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Resumo
O presente trabalho tem por objeto de análise o desenvolvimento da Filosofia Matemática de
Bertrand Russell desde os Principles of Mathematics até ­ e inlcuindo ­ a primeira edição de
Principia Mathematica, tendo como fio condutor as mudanças no pensamento de Russell com
respeito a três tópicos interligados, a saber: (1) a concepção de Russell da Lógica enquanto uma
ciência (2) os compromissos ontológicos da Lógica e (3) a tese Russelliana de que a Matemática
Pura ­ a Aritmética particular ­ é nada mais do que um ramo da Lógica. Esses três tópicos inter­
ligados formam um fio condutor que seguimos na tese para avaliar qual interpretação fornece
o melhor relato da evidência textual disponível em Principia Mathematica e nos manuscritos
produzidos por Russell no período relevante. A posição geral defendida é que a interpretação
de Gregory Landini apresenta argumentos decisivos contra a ortodoxia de comentadores que
atribuem à Principia uma hierarquia de tipos ramificada de entidades confusamente formulada,
e mostramos que os três pontos apontados acima que formam o fio condutor da tese corroboram
fortemente a interpretação de Landini. Os resultados que apontam para a conclusão geral de
nossa investigação estão apresentados na tese dividida em duas partes. A primeira parte discute
o desenvolvimento da lógica de concepção de Russell e do projeto Logicista desde sua gênese
e nos Principles of Mathematics até Principia Mathematica. Esta primeira parte define o con­
texto para a segunda, que discute a Lógica Russeliana e o Logicismo em sua versão madura
apresentada em Principia. Mostramos que, ao fim e ao cabo, o a teoria Lógica e a forma da tese
Logicista apresentada em Principia é o resultado do longo processo iniciado com descoberta da
Teoria dos Símbolos Incompletos que levou Russell a gradualmente reduzir os compromissos
ontológicos de sua concepção da Lógica enquanto uma ciência, culminando na teoria apresen­
tada na Introdução de Principia, na qual ele procura formular uma hierarquia dos tipos que evita
o compromisso ontológico com classes, proposições e também com as assim chamadas funções
proposicionais e que esse mesmo processo levou Russell a uma concepção da tese de Logicista
de acordo com a qual a Matemática é uma ciência cujos compromissos ontológicos não incluem
qualquer espécie de objetos (no sentido Fregeano) sejam eles particulares concretos ou abstratos.

Palavras­chaves: Bertrand Russell. Filosofia Matemática. Lógica. Fundamentos da Matemá­
tica.



Abstract
The present work has as its object of analysis the development of Bertrand Russell’s Mathema­
tical Philosophy from the Principles of Mathematics up to ­ and including ­ the first edition of
Principia Mathematica, having as a guiding thread the changes in Russell’s thought with res­
pect to three interconnected topics, namely: (1) Russell’s conception of Logic as a science (2)
the ontological commitments of Logic and (3) Russell’s thesis that Pure Mathematics ­ in par­
ticular Arithmetic ­ is nothing more than a branch of Logic. These three interconnected topics
form a common thread that we follow in the dissertation to assess which interpretation offers the
best account of the available textual evidence in Principia Mathematica and in the manuscripts
produced by Russell in the relevant period. The general position held is that Gregory Landini’s
interpretation presents decisive arguments against the orthodoxy of commentators who attribute
to Principia a confusingly formulated hierarchy of ramfified types of entities, and we show that
the three points indicated out above that form the main thread of the thesis strongly corroborate
Landini’s interpretation. The results that point to the general conclusion of our investigation
are stated in the dissertation divided into two parts. The first part discusses the development of
Russell’s conception of Logic and the of Logicist project from its genesis and in Principles of
Mathematics up to Principia Mathematica. This first part sets the context for a second, which
discusses a Russellian Logic and Logicism in its mature version presented inPrincipia. We show
that, in the end, the Logic theory and the form of the Logicist thesis presented in Principia is
the result of a long process that started with the discovery of the theory of Incomplete Symbols
which led Russell to reduce the ontological commitments of his conception of Logic as a sci­
ence, culminating in the theory of types presented in Principia’s Introduction, in which Russell
seeks to formulate a hierarchy of types that avoids the ontological commitment to classes, pro­
positions and also with so­called propositional functions, and that this same process led Russell
to a conception of the Logicist thesis according to Mathematics is a science with no ontologi­
cal commitments to any kind of objects (in the Fregean sense) whether these are conceived as
concrete or abstract particulars.

Key words: Bertrand Russell. Mathematical Philosophy. Logic. Foundations of Mathematics.
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1 Introduction

I think many of us were drawn to our profession by Russell’s books. He wrote
a spectrum of books for a graduated public, layman to specialist. We were be­
guiled by the wit and a sense of new­found clarity with respect to central traits
of reality. We got memorable first lessons in relativity, elementary particles,
infinite numbers, and the foundations of arithmetic. At the same time we were
inducted into traditional philosophical problems, such as that of the reality of
matter and that of the reality of minds other than our own. For all this emer­
gence of problems the overriding sense of new­found clarity was more than a
match. In sophisticated retrospect we have had at points to reassess that clarity,
but this was a sophistication that we acquired only after we were hooked.1

As the subtitle of the present doctoral dissertation unoriginally indicates, this text is about
the development of Russell’s Mathematical Philosophy from the Principles of Mathematics to
PrincipiaMathematica. It must be said at the outset, however, that apart from a number of topical
points, there is no dramatic novelty in the conclusions reached or in the arguments considered
and put forward. The interpretation defended and the main arguments considered are mainly due
to Gregory Landini, whose works are cited and discussed less, perhaps, than those of Russell
alone2. In the chapter on Principia’s Logicism an attempt at further defending this interpretation
is made by connecting some generally neglected aspects of Russell’s ‘Regressive Method in
Mathematics’ and of methodological aspects of his ‘Logical Atomism’ to the development of
his views on the ontology of Logic and Mathematics between 1903­1910. These points, I think,
are generally not sufficiently emphasized ­ in particular by those who disagree with Landini’s
views ­ and my discussion may be considered an attempt at a clarificatory contribution to the
literature.

Landini has sometimes referred to his interpretation as ‘revolutionary’ in contrast to
what may be called the ‘orthodox’ interpretation of the development of Russell’s views. If I may
elaborate the use of this terminology by appealing to the ideas of Thomas Kuhn, the present
work is meant at the same time as normal and as revolutionary scholarship. It is ‘normal’ scho­
larship in the sense that it is intended mainly to present and defend an interpretation that has
been proposed and developed for some time, so I am aiming mostly at exposition and adjust­
ment of matters of detail. Hence the dearth of novelties or departures from conclusions already
reached by other scholars. The work follows, however, an interpretation ­ or, to maintain the
Kuhnian wordplay, a ‘paradigm’ ­ that is still being pushed forward by ‘revolutionaries’ against
1 QUINE, W., 1967, p.657­8. Our emphasis.
2 My doctoral research project as initally submitted aimed at a critical discussion/evaluation of Landini’s inter­

pretation and I was attracted to other interpretative approaches ­ in particlar that of LINSKY, B., 1999 which
will also be discussed later on. But I gradually became more and more persuaded that Landini’s views are right.
There are a few points where I depart slightly from Landini’s views, in particular in chapters 3 and 5, but this is
indicated in the discussion or in footnotes.
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an established orthodoxy that still has to be won over, or converted by persuasion. So, in this
sense, it is ‘revolutionary’.

In fact, still using the Kuhnian terminology, the present work may be seen as a survey
of some of the main controversies one finds in the scholarship on Russell’s Mathematical Philo­
sophy (Principia Mathematica, in particular) and some of the main arguments aimed at showing
why the new ‘paradigm’ must be accepted as common wisdom, at least in light of the curren­
tly available evidence. So one of my main goals is to provide a comprehensive exposition and
defense of the arguments in favor of Landini’s interpretation against what may called the ‘ortho­
doxy’. Whether I have in fact succeeded in this goal is for readers to decide, but if I did succeed
then this dissertation has fulfilled its main intended purpose.

Having said that, the purpose of this Introduction is threefold. First, to provide the con­
text for and present what is the ‘interpretative orthodoxy’ that we aim to argue against. This is
done in the first section. Second, to provide the contextualization and motivation for the ‘revo­
lutionary interpretation that will be exposed and defended against this ‘orthodoxy’. This is done
in the second section.3 Third, to provide a brief summary of the dissertation as a whole and of
the main topics/questions that it aims to adress, as well as a brief summary of each chapter and
the aims that each of them is supposed to achieve individually.

1.1 The ‘Received View’ of Principia Mathematica

Willard Quine, perhaps the most important philosopher of the second half of 20th cen­
tury, once justly claimed that Bertrand Russell and Alfred Whitehead’s joint work Principia
Mathematica is “one of the great intellectual monuments of all time”4. Similarly, Alfred Tarski ­
certainly one of the most important logicians of all time ­ claimed that Principia is “undoubtedly
the most representative work of modern logic” and that the “influence it has exerted has been
no less than epoch­making in the development of logical investigations”5. Quine and Tarski are
hardly giving excessive praise to Principia. The two thousand pages, three volume work is in­
deed monumental and its importance and influence in the development of Mathematical Logic
and the Analytic tradition in Philosophy is so great as to be almost inestimable.

But the fact of the matter is that the monumental character ofPrincipiamatches (perhaps,
only barely) the monumental character of the aims it was suppose to achieve. As is well known,
the work was conceived by its authors as an extended defense of the claim that all the main
3 I tried writing these first two sections in such a way that they provide an actual (general and semi­technical)

introduction to the issues and literature that are discussed in the body of the text, so that some of it may even­
tually be useful for someone unfamiliar with some of the complicated historical details and some of the highly
specialized literature discussed. This, it must be said, was done at the cost of some repetition with respect to
some parts of the text.

