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ABSTRACT

The use of Electronic Health Records data have extensively grown as they become more

accessible. In machine learning, they are used as input for a large array of problems,

as the records are rich and contain different types of variables, including structured data

(e.g., demographics), free text (e.g., medical notes), and time series data. In this work,

we explore the use of these different types of data for the task of in-hospital mortality

prediction, which seeks to predict the outcome of death for patients admitted at the hos-

pital. We built several machine learning models, - such as LSTM, TCN, and Logistic

Regression for each data type, and combine them into a heterogeneous ensemble model

using the stacking strategy. By applying deep learning algorithms of the state-of-the-art

in classification tasks and using their predictions as a new representation for our data

we could assess whether the classifier ensemble can leverage information extracted from

models trained with different data types. Our experiments on a set of 20K ICU stays from

the MIMIC-III dataset have shown that the ensemble method brings an increase of three

percentage points, achieving an AUROC of 0.853 (95% CI [0.846,0.861]), a TP Rate of

0.800, and a weighted F-Score of 0.795.

Keywords: Mortality prediction. data types. machine learning. ensemble. time-series.



Predição de Mortalidade na UTI com Modelos Ensemble Heterogêneos

RESUMO

Com o crescimento da adoção de prontuários eletrônicos, e da acessibilidade da comuni-

dade a esses dados, a área de aprendizado de máquina está fazendo o uso desses dados

para a solução de uma vasta gama de problemas. Esses dados são ricos e complexos, e

contam com uma diversidade grande de tipos de dados, como dados estruturados (e.g.,

dados demográficos), texto livre (e.g., exames e prontuário médico) e dados temporais

(e.g., medições de sinais vitais). Neste trabalho, buscamos explorar essa diversidade de

tipos de dados para a tarefa de predição de mortalidade durante a estadia no hospital.

Mais especificamente, usando apenas a janela das primeiras 48h de estadía do paciente.

Contruímos diversos modelos de classificação para essa tarefa - incluindo LSTM, TCN e

Logistic Regression - para cada tipo de dado existente na nossa base de dados, aplicando

algoritmos do estado-da-arte da área de deep learning. Usando o resultado da classifica-

ção obtido por esses modelos, modelos ensemble foram treinados. Com isso, é possível

avaliar se esses modelos conseguem tentar melhorar qualidade da classificação. Nossos

experimentos usaram um conjunto de mais de 20mil estadias em UTIs presente na base

de dados MIMIC-III, e mostramos que o uso de ensemble melhora a performance final

em 3 pontos percentuais, conseguindo um melhor resultado de AUROC de 0,853 (95%

IC [0,846; 0,861]), um TP Rate de 0.800, e um weighted F-Score de 0.795.

Palavras-chave: Predição de mortalidade, aprendizado de máquina, mineração de dados,

algoritmos de classificação.
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1 INTRODUCTION

In an Intensive Care Unit (ICU) environment, the duration of a patient’s stay is

associated with long-term sequelae, high financial cost, and places strain on the healthcare

delivery system. To mitigate this strain in the medical system, the early detection of

the deterioration in a patient’s condition can reduce the outcome of mortality. This is

confirmed by Kane et al. (2008), who observed that an increased number of registered

nurse staffing is associated to lower mortality and adverse patient events. One way to

improve patient monitoring and help early detection is by using automated systems and

machine learning models. The work by Shimabukuro et al. (2017) found a decrease in

both ICU length of stay and mortality rate after the adoption of a machine learning model

for sepsis detection.

With the increasing adoption of Electronic Health Records (EHR), the volume of

healthcare data is rapidly growing in the last few years. EHR data have extensively been

in the development of machine learning models for several tasks within the medical field

and poses a set of challenges for the machine learning area. These challenges stem from

various reasons, including the temporal and sparse nature of the data. Data about a patient

can be structured text (e.g., demographics), free text (e.g., a description of the patient’s

evolution), numerical (e.g., vital signs), or even sound, image, and video. The volume

and complexity of the data increase even more if the patient needs to be admitted into an

Intensive Care Unit (ICU), as these patients need more care. These different types of data

can be used to help understand the patient’s current condition and create means to foresee

the most likely outcomes for the patient.

The focus of this work is on in-hospital mortality prediction, which is the task of

predicting the outcome of death for patients admitted at the hospital. More specifically,

our analysis is on mortality prediction of ICU patients, based on data available at the first

48 hours since the patient is admitted into the ICU. We model this problem as a binary

classification task and the solution relies on supervised learning algorithms.

Most of the existing work on in-hospital mortality prediction focus on a single

type of data - e.g., textual or structured - (HARUTYUNYAN et al., 2019; PIRRACCHIO

et al., 2015; SUSHIL et al., 2018; JOHNSON; POLLARD; MARK, 2017; LEHMAN et

al., 2012; MARAFINO et al., 2018; REDFERN et al., 2018; HSIEH et al., 2014), or com-

bine two data types (WEISSMAN et al., 2018; HASHIR; SAWHNEY, 2020; DAVOODI;

MORADI, 2018). Conversely, we leveraged the richness and variety of data in EHR sys-
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tems and employed the array of data types in an ensemble model. By training models on

top of specific approaches to handle structured and unstructured data associated with pa-

tients, we define a methodology that applies state-of-the-art machine learning techniques

for each specific data, and use the strength of ensemble methods to combine them.

Our methodology was applied to 20K ICU stays from the Medical Information

Mart for Intensive Care (MIMIC-III) (JOHNSON et al., 2016) database. We explored

the diversity of patient data in MIMIC-III, including medical notes and vitals, to generate

accurate predictions. We grouped the patient’s features into structured data, structured

time series data, and textual time series data. Our analysis considered each data both

separately and combined using ensemble learning with the stacking algorithm. The results

obtained by the ensemble were 0.853 (95% CI [0.846, 0.861]) in terms of the area under

the receiver operating curve and 80% of true positive rate. This represents an increase of

three percentage points compared to the best experimental run using a single data type.

The main contributions of this work are:

• evaluate each of the three data types to determine which provides the best perfor-

mance;

• analyze if an ensemble model could leverage information extracted from models

trained with different data types;

• leverage the relationship between each information in the ensemble prediction.

In addition, our experiments evaluated the effects of approaches for tackling the

class imbalance problem. In our data, the positive class (i.e., the death outcome) accounts

for only 13.5% of the cases. This is typically problematic for classification algorithms

as they can become biased towards the most prevalent class. Our results showed that

addressing the class imbalance problem brings performance improvements for the classi-

fiers.

The remainder of this work is organized as follows. In Chapter 2, we introduce the

foundations of the machine learning algorithms used in this work, along with the metrics

and methods used to evaluate them. Then, in Chapter 3 we discuss existing approaches

for in-hospital mortality prediction. In Chapter 4.1 we discuss the methodology applied

for data extraction, and in Chapter 4.2 the methodology applied for model training and

evaluation. Chapter 5 we go through the results of the experimental evaluation.



12

2 BACKGROUND

In this section, we introduce the underlying concepts and techniques related to our

methodology for predicting in-hospital mortality. In Section 2.1 it will be discussed data

representation and how it affects the machine learning algorithms. In Section 2.2 is the

discussion of classical machine learning algorithms employed in our methodology. After,

in Section 2.3 we explain the deep learning algorithms used.

In Section 2.4 it will be talked about the ensemble learning algorithm that was used

to perform the aggregation of our data. Then in Section 2.5 we will talk about Hyperband,

the hyperparameter tunning algorithm used in our tests. Finally, we will finish this chapter

with the evaluation methods used in our work, in Section 2.6 we explain the metrics used

to evaluate our methodology and in Section 2.7 we exaplain the Shapley values.

2.1 Text Representations

As free text does not have a structure, machine learning methods cannot directly

extract information from its raw format. As a result, we need to find a way to represent

this type of data so it can be fed into a machine learning algorithm.

Representation Learning is the field of machine learning that allows systems to

learn and transform data into a representation that differs from its original format (GOOD-

FELLOW; BENGIO; COURVILLE, 2016). The performance of machine learning algo-

rithms is directly affected by the data representation, and the process of hand engineering

a representation is laborious and requires domain knowledge. As stated by Goodfellow,

Bengio and Courville (2016), most machine learning problems could be solved by find-

ing a representation that contains features that are representative to solve the problem, and

then feed them to a machine learning algorithm. Another use for transforming represen-

tation is to transform data that could not be directly fed to a classification algorithm into

a representation that could be used. This is a common step for unstructured data such as

texts, audio, and images.

Distributed Representations, which are generated based on patterns found in data,

are widely used for text representation because of their power of embodying the semantics

of the words. Within this class, we find word and sentence embeddings (LE; MIKOLOV,

2014; MIKOLOV et al., 2013), which assign continuous space representations to words

and sentences. This class of representation exploits the fact that words share attributes
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based on semantic context, and that a generalization can be induced by creating a space in

which words with similar meanings are close to each other (GOODFELLOW; BENGIO;

COURVILLE, 2016).

A popular method for generating a continuous representation of a sentence is

Doc2Vec (LE; MIKOLOV, 2014). Doc2Vec is a set of two neural network architectures,

each trained on a specific task, and the representation generated by both is a real-valued

vector of the input sentence. The first architecture is called Distributed Memory (PV-DM),

and it is trained on the task of outputting the next token, giving a sequence of tokens, and

an internal identification of the current sentence that is being used for training. The sec-

ond architecture is the Distributed Bag-of-Words (PV-DBOW). In this architecture, the

training task is to output random words within the sentence.

Doc2Vec functions with the use of two matrices, D and W . D stores the vectors

that represents the different paragraphs in the database, andW stores the representation of

each word in the vocabulary. In Figure 2.1 we see a graphic representation of the PV-DM

architecture, and it is shown the task of output the next word given the sentence. There

D represents the "Paragraph id", that acts as a memory for the present context. During

training, D is unique for each paragraph fed to the network, while W is shared across

paragraphs.

Figure 2.1: Doc2Vec’s PV-DM architecure

Source: (LE; MIKOLOV, 2014)

Figure 2.2 is the illustration of the PV-DBOW architecture. The figure show the

task of output words given only a context, the "Paragraph id" D. After trained, either

architecture can be used to infer a representation for a sentence that was not previous fed

to the network.

We used Doc2Vec to generate a representation of the medical notes in our database.
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Figure 2.2: Doc2Vec’s PV-DBOW architecture

Source: (LE; MIKOLOV, 2014)

The real-valued vector representation generated can be used as an input to a neural net-

work directly, which facilitates the use of textual information to train models.

It is important when dealing with machine learning algorithms that we first express

all data types to a numerical representation. In this section we explained the algorithms

used in the experiments in this work, now we will explain the machine learning algorithms

used in our methodology.

