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Abstract We describe the energy distribution of hard glu-
ons travelling through a dense quark–gluon plasma whose
temperature increases linearly with time, within a probabilis-
tic perturbative approach. The results were applied to the
thermalization problem in heavy ion collisions. In the weak
coupling picture this thermalization occurs from “the bot-
tom up”: high energy partons, formed early in the collision,
radiate low energy gluons which then proceed to equilibrate
among themselves, forming a thermal bath that brings the
high energy sector to equilibrium. We see that, in this sce-
nario, the dynamic we describe must set in around t ∼ 0.5
fm/c after the collision in order to reach a fully thermalized
state at t ∼ 1 fm/c. We then look at the entropy density and
average temperature of the soft thermal bath, as the system
approaches (local) thermal equilibrium.

1 Outline

Thermalization is of utmost importance in the physics of
heavy-ion collisions. The quark–gluon plasma (QGP) formed
in the collision is, initially, highly anisotropic and out of equi-
librium. As it expands, the QGP undergoes several stages
that are characterized by different degrees of freedom and
described by different effective theories. In particular, once
it has reached a local thermal equilibrium, it is described by
relativistic hydrodynamics. In order to reproduce experimen-
tal data, however, simulations in relativistic hydrodynamics
have to be initiated at early times after the collision, of order
thydro ∼ 1 fm/c [1]. Understanding how the postcollision
debris is able to redistribute energy and reach local thermal
equilibrium so quickly has been one of the central topics in
the heavy-ion community for the past few years.

In the weak-coupling picture, prethermal evolution under-
goes three different stages that lead to thermalization “from
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the bottom up”, as presented in the seminal paper in Ref. [2]:
first, the high-energy hard gluons from the collision irradiate
soft gluons through bremsstrahlung. Those soft gluons carry
only a small fraction of the parent gluon’s energy, but rapidly
increase in number and equilibrate among themselves in the
second stage. Third, the system is now formed by a small
number of hard gluons, which carry most of the system’s
energy and travel through a thermal bath of soft gluons. The
interaction of the hard gluons with the soft medium is respon-
sible for depositing the energy of the hard sector into the
thermal bath, bringing the system to a (local) thermal state.
This last stage also sets the time scale thydro, since the first
two stages take parametrically less time [3].

In this work we use a probabilistic approach to describe
the evolution of the hard gluons during the last bottom-up
stage, taking into account how the average soft-medium tem-
perature T changes during thermalization. Our starting point
is that the physics of the third bottom-up stage is similar to
that of “jets” of high momentum travelling through a thermal
medium [4]. A series of papers [5,6], based on perturbative
QCD, established the formalism for propagation of a high-
energy parton in a dense quark–gluon plasma, within the
BDMPS-Z framework [7–9]. In the original formulation the
plasma was considered homogeneous and static. Subsequent
work discussed how the formulation can be applied to an
expanding medium [10,11], by using a modified emission
rate or by mapping the expanding medium to an effective
static one. We applied the available results to the thermaliza-
tion problem in a previous letter, Ref. [12].

The main shortcoming to our goal is that previous results,
which focus on jet quenching, assume that the high-energy
partons travelling through the medium do not alter T in a
significant way. Is that assumption valid in the thermalization
scheme? During the last bottom-up stage, the temperature
of the soft thermal bath increases linearly with time, even
during the system’s expansion, due to the hard gluons which
serve as an energy source [2]. In order to address this issue,
in this letter we apply the formalism developed in Ref. [5,
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6,11] to hard gluons travelling in a homogeneous quark–
gluon plasma whose temperature T increases (linearly) with
time. We compare our results to static and Bjorken-expanding
mediums, and also use experimental and phenomenological
constraints, along with simple thermodynamics, to look at
medium properties as the proper time t after the collision
approaches thydro ≈ 1 fm/c.