4 QUINE, W., 1963, p.14.
5 TARSKI, A., 1941, p.229.
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branches of Pure Mathematics can be developed on the basis of Logic alone. As is also well
known, this view, which later became inextricable from labels like ‘Logicism’ and ‘logicist
project’ was originally envisioned by Leibniz in a very rough and programmatic form and then
developed systematically and in depth by Frege with respect to Arithmetic and parts of Analysis.

In a broad sense, Frege’s work succeeded in carrying out this project to a significant
extent, mainly by showing how definitions of ‘Zero’, ‘Number’ and ‘Sucessor’ could be given
on the basis of logical and set­theoretical notions and showing that the fundamental principles
of Arithmetic could be proved on the basis of a few logical and set­theoretical axioms. But as
every novice student of Mathematical Philosophy learns, Frege’s system had a fundamental flaw
with respect to its set theoretical assumptions: they led to contradictions.

Putting things in terms that are instructive, albeit anachronistic6, Frege’s system allowed
one (in practice) to assume the following principle that we nowadays call a ‘naive’ principle of
comprehension7:

( Ex)(y)(y ϵ x ≡ ϕy) (1.1.1)

For now, we may read the above as stating ‘there is (set) x to which every y belongs if and only if
y satisfies the condition ϕ’. The problem, of course, is that the lack of any restrictions as to what
sort of conditions determine our ‘ϕ’ in the above formla allows one to deduce contradictions
from it. The most simple of all such contradictions is forthcoming when in place of ‘ϕy’ we put
‘y is not a member of itself’, that is, if we instantiate 1.1.13 above as follows:

( Ex)(y)(y ϵ x ≡ y ∼ ϵ y) (1.1.2)
6 Strictly speaking, Frege’s system as presented in his Grundgesetze (FREGE, G., 1893) differs radically from

any modern account of quantification theory and of naive set theory. Frege’s logic is best interpreted not as
predicate logic as one finds it in modern textbooks but as logic of terms (cf. DUARTE, A., 2009 and LANDINI,
G., 2012). For an excellent ­ albeit anachronistic ­ reconstruction of Frege’s system along the lines of modern
predicate logic and set theory, cf . HATCHER, W., 1980.

7 The notation used in the present work is mainly that of Principia Mathematica. The most basic notation for
propositional logic, predicate logic and set theory used throughout the text is the following:

⊃, , , ,etc. for punctuation and also for conjunction.
( and ) for punctuation.
∨ for (inclusive) disjunction.
∼ for (classical) negation.
⊃ for material implication.
≡ for material equivalence
(x), (x, y), etc... for the universal quantifier.
( Ex), ( Ex, y), etc... for the existential quantifier.
ϕx, ψx, χx, etc... for Russellian ‘propositional functions’.
⊃x1,...,xn

for Peano and Russell’s notion of formal implication.
≡x1,...,xn for Peano and Russell’s notion of formal equivalence.
ϵ for the relation of membership to a class.
Other notations will appear in the text with variations in each chapter (in particular in the chapters dealing,

respectively, with Russell’s Principles of Mathematics and Principia Mathematica) but the above basic symbols
will be used throughout the whole text without variations, except in the appendices containing translations from
Principia Mathematica.
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where, x ∼ ϵ y is, of course,∼ (x ϵ y). From the above, by instantiating x as z, it follows at once
that:

(y)(y ϵ z ≡ y ∼ ϵ y), (1.1.3)

And, thus, by instantiating y as z above as well, we have:

z ϵ z ≡∼ z ϵ z (1.1.4)

This is the famous paradox that Russell communicated to Frege at the beginning of the 20th
century, in what is perhaps the most famous letter in the whole history of both Philosophy and
Mathematics8. Russell’s discovery was groundbreaking because it showed that the assumption
about the existence of sets as given by the ‘naive’ comprehension principle which was tacitally
accepted by so many logicians and mathematicians at the time (including Frege and Russell) is
contradictory.

To make a quite long story very, very short, in the outcome of this event Russell recruited
his friend and former teacher Whitehead to try to succeed where Frege had failed and, in fact, to
go quite beyond his work9. The result, after almost ten years of strenuous work were the three
volumes of Principia Mathematica, which present their attempt to overcome the contradictions
that affected the foundations of Set Theory as they stood at the beginning of the 20th century,
and to provide overwhelming evidence that Pure Mathematics is nothing but the development
of Mathematical Logic.

Again, the general outline of how these objectives were meant to be achieved in Prin­
cipia is well known. In the Introduction to Principia’s first edition, which was mainly the work
of Russell, the authors put forward the famous ‘Theory of Types’ as their approach to purge the
foundations of Mathematical Logic and Se Theory from contradictions. The gist of that theory
is the idea that not all things which can be meaningfully said or expressed about the members
of a class can be said of the class itself (and vice versa). In particular, according to the the­
ory of types, one cannot legitimately assert either that a class or set is or is not a member of
itself10. Furthermore, Russell introduced several distinctions among what he called ‘orders’ of
statements involving quantification, distinctions which avoided what he called, following Poin­
caré, ‘vicious circularities’. Concerning the goal of providing evidence for what we nowadays
call the ‘Logicist thesis’, Whitehead and Russell showed ­ employing their symbolic language
which was by and large an enormous improvement over anything which existed at the time with
the possible exception of Frege’s ­ how an enormous amount of mathematical definitions and
theorems could be grounded on their chosen primitives ideas and propositions.
8 Cf. van HEIJENOORT, J., 1967, pp.124­5.
9 Since Frege never made any claims about the logical status of mathematical laws beyond elementary arithmetic

and some parts of the theory of real numbers.
10 Which, of course, was what engendered paradox in Frege’s system.

13



Since Principia’s publication (and still to these days), however, it is universally agreed
that the goals described above were achieved in Principia with radically different degrees of
success. Ivor Grattan­Guinnes, for instance, gives us a very representative statement of this
almost universal agreement:

As a technical exercise [Principia Mathematica] is a brilliant virtuoso perfor­
mance, maybe unequalled in the histories of both mathematics and logic; the
chain­links of theorems are intricate, the details recorded Peano­style down to
the last cross­reference, seemingly always correctly. However, one has to pass
beyond the unclear introductory material ­ an eccentricity these days ­ before
these virtues emerge, especially in the second Volume, which is easily the best
of the trio.11

Similarly, commenting on the development ofMathematical Logic as conceived by Leib­
niz in terms of hisCharacteristica Universalis and developed through the works of Peano, Frege,
Whitehead and Russell, Gödel famously observed that:

Frege, in consequence of his painstaking analysis of the proofs, had not gotten
beyond the most elementary properties of the series of integers, while Peano
had accomplished a big collection of mathematical theorems expressed in the
new symbolism, but without proofs. It was only in Principia Mathematica that
full use was made of the new method for actually deriving large parts of mathe­
matics from a very few logical concepts and axioms. In addition, the young
science was enriched by a new instrument, the abstract theory of relations. The
calculus of relations had been developed before by Peirce and Schroder, but
only with certain restrictions and in too close analogy with the algebra of num­
bers. In Principia not only Cantor’s set theory but also ordinary arithmetic and
the theory of measurement are treated from this abstract relational standpoint.
It is to be regretted that this first comprehensive and thorough­going presen­
tation of mathematical logic and the derivation of mathematics from it is so
greatly lacking in formal precision in the foundations (contained in k1 − k21
of Principia) that it presents in this respect a considerable step backwards as
compared with Frege.12

Gödel’s remarks, like those of Grattan­Guinness, capture very well what is a quite wides­
pread (almost standard) view about Principia. In fact, with respect to its ‘foundational’ portions ­
i.e., Russell’s Introductionwhich presents the so­called Ramified Theory of Types and the initial
sections which treat of elementary portions of Logic and Set Theory ­ Principia’s legacy was
incorporated into the canon of Mathematical Logic and Analytic Philosophy with a far greater
emphasis on its defects rather than on its merits.

11 GRATTAN­GUINNESS, I., 200, p.388.
12 GÖDEL, K., 1944, pp.119­20.
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1.1.1 The Standard Criticisms of Principia’s Theory of Types

The main issues in Principia which gave rise to this situation are all, in one way or
another, related to the presentation of the Theory of Types. As it is presented in Principia’s
Introduction, the Theory of Types was designed by Russell to dissolve a number of ‘contradic­
tions’ or ‘paradoxes’13 related to the fundamental notions of Logic and Set Theory. As Russell
had done in his paper that made the Theory of Types famous14, Whitehead and Russell conside­
red a handful of such contradictions, in the following order: (1) the ‘Epimenides’, perhaps better
known as ‘The Cretan Liar’; (2) Russell’s own contradiction of the class of all classes which are
not members of themselves; (3) the relation version of Russell’s paradox; (4) the ‘Burali­Forti’
contradiction of the greatest ordinal number; (5) the ‘Berry Paradox’; (6) the ‘least indefinable
ordinal’ paradox; and finally (7) ‘Richard’s paradox’.

The general diagnosis which Whitehead and Russell provide concerning these contra­
dictions is that “[...] they all result from a certain kind of vicious circle”15 that “[...] arise from
supposing that a collection of objects may contain members which can only be defined by means
of the collection as a whole”16. They are thus claiming that a common feature of all paradoxes
(1)­(7) indicated above is that they involve statements about sets or totalities such that “[...] if we
suppose the set to have a total, it will contain members which presuppose this total”17. In their
own words “[...] what the theory of types aims at effecting” is to break up such pseudo­totalites
about which statements cannot be legitimately made “[...] into smaller sets, each of which is
capable of a total”18, i.e., meaningully considered in a declarative sentence19.