2.2 Classical Machine Learning Algorithms

In this section, we will focus only on the classical machine learning algorithms

used in this work, providing a brief introduction to each of them. For a more detailed

discussion, please refer to Harrington (2012) and Russell and Norvig (2009). It is well

established in machine learning that no single classification algorithm is able to perform

well in all tasks. In this sense, we selected three algorithms from different families to

apply to mortality prediction.

The first algorithm is the Naive Bayes (NB) classifier, which is based on the

Bayesian theorem with the assumption of feature independence. It computes conditional

probabilities for each feature in relation to the class to give the likelihood of that instance

to belong to that class.

The second classifier is the Logistic Regression (LR) classifier, and it functions by

multiplying each feature by a weight and adding them up. The result is given as input to

a sigmoid function, which outputs a value between 0 and 1 that reflects the probability of

belonging to a specific class.
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The third classifier is the Support Vector Machines (SVM) (CORTES; VAPNIK,

1995). SVM creates a hyperplane (or a set of hyperplanes) which best separates the

classes. These hyperplanes are used to classify new instances to a class using the bound-

aries of each plane.

One last classical algorithm that was not directly used but is the base for the fol-

lowing architectures is the Multilayer Perceptron (MLP). MLPs are composed of a set

of neurons, where each neuron is a non-linear function. These neurons are organized in

layers, with one layer for input, one layer for output, and one or more hidden layers. Each

neuron receives multiple inputs from previous neurons, and associate a weight for each of

these inputs. Each weight is corrected by the training algorithm (HAYKIN, 2001).

The algorithms described in this section have their limitations, especially when

dealing with temporal data – and most of the data in our work is temporal. To deal with

temporal data, we evaluated two deep learning algorithms, which are presented in the

following sections.

2.3 Deep Learning Algorithms

Deep learning algorithms have shown impressive results in many classification

tasks and quickly became the state-of-the-art. A key aspect is that these algorithms do

not require feature engineering, which is a time-consuming step in the classical machine

learning background. Next, we briefly introduce recurrent and convolutional neural net-

works which are the main types of deep learning algorithms and are employed in this

work.

2.3.1 Long Short Term Memory

Recurrent Neural Networks (RNN) are Neural Networks that have the ability to

process sequential data, learning a probabilistic distribution over the sequence. The major

problem with RNNs is that they fail to capture long-term dependencies, as their gradi-

ent either explodes or vanishes, resulting in the bad performance of gradient optimization

algorithms (BENGIO; SIMARD; FRASCONI, 1994; HOCHREITER et al., 2001). A

solution to this exploding and vanishing problem can be seen in the Long Short Term

Memory (LSTM) network architecture created by Hochreiter and Schmidhuber (1997).
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This network uses a sophisticated, non-linear network activation function, based on spe-

cialized units called gates.

An LSTM model is composed of multiple gates that act on the gradient, controlling

its value inside each memory unit that builds the network. The network is usually built

using: an input gate, that controls the gradient that is incoming to the unit; an output gate,

which acts on the gradient that the unit is outputting to the network; and a forget gate

introduced by Gers, Schmidhuber and Cummins (2000), which controls the effect of past

information in the sequence. Figure 2.3 illustrates a memory unit from LSTM, where yin

is the input gate activation, computed by netin (the network error for the input gate), and

win (the memory cell’s input gate weight). The same is true for the output gate activation

yout, and the forget gate activation yϕ, computed by their respective input error and weight.

Next, the network input netc to this cell, which passes through an input squashing that is

a centered logistic sigmoid function and put the network input into a range of |−2, 2|, and

then multiplied by the input gate activation yin. This is used to update the unit’s internal

state sc for the current timestep. The forgetting step is done by multiplying the forget gate

activation with the current cell unit state. Then the updated internal state sc is squashed by

another centered sigmoid function, but with a range between |− 1, 1|, and then multiplied

by the output gate activation yout, generating the cell unit output yc.

Figure 2.3: Memory unit of a LSTM network architecture with forget gate.

Source: (GERS; SCHMIDHUBER; CUMMINS, 2000)

LSTMs can deal with time-series data and are widely used in a diversity of classi-

fication problems for this capability. Here we use it as one of our base-models, because

of the temporal aspect of our data.
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2.3.2 Temporal Convolutional Network

Convolutional Neural Networks (CNN) (LECUN et al., 1998) are capable of ex-

tracting spatial or temporal features, using two different operations, convolution, and

pooling. With these operations, CNNs output a smaller, more meaningful representation

that is fed to a highly connected network.

A convolution is a linear transformation over the input data, it is composed of a

Kernel, that sequentially moves over the data dimensions, producing an output for each

time the kernel move. Each moving is done by a stride, which is the number of sequential

units that the kernel will move. Figure 2.4 is the graphic illustration of a convolution into

a matrix. In the figure, we can see the kernel highlighted in yellow moving through the

input matrix in green, and creating a convolved feature at each movement.

Figure 2.4: Illustration of a convolution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Source: (BRITZ, 2015)

The pooling operation has a similar structure as the convolution, as it operates
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with Kernels and strides, but its objective is to reduce the dimension of its input using a

simple filtering operation, usually min, max and average. Figure 2.5 illustrates the result

of a pooling over a matrix.

Figure 2.5: A pooling operation over a matrix.

Source: (BRITZ, 2015)

However, there is a limitation in the CNNs when working with sequential data.

The convolution operation, because of its nature it leaks information from future time

steps while progressing through the sequence (BAI; KOLTER; KOLTUN, 2018).

To solve this problem, Lea et al. (2016) designed the Temporal Convolutional

Network (TCN). The leakage of information is solved by the use of a modification named

causal convolutions, which adapts convolution to output at time t using only data until

time t − 1. Although it solves the problem of leakage, causal convolution alone cannot

examine historical information with a size more than linear kernel, which difficult analysis

of tasks requiring longer history.

To mitigate this problem, the solution is to apply dilated convolution, which lets

the convolution kernel activate distant points in the input. Formally, for a 1-D sequence

input x ∈ IR and a kernel f : {0, ..., k − 1} → IR, the dilated convolution operation F on

element s of the sequence is defined as

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (2.1)

In Equation 2.1, d is the dilation factor, k is the filter size, and s−d · i accounts for

the direction of the past. The result is the same as inserting fixed steps between adjacents

kernel units, enabling the output to represent a wider range of inputs.

As summarized by Bai, Kolter and Koltun (2018), TCNs have a few advantages

in relation to RNNs. The first one is that the convolution operation can be parallelized,
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reflecting on a shorter training time with smaller memory requirements. However, when

performing predictions on an already trained model, it uses more memory than an RNN.

We chose to use a TCN because it can deal with temporal data, generating a set of different

models to create our final ensemble model.

Now that we presented all the base machine learning algorithms used in this work,

in the next section we will explain the ensemble algorithm used to glue all the parts

together.

2.4 Ensemble Learning

An ensemble learning algorithm is a method of combining multiple models or gen-

eralizers into a single model, with the end to increase the predictive performance. Usually,

the models that compose an ensemble reflect subspaces of the entire hypothesis space

based on the data used. One method to create and combine multiple models is Stacked

Generalization, or Stacking. As stated in the original work (WOLPERT, 1992), stacking

works by deducing the biases of the generalizers with respect to a provided learning set,

by generalizing in a second space whose inputs are.

Given a set D = {(xn, yn), n = 1, ..., N}, with xn being the values of the fea-

tures for the data instance n and yn being the class of this instance, let us denote Dj and

D−j = D −Dj as the test and training set, respectively, of a j-fold cross-validation over

the dataset D. Now let us define a set of k learning algorithms, which we call base-

models, chosen to train over this data to generate a set of base-models M−j
k . For each

instance xn in Dj , we use the predictions zkn generated by each model M−j
k as the new

representation for xn. In the end of the cross validation process, data is represented by

DCV = {(yn, z1n, ..., zkn), n = 1, ..., N} and is used to train a new model, which is called

meta-model (TING; WITTEN, 1999).

Polikar (2006) argues that ensemble methods should be used to reduce the risk of

an unfortunate selection of a poorly performing classifier. One of the applications of an

ensemble is as a data fusion method, so that we could combine heterogeneous features

into a single classifier. We use stacking as a data fusion method to combine the array of

data types that we have in our dataset. Providing an appropriate method to work with

these different data types, generating a new feature space with the classes probabilities

generated by the base-models as data to a new single classifier (TING; WITTEN, 1999).

Until now we described the set of machine learning algorithms that we used in
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our work. However, each of them has a set of parameters that are tied to how well they

can learn patterns in data. In the next section, we describe which techniques we used to

automatically identify a set of optimal values for these parameters for each algorithm.

2.5 Hyperparameter Optimization

A typical machine learning algorithm has the final objective of minimizing a loss

function over a finite set of instances from a natural distribution. This is done by map-

ping these instances to a function f through the optimization of a set of parameters Θ.

This optimization process is controlled by a set of hyper-parameters λ and the quality of

the machine learning predictions depends on the configuration of these hyper-parameters

(BERGSTRA; CA; CA, 2012). However, the understanding of how they interact with

each other and how these interactions affect the resulting model is lacking.

Practitioners often use brute-force methods for hyperparameter optimization, such

as random search and grid search. Li et al. (2017) developed Hyperband, a method to

approach the optimization problem addressing it as a pure-exploration adaptive resource

allocation problem. Hyperband uses another optimization algorithm called Successive

Halving as a subroutine (JAMIESON; TALWALKAR, 2016). The Successive Halving

optimization method performs an evaluation over all defined configurations, discards half

of the configurations with the worse performances, and repeats it until only one configu-

ration remains. It works with resource allocation to converge to an optimal configuration,

where it exponentially gives more resources to the most promising configurations. Based

on the number n of defined configurations and a finite budget B (training time, train-

ing iterations, dataset subsampling, feature subsampling), it allocates B/n resources on

average across all the configurations.

Feurer and Hutter (2019) states that automated hyperparameter optimization has

several important use cases, such as reducing human effort for applying machine learning;

improving the performance of the machine learning algorithms by relating them; and

improving reproducibility and fairness of scientific studies. Hyperband and grid search

algorithms are used in this work because of these aforementioned benefits.

With all the methods described that are the building blocks for our methodology,

now in the final two sections, we have to describe how do we evaluate the performance of

these machine learning algorithms.
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2.6 Evaluation Metrics

The evaluation of the models generated in this work was done using traditional

evaluation metrics that analyze the predictions made by the model in comparison to the

ground truth. First, the predictions are assigned into one of four categories:

True Positive (TP) – patients who died in-hospital and were correctly predicted by the

model;

True Negative (TN) – patients who did not die in-hospital and were correctly predicted

by the model;

False Positive (FP) – patients who survived but who were predicted by the model as

dying during the stay;

False Negative (FN) – patients who died during the stay but who were predicted by the

model as surviving.

