom content creation

functions passed as parameters. In the case of modules, which represent assembles of

layers, the standard node content creation functions are functions designed to generate

new Layers. In the case of blueprints, which represent assembles of modules, the node

content creation functions are functions designed to return existing modules from the

module population.

For the last part of initializations, individuals are created to represent an instance

of a blueprint to be evaluated. Instead of directly evaluating the blueprints, the individuals

are instantiated to represent them, because a single blueprint can be trained with different

combinations of hyperparameters not associated with the NN structure itself, such as the

learning rate, optimizers, loss function or other parameters chosen from a hyperparameter

table, explored in Section 3.2.

3.2 Parameter tables

Before assembling and trainings take place, a handful of parameters require man-

agement. Mostly addressed as hyperparameters, they relate to decisions made before

training starts, like the loss algorithm used, the optimizer for the learning rate, the evalu-

ation metrics to be considered during the training and so on. In this algorithm, additional

parameters such as module or blueprint sizes, choices of layer types, configurations of

layers and activation functions can be included in this group.
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Table 3.1 examplifies some of these decisions. The table specifies parameters, the

types of decisions required for them and their range of options, being yet another possible

point of optimization in the algorithm. In this specific example, "Module size" is chosen

as a "Random integer" ranging from 1 to 3.

Table 3.1: Example hyperparameter table.

Parameter Type Options
Module size Random integer [1, 3]

Blueprint size Random integer [1, 3]
Component types Random choice ["Convolutional", "Dense"]

Loss functions Fixed ["categorical_crossentropy"]
Optimizers Random choice ["Adam", "RMSprop"]

Evaluation metrics Fixed ["Accuracy"]

Source: The Author

Similarly, specific component tables can be stablished to define the configuration

of layers during the module constructions. Table 3.2 examplifies the parameters consid-

ered during the instantiation of a convolutional layer. For instance, the table specifies that

any convolutional layer will need to range their "Filters" as a "Random integer" between

32 and 64, while chosing "Kernel sizes" among 3, 5 and 7.

Yet another possible point of optimization in the algorithm, these tables could be

evolved in their own populations during generations, similarly to modules and blueprints.

This would allow the improvement of the usage of different hyperparameters in the train-

ings of different individuals, evaluating the table setups and evolving them over time.

Though the current implementation only uses fixed tables as the ones represented in 3.1

and 3.2, a similar hyperparameter optimization procedure is implemented in LEAF (Liang

et al., 2019), adding an additional dimension to the evolution process.

Table 3.2: Example component parameter table for convolutional layers.

Parameter Type Options
Filters Random integer [32, 64]

Kernel size Random choice [3, 5, 7]
Stride Random choice [2, 3]

Activation function Random choice ["relu", "tanh"]
Dropout Random float [0, 0.7]

Source: The Author
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3.3 Initializing and managing species

Speciation plays an important role in NEAT and its variants, ensuring the diversity

inside populations over generations, as described in Section 2.4. The species must be

initialized along with the populations so important procedures like elitism, crossover and

mutation can take place.

The method used to approximate module and blueprint similarity to generate species

is K-means. The original paper for CoDeepNEAT comments their usage of the same spe-

ciation schemes used for NEAT, but doesn’t specify in detail how these schemes translate

when dealing with the different representations of individuals used in CoDeepNEAT. This

specific part was abstracted and implemented in this work using K-Means, whose func-

tionality is described in Section 2.2.

K-Means is used to cluster module and blueprint graphs based on three main struc-

tural informations:

• the size of the network, such as the sum of the amount of filters in convolutional

layers of neurons in fully-connected layers, or simply the amount of neuron con-

nections;

• count of nodes, representing the amount of layers or modules in the graph;

• count of edges, representing the amount of connections between nodes in the graph.

This choice of clustering features can be easily changed in the implementation, as

it is simply a parameter for K-means. This specific set of features evaluates only quan-

titative informations, but qualitative informations such as training scores (which would

require training before evaluation) or other types of scores could be used. The clusteri-

zation generates an automatic (or custom) amount of clusters, which are used as species.

The k-means implementation used is from the open-source framework Scikit-Learn (PE-

DREGOSA et al., 2011).