In order to do this, they incorporate in Principia’s logical system what became known
as the ‘Vicious­circle Principle’, which they introduce as follows:

The Principle which enables us to avoid illegitimate totalities may be stated
as follows: “Whatever involves all of a collection must not be one of the col­
lection”; or, conversely “If, provided a certain collection had a total, it would
have members only definable in terms of that total, then the said collection has
no total.” We shall call this the “vicious­circle principle,” because it enables us
to avoid the vicious circles involved in the assumption of illegitimate totalities.
Arguments which are condemned by the vicious–circle principle will be called
“vicious­circle fallacies”20.

Principia’s attempt to resolve the contradictions by incorporating the Vicious Circle
Principle within their formal system has three main components. Above we mentioned two,
13 Russell used these terms interchangeably.
14 RUSSELL, B., 1908.
15 WHITEHEAD & RUSSELL, 1925, p.37 [1910, p.39].
16 WHITEHEAD & RUSSELL, 1927 [1910], p.37.
17 WHITEHEAD & RUSSELL, 1925, p.37 [1910, p.39].
18 WHITEHEAD & RUSSELL, 1925, p.37 [1910, p.39].
19 And as they observe “by saying that a set has “no total”, we mean, primarily, that no significant statement can

be maid about “all its members” (WHITEHEAD & RUSSELL, 1927 [1910], p.37.).
20 WHITEHEAD & RUSSELL, 1925, p.37­8 [1910, p.40].
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namely the introduction of type distinctions and the introduction of order distinctions which
restricted what sort of condition or statement ϕx may be meaningfully formulated within their
formalism.

In what is a famously problematic choice of terminology, Whitehead and Russsell cal­
led expressions like “ϕx” (which stated the conditions for class membership in comprehension
principles like (1.1.1) considered above) ‘propositional functions’. Their hierarchy of types of
so­called ‘propositional functions’ restricted the arguments for which such functions had signi­
ficant values, i.e., so­called ‘propositions’. Speaking in terms of Principia’s syntax as explained
in its Introduction, at the lowest type they had individual variables x, y, z, etc., and a further
hierarchy of variables ϕ, ψ, f, g, etc., whose possible arguments were always restricted to some
type. The notation “ϕx̂”, was meant to distinguish the “function itself “ϕx̂” from “the undeter­
mined value “ϕx” ”21 in their exposition22. So, for instance, according to Principia’s hierarchy
of types, if ϕx̂ is a propositional function whose possible arguments are individual variables, all
of its significant values “ϕa”, “ϕb”, “ϕc”, etc., are propositions ­ i.e., sentences ­ which result
from substituting an individual constant for “x”; any attempt to substitute anything else for the
variable x for would result in nonsense, and both “ϕ(ϕx̂)” and “∼ ϕ(ϕx̂)” , in particular, are
ruled out as ungrammatical.

The hierarchy of orders then further splits expressions of the same type according to what
sort of quantified variables appears in them in order to avoid another sort of ‘vicious circularities’.
As they explain:

[...] the hierarchy which has to be constructed is not so simple as might at
first appear. The functions which can take a as argument form an illegitimate
totality, and themselves require division into a hierarchy of functions. This is
easily seen as follows. Let f(ϕẑ, x) be a function of the two variables ϕẑ and x.
Then if, keeping x fixed for the moment, we assert this with all possible values
of ϕ, we obtain a proposition:

(ϕ) f(ϕẑ, x).

Here, if x is a variable, we have a function of x; but as this function involves
a totality of values of ϕẑ, it cannot itself be one of the values included in the
totality, by the vicious­circle principle. It follows that the totality of values of
ϕẑ concerned in (ϕ) f(ϕẑ, x) is not the totality of all functions in which x can
occur as argument, and that there is no such totality as that of all functions in
which x can occur as argument.23

Putting it more generally, and in terms of Principia’s syntax, the authors explain that
“if the highest order of variable occurring in a function, whether as argument or as apparent
variable, is a function of the nth order, then the function in which it occurs is of the n + 1th
21 WHITEHEAD & RUSSELL, 1927 [1910], p.40.
22 For instance, to indicate when a ‘function’ ­ i.e., a non­individual variable ­ occurred as an argument in some

given context, as in “f(ϕx̂)”, “f(x, ϕx̂)”, etc.
23 WHITEHEAD & RUSSELL, 1925, pp.48­9 [1910, p.51].
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order”24. These distinctions of orders together with those of types are introduced by Whitehead
and Russell so that the range of a given variable is always restricted to a given type and order
and vicious circularities are always blocked gramatically: the distinctions are built up in this way
so that the attempt to formulate any of the paradoxes mentioned above results in nonsense25.

This logical theory whose variables are stratified into types with “superimposed or­
ders”26, as Quine puts it, is what became known as the ramified theory of types. The restrictions
of the theory as developed with the Vicious Circle Principle as its guide, however, are quite
severe for the purposes of developing classical Mathematics, and Whitehead and Russell were
forced to assume a special axiom to attenuate their impact. The assumption in question is their
infamous ‘Axiom of Reducibility’ which asserts that “given any function ϕx̂, there is a formally
equivalent predicative function”27. In symbols, this is stated as follows:

( E

ψ)(x)(ϕx ≡ ψ!x) (1.1.5)

As Whitehead and Russell explain in Principia’s Introduction, a function is said to be ‘predica­
tive’, “when it is of the next order above that of its argument, i.e. of the lowest order compatible
with its having that argument”28. The import of this axiom is substantial: it allows one, for all
intents and purposes, to ignore the superstructure of orders upon types, for it asserts that given
any well­formed sentence of Principia’s grammar which contains a real (free) variable x, there
is a function ψ of the lowest order compatible with that of its arguments such that ψ is equivalent
to that open sentence for all arguments x.

The Axiom of Reducibility played a crucial role in what is actually the third and perhaps
most important component of Principia’s resolution of the set theoretical contradictions, namely
the ‘No­class’ theory of classes. This theory is developed in sections ∗20 and ∗21 of Principia
whereWhitehead and Russell attempt to contextually define symbols for classes and relations­in­
extension and to recover extensionality principles which suffice for the development of Mathe­
matics without assuming any ontology of sets or classes. This approachwas inspired by Russell’s
famous paraphrase or contextual definition of sentences containing occurrences of definite des­
criptions, i.e., expressions of the form “the x such that ϕx”. As is well known, in On Denoting29

­ perhaps Russell’s most celebrated paper ­ he proposed an analysis of a sentence like “the pre­
sent king of France is bald” in terms of an existential generalization asserting that: (i) there is a
king of France; (ii) that there is at most one King of France; and, finally, (iii) that he is bald. In
24 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56].
25 Cf. WHITEHEAD & RUSSELL, 1925, p.60­5 [1910, p.63­8].
26 QUINE, W., 1941, p.25.
27 WHITEHEAD & RUSSELL, 1925, p.56 [1910, p.58].
28 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56].
29 RUSSELL, B., 1905a.
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symbols, Russell would later express this in a general manner as follows30:

ψ(ıxϕx) =Df (

E

y)(ϕy (z)(ϕz ⊃ z = y) ψy] (1.1.6)

In the above, the expression “ıxϕx” stands for the ordinary “the x such that ϕx”, and the right­
side of the definition provides a general way of paraphrasing sentences in which such expressi­
ons occur as subjects in a given context ψ(...). So this analysis made it possible to very conve­
niently (and rightly) avoid treating “ıxϕx” as a singular term, but in fact treat it as what Russell
famously called an incomplete symbol.

Put roughly, what we find in sections k20 and k21 of Principia is an attempt to extend
this method of contextual paraphrase to expressions like “x̂ϕx” and “x̂ŷψx” that are generally
thought to stand, respectively, for the set of all things x which satisfy some condition ϕ and
the class of all couples x and y which satisfy some condition ψ. Still putting things roughly,
the main definitions of k20 are intended to do this by letting an arbitrary predicative function
ψ!x̂ that is equivalent to the condition ϕx for all values of x more or less do the job of the set
which generally thought to be the referent of such expressions like “x̂ϕx”. This is done by first
letting any occurrence of an expression such as “x̂ϕx” within a given condition or context χ be
rephrased according to the following contextual definition:

f(ẑϕz) =Df (∃ψ)((x) ϕx ≡ ψ!x χ(ψ!ẑ)) (1.1.7)

And then, letting lower­case Greek variables be place­holders for expressions of the form “x̂ϕx”,
Whitehead and Russell emulate quantification over sets by contextually defining “(α)χα” and
“(∃α)χα”, respectively, as “(ϕ)χ(ϕ!x̂)” and “(∃ϕ)χ(ϕ!x̂)”31. This strategy allowed them at the
same time to recover essential extensionality principles like:

(x)(ϕx ≡ ψx) ≡ (ẑϕx = ẑψx) (1.1.8)

(α)(β)((x) x ϵ α≡ x ϵ β ⊃ α = β) (1.1.9)

without the need to assume any ontology of classes and to dissolve the set­theoretical contradic­
tions. Russell’s paradox, in particular, is blocked directly by the impossibility of meaningfully
asserting that a propositional function can be its own argument. For according to the contextual
definitions above, any attempt to state anything about a class α always amounts to a statement
30 Principia also introduces scope markers in such definitions, which are very important since they also apply to

and required by the contextual definitions of class expressions. This will be addressed in chapter 4.
31 Similar definitions are provided by Whitehead and Russell to deal with relations­in­extension in section k21.