2 Developments

Consider the problem of a small number of high energy glu-
ons, of initial energy E , travelling through a dense QCD
plasma. For now, let us assume that the plasma is homoge-
neous, static and has a uniform temperature T . For a parton of
high momentum travelling through a QCD medium, the main
mechanism of energy loss is in-medium bremsstrahlung, sub-
ject to the Landau–Pomeranchuk–Migdal (LPM) suppres-
sion, which leads to the BDMPS-Z distribution [7,9]. For
a thermal medium this was analysed in Ref. [13], which
confirmed that the final distribution is governed by the
small number of high energy partons travelling through the
medium.

We shall focus on the (hard) gluon spectrum D(x, t) ≡
x
dNg

dx
, made of Ng gluons of initial energy E . The energy ω

of a given gluon is represented by the fraction of the ini-
tial energy x = ω/E . In this scheme, a hard gluon will
lose energy by democratic branching: first, it emits a particle
of small energy ωbr � E that lies in the LPM-suppressed
region, such that it will split into two gluons of compara-
ble momenta. Those daughter gluons will cascade further,
depositing their energy into the thermal bath of x ∼ T/E .
Considering tbr the typical time scale between successive
emissions of energy ω ∼ ωbr , the proper time t will be re-
scaled as the dimensionless variable

τ = ᾱ

√
q̂

E
t = t

tbr (E)
, (1)

where ᾱ = αs Nc/π and q̂ is the transverse momentum
broadening rate q̂ ≡ dk2⊥/dt , or jet quenching parameter. For
our purposes, this parameter q̂ fully characterizes the inter-
action of the high energy partons with the medium.1 In other
words, we will assume that q̂ contains the information of the
medium properties and its evolution. For a static medium,
q̂ = q̂0 is a constant, but it must be modelled accordingly in
different scenarios.

1 Although we will assume that all relevant medium interactions are
encoded in the evolution equation through q̂ , in general jet-medium
interactions are encoded in σ3(b⊥) rather than q̂ . See, for instance, Ref.
[9,14–16].

Considering that different branchings are independent of
each other, Refs. [5,6] derived an evolution equation for the
gluon distribution,

∂D(x, τ )

∂τ

=
∫

K(z, τ )

[√
z

x
D

(
x

z
, τ

)
− z√

x
D(x, τ )

]
dz. (2)

The initial condition is normalized to a single gluon of energy
E , i.e., D(x, 0) = δ(1−x). Also, the kernel functionK(z, τ )

is related to the emission spectrum I (z, τ ) of the parton
through

ᾱK(z, τ ) = dI

dzdτ
, (3)

and it depends on the medium and its evolution [10,17]. The
factor of ᾱ was extracted in order to make our notation con-
sistent with the one used in Ref. [17].

When the medium is homogeneous and static, K(z, τ ) is
in fact independent of τ ,

K(z) = f (z)

[z(1 − z)]3/2 = K(1 − z), (4)

f (z) = [1 − z(1 − z)]5/2, (5)

valid in the limit z � τ 2. Notice that the connection of Eq.
(2) to the medium properties is only through Eq. (1), i.e.,
through the mapping of τ to the “physical” time t . We also
recall that Ref. [5] showed that, if you make the additional
simplification f (z) = 1, Eq. (2) can be solved analytically,
leading to

D0(x, τ ) = τ√
x(1 − x)3/2

e
−πτ2
1−x . (6)

We now move beyond the static plasma. We shall follow
an approach that is a faithful description only for relatively
soft medium-induced emissions. Such emissions have very
short formation times, which implies that they can be treated
as instantaneous and independent of each other, as required
by Eq. (2). Reference [11] points out that, by the same argu-
ment, the emission rate for a non-static medium is taken to be
the same as that for a static medium, replacing q̂ by an instan-
taneous q̂(t) at the emission time. Following these assump-
tions, the scaled time τ in Eq. (1) will be replaced2 by

τ ≡
∫ t

to
ᾱ

√
q̂(t)

E
dt. (7)

2 See Ref. [11] for a complete derivation. For a simple hand-waving
motivation, think of the leading parton going through a non-static
medium as of going through successive layers of static plasmas, each of
different properties represented by a different q̂i , in time intervals 	ti .