After species initialization, the nearest centroid method explained in Section 2.2 is

used to assign new members to an existing species, allowing species to grow and change

over generations. Centroids are calculated based on the features of the current species

members every time new members need to be assigned to a species. New members are

then assigned to the closest centroid. This way, members that already have an assigned

species (e.g. members kept by elitism or new members that were assigned a species by any

other method) still belong to their original species, but entirely new members are assigned
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to the most adequate species according to the species’ current demographic. An accuracy

threshold can be specified so new species are generated in case new members don’t fit

the existing centroid with a satisfactory proximity. The nearest centroids implementation

used is from the open-source framework Scikit-Learn (PEDREGOSA et al., 2011).

3.4 Neural network assembling

Transitioning the graphs to Keras model representations is required to take profit

of the training procedures available in the Keras framework. After modules and blueprints

are created, they need to be assembled into a unique graph, which is subsequently pro-

cessed, node by node, creating the respective Keras layers and connecting them one by

one following a topological sorting 1.

The transition scheme implemented handles the necessary interactions between

layers, such as including Merge layers between two inputs directed to one layer, or adding

Flatten layers to adjust the connections between Convolutional and Dense layers 2. Af-

ter the model is completelly connected and a set of hyperparameters is set, it is trained

using the standard Keras training functions and a specified dataset. An assembled graph

containing joined blueprint and module informations can be seen in Figure 3.1c and its

respective network can be seen in Figure 3.1d.

Figure 3.1d shows an example assembled Keras network generated by the algo-

rithm. This network is based on the assembled graph shown in figure 3.1c, which is

structured by the network’s blueprint shown in figure 3.1b. Figure 3.1a shows the graph

structure for the common module used by the three intermediate nodes in the blueprint

graph in figure 3.1b.

The resulting scores from the Keras scoring procedures are then extracted from the

trained model and assigned to the individual and its respective blueprint, which propagates

them to the underlying modules involved. This score is used in the evaluation procedures

to decide which entities survive elitism and which entities are candidates for reproduction

in crossover or mutation schemes.

1https://networkx.github.io/documentation/stable/reference/algorithms/dag.html
2https://keras.io/layers/core/
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Figure 3.1: Different views on the assembling of a Network.

(a) Module graph structuring the connec-
tions of 3 different layers.

(b) Blueprint graph structuring the connec-
tions of 3 instances of module (a), plus ad-
ditional input and output layers.

(c) Graph assembling the module (a) and
blueprint (b) informations into one struc-
tural representation.

(d) Final Keras model representation generated
from the assembled graph (c).

Source: The Author

3.5 Elitism, crossover and mutations

Population management procedures such as elitism, crossover and mutations are

handled by the algorithm after the current populations are evaluated by training and
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scores. Currently, the proportional amount of subjects to these procedures needs to be

defined by the user but could, alternatively, be explored and evolved in the hyperparame-

ter tables.

The implemented elitism mecanism follows the standard definition of the concept,

preserving a certain percentage of individuals in populations through generations, ensur-

ing the survival of the best solutions.

Crossover is implemented following a uniform crossover technique (HOLLAND,

1975), switching node contents of two graphs with a fixed chance. The effects are differ-

ent in blueprints and modules, representing whole layer connection switches in the first

case, and simply layer definition switches in the latter. A visual representation of the

crossover operation effects can be seen in figure 3.2, where a complete network is gen-

erated from two parent networks. The crossover handles cases where layers or modules

are not compatible to be switched by only exchanging regions with common origins, as

in NEAT.

Figure 3.2: A crossover example. Genetic informations from Parent 1 (a) and Parent 2
(b), highlighted in red, are combined to generate a new network (c). The figures depict
the network representation of the three blueprints involved in the crossover process.

(a) Parent 1 network. (b) Parent 2 network. (c) Child network.

Source: The Author

Mutations are implemented similarly to the original proposal of NEAT, represent-

ing edge and node alterations such as node or edge removal, creation or reconnection.
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The main differences when comparing to what is proposed by CoDeepNEAT are that

while NEAT represents the node content as activation functions and edge contents as

weights, CoDeepNEAT’s representations of node content are much more complex (NN

structures!), implying that more complex interactions need to be considered. For this rea-

son, the mutations must also follow the same set of rules as specified for graphs in the

population initializations subsection (3.1).

Mutations take place in the graph representations of modules and blueprints as

structural changes, as represented in Figures 3.3 and 3.4. Mutation operators are imple-

mented as:

• Node additions, creating nodes and connecting them to other nodes either by in-

serting them between two nodes that already have an existing mutual connection

(Figure 3.3b), or by connecting them to any pair of nodes that support new connec-

tions (Figure 3.3c).

