UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

Filipe Jung dos Santos

EXTERIOR DIRICHLET PROBLEMS FOR DEGENERATE p-LAPLACIAN TYPE EQUATIONS AND THE FRACTIONAL p-LAPLACIAN EQUATION

Filipe Jung dos Santos

Abstract

Tese apresentada ao Programa de PósGraduação em Matemática, Área de Equações Diferenciais Parciais, da Universidade Federal do Rio Grande do Sul (UFRGS, RS), como requisito parcial para obtenção do título de Doutor em Matemática.

Adviser: Prof. Dr. Leonardo Prange Bonorino

Porto Alegre, RS
2021

Filipe Jung dos Santos

EXTERIOR DIRICHLET PROBLEMS FOR DEGENERATE p-LAPLACIAN TYPE EQUATIONS AND THE FRACTIONAL p-LAPLACIAN EQUATION

Tese apresentada ao Programa de PósGraduação em Matemática, Área de Equações Diferenciais Parciais, da Universidade Federal do Rio Grande do Sul (UFRGS, RS), como requisito parcial para obtenção do título de Doutor em Matemática.

Aprovado em DATA:

Leonardo Prange Bonorino, Dr. (UFRGS)

Diego Marcon Farias, Dr. (UFRGS)

Paulo Ricardo de Ávila Zingano, Dr. (UFRGS)

Celene Buriol, Dr. (UFSM)

Damião Júnio Gonçalves Araújo, Dr. (UFPB)

Porto Alegre, RS

ABSTRACT

 EXTERIOR DIRICHLET PROBLEMS FOR DEGENERATE

 EXTERIOR DIRICHLET PROBLEMS FOR DEGENERATE p-LAPLACIAN TYPE EQUATIONS AND THE FRACTIONAL p-LAPLACIAN TYPE EQUATIONS AND THE FRACTIONAL p-LAPLACIAN EQUATION

 p-LAPLACIAN EQUATION}

Author: Filipe Jung dos Santos
Adviser: Leonardo Prange Bonorino

We prove the existence of a unique bounded weak solution in $C\left(\overline{\mathbb{R}^{n} \backslash K}\right) \cap W_{l o c}^{1, p}\left(\mathbb{R}^{n} \backslash K\right)$ of the exterior Dirichlet problem

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=f & \text { in } \mathbb{R}^{n} \backslash K \\
u=\phi & \text { in } \partial K
\end{array}\right.
$$

for any nonempty compact $K \subset \mathbb{R}^{n}$ and boundary values $\phi \in C(\partial K)$, provided that $p>n$ and $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfy for positive constants C_{f}, ϵ,

$$
\begin{equation*}
|f(x)| \leq C_{f}|x|^{-p-\epsilon}, \text { for all }|x| \text { sufficiently large. } \tag{0.1}
\end{equation*}
$$

We also show that, for any $p>1$, any semibounded solution u of the equation on an exterior domain converge at infinity, with a possible infinite limit in case u is unbounded, and we prove the convergence rate has a positive order in case u is bounded and $p>n$.

On the fractional p-Laplacian operator

$$
(-\Delta)_{p}^{s} u(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{n+s p}} d y
$$

we prove that the radially symmetric functions $|x|^{\frac{s p-n}{p-1}}$, if $s p \neq n$, and $\log |x|$, if $s p=n$, are solutions of the fractional p-Laplacian equation $(-\Delta)_{p}^{s} u=0$ in $\mathbb{R}^{n} \backslash\{0\}$; we then extend the existence result above, obtaining in case $s p>n$ the existence and uniqueness of continuous up to the boundary solutions to the exterior Dirichlet problem for the homogeneous p-Laplacian equation.

Keywords: Exterior Problem; p-Laplacian Equations; Fractional p-Laplacian.

RESUMO

PROBLEMAS DE DIRICHLET EXTERIORES PARA EQUAÇÕES DEGENERADAS E DO TIPO p-LAPLACIANO FRACIONÁRIO

Autor: Filipe Jung dos Santos
Orientador: Leonardo Prange Bonorino

Provamos a existência de uma única solução fraca limitada em $C\left(\overline{\mathbb{R}^{n} \backslash K}\right) \cap W_{l o c}^{1, p}\left(\mathbb{R}^{n} \backslash K\right)$ para o problema de Dirichlet exterior

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=f & \text { in } \mathbb{R}^{n} \backslash K \\
u=\phi & \text { in } \partial K
\end{array}\right.
$$

para quaisquer compacto não-vazio $K \subset \mathbb{R}^{n}$ e dado de fronteira $\phi \in C(\partial K)$, desde que $p>n$ e $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfaça para constantes positivas C_{f}, ϵ,

$$
\begin{equation*}
|f(x)| \leq C_{f}|x|^{-p-\epsilon}, \text { para todo }|x| \text { suficientemente grande. } \tag{0.2}
\end{equation*}
$$

Mostramos também que, para $p>1$, as soluções limitadas acima ou abaixo u da equação em um domínio exterior convergem no infinito, possivelmente para um limite infinito caso u seja ilimitada, e provamos no caso $p>n$ que a solução tem uma ordem de convergência positiva no infinito. Para o operador p-Laplaciano fracionário

$$
(-\Delta)_{p}^{s} u(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{n+s p}} d y
$$

provamos que as funções $|x|^{\frac{s p-n}{p-1}}$, se $s p \neq n$, e $\log |x|$, se $s p=n$, são soluções da equação homogênea $(-\Delta)_{p}^{s} u=0$ em $\mathbb{R}^{n} \backslash\{0\}$; estendemos o resultado de existência acima, obtendo para the $s p>n$ existêcia e unicidade de uma solução contínua até a fronteira do problema de Dirichlet exterior para a equação homogênea $(-\Delta)_{p} u=0$.

Palavras-Chave: Problema Exterior; Equações do Tipo p-Laplaciano; p-Laplaciano Fracioário.

Contents

INTRODUCTION 6
1 PRELIMINARIES 12
1.1 On the degenerate operator 12
1.2 On fractional Sobolev Spaces and the Fractional p-Laplacian 17
2 AUXILIARY RESULTS 21
3 PROOF OF THEOREMS 1, 2 27
3.1 Proof of Theorem 1 27
3.2 Proof of Theorem 2 31
4 RADIALLY SYMMETRIC SOLUTIONS OF THE FRACTIONAL p - LAPLACIAN EQUATION 41
5 EXISTENCE THEOREM FOR THE EXTERIOR DIRICHLET PROBLEM FOR THE FRACTIONAL p-LAPLACIAN 47

INTRODUCTION

In the first part of this work, we consider p-laplacian type equations driven by the degenerate divergence form operator

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right) \tag{0.3}
\end{equation*}
$$

defined in the weak sense for functions $u \in W^{1, p}$; the function A is assumed to satisfy
i) $A \in C^{1}([0,+\infty]), A(0)>0$;
ii) $\delta \leq A \leq L$, for positive constants δ, L;
iii) $\delta^{\prime} t^{p-2} \leq \frac{d}{d t}\left\{t^{p-1} A(t)\right\} \leq L^{\prime} t^{p-2}$, for positive constants $\delta^{\prime}, L^{\prime}$, for all $t \geq 0$.

This generalizes, for example, the p-laplacian operator

$$
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

In case $p=2, A(t)=\frac{1}{\sqrt{1+t^{2}}}$ and it is known a priori that $|\nabla u| \leq C$, our operator also cover the mean-curvature operator

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

Our first result states the existence and uniqueness of continuous bounded weak solutions for Dirichlet problems on exterior domains in case $p>n$.

Theorem 1. Let $K \subset \mathbb{R}^{n}$ be a nonempty compact set and $\phi \in C(\partial K)$. Assume that the function A satisfies (0.4) and $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ be such that, for positive constants C_{f} and ϵ,

$$
\begin{equation*}
|f(x)| \leq C_{f}|x|^{-(p+\epsilon)} \tag{0.5}
\end{equation*}
$$

for all $|x|$ sufficiently large. Then, if $p>n$, there exists a unique bounded solution $u \in C\left(\overline{\mathbb{R}^{n} \backslash K}\right) \cap W_{l o c}^{1, p}\left(\mathbb{R}^{n} \backslash K\right)$ of

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=f & \text { in } \mathbb{R}^{n} \backslash K \tag{0.6}\\
u=\phi & \text { in } \partial K
\end{array}\right.
$$

In addition, if ϕ is α-Hölder continuous in K, with $\alpha=\frac{p-n}{p-1}$, then $u \in C^{\alpha}\left(\mathbb{R}^{n}\right)$.

We point out in the full generality allowed for the boundary ∂K, for which no regularity has to be assumed. Moreover, as it is straightforward from the proof, the result also holds on bounded domains, being necessary only to assume $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$.

Many efforts were directed to elliptic problems on unbounded domains. For instance, Meyers and Serrin [39] have made important clarifications on the existence and uniqueness of bounded solutions of linear exterior problems, and some of their results were extended to several classes of semilinear equations by Kusano [28], Ogata [44], Noussair [42, 43], Furusho et. al. [13, 14], Phuong Các [50], among others.

In existence results for boundary value problems, some smoothness of the domain is in general required to ensure that solutions continuously attain the prescribed boundary data. In the classical potential theory, the domains for which there is a solution of the Laplace equation continuously attaining any prescribed continuous boundary data were called regular domains and its boundary points characterized by a criterion introduced by Wiener. Later a Wiener-type condition involving Serrin's concept of p-capacity was introduced by Maz'ya and its sufficiency for regularity of boundary points was proven for a large class of quasilinear equations in divergence form. The necessity of Maz'ya's condition was then established by Kilpeläinen and Malý. In our result on regularity up to the boundary, we make crucial use of barrier arguments following the ideas of Serrin [61], where the main concern was the Liouville property for entire solutions. An extension of the Liouville property for exterior solutions was obtained by Bonorino et. al. [3], which motivated our first theorem, as it generalizes a result in [3] which states that, in case $p>n$, for a finite set $P \subset \mathbb{R}^{n}$, there exists a bounded p-harmonic function in $\mathbb{R}^{n} \backslash P$ attaining any prescribed data in P.

Another question arising on exterior problems is the behavior of solutions at infinity. This relates to the theory of singularities of solutions and a variety of results on removable singularities and the asymptotic behavior for several equations were obtained by Serrin [57, 58, 59, 60], Serrin and Weinberger [62], and others. [58] presents a detailed description of the asymptotic behavior at the origin and at infinity of positive solutions of the homogeneous quasilinear equation $\operatorname{div} \mathcal{A}(x, D u)=0$. It was shown that positive solutions u always converge at infinity to a possibly infinite limit ℓ and, moreover, either u satisfies a maximum principle at infinity or else ℓ is infinite if $p \geq n$ and finite if $p<n$, and it holds

$$
\begin{aligned}
u & \approx r^{(p-n) /(p-1)}, & & p>n \\
u & \approx \log r, & & p=n \\
u-\ell & \approx \pm r^{(p-n) /(p-1)}, & & p<n
\end{aligned}
$$

where $u \approx v$ means that there exists positive constants c, C such that $c v \leq u \leq C v$. The function u is said to satisfy the maximum principle property at infinity if in any
neighbourhood of infinity either u is constant or else takes on values both greater and less than $\ell<+\infty$. More recently, it was proved in [15] the existence of limit near singularities for nonnegative solutions of

$$
-\Delta_{p} u+V|u|^{p-2} u=0
$$

assuming that near the singularity the potential V belong to a Kato class and

$$
V \in L_{l o c}^{\infty},|x|^{p}|V(x)| \leq C, \text { for some constant } C .
$$

In our second result, for $p>1$, we obtain the existence of the limit at infinity for nonnegative solutions $u \in C^{1}\left(\mathbb{R}^{n} \backslash K\right)$ of

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=f \text { in } \mathbb{R}^{n} \backslash K \tag{0.7}
\end{equation*}
$$

assuming the weaker hypotheses on A
i) $A \in C([0,+\infty]), A(0)>0$;
ii) $\delta \leq A \leq L$, for positive constants δ, L;
iii) $t \mapsto t^{p-1} A(t)$ is strictly increasing for $t>0$.

We prove that condition (0.5) is sufficient for the existence of the limit at infinity and, in case $p>n$, we show that, if $\ell=\lim _{|x| \rightarrow \infty} u(x)<\infty$, the convergence has a positive order β.

On the matter of the behavior of the solutions at infinity, we can assume with no loss of generality $K=\overline{B_{1}}$, as well as the validity of condition (0.5) for all $|x| \geq 1$. Our second theorem then reads as follows.

Theorem 2. For $p>1$, let $u \in C^{1}\left(\mathbb{R}^{n} \backslash \overline{B_{1}}\right)$ be a weak solution of (0.7) in $\mathbb{R}^{n} \backslash \overline{B_{1}}$, with A satisfying (0.8), and assume f satisfy (0.5). Then
i) If u is bounded from above or below, then $\ell=\lim _{|x| \rightarrow \infty} u(x)$ exists, being possibly $\pm \infty$;
ii) In case $p>n$ and ℓ is finite, there exist positive constants C, β such that

$$
\begin{equation*}
|\ell-u(x)|<C|x|^{-\beta} \text { for all }|x| \text { large. } \tag{0.9}
\end{equation*}
$$

More generally, any weak solution u satisfying either

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{|u(x)|}{|x|^{\alpha}}=0 \quad \text { for } \alpha=\frac{p-n}{p-1} \quad \text { in case } \quad p>n \tag{0.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{|u(x)|}{\log |x|}=0 \quad \text { in case } \quad p=n \tag{0.11}
\end{equation*}
$$

is bounded and, therefore by i, converges to a finite limit at infinity, with (0.9) in case $p>n$.

The result of Theorem 2 is the best possible with respect to the exponent $-p-\epsilon<$ $-p$ in (0.5). In fact, the theorem is false in case $\epsilon=0$, for which a counterexample is given by the function

$$
u(x)=\cos (\log \log |x|), \text { for }|x|>1
$$

Clearly u does not attain a limit at infinity but satisfies

$$
\Delta_{p} u(x)=f
$$

with f such that

$$
|f(x)| \leq C(\log |x|)^{-p+1}|x|^{-p}, \text { for all }|x| \geq 2
$$

for some positive constant C.
Corollary 1. The results of Theorem 2 can be readily extended for functions $f(x, u)$, under the assumption that f satisfies

$$
f(x, t) \leq \frac{h(t)}{|x|^{p+\epsilon}}, \text { for some } h \in L_{l o c}^{\infty}(\mathbb{R})
$$

This includes, for instance, eigenvalue equations like

$$
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=V(x)|u|^{p-2} u+g(x)
$$

with V, g satisfying a decay rate as in (0.5).
In the second part of the work, we look at the Dirichlet problem on exterior domains for the fractional p-Laplacian equation $(-\Delta)_{p}^{s} u=0$. Precisely, we consider for suitably fractional Sobolev functions the nonlinear nonlocal operator with differentiability order $s \in(0,1)$ and summability growth $p \in(1,+\infty)$ given by

$$
\begin{equation*}
(-\Delta)_{p}^{s} u(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{n+s p}} d y \tag{0.12}
\end{equation*}
$$

Integro-differential equations have been a subject of intense research in recent years, finding applicability in many areas and posing problems of pure mathematical interest. The concerning literature is very wide and we refer to $[41,46,6,5,54,40,31]$ and references therein for further treatments. Nowadays, the theory of nonlocal operators of fractional p-Laplacian type is in quite advanced stage of development. Several classical concepts and results from PDE, such as comparison principles, the Perron method, Wiener resolutivity [27, 34] and existence issues, Harnack inequalities and Hölder regularity [22, 20], to cite a few, have been successfully reformulated and applied in the nonlocal setting. The
combined nonlocal and nonlinear nature of these operators impose challenging difficulties, making the use of some known tools from nonlocal theory impracticable; for instance, localization techniques as in Caffarelli and Silvestre [6] via extension problems does not seem to be adaptable for the nonlinear framework of $p \neq 2$. We refer to [46] for a survey on many recent results on nonlinear equations.

In our third theorem, we obtain the radially symmetric solutions in \mathbb{R}^{n} of the fractional p-Laplacian equation, analogues to the radially symmetric (fundamental) solutions for the local p-Laplacian equations. We point out that, although the fundamental solutions to the fractional Laplacian are well known, given up to a constant by $|x|^{2 s-n}$, the corresponding radial solutions of the fractional p-Laplacian, $p \neq 2$, seem to be unknown (or, otherwise, at least not been proven yet).

Theorem 3. Functions $|\cdot|^{\alpha}$, for $\alpha=\frac{s p-n}{p-1}, s p \neq n$, and $\log |\cdot|$, when $s p=n$, are (s, p)-harmonic in $\mathbb{R}^{n} \backslash\{0\}$.

This allows us to extend the existence result of Theorem 1 to the nonlocal setting, for the Dirichlet problem for the homogeneous equation for the fractional p-Laplacian on exterior domains.

Theorem 4. Let $K \subset \mathbb{R}^{n}$ be a compact set and $g \in C(K)$. Then, in case $s p>n$, there is a unique bounded weak solution $u \in C\left(\mathbb{R}^{n}\right) \cap W_{l o c}^{1, p}\left(\mathbb{R}^{n} \backslash K\right)$ of

$$
\left\{\begin{array}{c}
(-\Delta)_{p}^{s} u=0, \text { in } \mathbb{R}^{n} \backslash K \tag{0.13}\\
u=g, \text { in } K
\end{array}\right.
$$

In addition, if g is α-Hölder continuous in K, with $\alpha=\frac{s p-n}{p-1}$, then $u \in C^{\alpha}\left(\mathbb{R}^{n}\right)$.

Chapter 1

PRELIMINARIES

This chapter is intended for a review on some concepts and results we use along the work.

1.1 On the degenerate operator

For some equations in divergence form, the existence of weak solutions for Dirichlet problems can be achieved by finding minimizers of certain functionals, since those are expected to solve the respective Euler-Lagrange equation in a weak sense. In fact, by a weak formulation, the equation is defined for functions lying in a suitable Sobolev Space, whose compactness properties are particularly useful for minimization methods. Once the existence of a weak solution is established, then some regularity of the solution can hopefully be obtained. The regularity results for the class of degenerate equations establish a priori $C^{1, \alpha}$ regularity for weak solutions and are due to DiBenedetto, Tolksdorf, Manfredi, and Lieberman [8, 64, 37, 33]. We explain in the following how these ideas apply in case of equation (0.6) and derive for it the classical existence results. The existence of weak solutions of the p-Laplacian equation can be found in [63].

Definition 1. A function $u \in W_{l o c}^{1, p}(\Omega)$, defined on an open set $\Omega \subseteq \mathbb{R}^{n}$, is a weak solution of

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=f \text { in } \Omega \tag{1.1}
\end{equation*}
$$

if

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} A(|\nabla u|) \nabla u \cdot \nabla \eta=\int_{\Omega} f \eta \tag{1.2}
\end{equation*}
$$

for all $\eta \in C_{0}^{\infty}(\Omega)$. We also call u a (sub)supersolution of (1.1) if

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} A(|\nabla u|) \nabla u \cdot \nabla \eta(\leq) \geq \int_{\Omega} f \eta \tag{1.3}
\end{equation*}
$$

for all positive $\eta \in C_{0}^{\infty}(\Omega)$.