With these four categories, it is possible to measure the performance of a machine

learning model using the following metrics:

TP Rate is the ratio TP/(TP + FN) that measures the classifier’s ability to classify

positive instances correctly.

TN Rate is the ratio TN/(TN + FP ) that measures the classifier’s ability to classify

negative instances correctly.

Precision is the ratio TP/(TP + FP ) and it measures the percentage of instances that

were correctly assigned to the class out of all instances that the model classified as be-

longing to that class. Here we use the weighted version, i.e., we compute the metric for

both the positive and the negative class and then calculate a weighted average in which

the weight is given by the number of instances in each class.

Recall is similar to the TP Rate; however, here we denote Recall as the weighted average

for both classes (and not just the positive class).

F1-Score is the harmonic mean between Precision and Recall and is defined as:

F1 =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
(2.2)

Since we have an unbalanced dataset, we report on both the weighted (W F-score) and the

unweighted (W F-score) macro F1. In the latter, we assign equal weights to the classes.

AUROC or Area Under Receiver Operating Curve is a measurement of how the model

is capable of distinguishing between the classes. The ROC curve shows the trade-off
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between True Positive Rate and False Positive Rate across different thresholds.

2.7 Shapley Values

Shapley values were introduced by Shapley (2016) and is derived by the game

theory. In this theory, every player can evaluate and choose their actions to the end of

increasing their payout. For the field of machine learning, we could see players as the

values of our input features, and the payout as the prediction for this instance. This way,

we can distribute the contribution of each feature to the instance model’s prediction.

Let us define F as the set of all features and S ⊆ F as a subset of features in F .

To compute the importance of a feature to the prediction of a model, we need a model

fS∪{i}, trained with a feature i, and a second model fS trained with i withheld. Then, the

predictions of both models are compared, this comparison is done for all subsets S ⊆ F

{i}. This can be expressed as ((LUNDBERG; LEE, 2017; SUNDARARAJAN; NAJMI,

2019)):

φi =
∑

S⊆F{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)] (2.3)

The work from Lundberg and Lee (2017) introduces the SHAP (SHapley Additive

exPlanation) values, as a method of computing Shapley values using additive features

attribution. The solution of an additive features attribution problem is desirable to have

three properties:

• Local accuracy: the explanation model should match the output of the original

model f for the input x;

• Missingness: missing features in the original input cannot have impact;

• Consistency: input’s attribution should not decrease if the input’s contribution in-

creases or stays the same.

In their work, Lundberg and Lee (2017) describes different approaches to compute

SHAP values, two are model-agnostic, and the other four are model-specific. In our

work, we are interested in the Linear SHAP method, used to compute the SHAP values

for our best model. The intuition of Linear SHAP is that, if we assume input feature

independence, SHAP values can be approximated directly from the model’s weights. So,
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given a linear model f(x) =
∑

j=1Mwjxj + b and φ0(f, x) = b, we have

φi = wj(xj − E[xj]) (2.4)

With this equation is computed the SHAP values for each feature. These SHAP

values will be used to evaluate the contribution of the features used in our ensemble mod-

els trained.
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3 RELATED WORK

In the realm of medical sciences, an early prediction of the patient’s outcome is

beneficial to improve the quality of treatment and reduce costs. As a result, there is

a significant body of research aimed at early detection which relies on medical scores

and/or machine learning.

3.1 Mortality Prediction using SOFA

The Sequential Organ Failure Assessment (SOFA) score was first introduced by

Vincent et al. (1996) with the aim of providing means for the identification of multiple

organ failure. SOFA uses a numeric scale from 0 to 4, in which higher values mean a

more significant organ dysfunction. Although it was not designed for mortality prediction,

some studies established a correlation between the SOFA score (measured at the patient’s

admission) and mortality (JENTZER et al., 2018; MBONGO et al., 2009; HO et al.,

2007).

A systematic review by Minne, Abu-Hanna and Jonge (2008) surveyed 18 studies

that evaluated the performance of SOFA for mortality prediction of ICU patients. The

AUROC scores reported in these studies range from 0.61 to 0.87 considering the SOFA

score measured at the patient’s admission.

Subsequently, Mbongo et al. (2009) analyzed 864 patients, with a mortality rate

of 8.2%, and found that SOFA achieved an AUROC of 0.846 (95% CI [0.796,0.897])

when discriminating survivor vs. non-survivor. More recently, Jentzer et al. (2018) anal-

ysed 9,961 ICU patients with 893 (9%) of those having died in-hospital. The SOFA

score calculated on the first day predicted mortality with an AUROC of 0.828 (95% CI

[0.813,0.843]). In our work, we used the SOFA score to perform a baseline test.

3.2 Mortality prediction using machine learning

Harutyunyan et al. (2019) presented a benchmark of several tasks in the medical

field using the MIMIC-III database (JOHNSON et al., 2016). In their work, the authors

presented several LSTM architectures and trained them in several tasks in the medical do-

main. The tasks include predicting in-hospital mortality, decompensation, length-of-stay,
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and phenotyping. The goal of the authors was to use multitask learning to extract certain

useful information from the input sequence that single-task models could not leverage.

Instead, they created a single model that was trained using all of the four mentioned tasks.

They compared models trained on individual tasks only and used medical scores such as

SAPS with their proposed architecture. Their results achieved a higher AUROC in all the

tasks in comparison with the metrics and the individual models. For in-hospital mortality

prediction, the AUROC was 0.87 (95% CI [0.852,0.887]). They used the same features

across their tests, these are: capillary refill rate, diastolic blood pressure, fraction inspired

oxygen, Glasgow coma scale eye opening, Glasgow coma scale motor response, Glasgow

coma scale total, Glasgow coma scale verbal response, glucose, heart rate, height, mean

blood pressure, oxygen saturation, respiratory rate, systolic blood pressure, temperature,

weight, pH.

Pirracchio et al. (2015) compared medical scores for severity assessment with ma-

chine learning algorithms. The authors trained a Super Learner algorithm on data from

24,508 patients from the MIMIC-II database (SAEED et al., 2011) for in-hospital mor-

tality using the first 24h of data following the ICU admission. The Super Learner is an

ensemble algorithm that selects the optimal set of regression algorithms that minimizes a

chosen error, using a set of weighted candidate algorithms. Using the AUROC to score

the performance of the methods, the results obtained by the Super Learner were 0.88

(95% CI [0.87, 0.89]) outperforming APACHE-II, SAPS-II, and SOFA scores.

Sushil et al. (2018) used clinical notes from the MIMIC-III dataset to train clas-

sification algorithms into four classification tasks: mortality prediction (in-hospital, post

30 days discharge mortality, post-one-year discharge mortality), primary diagnostic cate-

gory prediction, primary procedural category, and gender prediction. In their work, they

made use of two representation techniques for the texts, Stacked denoising autoencoder

(SDAE) and Doc2Vec. They used the concatenation of all notes associated with each

patient as the source data. After preprocessing, for the SDAE method, they transformed

each patient’s text into two separate representations – bag-of-words (BoW) and bag-of-

medical-concepts, which used Concept Unique Identifiers (CUIs). For Doc2Vec, they

used the textual representation of each patient. They achieved the highest AUROC of

0.9457 by feeding only the BoW representation into a feedfoward neural network for the

in-hospital mortality task.

Silva et al. (2021) also used clinical notes from MIMIC-III database to determine

their predictive value as prognostic markers for 1-year all-cause mortality among people
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with diabetes. They used only the first admission from patients with type 1 and type

2 diabetes, who have stayed over one day in an ICU. Using the words in the texts as

features and the Least Absolute Shrinkage and Selection Operator as the classification

algorithm, they achieved an AUROC of 0.922 (95% CI [0.920, 0,924]) on a dataset with

5,942 patients.

Davoodi and Moradi (2018) proposed a fuzzy deep model for ICU mortality pre-

diction. Their features are demographics and vital signs and the model was evaluated on

11K patients from MIMIC-III. The best performing configuration achieved an AUROC

of 0.739 (95% CI [0.738, 0,740]).

Specifically on the topic of ICU mortality prediction using different types of data,

there are two closely related works by Weissman et al. (2018) and Hashir and Sawhney

(2020). Both of them also used the MIMIC-III database. Weissman et al. (2018) uses

structured data from lab results and bedside measurements and unstructured data from the

medical notes. They employed two approaches to add unstructured data to the machine

learning model. The first one was to extract 21 keywords from all the medical notes, and

the second one was to use the 500 most predictive phrases. The phrases were constructed

by creating a document-term matrix of one, two, and three-word n-grams, using penalized

logistic regression as the classifier. They found that adding unstructured data yields an

improvement of 0.06 to 0.09 points in AUROC, reaching 0.89 (95% CI [0.88, 0.90]).

Hashir and Sawhney (2020) uses hierarchical CTS-RNN to model multiple notes. Their

experiments with around 35K ICU stays achieved the best results when a joint model of

notes and structured clinical time series was applied. This configuration scored 0.902

(95%CI [0.898, 0.906]) in terms of AUROC using data from the first 48h of the patient’s

stay.

Table 3.1 summarizes the characteristics of the existing work on mortality pre-

diction, such as the technique used, dataset size, and AUROC result. All works in this

table use the MIMIC-III dataset, either as the only dataset or to evaluate the methodology.

These works were obtained by a search of the terms "MIMIC" and "In-hospital mortality".

The main differences between this work and these closely related approaches are

as follows. While the work by Weissman et al. (2018) does use medical notes, they

ignore the time-changing information. In our work, we maintain the time-varying aspect

of data, and make use of Deep Learning and representation learning techniques that can

handle time-series as input. By maintaining the time aspect of the data, we make use of

the information present in the patient progression during the ICU stay, which could be



27

Table 3.1: In-hospital mortality predictions articles.
Article Data Origin Features Data

Window
Data Size

(Mortality Rate %) Technique AUROC

Pirracchio et al. (2015)
Vital signs and

lab results
12 struct. features 24h 24,508 (12.2%) Super learner 0.88 (95% CI [0.87, 0.89])

Song et al. (2018)
Vital signs and

lab results - 24h 21,139 (13.23%)
Transformer with

attention mechanism 0.857

Harutyunyan et al. (2019)
Vital Signs and

lab Results
16 struct. features 48h 21,139 (13.23%)

Multitask channel-wise
LSTM 0.870 (95% CI [0.852, 0.887])

Sushil et al. (2018) Clinical notes - - 27,731 (9%)
Feedfoward Neural

Network 0.945

Lehman et al. (2012) Clinical notes - 24h 14,739 (14.6%)
Hierarchical Dirichlet

Processes 0.82

Marafino et al. (2018)
Vital signs,

lab results, and
clinical notes

21 struct. features
+ notes TF-IDF 24h 101,196 (10.4%) Logistic Regression 0.922 (95% CI [0.916, 0.924])

Weissman et al. (2018)
Vital signs,

lab results, and
clinical notes

14 struct. features 48h 25,947 (21.2%)
Penalized Logistic

Regression 0.89 (95% CI [0.88, 0.90])

Redfern et al. (2018)
Vital signs and

lab results 14 struct. features 24h 97,933 (4.8%)
LDTEWS and
NEWS scores 0.916 (95% CI [0.912, 0.921])

Hashir and Sawhney (2020)
Vital signs,

lab results, and
clinical notes

12 struct. features
+ medical notes 48h 36,561 ( 6.5%) CNN-RNN 0.902 (95%CI [0.898, 0.906])

Davoodi and Moradi (2018)
Vital signs and

lab results 27 struct. features 48h 10,972 (9.31%)
Deep Rule-Based

Fuzzy System 0.739

favorable to our final predictor. In relation to the work by Hashir and Sawhney (2020),

there are two main differences: (i) besides considering time-series data, we also consider

static structured data, and (ii) while their multimodal approach uses joint training, ours

relies on an ensemble of independent base-models.