Further distinctions are also added by Whitehead and Russell for dealing with classes of classes as opposed
to classes of what Russell called classes of ‘individuals’. This is an often neglected and immensely important
aspect of Principia’s No­Class Theory, as Gregory Landini emphasizes (cf., for instance LANDINI, G., 1998,
pp.168­171 and LANDINI, G., 2013b, pp.184­201).
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about a predicative function ϕ!x̂ which is formally equivalent to the defining condition of α; so
in particular, the statement that a class α is not a member of itself, i.e., “∼ α ϵα” or “α ∼ ϵ α”,
must be reduced to a statement that a given function ϕ does not apply to itself, i.e., “∼ ϕ!(ϕ!x̂)”;
but this, as we already pointed out, is ruled by the restrictions of type as ungrammatical. In order
for the No­Class theory to work as intended, however, the Axiom of Reducibility is necessary:
without it, there is no guarantee that there is a predicative function which is formally equivalent
to the condition which determines the class α in question.

Indeed, the Axiom of Reducibility is also required to recover important results of Classi­
cal Mathematics within Principia’s formal system, since the restrictions of orders greatly impact
the strenght of the system.We may illustrate this with an informal survey of howWhitehead and
Russell define the concept of natural number in terms of their notion of the ancestral R∗ of a
relation R. Expressed in Principia’s notation, the definition of the notion of the ancestral is given
as follows32:

xR∗y =Df (ϕ)(ϕ!x zRw ϕ!z ⊃z,w ϕ!w ⊃ ϕ!y)

In words, this states that x is an R­ancestor of y if, and only if, y has all the ‘R­hereditary’
predicative functions (or properties) possessed by x. In the presence of theAxiom of Reducibility,
the above entails the following:

xR∗y ≡ ψx zRw ψz ⊃z,w ψw ⊃ ψy

That is, x is an ancestor of ywith respect toR if, and only if anyR­hereditary function (predicative
or not) which is true of x is also true of y.

As is well known, the concept of ‘natural number’ in Principia is defined using this
notion and their definition entails the following theorem of mathematical induction:33

Nc induct(γ)≡ ϕ(0) ϕα ⊃α ϕ(α + 1) ⊃ ϕγ

As is also well known, for classical mathematics to be preserved, it is crucial that in the formula
above onemay legitimately have instead of the so­called ‘function’ϕ the predicate ‘... is a natural
number’ or a more complex predicate which has this predicate as a subordinate part, as in ‘n is
a natural number less than some natural number m’. Perhaps the most obvious example is the
following version of the principle of induction:

ϕ(0) Nc induct(α) ϕα ⊃α ϕ(α + 1) ⊃ Nc induct(γ) ⊃ ϕγ

The problem is that whenever one attempts to frame such a statement within a ‘ramified’ syntax,
the occurrences of all terms in it must be read as having implicit or explicit indices indicating
32 This is a simplified version of Whitehead and Russell’s definition, for Principia’s actual definition. Principia’s

actual presentation of the ancestral will be discussed in chapter 5.
33 As we shall see in chapter 5, this is actually a theorem scheme.
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their types/orders which determine what sort of substitutions are allowed in the formula in ques­
tion. A proof of the principle of strong induction requires just the kind of ‘vicious circularity’
which the restrictions of order aim at avoiding: it requires that the range of substituends of the so­
called ‘propositional function’ ϕ occurring in the definiens of “Nc induct” include expressions
whose order is higher than that of ϕ, since if the definiens of “Nc induct(α)” contains a bound
variable ϕ whose order is n, then “Nc induct(α)” must of the order immediately above that of
ϕ. The Axiom of Reducibility cuts right across this difficulty since it asserts that any function
whatever is equivalent to a predicative function34.

It is at this point that Principia’s traits which were universally considered problematic
and unsatisfactory become quite salient. To begin with, there is the quite problematic use of
expressions like “propositional function” and “proposition”. In its most strict sense, a ‘propo­
sitional function’ was certainly meant by Whitehead and Russell to be a complex expression
containing free variables, schematically symbolized as “ϕx”, “ψy”, “ϕ(x, y)”, “ψ(x, y)”, etc35;
in other words, in the most strict sense in which they employed the notion of a ‘propositional
funcion’ they most likely meant a formal expression ϕ which contained free occurrences of any
number of variables x, y, z, etc, and a ‘proposition’ in its most strict sense, was meant to be just a
declarative sentence (a statement which can be either true or false). But as Quine time and again
observed36, Whitehead and Russell ambiguously used the expression “propositional function”
to mean (at least) two completely different things. Besides employing the label to mean what
is best understood as dummy letters or schemata standing for arbitrary open formulas of their
formal language, they also used the same label for proper variables of their formal language.
To mark this contrast, which was more or less explicitly recognized by the authors, they distin­
guished this latter use by employing the symbol “!”, which distinguished so­called ‘predicative’
functions from ‘non­predicative’ ones. So “ϕx” was just a scheme, a mere placeholder for an
actual expression containing the variable “x” occurring free at any number of places, while “ϕ!”
was an actual expression of their formal language which could occur as an argument of other so­
called functions and, crucially, also be bound by quantifiers.The result was that their exposition
was plagued by a conspicuously confusing use of the phrase “propositional function”, which to
this day is a source of both simple misunderstandings and serious interpretative disputes about
Principia.

Many of these arise at once. For instance, if we follow Quine in distinguishing genuine
terms and variables of the formal language from schematic letters, the circumflex notation should
be viewed as playing two different roles and, consequently, the symbols “ϕ!x̂ ” and “ϕx̂ should
be understood as being of radically different kinds: in the first case the role of the circumflex
is to indicate a formula where a genuine term occurs, as in “ψ(ϕ!x̂)”; while in the second case,
the device is used (confusingly) for nominalizing open formulas37. This, on its turn, strongly
34 It must be observed, however, that this applies only to extensional contexts.
35 WHITEHEAD & RUSSELL, 1925, pp.38­9 [1910, p.41].
36 Cf., for instance, QUINE, W., 1941, 1963 and 1969, pp.254­256.
37 For instance, in order to distinguish an open formula from the result of substituing another term a by a variable
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suggests that Whitehead and Russell’s lack of care with the use and mention of expressions
ended up (unintentionally) blurring the distinction between expressions themselves and what
they are be supposed to denote, as Quine vehemently insisted38.

If we refrain, however, from followingQuine’s sound advice to distinguish clearly between
variables and schematic letters and assume that “propositional function” has a univocal meaning,
severe difficulties also arise. To begin with, we seem to find no reasonable explanation whatso­
ever as to why letters such as “ϕ” never appear bound to quantifiers in Principia in a formula
without an accompanying “!”39.Much more serious, however, the ontological status of so­called
propositional functions becomes quite problematic since simply treating them either as entities
or as mere expressions may easily ­ perhaps inevitably ­ also saddle Whitehead and Russell with
a severe lack of care about use and mention and a corresponding ontologically confused use of
the phrase “propositional function”.

To give a very simple example, Whitehead and Russell repeatedly assert that a function
is “an ambiguity”40. If they intended “propositional function” to univocally mean some sort of
abstract entity, this would be quite misleading, since what may or may not be strictly ambiguous
is an expression of some sort. On the other hand, if they intended propositional functions to be
mere expressions, they do not make it clear what such expressions stand for ­ if anything at all ­
most crucially in the case of the bindable variables accompanied by “!”.

In fact, the two most serious interrelated issues involved in the notion of a ‘propositio­
nal function’ concern directly their ontological status, in particular, whether they are anything
beyond linguistic expressions. First, their dubious status seriously calls into question whether
Principia attains any degree of success in its attempt at the ontological elimination of sets or
classes. Again, this is a point that has been emphatically pressed by Quine, who urged that the
variables “ϕ!”, “ψ!”, etc., must range over attributes or properties if we are to make any sense of
their occurrences bound by quantifiers. This, however, calls into question the very motivation
for the contextual elimination of class expressions which is then framed as an outright substi­
tution of classes in favor of attributes on the basis of a confusion between sign and object. As
Quine puts it:

Russell had also a philosophical preference for attributes, and felt that in contex­
tually defining classes on the basis of a theory of attributes he was explaining
the obscurer in terms of the clearer. But this feeling was due to his failure to
distinguish between propositional functions as predicates, or expressions, and
propositional functions as attributes. Failing this, he could easily think that the

in it, as in “ϕ!x ⊃ ψ!x” and ϕ!a ⊃ ϕ!a”.
38 Cf., again, any of the following: QUINE, W., 1941, 1963 and 1969, pp.254­256.
39 This is an issue which arises for several interpretations and reconstructions of Principia. Cf., for instance,

CHURCH, A., 1976; HYLTON, P., 1990, pp.303­9, in particular footnotes 26 and 34, also LINSKY, B., 1999,
pp.79­82.

40 WHITEHEAD & RUSSELL, 1910, p.38­9
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notion of an attribute is clearer than that of a class; for that of a predicate is.
But that of an attribute is less clear.41

Second, there is the question of the plausibility of the ‘Vicious Circle Principle’ as it
appears in Principia. Famously, Gödel42 argued that the principle is admissible only “[...] if the
entities involved are constructed by ourselves”, that is, if “[...] one takes the constructivistic (or
nominalistic) standpoint toward the objects of logic and mathematics”43. Following a criticism
first put forward by Ramsey44, Gödel’s main point is that if we assume the independent existence
of ‘propositional functions’ and ‘propositions’ as abstract entities ­ attributes or properties, for
instance ­ then “[...] there is nothing in the least absurd in the existence of totalities” of such
entities that contain “members which can be described only by reference to this totality”45.