By Eq. (1), after going through many layers 	τ = ∑
i ᾱ

√
q̂i
E

	ti , from

which Eq. (7) follows.
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The behavior of q̂(t) with time encodes the medium evolu-
tion. During its emission, a gluon picks up transverse momen-
tum squared k2⊥ ∼ nsα2

s 	tF , where 	tF is the gluon forma-
tion time and ns the density of soft gluons [2]. From this,
we are able to estimate q̂ ∼ k2⊥/	tF ∼ α2

s ns (see, for
instance, Ref. [18] for a comprehensive discussion on q̂ in dif-
ferent scenarios). Using that ns ∼ T 3, in general q̂ goes like
q̂ ∼ ns ∼ T 3. For a static medium, it follows that q̂ = q̂o is
a constant. Considering that the medium undergoes uniform
(isentropic) longitudinal expansion, as initially proposed by
Bjorken [19], ns ∼ 1/t (since the volume increases linearly

with time). This leads to q̂(t) = q̂o(
to
t
) for Bjorken expan-

sion. The parameters to and q̂o will be discussed shortly.
In this letter, however, we are interested in a different

scenario: a medium whose temperature T is uniform, but
increases linearly with time, i.e., T ∼ t . We shall also assume
that T rises slowly enough that the soft thermal bath that com-
prises the medium can be considered to be in thermal equi-
librium at all times. We keep an eye in our goal to describe
the third bottom-up stage: Ref. [2] estimates (parametrically)
that T rises linearly, due to the hard gluons that act as energy
sources.

Since the linear rise in T is such a central assumption in our
analysis, let us briefly take a step back and see where does it
come from in this framework. During its emission in a dense
medium, a gluon picks up transverse momentum squared k2⊥
due to interactions with the medium. This introduces a lower
bound k2⊥ � q̂	tF , where 	tF ≈ 2ω/k2⊥ is the gluon for-
mation time, which implies 	tF �

√
2ω/q̂ ≡ tc(ω). Recall

that Eq. (2) follows from treating multiple emissions as a
probabilistic branching process, in which the branching rate
is governed by the BDMPS-Z spectrum [6]. The probability
distribution dPBDMPSZ is well approximated by the formula
[11]

ω
dPBDMPSZ

dω
� ᾱ

L

tc(ω)
= ᾱ

√
ωc

ω
, (8)

where ωc = q̂ L2/2, and L is the distance traveled by the
parton inside the medium. The typical energy loss happens
for ω dP

dω
� 1, which requires ω � ᾱ2ωc ≡ ωbr . From Eq.

(8), ω � ωbr implies L � tc(ω)/ᾱ ≡ tbr (ω). In summary,
the typical emission has ω � ωbr and takes time of order tbr ,
i.e., tbr is the typical time to make an emission of ω � ωbr .

We now want to estimate how the flow of energy from
the hard sector affects the temperature in this framework.
The emission rate is of order dNbr/dt ∼ nh/t ∼ Q2

s/αs t2,
where nh ∼ Q2

s/αs t is the density of hard gluons [2]. Taking
t ∼ tbr , the energy-flow rate is given by

ωbr
dNbr

dt
= ωbr

Q2
s

αs t2
br

. (9)

From k2⊥ ∼ nsα2
s	tF , along with 	tF ∼ ω/k2⊥, we also

have

	t2
F ∼ ω

nsα2
s
. (10)

Since 	tF ∼ tc(ω), we use tbr = tc/ᾱ to obtain tbr ∼
ω1/2

n1/2
s α2

s

. From here on, we see that this estimate converges

with the one presented in Sec. II of Ref. [2]. The energy-flow
rate becomes

ωbr
dNbr

dt
∼ α3

s Q
2
s ns ∼ α3

s Q
2
s T

3, (11)

as ns ∼ T 3. From dε/dt ∼ d(T 4)/dt ∼ α3
s Q

2
s T

3, it follows
that T ∼ t. We see that the probabilistic treatment of the
emissions, as governed by Eq. (8), which also leads to Eq.
(2), naturally leads to the linear behavior of T . We point
out that this behavior is not a direct consequence of Eq. (2),
but rather a more general result that comes directly from the
underlying branching rate. The connection of Eq. (2) and Eq.
(8) can be made clearer if we notice that, as presented in Ref.