Both Chapter 2 and Chapter 3 lays the foundation of our problem and methodol-

ogy for in-hospital mortality. Before talking about the methodology, we should discuss

how we extracted data from MIMIC-III that will be used to train and evaluate this method-

ology.
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4 MATERIALS AND METHODS

In this chapter, we present the methodology used to select our ICU stays and ex-

tract the data used, as well as the design of the experiments done to evaluate the machine

learning algorithms. First in Section 4.1, we explain how the set of ICU stays and how the

data for each of the data types were extracted. Each data type required a specific process.

Next, in Section 4.2, we describe how we dealt with each data type to feed them as an

input to the machine learning algorithms. Then, we detail the approaches used to deal

with unbalanced data. The chapter concludes with a description of the methodology used

to evaluate the final ensemble algorithm.

4.1 Data preparation

Our data comes from the MIMIC-III database (JOHNSON et al., 2016). MIMIC-

III has data for patients admitted at the Israel Deaconess Medical Center ICU, in Boston.

Each patient has one or more hospital admissions in the database, and each hospital ad-

mission could have one or more ICU stays. During a stay, medical staff do several visits

to the patient to perform observations, take measurements, or administer treatments. Each

of these is called an event, i.e., a categorical or numerical variable value measured at a

specific point in time. Several events could be created for a patient in a single visit.

The MIMIC-III database has a total 61,532 ICU admissions. It is composed of

25 tables, ranging from administrative (patient demographic, medical staff information,

ICD9 codes) to laboratory and bedside data amounting to around 13,000 different vari-

ables related to a patient. It is relevant to say that not all 13,000 variables are distinct.

Because of the nature of the database, with data being collected from two different med-

ical systems fed by several staff members, some events with different names are dupli-

cates. For example, "H Rate" and "heart rate" refer to the same variable and yet would

be recorded as different events. We applied a simple rule-based approach to identify and

merge these cases. A deeper analysis of this issue was done by Barcelos, Mendoza and

Moreira (2020).

Our data selection for the task of in-hospital mortality followed the same proce-

dure adopted by Harutyunyan et al. (2019). The extraction of the ICU stays for our dataset

followed the process illustrated in Figure 4.1. The following stays were discarded:
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Figure 4.1: Methodology used to select ICU stays from MIMIC-III.

Source: Author

• Multiple stays. Hospital admissions that had multiple ICU stays or had any transfers

between ICU units or wards during the period of hospitalization. The reason is that

the multiple ICU stays would be correlated as they belong to the same individual

and a survival outcome may be followed by a death adding noise to the model.

These admissions correspond to 11,346 records.

• Patients under 18 years old. All patients younger than 18 years old were also re-

moved due to differences between adult and pediatric physiology. This step re-

moved 7,910 ICU stays.

• Short stays. ICU stays of less than 48 hours are not relevant to this study as our

goal is to use the first 48 hours to predict the outcome. This filter removed 20,974

ICU stays.

• Stays without medical notes. All ICU stays that had no recorded medical notes in

the first 48h of stay were also removed. The reason for this is that it would create

an inconsistency in the comparison between the models generated with structured

temporal data and textual temporal data since missing values would affect the final

ensemble model.
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Our final dataset has a total of 20,083 stays. From those, 17,359 patients were

discharged alive from the ICU (negative instances) and 2,724 patients died (positive in-

stances), making that an unbalanced dataset.

Figure 4.2: Extraction of the events associated with the ICU stays.

Source: Author

From the selected ICU stays, we extract the events that are relevant to our classi-

fication problem. Each event associated with an ICU stay in MIMIC-III is divided into

different tables. The data of interest for us comes from the following tables:

• PATIENTS, which stores metadata for each patients;
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• ICUSTAYS, which stores metadata for each ICU stay;

• NOTEEVENTS, which stores the medical notes associated with an ICU stay;

• LABEVENTS, which stores data related to laboratory exams; and

• CHARTEVENTS, which stores all measurements of physiologic functions.

The extraction process is depicted in Figure 4.2. In (1), we extract events from

each of the aforementioned tables, and separate data for each ICU stay into separate files,

named by the id of the ICU stay. After that, each data type goes through specific pre-

processing tasks. Then, in (2), data from LABEVENTS and CHARTEVENTS for the same

stay were merged. With that, we obtain the numerical and categorical data for each ICU

stay and then feed it to the next step (3) that consists in transforming these data into a time-

series representation, i.e., the features. In (4), the values of each feature are aggregated

by hour, starting at the time of admission in the ICU, until the 48th hour. For each hour

bucket, we get the mean value for each feature. To handle missing data, we fill each value

with the last measurement made for that feature, and in case that no measurement was

taken, we fill it with the mean value extracted from the training set for each loop of the k-

Fold. For the medical notes, the process (5) is almost identical. The notes are aggregated

by hour, concatenating each textual event. In (6), we extract the weight and height from

the admission note, and age and gender from from the PATIENTS table.

In Table 4.1, we have the characteristics and variables values for our dataset, along

with the values separated by outcome. Looking at the table, we see that the patients who

died during their stay were older, and had a length of stay higher than the patients who

were discharged alive from the ICU. Most of the patients are male (55.65%), and most

of them were admitted and cared for at MICU (40.17%). Features from Systolic Blood

Pressure to Pulse Pressure are time-series features, and we see a difference in values

between patients’ outcomes. The Blood Oxygen Saturation has 0’s for their value because

that was a value that is highly common.

With the foundation of the methods used and with a broader view about our data,

in the next chapter, we move on to the description of our methodology.

4.2 Predicting In-hospital Mortality

In-hospital mortality prediction is the task of assessing whether a patient is likely

to die during the course of the hospital stay. Such a prediction should be made preferably
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Table 4.1: Baseline characteristics and outcome measures. Continuous variables are pre-
sented as median [InterQuartile Range]; Binary or categorical variables as Count (%).

Overall population Dead at Hospital Discharge Alive at Hospital Discharge
Age 66 [53-78] 73 [60-82] 65 [52-77]
ICU LOS (days) 4 [3-6] 5 [3-10] 4 [3-6]
Height (cm) 170 [162.5-177.8] 167.64 [160-177.8] 170.18 [162.56-177.8]
Weight (kg) 77.4 [65-92] 74 [61-88] 78 [65.77-93]
Sex:

Male 11136 (55.45%) 1472 (54.04%) 9664 (55.67%)
Female 8947 (44.55%) 1252 (45.96%) 7695 (44.33%)

Site1 :
CCU 2723 (13.56%) 347 (12.74%) 2376 (13.69%)
CSRU 3562 (17.74%) 148 (5.43%) 3414 (19.67%)
MICU 8068 (40.17%) 1476 (54.19%) 6592 (37.97%)
SICU 3400 (16.93%) 473 (17.36%) 2927 (16.86%)
TSICU 2330 (11.60%) 280 (10.28%) 2050 (11.81%)

Systolic Blood Pressure (mmHg) 117 [103.5-134] 114 [100-132] 117.5 [104-134]
Diastolic Blood Pressure (mmHg) 58.25 [50-68] 57 [49-66] 59 [51-68]
Mean Blood Pressure (mmHg) 75.83 [66.5-86.67] 74 [65-85] 76 [67-87]
Central Venous Pressure (mmHg) 0 [0-6] 0 [0-8] 0 [0-5]
Temperature (oC) 37 [36.5-37.56] 36.89 [36.28-37.56] 37.1 [36.56-37.56]
Respiratory Rate (insp/min) 18.34 [15-22] 20 [16-24] 18 [15-22]
PaO2 (mmHg) 119 [89-170] 109 [82-154] 121 [90-173]
FiO2 (mmHg) 0.6 [0.45-40] 0.6 [0.5-40] 0.6 [0.4-40]
Bilirubin (mg/dL) 0.9 [0.5-2.5] 1.4 [0.6-5.5] 0.8 [0.4-2.1]
Platelets (109/L) 177 [119-247] 150 [85-235] 180 [124-248]
Creatinine (mg/dL) 1 [0.7-1.7] 1.3 [0.8-2.4] 1 [0.7-1.5]
Lactate (mmol/L) 1.9 [1.3-3.2] 2.6 [1.6-4.7] 1.8 [1.2-2.9]
BUN (mg/dL) 21 [13-36] 31 [19-51] 19.5 [13-33]
Arterial pH 7.38 [7.33-7.43] 7.37 [7.3-7.43] 7.38 [7.34-7.43]
WBC (109/L) 11 [7.9-15] 12.1 [7.9-17.2] 10.9 [7.9-14.7]
PaCO2 (mmHg) 36 [31-42] 33 [28-39.5] 36 [31.5-42]
Hemoglobin (g/dl) 10.3 [9.2-11.5] 10.2 [9.1-11.5] 10.3 [9.3-11.6]
Hematocrit (%) 30 [27-33.4] 30.2 [27.1-33.9] 30 [27-33.3]
Potassium (mmol/L) 4.1 [3.7-4.5] 4.1 [3.7-4.6] 4.1 [3.7-4.5]
Glucose (mg/dL) 129 [106-161] 134.75 [107-172] 128 [106-160]
Heart Rate (bpm) 85 [74-98] 88 [75-103] 85 [74-97]
Blood Oxygen Saturation 0 [0-0] 0 [0-0] 0 [0-0]
GCS 14 [9-15] 8 [6-13] 14 [10-15]
Pulse Pressure (mmHg) 58 [47-71] 57 [45-71] 58 [47-71]

1 Coronary care unit (CCU); Cardiac surgery recovery unit (CSRU); Medical intensive care unit (MICU); Surgical intensive
care unit (SICU); Trauma/surgical intensive care unit (TSICU).

using the data from the first hours of the patient’s admission into the hospital or ICU.

Predicting a possible outcome of a patient in the early stages of admission is important to

give the health professionals time to take an adequate course of action to treat the patient

properly.