• Node removals, creating a new connection between the direct neighbors of the for-

mer node (Figure 3.3d).

• Edge removals or additions.

• Node replacement, changing current node content, such as replacing modules in

blueprint graphs (as in Figure 3.4) or layers in module graphs.

The results from these changes can be seen mostly in the final representations

of the models, when the assembling process is finished. In Figure 3.4, a node content

change in the original blueprint of a network results in major changes to its structure after

the assembling process.

3.6 Chapter summary

In this chapter were detailed the implementation characteristics of a genetic algo-

rithm for neural network topology and hyperparameter search highly based on CoDeep-

NEAT (MIIKKULAINEN et al., 2017). The essential steps such as population initializa-

tions, parameter definitions, species management, neural network assembling and other

aspects like elitism, crossover and mutations are described in detail in the previous sec-

tions using the concepts and methods explored in the previous chapter. Next chapter

focuses on experimentation performed using the implementation described here.
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Figure 3.3: Mutation examples. Figure (a) shows the original graph before any mutations
take place. Figure (b) shows the mutation of the original graph by inserting a node be-
tween an existing connection. Figure (c) shows the Mutation of the original graph adding
a node and preserving existing edges. Figure (d) shows the mutation of the original graph
by removing an existing node.

(a) Original graph.

(b) Mutation by node addition.

(c) Mutation by node addition.

(d) Mutation by node removal.

Source: The Author
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Figure 3.4: Node content mutation effects on a network. (a) Original assembled network.
(b) The original blueprint used in the network and the indicated node (a module) to be
replaced, hightlighted in red. (c) The assembled graph of the used blueprint before muta-
tion switches the indicated module. (d) Assembled graph of the blueprint after mutation
switches the indicated module. (d) Resulting network from mutation, with the affected
part highlighted in red.

(a) Original network. (b) Original blueprint.

(c) Original assembled graph.

(d) Assembled graph after mu-
tating the blueprint node.

(e) Mutated network.

Source: The Author
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4 EXPERIMENTS AND RESULTS

Experimentation on the algorithm followed consecutive executions in two differ-

ent image datasets. This chapter describes the datasets, the experiments and results, as

well as a discussion on the results and practical usability of the algorithm.

4.1 Datasets

The chosen datasets for experiments using this implementation were MNIST (Le-

cun et al., 1998) and CIFAR-10 (KRIZHEVSKY; NAIR; HINTON, 2009). Both datasets

are simple image datasets containing 10 different classes of images. They are frequently

used in benchmarks or experiments using convolutional or fully-connected networks, and

have been used before in the task of topology selection in other approaches (MATTIOLI

et al., 2019).

The parameter tables used in both experiments can be seen in table 4.1. The

amount of modules and layers used for blueprint and module constructions, respectiv-

elly, are specified to be in the range between 1 and 3. The intention is to build minimal

structures at first, and progressivelly grow these structures as mutations and crossovers

take place as generations pass. Convolutional layers are specified to be used in the inter-

mediate layers, while dense layers are used in the output layers. Including dense layers

in the last layer before outputs is a common practice in succesful convolutional networks

(SIMONYAN; ZISSERMAN, 2014). Tables 4.2 and 4.3 specify the possible configura-

tions of these two layer types.

Table 4.1: Experiment hyperparameter table.

Parameter Type Options
Module size Random integer [1, 3]

Blueprint size Random integer [1, 3]
Intermediate component types Fixed ["Convolutional"]
Output layer component types Fixed ["Dense"]

Loss functions Fixed ["categorical_crossentropy"]
Optimizers Fixed ["Adam"]

Evaluation metrics Fixed ["Accuracy"]

Source: The Author
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Table 4.2: Experiment parameter table for Convolutional layers.

Parameter Type Options
Filters Random integer [16, 48]

Kernel size Random choice [1, 3, 5]
Stride Fixed [1]

Activation function Fixed ["relu"]
Dropout Random float [0, 0.5]

Source: The Author

Table 4.3: Experiment parameter table for Dense layers.

Parameter Type Options
Units Random integer [32, 256]

Activation function Random choice ["relu"]

Source: The Author

4.2 MNIST experiment

Initial experimentation took place using MNIST, a fast-converging and widely

used dataset in handwritten digit recognition tasks and overall convolutional network ex-

periments (WITTEN; FRANK; HALL, 2011). MNIST is composed of 60000 28x28

pixel grayscale images of handwritten numerical digits divided in 10 classes (Lecun et

al., 1998). The images are simple and placed in neutral backgrounds that simplify predic-

tions.