[5], Eq. (8) may be written as
dP

dzdτ
= 1

2

K(z)√
x

, where K(z)

goes into the description of the hard evolution through Eq.
(2).

For the warming medium, the relation q̂ ∼ T 3 ∼ t3 sug-
gests

q̂(t) = q̂o
t3
o
t3, (12)

where to stands for the initial time and q̂0 = q̂(to). For our
purposes, to represents the time when the third bottom-up
stage is initiated. Taking t = 0 at the collision, to is some
time in the interval 0 � t0 < thydro. Phenomenologically, to
may be treated as a free parameter to be varied in simulations,
subject to thydro ∼ 1 fm/c. Also, q̂o may be treated as another
free parameter in the theory or it may be set by imposing
q̂oto ≈ Q2

s , as in Ref. [11]. In order to keep the number of
degrees of freedom to a minimum, we shall take q̂o = Q2

s/to
in what follows.

The scaling relation Eq. (7) will lead to a different expres-
sion for τ(t) in each case. For a static medium,

τST = ᾱ

√
q̂o
E

(t − to). (13)

while for Bjorken expansion we have

τBJ = ᾱ

√
q̂oto
E

ln

(
t

to

)
, (14)
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Fig. 1 Graph of
√
xDo(x, t) for the three cases: static, Bjorken (isentropic) expansion and linear rise in T , at different values of t

and for q̂(t) given by Eq. (12) we have

τT = ᾱ
2

5 t3/2
o

√
q̂o
E

(t5/2 − t5/2
o ). (15)

A key feature of this approach, based upon the one in Ref.
[11], is that the assumption of soft emissions ω � ωc ≡
q̂(L)L2/2 (where L represents the medium length scale),
with the scaling variable τ given by Eq. (7), implies thatK(z)
is still given by Eq. (4), independent of τ . Scaling violations
due to harder emissions will not be considered in this letter,
but they are expected to be small. For future work, K(z, τ )

could be treated more precisely (see, for instance, Ref. [10,
12,17]). In this case, the solution to Eq. (2) in terms of the
scaling variable, D(x, τ ), is independent of q̂(t). Solutions
differ in terms of the physical time t through the mapping
from τ to t . To be more precise, D(x, τ ) is obtained from
Eq. (2), and then D(x, t) = D(x, τ (t)), with τ(t) given by
Eq. (7) in each case.3

Let us begin our discussion by comparing different sce-
narios in the light of the additional simplification f (z) = 1,
which leads to the analytic solution Eq. (6). We shall take
E ∼ Qs = 2 GeV (since hard gluons still carry an energy
of order Qs at the beginning of the third bottom-up stage
[2]) and to = 2.5 GeV−1 ≈ 0.5 fm/c (for now, the reader
may think of this as a numerical value to make the com-
parison, but the physical motivation behind this choice will
be explained shortly). The spectrum

√
xD(x, t) is plotted

as a function of x in Fig. 1 for three different cases: static,
Bjorken (isentropic) expansion and linear rise in T (which
accounts for expansion together with how the hard gluons
affect the temperature as they travel through the soft bath).
First, notice the general features of the distribution D(x, t):

3 A more complete treatment could use K(z, τ ) as defined in Ref. [17],
with the τ given by Eq. (1). In that case,K(z, τ ) depends on q̂(t) through
a differential equation.

the behavior alludes to a source, initially located at x = 1,
that is dampened as the spectrum propagates in the direction
of x → 0. Comparing the evolution at different times, notice
that, although free expansion makes the evolution slower than
the static case, expansion plus warming makes the evolution
faster. We should not be surprised, since q̂ ∼ T 3. The rise
in T suggests that the effect of the hard energy sources on
the medium is able to compensate for the dilution from the
expansion, bringing the system close (but faster) to the behav-
ior of the static case. Clearly, this is an interesting result on
its own, but specially so in the thermalization problem: the
effect of warming makes energy fade out from the hard sector
faster.