We make fundamental use of the Comparison Principle in the work. The following statement is a particular case of [52, Theorem 2.4.1], since the vector function $\mathbf{A}(\xi)=$ $|\xi|^{p-2} A(|\xi|) \xi$ satisfies the monotonicity condition

$$
(\mathbf{A}(\xi)-\mathbf{A}(\eta)) \cdot(\xi-\eta)>0, \text { for all } \xi, \eta \in \mathbb{R}^{n}, \quad \xi \neq \eta
$$

provided the function $\varphi(t)=t^{p-1} A(t)$ is increasing.

Comparison Principle. Let $u, v \in C^{1}(\Omega)$ on a bounded domain $\Omega \subset \mathbb{R}^{n}$ and assume A satisfies (0.4) or (0.8). If

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right) \leq-\operatorname{div}\left(|\nabla v|^{p-2} A(|\nabla v|) \nabla v\right) \tag{1.4}
\end{equation*}
$$

in the weak sense in Ω and $u \leq v$ on $\partial \Omega$, then $u \leq v$ in Ω.

Here, $u \leq v$ on $\partial \Omega$ means that, for all $\epsilon>0$,

$$
\begin{equation*}
u \leq v+\epsilon \text { in some neighbourhood of } \partial \Omega . \tag{1.5}
\end{equation*}
$$

We will often be applying the comparison principle for $u, v \in C(\bar{\Omega})$ satisfying (1.4), with $u \leq v$ on $\partial \Omega$ in the usual sense. In fact, in this case, (1.5) is satisfied due to the uniform continuity of the functions and the compacity of $\partial \Omega$.

Equation (1.1) is the Euler-Lagrange equation associated to the energy functional

$$
\begin{equation*}
I(u)=\int_{\Omega} \mathrm{L}(x, u(x), \nabla u(x)) d x, \quad u \in W^{1, p}(\Omega) \tag{1.6}
\end{equation*}
$$

for the lagrangian

$$
\begin{equation*}
\mathrm{L}(x, z, q)=\int_{0}^{|q|} \varphi(t) d t-z f(x), \quad(x, z, q) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(t)=t^{p-1} A(t) . \tag{1.8}
\end{equation*}
$$

L is of class C^{2} in the variables $z, q \neq 0$, and convex in q. In fact, we have

$$
\begin{equation*}
\mathrm{L}_{q_{i}}(q)=\varphi(|q|) \frac{q_{i}}{|q|}, \quad \mathrm{L}_{q_{i} q_{j}}(q)=\frac{\varphi(|q|)}{|q|} \delta_{i j}+\frac{q_{i} q_{j}}{|q|^{2}}\left(\varphi^{\prime}(|q|)-\frac{\varphi(|q|)}{|q|}\right) \tag{1.9}
\end{equation*}
$$

and it is easy to see the matrix $\mathrm{L}_{q_{i} q_{j}}$ has the eigenvalues $\varphi(|q|) /|q|$, of multiplicity $n-1$, and $\varphi^{\prime}(|q|)$. By our assumptions on (0.4), the eigenvalues are bounded from below by

$$
\frac{\varphi(|q|)}{|q|}=|q|^{p-2} A(|q|) \geq \delta|q|^{p-2}, \quad \varphi^{\prime}(|q|) \geq \delta^{\prime}|q|^{p-2}
$$

from which follows

$$
\begin{equation*}
\mathrm{L}_{q_{i} q_{j}}(x, z, q) \xi_{i} \xi_{j} \geq \min \left\{\delta, \delta^{\prime}\right\}|q|^{p-2}|\xi|^{2}, \quad \text { for all } \xi \in \mathbb{R}^{n} \tag{1.10}
\end{equation*}
$$

Now, let us assume $g \in W^{1, p}(\Omega)$ and restrict I to the class

$$
\mathcal{A}_{g}=\left\{u \in W^{1, p}(\Omega) \mid u-g \in W_{0}^{1, p}(\Omega)\right\}
$$

that is, the class of functions that coincide with g in $\partial \Omega$ in the trace sense. The strict convexity inequality (1.10) implies uniqueness of minimizers for I in \mathcal{A}_{g} and consequently the uniqueness of solutions of (1.1) (See [11]). The uniqueness of solutions also follows from the comparion principle. To obtain the existence of minimizers, let us note first that I is bounded from below in \mathcal{A}_{g} since

$$
\int_{\Omega} \mathrm{L}(x, u, \nabla u) d x \geq \frac{\delta}{p}\|\nabla u\|_{L^{p}(\Omega)}^{p}-\int_{\Omega} u(x) f(x) d x
$$

and using Hölder and Sobolev inequalities, we have for $u \in \mathcal{A}_{g}$,

$$
\begin{aligned}
\int_{\Omega}|u(x) f(x)| d x & \leq\|f\|_{L^{\infty}}\left(\int_{\Omega} u(x)-g(x) d x+\int_{\Omega} g(x) d x\right) \\
& \leq\|f\|_{L^{\infty}}|\Omega|^{\frac{p-1}{p}}\left(\|u-g\|_{L^{p}(\Omega)}+\|g\|_{L^{p}(\Omega)}\right) \\
& \leq\|f\|_{L^{\infty}}|\Omega|^{\frac{p-1}{p}}\left(C(|\Omega|)\|\nabla(u-g)\|_{L^{p}(\Omega)}+\|g\|_{L^{p}(\Omega)}\right) \\
& \leq C\left(\|\nabla u\|_{L^{p}(\Omega)}+\|g\|_{W^{1, p}(\Omega)}\right)
\end{aligned}
$$

for a positive constant C which does not depend on u. Hence,

$$
\int_{\Omega} \mathrm{L}(x, u, \nabla u) d x \geq \frac{\delta}{p}\|\nabla u\|_{L^{p}(\Omega)}^{p}-C\left(\|\nabla u\|_{L^{p}(\Omega)}+\|g\|_{W^{1, p}(\Omega)}\right)
$$

which is bounded below with respect to $\|\nabla u\|_{L^{p}(\Omega)}$. Next, considering a minimizing sequence $u_{k} \in \mathcal{A}_{g}$, by the inequalities above, it can be inferred a uniform bound on $\left\|u_{k}\right\|_{W^{1, p}(\Omega)}$ so that, by weak compactness, there is a subsequence of u_{k} that converges weakly in $W^{1, p}(\Omega)$ to a function u. Such u then belongs to \mathcal{A}_{g}, since $u_{k}-g \in W_{0}^{1, p}(\Omega)$ converges weakly to $u-g$ and $W_{0}^{1, p}(\Omega)$ is a weakly closed subspace, so that $u-g \in$ $W_{0}^{1, p}(\Omega)$. Next, we should show u is actually a minimizer of I. For this, it is sufficient to show that I satisfies a weak lower semicontinuity property, i.e., that for any sequence $u_{k} \in W^{1, p}(\Omega)$ converging weakly to some $u \in W^{1, p}(\Omega)$ there holds $I(u) \leq \lim \inf I\left(u_{k}\right)$. This can be done for the functional I with some small adaptations in the arguments in [32, 63].

To guarantee that the minimizer u is a weak solution of the Euler-Lagrange equation for L , a sufficient assumption is provided by the growth conditions

$$
\left\{\begin{array}{l}
\mathrm{L}(x, z, q) \leq C\left(|z|^{p+1}+|q|^{p}\right) \tag{1.11}\\
D_{z} \mathrm{~L}(x, z, q) \leq C\left(1+|z|^{p-1}+|q|^{p-1}\right) \\
D_{q} \mathrm{~L}(x, z, q) \leq C\left(1+|z|^{p-1}+|q|^{p-1}\right)
\end{array}\right.
$$

for some $C>0$ and all $(x, z, q) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n}$ (see [32, 63]). Those conditions can be verified for the lagrangian (1.7) and we conclude the existence of a weak solution of (1.1) in \mathcal{A}_{g}. We summarize this exposition in the following.

Theorem 5. Let Ω be a bounded domain. For all $g \in W^{1, p}(\Omega)$, there exists a unique weak solution $u \in W^{1, p}(\Omega)$ of (1.1) satisfying $u=g$ in $\partial \Omega$ in the trace sense.

We wish now to apply the results due to Lieberman [33] and Tolksdorf [64] to improve the regularity of weak solutions up to the boundary. Let us henceforth assume $g \in C^{1, \alpha}(\bar{\Omega})$. [33, Theorem 1] ensures that, on a bounded domain Ω with $C^{1, \alpha}$ boundary, $\alpha>0$, a bounded weak solution of a general quasilinear equation, with boundary values $g \in C^{1, \alpha}(\partial \Omega)$ in the trace sense, is in $C^{1, \beta}(\bar{\Omega})$, for some $\beta>0$. This naturally requires some hypotheses on the coefficients of the equation, which in fact hold for equation (1.1) under assumption of (0.4). Among the hypotheses concerning the part under divergence, given in our case by $a_{i}(q):=|q|^{p-2} A(|q|) q_{i}=\mathrm{L}_{q_{i}}(q)$, it is required to hold an inequality as in (1.10) and a growth condition of the form

$$
\begin{equation*}
\sum_{i, j}\left|\frac{\partial a_{i}}{\partial q_{j}}\right| \leq \Gamma(\kappa+|q|)^{p-2} \tag{1.12}
\end{equation*}
$$

with constants $\Gamma>0$ and $\kappa \geq 0$, for all $q \neq 0$. We have already shown (1.10) and to verify the inequality above, noting that $\frac{\partial a_{i}}{\partial q_{j}}=\mathrm{L}_{q_{i} q_{j}}$, we have by (1.9),

$$
\sum_{i, j}\left|\mathrm{~L}_{q_{i} q_{j}}(q)\right| \leq n \frac{\varphi(|q|)}{|q|}+|q|^{-2} \sum_{i, j}\left|q_{i} q_{j}\right|\left(\varphi^{\prime}(|q|)+\frac{\varphi(|q|)}{|q|}\right) .
$$

Then using that

$$
\sum_{i, j}\left|q_{i} q_{j}\right|=\left(\sum_{i}\left|q_{i}\right|\right)\left(\sum_{j}\left|q_{j}\right|\right)=\left(\sum_{i}\left|q_{i}\right|\right)^{2} \leq n|q|^{2}
$$

where the last inequality comes by the Cauchy-Schwarz inequality for the inner product of the vectors $\left(\left|q_{1}\right|, \ldots,\left|q_{n}\right|\right),(1, \ldots, 1) \in \mathbb{R}^{n}$, it follows

$$
\begin{aligned}
\sum_{i, j}\left|\mathrm{~L}_{q_{i} q_{j}}(q)\right| & \leq n \frac{\varphi(|q|)}{|q|}+n\left(\varphi^{\prime}(|q|)+\frac{\varphi(|q|)}{|q|}\right) \\
& \leq 2 n\left(\frac{\varphi(|q|)}{|q|}+\varphi^{\prime}(|q|)\right) \leq 2 n\left(L+L^{\prime}\right)|q|^{p-2}
\end{aligned}
$$

where we have used condition (0.4), ii), iii). This shows the validity of (1.12) with $\Gamma=2 n\left(L+L^{\prime}\right), \kappa=0$. To apply [33, Theorem 1], it remains to ensure that the solutions are bounded. In case $p>n$, this is immediate from the Morrey's inequality (see [11]), which in fact guarantees α-Hölder continuity up to the boundary, $\alpha=1-n / p$, of functions in $W^{1, p}(\Omega)$, if $\partial \Omega$ is of class C^{1}. In case $p \leq n$, a bound on solutions is obtained in [36,

Theorem 3.12]. Assuming the solution u to be bounded by $|u| \leq M+\eta$, for a constant M and a function $\eta \in W_{0}^{1, p}(\Omega)$, it is shown that

$$
\begin{equation*}
\sup _{\Omega}|u| \leq C+M \tag{1.13}
\end{equation*}
$$

with a constant C depending only on $n, p,|\Omega|$, and the parameters of the equation. In our case, since $u \in \mathcal{A}_{g}$, with $g \in C^{1}(\bar{\Omega})$, this assumption can be verified with $M=\sup |g|<$ $\infty, \eta=u-g \in W_{0}^{1, p}(\Omega)$. Hence, (1.13) holds and the regularity result of [33, Theorem 1] can be applied, therefore, in all cases of $p>1$. We can conclude the following existence result.

Theorem 6. Let Ω be a bounded domain of class $C^{1, \alpha}, \alpha>0$. If $g \in C^{1, \alpha}(\bar{\Omega})$, there exists a unique weak solution $u \in C^{1, \beta}(\bar{\Omega})$, with $\beta>0$, of (1.1) satisfying $u=g$ in $\partial \Omega$. The Hölder seminorm $|u|_{1+\beta}$ depends only on $|g|_{1+\alpha}, \alpha, n, p,|\Omega|, \sup _{\Omega}|u|$, and the parameters of the equation.

Theorem 6 can be extended for the case of continuous boundary values as follows.
Theorem 7. Let Ω be a bounded domain of class $C^{1, \alpha}, \alpha>0$. If $\phi \in C(\partial \Omega)$, there exists a unique weak solution $u \in C(\bar{\Omega}) \cap C_{l o c}^{1, \beta}(\Omega)$, with $\beta>0$, of (1.1) satisfying $u=\phi$ in $\partial \Omega$.

Proof. Let $\phi_{k} \in C^{\infty}(\bar{\Omega})$ be such that

$$
\begin{equation*}
\sup _{z \in \partial \Omega}\left|\phi(z)-\phi_{k}(z)\right| \rightarrow 0 \tag{1.14}
\end{equation*}
$$

By Theorem 6, each of the problems

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=f & \text { in } \Omega \tag{1.15}\\
u=\phi_{k} & \text { in } \partial \Omega
\end{array}\right.
$$

has a weak solution $u_{k} \in C^{1, \beta}(\bar{\Omega})$, with $\beta>0$. By estimate (1.13) provided by [36, Theorem 3.12], u_{k} is uniformly bounded on Ω. Moreover, by the local Hölder regularity result in [32, Theorem 1.1, p. 251], there exists a $\gamma>0$ such that, for each compact V of Ω, there is a constant $C>0$, depending only the parameters of the equation and V, such that

$$
\left|u_{k}(x)-u_{k}(y)\right| \leq C|x-y|^{\gamma}, \text { for all } x, y \in V
$$

Thus, u_{k} is also equicontinuous on V and, by Arzelá-Ascoli's Theorem, we can obtain a subsequence of u_{k} converging uniformly on V to some continuous function. Considering then a sequence of compact sets V_{k} such that $\Omega=\cup V_{k}$, using a standard diagonal argument, we can find a continuous function u on Ω and a subsequence of u_{k} that converges to u uniformly on compacts of Ω.

Now let $\epsilon>0$. By (1.14), we have that for all sufficiently large integers k, l,

$$
\phi_{l}<\phi_{k}+\epsilon \text { in } \partial \Omega .
$$

Hence, since $u_{k}=\phi_{k}$ in $\partial \Omega$ and u_{k} is uniformly continuous on $\bar{\Omega}$, we can conclude that

$$
u_{l}<u_{k}+\epsilon \text { in } \partial \Omega
$$

holds in the sense of condition (1.5). We can then apply the comparison principle to extend this inequality to Ω. Then, sending $l \rightarrow \infty$, we obtain

$$
u \leq u_{k}+\epsilon \text { in } \bar{\Omega} .
$$

Therefore, for all $y \in \partial \Omega$,

$$
\limsup _{x \rightarrow y} u(x) \leq \phi_{k}(y)+\epsilon
$$

and sending $k \rightarrow \infty$ it follows

$$
\limsup _{x \rightarrow y} u(x) \leq \phi(y)+\epsilon .
$$

An analogous inequality can be obtained for the lower limit, concluding the continuity of u up to the boundary, with boundary values ϕ.

To see that u is a weak solution in Ω, let $\eta \in C_{0}^{1}(\Omega)$. By [64, Theorem 1], there exist a $\beta>0$ and a constant $C>0$, which does not depend on u_{k}, such that

$$
\begin{aligned}
& \left|\nabla u_{k}(x)\right| \leq C \\
& \left|\nabla u_{k}(x)-\nabla u_{k}(y)\right| \leq C|x-y|^{\beta}, \quad \text { for all } x, y \in \operatorname{supp} \eta .
\end{aligned}
$$

Then again, by the Arzelá-Ascoli's Theorem, up to a subsequence, ∇u_{k} converges uniformly to ∇u on supp η. Therefore, we obtain

$$
\begin{aligned}
\int_{\Omega} f \eta & =\int_{\Omega}\left|\nabla u_{k}\right|^{p-2} A\left(\left|\nabla u_{k}\right|\right) \nabla u_{k} \cdot \nabla \eta \\
& =\int_{\text {supp } \eta}\left|\nabla u_{k}\right|^{p-2} A\left(\left|\nabla u_{k}\right|\right) \nabla u_{k} \cdot \nabla \eta \\
& \rightarrow \int_{\text {supp } \eta}|\nabla u|^{p-2} A(|\nabla u|) \nabla u \cdot \nabla \eta
\end{aligned}
$$

hence showing u is a weak solution in Ω.

1.2 On fractional Sobolev Spaces and the Fractional p-Laplacian

In this section, we review some basic facts of Fractional Sobolev Spaces and of the nonlocal operator we deal with.

Definition 2. Let $\Omega \subset \mathbb{R}^{n}$ be an open set. For each $s \in(0,1)$ and $p \in(1, \infty)$, the usual Fractional Sobolev Space $W^{s, p}(\Omega)$ is defined as

$$
W^{s, p}(\Omega)=\left\{u \in L^{p}(\Omega) ; \frac{|u(x)-u(y)|}{|x-y|^{\frac{n}{p}+s}} \in L^{p}(\Omega \times \Omega)\right\}
$$

The expression

$$
\|u\|_{W^{s, p}(\Omega)}=\left(\|u\|_{L^{p}(\Omega)}^{p}+[u]_{W^{s, p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

where the term

$$
\begin{equation*}
[u]_{W^{s, p}(\Omega)}=\left(\int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+p s}} d x d y\right)^{\frac{1}{p}} \tag{1.16}
\end{equation*}
$$

called the Gagliardo seminorm of u, defines a norm in $W^{s, p}(\Omega)$, for which $W^{s, p}(\Omega)$ is a Banach space (see [7, Proposition 4.24]). We denote by $W_{0}^{s, p}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{s, p}\left(\mathbb{R}^{n}\right)$.

The following results on continuous embbedings for fractional Sobolev spaces are found in Propositions 2.1, 2.2 in [41].

Proposition 1. Let $p \in[1,+\infty)$ and $0<s \leq s^{\prime}<1$. Let Ω be an open set in \mathbb{R}^{n} and $u: \Omega \rightarrow \mathbb{R}$ be a measurable function. Then

$$
\|u\|_{W^{s, p}(\Omega)} \leq C\|u\|_{W^{s^{\prime}, p}(\Omega)}
$$

for some suitable positive constant $C=C(n, s, p) \geq 1$. In particular,

$$
W^{s^{\prime}, p}(\Omega) \subseteq W^{s, p}(\Omega)
$$

Proposition 2. Let $p \in[1,+\infty)$ and $s \in(0,1)$. Let Ω be an open set in \mathbb{R}^{n} with Lipschitz bounded boundary and $u: \Omega \rightarrow \mathbb{R}$ be a measurable function. Then

$$
\|u\|_{W^{s, p}(\Omega)} \leq C\|u\|_{W^{1, p}(\Omega)}
$$

for some suitable positive constant $C=C(n, s, p) \geq 1$. In particular,

$$
W^{1, p}(\Omega) \subseteq W^{s, p}(\Omega)
$$

Next, we define a quantity called the nonlocal tail, which plays an important role in the study of nonlocal of operators.