Figure 4.1: Samples from the MNIST dataset, a handwritten numerical digit dataset.

Source: (Lecun et al., 1998)

Experimentation with MNIST was done using 40 generations, populations of 10
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individuals, 10 blueprints and 30 modules, as well as a starting number of species set to 3.

For each population, a global set of configurations was used to define elitism, crossover

and mutation rates. Elitism rate is set to 20%, preserving the best scoring solutions every

generation. The crossover rate is set to 30%, replacing the same proportion of popula-

tions’ individuals with offspring from good scoring parents. The remaining 50% of the

population is subject to mutation operations, generating random changes to existing solu-

tions.

Training using MNIST usually divides the dataset in three parts: a training dataset,

composed of 42500 images; a validation dataset, composed of 7500 images; and a test

dataset, composed of 10000 images. For this type of experiment, training the network

to their full lenght is a hardware and time consuming task. Topology selection methods

commonly reduce the sizes of these datasets to smaller proportions to achieve faster re-

sults and discard bad solutions in early generations, avoiding the waste of resources in

long training procedures, as in Mattioli et al. (2019). For this reason, the training sessions

over generations used random samples of 10000 images from the original 60000 divided

into 8000 training samples and 2000 validation samples.

As mutation and crossover operations take place along generations, the features of

the networks are expected to change and adapt to reach better accuracy and loss scores

during early training. At the same time, elitism ensures these operations don’t change

actual good results. Figure 4.2 depicts the changes in the counts of nodes, connections

and the overall network size of the blueprint population as the generations pass.

In the experiment history shown in Figure 4.2, the networks tend to decrease in size

even when increasing the amount of nodes or connections (as in Species 1). This means

that the networks are using less filters or neurons in their layers, which is an expected

behavior due to MNIST being a very simple dataset that doesn’t require complex struc-

tures to achieve high loss and accuracy metrics (Lecun et al., 1998). The reduced dataset

sizes and training epochs used in topology selection also tends to favour fast-converging

networks, as seen in the experiments of (MIIKKULAINEN et al., 2017). Also, Figure

4.2 shows how the evolution of features results in the populations taking certain paths,

leading some species (in this case, Species 2) to eventually cease to have representatives,

even when not directly interacting with other species through crossovers.

Changes and adaptations to the network features results in changes to the species

scores (Figure 4.3), reducing the loss metrics and increasing the accuracy metrics.

After the 40 generations, a network was selected by the highest accuracy and loss
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Figure 4.2: Progress of the features of the three species of networks generated for MNIST
over generations. The representation shows the average of each feature for each species.
The different line colors represent different species.

Source: The Author

Figure 4.3: Progress of the average accuracy and loss scores of the species over genera-
tions for MNIST dataset. The different colors represent different species.

Source: The Author
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scores. The chosen network was then trained using the complete MNIST training dataset

for 30 epochs to validate whether it would generate acceptable results or not. The training

metrics are shown in Figure 4.4 and demonstrate that even in early epochs the resulting

model achieves more than 90% validation accuracy. The accuracy using the test dataset

achieved a peak 92% accuracy at epoch 30. Of course, the MNIST dataset is supposed

to be easy to predict upon and achieve very high accuracy metrics (98.5%1, for instance).

This result shows that the algorithm was able to achieve an acceptable result with few

generations, even though the initial network size could be smaller.

Figure 4.4: Training and validation metrics for the best network generated for MNIST
after 40 generations.

(a) Loss. (b) Accuracy.

Source: The Author

4.3 CIFAR-10 experiment

Experimentation continued using CIFAR-10, a slightly more complex dataset than

MNIST. CIFAR-10 is composed of 60000 32x32 colored images of different objects di-

vided in 10 classes (Figure 4.5). Even though CIFAR-10 is similar to MNIST in sample

quantity and size, its images represent much more complex and diverse object structures

for each class when comparing to MNIST. Training is more exhausting, as well as the

required model structure for better results is usually bigger (KRIZHEVSKY; NAIR; HIN-

TON, 2009).

For CoDeepNEAT’s original CIFAR-10 experiment, the authors describe an ex-

ecution of 72 generations using populations of 25 blueprints and 45 modules to gener-
1https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d
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Figure 4.5: Samples from the CIFAR-10 dataset, a collection of different classes of im-
ages in small scale.