On the heels of Ramsey and Gödel, Quine struck the nerve again, observing that the
whole business of order restrictions as imputed by theVicious Circle Principlewere ill­conceived:

This ramification of type theory is designed for the avoidance of certain con­
tradictions of a quite different sort from [Russell’s paradox]. But the treatment
is vague, on account of failure to distinguish between expressions and their
names. On restoring this distinction one finds that the contradictions against
which this part of type theory was directed are no business of logic anyway;
they can arise only in discourse that goes beyond pure logic and imports se­
mantic terms such as ‘true’ or ‘designate’. The whole ramification, with the
axiom of reducibility, calls simply for amputation.
It is readily seen also on other grounds that this part of type theory was bound to
be wholly idle. The axiom of reducibility assures us that from the beginning we
could have construed the notations of Principia as referreing exclusively to so­
called “propositional functions” (predicative attributes); but when this is done,
the resulting logic is the same as if neither “orders” nor “predicativity” nor
“reducibility” had been thought of in the first place. That this simple situation
escaped the attention of the authors is attributable, again, to the ambiguity of
‘propositional function’ and the underlying difficulty over use and mention.46

Needless to say, all the points above do afford us with a very bad diagnosis for the
‘foundational’ portions of Principia. The above account, if correct, reveals that the mathematical
monument constructed by Whitehead and Russell actually rests on very shaky foundations.

41 QUINE, W., 1969, p.256­7.
42 GÖDEL, K., 1944, p.127. Famously, Gödel also suggested that there may be several principles instead of one,

since Russell at times formulates it in terms of an object being “definable only in terms of” totality, at others is
terms of “involving” and also in terms of “presupposing”, none of which hold water if attributes are understood
as mind­independent entities.

43 GÖDEL, K., 1944, p.128.
44 Cf. RAMSEY, F., 1926, pp.41.
45 GÖDEL, K., 1944, p.128.
46 QUINE, W., 1941, pp.25­6. Cf. also QUINE, W., 1969, pp.254­6.
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1.1.2 Principia’s Theory of Types and the ‘Church Orthodoxy’

Many interpreters of Russell’s works as well as authors who were sympathetic to the
general approach to the contradictions which is given in Principia’s Introduction attempted to
reconsider or overcome, in some way or another, the negative assessment of Ramsey, Gödel
and Quine47. These attempts to present Principia’s foundations in a more favourable light can
be categorized in two broad (and sometimes overlapping) groups. First, there are attempts to
formulate Principia’s foundations in a way that is up to modern standards of rigour in order
to clear up the problematic and/or confused aspects of the sloppy presentation of the Theory
of Types given in the Introduction. Second, there are attempts to consider the views advocated
in Principia’s Introduction in a more charitable way by considering them in light of Russell’s
other works in Mathematical Philosophy and by also taking into account the development of his
views.

There are many examples of reconstructions of Principia’s formal system48, but that of
Church ­ which at this point may be considered the ‘orthodox’ reconstruction ­ is by far the
best known. Church manufactured a rigorous formulation of the syntax of ramified type theory
which, apart from some (non­trivial) departures from Principia49, was intended to capture the
resolution of the so­called ‘semantic’ antinomies or paradoxes by following the restrictions of
orders imposed by the Vicious­Circle Principle50. Crucially, Church’s reformulation also assu­
47 QUINE,W., 1969, p.263. The earliest version of this criticismwas introduced by Leon Chwisteck, who endorsed

ramified type theory but rejected the Axiom of Reducibility (cf. CHWISTEK, L., 1921, 1922a, 1922b, 1924,
1925). In his Introduction to the second edition of Principia, Russell describes Chwistek’s choice of rejecting
Reducibility “without adopting any substitute” as “heroic” (WHITEHEAD & RUSSELL, 1927a, pp.xiv). For a
discussion of Chwisteck’s original work on the theory of types see LINSKY, B., 2009; for a discussion relating
Chwisteck’s views and those of Russell, see LINSKY, B., 2004 and several sections of LINSKY, B., 2011;
for a discussion of the influence of Principia Mathematica not only on Chwistek but on the whole school of
Polish logicians cf. GRATTAN­GUINNESS, I., 2000, pp.489­97 and WOLENSKI, J., 2013. Another important
early version of Chwistek’s criticism was given by Ramsey, who, of course, rejected both the hierarchy of
orders and the Axiom of Reducibility and is generally credited for the concept of a “Simplified” theory of
types (cf. RAMSEY, F., 1925). Of course, many ­ including Quine himself ­ followed Chwistek and Ramsey
in doing this, another important example being Carnap (cf. CARNAP, R., 1929 and 1931) and also Hilbert (cf.,
HILBERT & ACKERMANN, 1928). Quine’s earliest version of this criticism was given in his dissertation, A
System of Logistic from 1932, later published as QUINE, W., 1934; cf. also QUINE, W., 1936 for similar points.
As we already indicated, however, if Principia’s language is interpreted as allowing the formulation of non­
extensional sentential contexts (as it should), then this criticism is certainly not decisive. Again, the reader is
referred to CHURCH, A., 1974 and 1976. As is well known, this charge of redundancy or superfluousness of
order distinctions in the presence of the Axiom of Reducibility became standard in the literature (cf., for instance,
FITCH, F., 1938; COPI, I., 1950 and 1971; HATCHER, W., 1980, pp.126­7). Through the nineteen­thirties, the
simple theory of types as urged byPrincipia’s achieved the status of a standard system for foundation studies and
was consolidated in works like GÖDEL, K., 1931, QUINE, W., 1938 and CHURCH, A., 1940 but; this situation
changed after the thirties and first­order systems became standard (cf. GOLDFARB, W. 1979, MOORE, G.
H., 1988b; SHAPIRO, S., 1991, pp.173­202; for a very good study of this historical shift from type­theoretic to
first­order approaches in foundation studies, cf. SCHIEMER & RECK, 2013).

48 For instance, COPI, I., 1971; CHIHARA, C., 1973; CHURCH, A., 1976; HATCHER, W., 1968, 1982. General
surveys and critical discussions of such reconstructions can be found in HAZEN, A., 1983; LANDINI, G., 1998,
pp.267­72 LINSKY, B., 1999, pp.66­72.

49 These departures and the historical Principia will be extensively discussed in chapter 4.
50 Cf. CHURCH, A., 1976 for details.
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med that the resulting logic ­ sometimes referred to as ‘Russellian Intensional Logic’51 ­ requires
a realist semantics according to which ‘functional’ and ‘propositional’ variables, respectively,
range over ‘propositional functions’ and ‘propositions’ conceived as abstracta. In short: Church
faced Quine’s criticism of the double role played by the notion of ‘propositional function’ by
biting the bullet and reframing Principia’s variables other than individual ones to range over
attributes and relations­in­intension stratified into ramified types52.

Church’s reconstruction of Principia has exerted a deep and widespread influence in
scholarly works on Russell’s Mathematical Philosophy. The claim that Principia’s so­called
‘Ramified’ Theory of Types must be interpreted in terms of a realist semantics committed to
‘propositional functions’ and ‘propositions’ conceived as entities, in particular, acquired the sta­
tus of orthodoxy through the influential writings of many important scholars, most notably Peter
Hylton andWarren Goldafarb53. Apart fromminor points of disagreement, what is characteristic
of the influential interpreations which these authors put forward is that they are attempts to spell
out and elaborate what sort of philosophical motivation lies behind Principia’s adoption of a
ramified type theory of entities54.

Warren Goldfarb, for instance, captures quite well the general gist of such attempts at
making explicit ‘Russell’s reasons for Ramification’ (against Gödel’s and Quine’s criciticisms),
when he writes:

Gödel and Quine make Russell out to have a general vision of what the exis­
tence of abstract entities comes to, and thus to be adopting constructivism as
a fundamental stance toward ontology. That does not seem accurate to Rus­
sell. Rather, the justification for ramification rests on the particular sorts of
entities to which it is applied, namely, propositions and propositional functi­
ons. To understand this, we must see more clearly why these entities are cen­
tral to Russell’s logical enterprise and what special features of their structure
Russell exploits. The results might have the appearance of constructivism, but
Russell’s most basic reasons for ramification are not the outgrowth of such a
general position; rather, they are far more particular to the nature of the entities
he treats.55

According to this general line of interpretation, ramification “[...] of a domain of abstract
entities is the result of requiring that legitimate specifications of such entities be predicative”56,
and such a requirement is justified on the grounds that the entities in question ­ propositional
functions and propositions ­ are intensional structured entities57.
51 Cf., for instance, ANDERSON, A., 1989.
52 In fact, Church included axiom­schemes of comprehension for both propositional functions and propositions

and distinguished the former from his axioms of reducibility (cf. CHURCH, 1976; and also CHURCH, A., 1956,
pp.347­56).

53 Cf. HYLTON, P., 1980, 1990, 2005; GOLDFARB, W., 1989.
54 Cf. also COCCHIARELLA, N., 1980.
55 GOLDFARB., W., 1989, p.26.
56 GOLDFARB., W., 1989, p.24. Our emphasis.
57 See, in particular, GOLDFARB, W., 1989, pp.32­3 and HYLTON, P., 2005, pp.134­6.
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Put briefly and roughly, Hylton and Goldfarb argue that the complex structure of the
syntax of Principia’s theory of types is meant by Russell to reflect to complex structure of the
entities which he assumes as fundamental58; so against the traditional charges of confusing use
and mention and unitentionally assuming a ‘constructivistic’ stance towards mathematical enti­
ties (which would be quite wrong for a Logicist), these authors claimed that ‘Russell’s reasons
for Ramification’ are, on the contrary, grounded on a robust realism about propositions and pro­
positional functions. But still, even if such general approach at making sense of Principia’s text
(in particular the Introduction) is correct, several aspects of the work remain quite baffling and,
indeed, many serious interpretative problems remain without a satisfactory answer.