Definition 3. For $s \in(0,1)$ and $p \in(1,+\infty)$, the nonlocal tail of a function u in the ball of radius $r>0$ and center $z \in \mathbb{R}^{n}$ is defined as

$$
\begin{equation*}
\operatorname{Tail}(u ; z, r)=\left(r^{s p} \int_{\mathbb{R}^{n} \backslash B_{r}(z)}|u(x)|^{p-1}|x-z|^{-n-s p} d x\right)^{\frac{1}{p-1}} . \tag{1.17}
\end{equation*}
$$

The tail space $L_{s p}^{p-1}\left(\mathbb{R}^{n}\right)$ is given by

$$
\begin{equation*}
L_{s p}^{p-1}\left(\mathbb{R}^{n}\right)=\left\{u \in L_{L o c}^{p-1}\left(\mathbb{R}^{n}\right): \operatorname{Tail}(u ; 0,1)<\infty\right\} \tag{1.18}
\end{equation*}
$$

One can show the inclusions $L^{\infty}\left(\mathbb{R}^{n}\right) \subset L_{s p}^{p-1}\left(\mathbb{R}^{n}\right)$ and $W^{s, p}\left(\mathbb{R}^{n}\right) \subset L_{s p}^{p-1}\left(\mathbb{R}^{n}\right)$.
Definition 4. We say that a function $u \in W^{s, p}(\Omega) \cap L_{s p}^{p-1}\left(\mathbb{R}^{n}\right)$ is a weak (sub)supersolution of

$$
\begin{equation*}
(-\Delta)_{p}^{s} u=0 \quad \text { in } \Omega \tag{1.19}
\end{equation*}
$$

if

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\eta(x)-\eta(y))}{|x-y|^{n+s p}} d x d y(\leq) \geq 0 \tag{1.20}
\end{equation*}
$$

for all test functions $\eta \in C_{0}^{\infty}(\Omega)$ with $\eta \geq 0$. In addition, u is a weak solution to (1.19) if it is both a sub and a supersolution in the sense above, i.e.,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\eta(x)-\eta(y))}{|x-y|^{n+s p}} d x d y=0 \tag{1.21}
\end{equation*}
$$

for all $\eta \in C_{0}^{\infty}(\Omega)$.
For nonlocal operators, the Dirichlet boundary condition consists in assigning the values of u in the whole complement of Ω, rather than only on $\partial \Omega$. Hence, for an open set $\Omega \subset \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, we will be considering the problem

$$
\left\{\begin{array}{r}
(-\Delta)_{p}^{s} u=0 \text { in } \Omega \tag{1.22}\\
u=g \text { in } \mathbb{R}^{n} \backslash \Omega
\end{array}\right.
$$

Throughout this work, we make significant use of the nonlocal comparison principle, as stated below. It requires the additional assumption that one function dominates the other, not only on the boundary of the domain but also on its complement. Even though this nonlocal version of the comparison principle is sufficient for many applications, its hypothesis turns to be quite restrictive and in some cases prevent the extension of successful ideas from the local setting. The following statement is found in [27, Lemma $6]$.

Lemma. (Comparison Principle) Let $s \in(0,1)$ and $p \in(1,+\infty)$. Let $\Omega \Subset \Omega^{\prime}$ be bounded open sets of \mathbb{R}^{n}. Let $u \in W^{s, p}\left(\Omega^{\prime}\right)$ be a weak supersolution of (1.19) in Ω and $v \in W^{s, p}\left(\Omega^{\prime}\right)$ be a weak subsolution of (1.19) in Ω such that $u \geq v$ a.e. in $\mathbb{R}^{n} \backslash \Omega$. Then $u \geq v$ a.e. in Ω.

In Chapter 5 , we make use of the following results of [10], which we state particularly for the p-Laplacian operator.

Theorem. (Theorem 3.1, [10]) Let $K \subset \mathbb{R}^{n}$ be a compact set and $u \in W_{\text {loc }}^{s, p}\left(\mathbb{R}^{n} \backslash K\right) \cap$ $L^{\infty}\left(\mathbb{R}^{n}\right)$ a weak solution of $(-\Delta)_{p}^{s} u=0$ in $\mathbb{R}^{n} \backslash K$. Suppose that $s p \geq n$. Then, for any open set $U \subset \mathbb{R}^{n}$ such that $K \subset U$ it holds

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n} \backslash U} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{1}{p}} \leq C \sup |u| \tag{1.23}
\end{equation*}
$$

with C depending on n, s, p, K and U.
The second result is a comparison principle for bounded solutions of the fractional p-Laplacian equation on exterior domains. This extends [3, Theorem 2] to nonlocal operators.

Theorem. (Theorem 3.3, [10]) Let K be a compact set of \mathbb{R}^{n} and let $u, v \in C\left(\mathbb{R}^{n}\right) \cap$ $W_{\text {loc }}^{s, p}\left(\mathbb{R}^{n} \backslash K\right)$ bounded solutions of $(-\Delta)_{p}^{s} u=0$ in $\mathbb{R}^{n} \backslash K$. Suppose that $s p \geq n$. If $v \geq u$ on K then $v \geq u$ in $\mathbb{R}^{n} \backslash K$.

Chapter 2

AUXILIARY RESULTS

In this chapter we present some results to be used on the proofs of Theorems 1 and 2. We begin with the construction of radial barriers to the problem (0.6), assuming for A the weaker conditions in (0.8). Lemma 1 gives existence and estimates for local radially symmetric barriers on arbitrary balls; radially symmetric barriers globally defined are presented in Lemma 2.

Lemma 1. Let $f \in L^{\infty}\left(B_{R}\left(x_{0}\right)\right), x_{0} \in \mathbb{R}^{n}, R>0$. Then, for $p>n$, there exists a family of radially symmetric supersolutions $v_{a}=v_{a, x_{0}}$ of (0.6) in $B_{R}\left(x_{0}\right) \backslash\left\{x_{0}\right\}$ such that

$$
\begin{equation*}
\left(\frac{\|f\|_{\infty}}{n L}\right)^{\frac{1}{p-1}} a \frac{\left|x-x_{0}\right|^{\alpha}}{\alpha} \leq v_{a}(x) \leq\left(\frac{\|f\|_{\infty}}{n \delta}\right)^{\frac{1}{p-1}}\left(a+R^{\frac{n}{p-1}}\right) \frac{\left|x-x_{0}\right|^{\alpha}}{\alpha} \tag{2.1}
\end{equation*}
$$

for $a \geq 0$, where δ, L are the constants in (0.8), ii), associated to A.
Proof. We start looking for radially symmetric solutions $v=v(r), r=\left|x-x_{0}\right|$, of the equation

$$
-\operatorname{div}\left(|\nabla v|^{p-2} A(|\nabla v|) \nabla v\right)=\|f\|_{\infty}
$$

for $0 \leq r \leq R$. This leads to the following ODE

$$
\frac{d}{d r}\left\{\left|v^{\prime}\right|^{p-2} A\left(\left|v^{\prime}\right|\right) v^{\prime}\right\}+\frac{n-1}{r}\left|v^{\prime}\right|^{p-2} A\left(\left|v^{\prime}\right|\right) v^{\prime}=-\|f\|_{\infty}
$$

Multiplying this equation by the integrating factor r^{n-1}, we get

$$
\frac{d}{d r}\left\{\left|v^{\prime}\right|^{p-2} A\left(\left|v^{\prime}\right|\right) v^{\prime} r^{n-1}\right\}=-\|f\|_{\infty} r^{n-1}
$$

from which integrating from some $t_{0}>0$ to $t, 0<t \leq R$, comes

$$
\left|v^{\prime}(t)\right|^{p-2} A\left(\left|v^{\prime}(t)\right|\right) v^{\prime}(t) t^{n-1}=\frac{\|f\|_{\infty}}{n}\left(t_{0}^{n}-t^{n}\right)+\left|v^{\prime}\left(t_{0}\right)\right|^{p-2} A\left(\left|v^{\prime}\left(t_{0}\right)\right|\right) v^{\prime}\left(t_{0}\right) t_{0}^{n-1} .
$$

Assuming $v^{\prime} \geq 0$ and taking

$$
C=t_{0}^{n}+\frac{n}{\|f\|_{\infty}} v^{\prime}\left(t_{0}\right)^{p-1} A\left(v^{\prime}\left(t_{0}\right)\right) t_{0}^{n-1}
$$

it follows

$$
v^{\prime}(t)^{p-1} A\left(v^{\prime}(t)\right) t^{n-1}=\frac{\|f\|_{\infty}}{n}\left(C-t^{n}\right)
$$

and then

$$
v^{\prime}(t)^{p-1} A\left(v^{\prime}(t)\right)=\frac{\|f\|_{\infty}}{n} \frac{\left(C-t^{n}\right)}{t^{n-1}} .
$$

Using the notation $\varphi(t)=t^{p-1} A(t)$, we can write

$$
v^{\prime}(t)=\varphi^{-1}\left(\frac{\|f\|_{\infty}}{n}\left(C-t^{n}\right) t^{-n+1}\right)
$$

so that

$$
\begin{equation*}
v(r)=\int_{0}^{r} \varphi^{-1}\left(\frac{\|f\|_{\infty}}{n}\left(C-t^{n}\right) t^{-n+1}\right) d t, C \geq R^{n} \tag{2.2}
\end{equation*}
$$

gives a family of supersolutions. We take then

$$
\begin{equation*}
C=R^{n}+a^{p-1}, \quad a \geq 0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{a}(r):=\int_{0}^{r} \varphi^{-1}\left(\frac{\|f\|_{\infty}}{n}\left(a^{p-1}+R^{n}-t^{n}\right) t^{-n+1}\right) d t, a \geq 0 . \tag{2.4}
\end{equation*}
$$

Note that by (0.8), ii), we have

$$
\delta t^{p-1} \leq \varphi(t) \leq L t^{p-1}
$$

so that, by the increasing monotonicity of φ^{-1},

$$
\varphi^{-1}\left(\delta t^{p-1}\right) \leq t \leq \varphi^{-1}\left(L t^{p-1}\right)
$$

Hence, for a fixed $s>0$, taking $t=(s / \delta)^{\frac{1}{p-1}}$ in the first inequality we get

$$
\varphi^{-1}(s) \leq(s / \delta)^{\frac{1}{p-1}}
$$

Taking $t=(s / L)^{\frac{1}{p-1}}$ in second inequality, then

$$
(s / L)^{\frac{1}{p-1}} \leq \varphi^{-1}(s)
$$

so we obtain

$$
\begin{equation*}
\left(\frac{s}{L}\right)^{\frac{1}{p-1}} \leq \varphi^{-1}(s) \leq\left(\frac{s}{\delta}\right)^{\frac{1}{p-1}}, \quad \text { for } s>0 \tag{2.5}
\end{equation*}
$$

Using these inequalities to estimate (2), we have

$$
v_{a}(r) \geq\left(\frac{\|f\|_{\infty}}{n L}\right)^{\frac{1}{p-1}} \int_{0}^{r}\left(a^{p-1}+R^{n}-t^{n}\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t
$$

where noting that $t \leq R$, we obtain the lower bound

$$
\begin{aligned}
v(r) & \geq\left(\frac{\|f\|_{\infty}}{n L}\right)^{\frac{1}{p-1}} \int_{0}^{r} a t^{-\frac{n-1}{p-1}} d t \\
& =\left(\frac{\|f\|_{\infty}}{n L}\right)^{\frac{1}{p-1}} a \frac{r^{\alpha}}{\alpha} .
\end{aligned}
$$

For the upper bound we can estimate

$$
\begin{aligned}
v(r) & \leq\left(\frac{\|f\|_{\infty}}{n \delta}\right)^{\frac{1}{p-1}} \int_{0}^{r}\left(a^{p-1}+R^{n}-t^{n}\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
& \leq\left(\frac{\|f\|_{\infty}}{n \delta}\right)^{\frac{1}{p-1}} \int_{0}^{r}\left(a^{p-1}+R^{n}\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
& \leq\left(\frac{\|f\|_{\infty}}{n \delta}\right)^{\frac{1}{p-1}}\left(a+R^{\frac{n}{p-1}}\right) \int_{0}^{r} t^{-\frac{n-1}{p-1}} d t=\left(\frac{\|f\|_{\infty}}{n \delta}\right)^{\frac{1}{p-1}}\left(a+R^{\frac{n}{p-1}}\right) \frac{r^{\alpha}}{\alpha} .
\end{aligned}
$$

Lemma 2. In case $p>n$, for any $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying (0.5), there exists a family of radially symmetric supersolutions v_{a} of (0.6) in $\mathbb{R}^{n} \backslash\{0\}$ satisfying
i) $v_{a}(0)=0$ and $v_{a}(r)$ is increasing in $(0,+\infty)$ for any $a \geq 0$;
ii) v_{a} is unbounded in $(0,+\infty)$ for $a>0$; indeed, there exists a constant $c_{0}=$ $c_{0}\left(n, p, \epsilon, C_{f}, L\right)>0$ such that

$$
v_{a}(r) \geq c_{0} a r^{\alpha} \quad \text { for } \quad r \geq 0, \quad \text { where } \quad \alpha=\frac{p-n}{p-1}
$$

iii) v_{0} is bounded in $(0,+\infty)$; indeed, there exists a constant $C_{0}=C_{0}\left(n, p, \epsilon, C_{f}, \delta\right)>$ 0 such that

$$
v_{0}(r) \leq C_{0}
$$

iv) $v_{a}(r) \rightarrow v_{0}(r)$ as $a \rightarrow 0$ for any $r \in(0,+\infty)$
for δ, L in (0.8), $i i)$.
Proof. With no loss of generality, we can assume (0.5) holds for all $|x| \geq 1$, with $f \leq C_{f}$. Hence, to obtain the desired supersolution we consider

$$
g(r)=\left\{\begin{array}{cc}
C_{f} & \text { for } r \leq 1 \\
C_{f} r^{-p-\epsilon} & \text { for } r \geq 1
\end{array}\right.
$$

and look for radially symmetric solutions $v=v(r), r=|x|$, of

$$
-\operatorname{div}\left(|\nabla v|^{p-2} A(|\nabla v|) \nabla v\right)=g(r)
$$

for $r>0$. This leads to the ODE

$$
\frac{d}{d r}\left\{\left|v^{\prime}\right|^{p-2} A\left(\left|v^{\prime}\right|\right) v^{\prime} r^{n-1}\right\}=-g(r) r^{n-1}
$$

which integrated from $r=1$ to some $t>0$ gives

$$
\left|v^{\prime}(t)\right|^{p-2} A\left(\left|v^{\prime}(t)\right|\right) v^{\prime}(t) t^{n-1}=-\int_{1}^{t} g(r) r^{n-1} d r+C
$$

where

$$
C=\left|v^{\prime}(1)\right|^{p-2} A\left(\left|v^{\prime}(1)\right|\right) v^{\prime}(1) .
$$

Assuming $v^{\prime} \geq 0$ it follows

$$
v^{\prime}(t)^{p-1} A\left(v^{\prime}(t)\right) t^{n-1}=-\int_{1}^{t} g(r) r^{n-1} d r+C
$$

and then

$$
v^{\prime}(t)^{p-1} A\left(v^{\prime}(t)\right)=\frac{-\int_{1}^{t} g(r) r^{n-1} d r+C}{t^{n-1}}
$$

Using $\varphi(t)=t^{p-1} A(t)$, we can write

$$
v^{\prime}(t)=\varphi^{-1}\left(\frac{-\int_{1}^{t} g(r) r^{n-1} d r+C}{t^{n-1}}\right)
$$

so that

$$
v(r)=\int_{0}^{r} \varphi^{-1}\left(\frac{-\int_{1}^{t} g(\tau) \tau^{n-1} d \tau+C}{t^{n-1}}\right) d t
$$

gives a family of supersolutions. Recalling the definition of g, we have for $r \geq 1$, that

$$
\begin{aligned}
v(r)= & \int_{0}^{1} \varphi^{-1}\left(\frac{-\int_{1}^{t} C_{f} \tau^{n-1} d \tau+C}{t^{n-1}}\right) d t \\
& +\int_{1}^{r} \varphi^{-1}\left(\frac{-\int_{1}^{t} C_{f} \tau^{n-p-\epsilon-1} d \tau+C}{t^{n-1}}\right) d t \\
= & \int_{0}^{1} \varphi^{-1}\left(\frac{\frac{C_{f}}{n}\left(1-t^{n}\right)+C}{t^{n-1}}\right) d t \\
& +\int_{1}^{r} \varphi^{-1}\left(\frac{\frac{C_{f}}{p-n+\epsilon}\left(t^{n-p-\epsilon}-1\right)+C}{t^{n-1}}\right) d t \\
= & \int_{0}^{1} \varphi^{-1}\left(\frac{\frac{C_{f}}{n}\left(1-t^{n}\right)+C}{t^{n-1}}\right) d t \\
& +\int_{1}^{r} \varphi^{-1}\left(\frac{C_{f}}{p-n+\epsilon} \frac{\left(t^{n-p-\epsilon}+C \frac{p-n+\epsilon}{C_{f}}-1\right)}{t^{n-1}}\right) d t
\end{aligned}
$$

By choosing

$$
C=\frac{C_{f}}{p-n+\epsilon}\left(a^{p-1}+1\right), \quad a \geq 0
$$

it follows

$$
\begin{align*}
v_{a}(r)= & \int_{0}^{1} \varphi^{-1}\left(\frac{\frac{C_{f}}{n}\left(1-t^{n}\right)+\frac{C_{f}}{p-n+\epsilon}\left(a^{p-1}+1\right)}{t^{n-1}}\right) d t \tag{2.6}\\
& +\int_{1}^{r} \varphi^{-1}\left(\frac{C_{f}}{p-n+\epsilon} \frac{\left(t^{n-p-\epsilon}+a^{p-1}\right)}{t^{n-1}}\right) d t .
\end{align*}
$$

Using (2.5) we can estimate v_{a} from below as

$$
\begin{aligned}
v_{a}(r) \geq & \left(\frac{1}{L}\right)^{\frac{1}{p-1}} \int_{0}^{1}\left(\frac{C_{f}}{n}\left(1-t^{n}\right)+\frac{C_{f}}{p-n+\epsilon}\left(a^{p-1}+1\right)\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
& +\left(\frac{C_{f}}{(p-n+\epsilon) L}\right)^{\frac{1}{p-1}} \int_{1}^{r}\left(t^{n-p-\epsilon}+a^{p-1}\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
\geq & \left(\frac{1}{L}\right)^{\frac{1}{p-1}} \int_{0}^{1}\left(\frac{C_{f}}{p-n+\epsilon}\left(a^{p-1}+1\right)\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
& +\left(\frac{C_{f}}{(p-n+\epsilon) L}\right)^{\frac{1}{p-1}} \int_{1}^{r} a t^{-\frac{n-1}{p-1}} d t \\
\geq & \left(\frac{C_{f}}{(p-n+\epsilon) L}\right)^{\frac{1}{p-1}} a\left(\int_{0}^{1} t^{-\frac{n-1}{p-1}} d t+\int_{1}^{r} t^{-\frac{n-1}{p-1}} d t\right) \\
\geq & \left(\frac{C_{f}}{(p-n+\epsilon) L}\right)^{\frac{1}{p-1}} a r^{\alpha} .
\end{aligned}
$$