Source: (KRIZHEVSKY; NAIR; HINTON, 2009)

ate 100 individuals (CNNs) per generation. The evaluation of these individuals is done

through the test scores of their respective CNNs after 8 training epochs using 50000

images divided into a training set of 42500 samples and a validation set of 7500 sam-

ples. Since training convolutional neural networks takes a long time, the reduced training

epochs are necessary to achieve approximations of adequate topologies in a viable time.

Still, the processing required to train all the individuals every generation for multiple

generations is considerable.

After the evolution process of CoDeepNEAT’s original CIFAR-10 experiment

(MIIKKULAINEN et al., 2017) was complete, the resulting best network was trained

on all the 50000 training images for 300 epochs. The classification error obtained was

7.3%, taking 12 epochs to reach 20% test error and around 120 epochs to converge.

Reproducing such experiment requires a considerable amount of hardware. Train-

ing 100 CNNs for 72 generations and 8 training epochs each generation, supposing 30

seconds for each training epoch, would require 1728000 seconds or 480 hours to complete

evolution, not considering parallelization efforts. As one of the purposes of this work is

to evaluate the usage of CoDeepNEAT in practical use cases for users that might not have

access to incredibly potent hardware, the experiments for this work were executed in a

smaller scale, similar to the MNIST experiment.

The runs iterated over 40 generations for 6 hours, with populations of 30 modules,

10 blueprints, 10 individuals and starting with 3 species, running in a setup of 4 cores,

30.5GB memory, no GPU included. Following the same steps as in the MNIST experi-

ment, elitism rate is set to 20%, crossover rate is set to 30% and mutation rate is set to
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50%. Training epochs are limited to 4 and the original datasets are downsampled to 20000

training images and 2000 validation images for early evaluations.

As expected through the configuration of table 4.1, initial network structures are

small and simple, as the network shown in Figure 4.6, created at the first generation of

the experiment. As generations pass, the amount of nodes and connections increases

or decreases as scores are evaluated. In this specific case, most initial graphs are small

structures, thus they naturally increase over generations. This can be visualized in Figure

4.7, where the average count of connections, nodes, and the sizes of blueprints increase

over generations.

Figure 4.6: Best scoring network for CIFAR-10 at generation 1. Smaller network topolo-
gies are expected to predominate in early generations.

Source: The Author

The increase in network sizes is expected due to CIFAR-10 being slightly more

complex then the use case explored with MNIST, requiring larger structures to correctly

differentiate the dataset’s classes. Figure 4.8 shows the small increase in the accuracy and

loss metrics over time as features increase in Figure 4.7. The improvements in the metrics

are small due to the few training epochs used, but this early result has the tendency to

impact in greater changes in full training sessions using the complete CIFAR-10 dataset.

The best resulting network from the experiment after 40 generations was obtained

in about 10 hours and can be seen in Figure 4.10. This network was then trained for 130

epochs, but reached a plateau in the validation accuracy metric around the 90th epoch.
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Figure 4.7: Progress of the features of the three species of networks generated for CIFAR-
10 over generations. The representation shows the average of each feature for each
species. The different line colors represent different species.

Source: The Author

Figure 4.8: Progress of the average accuracy and loss scores of the species over genera-
tions for CIFAR-10 dataset. The different colors represent different species.

Source: The Author

The achieved training accuracy was of 86.5% and 79.5% validation accuracy. Training

history for this network can be seen in Figure 4.9, depicting loss and accuracy metrics for



47

training and validation datasets.

In comparison to the original CIFAR-10 experiment, the network performed slightly

worse, presenting a test accuracy of 77% (or test error rate of 23%) as opposed to the 7.3%

error presented by (MIIKKULAINEN et al., 2017). The convergence of the validation ac-

curacy happened around training epoch 90, converging faster in comparison to the original

CIFAR-10 , where the convergence occured around epoch 120. The faster convergence

(and subsequent smaller accuracy) are probably associated with the fact that while (MI-

IKKULAINEN et al., 2017) executed training sessions during evolution using the full

CIFAR-10 dataset, this experiment used downsampled versions to reduce the execution

time of each generation. At the same time, this experiment considered only 4 training

epochs, while the original used 8 training epochs. Evaluating networks with few train-

ing epochs usually favours smaller networks that converge faster, but don’t necessarily

achieve optimum accuracy.

Figure 4.9: Training and validation metrics for the best network generated for CIFAR-10
after 40 generations. The network achieved 86.5% training accuracy and 79.5% validation
accuracy.