To begin with, the genuine segmentation of the very notion of logical generality which
is imputed to Russell in Principia by Hylton and Goldfarb is in tension ­ as they themselves
emphasize ­ with central aspects of Russell’s early conception of Logic as elaborated in the
Principles of Mathematics and many of his subsequent works. For a central logical doctrine
which is integral to Russell’s early conception of logic was his doctrine of the “unrestricted
variable” according to which the range of “the true or formal variable”must always be comprised
of “all terms”, i.e., all entities there are59. This was also expressed byRussell in terms of the claim
that “there is only one kind of being, namely being simpliciter”60, i.e., the ontological counterpart
of the doctrine which Russell encapsulated in terms of the Leibnizan dictum “Quodlibet ens, est
unum” i.e., “Whatever is, is one”61. If taken seriously, this doctrine is plainly incompatible with
the genuine segmentation of the notion of logical generality which inevitably accompanies any
sort of type­distinctions among entities.

Moreover, as many authors62 ­ including Hylton himself63 ­ have shown in studies about
the development of Russell’s views between the Principles and Principia, it was in order to
preserve this doctrine that Russell becamemore andmore attracted to eliminativistic approaches
to classes; it was also in order to preserve this doctrine that Russell was led at some point to an
eliminativistic approach to propositional functions and to propositions as well. And, in fact,
Principia’s Introduction explicitly advocates an eliminativistic stance towards propositions by
adopting Russell’s ‘multiple­relation’ analysis of judgment according to which a proposition
“[...] is not a single entity at all”64; like expressions for classes, Russell intended expressions like
p, q, r etc., to be treated as “incomplete” symbols which are contrasted with individual constants
and variables: the latter, unlike incomplete symbols, “[...] do not disappear on analysis”65.

According to Hylton, however, the implication “[...] that only individuals (neither propo­
58 cf., for instance, HYLTON, P., 2005, pp.134­7.
59 RUSSELL, B., 1937 [1903], p.91, §88
60 RUSSELL, B., 1937 [1903], p.449, §427
61 RUSSELL, B., 1906a, p.261.
62 Cf. COCCHIARELLA, N., 1980; HYLTON, P., 1980; LANDINI, G., 1998.
63 Cf., in particular, HYLTON, P., 2005, pp.93­101.
64 WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].
65 WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].
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sitions nor propositional functions) are genuine constituents of propositions, constituents which
do not ‘disappear on analysis’” can only be explained as “[...] wishful thinking on Russell’s
part”66 which displays “unwillingness of Russell to acknowledge the implications of type the­
ory”67. Similarly, Goldfarb follows the established common wisdom of Church’s reconstruction
and claims that the attempt to treat sentences as incomplete symbols is not consistent with the
logic of Principia and that the multiple­relation analysis of judgment “seems to play no real role
in Russell’s explanations of his logical system”68. The implications of Goldfarb’s views are quite
like those of Hylton: both are basically claiming that any aspect or passage in Principia which
may suggest that type distinctions are not meant to apply to genuine entities ­ as in the case of
so­called propositions ­ is best understood as the result of Russell’s failure or “unwillingness”
to understand what his own logical system requires in order to make sense or be coherent.

Furthermore, Hylton claims that this same “unwillingness” is also displayed in connec­
tion to another fundamental tension which emerges in Principia if the theory of types is interpre­
ted in terms of a realistic theory of propositional functions and propositions. Hylton andGoldfarb
follow van Heijenoort in attributing to Russell a somewhat naive conception of the “universality
of logic”69. Goldfarb, for instance, provides a paradigmatic explanation of this interpretation in
the following terms:

Russell took logic to be completely universal. It embodies all­encompassing
principles of correct reasoning. Logic is constituted by the most general laws
about the logical furniture of the universe: laws towhich all reasoning is subject.
The logical system provides a universal language; it is the framework inside
of which all rational discourse proceeds. For Russell, then, there is no stance
outside of logic: anything that can be communicated must lie within it. Thus
there is no room for what we would call metatheoretic considerations about
logic.70

Hylton agrees entirely with that interpretation. He writes:

Logic, for Russell, is a systematization of reasoning in general, of reasoning as
such. If we have a correct systematization, it will comprehend all correct prin­
ciples of reasoning. Given such a conception of logic there can be no external
perspective. Any reasoning will, simply in virtue of being reasoning, fall within
logic; any proposition that we might wish to advance is subject to the rules of
logic. [...] If logic is to be unconditionally and unrestrictedly true in the sense
that Russell requires it to be, then it must be universally applicable. This, in
turn, implies that statements about logic must themselves fall within the scope
of logic, so the notion of a meta­theoretical perspective falls away.71

66 HYLTON, P., 2005, p.106.
67 HYLTON, P., 2005, p.106.
68 GOLDFARB., W., 1989, p.34. That is why Goldfarb takes “[...] the charitable course of ignoring [...]” (idem.)

any possible role that the multiple­relation analysis of propositions may play in Principia.
69 Cf. van HEIJENOORT, J., 1967.
70 GOLDFARB, W., 1989, p.27.
71 HYLTON, P., 1990, p.203.
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Thus according to such interpretation, “intrinsic to Russell’s conception of the univer­
sality of logic is the denial of the metalinguistic perspective which is essential to the modern
conception of logic”72. Of course, an important consequence of imputing such a conception of
Logic to Principia is that it makes the very statement of the theory of types incoherent, in particu­
lar if type distinctions are considered as substantial claims about domains of entities. As Hylton
puts it, “the difficulty here clearly arises from the attempt to state type theory within type the­
ory”73: for if propositional functions are entities after all and Principia’s lingua characteristica
is meant to be “all encompassing”, then any statement to the effect that two given functions ϕ
and ψ are not of the same type would, if true, violate type distinctions, because such statement
would presuppose that there is propositional function χ which can be meaningfully applied to
two entites ϕ and ψ both when they are and when they are not of the same type74.

Thus, the general situation which we have here is the following. In their efforts to dispel
Gödel’s and Quine’s verdict that the foundations Principia are pervaded by basic misunders­
tandings75, Church, and following him, Hylton and Goldfarb have argued that Principia should
be interpreted as advancing an onerous theory of abstract entities that is motivated by a robus­
tly realist, albeit naive, conception of Logic. As Hylton puts it, however, this very conception
of Logic gives rise to “[...] a fundamental tension in Russell’s philosophy”76 which can only
lead us to conclude that Principia is “[...] a technical achievement which is marred by apparent
inconsistencies and incoherences”77.

1.1.3 The ‘Axiom’ of Infinity

Furthermore, although neither Church, nor Goldfarb nor Hylton explicitly mention this
in connection with the issue of propositional functions and propositions, there is a another point
that arises here related Principia’s so­called ‘Axiom of Infinity’.

As is well known, given type restrictions, it is impossible to prove in Principia’s system
that there are infinitely many objects in any given type. A little more precisely, what cannot be
shown in any type is that the universal class is non­inductive. In symbols, this may be schema­
tically expressed as follows:

Λ

∼ ϵCls induct (1.1.10)

Where “Cls induct” stands for the class of all ‘inductive’ or finite classes. In Principia, this class
72 HYLTON, P., 1990, p.202; cf., also, GOLDFARB., 1989, p.27
73 HYLTON, P., 2005, p.76.
74 Cf. HYLTON, P., 1990, pp.316­18; also HYLTON, P., 2005, pp.75­7.
75 In particular the confusion between the use and mention of expressions.
76 HYLTON, P., 2005, p.107.
77 HYLTON, P., 2005, p.107.
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in characterized in terms of the following theorem, which expands its more compact definition78:

Cls induct = α̂{(µ)(Λ ϵ µ ∧ (η)(y)(η ϵ µ ⊃ η ��{y} ϵ µ) ⊃ α ϵ µ)} (1.1.11)

Put in terms of cardinal numbers, 1.1.10 is equivalent to the following:

Nc(

Λ

) ∼ ϵNC induct (1.1.12)

Which states that the cardinal number of the universal class (of some type79) is not a finite
cardinal number, i.e., a natural number. Also, in Principia’s system there are many statements
which are equivalent to the above, including the following:

(n)(n ∈ NC induct⊃ n ̸= Λ) (1.1.13)

(n)(n ∈ NC induct⊃ n ̸= n+ 1) (1.1.14)

(m)(n)(n,m ∈ NC induct ⊃ m+ 1 = n+ 1 ⊃ m = n) (1.1.15)

Nc(NC induct) ∼ ϵNC induct (1.1.16)

The last three, 1.1.14, 1.1.15 and 1.1.16, in particular cause some alarm: they assert, respectively,
that (a) no natural number is identical with its immediate successor; (b) that no two natural
numbers have the same successor and (c) that the cardinal number of the class of all natural
numbers is not itself a natural number, i.e., that there are infinitely many natural numbers. None
of these are provable in Principia.

Whitehead and Russell handled this ‘difficulty’ by introducing 1.1.13 as a hypothesis ­
not as a proper axiom of their system ­ wherever it was necessary. So instead of proving, say,
1.1.14, they proved only:

InfinAx ⊃ (n)(n ϵNC induct ⊃ n ̸= n+ 1) (1.1.17)

Where ‘Infin Ax’ is a label for 1.1.13. Even independently of the issue of the status of ‘pro­
positions’ and propositional functions, the impossibility of proving 1.1.14 rather than 1.1.17 was
universally recognized as attesting Principia’s failure to establish the Logicist thesis, since 1.1.13
is actually equivalent to the assumption that there are infinitely many objects of the lowest type,
i.e., infinitely many individuals. For instance, William and Martha Kneale’s (nearly infuriated)
comments on the status of Infin Ax provide a quite representative reaction to its employment in
Principia. They write:

78 Cf. k120· and k120·24.
79 For reasons that will be discussed further, it would be more appropriate to speak of the universal class of some

relative type. Cf. for instance, LANDINI, G., 2016, p.4­5. This issue will be discussed in chapter 5.
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There is something profoundly unsatisfactory about the axiom of infinity. It
cannot be described as a truth of logic in any reasonable use of that phrase,
and so the introduction of it as a primitive proposition of arithmetic amounts in
effect to abandonment of Frege’s project of exhibiting arithmetic as a develop­
ment of logic. Nor is it a sufficient defence to suggest, as Russell has sometimes
done, that we may treat as a postulate or hypothesis rather than as an axiom in
the old sense. For we want to assert that the series 1/2 + 1/22 + 1/23 + ...
converges to 1 as a limit, not that it converges to 1 as a limit if there happens to
be an infinity of individuals in the world. But even if we abandon all hope of
carrying out Frege’s programme in full and say boldly that Russell’s axiom is
required as an extra­logical premiss for mathematics, how can we justify our
acceptance of it? What are the individuals of which Russell speaks, and how
can we tell whether there infinitely many of them?80

Similar remarks are easily found in the literature about the subject81 and even authors
who are much more sympathetic to Whitehead and Russell’s modus operandi also agree that
Principia fails in sustaining the claim that Arithmetic is nothing but the development of Logic82.