For the upper bound, we can estimate from (2.6),

$$
\begin{aligned}
v_{0}(r)= & \int_{0}^{1} \varphi^{-1}\left(\frac{\frac{C_{f}}{n}\left(1-t^{n}\right)+\frac{C_{f}}{p-n+\epsilon}}{t^{n-1}}\right) d t \\
& +\int_{1}^{r} \varphi^{-1}\left(\frac{C_{f}}{p-n+\epsilon} \frac{t^{n-p-\epsilon}}{t^{n-1}}\right) d t \\
\leq & \left(\frac{1}{\delta}\right)^{\frac{1}{p-1}} \int_{0}^{1}\left(\frac{C_{f}}{n}\left(1-t^{n}\right)+\frac{C_{f}}{p-n+\epsilon}\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
& +\left(\frac{1}{\delta}\right)^{\frac{1}{p-1}} \int_{1}^{r}\left(\frac{C_{f}}{p-n+\epsilon}\right)^{\frac{1}{p-1}} t^{\frac{-p-\epsilon+1}{p-1}} d t \\
\leq & \left(\frac{1}{\delta}\right)^{\frac{1}{p-1}} \int_{0}^{1}\left(\frac{C_{f}}{p-n+\epsilon}(p+\epsilon)\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
& +\left(\frac{1}{\delta}\right)^{\frac{1}{p-1}} \int_{1}^{r}\left(\frac{C_{f}}{p-n+\epsilon}\right)^{\frac{1}{p-1}} t^{\frac{-p-\epsilon+1}{p-1}} d t \\
\leq & \left(\frac{C_{f}(p+\epsilon)}{\delta(p-n+\epsilon)}\right)^{\frac{1}{p-1}}\left(\int_{0}^{1} t^{-\frac{n-1}{p-1}} d t+\int_{1}^{r} t^{\frac{-p-\epsilon+1}{p-1}} d t\right) \\
\leq & \left(\frac{C_{f}(p+\epsilon)}{\delta(p-n+\epsilon)}\right)^{\frac{1}{p-1}}\left(\frac{1}{\alpha}+\frac{p-1}{\epsilon}\left(1-r^{-\frac{\epsilon}{p-1}}\right)\right) \\
\leq & \left(\frac{C_{f}(p+\epsilon)}{\delta(p-n+\epsilon)}\right)^{\frac{1}{p-1}}\left(\frac{1}{\alpha}+\frac{p-1}{\epsilon}\right) .
\end{aligned}
$$

In Theorem 2 we use a Harnack inequality. For general quasilinear equations, the Harnack inequality is obtained in [56, Theorems 5, 6, 9] for the cases $p<n, p=n$ and $p>n$, respectively. For equation (0.7), these results yield the following Harnack inequality:

Theorem. Let u be a nonnegative weak solution of (0.7) on an open ball B_{R}. Assume that, in case $p \leq n, f \in L^{\frac{n}{p-\theta}}\left(B_{R}\right)$, for some $\theta \in(0,1)$, and that, in case $p>n$, $f \in L^{1}\left(B_{R}\right)$. Then, for any $\sigma \in(0,1)$,

$$
\begin{equation*}
\sup _{B_{\sigma R}} u \leq C\left(\inf _{B_{\sigma R}} u+K(R)\right) \tag{2.7}
\end{equation*}
$$

where C depends on n, p, σ, δ, L and, in case $p \leq n$, also on θ, and

$$
\begin{equation*}
K(R)=\left(R^{\theta}\|f\|_{L^{\frac{n}{p-\theta}\left(B_{R}\right)}}\right)^{\frac{1}{p-1}} \tag{2.8}
\end{equation*}
$$

if $p \leq n$, and

$$
\begin{equation*}
K(R)=\left(R^{p-n}\|f\|_{L^{1}\left(B_{R}\right)}\right)^{\frac{1}{p-1}} \tag{2.9}
\end{equation*}
$$

if $p>n$.
The result above can be easily extended to arbitrary compact subsets. In fact, we can estate the corollary below, showing a Harnack inequality for solutions on exterior domains over spheres S_{R}, for all R large, with $C>0$ taken independent of R.

Corollary 2. Let u be a non-negative weak solution of (0.7) on $\mathbb{R}^{n} \backslash \overline{B_{1}}$ and assume f satisfy condition (0.5). Then, for all $R \geq 4$,

$$
\begin{equation*}
\sup _{S_{R}} u \leq C\left(\inf _{S_{R}} u+R^{-\frac{\epsilon}{p-1}}\right) \tag{2.10}
\end{equation*}
$$

where C depends only on n, p, δ, L.
Proof. We can cover S_{R} with a quantity N of balls $B_{i}=B_{R / 2}\left(x_{i}\right)$ with centers x_{i} lying on S_{R}, with N not depending on R. Ordering these balls so that $B_{i} \cap B_{i+1} \neq \varnothing$, we have

$$
\begin{equation*}
\inf _{B_{i}} u \leq \sup _{B_{i+1}} u \tag{2.11}
\end{equation*}
$$

Now we apply the previous theorem on each ball $B_{3 R / 4}\left(x_{i}\right) \subset \mathbb{R}^{n} \backslash \overline{B_{1}}$, with $\sigma=2 / 3$. Using (0.5), a computation of the norms of f shows that, for any case, K can be estimated as

$$
K(3 R / 4) \leq C R^{-\frac{\epsilon}{p-1}}
$$

for some constant C depending only on n, p, so we have by the theorem

$$
\begin{equation*}
\sup _{B_{i}} u \leq C\left(\inf _{B_{i}} u+R^{-\frac{\epsilon}{p-1}}\right) \tag{2.12}
\end{equation*}
$$

where C depends only on n, p, L and, in case $p \leq n$, of a chosen $\theta \in(0,1)$. Then by combining inequalities (2.11) and (2.12) it follows, for all $i, j \in\{1, \ldots, N\}$,

$$
\sup _{B_{i}} u \leq C\left(\inf _{B_{j}} u+R^{-\frac{\epsilon}{p-1}}\right)
$$

after a proper redefinition of C depending only on N. This leads to (2.10).

Chapter 3

PROOF OF THEOREMS 1, 2

3.1 Proof of Theorem 1

The uniqueness of solutions is a direct consequence of the comparison principle in [3, Theorem 2], presented in Preliminaries. For the existence, we split the proof into three steps.

1. Construction of a bounded solution.

We consider a decreasing sequence of smooth compact sets K_{m} satisfying, for all m
i) $K \Subset K_{m+1} \Subset K_{m}$
ii) $\operatorname{dist}\left(\partial K, \partial K_{m}\right) \rightarrow 0$.

Taking an increasing sequence of radii $R_{m} \rightarrow+\infty$, with $K_{m} \Subset B_{R_{1}}$, for all m, we continuously extend ϕ to the whole \mathbb{R}^{n}, keeping fixed $\sup |\phi|$ and setting $\phi=0$ in $\mathbb{R}^{n} \backslash B_{R_{1}}$. We then look for the domains $\Omega_{m}:=B_{R_{m}} \backslash K_{m}$ and the problems

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(|\nabla u|^{p-2} A(|\nabla u|) \nabla u\right)=f & \text { in } \Omega_{m} \tag{3.1}\\
u=\phi & \text { in } \partial K_{m} \\
u=0 & \text { in } \mathbb{R}^{n} \backslash B_{R_{m}}
\end{array}\right.
$$

By Theorem 7, each of those problems has a weak solution $u_{m} \in C\left(\bar{\Omega}_{m}\right) \cap C_{l o c}^{1, \beta}\left(\Omega_{m}\right)$.
Now let v_{0} be the supersolution given by Lemma 2 and assume, with no loss of generality, that K contains the origin $0 \in \mathbb{R}^{n}$, so that $0 \notin \Omega_{m}$, for all m. Hence, the function $v_{0}+\sup \phi$ is then a supersolution in Ω_{m}, with $u_{m} \leq v_{0}+\sup \phi$ on $\partial \Omega_{m}$, for all m. Since $v_{0}+\sup \phi \leq C_{0}+\sup \phi$, we obtain by the comparison principle the uniform bound

$$
\begin{equation*}
\sup u_{m} \leq C_{0}+\sup \phi, \text { for all } m \text {. } \tag{3.2}
\end{equation*}
$$

Moreover, by the local Hölder regularity result in [32, Theorem 1.1, p. 251], there exists a $\gamma>0$ such that, for each compact V of $\mathbb{R}^{n} \backslash K$, there is a constant $C>0$, depending on the parameters of the equation and V, such that

$$
\left|u_{m}(x)-u_{m}(y)\right| \leq C|x-y|^{\gamma}, \text { for all } x, y \in V
$$

Thus, u_{m} is also equicontinuous on V and, by Arzelá-Ascoli's Theorem, we can obtain a subsequence of u_{m} converging uniformly on V to some continuous function. Considering then a sequence of compact sets V_{k} such that $B \backslash K=\bigcup V_{k}$, by means of a standard diagonal argument, we can find a continuous function u on $\mathbb{R}^{n} \backslash K$ and a subsequence of u_{m} that converges to u uniformly on any compact of $\mathbb{R}^{n} \backslash K$. By the same argument as in the proof of Theorem 7, using [64, Theorem 1], we can conclude u is a weak solution of (1.1) in $\mathbb{R}^{n} \backslash K$.

2. Continuity of u on the boundary.

Let $x_{0} \in \partial K, \epsilon>0$ and consider by Lemma 1 the supersolutions $v_{a, x_{0}}$ on a large ball $B\left(x_{0}\right) \backslash\left\{x_{0}\right\}$. By the continuity of ϕ, there is some $R>0$ such that

$$
\left|\phi(x)-\phi\left(x_{0}\right)\right|<\epsilon, \text { for }\left|x-x_{0}\right|<R
$$

so that

$$
\phi\left(x_{0}\right)+v_{a, x_{0}}(x)+\epsilon \geq \phi(x), \text { for }\left|x-x_{0}\right|<R, a \geq 0 .
$$

We then choose a sufficiently large in (2.1) to make

$$
\phi\left(x_{0}\right)+v_{a, x_{0}}(x)+\epsilon \geq \sup \phi, \text { for }\left|x-x_{0}\right| \geq R .
$$

Therefore, the function

$$
w_{a, x_{0}}^{+}:=\phi\left(x_{0}\right)+v_{a, x_{0}}+\epsilon
$$

satisfies $w_{a, x_{0}}^{+} \geq \phi$, so that, in particular,

$$
w_{a, x_{0}}^{+} \geq \phi=u_{m} \quad \text { in } \partial K_{m}, \text { for all } m
$$

By taking a larger if necessary, we can also make

$$
w_{a, x_{0}}^{+} \geq u_{m} \quad \text { in } \partial B, \text { for all } m
$$

Then by applying the comparison principle on $B \backslash K_{m}$ we obtain

$$
w_{a, x_{0}}^{+} \geq u_{m} \quad \text { in } B \backslash K_{m}, \text { for all } m
$$

from which follows

$$
w_{a, x_{0}}^{+} \geq u \quad \text { in } B \backslash K
$$

since u_{m} converges to u on $B \backslash K$. Finally, this implies

$$
\limsup _{x \rightarrow x_{0}} u(x) \leq \limsup _{x \rightarrow x_{0}} w_{a, x_{0}}^{+}(x)=\phi\left(x_{0}\right)+\epsilon
$$

and by arbitrariness of ϵ we conclude

$$
\limsup _{x \rightarrow x_{0}} u(x) \leq \phi\left(x_{0}\right) .
$$

By an analogous argument with the subsolution $w_{a, x_{0}}^{-}:=\phi\left(x_{0}\right)-v_{a, x_{0}}-\epsilon$ we can obtain the lower bound

$$
\liminf _{x \rightarrow x_{0}} u(x) \geq \phi\left(x_{0}\right)
$$

concluding the result.

3. Global Hölder Continuity of u.

Assume ϕ is α-Hölder continuous in K, with $\alpha=\frac{p-n}{p-1}$. We will show u is α-Hölder continuous in \mathbb{R}^{n}.

Let $y \in K, R>0$ and $v_{a}=v_{a, y}$ a supersolution in $B_{R}(y) \backslash\{y\}$ as given in Lemma 1. We claim that for all a sufficiently large

$$
\phi(y)-v_{a} \leq u \leq \phi(y)+v_{a} \text { in } B_{R}(y)
$$

for all $y \in K$. For this, putting $C=|\phi|_{\alpha}$, the Höder seminorm of ϕ in K, we have by definition $|\phi(z)-\phi(y)| \leq C|z-y|^{\alpha}$, for all $z \in K$, hence

$$
\phi(y)-C|z-y|^{\alpha} \leq \phi(z) \leq \phi(y)+C|z-y|^{\alpha} \text { for all } z \in K
$$

Now by estimate 2.1 we see that for all a large enough v_{a} satisfies

$$
C|x-y|^{\alpha} \leq v_{a}(x) \text { for all } x \in B_{R}(y)
$$

so that from last inequality it follows

$$
\begin{equation*}
\phi(y)-v_{a} \leq \phi \leq \phi(y)+v_{a} \text { in } K \cap B_{R}(y) . \tag{3.3}
\end{equation*}
$$

Now taking a larger if necessary, by estimate (2.1) we can also ensure that

$$
|u-\phi(y)| \leq 2 \sup |u| \leq v_{a} \text { in } \partial B_{R}(y)
$$

and so

$$
\phi(y)-v_{a} \leq u \leq \phi(y)+v_{a} \text { in } \partial B_{R}(y) .
$$

Along with (3.3), as $\phi=u$ in K, we see the inequality above holds on $\partial\left(B_{R}(y) \backslash K\right)$ so that by the comparison principle it extends to $B_{R}(y) \backslash K$. Notice the parameter a depends only on $|\phi|_{\alpha}$ and $\sup u$.

Now let $x_{0} \in \mathbb{R}^{n} \backslash K$. It is enough to prove Hölder continuity on a neighbourhood of K so we may assume $d\left(x_{0}, K\right)<R$. By the claim we have, in particular for all $y \in B_{R}\left(x_{0}\right) \cap K$,

$$
\phi(y)-v_{a, y}\left(x_{0}\right) \leq u\left(x_{0}\right) \leq \phi(y)+v_{a, y}\left(x_{0}\right)
$$

This inequality gives

$$
u\left(x_{0}\right)-v_{a, y}\left(x_{0}\right) \leq \phi(y) \leq u\left(x_{0}\right)+v_{a, y}\left(x_{0}\right)
$$

and, as $\phi=u$ in K, we get

$$
\begin{equation*}
u\left(x_{0}\right)-v_{a, y}\left(x_{0}\right) \leq u(y) \leq u\left(x_{0}\right)+v_{a, y}\left(x_{0}\right) \text { for all } y \in B_{R}\left(x_{0}\right) \cap K \tag{3.4}
\end{equation*}
$$

Using the upper estimate (2.1) we have for some constant C_{1}

$$
v_{a, y}(x) \leq C_{1}|x-y|^{\alpha} \text { for all } x \in B_{R}(y)
$$

and, in particular,

$$
v_{a, y}\left(x_{0}\right) \leq C_{1}\left|x_{0}-y\right|^{\alpha} .
$$

Now using the lower estimate in (2.1) for the supersolution $v_{a, x_{0}}$ centered at x_{0} we can obtain

$$
C\left|x_{0}-y\right|^{\alpha} \leq v_{a, x_{0}}(y)
$$

and so

$$
v_{a, y}\left(x_{0}\right) \leq \frac{C_{1}}{C} v_{a, x_{0}}(y)
$$

From (3.4) it follows

$$
\begin{equation*}
u\left(x_{0}\right)-\frac{C_{1}}{C} v_{a, x_{0}}(y) \leq u(y) \leq u\left(x_{0}\right)+\frac{C_{1}}{C} v_{a, x_{0}}(y) \tag{3.5}
\end{equation*}
$$

for all $y \in B_{R}(y) \cap K$. Provided that $C_{1} / C>1$, we have that $\frac{C_{1}}{C} v_{a, x_{0}}$ is also a supersolution in $B_{R}\left(x_{0}\right)$ and by the previous choice of a, still $\frac{C_{1}}{C} v_{a, x_{0}} \geq 2 \sup |u|$ in $\partial B_{R}\left(x_{0}\right)$. Therefore, (3.5) holds for all $y \in \partial\left(B_{R}\left(x_{0}\right) \backslash K\right)$ and by the comparison principle it also holds on $B_{R}\left(x_{0}\right) \backslash K$, so we have

$$
u\left(x_{0}\right)-\frac{C_{1}}{C} v_{a, x_{0}}(x) \leq u(x) \leq u\left(x_{0}\right)+\frac{C_{1}}{C} v_{a, x_{0}}(x)
$$

for all $x \in B_{R}\left(x_{0}\right)$. Using again the upper estimate in (2.1) for $v_{a, x_{0}}$ we get

$$
v_{a, x_{0}}(x) \leq C_{1}\left|x-x_{0}\right|^{\alpha} \text { for all } x \in B_{R}\left(x_{0}\right)
$$

which gives

$$
u\left(x_{0}\right)-\frac{C_{1}^{2}}{C}\left|x-x_{0}\right|^{\alpha} \leq u(x) \leq u\left(x_{0}\right)+\frac{C_{1}^{2}}{C}\left|x-x_{0}\right|^{\alpha}
$$

for all $x \in B_{R}\left(x_{0}\right)$, which is the Hölder continuity of u at x_{0}. This concludes the statement as x_{0} is arbitrary and the Hölder seminorm of u is then bounded by C_{1}^{2} / C, independently of x_{0}.

3.2 Proof of Theorem 2

For the proof of Theorem 2, we need the following variants of Lemmas 1 and 2, for the case when f satisfies condition (0.5).

Lemma 1'. Assume $p>n$ and f satisfy the condition (0.5). Then, for any $x_{0} \in S_{2 R}$, $R>1$, there exists a family of radially symmetric supersolutions $\left\{v_{a, x_{0}}\right\}_{a \geq 0}$ of (0.6) in $B_{R}\left(x_{0}\right) \backslash\left\{x_{0}\right\}$ satisfying

$$
\begin{equation*}
\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} a \frac{\left|x-x_{0}\right|^{\alpha}}{\alpha} \leq v_{a}(x) \leq\left(\frac{C_{f}}{n \delta}\right)^{\frac{1}{p-1}}\left(a+R^{-\frac{p-n+\epsilon}{p-1}}\right) \frac{\left|x-x_{0}\right|^{\alpha}}{\alpha} \tag{3.6}
\end{equation*}
$$

for $a \geq 0$, with $\alpha=\frac{p-n}{p-1}$.
Proof. This comes by noting on Lemma 1 that, under hypothesis $(0.5),\|f\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq$ $C_{f} R^{-p-\epsilon}$ and by redefining a to $a R^{-\frac{p+\epsilon}{p-1}}$.

The second improvement concerns about supersolutions defined on the complement of large balls.