The fraction of the initial energy contained in the hard
spectrum is given by

E(τ ) ≡
∫ 1

0
D(x, τ ) dx =

∫ 1

0
x
dNg

dx
dx . (16)

Another general feature of the dynamics from Eq. (2) is that
E(τ ) decreases with time. Formally, this apparent violation of
energy conservation is due to the singularity at x = 0, which
acts as a “drain” to the energy of higher modes. Physically,
energy from the hard sector is being deposited in the thermal
bath of x ∼ T/E . The entire system (hard gluon and plasma)
may be treated as thermal once E goes to zero, i.e., we expect
E(t = thydro) ≈ 0. For the analytic solution Do(x, τ ) in Eq.
(6), we have that

E0(τ ) =
∫ 1

0
D0(x, τ ) dx = e−πτ 2

, (17)

which implies an exponential decrease in energy. Figure 2
shows a comparison for E(t) as a function of the physical
time t for the same cases presented in Fig. 1. The value of
to was set to to = 2.5 GeV−1 ≈ 0.5 fm/c in order to obtain
E(thydro = 1fm/c) ≈ 0 in the third case, although it could
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Fig. 2 E(t), the fraction of the initial energy contained in the hard
sector, for the three cases – static, Bjorken (isentropic) expansion and
linear rise in T – as a function of time

be kept as a free parameter to be varied in the simulations and
treated as a systematic uncertainty. Physically, it means that,
in this simplified model, our dynamic must set in around
to = 0.5 fm/c after the collision in order to reach a fully
thermalized state at thydro = 1 fm/c.

Instead of considering only numerical values, it is also
interesting to consider the relationship of to with thydro
from the analytic solution in Eq. (17). Taking E(thydro) =
c, and collecting leading terms, it follows that to ∼
A−1/4ᾱ1/2Q1/4

s t5/4
hydro, where A ≡ [− log(c) 25

4π
]. The numer-

ical value of the parameter A depends on the particular value
of c that one is willing to consider small enough, such that
E(thydro) = c ≈ 0. Parametrically, Ref. [2] estimated that

thydro ∼ α
−13/5
s Q−1

s , along with the estimate that the third

bottom up stage sets up at a time scale to 
 α
−5/2
s Q−1

s . Using
the same parametric estimate for thydro, our approach leads to

to ∼ A−1/4α
−11/4
s Q−1

s , which is greater than α
−5/2
s Q−1

s by a
factor of order (Aαs)

−1/4. Taking c = 0.01 in order to make
a simple numerical estimate (which corresponds to assuming
that E(t) fell bellow 1%), we would find to/thydro ∼ 0.7. We
recall that these are parametric estimates from leading terms,
while to = 2.5 GeV−1 follows from the (complete) analytic
solution.

We have also solved Eq. (2) numerically, using the com-
plete K(z) in Eq. (4). A comparison to the analytic solution
(which pertains to the case of f (z) = 1) in Eq. (17) is pre-
sented in Fig. 3 for the case of linear rise in T . All parameter
values were kept the same as in previous plots for compar-
ison. Using the complete kernel, energy fades out from the
hard sector a little slower. We have verified that this would
change our estimate to to to = 2 GeV−1 in order to reach
E(thydro = 1fm/c) ≈ 0. The assumption of f (z) = 1 over-
estimates the emission rate of the spectrum for intermediate
values of z, such that the complete kernel leads to slower ther-
malization, which in turn requires the final-stage dynamic to

Fig. 3 E(t) as a function of time with the additional simplification
f (z) = 1 (solid line) and with the complete K in Eq. (4) (dashed line),
for the case of linear rise in T

set in earlier in order to reach thermalization in a reasonable
time scale.

In summary, the energy loss of a high-energy parton in a
weakly-coupled plasma may be described analytically using
a probabilistic approach, as seen in recent results in the con-
text of jet quenching physics. The thermalization problem in
heavy-ion collisions, as described in the seminal paper in Ref.
[2] through kinetic theory, goes through a similar scenario, as
high-energy partons travel through a thermal bath and ther-
malization occurs as those hard partons deposit its energy in
the medium, leading to a linear rise in temperature during
this process. In this Letter, we use the probabilistic approach
to look at the evolution of the hard sector, through an evo-
lution equation that follows directly from treating multiple
emissions as a probabilistic branching process. We take into
account the linear rise in T in the medium description, and we
find that this dynamic, corresponding to the third bottom-up
stage, must set in at around to ∼ 2 − 2.5 GeV−1 ≈ 0.5 fm/c
in order that a thermalized system is reached by thydro = 1
fm/c.