Our approach considers the use of different types of data that are generated by

a patient’s ICU stay and use them to produce a machine learning model to predict the

patient’s chance of in-hospital mortality. We model this as a binary classification problem

in which the positive class is the death outcome. We rely solely on data generated during

the first 48 hours of the ICU stay. Data about a patient can be divided into three types: (i)

structured data (e.g., weight, height, and sex); (ii) structured time-series data (e.g., results

of exams and vital signs); and (iii) textual time-series (medical notes taken through the
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ICU stay).

We approached model creation using a stacking algorithm to create an ensemble

using multiple models trained on the different types of data. In addition, solutions for

tackling the class imbalance problem were employed both in the base- and meta-models.

On top of our methodology, we computed the hourly SOFA score to perform a baseline

test, and used the SOFA values for the first 48h for each patient. We extracted time-series

features and trained a machine learning model using the extracted features.

4.2.1 Data Types

In the following subsections, we further explain the approach employed for each

type of data. Each data type necessitates specific methods to tackle its use as data to

train a machine learning algorithm. In each subsection, we explain how do we extract

the features, how do we use this feature to train the algorithms, and present some general

statistics for each feature.

4.2.1.1 Structured Data (SD)

Our structured data consists of the information that does not change over time or

data for which changes are not substantial. The purpose of the structured data is to give

contextualized information about the patient. The features in this category are weight and

height at admission time, age, and sex. The weight and height variables were extracted

from the admission notes for each ICU stay, and the other values were extracted from the

admission data recorded for each stay.

4.2.1.2 Structured Time-Series (STS)

Structured time-series (STS) data are generated by measuring patients’ vital signs

and recording results of their laboratory exams performed during the patient’s ICU stay.

It consists of numerical and categorical data measured at a specific point in time by a

healthcare provider.

Our STS features are Glasgow Comma Score, Systolic Blood Pressure, Diastolic

Blood Pressure, Mean Blood Pressure, Central Venous Pressure, Heart Rate, Respira-

tory Rate, Blood Oxygen Saturation, Body Temperature, Hemoglobin, Hematocrit, White

Blood Cell count (WBC), Platelets, Arterial pH, PaO2, FiO2, PaCO2, Lactate, Creatinine,
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BUN, Bilirubin, Potassium, and Glucose. These features were selected by a physician and

reflect the health state in which the patients’ physiological systems are at the moment.

Data from an ICU poses a diversity of challenges since their generation is a product

of measurements made by a team composed of different professionals and the nature of

the patient’s disease and condition. As a consequence, measurements are spread through

time at a variable rate, sometimes having hours between measurements and sometimes

minutes or days.

One of the problems created by the irregular measurement of features is the miss-

ingness of values. For each feature, we have a total of 960,219 events; from those, 126,987

events come from patients who died at the ICU, and 833,232 from patients who survived.

The rate of missing events can be seen in Figure 4.3, and we see that most of our features

have a missing rate higher than 60%. With the exception of Central Venous Pressure,

Blood Oxygen Saturation, and Glucose, the missing rate for the patients in the negative

class is higher than in the positive class. During our experiments, the missing values were

replaced by the mean values, obtained by adding all events for each feature.

Figure 4.3: Missing events rate for the STS data, total, and for each patient outcome.

Source: Author

To understand if these variables have differences among patients with different

outcomes, we extracted the mean value for each hour across all patients grouped by class

and created a chart that can be seen in Figure 4.4. The chart shows the values by class for

the four variables with the lowest missing rates. This difference between classes is more
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prominent for Heart Rate and Systolic Blood Pressure, as seen in Figures 4.4a and 4.4c,

respectively. For the Respiratory Rate in Figure 4.4b and Diastolic Blood Pressure in

Figure 4.4d the values are closer, however a difference still exists. Another important

piece of information that we find in these charts is the presence of outliers, represented by

the abrupt changes in values in Figures 4.4b and 4.4d. The approach used to reduce the

impact of these outliers is the standardization of the values by applying the z-score, that

is, subtract each instance by the population mean, and divide the result by the population

standard deviation, using only training set to extract both mean and standard deviation.

To deal with the STS data, the method needs to be able to process and extract

meaningful patterns through time and to deal with large volumes of high-dimensional

data. For the purpose of classifying STS data, we train LSTM and TCN models as these

architectures have good performances dealing with temporal data, without the need for

dimensionality reduction or feature extraction. The training process for the model follows

a process of hyperparameter tuning on a subset separated from the training data, and a k-

fold cross-validation as training process.

Hyperparameters play an important part in the performance, but the decision of

which hyperparameters to use it is not a simple task. To this end, we used the Hyperband

algorithm to search and test a subspace of hyperparameters. The best configuration was

used. This process was done onto a separated subset with only 15% of the population

size, extracted randomly from the dataset, to avoid using a piece of information both in

tuning and in training.

To better analyze the performance of both models, we performed a k-fold cross-

validation, analyzing each model performance through several metrics. At the end of the

k-fold, we have each model performance measured by predicting the testing fold and their

respective class probabilities to be used as input for the ensemble model.

4.2.1.3 Textual Time-Series (TTS)

As measuring vitals and performing exams on patients generates structured tem-

poral data, a visit of a healthcare provider or a health exam can also produce textual data

describing the information that is important to understand the patient’s history and con-

dition. Along with the challenges of dealing with textual data, these texts are distributed

through time, which adds another layer of complexity.

Here, the problem of missing data is yet more prevalent than on STS data. Some

patients do not have any textual event in the first 48h of stay. To be precise, the total



36

number of events in the extracted dataset is 143,970, with positive instances having 21,552

and negative instances 122,418. When we compare the total of 960,219 events for the STS

data type, we get almost eight times more events for STS data type than the TTS data type.

To be able to use textual data as input to a machine learning model, we adopted

the sentence embedding method using Doc2Vec (discussed in Section 2.1) to transform

the raw text into a real-valued vector. By transforming each text into different real-valued

vectors, we preserve the temporal aspect of the data differently from the approach adopted

by Weissman et al. (2018) discussed in Chapter 3.

To train the Doc2Vec model, we used all text available in the MIMIC-III database,

and not just the texts in our sample. Having large volumes of text is important to yield

good quality representations. Since Doc2Vec is an unsupervised method, it does not take

the class we wish to predict into consideration. Thus, it does not introduce bias over our

classification model.

After generating the representation model and transforming the texts of our dataset

to the new representation. It is important to notice that both models trained on STS and

TTS data used the same distribution of patients and folds.

4.2.2 Balancing the Training Data

As discussed in Section 4.1, our dataset is very unbalanced, with the positive in-

stances corresponding to 13.5% of the total. This distribution of data between classes can

be harmful to the final performance of the classification model since it could be biased

towards the negative class, which is more prevalent. To deal with this issue, we apply two

techniques to balance the training data. The evaluation is carried on the test data, which

maintains the unbalanced distribution. This is important because the classification models

should be able to handle unbalanced data since this is how most real datasets are formed.

The first approach is to use cost-sensitive classification to penalize the misclassifi-

cation of the minority class (false negatives) by a higher degree than the misclassification

of the majority class (false positives). Using this method, we do not have to deal with the

unbalancing by altering the distribution in the dataset.

The second approach is to random undersample the training data, and conse-

quently the optimization data, by a rate of 1:1, while maintaining the same distribution

between classes in the test set. This undersampling is done in the K-Fold, by previously

selecting a balanced set for each fold, and using this balanced version as the fold is used
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for training the machine learning algorithm.

4.2.3 Ensemble Model Creation

As discussed in Section 2.4, classifier ensembles tend to have better predictive

performance since they combine more sources of evidence from the data. Our meta-

models combine the predictions of the base-models that were trained using data from a

single data type. There are four base-models (i) LSTM trained on the STS data, (ii) TCN

trained on the STS data, (iii) LSTM trained on TTS, and (iv) TCN trained on TTS. The

classification results yielded by the models trained solely using SD were unsatisfactory

(i.e., around 0.6 in terms of AUROC). Thus, the class predictions made using SD were

not directly fed into the ensemble model. Instead, we concatenated the raw SD into the

predictions generated with STS and TTS data to compose the meta-model training and

test data. The rationale was to test whether, despite not yielding good predictions on its

own, SD could still be useful when combined with other patient data that could potentially

provide more context.

Figure 4.5 illustrates the pipeline used to train our classification models. In (1),

the dataset is split into hyperparameter tuning, and model evaluation with each subset ac-

counting for 15/85% of the instances, respectively. The split was done using stratification

to maintain the same class distribution in each partition. Hyperparameter tuning (2) takes

the hyperparameter tuning dataset and runs the hyperparameter search algorithm for each

of the base-models. Then, with these selected hyperparameters, in (3), the classification

algorithms are executed on the model evaluation dataset using k-fold cross-validation.

In (4), the predictions (i.e., class probabilities) from the trained base-models are used as

training data for the meta-model. To avoid data leakage into our meta-model, the training

folds is split into p-1 training folds to generate the probabilities for the remaining fold.

This process is repeated p times, and at the final of this process we have the predictions for

all instances for the first training folds, generating our meta-model training data without

the leakage problem. In (5) we generate the test data for the meta-models by training the

base-algorithms on the training folds and generating the predictions on the test fold. In

(6) we evaluate the base-models, and (7) we first generate the hyperparameters by using

the grid-search tuning algorithm and evaluate the performance metrics on the test-folds.

The ensemble creation finishes the description of our methodology. Next, we start

to evaluate the performance of the algorithms in our data. We will describe the materials
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used for our experiments, and the result obtained for each algorithm, for each data type,

up until the ensembles.
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Figure 4.4: Mean values for each hour of a patient’s stay for the four variables with the
fewest missing values. The differences in values between the positive and the negative
class are visible in (a) Heart Rate and (c) Systolic Blood Pressure. Different patterns can
also be seen in (d) Diastolic Blood Pressure. However, for (b) Respiratory Rate, the values
for both classes are quite close.

(a) Heart Rate

(b) Respiratory Rate

(c) Systolic Blood Pressure

(d) Diastolic Blood Pressure

Source: Author
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Figure 4.5: The model training and evaluation pipeline.

Source: Author
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5 EXPERIMENTS

In this section, we describe the experimental evaluation that we performed aiming

at answering the following questions:

1. What type of data provides the best classification performance?

2. Does balancing the classes improve model performance for this task and which data

balancing method is best?

3. Does combining different types of data in a heterogeneous ensemble model improve

the results of in-hospital mortality prediction?

We start by detailing the tools and resources used, and then the results are pre-

sented and discussed.

5.1 Libraries and Frameworks

Our experiments were done in Python. The library Keras was used for training

the models, and Pandas was used to manipulate and process the dataset. Scikit Learn was

used to compute the evaluation metrics and to generate the meta-models.