Lemma 2'. Assume $p \geq n$ and f satisfy the condition (0.5). Then, for all $R>1$, there exists a family of radially symmetric supersolutions $\left\{v_{a}\right\}_{a \geq 0}$ of (0.6) in $\mathbb{R}^{n} \backslash B_{R}(0)$ satisfying
i) $v_{a}(R)=0$ and $v_{a}(r)$ is increasing in $[R,+\infty)$ for any $a \geq 0$;
ii) v_{a} is unbounded in $[R,+\infty)$ for $a>0$; indeed, there exists $c_{0}=c_{0}\left(n, p, \epsilon, C_{f}, L\right)>$ 0 such that

$$
\begin{gathered}
v_{a}(r) \geq c_{0} a\left(r^{\alpha}-R^{\alpha}\right) \quad \text { for } \quad r \geq R, \quad \text { if } \quad p>n \\
v_{a}(r) \geq c_{0} a(\log r-\log R) \quad \text { for } \quad r \geq R, \quad \text { if } \quad p=n ;
\end{gathered}
$$

iii) v_{0} is bounded in $[R,+\infty)$; indeed, there exists $C_{0}=C_{0}\left(n, p, \epsilon, C_{f}, \delta\right)>0$ such that

$$
v_{0}(r) \leq C_{0}\left(R^{-\frac{\epsilon}{p-1}}-r^{-\frac{\epsilon}{p-1}}\right) \quad \text { for } \quad r \geq R
$$

iv) $v_{a}(r) \rightarrow v_{0}(r)$ as $a \rightarrow 0$ for any $r \in[R,+\infty)$.

Proof. This also follows the same lines of the proof of Lemma 2. In this case, the function g now can be taken as

$$
g(r)=\frac{C_{f}}{r^{p+\epsilon}}, r \geq R
$$

and integrating from R onwards we obtain

$$
v(r)=\int_{R}^{r} \varphi^{-1}\left(\frac{\frac{C_{f}}{p-n+\epsilon}\left(t^{n-p-\epsilon}-R^{n-p-\epsilon}\right)+C}{t^{n-1}}\right) d t
$$

for $r \geq R$, with

$$
C=\left|v^{\prime}(R)\right|^{p-2} A\left(\left|v^{\prime}(R)\right|\right) v^{\prime}(R) .
$$

Putting

$$
C=\frac{C_{f}}{p-n+\epsilon}\left(a^{p-1}+R^{n-p-\epsilon}\right), a \geq 0
$$

it follows

$$
v_{a}(r)=\int_{R}^{r} \varphi^{-1}\left(\frac{\frac{C_{f}}{p-n+\epsilon}\left(t^{n-p-\epsilon}+a^{p-1}\right)}{t^{n-1}}\right) d t
$$

Then using the estimates (2.5) for φ^{-1} we get

$$
\begin{aligned}
v_{a}(r) & \geq\left(\frac{C_{f}}{L(p-n+\epsilon)}\right)^{\frac{1}{p-1}} \int_{R}^{r}\left(t^{n-p-\epsilon}+a^{p-1}\right)^{\frac{1}{p-1}} t^{-\frac{n-1}{p-1}} d t \\
& \geq\left(\frac{C_{f}}{L(p-n+\epsilon)}\right)^{\frac{1}{p-1}} \int_{R}^{r} a t^{-\frac{n-1}{p-1}} d t
\end{aligned}
$$

from which follows

$$
\begin{equation*}
v_{a}(r) \geq\left(\frac{C_{f}}{L(p-n+\epsilon)}\right)^{\frac{1}{p-1}} a\left(r^{\alpha}-R^{\alpha}\right) \tag{3.7}
\end{equation*}
$$

in case $p>n$ and

$$
\begin{equation*}
v_{a}(r) \geq\left(\frac{C_{f}}{L \epsilon}\right)^{\frac{1}{p-1}} a(\log r-\log R) \tag{3.8}
\end{equation*}
$$

if $p=n$. For the upper bound for $a=0$ we have for $p \geq n$

$$
\begin{align*}
v_{0}(r) & \leq\left(\frac{C_{f}}{\delta(p-n+\epsilon)}\right)^{\frac{1}{p-1}} \int_{R}^{r}\left(\frac{t^{n-p-\epsilon}}{t^{n-1}}\right)^{\frac{1}{p-1}} d t \\
& \leq\left(\frac{C_{f}}{\delta(p-n+\epsilon)}\right)^{\frac{1}{p-1}}\left(\frac{p-1}{\epsilon}\right) R^{-\frac{\epsilon}{p-1}} . \tag{3.9}
\end{align*}
$$

To fix some notation, for each $R \geq 1$ we denote $M_{R}=\sup _{S_{R}} u, m_{R}=\inf _{S_{R}} u, S_{R}$ being the sphere of radius R centered at the origin. The oscillation of u on S_{R} is defined as

$$
\underset{S_{R}}{\underset{\operatorname{ssc}}{ }}=M_{R}-m_{R} .
$$

The next result is a kind of extension of estimates obtained in [61] (or Proposition 3 of [3]) for the nonhomogeneous case.

Theorem 8. Let $u \in W_{l o c}^{1, p}\left(\mathbb{R}^{n} \backslash \overline{B_{1}}\right)$ a bounded weak solution of (0.6), with f satisfying condition (0.5). Then, in case $p \geq n$, for all $R \geq R_{0}$,

$$
\begin{equation*}
m_{R}-C_{0} R^{-\frac{\epsilon}{p-1}} \leq u(x) \leq M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}} \quad \text { for } \quad x \in \mathbb{R}^{n} \backslash B_{R}, \tag{3.10}
\end{equation*}
$$

where $C_{0}=\left(\frac{C_{f}}{\delta(p-n+\epsilon)}\right)^{\frac{1}{p-1}}\left(\frac{p-1}{\epsilon}\right)$. In particular, if $R_{0}=1$, we have the following global bound for u :

$$
\inf _{S_{1}} u-C_{0} \leq u \leq \sup _{S_{1}} u+C_{0} .
$$

Proof. Assume with no loss of generality that (0.5) holds for all $|x| \geq 1$. Suppose now that the weak solution u in question satisfies (0.10). For $R \geq 1$, consider the family of radially symmetric supersolutions $\left\{v_{a}\right\}_{a \geq 0}$ given by Lemma 2 . Hence the second property of v_{a} and since u is bounded(or satisfies the properties (0.10) or (0.11)), we obtain for each $a>0$ a $R_{a}>R$ such that

$$
M_{R}+v_{a}(|x|) \geq u(|x|) \quad \text { for all } \quad|x| \geq R_{a} .
$$

Consequently, the function $w_{a}(r):=M_{R}+v_{a}(r), r \geq R$, lies above u on the boundary of the annulus $B_{R_{a}} \backslash B_{R}$. Then, by the comparison principle, $w_{a} \geq u$ on $B_{R_{a}} \backslash B_{R}$, that is, $w_{a} \geq u$ on $\mathbb{R}^{n} \backslash B_{R}$. Then, for $x \in \mathbb{R}^{n} \backslash B_{R}$, the third and fourth properties of $\left\{v_{a}\right\}$ in Lemma 2' imply that

$$
\begin{equation*}
u(x) \leq \lim _{a \rightarrow 0} w_{a}(|x|)=M_{R}+v_{0}(|x|)<M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}} . \tag{3.11}
\end{equation*}
$$

From (3.9), we can see that C_{0} is given by

$$
C_{0}=\left(\frac{C_{f}}{\delta(p-n+\epsilon)}\right)^{\frac{1}{p-1}}\left(\frac{p-1}{\epsilon}\right) .
$$

Analogously, we can prove that $u(x) \geq m_{R}-C_{0} R^{-\frac{\epsilon}{p-1}}$ for $x \in \mathbb{R}^{n} \backslash B_{R}$.

Corollary. Under the hypotheses of the previous Theorem, the limits

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \max _{S_{|x|}} u, \quad \lim _{x \rightarrow \infty} \min _{S_{|x|}} u \tag{3.12}
\end{equation*}
$$

are both finite.

Proof of Theorem 2.

1. Existence of the limit for nonnegative solutions.

Let u be a nonnegative weak solution of (0.7) on $\mathbb{R}^{n} \backslash \overline{B_{1}}$ and set $m=\liminf _{|x| \rightarrow \infty} u$. If $m=+\infty$, there is nothing to prove, so we assume $m<+\infty$. For a given $\varepsilon>0$, there is some $R_{0}>0$ such that

$$
u(x)>m-\varepsilon \text { for all } x \text { such that }|x| \geq R_{0}
$$

so that the function

$$
v=u-m+\varepsilon
$$

is a positive solution on $\mathbb{R}^{n} \backslash B_{R_{0}}$. We pick up a sequence of points $\left(x_{k}\right)$, with $\left|x_{k}\right| \rightarrow \infty$, $R_{0}<\left|x_{k}\right|<\left|x_{k+1}\right|$, such that

$$
u\left(x_{k}\right) \leq m+\epsilon
$$

and, consequently,

$$
\begin{equation*}
v\left(x_{k}\right) \leq 2 \epsilon . \tag{3.13}
\end{equation*}
$$

Now let $R_{k}=\left|x_{k}\right|, S_{R_{k}}=\partial B_{R_{k}}(0)$. By applying the Corollary 2 to v we get

$$
\sup _{S_{R_{k}}} v \leq C\left(\inf _{S_{R_{k}}} v+R_{k}^{-\frac{\epsilon}{p-1}}\right)
$$

for a positive constant C independent of k. Hence, since $R^{-\frac{\epsilon}{p-1}} \rightarrow 0$ as $R \rightarrow \infty$, by (3.13) it follows that

$$
\sup _{S_{R_{k}}} v \leq C \epsilon, \text { for all } k \text { sufficiently large }
$$

and, consequently,

$$
\begin{equation*}
\sup _{\partial A\left(R_{k}, R_{k+1}\right)} \leq C \epsilon, \quad \text { for all } k \text { sufficiently large. } \tag{3.14}
\end{equation*}
$$

We then proceed to bound v on the interior of each annuli with the use of barriers. By Lemma 2', $i i i$), for each k, we have a positive supersolution $v_{0}=v_{0, k}$ in $\mathbb{R}^{n} \backslash \overline{B_{R_{k}}}$ satisfying

$$
v_{0, k} \leq C_{0} R_{k}^{-\frac{\epsilon}{p-1}}
$$

Hence, the function

$$
w_{k}(x):=C \varepsilon+v_{0, k}(x)
$$

where C is the constant from (3.13), is such that, for any natural $l>k, w_{k} \geq v$ in $\partial A\left(R_{k}, R_{l}\right)$. The comparison principle then gives $w_{k} \geq v$ in $A\left(R_{k}, R_{l}\right)$, from which follows the bound

$$
v \leq w_{k} \leq C \varepsilon+R_{k}^{-\frac{\epsilon}{p-1}} \quad \text { in } \mathbb{R}^{n} \backslash \overline{B_{R_{k}}}
$$

and, by redefining the constant C,

$$
v(x) \leq C \epsilon, \text { for all }|x| \text { sufficiently large. }
$$

Then, by definition of v, we have

$$
u(x)-m \leq C \epsilon, \text { for all }|x| \text { sufficiently large },
$$

and by arbitrariness of ϵ it follows

$$
\limsup _{|x| \rightarrow \infty} u \leq m
$$

which proves $\lim _{|x| \rightarrow \infty} u(x)=m$.

Now we turn to the statement on the convergence rate estimate for the case $p>n$. The following Lemma establishes some control of the oscillation of u.

Lemma 3. Let $u \in C^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ a bounded solution of (0.7) in $\mathbb{R}^{n} \backslash B_{1}$ and assume f satisfy condition (0.5) and $p>n$. Then, there are constants $0<C<1$ and $K \geq 0$, such that

$$
\begin{equation*}
\underset{S_{2 R}}{o s c} u \leq C\left(\underset{S_{R}}{o s c} u+K \cdot R^{-\frac{\epsilon}{p-1}}\right) \tag{3.15}
\end{equation*}
$$

for all $R \geq 1$.
Proof. Given $R \geq 1$, let $x_{1} \in S_{2 R}$ such that $u\left(x_{1}\right)=m_{2 R}$. For $x^{\prime} \in S_{2 R}$, let $\gamma \subset S_{2 R}$ be an arc of circle joining x_{1} to x^{\prime}. By a recursive process starting at x_{1}, we obtain estimates for u on successive balls with centers in γ, up to x^{\prime}.

In the first step, we set $u_{1}=u\left(x_{1}\right)$ and define for $x \in B_{R}\left(x_{1}\right)$

$$
w_{1}(x)=w_{1}(r)=u_{1}+v_{a_{1}, x_{1}}(r), \quad r=\left|x-x_{1}\right| \leq R,
$$

where $v_{a_{1}, x_{1}}$ is a supersolution in $B_{R}\left(x_{1}\right)$ given by Lemma 3.2 . We will chose a_{1} so that

$$
w_{1}(R) \geq M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}} .
$$

For this, using the lower estimate for $v_{a_{1}, x_{1}}$ in Lemma 3.2, it is sufficient to require

$$
u_{1}+\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} a_{1} \frac{R^{\alpha}}{\alpha} \geq M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}
$$

where solving for a_{1} we get

$$
a_{1} \geq \alpha R^{-\alpha}\left(\frac{C_{f}}{n L}\right)^{-\frac{1}{p-1}}\left(M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}-u_{1}\right)
$$

Hence, putting

$$
\begin{equation*}
a_{1}=\alpha R^{-\alpha}\left(\frac{C_{f}}{n L}\right)^{-\frac{1}{p-1}}\left(M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}-u_{1}\right) \tag{3.16}
\end{equation*}
$$

we have $w_{1} \geq u$ on $\partial B_{R}\left(x_{1}\right)$ so that, by the comparison principle,

$$
\begin{equation*}
w_{1} \geq u \quad \text { on } B_{R}\left(x_{1}\right) . \tag{3.17}
\end{equation*}
$$

Next, we wish to find some radius $R_{1} \leq R$ such that

$$
w_{1}(r) \leq M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}} \text { for all } r \leq R_{1} .
$$

In view of the upper estimate in Lemma 1 ' we have

$$
\begin{equation*}
w_{1}(r)=u_{1}+v_{a_{1}, x_{1}}(r) \leq u_{1}+\left(\frac{C_{f}}{n \delta}\right)^{\frac{1}{p-1}}\left(a_{1}+R^{-\frac{p-n+\epsilon}{p-1}}\right) \frac{r^{\alpha}}{\alpha} . \tag{3.18}
\end{equation*}
$$

Hence, it is enough to find $R_{1} \leq R$ such that

$$
\begin{gather*}
u_{1}+\left(\frac{C_{f}}{n \delta}\right)^{\frac{1}{p-1}}\left(a_{1}+R^{-\frac{p-n+\epsilon}{p-1}}\right) \frac{R_{1}^{\alpha}}{\alpha} \tag{3.19}\\
\leq M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}} .
\end{gather*}
$$

Substituting the expression of a_{1} and solving for R_{1} gives

$$
R_{1}<\left(\frac{\delta}{L}\right)^{\frac{1}{(p-1) \alpha}} R=\left(\frac{\delta}{L}\right)^{\frac{1}{p-n}} R
$$

so we take

$$
\begin{equation*}
R_{1}=\lambda R, \quad \lambda=\frac{1}{2}\left(\frac{\delta}{L}\right)^{\frac{1}{p-n}} . \tag{3.20}
\end{equation*}
$$

To the next step, motivated by (3.18), we define

$$
u_{2}=u_{1}+\left(\frac{C_{f}}{n \delta}\right)^{\frac{1}{p-1}}\left(a_{1}+R^{-\frac{p-n+\epsilon}{p-1}}\right) \frac{(\lambda R)^{\alpha}}{\alpha}
$$

which is the upper bound for w_{1} in $B_{\lambda R}\left(x_{1}\right)$. We then take

$$
x_{2} \in \gamma \cap \partial B_{\lambda R}\left(x_{1}\right)
$$

the closest point to x^{\prime} in this intersection and define as before

$$
w_{2}(r)=u_{2}+v_{a_{2}, x_{2}}(r), \text { for } r=\left|x-x_{2}\right| \leq R
$$

with $v_{a_{2}, x_{2}}$ being the supersolution in $B_{R}\left(x_{2}\right)$ given in Lemma 3.2. Analogously to the previous step, the choice

$$
a_{2}=\alpha R^{-\alpha}\left(\frac{C_{f}}{n L}\right)^{-\frac{1}{p-1}}\left(M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}-u_{2}\right)
$$

ensures that

$$
w_{2} \geq u \text { on } B_{R}\left(x_{2}\right) .
$$

Also, the same calculation carried out in the first step shows

$$
w_{2}(r)<M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}}, \text { for } r \leq \lambda R
$$

for λ already defined in (3.20). Next we take

$$
u_{3}=u_{2}+\left(\frac{C_{f}}{n \delta}\right)^{\frac{1}{p-1}}\left(a_{2}+R^{-\frac{p-n+\epsilon}{p-1}}\right) \frac{(\lambda R)^{\alpha}}{\alpha}
$$

and

$$
x_{3} \in \gamma \cap \partial B_{\lambda R}\left(x_{2}\right)
$$

the closest point to x^{\prime} in this intersection, and repeat the procedure. After $k-1$ steps, we reach at some point $x_{k} \in \gamma$, having defined

$$
\begin{equation*}
u_{k}=u_{k-1}+\left(\frac{C_{f}}{n \delta}\right)^{\frac{1}{p-1}}\left(a_{k-1}+R^{-\frac{p-n+\epsilon}{p-1}}\right) \frac{(\lambda R)^{\alpha}}{\alpha} \tag{3.21}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{k-1}=\alpha R^{-\alpha}\left(\frac{C_{f}}{n L}\right)^{-\frac{1}{p-1}}\left(M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}-u_{k-1}\right) \tag{3.22}
\end{equation*}
$$

and

$$
u \leq u_{k}<M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}} \quad \text { in } B_{\lambda R}\left(x_{k}\right)
$$

From (3.21), (3.22), we obtain the recurrence

$$
\begin{aligned}
u_{k} & =u_{k-1}\left(1-\lambda^{\alpha}\left(\frac{L}{\delta}\right)^{\frac{1}{p-1}}\right)+ \\
& +\lambda^{\alpha}\left(\frac{L}{\delta}\right)^{\frac{1}{p-1}}\left(M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}}\right) \\
u_{1} & =m_{2 R}
\end{aligned}
$$

from which we determine

$$
\begin{aligned}
& u_{k}=M_{R}+C_{b} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}} \\
& -\left(M_{R}+C_{b} R^{-\frac{\epsilon}{p-1}}-m_{2 R}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}}\right)\left(1-\lambda^{\alpha}\left(\frac{L}{\delta}\right)^{\frac{1}{p-1}}\right)^{k-1}
\end{aligned}
$$

(Recall the solution to the recurrence relation

$$
a u_{k}+b u_{k-1}+c=0
$$

is given by

$$
\left.u_{k}=-\frac{c}{a+b}+\left(u_{1}+\frac{c}{a+b}\right)\left(-\frac{b}{a}\right)^{k-1} .\right)
$$

We stop the process when γ is fully covered by the balls $B_{\lambda R}\left(x_{k}\right)$, which happens when the point x_{k} reaches a distance to x^{\prime} less than λR. As the length of γ is less than $2 R \pi$ and each ball covers a segment over γ with length greater than λR, we see the number l of balls needed to cover γ is independent of R and always less than $2 \pi / \lambda+1$. Now, since $x^{\prime} \in B_{\lambda R}\left(x_{l}\right)$ and $u \leq w_{l} \leq u_{l+1}$ in $B_{\lambda R}\left(x_{l}\right)$ it follows that

$$
\begin{aligned}
u\left(x^{\prime}\right) \leq & u_{l+1} \\
= & M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}}+ \\
& -\left(M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}-m_{2 R}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}}\right) c
\end{aligned}
$$

for

$$
c=\left(1-\lambda^{\alpha}\left(\frac{L}{\delta}\right)^{\frac{1}{p-1}}\right)^{l}=\left(\frac{1}{2}\right)^{l}<1 .
$$