Hylton ­ like the Kneales and many others ­ agrees that “Russell’s attitude towards the
axiom of infinity does [...] threaten the fundamental project of logicism”, so much so that ac­
cording to him “[...] it might be said that Principia represents not so much the culmination of
Russell’s logicism as Russell’s abandonment of logicism”83. When viewed in light of the highly
Platonistic interpretation of type theory which is put forward by Cocchiarella, Golfarb and Hyl­
ton himself, we seem to be left with a very negative assessment of the development of Russell’s
views. Putting matters in a rather blunt way, how could Russell (and Whitehead) have ended
up adopting a logical system which at the same time betrayed the philosophical conception of
Logic as a science that motivated it (in virtue of the considerations about types made above)
and also failed to deliver the technical results which were central to the project of establishing
Logicism?

As we shall see next, there is an alternative interpretation which provides a more chari­
table and interesting portray of the Logic and Logicism of Principia, that of Gregory Landini.

1.2 Re­assessments of the ‘Received View’

1.2.1 Russell’s Manuscripts and the ‘Substitutional Theory’ of Classes and Re­
lations

Before presenting the general outline of Landini’s interpretation, it is necessary to pro­
vide some context for it, in particular, in order to make clear why several aspects of what we are
80 KNEALE & KNEALE, 1962, p.669.
81 Cf., for instance, HATCHER, W., 1980, pp.123­4; MENDELSON, E., 2010, p.295, footnote; SOAMES, S., 2014,

pp.487­8.
82 Cf., for instance, BOOLOS, G., 1998, pp.271­2.
83 HYLTON, P., 2005, p.78. Cf., also, HYLTON, 1990, pp.318­20.
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calling ‘orthodox’ interpretations remained unquestioned for so long.

In the last three quarters of a century84, we may distinguish three stages of Russellian
scholarship as far as Russell’s logico­mathematical writings are concerned. The first stage lasted
until the end of the nineteen­sixties and was dominated by the negative assessments of Ramsey,
Gödel and Quine which we discussed above. In particular, it was a commonplace to assume that
the development of Russell’s views from the publication of the Principles up to the publication
of Principia was that Russell went through several different dead­ends that were plagued by
irresolvable technical difficulties and/or philosophical incoherences, until settling for the type
theory of Principia. The beginning of the second stage is marked by the acquisition of Russell’s
library and Nachlass by McMaster University, establishing there the Bertrand Russell Archives
and the Bertrand Russell Research Centre, leading to the creation of the quarterly newsletter
Russell: the Journal of the Bertrand Russell Archives ­ now called The Journal of Bertrand
Russell Studies and publsihed semiannually ­ and of the monumental series of The Collected
Papers of Bertrand Russell.

These developments prompted a complete revolution in our understanding of what hap­
pened between the publication of the Principles of Mathematics and that of Principia Mathema­
tica. Scholars soon found out that the amount of (already fairly voluminous) works that Russell
published between his two seminal works on Mathematical Philosophy was but the tip of an
iceberg of material that included an enormous amount of manuscripts and a vast (and inesti­
mably informative) mathematical correspondence. A little (albeit very important) part of this
material was made available in the seventies with the publication of some of Russell’s so­called
‘Essays in Analysis’85 and thanks to the pioonering efforts of Ivor Grattan­Guinness86. Then, th­
roughout the eighties and nineties, several scholars dedicated an enormous amount of time and
effort editing and studying this material, resulting in the publication of many important studies87

and approximately the first half of the manuscripts Russell produced in the period between the
Principles and Principia in the fourth volume of the Collected Papers88. And finally, what we
may justfiably distinguish as a third stage has recently began with the publication of the long­
awaited fifth volume of Russell’s Collected Papers89, where we find the published papers and
unpublished manuscripts that Russell produced between 1905 and 1908, by far the most crucial
period leading to the completion of Principia Mathematica.
84 Taking the publication of Schillpp’s volume on Russell (SCHILPP, P. A., 1944) as a (somewhat arbitrary) starting

point for detailed Russellian scholarship in general.
85 LACKEY,D., 1973, in particular paper 8 (i.e., RUSSELL, 1906a), now published in theCollected Papers Volume

5 (MOORE, G., 2014), which we’ll soon discuss below.
86 An important early survey and appraisal of the content of these manuscripts is given in GRATTAN­GUINNESS,

I., 1974. And, of course, there is the classic GRATTAN­GUINNESS, I., 1977 which will be extensively quoted
and discussed in the present text.

87 To name just a few: GRATTAN­GUINNESS, I., 1985; COCCHIARELLA, N., 1980; HYLTON, P., 1980; GRIF­
FIN, N., 1980, 1991; URQUHART, A., 1988; RODRIGUEZ­CONSUEGRA, F., 1989, 1991; GARCIADIEGO,
A., 1992; GOLDFARB, W., 1989; LANDINI, G., 1987, 1989, 1991, 1998.

88 URQUHART, A. (ed.), 1994.
89 MOORE, G., 2014.
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Now, although there are many, many authors, editors (as well as editorial advisers) and
scholarly studies that can be mentioned in detailing how this revolution gradually came about
in the use of the Russell Archives and Russell’s posthumously published works, four studies
deserve particular mention in connection with our topic, namely: Ivor Grattan­Guinness’s Dear
Russell, Dear Jourdain90, Nino Cocchiarella’s The Development of the Theory of Logical ty­
pes and the Notion of a Logical Subject in Russell’s Early Philosophy91, Peter Hylton’s Russell
Substitutional Theory92 and, lastly and most importantly, Gregory Landini’s Russell’s Hidden
Substitutional Theory93. The common thread in all these works was that they considered (in in­
creasing amount of detail) a theory that Russell developed between the Principles and Principia,
the ‘Substitutional Theory of Classes and Relations’.

The core idea of the Substitutional Theory of Classes and Relations was the same as that
of Principia’s No­Class Theory94: to treat expressions for classes and relations­in­extension as
incomplete symbols. The crucial difference, however, is that the Substitutional Theory assumes
an ontology of propositions that are treated on par with individuals and functional variables are
also explicitly contextually eliminated. Thus, the theory embraces a logical grammar in which
all variables are individual variables that have a completely unrestricted range in accordance
with Russell’s thesis of the univocity of being. The fundamental notions of the theory are those
of an entity occurring as a subject (or term) in a proposition and of a proposition q which dif­
fers from p by having x occurring in place of term a whenever a occurs as a subject in p, or, as
Russell liked to put it “what p becomes when x is everywhere substituted for a in p”95. Impor­
tant details aside, the basic gist of the theory is the employment of what Russell calls a “matrix”
in place of functional and class expressions96. At the basis of the Substitutional calculus, Rus­
sell introduces the primitive notation “p

b

a
!q” or “p/a;x!q”, which stands for the assertion that q

is exactly like p except for containing occurrences of x wherever p contains occurrences of a.;
Russell then defined the symbol “p

x

a
” or “p/a;x” as “the q that is exactly like p except for contai­

ning occurrences of x wherever p contains occurrences of a”97, i.e., it is the definite description
“(ıq)(p

x

a
)”; he called the component “p/a” of this symbol the matrix of the substitution, which

is an expression that does not have any meaning by itself, but is in fact an incomplete symbol98.
Putting things very roughly and briefly, in the Substitutional Theory this symbol played the role
of a class expression99; Russell’s core idea was to emulate within his early quantificational cal­
culus of propositions what effectively amounted to a simple type­theory of classes, classes of
90 GRATTAN­GUINNESS, I., 1977.
91 COCCHIARELLA, N., 1980.
92 HYLTON, P., 1980.
93 LANDINI, G., 1998.
94 Presented in sections k20 and k21 of Principia.
95 Cf., for instance, RUSSELL, B., 1905a, p.93; also 1905b, p.98,
96 RUSSELL, B., 1906a, p.246.
97 Cf. RUSSELL, B., 1905e, p.93; also 1906a, p.246.
98 This symbol stands for “the result of replacing a in p by” (cf. RUSSELL, B., 1906a, p.246).
99 Cf. RUSSELL, B., 1905e, p.93; and, again, 1906a, p.246.
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classes, classes of classes of classes, etc., and, similarly, definitions for relations­in­extension100,
thus avoiding the set theoretical contradictions101 while also allowing the development of a lot
of Mathematics on the basis of this calculus without assuming any distinctions among types of
entities ­ thus reconciling the doctrine of the unrestricted variable with his logicist goals102.