Hyperparameter tuning was done using the Hyperband method in the Keras Tuner

library. The Keras Tuner searches over random samples of defined values, e.g., we define

the hidden units of a layer as a hyperparameter, set a min and a max value for it, and

it returns a value in the defined range. The library keeps track of the combinations of

hyperparameters used. The min and max values for the hyperparameters were the number

of hidden layers between one and four and the units for each layer between eight and 256.

For TCN specifically, we varied the kernel size between three and five, the number of

dilations between one and four. The use of a dropout was conditioned randomly for each

layer and varied between 0.2 and 0.5. We set the loss function to Binary Crossentropy,

the hidden layer activation as LeakyRelu, the training optimizer as the Adam optimization

algorithm, and the network activation as the Sigmoid function.

The training process follows the Stacking algorithm. The base-models were trained

using 5-fold cross-validation and, for each loop, the network output for each instance in

each testing fold was concatenated with its respective structured features and fed to the

meta-model. After the training data generation process, we create the data that will be

used to evaluate the meta-models by training each classification algorithm used in the
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Table 5.1: Results for the base-models using 5-fold cross-validation. Best scores in bold.
Algorithm Balancing Data Type Precision Recall W F-Score U F-Score TP Rate AUROC

1 NB Unbalanced SD 0.747 0.864 0.801 0.464 0 0.604
2 SVM Unbalanced SD 0.809 0.217 0.185 0.211 0.946 0.614
3 LR Unbalanced SD 0.747 0.864 0.802 0.464 0 0.614
4 LSTM Unbalanced STS 0.854 0.872 0.859 0.672 0.338 0.830
5 TCN Unbalanced STS 0.856 0.876 0.858 0.661 0.294 0.831
6 LSTM Unbalanced TTS 0.817 0.844 0.827 0.598 0.231 0.740
7 TCN Unbalanced TTS 0.763 0.864 0.802 0.465 0.002 0.659

8 SVM Cost-Sensitive SD 0.819 0.413 0.383 0.307 0.689 0.613
9 LR Cost-Sensitive SD 0.803 0.554 0.623 0.476 0.622 0.615
10 LSTM Cost-Sensitive STS 0.862 0.740 0.777 0.633 0.738 0.813
11 TCN Cost-Sensitive STS 0.863 0.743 0.779 0.637 0.744 0.816
12 LSTM Cost-Sensitive TTS 0.834 0.713 0.753 0.591 0.615 0.744
13 TCN Cost-Sensitive TTS 0.825 0.593 0.649 0.512 0.693 0.689

14 NB Undersampling SD 0.802 0.533 0.604 0.464 0.638 0.608
15 SVM Undersampling SD 0.807 0.314 0.296 0.276 0.830 0.582
16 LR Undersampling SD 0.801 0.551 0.620 0.473 0.616 0.612
17 LSTM Undersampling STS 0.854 0.730 0.769 0.621 0.710 0.790
18 TCN Undersampling STS 0.869 0.728 0.769 0.631 0.794 0.824
19 LSTM Undersampling TTS 0.831 0.639 0.693 0.542 0.670 0.712
20 TCN Undersampling TTS 0.840 0.578 0.639 0.508 0.757 0.714

base-models in the entire training dataset, generating their predictions and concatenating

with the structured features for the ensemble evaluation dataset. For the meta-models,

we tested three machine learning algorithms, Support Vector Machine with linear ker-

nel, Logistic Regression, Naive Bayes. In the next section, we discuss our results for 20

base-models, 20 meta-models, and a baseline run.

5.2 Results

In this section, we discuss the results obtained by the models trained, and analyze

the impact of the strategies to solve data imbalance, the predictive power of each data type

in the meta-models.

5.2.1 Base-models

We start our analysis by looking into the results of the base-models. Table 5.1

shows the results for the evaluation metrics of interest calculated using 5-fold cross-

validation for all base-models. The best score for each metric is in bold.

Analyzing the models trained on unbalanced data (lines 1-7 in Table 5.1), we can

see that all algorithms, with the exception of SVM (line 2), had difficulties in classifying

positive instances (i.e., low TP rate). At the same time, using the unbalanced data yields
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the highest Recall (line 5) and W F-Score (line 4), indicating an underfitting of the posi-

tive class for both. This behavior is expected since the majority population has a bigger

influence on the overall error and is thus benefited (CHOULDECHOVA; ROTH, 2018).

However, this process was the opposite for SVM, as it had almost a perfect TP Rate, with

their low Recall, indicating the underfitting on the negative class. The STS data type had

a better performance with LSTM (line 4), achieving the best score for W F-Score and U

F-Score. This algorithm had a better TP Rate than the TCN (line 5) and a difference of

0.001 in AUROC. Regarding the TTS data type, the best-trained model was using LSTM

(line 6), since the TCN (line 7) had only a 0.2% in TP Rate. Comparing LSTM trained

on STS (line 4) and on TTS (line 6) data, we notice that the STS model overperformed

the TTS model in all metrics, actually the STS using unbalanced data generated the best

models.

The models generated using cost-sensitive classification are shown in lines 8 to

13. The NB algorithm could not be used in conjunction with cost-sensitive classification

in the libraries used in this work. Here we already see the impact of addressing the data

imbalance problem. With the cost-sensitive method, the models trained on SD data type

had a better performance compared with models generated with unbalanced data. For LR

(line 9), the model was capable of identifying positive instances. Here we see an example

of how evaluating AUROC alone is limited – the differences between SVM in line 2 and

line 8, and LR in line 3 and line 9 are very small in terms of AUROC, but looking at

the other metrics, we see a much wider variation. For the STS and TTS data types, we

verify that those models display an increase in TP Rate and decrease in Recall, indicating

that the ability to classify positive instances comes at the cost of misclassifying the neg-

ative instance, this is further confirmed analyzing the performance of the undersampling

method. On the STS data type, we see that LSTM (line 10) and TCN (line 11) had similar

performances, with TCN being slightly better.

For the TTS data type, we see a higher TP Rate in favor of TCN (line 13), and

a higher Recall for LSTM (line 12). The high TP Rate and low Recall for TCN (line

13) indicate that this model is producing more False Positives, while LSTM (line 12) is

returning more False Negatives, given its high Recall and low TP Rate. For the algorithms

trained with the cost-sensitive method, we found that the STS generated better models

than the TTS and SD data types.

The last method for addressing class imbalance was undersampling (lines 14-20)

the majority class (negative class). It is important to clarify that at every k-fold loop,
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we used the set of training folds with balanced classes while maintaining the unbalanced

distribution in the test fold. Here the SD data (lines 14-16) generated models that were

able to learn to distinguish positive instances and classify them correctly. Judging by the

higher TP Rate in comparison to Recall, we see that all methods sacrificed the ability to

classify negative instances to be able to classify positive instances. Among the three algo-

rithms, the highest TP Rate was obtained by SVM (line 15). SVM is the best performing

model for classifying positive instances, however, its low Recall is a result of a high num-

ber of false positives. For the STS data type, we see a higher performance for TCN (line

18) in comparison to LSTM (line 17). For the TTS data type, we see a similar pattern

than the one in the cost-sensitive models (line 12 and 13). However, their similar values

in AUROC show a similar performance between these models, each favoring a different

class.

By analyzing all results obtained using each data type, STS clearly had a better

classification performance compared to the other data types. STS achieved higher scores

in all class balancing methods. Thus, we conclude that the answer to our first proposed

question is that STS is the data type with the best predictive power. We could assign

this best performance because of the difference between the number of events between

STS and TTS. Another fact that can be inferred from the results is that solving the class

imbalance problem is very important. This finding is in line with existing works on this

topic Monteiro et al. (2020), Hashir and Sawhney (2020), Steinmeyer and Wiese (2020),

Caicedo-Torres and Gutierrez (2019). In our experiments, both undersampling and cost-

sensitive classification brought noticeable benefits.

Finally, our results show that no algorithm, data type, or strategy for balancing

the classes were able to achieve good results in all evaluation metrics. In this sense,

the choice of the best model depends on the goals of the task at hand. For in-hospital

mortality prediction, the base-model which achieved a good balance across all metrics

was TCN trained on STS data using undersampling classification (line 18).

5.2.2 Meta-Models

In this section, we analyze the results obtained for the meta-models. Because of

the superior results achieved by the approaches for mitigating the class imbalance prob-

lem (cost-sensitive classification and undersampling), we generated ensembles for these

two approaches and not for the unbalanced data. Here we performed training using a
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Table 5.2: Results for the heterogeneous ensemble models. Best scores in bold.
Algorithm Balancing Data Types Precision Recall W F-Score U F-Score TP Rate AUROC

1 SVM Cost-Sensitive STS + TTS 0.870 0.761 0.794 0.655 0.764 0.847
2 LR Cost-Sensitive STS + TTS 0.871 0.755 0.790 0.652 0.775 0.848
3 SVM Cost-Sensitive SD + STS 0.875 0.622 0.678 0.558 0.889 0.842
4 LR Cost-Sensitive SD + STS 0.869 0.751 0.786 0.647 0.771 0.841
5 SVM Cost-Sensitive SD + TTS 0.861 0.504 0.554 0.462 0.892 0.776
6 LR Cost-Sensitive SD + TTS 0.851 0.703 0.748 0.599 0.717 0.776
7 SVM Cost-Sensitive SD + STS + TTS 0.878 0.661 0.712 0.588 0.885 0.855
8 LR Cost-Sensitive SD + STS + TTS 0.874 0.760 0.793 0.657 0.786 0.855

9 NB Undersampling STS + TTS 0.872 0.752 0.788 0.651 0.788 0.843
10 SVM Undersampling STS + TTS 0.874 0.739 0.778 0.643 0.813 0.844
11 LR Undersampling STS + TTS 0.873 0.755 0.790 0.654 0.788 0.844
12 NB Undersampling SD + STS 0.871 0.759 0.793 0.656 0.775 0.840
13 SVM Undersampling SD + STS 0.875 0.666 0.718 0.591 0.869 0.841
14 LR Undersampling SD + STS 0.872 0.761 0.795 0.657 0.775 0.841
15 NB Undersampling SD + TTS 0.849 0.627 0.685 0.548 0.771 0.756
16 SVM Undersampling SD + TTS 0.864 0.466 0.522 0.436 0.911 0.759
17 LR Undersampling SD + TTS 0.850 0.650 0.704 0.564 0.759 0.761
18 NB Undersampling SD + STS + TTS 0.873 0.754 0.790 0.653 0.790 0.850
19 SVM Undersampling SD + STS + TTS 0.881 0.573 0.615 0.518 0.927 0.852
20 LR Undersampling SD + STS + TTS 0.876 0.761 0.795 0.661 0.800 0.853

combination of the outputs to analyze which one had the best performance. As described

in Section 4.2.3, for STS and TTS data, the predictions from both LSTM and TCN models

were used. For the SD data, the raw data was used. The results are in Table 5.2.