Being x^{\prime} arbitrary, we have $M_{2 R} \leq u_{l+1}$ we have

$$
\begin{aligned}
& M_{2 R}-m_{2 R} \\
\leq & \left(M_{R}+C_{0} R^{-\frac{\epsilon}{p-1}}-m_{2 R}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}}\right)(1-c)
\end{aligned}
$$

Then using that $m_{2 R} \geq m_{R}-C_{0} R^{-\frac{\epsilon}{p-1}}$, by Proposition 8 , it comes

$$
\begin{aligned}
& M_{2 R}-m_{2 R} \\
\leq & \left(M_{R}-m_{R}+2 C_{0} R^{-\frac{\epsilon}{p-1}}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}} R^{-\frac{\epsilon}{p-1}}\right)(1-c)
\end{aligned}
$$

that is

$$
\begin{equation*}
\underset{S_{2 R}}{\operatorname{osc} u} \leq C\left(\underset{S_{R}}{\operatorname{osc} u} u+K R^{-\frac{\epsilon}{p-1}}\right) \tag{3.23}
\end{equation*}
$$

for

$$
C=1-c, \quad K=2 C_{0}+\frac{1}{\alpha}\left(\frac{C_{f}}{n L}\right)^{\frac{1}{p-1}}
$$

2. Proof of (0.9).

By iteration of inequality (3.23) we obtain

$$
\underset{S_{2} k_{R}}{\operatorname{osc} u} \leq C^{k}\left(\underset{S_{R}}{\operatorname{osc} u} u+K R^{-\frac{\epsilon}{p-1}} \sum_{j=1}^{k}\left(\frac{2^{-\frac{\epsilon}{p-1}}}{C}\right)^{j}\right) .
$$

Here we admit $C>2^{-\frac{\epsilon}{p-1}}$, redefining C if this is not the case. Then we have

$$
\sum_{j=1}^{k}\left(\frac{2^{-\frac{\epsilon}{p-1}}}{C}\right)^{j} \leq \frac{1}{1-\frac{2^{-\frac{\epsilon}{p-1}}}{C}} \leq \frac{1}{C-2^{-\frac{\epsilon}{p-1}}}
$$

and we get

$$
\begin{equation*}
\underset{S_{2^{k} R}}{\operatorname{osc} u} \leq C^{k}\left(\underset{S_{R}}{\operatorname{osc} u} u+\frac{K R^{-\frac{\epsilon}{p-1}}}{C-2^{-\frac{\epsilon}{p-1}}}\right) \quad \text { for all } \quad R \geq 1 . \tag{3.24}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\underset{S_{2^{k}}}{\operatorname{osc}} u \leq C^{k}\left(\underset{S_{1}}{\underset{\operatorname{ssc}}{ }} u+\frac{K}{C-2^{-\frac{\epsilon}{p-1}}}\right) \tag{3.25}
\end{equation*}
$$

Now, let $x \in \mathbb{R}^{n} \backslash B_{1}$ and let k the integer such that

$$
\begin{equation*}
2^{k} \leq|x| \leq 2^{k+1} \tag{3.26}
\end{equation*}
$$

From Theorem 8 and our assumption that $C>2^{-\frac{\epsilon}{p-1}}$, we obtain

$$
\begin{aligned}
\underset{S_{|x|}}{o s c} u & \leq \underset{S_{2 k}}{o s c u} u+2 C_{0}\left(2^{k}\right)^{-\frac{\epsilon}{p-1}} \\
& \leq{\underset{S_{2} k}{s c} u+2 C_{0} C^{k}}^{o s}{ }^{\text {os. }}
\end{aligned}
$$

and then, by (3.25),

$$
\begin{equation*}
\underset{S_{|x|}}{\operatorname{osc} c} \leq\left(\underset{S_{1}}{\operatorname{osc} u}+\frac{2 K}{C-2^{-\frac{\epsilon}{p-1}}}+2 C_{0}\right) C^{k} \tag{3.27}
\end{equation*}
$$

Now (3.26) also gives

$$
\log |x| \leq(k+1) \log 2, \quad \text { hence } \quad k \geq \frac{\log |x|}{\log 2}-1
$$

Therefore, as $C<1$, we have

$$
C^{k} \leq \frac{C^{\frac{\log |x|}{\log 2}}}{C}=\frac{\left(e^{\log C}\right)^{\frac{\log |x|}{\log 2}}}{C}=\frac{\left\lvert\, x x^{\frac{\log C}{\log 2}}\right.}{C}
$$

and then, by (3.2), if follows

$$
\underset{S_{|x|}}{o s c} u \leq \frac{1}{C}\left({\underset{S}{1}}_{o s c}\right.
$$

We rewrite this inequality as

$$
\begin{equation*}
\underset{S_{|x|}}{\operatorname{osc}_{\mid x}} \leq C|x|^{-\tilde{\beta}} \tag{3.28}
\end{equation*}
$$

where we have redefined the constant C and taken $\tilde{\beta}=-\frac{\log C}{\log 2}$.

Finally, we can conclude (0.9) by noting that, by Theorem 8 , for any $x \in \mathbb{R}^{n} \backslash B_{1}$,

$$
m_{|x|}-C_{0}|x|^{-\frac{\epsilon}{p-1}} \leq \ell \leq M_{|x|}+C_{0}|x|^{-\frac{\epsilon}{p-1}}
$$

which implies

$$
\begin{equation*}
|u(x)-\ell| \leq \underset{S_{|x|}}{\operatorname{osc}^{\prime} u}+C_{0}|x|^{-\frac{\epsilon}{p-1}} \tag{3.29}
\end{equation*}
$$

Hence, using (3.28), it follows the existence of constants $C>0, \beta=\min \left\{\tilde{\beta}, \frac{\epsilon}{p-1}\right\}>0$ such that (0.9) holds.

Chapter 4

RADIALLY SYMMETRIC SOLUTIONS OF THE FRACTIONAL p-LAPLACIAN EQUATION

In this chapter we study how the (s, p)-laplacian acts on the functions $x \mapsto|x|^{\alpha}$, $\alpha \neq 0$, and $x \mapsto \log |x|$, for $x \in \mathbb{R}^{n} \backslash\{0\}$.

Recall we have

$$
\begin{equation*}
(-\Delta)_{p}^{s}|\cdot|^{\alpha}(x):=\int_{\mathbb{R}^{n}} \frac{\left.| | x\right|^{\alpha}-\left.|y|^{\alpha}\right|^{p-2}\left(|x|^{\alpha}-|y|^{\alpha}\right)}{|x-y|^{n+s p}} d y \tag{4.1}
\end{equation*}
$$

where $s \in(0,1)$ and $p \in(1,+\infty)$. At infinity, this integrand has an order of growth of $|y|^{\alpha(p-1)-n-s p}$, being integrable at infinity only if $\alpha<\frac{s p}{p-1}$. Besides the natural singularity at x, when $\alpha<0$, the integrand has near the origin an order of growth of $|y|^{\alpha(p-1)}$, hence being integrable at 0 only if $\alpha>-\frac{n}{p-1}$. Therefore, the (s, p)-laplacian of the function $|\cdot|^{\alpha}$ is well defined if, and only if, $\alpha \in\left(-\frac{n}{p-1}, \frac{s p}{p-1}\right)$.

Proposition 3. $(-\Delta)_{p}^{s}|\cdot|^{\alpha}$ and $\log |\cdot|$ are radially symmetric functions and satisfy, for all $\lambda>0, x \in \mathbb{R}^{n} \backslash\{0\}$,

$$
\begin{align*}
& (-\Delta)_{p}^{s}|\cdot|^{\alpha}(\lambda x)=\lambda^{\alpha(p-1)-s p}(-\Delta)_{p}^{s}|\cdot|^{\alpha}(x) \tag{4.2}\\
& (-\Delta)_{p}^{s} \log |\cdot|(\lambda x)=\lambda^{-s p}(-\Delta)_{p}^{s} \log |\cdot|(x) \tag{4.3}
\end{align*}
$$

Proof. For the radial symmetry, we have for any rotation $R \in S O(n)$,

$$
\begin{aligned}
(-\Delta)_{p}^{s}|\cdot|^{\alpha}(R x) & =\int_{\mathbb{R}^{n}} \frac{\left.| | R x\right|^{\alpha}-\left.|y|^{\alpha}\right|^{p-2}\left(|R x|^{\alpha}-|y|^{\alpha}\right)}{|R x-y|^{n+s p}} d y \\
& =\int_{\mathbb{R}^{n}} \frac{\left.| | R x\right|^{\alpha}-\left.|R w|^{\alpha}\right|^{p-2}\left(|R x|^{\alpha}-|R w|^{\alpha}\right)}{|R x-R w|^{n+s p}} d w \\
& =\int_{\mathbb{R}^{n}} \frac{\left.| | x\right|^{\alpha}-\left.|w|^{\alpha}\right|^{p-2}\left(|x|^{\alpha}-|w|^{\alpha}\right)}{|x-w|^{n+s p}} d w \\
& =(-\Delta)_{p}^{s}|\cdot|^{\alpha}(x)
\end{aligned}
$$

where we have used the change o variables $y=R w, d y=d w$. An analogous calculation can be done with $\log |\cdot|$. For (4.2), we have

$$
\begin{align*}
(-\Delta)_{p}^{s}|\cdot|^{\alpha}(\lambda x) & =\int_{\mathbb{R}^{n}} \frac{\left.| | \lambda x\right|^{\alpha}-\left.|y|^{\alpha}\right|^{p-2}\left(|\lambda x|^{\alpha}-|y|^{\alpha}\right)}{|\lambda x-y|^{n+s p}} d y \\
& =\int_{\mathbb{R}^{n}} \frac{\left.| | \lambda x\right|^{\alpha}-\left.|\lambda w|^{\alpha}\right|^{p-2}\left(|\lambda x|^{\alpha}-|\lambda w|^{\alpha}\right)}{|\lambda x-\lambda w|^{n+s p}} \lambda^{n} d w \tag{4.4}\\
& =\int_{\mathbb{R}^{n}} \lambda^{\alpha(p-1)-s p} \frac{\left.| | x\right|^{\alpha}-\left.|w|^{\alpha}\right|^{p-2}\left(|x|^{\alpha}-|w|^{\alpha}\right)}{|x-w|^{n+s p}} d w \\
& =\lambda^{\alpha(p-1)-s p}(-\Delta)_{p}^{s}|\cdot|^{\alpha}(x)
\end{align*}
$$

where the second equality comes by the change of variables $y=\lambda w, d y=\lambda^{n} w$. The same way we find

$$
\begin{align*}
(-\Delta)_{p}^{s} \log |\cdot|(\lambda x) & =\int_{\mathbb{R}^{n}} \frac{|\log | \lambda x|-\log | y| |^{p-2}(\log |\lambda x|-\log |y|)}{|\lambda x-y|^{n+s p}} d y \\
& =\int_{\mathbb{R}^{n}} \frac{|\log | x|-\log | w| |^{p-2}(\log |x|-\log |w|)}{\lambda^{n+s p}|x-w|^{n+s p}} \lambda^{n} d w \tag{4.5}\\
& =\lambda^{-s p}(-\Delta)_{p}^{s} \log |\cdot|(x)
\end{align*}
$$

In particular, Proposition 3 gives for all $x \in \mathbb{R}^{n} \backslash\{0\}$

$$
\begin{align*}
& (-\Delta)_{p}^{s}|\cdot|^{\alpha}(x)=|x|^{\alpha(p-1)-s p}(-\Delta)_{p}^{s}|\cdot|^{\alpha}\left(\frac{x}{|x|}\right)=|x|^{\alpha(p-1)-s p}(-\Delta)_{p}^{s}|\cdot|^{\alpha}\left(e_{1}\right) \tag{4.6}\\
& (-\Delta)_{p}^{s} \log |\cdot|(x)=|x|^{-s p}(-\Delta)_{p}^{s} \log |\cdot|\left(e_{1}\right)
\end{align*}
$$

where we have taken by choice the unit vector $e_{1} \in \mathbb{R}^{n}$.

Proposition 4. Let $e_{1} \in \mathbb{R}^{n}$ the unit vector. Then

$$
\begin{equation*}
(-\Delta)_{p}^{s}|\cdot|^{\alpha}\left(e_{1}\right)=\int_{B_{1}}\left(1-|y|^{-n+s p-\alpha(p-1)}\right) \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y \tag{4.7}
\end{equation*}
$$

Proof. Let $\mathcal{C} B_{1}$ the complement of B_{1} in \mathbb{R}^{n}. We have

$$
\begin{align*}
(-\Delta)_{p}^{s}|\cdot|^{\alpha}\left(e_{1}\right)= & \lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{n} \backslash B_{\epsilon}\left(e_{1}\right)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y \\
= & \lim _{\epsilon \rightarrow 0}\left(\int_{B_{1} \backslash B_{\epsilon}\left(e_{1}\right)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y+\right. \tag{4.8}\\
& \left.\quad+\int_{\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y\right) .
\end{align*}
$$

We plan to change variables in the last integral using the inversion through ∂B_{1} in \mathbb{R}^{n}, namely, the mapping $T: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ defined by $T(w):=|w|^{-2} w . T$ is actually an involution that maps the interior of $B_{1} \backslash\{0\}$ onto $\mathcal{C} B_{1}$ while keeps fixed the points of ∂B_{1}.

Making the change of variables $y=T(w)=|w|^{-2} w, d y=|w|^{-2 n} d w$, for $w \in$ $T^{-1}\left(\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right)=T\left(\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right)$, we get

$$
\begin{align*}
& \int_{\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y \\
& =\int_{T\left(\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right)} \frac{\left|1-|w|^{-\alpha}\right|^{p-2}\left(1-|w|^{-\alpha}\right)}{\left|e_{1}-|w|^{-2} w\right|^{n+s p}}|w|^{-2 n} d w \\
& =\int_{T\left(B_{1}\right)} \frac{\left.|w|^{-\alpha(p-2)}| | w\right|^{\alpha}-\left.1\right|^{p-2}|w|^{-\alpha}\left(|w|^{\alpha}-1\right)}{|w|^{-(n+s p)}| | w e_{1}-\left.|w|^{-1} w\right|^{n+s p}}|w|^{-2 n} d w \tag{4.9}\\
& T\left(C B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right) \\
& =\int|w|^{-n+s p-\alpha(p-1)} \frac{\left.| | w\right|^{\alpha}-\left.1\right|^{p-2}\left(|w|^{\alpha}-1\right)}{\left|w-e_{1}\right|^{n+s p}} d w \text {, } \\
& T\left(C B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right)
\end{align*}
$$

where for the last equality we have used the identity

$$
\begin{equation*}
\left||w| e_{1}-|w|^{-1} w\right|^{2}=|w|^{2}-2\langle | w\left|e_{1},|w|^{-1} w\right\rangle+1=|w|^{2}-2\left\langle e_{1}, w\right\rangle+1=\left|e_{1}-w\right|^{2} . \tag{4.10}
\end{equation*}
$$

Now about $T\left(\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right)$ we claim

$$
\begin{equation*}
\left(B_{1} \backslash\{0\}\right) \backslash B_{\epsilon}\left(e_{1}\right) \subseteq T\left(\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right) \subseteq\left(B_{1} \backslash\{0\}\right) \backslash B_{\frac{\epsilon}{1+\epsilon}}\left(e_{1}\right) \tag{4.11}
\end{equation*}
$$

To confirm this, note that, for any $y \neq 0$,

$$
\begin{align*}
\left|T y-e_{1}\right|=\left||y|^{-2} y-e_{1}\right| & =\left.|y|^{-1}| | y\right|^{-1} y-|y| e_{1} \mid \tag{4.12}\\
& =|T y|\left|y-e_{1}\right|,
\end{align*}
$$

by using $|y|^{-1}=|T y|$ and (4.10). Then, as we always have $|T y| \geq 1-\left|T y-e_{1}\right|$, it follows that

$$
\begin{equation*}
\left|T y-e_{1}\right| \geq \frac{\left|y-e_{1}\right|}{1+\left|y-e_{1}\right|} \tag{4.13}
\end{equation*}
$$

In particular, for $y \in \mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)$ we get

$$
\begin{equation*}
\left|T y-e_{1}\right| \geq \frac{\epsilon}{1+\epsilon} \tag{4.14}
\end{equation*}
$$

which proves the second inclusion in (4.11). Still, for $w \in\left(B_{1} \backslash\{0\}\right) \backslash B_{\epsilon}\left(e_{1}\right)$, (4.12) gives

$$
\begin{equation*}
\left|T w-e_{1}\right|=|w|^{-1}\left|w-e_{1}\right| \geq \epsilon \tag{4.15}
\end{equation*}
$$

Hence

$$
T\left(\left(B_{1} \backslash\{0\}\right) \backslash B_{\epsilon}\left(e_{1}\right)\right) \subseteq \mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)
$$

which is equivalent to the first inclusion of (4.11) and proves the claim.
Now putting

$$
\begin{equation*}
\Gamma_{\epsilon}:=T\left(\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right) \cap B_{\epsilon}\left(e_{1}\right) \tag{4.16}
\end{equation*}
$$

by the claim, we have the disjoint union

$$
T\left(\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)\right)=\left(\left(B_{1} \backslash\{0\}\right) \backslash B_{\epsilon}\left(e_{1}\right)\right) \cup \Gamma_{\epsilon} .
$$

Hence, (4.9) writes

$$
\begin{align*}
& \quad \int_{\mathcal{C} B_{1} \backslash B_{\epsilon}\left(e_{1}\right)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y \\
& =\int_{B_{1} \backslash B_{\epsilon}\left(e_{1}\right)}|w|^{-n+s p-\alpha(p-1)} \frac{\left.| | w\right|^{\alpha}-\left.1\right|^{p-2}\left(|w|^{\alpha}-1\right)}{\left|w-e_{1}\right|^{n+s p}} d w+ \tag{4.17}\\
& \quad+\int_{\Gamma_{\epsilon}}|w|^{-n+s p-\alpha(p-1)} \frac{\left.| | w\right|^{\alpha}-\left.1\right|^{p-2}\left(|w|^{\alpha}-1\right)}{\left|w-e_{1}\right|^{n+s p}} d w
\end{align*}
$$

which taken to (4.8) yields

$$
\begin{align*}
& (-\Delta)_{p}^{s}|\cdot|^{\alpha}\left(e_{1}\right) \\
= & \lim _{\epsilon \rightarrow 0}\left(\int_{B_{1} \backslash B_{\epsilon}\left(e_{1}\right)}\left(1-|y|^{-n+s p-\alpha(p-1)}\right) \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y+\right. \tag{4.18}\\
& \quad+\int_{\Gamma_{\epsilon}}|y|^{-n+s p-\alpha(p-1)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(|y|^{\alpha}-1\right)}{\left|e_{1}-y\right|^{n+s p}} d y
\end{align*} \quad .
$$

We claim

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{\Gamma_{\epsilon}}|y|^{-n+s p-\alpha(p-1)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(|y|^{\alpha}-1\right)}{\left|e_{1}-y\right|^{n+s p}} d y=0 . \tag{4.19}
\end{equation*}
$$