(a) Loss. (b) Accuracy.

Source: The Author

4.4 Discussion

The results obtained from the experiment show once again that GAs - and specif-

ically CoDeepNEAT - pose as viable solutions to the problems of topology and hyperpa-

rameter selection to generate good scoring networks in practical scenarios. Two widely

used datasets for machine learning benchmarking and testing, MNIST and CIFAR-10,

were used to validate the results and visualize the evolution of solutions over generations.
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Figure 4.10: Best scoring network for CIFAR-10 at generation 40.

Source: The Author

The proposed implementation returned adequate solutions even with few genera-

tions and small population sizes. Still, as research indicates (VRAJITORU, 1999), bigger

populations would probably benefit more from the heuristics used in the genetic algo-

rithm, such as the crossover operator or speciation mechanisms. This is also backed by

the original results from (MIIKKULAINEN et al., 2017), which evolve much larger pop-

ulations of solutions over the course of almost double the generations and finally generate

better scoring networks, with the downside of the larger execution time required.

Another point is that studies (RAZALI; GERAGHTY, 2011) indicate that tradi-

tional GA operators thrive specially in simple problems where generations can be iterated

many times, which is not the case of CoDeepNEAT. The time and hardware requirements
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for experimentation with large populations and many generations are relatively demand-

ing even for simple use cases like MNIST or CIFAR-10, and are not explored in detail by

(MIIKKULAINEN et al., 2017), making the usage of this type of algorithm very limited

to the type of network to be trained and the size of the target dataset.

Deep and complex networks that target large problems, like high-resolution image

recognition (DENG et al., 2009) or video recognition (RUSSAKOVSKY et al., 2015),

for example, may pose as challenging use cases due to the time required for them to

execute training sessions even for few epochs. Traditional efforts to improve the effi-

ciency of GAs (CANTú-PAZ; GOLDBERG, 2000) may generate minor improvements

to execution times, but the current algorithm would benefit mostly from approaches that

evaluate generated networks using alternative methods rather than exclusively running

training sessions for all of them. An example would be methods that generate huge popu-

lations but evaluate only certain representatives of each species to elaborate a shared score

(Hee-Su Kim; Sung-Bae Cho, 2001), reducing the amount of evaluations performed each

generation.

Other ideas that could generate benefits to the algorithm are approaches that nar-

row the search space to more specific topologies, reducing the need to train so many

different networks. One recent example would be (XU et al., 2019), where good results

are achieved in reduced GPU time for an object detection use case using the MSCOCO

dataset (LIN et al., 2014) by reducing the search space of the exploration algorithm using

specialized topological knowledge on the object detection domain.

In scenarios where computing power is not a problem, CoDeepNEAT is proven to

achieve good solutions, as demonstrated by (Liang et al., 2019). Then again, the comput-

ing power to train thousands of networks by "brute force" is extremelly high and is not

commonly accessible for standard users.
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5 CONCLUSION

In this work was proposed an open implementation of the CoDeepNEAT algorithm

using the popular and highly supported Keras framework. CoDeepNEAT is a powerfull

neural network topology generation approach based on neuroevolution of augmenting

topologies (NEAT) and co-evolution of modules. It profits from evolutionary techniques

and heuristics to explore the immense search space of possible topological configurations

for neural networks, employing specialized genetic algorithm aspects to generate and

evaluate solutions to the problems of topology and hyperparameter selection. Even though

the algorithm is a known approach, no other accessible and public implementations were

available to the general academic community as of the conception of this work.

The implementation was detailed on how every aspect was designed to fit together

in the final version, based on the original algorithm. It was then tested on popular image

datasets and compared to results from the original version considering the differences in

environments and experimentation parameters. The results obtained show that accept-

able network topologies can be achieve with small population sizes and few generations

running in limited hardware environments, even though large runs and big populations

generate better results.

With this implementation complete, possible changes can be proposed to improve

the base algorithm such as different crossover operations, domain-specialized generation

rules for topologies, methods for speciation and classification of individuals and overall

population management strategies. The results specially highlight the need to provide

better evaluation techniques for the generated neural networks, as it is the most time con-

suming activity in the algorithm. Another possibility is improving the network generation

procedures to explore specialized topologies with previous domain knowledge so the nec-

essary network evaluations are narrowed to smaller search spaces.

The implementation is available at Github 1 with documentation and examples to

reproduce the experiments performed for this work.

1https://github.com/sbcblab/Keras-CoDeepNEAT
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