The first information that we can extract from the meta-models results is that every

combination produced a higher AUROC when compared with the models trained in indi-

vidual data. Analyzing the results by combination, we that for both balancing methods,

combining SD + STS + TTS produced the best results. For the SVM algorithm using

cost-sensitive, the SD + STS + TTS (line 7) had a worse TP Rate than the models with

SD + STS (line 3) and SD + TTS (line 5). However, its performance in all other metrics

was higher, resulting in a better performance on the negative instances. For the LR, SD

+ STS + TTS (line 8) had the best performance in all metrics compared with the other

combinations with the same algorithm. With the undersampling method, the SVM model

decayed its Recall after adding the SD data in the combinations. So, the best result ob-

tained by this specific model was using STS + TTS. For the NB algorithm, the SD + STS

+ TTS had the best values in almost all metrics, with the exception of W F-Score and U

F-Score. For LR, the SD + STS + TTS had the best results in all metrics and is the best

model generated in all our tests, achieving the highest Recall, W F-Score, U F-Score, and

high performance on TP Rate, AUROC, and Precision.

Comparing the results of the different classification algorithms on the ensembles,

we see that SVM is still associated with the highest TP Rate (line 19) and the lowest

Recall, U F-Score, and W F-Score (lines 3, 5, 7, 13, 16 and 19). Both LR and NB had

similar results when comparing both using the same combination of data, with the LR
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having the higher values. By analyzing the performances, we conclude that if the end goal

is to prioritize the identification of the most positive instances, the SVM algorithm is the

best, but at cost of performance negative instances, which produce a high volume of false

positives. However, if the goal is to maintain a good balance between the performance on

positive and negative instances, the LR algorithm is the best option.

Looking at the strategies for dealing with the class imbalance problem, both strate-

gies have similar results for Precision and AUROC, when analyzing the SD + STS + TTS.

Undersampling yielded better results in all metrics, except for AUROC, but the difference

was as low as 0.003.

Figure 5.1 shows the results for each data type used on their own and in heteroge-

neous combinations. The scores of each evaluation metric were averaged for all experi-

mental runs in which the data type (or combination) was applied (the runs with unbalanced

data were discarded from this evaluation to allow a fir comparison). The combination of

all three types of data yielded the best Precision, TP Rate, and AUROC. In terms of the

other metrics, the scores obtained with this heterogeneous ensemble were always close to

the top performers. The metric that most benefited from the combination of data types

was TP rate. This can be clearly seen in Figure 5.1 as the four bars that correspond to

the ensembles are much higher than the three bars that correspond to the types used in

isolation. Overall, we can see that using a single data type tended to produce the poorest

results, with SD on its own being clearly the worst performer. Even STS, which had good

results in most metrics, yielded a low TP Rate compared to the ensembles. Despite the

poor performance of SD, the use of this type of data brought improvements in terms of

Precision, TP Rate, and AUROC when used in combination with STS and TTS.

With the findings from our analyzes, we can answer the remaining research ques-

tions. Regarding our second question – Does balancing the classes improve model per-

formance for this task and which data balancing method is best? Our results showed that

addressing the class imbalance problem played a big role in model performance, notice-

ably improving the quality metrics. While cost-sensitive classification had the best results

in the base-models, in the meta-models the performances obtained on the undersampled

dataset were similar. Thus, we conclude that both strategies for balancing the classes

could be used in the heterogeneous ensembles.

The answer to our third question – Does combining different types of data in a

heterogeneous ensemble model improve the results of in-hospital mortality prediction? is

yes. Our results showed that the models combining the three types of data achieved the
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Figure 5.1: Evaluation Metrics for the different types of data and heterogeneous combi-
nations

Source: Author

best Precision, U F-Score, and AUROC while maintaining a good performance across the

other metrics.

5.2.3 Comparison with a Baseline

In this section, we compare the performance of our heterogeneous ensemble for

in-hospital mortality prediction against a baseline classifier that relies on the SOFA score.

The intuition for using SOFA as a baseline is to obtain a classification model based on

a popular score that is widely applied in predicting the clinical outcomes of critically ill

patients. To be comparable with our experimental runs, in which only the first 48 hours

of data are considered, our baseline used the hourly SOFA scores for this time window.

Also, this run was done using the undersampling method. With the extracted hourly SOFA

scores for each patient, we extracted time-series features for SOFA values for each ICU

stay using the Python package tsfresh (CHRIST et al., 2018; CHRIST; KEMPA-LIEHR;

FEINDT, 2016). Then, the same package was used to select only the relevant features for

our classification problem. Next, we ran a Logistic Regression classifier on these features.

The heterogeneous ensemble used in the comparisons in this section combines all

three data types using a LR classifier. Its details are in line 20 in Table 5.2. Figure 5.2

shows the ROC curves for our heterogeneous ensemble and for the SOFA baseline. We

can see that the baseline had a lower performance achieving an AUROC of 0.755 (95%

CI [0.744 0.767]) and was outperformed by our ensemble model which had an AUROC
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Figure 5.2: ROC curves for a heterogeneous ensemble that combines all data three types
and for the baseline SOFA model.

Source: Author

of 0.853 (95% CI [0.846, 0.861]).

As reported in Section 3.1, previous works using SOFA for mortality prediction

have identified AUROC results ranging from 0.61 to 0.87. Our scores are within that

range. In relation to the work by Jentzer et al. (2018), the differences that may explain the

lower scores found here are our larger number of instances (we use twice as many patients)

and the fact that the patients in the aforementioned work were from a single cardiac ICU

and here the patients come from five different ICUs and from a wider spectrum.

Finally, in Table 5.3, we inspect the confusion matrices generated for the SOFA

model and for the same heterogeneous ensemble (LR-SD+STS+TTS). The heterogeneous

ensemble was able to correctly classify an additional 368 patients into the positive class

(an increase of 25%) and it was also better than SOFA at identifying the negative class –

with 169 additional patients being correctly classified.

5.3 Model Analysis

In this section, we further analyze the results obtained by the LR model trained

with undersampling, our best generated model. We start with the analysis of the features
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Table 5.3: Confusion matrices for the baseline SOFA run and the heterogeneous ensemble

SOFA

Predicted
1 0

Actual
1 1484 831
0 3786 10970

Heterogeneous Ensemble

Predicted
1 0

Actual
1 1852 463
0 3617 11139

used by the model. For this analysis, we use the SHAP values to understand the impact

of each feature in the model output. The values are in Figure 5.3. These values were

generated by the predictions for each instance in the dataset, respecting the k-fold process.

The chart is made with dots, where each dot represents an instance. The width of the line

represents the distribution of SHAP value in respect of feature value, and the colors reflect

the values of the features.

Figure 5.3: Shap values for the predictions generated by the algorithm.

Source: Author

Looking at the figure, we see that the predictions generated by models trained

with the STS data have the highest impact on the ensemble output. The TCN predictions

were the highest placed feature and the best base-model with undersampled data. The

third feature with the highest impact is age. With this fact, we measure the predictive

performance of our model in relation to this feature, by aggregating patients into age

groups [18, 20), [20, 25), [25, 30), [30, 35), [35, 40), [40, 45), [45, 50), [50, 55), [55, 60),

[60, 65), [65, 70), [70, 75), 80+. The group of 80+ is because, for the sake of anonymity,

MIMIC-III groups all ages above 80. The results can be seen in Figure 5.4. We can see
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that, as age increases, there is a decrease in Precision, Recall, W F-Score, and AUROC.

However, this is inverse for the TP Rate. For our model, a higher age is indicative of a

higher in-hospital mortality risk. This is compatible with the chart in Figure 5.3 as higher

values in age had a positive SHAP value.

Figure 5.4: Model performance for age feature.

Source: Author

Another feature that we looked into is the patient’s sex ("IS_MALE"). This feature

did not have any impact on the model output. Figure 5.5 shows model performance for

both male and female patients. It shows very similar performances between these groups.

Figure 5.5: Model performance by sex.

Source: Author

Other variables that we could analyze to understand the performance of our model

are: length of stay (LOS), and care unit. LOS is a variable that should affect the perfor-
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mance of our model, as patients who died had a higher LOS (see Table 4.1). Since we

only use data from the first 48h of stay, a longer duration of a stay could implicate in a

variation of the patient’s condition. Figure 5.6 shows the metrics for LOS ranges. These

ranges were the same used in the analysis made by (HARUTYUNYAN et al., 2019). In

the chart, we see a similar behavior that appeared for our age analysis, in which every

metric, with the exception of TP Rate, presented a decrease when the LOS increases.

Here, the TP Rate oscillated for every range. However, it presented the lowest value with

14+ days stay.

Figure 5.6: Model performance by length of stay, in days.

Source: Author

Our data comes from patients that were admitted to different care units, namely the

Coronary care unit (CCU), Cardiac surgery recovery unit (CSRU), Medical intensive care

unit (MICU), Surgical intensive care unit (SICU), and Trauma/surgical intensive care unit

(TSICU). Figure 5.7 shows the performance of the models for each of those units. We can

see that mortality prediction on the CSRU had the lowest TP Rate over all other care units.

This could be explained by the fact that only 5.43% of diseased patients were from this

unit. CCU and MICU had similar performance results for TP Rate. Even though MICU

corresponds to 40.17% of the total patient population, and 54.19% of patients who died

during their stay, it had a similar performance as the CCU. That could be a consequence

of the more diverse set of patient conditions found in a general-purpose unit like MICU,

which could make the prediction task harder. While the CCU has a smaller population

than MICU, it had a similar performance, which could be explained by the specificity of

patient condition in this care unit.
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Figure 5.7: Model performance by care unit – Coronary care unit (CCU), Cardiac surgery
recovery unit (CSRU), Medical intensive care unit (MICU); Surgical intensivecare unit
(SICU), and Trauma/surgical intensive care unit (TSICU).

Source: Author

To sum up these analyzes, we saw that the base-model predictions had a high

influence on the meta-model prediction. Age was the third most relevant feature and had

a positive impact in identifying in-hospital mortality as the patients are older. Patient’s sex

had no impact on the prediction, and we can see both in Figure 5.3 with the SHAP values

and Figure 5.4 that show the model performance by sex. For the care unit, the size of

the population in the unit does not yield better performance, as we can see by comparing

MICU vs CCU.

With these analyzes, we wanted to get a deeper understanding of our model pre-

dictions and identify the influences of the variables in our proposed task. By identifying

these factors, we can fine-tune our model in the future to improve its performance, or

simply identify its weaknesses when using it in a real-world scenario.
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6 CONCLUSION

This work investigated the use of ensemble models built using heterogeneous types

of data (structured, text, and time series) for the task of in-hospital mortality prediction.

We carried out a series of experiments using data from MIMIC-III. Our dataset had 20K

hospital stays and was very unbalanced – the positive class corresponds to 13.5% of the

instances.