For this, notice that, by (4.11),

$$
\begin{equation*}
\Gamma_{\epsilon} \subseteq A\left(\frac{\epsilon}{1+\epsilon}, \epsilon\right)\left(e_{1}\right) \tag{4.20}
\end{equation*}
$$

so we have

$$
\begin{align*}
& \left.\left.\left|\int_{\Gamma_{\epsilon}}\right| y\right|^{-n+s p-\alpha(p-1)} \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(|y|^{\alpha}-1\right)}{\left|e_{1}-y\right|^{n+s p}} d y \right\rvert\, \\
\leq & \int_{A\left(\frac{\epsilon}{1+\epsilon}, \epsilon\right)\left(e_{1}\right)}|y|^{-n+s p-\alpha(p-1)} \frac{\left|1-|y|^{\alpha}\right|^{p-1}}{\left|e_{1}-y\right|^{n+s p}} d y . \tag{4.21}
\end{align*}
$$

As Γ_{ϵ} is far from the origin, we can clearly bound $|y|^{-n+s p-\alpha(p-1)}$ by a constant. Moreover, using that $x \mapsto|x|^{\alpha}$ is a locally Lipschitz function in $\mathbb{R}^{n} \backslash\{0\}$, we can estimate for some constant $C>0$ independent of ϵ

$$
\left||y|^{\alpha}-1\right| \leq C\left|y-e_{1}\right|, \text { for all } y \in B_{\epsilon}\left(e_{1}\right)
$$

Hence it follows

$$
\begin{align*}
\int_{A\left(\frac{\epsilon}{1+\epsilon}, \epsilon\right)\left(e_{1}\right)}|y|^{-n+s p-\alpha(p-1)} \frac{\left|1-|y|^{\alpha}\right|^{p-1}}{\left|e_{1}-y\right|^{n+s p}} d y & \leq C \int_{A\left(\frac{\epsilon}{1+\epsilon}, \epsilon\right)\left(e_{1}\right)}\left|e_{1}-y\right|^{p-1-n-s p} d y \tag{4.22}\\
& \leq C \int_{\frac{\epsilon}{1+\epsilon}} r^{(1-s) p-2} d r
\end{align*}
$$

with the constant C being appropriately redefined. Now in case $(1-s) p-2=-1$,

$$
\int_{\frac{\epsilon}{1+\epsilon}}^{\epsilon} r^{(1-s) p-2} d r=\log (1+\epsilon) \rightarrow 0 \text { with } \epsilon \rightarrow 0
$$

If $(1-s) p-2>-1$,

$$
\int_{\frac{\epsilon}{1+\epsilon}}^{\epsilon} r^{(1-s) p-2} d r=C\left(\epsilon^{(1-s) p-1}-\left(\frac{\epsilon}{1+\epsilon}\right)^{(1-s) p-1}\right) \rightarrow 0 \text { with } \epsilon \rightarrow 0
$$

and, if $(1-s) p-2<-1$,

$$
\int_{\frac{\epsilon}{1+\epsilon}}^{\epsilon} r^{(1-s) p-2} d r=C \frac{(1+\epsilon)^{-(1-s) p+1}-1}{\epsilon^{-(1-s) p+1}} \leq C \epsilon^{(1-s) p} \rightarrow 0 \text { with } \epsilon \rightarrow 0
$$

proving the claim.

We then have from (4.18)

$$
(-\Delta)_{p}^{s}|\cdot|^{\alpha}\left(e_{1}\right)=\lim _{\epsilon \rightarrow 0} \int_{B_{1} \backslash B_{\epsilon}\left(e_{1}\right)}\left(1-|y|^{-n+s p-\alpha(p-1)}\right) \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} d y
$$

and to finish the proof we note again that by the Lipschitz property on a neighbourhood of e_{1},

$$
\left|\left(1-|y|^{-n+s p-\alpha(p-1)}\right) \frac{\left|1-|y|^{\alpha}\right|^{p-2}\left(1-|y|^{\alpha}\right)}{\left|e_{1}-y\right|^{n+s p}} \underset{B_{1} \backslash B_{\epsilon}\left(e_{1}\right)}{\chi}(y)\right| \leq C\left|e_{1}-y\right|^{(1-s) p-n}
$$

for some constant C independent of ϵ. Now $y \mapsto\left|e_{1}-y\right|^{(1-s) p-n}$ is integrable in a neighbourhood of e_{1}, hence the limit is finite, proving (4.7).

Theorem 3 can now be easily derived from Propositions 3 and 4 , in case $s p \neq n$. In case $s p=n$, a similar calculation as carried out in Proposition 4, with $\log |\cdot|$, shows it solves the equation.

We remark that for other exponents $\alpha \neq 0$, (4.7) shows the sign of $(-\Delta)_{p}^{s}|\cdot|{ }^{\alpha}$ is determined by the sign of the product

$$
\left(1-|y|^{-n+s p-\alpha(p-1)}\right)\left(1-|y|^{\alpha}\right) .
$$

By inspection on each case of α we can further state:

Theorem 3'.

$$
\begin{align*}
& \text { If } s p<n,(-\Delta)_{p}^{s}|\cdot|^{\alpha} \begin{cases}<0, & \text { for } \alpha<\frac{s p-n}{p-1}<0 \text { or } \alpha>0 \\
=0, & \text { for } \alpha=0 \text { or } \alpha=\frac{s p-n}{p-1} \\
>0, & \text { for } \frac{s p-n}{p-1}<\alpha<0 .\end{cases} \tag{4.23}\\
& \text { If } s p>n, \quad(-\Delta)_{p}^{s}|\cdot|^{\alpha} \begin{cases}<0, & \text { for } \alpha<0 \text { or } 0<\frac{s p-n}{p-1}<\alpha \\
=0, & \text { for } \alpha=0 \text { or } \alpha=\frac{s p-n}{p-1} \\
>0, & \text { for } 0<\alpha<\frac{s p-n}{p-1} .\end{cases} \tag{4.24}
\end{align*}
$$

Chapter 5

EXISTENCE THEOREM FOR THE EXTERIOR DIRICHLET PROBLEM FOR THE FRACTIONAL p-LAPLACIAN

The existence of solutions of the Dirichlet problem on bounded domains for operators of fractional p-laplacian type was addressed with great generality in [27, Theorem 17], from where we can state a result as follows.

Theorem. Let $\Omega \Subset \Omega^{\prime}$ bounded open sets in \mathbb{R}^{n} and assume Ω has Lipschitz regularity. Suppose $g \subset C\left(\Omega^{\prime}\right) \cap L_{s p}^{p-1}\left(\mathbb{R}^{n}\right)$. Then there is a unique weak solution of $(-\Delta)_{p}^{s} u=0$ in Ω, which is continuous in Ω^{\prime} and has boundary values g on $\mathbb{R}^{n} \backslash \Omega$.

On the original theorem, the assumption concerning the regularity of Ω is in fact weaker than Lipschitz regularity. It is assumed a measure density condition on $\mathbb{R}^{n} \backslash \Omega$, requiring the existence of $r_{0}>0$ and $\delta_{\Omega} \in(0,1)$ such that, for every $x_{0} \in \partial \Omega$,

$$
\begin{equation*}
\inf _{0<r<r_{0}} \frac{\left|\left(\mathbb{R}^{n} \backslash \Omega\right) \cap B_{r}\left(x_{0}\right)\right|}{\left|B_{r}\left(x_{0}\right)\right|} \geq \delta_{\Omega} \tag{5.1}
\end{equation*}
$$

We make use of this result to build the solution.

Proof of Theorem 4.

The uniqueness of bounded solutions is a direct consequence of the nonlocal comparison principle in [10, Theorem 3.3], presented in Preliminaries. For the existence part, we split the proof in the following steps.

1. Construction of a bounded solution u.

We start by considering a decreasing sequence of smooth compact sets K_{m} satisfying
i) $K \Subset K_{m+1} \Subset K_{m}$
ii) $\operatorname{dist}\left(\partial K, \partial K_{m}\right) \rightarrow 0$.

Taking some $R_{0}>0$ such that $K_{m} \Subset B_{R_{0}}$, we continuously extend g to the whole \mathbb{R}^{n}, keeping fixed $\sup _{K} g$ and making $g=0$ in $\mathbb{R}^{n} \backslash B_{R_{0}}$. Then taking an increasing sequence of radii $R_{m} \rightarrow+\infty$, we look for the domains $\Omega:=B_{R_{m}} \backslash K_{m}$ and the problems

$$
P_{m}:\left\{\begin{array}{cl}
(-\Delta)_{p}^{s} u_{m}=0 & \text { in } \Omega \tag{5.2}\\
u_{m}=g & \text { in } K_{m} \\
u_{m}=0 & \text { in } \mathbb{R}^{n} \backslash B_{R_{m}}
\end{array}\right.
$$

By the existence theorem above, there is a solution $u_{m} \in W^{s, p}(\Omega) \cap C\left(\mathbb{R}^{n}\right)$ of each of the problems P_{m}. Next, by verifying the hypotheses of the Arzelá-Ascoli's theorem, we show a subsequence of u_{m} converges a.e. in \mathbb{R}^{n}. The equilimitation of u_{m} is get through the comparison principle, which gives

$$
\sup \left|u_{m}\right| \leq \sup _{\mathbb{R}^{n}}|g|
$$

For the equicontinuity of u_{m}, we use the interior Hölder continuity result in [9, Theorem 1.2], which we can state in particular as follows.

Theorem. Let $s \in(0,1)$ and $p \in(1, \infty)$. Let $u \in W^{s, p}(\Omega) \cap L_{s p}^{p-1}\left(\mathbb{R}^{n}\right)$ be a weak solution of $(-\Delta)_{p}^{s} u=0$. Then u is locally Hölder continuous in Ω. In particular, there are positive constants $\alpha<s p /(p-1)$ and c, both depending only on n, p, s, such that if $B_{2 r}\left(x_{0}\right) \subset \Omega$, then

$$
\underset{B_{\rho}\left(x_{0}\right)}{\operatorname{osc} u} \leq c\left(\frac{\rho}{r}\right)^{\alpha}\left(\operatorname{Tail}\left(u ; x_{0}, r\right)+\left(f_{B_{2 r}\left(x_{0}\right)}|u|^{p} d x\right)^{\frac{1}{p}}\right)
$$

holds whenever $\rho \in(0, r]$.
By applying the theorem to u_{m}, since the quantities $\operatorname{Tail}\left(u_{m} ; x_{0}, r\right)$ and $f_{B_{2 r}\left(x_{0}\right)}\left|u_{m}\right|^{p} d x$ are uniformly bounded on m, we obtain uniform Hölder continuity of u_{m} on balls of Ω, and it can easily be extended to compacts sets of $\mathbb{R}^{n} \backslash K$. Hence, u_{m} is also equicontinuous on compacts and, therefore, by using the Arzelá-Ascoli's Theorem and a continuous function u such that a subsequence of u_{m} converges to u a.e. in \mathbb{R}^{n}.

To prove that u is a weak solution to the original problem (0.13), let $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash K\right)$
a test function. We will show that

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p-2}}{|x-y|^{n+s p}}(u(x)-u(y))(\eta(x)-\eta(y)) d x d y \\
= & \lim _{m \rightarrow \infty} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p-2}}{|x-y|^{n+s p}}\left(u_{m}(x)-u_{m}(y)\right)(\eta(x)-\eta(y)) d x d y \tag{5.3}
\end{align*}
$$

and since the integrals under the limit vanish, being u_{m} a weak solution to P_{m}, we conclude u is a weak solution of (0.13).

We obtain the convergence of the integrals by means of the Vitali Convergence Theorem, as in [53]. Before stating it, let us recall some definitions.

Let (X, \mathcal{M}, μ) be a general measure space and f_{m} a sequence of integrable functions on X. The sequence f_{m} is said to be uniformly integrable over X provided that, for each $\epsilon>0$, there is a $\delta>0$ such that, for any measurable subset E of X,

$$
\begin{equation*}
\mu(E)<\delta \quad \text { implies } \sup _{m} \int_{E}\left|f_{m}\right| d \mu<\epsilon . \tag{5.4}
\end{equation*}
$$

The sequence f_{m} is said to be tight over X provided that, for each $\epsilon>0$, there is a subset F of X, with finite measure, such that

$$
\begin{equation*}
\sup _{m} \int_{X \backslash F}\left|f_{m}\right| d \mu<\epsilon \tag{5.5}
\end{equation*}
$$

Theorem. (Vitali Convergence Theorem) Let (X, \mathcal{M}, μ) be a measure space and f_{m} a sequence of functions on X that is uniformly integrable and tight over X . Assume that $f_{m} \rightarrow f$ a.e. on X and that the function f is integrable over X . Then

$$
\lim _{m \rightarrow \infty} \int_{X} f_{m} d \mu=\int_{X} f d \mu
$$

We plan to apply Vitali's theorem to show (5.3). Observe that from the a.e. convergence $u_{m} \rightarrow u$ in \mathbb{R}^{n}, we readily obtain the convergence a.e. in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ of the integrands

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p-2}}{|x-y|^{n+s p}}\left(u_{m}(x)-u_{m}(y)\right)(\eta(x)-\eta(y)) \\
& =\frac{|u(x)-u(y)|^{p-2}}{|x-y|^{n+s p}}(u(x)-u(y))(\eta(x)-\eta(y)) . \tag{5.6}
\end{align*}
$$

To match the remaining hypotheses of the theorem, let U be an open set containing K such that supp $\eta \cap U=\varnothing$. Then, given any measurable set $E \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}$, by applying
the Hölder's inequality, we can write

$$
\begin{align*}
& \iint_{E} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p-1}}{|x-y|^{n+s p}}|\eta(x)-\eta(y)| d x d y \\
= & \iint_{E \backslash U \times U} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p-1}}{|x-y|^{n+s p}}|\eta(x)-\eta(y)| d x d y \\
\leq & \left(\iint_{E \backslash U \times U} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{p-1}{p}}\left(\iint_{E \backslash U \times U} \frac{|\eta(x)-\eta(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{1}{p}} \tag{5.7}\\
\leq & \left(\int_{\mathbb{R}^{n} \mathbb{R}^{n} \backslash U} \int_{E} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{p-1}{p}}\left(\iint_{E} \frac{|\eta(x)-\eta(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{1}{p}}
\end{align*}
$$

where for last inequality we have simply used that $E \backslash(U \times U) \subset \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash U\right)$ and also $E \backslash U \times U \subset E$. Now we apply [10, Theorem 3.1], shown in the preliminaries, to uniformly bound

$$
\begin{equation*}
\int_{\mathbb{R}^{n} \mathbb{R}^{n} \backslash U} \int_{|x-y|^{n+s p}} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p}}{|x-y|^{n+s}} d x d y \leq C \tag{5.8}
\end{equation*}
$$

for some constant C that does not depend on u_{m}. We should notice that, although the theorem requires u_{m} to be a solution in the whole $\mathbb{R}^{n} \backslash K$, which is not the case here, the argument there still applies with the choice of a test function of the form $\psi^{p} u_{m} \in W_{0}^{s, p}(\Omega)$, with $\psi \in C^{1}\left(\mathbb{R}^{n}\right)$ satisfying $\psi=0$ in K and $\psi=1$ in $\mathbb{R}^{n} \backslash U$.

We have then obtained from (5.7), (5.8),

$$
\begin{equation*}
\iint_{E} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p-1}}{|x-y|^{n+s p}}|\eta(x)-\eta(y)| d x d y \leq C\left(\iint_{E} \frac{|\eta(x)-\eta(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{1}{p}} \tag{5.9}
\end{equation*}
$$

Therefore, the sequence of integrands is uniformly integrable in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ since, given any $\epsilon>0$, there is a $\delta>0$ such that

$$
\iint_{E} \frac{|\eta(x)-\eta(y)|^{p}}{|x-y|^{n+s p}} d x d y<\left(\frac{\epsilon}{C}\right)^{p}
$$

whenever $|E|<\delta$. Moreover, (5.9) also gives the tightness of the sequence since, for all $\epsilon>0$, it is clear that there is a subset $F \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ with finite measure such that

$$
\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash F} \frac{|\eta(x)-\eta(y)|^{p}}{|x-y|^{n+s p}} d x d y<\left(\frac{\epsilon}{C}\right)^{p}
$$

Still, by taking $E=\mathbb{R}^{n} \times \mathbb{R}^{n}$, (5.9) gives

$$
\begin{align*}
\iint_{\mathbb{R}^{n} \mathbb{R}^{n}} \frac{\left|u_{m}(x)-u_{m}(y)\right|^{p-1}}{|x-y|^{n+s p}}|\eta(x)-\eta(y)| d x d y \\
\leq C\left(\iint_{\mathbb{R}^{n}} \frac{|\eta(x)-\eta(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{1}{p}} \tag{5.10}
\end{align*}
$$

so that, by Fatou's Lemma,

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p-1}}{|x-y|^{n+s p}}|\eta(x)-\eta(y)| d x d y \\
\quad \leq C\left(\iint_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|\eta(x)-\eta(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{\frac{1}{p}}<\infty \tag{5.11}
\end{align*}
$$

hence showing the limit function is integrable. Therefore, by Vitalli's Theorem, this concludes that u is a weak solution.

2. Continuity up to the boundary

To establish next the continuity of u on ∂K, let $x_{0} \in \partial K$ and $\epsilon>0$. We consider the function

$$
w(x)=w_{C}(x):=C\left|x-x_{0}\right|^{\alpha}+g\left(x_{0}\right)+\epsilon
$$

where $\left|x-x_{0}\right|^{\alpha}$ is the radial solution given in Theorem 3, with $\alpha=\frac{s p-n}{p-1}>0$. We claim that $w_{C} \geq u$ in \mathbb{R}^{n}, for a sufficiently large constant C. First, by the continuity of g, there is some $R>0$ such that

$$
g\left(x_{0}\right)+\epsilon \geq g(x), \text { for }\left|x-x_{0}\right|<R
$$

so clearly

$$
w_{C} \geq g \quad \text { in } B_{R}\left(x_{0}\right)
$$

for all $C>0$. We then choose C sufficiently large to make

$$
w_{C}(x)=g\left(x_{0}\right)+C\left|x-x_{0}\right|^{\alpha}+\epsilon>\sup _{\mathbb{R}^{n}}|g|, \text { for }\left|x-x_{0}\right| \geq R .
$$

Now let u_{m} be a solution to the problem (5.2) and assume m is large enough so that $\partial K_{m} \cap B_{R}\left(x_{0}\right) \neq \varnothing$. Observe that $w>u_{m}$ outisde $B_{R}\left(x_{0}\right)$, since $w>\sup |g|$ outside $B_{R}\left(x_{0}\right)$ and $\sup u_{m}=\sup |g|$ by the comparison principle. Then, as $u_{m}=g$ in K_{m} and clearly $w>g$ in $\partial K_{m} \cap B_{R}\left(x_{0}\right)$, we can find a neighbourhood \tilde{A}_{m} of K_{m} such that $w \geq u_{m}$ in \tilde{A}_{m}, so we have

$$
w \geq u_{m} \quad \text { in } \quad \tilde{A}_{m} \cup\left(\mathbb{R}^{n} \backslash B_{R}(y)\right)
$$

Then, we can apply the comparison principle for w and u_{m} on the domain $B_{R}(y) \backslash \tilde{A}_{m}$, noting that $w, u_{m} \in W_{l o c}^{s, p}\left(B_{\tilde{R}}(y) \backslash K_{m}\right)$, where we take a suitable $\tilde{R}>R$, with $B_{R}\left(x_{0}\right) \backslash \tilde{A}_{m} \Subset$ $B_{\tilde{R}}\left(x_{0}\right) \backslash K_{m}$. This gives

$$
w \geq u_{m} \quad \text { in } B_{R}\left(x_{0}\right)
$$

and consequently

$$
w \geq u_{m} \text { in } \mathbb{R}^{n}, \text { for all } m
$$

from which follows

$$
\begin{equation*}
w \geq u \text { in } \mathbb{R}^{n} \tag{5.12}
\end{equation*}
$$

Finally, (5.12) implies

$$
\limsup _{x \rightarrow x_{0}} u(x) \leq \limsup _{x \rightarrow x_{0}} w(x)=g\left(x_{0}\right)+\epsilon
$$

and by arbitrariness of ϵ we conclude

$$
\limsup _{x \rightarrow x_{0}} u(x) \leq g\left(x_{0}\right) .
$$

By an analogous argument, we can also obtain

$$
\begin{equation*}
\liminf _{x \rightarrow x_{0}} u(x) \geq g\left(x_{0}\right) \tag{5.13}
\end{equation*}
$$

and this finishes the argument.