3 Medium properties

In this section, we shall describe how general features of
the quark–gluon plasma evolve in this simplified model. In
the picture we have established, hard gluons travel through a
quark–gluon plasma of uniform temperature T , whose value
increases linearly with time as the hard sector deposits its
energy into the plasma. In particular, we are interested in
how the entropy density s of the QGP evolves as the sys-
tem approaches thydro. Most experimental observables in a
heavy-ion collision are not very sensitive to pre-thermal evo-
lution, but entropy production is a notable exception [4]: once
the system is described by ideal hydrodynamics, the expan-
sion becomes nearly isentropic, which means that entropy
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production in a heavy-ion collision must be governed by pre-
thermal evolution. In other words, a measure of the final state
entropy is able to provide us with an estimate for the entropy
density at thydro. Reference [20] determined the entropy per
unit rapidity produced in Pb–Pb collisions at the LHC, and
estimated that, for the 0–10% most central Pb–Pb collisions
at

√
sNN = 2.76 TeV,

sh = s(thydro) = 82.3 fm−3. (18)

For an ideal gas of massless, non-interacting constituents,
the entropy density is given by

s(T ) = 2π2

45
ν(T )T 3, (19)

where ν counts the number of bosonic degrees of freedom
plus 7/8 times the number of fermionic degrees of freedom
[21]. An ideal gas of non-interacting gluons and three flavors
of massless quarks has ν = 47.5. However, QCD thermody-
namics does not describe the quark–gluon plasma as an ideal
gas of non-interacting particles, except at infinite tempera-
tures. As presented in Ref. [21], lattice QCD shows that, for
finite temperatures, ν(T ) varies over a wide range of values.
Considering the crossover temperature Tc = 170 ± 10 MeV,
in the range 2Tc < T < 5Tc we have that ν(T ) is between
70 and 80% of that for an ideal quark–gluon plasma, that
is, 33 < ν < 38 [22], whereas for T ≈ 200 MeV we have
ν ≈ 25. For what follows, we shall take 25 < ν < 38 and
treat ν as a theoretical uncertainty. From sh = 82.3 fm−3 and
Eq. (19), we have

Th = T (thydro) ≈ 358 MeV, (20)

close to the value of Th ≈ 340 MeV obtained in Ref. [20].
Let us now attempt to describe how those values are

approached in the interval to < t � thydro. From Eq. (19),
with T ∼ t , it follows that s(t) ∼ t3 for the thermal bath,
where the value s(thydro) is fixed by sh . For to < t < thydro
this is a lower bound on the entropy density of the entire sys-
tem, since we are not taking into the account the contribution
from the hard sector. Going back to Eq. (19), we are also able
to estimate T (t) from s(t). Figures 4 and 5 present the entropy
density and the temperature of the medium as a function of
time. Notice that the time evolution follows directly from
s ∼ t3 and does not depend directly on to. The variation of T
with ν(T ) is plotted as an uncertainty band in the value of T .
Notice, also, that the initial entropy density is less than a third
of the final one. This initial entropy comes essentially from
the decoherence of the initial gluon field, while the remaining
entropy is generated during thermalization [23]. Reference
[24] studied entropy density from decoherence as a function
of time in heavy-ion collisions (see, also, Ref. [25,26]) and

Fig. 4 Entropy density of the thermal bath as a function of time

Fig. 5 Average temperature as a function of time. The uncertainty band
represents the theoretical uncertainty in the number of degrees of free-
dom 25 < ν(T ) < 38

obtained a value of 15 < sdec < 20 fm−3 for 0 < t < 2
fm/c, which is in agreement with our lower bound: from Eq.
(19), s(to) ≈ 10 fm−3 for to = 0.5 fm/c (from the simplified
kernel), while s(to) ≈ 5 fm−3 for to = 0.4 fm/c (when using
the complete branching kernel).
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