We designed a methodology to process each type of data. First, base-models were

created for each type on its own, and then the different data types were combined in

meta-models using ensemble learning with the stacking strategy. We experimented with

different classification algorithms and methods for dealing with the class imbalance prob-

lem. Our results were evaluated using six classification quality metrics.

Looking at the results of the base-models, we concluded that, among the individ-

ual data types, structured time series provided the best classification models. When the

heterogeneous meta-models were considered, we verified that the use of different types

of data brings important gains in classification quality. We also found that addressing the

class imbalance problem by either using cost-sensitive classification or undersampling the

majority class noticeably improves the classification models.

The results obtained in this work can be used as a base for future studies using

heterogeneous data types. Here we applied an ensemble methodology, in which models

could be trained with specific types of data without influencing each other, and achieved

an increase in performance with the meta-model. This leaves an open question as to

whether it is possible to obtain performance improvements by combining the heteroge-

neous data types in some other manner, e.g., in a joint training method such as the one

by Hashir and Sawhney (2020). With an end-to-end approach for constructing our mod-

els, we could remove the workload that the Stacking algorithm incurs by training a large

number of models to create the data for the meta-model. Another consequence of this

approach is that data types would share information between them during model training,

which could be beneficial to enhance the utility of each data type. Another future work

could involve testing whether applying other methodologies to handle data types (or even

a combination of methodologies) could mitigate the inability of some models in handling

handle specific cases. Finally, our base-models relied on deep learning algorithms that

typically achieve state-of-the-art results in many tasks but they behave as black-boxes. In

future work, we plan to explore explainable models following, for example, the approach
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by Caicedo-Torres and Gutierrez (2019).

An article describing the results of our research is currently under review in the

Journal of Biomedical Informatics.
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APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS: PREDIÇÃO DE

MORTES DE INTERNADOS EM UTIS COM MODELOS ENSEMBLE

HETEROGÊNEOS

Para um paciente, um maior tempo de internação em uma UTI resulta em uma

maior probabilidade de sequelas e até maior mortalidade, assim como pode pressionar o

sistema de saúde já que faz o uso de recursos limitados por maior tempo. Uma forma

de mitigar esses problemas é a detecção antecipada da deterioração do estado de saúde

do paciente durante sua internação. Isso pode ser feito através de sistemas automatizados

de monitoramento e modelos de aprendizado de máquina. Com o crescimento da adoção

de prontuários eletrônicos e da acessibilidade da comunidade a esses dados, a área de

aprendizado de máquina está fazendo o uso desses dados para a solução de uma vasta

gama de problemas. Esses dados são ricos e complexos, e contam com uma diversidade

grande de tipos de dados, como dados estruturados (e.g., dados demográficos), texto livre

(e.g., exames e prontuário médico) e dados temporais (e.g., medições de sinais vitais).

Neste trabalho, buscamos explorar essa diversidade de tipos de dados para a tarefa

de predição de mortalidade durante a estadia no hospital. Mais especificamente, usando

apenas a janela de dados das primeiras 48h de estadía do paciente. Contruímos modelos

de classificação para essa tarefa para cada tipo de dado existente na nossa base de dados,

aplicando algoritmos do estado-da-arte da área de deep learning. Usando o resultado da

classificação obtido por esses modelos, modelos ensemble foram treinados. Com isso, é

possível avaliar se esses modelos conseguem tentar melhorar qualidade da classificação.

A base de dados analisada foi extraída da base de dados aberta MIMIC-III, que

possui um total de 61.532 pacientes. Após o processo de extração, o conjunto de pacientes

final ficou com um total de 20.083 pacientes. Desses, 17.359 pacientes saíram da UTI

com vida (instâncias negativas) e 2.724 pacientes morreram (instâncias positivas). Essa

distribuíção de pacientes entre classes forma uma base de dados desbalanceada.

Para os tipos de dados, temos: dados estruturados (DE), dados estruturados tem-

porais (DET), dados textuais temporais (DTT). Para o DE, usamos o sexo biológico, a

altura, o peso e a idade. Para os DET, usamos 24 variáveis diferentes. Tanto os DET

como os DTT foram agregados por hora de medição, no qual o textos foram concatena-

dos e dos dados estruturados foi extraída a média. Para o pré-processamento dos DET, os

valores faltantes foram preenchidos usando a média global dos dados usados para treina-

mento e para o DTT, foi usado um modelo Doc2Vec, treinado em cima de todas a notas
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médicas dos pacientes do MIMIC-III, de forma a poder transformar os textos para um

representação vetorial, mantendo-se a dimensão temporal dos dados.

O algoritmo de ensemble usado pela nossa metodologia é o Stacking. Nesse algo-

ritmo, os modelos são treinados em camadas, de modo que na primeira camada temos os

modelos chamados de base-models, e segunda camada é chamada de meta-models. Nesse

algoritmo, são treinados os base-models para que sejam usados para gerar predições em

cima das instâncias na base de dados e gerar os dados para os meta-models. Os algoritmos

de aprendizado de máquina usados para os base-models foram Long Short Term Memory

(LSTM) e Temporal Convolutional Network (TCN) para ambos os tipos de dados tem-

porais. Para os meta-models, foram usados os algoritmos de aprendizado Naive Bayes,

Regressão Logística e Support Vector Machines (SVM), esses algoritmos também foram

avaliados usando apenas os dados estruturados, porém não obtiveram bons resultados e

não foram utilizados como base-models.

Um dos problemas do treinamento utilizando Stacking é evitar o vazamento de

informações dos dados, ou seja, evitar que durante a criação dos dados de treinamento

dos meta-models, na hora de gerar a predição de uma instância, ela não tenha sido usada

durante o treinamento do base-models. Para isso foi utilizado dois k-fold aninhados, de

forma que o primeiro é utilizado para avaliação dos modelos, e o segundo é feito apenas

em cima dos folds de treinamento do primeiro. No segundo k-fold, o fold de teste é

transformado pelo modelo treinado com os folds de treinamento, formando ao final os

dados para treinamento dos meta-models.

Nosso modelos foram avaliados por seis métricas, e o resultado final dos testes

mostrou uma melhora de performance final em três pontos percentuais usando o ensem-

ble, obtendo o melhor resultado de AUROC de 0,853 (95% IC [0,846; 0,861]).
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APPENDIX B — BASE MODELS STANDARD DEVIATION

In Table B.1 we have the standard deviation values obtained for each metric eval-

uated in our tests, for each base-model generated and balancing method tested.

Table B.1: Standard deviation from the results for the base-models using 5-fold cross-
validation.

Algorithm Balancing Data Type Precision Recall W F-Score U F-Score TP Rate AUROC

1 NB Unbalanced SD 0 0 0 0 0 0.006
2 SVM Unbalanced SD 0.025 0.07 0.127 0.077 0.045 0.006
3 LR Unbalanced SD 0 0 0 0 0 0.006
4 LSTM Unbalanced STS 0.004 0.004 0.003 0.006 0.015 0.009
5 TCN Unbalanced STS 0.004 0.004 0.003 0.014 0.041 0.008
6 LSTM Unbalanced TTS 0.009 0.007 0.007 0.021 0.048 0.011
7 TCN Unbalanced TTS 0.035 0 0.001 0.004 0.004 0.096

8 SVM Cost-Sensitive SD 0.05 0.314 0.336 0.169 0.431 0.009
9 LR Cost-Sensitive SD 0.003 0.003 0.002 0.003 0.014 0.005
10 LSTM Cost-Sensitive STS 0.007 0.035 0.026 0.023 0.066 0.01
11 TCN Cost-Sensitive STS 0.006 0.038 0.028 0.023 0.07 0.028
12 LSTM Cost-Sensitive TTS 0.008 0.03 0.022 0.016 0.066 0.018
13 TCN Cost-Sensitive TTS 0.021 0.127 0.119 0.088 0.075 0.078

14 NB Undersampling SD 0.007 0.006 0.006 0.004 0.036 0.01
15 SVM Undersampling SD 0.052 0.22 0.286 0.169 0.237 0.072
16 LR Undersampling SD 0.006 0.009 0.008 0.008 0.026 0.011
17 LSTM Undersampling STS 0.011 0.032 0.024 0.023 0.072 0.03
18 TCN Undersampling STS 0.003 0.025 0.02 0.02 0.018 0.01
19 LSTM Undersampling TTS 0.012 0.053 0.046 0.026 0.101 0.012
20 TCN Undersampling TTS 0.013 0.077 0.064 0.038 0.135 0.017
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APPENDIX C — META MODELS STANDARD DEVIATION

In Table C.1 we have the standard deviation values obtained for each metric eval-

uated in our tests, for each meta-model generated and balancing method tested.

Table C.1: Standard deviation from the results for the meta-models using 5-fold cross-
validation.

Algorithm Balancing Data Type Precision Recall W F-Score U F-Score TP Rate AUROC

1 SVM Cost-Sensitive STS + TTS 0.005 0.032 0.024 0.02 0.058 0.006
2 LR Cost-Sensitive STS + TTS 0.005 0.029 0.021 0.017 0.058 0.006
3 SVM Cost-Sensitive SD + STS 0.003 0.078 0.071 0.056 0.047 0.003
4 LR Cost-Sensitive SD + STS 0.005 0.025 0.019 0.016 0.05 0.003
5 SVM Cost-Sensitive SD + TTS 0.007 0.148 0.173 0.12 0.05 0.021
6 LR Cost-Sensitive SD + TTS 0.009 0.029 0.022 0.016 0.068 0.022
7 SVM Cost-Sensitive SD + STS + TTS 0.002 0.076 0.069 0.056 0.046 0.006
8 LR Cost-Sensitive SD + STS + TTS 0.006 0.027 0.02 0.017 0.06 0.006

9 NB Undersampling STS + TTS 0.001 0.008 0.006 0.006 0.01 0.005
10 SVM Undersampling STS + TTS 0.003 0.005 0.004 0.004 0.015 0.007
11 LR Undersampling STS + TTS 0.002 0.011 0.008 0.007 0.02 0.006
12 NB Undersampling SD + STS 0.004 0.02 0.015 0.015 0.028 0.006
13 SVM Undersampling SD + STS 0.003 0.058 0.051 0.042 0.036 0.008
14 LR Undersampling SD + STS 0.004 0.019 0.015 0.015 0.027 0.008
15 NB Undersampling SD + TTS 0.009 0.036 0.031 0.02 0.067 0.011
16 SVM Undersampling SD + TTS 0.008 0.09 0.109 0.073 0.048 0.012
17 LR Undersampling SD + TTS 0.01 0.038 0.031 0.02 0.077 0.012
18 NB Undersampling SD + STS + TTS 0.002 0.007 0.006 0.006 0.012 0.005
19 SVM Undersampling SD + STS + TTS 0.003 0.18 0.208 0.149 0.041 0.008
20 LR Undersampling SD + STS + TTS 0.003 0.013 0.01 0.009 0.023 0.007
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