3. Hölder continuity up to the boundary

Being assumed in addition that g is α-Hölder continuous in K, with $\alpha=\frac{s p-n}{p-1}$, we show u is α-Hölder continuous in \mathbb{R}^{n}.

We claim that, if $C=|g|_{\alpha}$, the Hölder seminorm of g in K, then, for all $y \in K$,

$$
g(y)-C|x-y|^{\alpha} \leq u(x) \leq g(y)+C|x-y|^{\alpha}, \text { for all } x \in \mathbb{R}^{n} .
$$

In fact, let $y \in K$. We have by definition of C

$$
\begin{equation*}
g(y)-C|z-y|^{\alpha} \leq g(z) \leq g(y)+C|z-y|^{\alpha}, \quad \text { for all } z \in K . \tag{5.14}
\end{equation*}
$$

Now it is clear there is some $R>0$ such that

$$
C|x-y|^{\alpha} \geq 2 \sup |g|, \text { for }|x-y| \geq R
$$

Since $|u| \leq \sup |g|$, this inequality gives

$$
\begin{equation*}
g(y)-C|x-y|^{\alpha} \leq u(x) \leq g(y)+C|x-y|^{\alpha}, \quad \text { for all } x \in \mathbb{R}^{n} \backslash B_{R}(y) \tag{5.15}
\end{equation*}
$$

Then using (5.14) with $g(z)=u(z)$, we see the inequality above holds on $K \cup\left(\mathbb{R}^{n} \backslash B_{R}(y)\right)$. Hence, for a fixed $\epsilon>0$, the strict inequality

$$
\begin{equation*}
g(y)-C|x-y|^{\alpha}-\epsilon<u(x)<g(y)+C|x-y|^{\alpha}+\epsilon \tag{5.16}
\end{equation*}
$$

holds, for all x in $K \cup\left(\mathbb{R}^{n} \backslash B_{R}(y)\right)$. By the continuity of u, we can find an open set $A \ni K$ such that (5.16) holds for $x \in A \cup\left(\mathbb{R}^{n} \backslash B_{R}(y)\right)$. Thus, by applying the comparison principle in $B_{R}(y) \backslash A$, we obtain

$$
\begin{equation*}
g(y)-C|x-y|^{\alpha}-\epsilon \leq u(x) \leq g(y)+C|x-y|^{\alpha}+\epsilon \tag{5.17}
\end{equation*}
$$

for $x \in B_{R}(y) \backslash A$ and, therefore, for all $x \in \mathbb{R}^{n}$, which concludes the claim by the arbitrariness of ϵ.

Now let $x \in \mathbb{R}^{n} \backslash K$. By the claim we have, for all $y \in K$,

$$
u(y)-C|x-y|^{\alpha} \leq u(x) \leq u(y)+C|x-y|^{\alpha}
$$

and these inequalities give

$$
u(x)-C|x-y|^{\alpha} \leq u(y) \leq u(x)+C|x-y|^{\alpha}
$$

for all $y \in K$. Then, taking some $\epsilon>0$,

$$
u(x)-C|x-y|^{\alpha}-\epsilon<u(y)<u(x)+C|x-y|^{\alpha}+\epsilon
$$

holds for all y in some open set $A \ni K$. As the inequalities above clearly hold on the complement of a large ball, say B_{R}, we apply the comparison principle in $B_{R} \backslash A$ to extend it to all $y \in \mathbb{R}^{n}$. By the arbitrariness of ϵ, this concludes the Hölder continuity of u at x.

Corollary. Assume $s p>n, g \in C^{\alpha}(K)$, with $\alpha=\frac{s p-n}{p-1}$, and $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying, for positive constants C, ϵ,

$$
|f(x)| \leq C_{f}|x|^{-n-\epsilon}, \quad \text { for all }|x| \geq 1
$$

Then any bounded weak solution $u \in C\left(\mathbb{R}^{n}\right) \cap W_{\text {loc }}^{s, p}\left(\mathbb{R}^{n} \backslash K\right)$ of

$$
\left\{\begin{array}{cl}
(-\Delta)_{p}^{s} u=f & \text { in } \mathbb{R}^{n} \backslash K \\
u=g & \text { in } K
\end{array}\right.
$$

satisfies $u \in C^{\beta}\left(\mathbb{R}^{n}\right)$, for all $\beta<\frac{s p-n}{p-1}$, with the Hölder seminorm $|u|_{\beta}$ depending on $s, p, n,\|g\|_{C^{0, \beta}}, C$, and $\max \{R, 1\}$, where $R=\sup \{|x| ; x \in K\}$.

Proof. The proof follows the same lines as in step 3 above, with a proper modification only in the barrier argument. We can assume with no loss of generality that ϵ is small enough so that $s p-n-\epsilon>0$ and it is sufficient to prove the Hölder regularity for $\frac{s p-n-\epsilon}{p-1} \leq \beta<\frac{s p-n}{p-1}$.

For a fixed $y \in K$ and a constant $C>0$ we consider the functions

$$
w_{C, y}^{ \pm}(x)=g(y) \pm C|x-y|^{\beta} .
$$

We will show that for some $C \geq|g|_{\beta}$ sufficiently large

$$
(-\Delta)_{p}^{s} w_{C, y}^{-} \leq f \leq(-\Delta)_{p}^{s} w_{C, y}^{+} \quad \text { in } \quad \mathbb{R}^{n} \backslash K
$$

(We restrict C to values grater than $|g|_{\beta}$ since it is necessary for the argument of step 3.) In fact, observing that, for any $x \neq y$,

$$
(-\Delta)_{p}^{s}|\cdot-y|^{\beta}(x)=(-\Delta)_{p}^{s}|\cdot| \beta(x-y)
$$

by (4.6) we have

$$
(-\Delta)_{p}^{s}|\cdot-y|^{\beta}(x)=(-\Delta)_{p}^{s}|\cdot|{ }^{\beta}\left(e_{1}\right)|x-y|^{\beta(p-1)-s p}
$$

with $(-\Delta)_{p}^{s}|\cdot| \beta\left(e_{1}\right)>0$ by Theorem 3 , since $0<\beta<\alpha$. Next, we define

$$
M=\max \left\{|g|_{\beta}^{p-1},\|f\|_{L^{\infty}}, C_{f}\right\}
$$

and

$$
\tilde{M}=\max \left\{\frac{M}{(-\Delta)_{p}^{s}|\cdot|^{\beta}\left(e_{1}\right)}, M, 1\right\}
$$

Now let $R \geq 1$ such that $K \subset B_{R}(0)$. We claim

$$
C=\left(\tilde{M}(2 R)^{-\beta(p-1)+s p}\right)^{\frac{1}{p-1}}
$$

is the desired constant. In fact, for such a choice of C, we have

$$
\begin{aligned}
(-\Delta)_{p}^{s} w_{C, y}^{+}(x) & =\tilde{M}(2 R)^{-\beta(p-1)+s p}(-\Delta)_{p}^{s}|\cdot-y|^{\beta}(x) \\
& \geq M(2 R)^{-\beta(p-1)+s p}|x-y|^{\beta(p-1)-s p}
\end{aligned}
$$

hence, if $|x| \leq R$, so that $|x-y| \leq 2 R$, it follows

$$
(-\Delta)_{p}^{s} w_{C, y}^{+}(x) \geq M \geq\|f\|_{L^{\infty}}
$$

If $|x|>R$, note that

$$
\frac{|x-y|^{-\beta(p-1)+s p}}{|x|^{-\beta(p-1)+s p}} \leq\left(1+\frac{|y|}{|x|}\right)^{-\beta(p-1)+s p} \leq 2^{-\beta(p-1)+s p}
$$

and then

$$
2^{-\beta(p-1)+s p}|x-y|^{\beta(p-1)-s p} \geq|x|^{\beta(p-1)-s p}
$$

Therefore, since $\beta(p-1)-s p \geq-n-\epsilon,|x| \geq 1$, we have

$$
(-\Delta)_{p}^{s} w_{C, y}^{+}(x) \geq M|x|^{\beta(p-1)-s p} \geq C_{f}|x|^{-n-\epsilon} \geq f(x)
$$

Thus we have shown $(-\Delta)_{p}^{s} w_{C, y}^{+} \geq f$ in $\mathbb{R}^{n} \backslash K$ and, analogously, one can obtain the reversed inequality for $w_{C, y}^{-}$. The result then follows by the argument of step 3 in the proof of Theorem 4.

This result also holds for solutions on bounded sets $\Omega \subset \mathbb{R}^{n}$, i.e., for weak solutions $u \in C(\Omega) \cap W_{\text {loc }}^{s, p}(\Omega)$ of $(-\Delta)_{p}^{s} u=f$ in $\Omega, u=g$ in $\mathbb{R}^{n} \backslash \Omega$. It is sufficient to assume in this case $g \in C^{\alpha}(\tilde{\Omega}) \cap L^{\infty}\left(\mathbb{R}^{n}\right), \alpha=\frac{s p-n}{p-1}$, for some open neighbourhood $\tilde{\Omega}$ of $\partial \Omega$, and only assume $f \in L^{\infty}(\Omega)$. Then $u \in C^{\beta}(\Omega)$, for all $\beta<\frac{s p-n}{p-1}$ and the Hölder seminorm $|u|_{\beta}$ depends on $s, p, n,|g|_{\alpha},\|g\|_{\infty},\|f\|_{\infty}$.

Bibliography

[1] Adams, R. Sobolev Spaces. New York: Academy Press, 1975.
[2] Bahri, A.; Lions, P.-L.; On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Annales de l'I. H. P., section C, Vol. 14, n ${ }^{0} 3$ (1997), 365-413.
[3] Bonorino,L. P.; da Silva, A. R. ; Zingano, P. R. A., Liouville's theorem and comparison results for solutions of degenerate elliptic equations in exterior domains, J. Math. Anal. Appl. 463 (2018), 794-809
[4] Bucur, C., Valdinoci, E., Nonlocal Diffusion and Applications, Volume 20 of Lecture Notes of the Unione Matematica Italiana. Springer, Unione Matematica Italiana, Berlin, Bologna (2016)
[5] Caffarelli, L. A.; Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations (Oslo 2010), Abel Symp. 7, Springer-Verlag, Berlin (2012), 37-52.
[6] Caffarelli, L. A. and Silvestre, L. ; An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260.
[7] Demengel, F.; Demengel, G.; Erné; R.; Functional spaces for the theory of elliptic partial differential equations. [S.l.]: Springer, 2012.
[8] Di Benedetto, E., $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827850.
[9] Di Castro, A.; Kuusi, T.; Palatucci, G.; Local behavior of fractional p-minimizers, Ann. Inst. H. Poincar'e Anal. Non Lin'eaire 33 (2016) 1279-1299
[10] Dutra, L. P.; Asymptotic Behaviour and Comparison Principle for Solutions of Local and Non-Local Equations in Exterior Domains, Ph. D. Thesis, UFRGS, (2021).
[11] Evans, L.; Partial Differential Equations, American Mathematical Society, 1998.
[12] Fiscela, A.; Servadei, R.; Valdinocci, E. Density properties for fractional Sobolev spaces. Annales Academiae Scientiarum Fennicae Mathematica, v. 40, p. 235-253, 2015.
[13] Furusho, Y. Positive solutions of linear and quasilinear elliptic equations in unbounded domains, Hiroshima Math. J. 15 (1985), 173-220.
[14] Furusho, Y.; Ogura, Y.; On the Solutions of Linear Elliptic Equations in Exterior Domains, J. Differ. Equ. 50 (1983), 348-374.
[15] Fraas, M. and Pinchover, Y., Isolated singularities of positive solutions of p-Laplacian type equations in R^{d}, J. Differential Equations, vol. 254 (2013), 1097-1119.
[16] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., vol. 34 (1981), 525-598.
[17] D. Gilbarg and James Serrin, On Isolated Singularities of Solutions of Second Order Elliptic Differential Equations, J. Anal. Math., vol. 4, (1954), 309-340.
[18] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1997.
[19] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications Inc., Mineola, New York, 2006.
[20] A. Iannizzotto, S. Mosconi, M. Squassina, Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam. 32 (4) (2016) 1353-1392.
[21] S. Jarohs, Strong comparison principle for the fractional p-Laplacian and applications to starshaped rings, Adv. Nonlinear Stud. (2018).
[22] M. Kassmann, Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited, Fakultät für Mathematik, Univ. Bielefeld Preprint 11015 (2011).
[23] J. Korvenpää, T. Kuusi, E. Lindgren, Equivalence of solutions to fractional p-Laplace type equations, J. Math. Pures Appl. (2018).
[24] J. Korvenpää, T. Kuusi, G. Palatucci, Hölder continuity up to the boundary for a class of fractional obstacle problems, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 355-367.
[25] J. Korvenpää, T. Kuusi, G. Palatucci, A note on fractional supersolutions, Electron. J. Differential Equations 2016 (263) (2016) 1-9.
[26] J. Korvenpää, T. Kuusi, G. Palatucci, The obstacle problem for nonlinear integrodifferential operators, Calc. Var. Partial Differential Equations 55 (3) (2016) 63.
[27] J. Korvenpää, T. Kuusi, G. Palatucci, Fractional superharmonic functions and the Perron method for nonlinear integrodifferential equations, Math. Ann. 369 (3-4) (2017) 1443-1489.
[28] Kusano; T. On the bounded solutions of exterior boundary value problems for linear and quasilinear elliptic differential equations, Jap. Jour. Math. 35 (1965), 31-59.
[29] T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys. 337 (3) (2015) 1317-1368.
[30] T. Kuusi, G. Mingione, Y. Sire, Nonlocal self-improving properties, Anal. PDE 8 (1) (2015) 57-114.
[31] T. Kuusi, G. Palatucci (Eds.), Recent Developments in Nonlocal Theory, De Gruyter, Berlin/Boston, 2018, p. 454.
[32] Ladyzhenskaya, O. A.; Ural'tseva, N. N.; Linear and quasilinear elliptic equa-tions, (English translation) Academic Press (1968).
[33] Lieberman, G. M., Boundary Regularity for Solutions of Degenerate Elliptic Equations Nonlinear Anlysis. Theory, Methods and Applications, Vol. 12, No. 11, pp. 1203-1219, 1988
[34] E. Lindgren, P. Lindqvist, Perron's Method and Wiener's Theorem for a nonlocal equation, Potential Anal. 46 (4) (2017) 705-737.
[35] P. Lindqvist, Notes on the p-Laplace equation. Second Edition, Rep. Univ. Jyvaskyla Dep. Math. Stat. 161 (2017) 105.
[36] J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, AMS, 1997.
[37] Manfredi, J., Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, Ph.D. thesis, Washington University (1986).
[38] M.J. Maz'on, J.D. Rossi, J. Toledo, Fractional p-Laplacian evolution equations, J. Math. Pures Appl. (9) 105 (6) (2016) 810-844.
[39] Meyers, N.; Serrin, J.; The exterior Dirichlet problem for second order elliptic partial differential equations, J. Math. Mech., 9 (1960), 513-538.
[40] G. Molica Bisci, V.D. Radulescu, R. Servadei, Variational Methods for Nonlocal Fractional Equations, Cambridge University Press, Cambridge, 2016.
[41] Nezza, E. D.; Palatucci, G.; Valdinocci, E. Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques, v. 136, p. 521-573, 2012.
[42] Noussair, E. S.; On the existence of solutions nonlinear elliptic boundary value problems, J. Differential Equations 34 (1979), 482-495.
[43] Noussair, E. S.; Positive solutions of semilinear elliptic problems in unbounded domains, J. Differential Equations 57 (1985), 349-372.
[44] Ogata, A.; On bounded positive solutions of nonlinear elliptic boundary value problems in an exterior domain, Funcial. Ekvac. 17 (1974), 207-222.
[45] Ouassarah, A. A.; Hajjaj, A.; Existence of solutions for quasilinear elliptic boundary value problems in unbounded domains, Bull. Belg. Math. Soc. Simon Stevin 3(2) (1996), 215-223.
[46] Palatucci, G., The Dirichlet problem for the p-fractional Laplace equation, Nonlinear Analysis 177 (2018) 699-732.
[47] G. Palatucci, A. Pisante, Improved sobolev embeddings, profile decomposition, and concentration-compactness for fractional sobolev spaces, Calc. Var. Partial Differential Equations 50 (3-4) (2014) 799-829.
[48] G. Palatucci, A. Pisante, A Global Compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal. 117 (2015) 1-7.
[49] G. Palatucci, O. Savin, E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. 192 (4) (2013) 673-718.
[50] Phuong Các, N. , Nonlinear Elliptic Boundary Value Problems for Unbounded Domains, J. Differential Equations 45 (1982), 191-198.
[51] Pucci, P.; Serrin, J., The Strong Maximum Principle Revisited, J. Differ. Equations, vol. 196 (2004), 1-66; Erratum, J. Differ. Equations, vol. 207 (2004), 226-227.
[52] Pucci, P.; Serrin, J., The Maximum Principle, Progress in Nonlinear Differential Equations and Their Applications 73, Birkhäuser, (2007).
[53] Royden, H.L.; Fitzpatrick, P.M., Real Analisys, (2010), Prentice Hall.
[54] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat. 60 (2016) 3-26.
[55] X. Ros-Oton, J. Serra, J., Regularity theory for general stable operators, J. Differential Equations 260 (2016) 8675-8715.
[56] Serrin, J.; Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302.
[57] Serrin, J.; Removable singularities of solutions of elliptic equations, Arch. Rat. Mech. Anal., 17, 67-78 (1964).
[58] Serrin, J.; Singularities of solutions of nonlinear equations, Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, RI, (1965) 68-88.
[59] Serrin, J.; Removable singularities of solutions of elliptic equations, II, Arch. Rat. Mech. Anal., 20, 163-169 (1965).
[60] Serrin, J.; Isolated singularities of quasi-linear equations, Acta Math., 113, 219-240 (1965).
[61] Serrin, J.; The Liouville theorem for homogenous elliptic differential inequalities, J. Math. Sci. 179(1) (2001) 174-183.
[62] Serrin, J.; Weinberger,H. F.; Isolated singularities of solutions of linear elliptic equations, Amer. J. Math. 88 (1966), 258-272.
[63] Struwe, M. Variational Methods, Springer Berlin Heidelberg (1990).
[64] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations 51 (1984), 126-150.
[65] Veron, L.,Singularities of Solutions of Second Order Quasilinear Equations, Pitman Res. Notes Math. Set., 353. Longman, Harlow, (1996).