Grattan­Guinness’s book103 commented on andmade available the correspondence between
Russell and the mathematician Philip Jourdain with whom Russell discussed constantly and in
great detail the development of his views on Logic between 1905 and 1910. Grattan­Guinness’s
work called attention for the first time to the major role played by the Substitutional Theory in
the development of Russell’s views. Cocchiarella’s and Hylton’s pioneer studies104 investigated
­ for the first time in detail ­ Russell’s reasons for adopting and later abandoning the theory, by
attempting to reconstruct the tortuous path towards Principia’s Theory of Types105. Landini’s
book was the culmination of extensive research106 in the Russell Archives of the manuscripts
that are now published in the fifth volume the Collected Papers107. Landini made what is to this
day the most systematic and detailed reconstruction of the many versions of the Substitutional
Theory. Together, these studies showed that there is much more continuity in the development of
Russell’s views towards Principia than was previously thought and that any account of this de­
velopment must consider in detail (and take seriously) this important stage of Russell’s thought.

However, this (still ongoing) process of piecing together the details of Russell’s Subs­
titutional Theory and its role in the development of his views progressed in a gradual way and
Landini was the first108 to challenge basic assumptions that prevented an adequate understanding
of Russell’s work in this intermediate period. In fact, for quite some time the role played by this
theory in the development of Russell’s views remained barely understood, in particular because
the details of the theory remained, as Landini noted109, buried and forgotten in manuscripts for
almost seventy years, with Russell’s published works giving only bare hints as to why his views
eventually shifted from the method of Substitution.

Indeed, the Substitution was only discussed in three of Russell’s published writings. In
100 Cf., for instance, RUSSELL, B., 1905e, pp.93­4; and, again, 1906a, p.246; Cf. LANDINI, G., 1998, pp.140­145

and chapter VI for details.
101 Russell’s paradox, for instance, is elegantly resolved in the following way: translating into the substitutional

theory, “α ϵα” becomes “p/a ϵ p/a”, which is “p/a; p, a!q”; this, however, is simply ungrammatical: the lan­
guage of Substitution requires that only a genuine term like “q” or “a” may be substituted for another in a given
sentence “p” and “p/a” is not a term at all. Notice, also, that this restriction is philosophically well motivated:
such a grammatical rule is in accordance with Russell’s logical doctrine that all and only terms (not in the lin­
guistic sense that “a” is a (singular) term, but in the sense that a is an entity or being) can be logical subjects of
propositions.

102 Cf. RUSSELL, B., 1906a, p.261.
103 GRATTAN­GUINNES, I., 1977.
104 CHOCCHIARELLA, N., 1980; HYLTON, P. 1980.
105 Other early (but posterior) studies attempting this include LANDINI, G., 1987 and 1989;
106 Cf. also LANDINI, G., 1987 and 1989 for some preliminary presentations of Landini’s book.
107 MOORE, G. (ed.), 2014.
108 As we shall see, following a lead of Cocchiarella.
109 LANDINI, G. 1998, p.1.

32



his 1905 paperOn SomeDifficulties of Theory of Transfinite Numbers andOrder Types110, Russell
somewhat reluctantly considered the Substitutional Theory under the label of ‘No­Class Theory’
and claimed that it could “[...] be accepted as one way of avoiding contradictions, though not
necessarily the way”111. However, while the article was still in the press he added the following
note at the end of it:

From further investigation I now feel hardly any doubt that the no­classes the­
ory affords the complete solution of all the difficulties stated in the first section
of this paper.112

The next appearance of the ‘Substitutional’ or ‘No­Class’ theory in print was in Russell’s
paper Les Paradoxes de la Logique113 from 1906, in which he engaged in a polemic started by
Henri Poincaré114 and Louis Couturat115. There, again, we find Russell confident in the Substitu­
tional Theory’s capacity to purge Set Theory of contradictions, claiming that “[...] there seems
reason to hope that the method proposed in [the] article avoids all the contradictions, and at the
same time preserves Cantor’s results”116. This makes clear that at least until September of 1906
Russell was still convinced that the Substitutional Theory could work. However, the next men­
tion to the Substitutional Theory in print came only in 1908 in the seminal paper “Mathematical
Logic as Based on the Theory of Types”117, where Russell laconically indicated that the theory
can be understood as a philosophically plausible, albeit technically inconvenient, alternative to
the hierarchy of so­called ‘propositional functions’ that he meant to employ in practice118.

But after Mathematical Logic Substitution vanished from Russell’s works: no explicit
mention to the theory appears in any of Russell’s subsequent publications in Mathematical Phi­
losophy. In particular, there is not a single explicit mention of it Principia, where the label of
a ‘No­Class Theory’ is dissociated from the method and notation of Substitution. Furthermore,
none of Russell’s published papers provide a satisfactory answer as to why he abandoned the
theory. In On Some Difficulties Russell mentions that there are challenges119 for the theory, but
these did not make his confidence in it waver, as the note added to the paper makes clear. Simi­
larly, in Les Paradoxes, Russell tempered his confidence in the theory only in observing that “a
110 RUSSELL, B., 1905b.
111 RUSSELL, B., 1905b, p.82.
112 RUSSELL, B., 1905b, p.89. Russell submitted the paper on 24November 1905; he read the paper on 14 December

and added the note on 5 February 1906 (MOORE, G., 2014, p.62). We will discuss the details of the timeline in
Chapter 3.

113 RUSSELL, B., 1906b. Russell intended the article to be entitled “Insolubilia and Their Solution Through Sym­
bolic Logic”, but was persuaded to the contrary by Couturat; the paper was translated by Couturat around the
end of June (cf. MOORE, G., 2014, pp.276­7).

114 Cf. POINCARÉ, H., 1905 and 1906.
115 Cf. COUTURAT, L., 1906.
116 RUSSELL, B., 1906b, p.296.
117 RUSSELL, B., 1908.
118 Cf. RUSSELL, B., 1908, pp.603­4.
119 Cf. RUSSELL, B., 1905b, p.82.

33



lengthy symbolic development”120 was still necessary to establish that it was indeed adequate for
the development of Mathematics. But beyond that, Russell never published an inkling detailing
what led him to abandon Substitution.

This puzzling state of affairs left early interpreters with little to work with in reconstruc­
ting Russell’s reasons for abandoning his Substitutional or early ‘No­Class’ theory and made
them fail to appreciate its importance. Quine, for instance, viewed the theory as a typical pro­
duct of use­mention confusion and claimed that the note Russell added to On Some Difficulties
“[...] was the expression of renewed hope that [Russell] was shortly to abandon”121.

A fundamental piece of evidence suggesting that this view is mistaken was first pu­
blished in the early seventies: a paper122 that Russell read to the London Mathematical Society
on April of 1906 which he ended up withdrawing from publication by october of the same year123.
This paper, entitled “On the Substitutional Theory of Classes and Relations” was the closest to a
definite presentation of the Substitutional Theory that Russell ever made public124, but it remai­
ned unpublished until 1973, when it came out in the volume Essays in Analysis125. In this paper
Russell voiced again his concern that “the technical development of the principles of mathema­
tics is rendered [...] much more complicated by the Substitutional theory”126, but also observed
that :

The only serious danger, so far as appears, is lest some contradiction should be
found to result from the assumption that propositions are entities; but I have
not found any such contradiction, and it is very hard to believe that there are no
such things as propositions, or to see how, if there were no propositions, any
general reasoning would be possible. It would seem, therefore, that the chances
of any important lurking fallacy in the method are not great.127

This was the first substantial clue as to what led Russell to abandon substitution, for it
suggests that he did find out that some contradiction follows from the assumption of propositions
in the Substitutional calculus.

Thus, we have a first a plausible answer as to what led Russell to withdraw the paper and
abandon the Substitutional Theory, namely: a paradox (or set of paradoxes) which arises from
the assumption of propositions within his substitutional calculus. But which sort of paradox
120 RUSSELL, B., 1906b, p.296. Indeed, in Les Paradoxes Russell also wrote the following, referring back to On

Some Difficulties: “In the above­mentioned article, the no­classes theory was merely sketched in the briefest
outline, nor did I then know howmuch of the theory of the transfinite it was possible to express in this language.
I have since come to the conclusion that, so far at least as I can yet discover, hardly anything is ruled out except
the paradoxes” (RUSSELL, B., 1906b, p.287).

121 QUINE, W., 1967, p.151.
122 RUSSELL, B., 1906a.
123 Cf. MOORE, G., 2014, pp.236­9.
124 Cf. MOORE, G., 2014, p.173­4.
125 Cf. LACKEY, D., 1973, pp. 165­189.
126 RUSSELL, B., 1906a, p.261.
127 RUSSELL, B., 1906a, p.261. My emphasis.
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or contradiction? Again, Russell never said anything in his published writings that afforded
anything close to a definitive answer.

Some further hints were uncovered by Ivor Grattan­Guinness in his research of Russell’s
correspondence with Jourdain. To begin with, we have a letter of 14 June of 1906, where Russell
wrote:

I feel more and more certain that this theory is right. In order, however, to solve
the Epimenides, it is necessary to extend it to general propositions, i.e., to such
as (x).ϕx and (∃x).ϕx. This I shall explain in my answer to Poincare’s article
in the current Revue de Metaphysique.128

The ‘answer to Poincaré’ refers to Les Paradoxes, and it requires some contextualiza­
tion. It is in Les Paradoxes that Russell acknowledges for the first time that the “paradoxes all
spring from some kind of vicious circle”129 and admits that any account of the foundations of
Logic and Mathematics must embody the so­called Vicious Circle principle, which he there sta­
tes as “whatever involves an apparent variable must not be among the possible values of that
variable” and also “less exactly” as “whatever involves all must not be one of the all which it
involves”130. Now, concerning the ‘vicious circles’ involved in the set­theoretical contradictions,
Russell claims that they are solved by treating matrices as incomplete symbols, thus blocking
problematic substitutions in the way indicated above131. But in Les Paradoxes, Russell appa­
rently became concerned for the first time with paradoxes of a different sort, like the so­called
‘Epimenides’, also known as the ‘liar paradox’. A solution of this paradox, Russell explained
in the paper, required an extension of the theory of incomplete symbols to statements contai­
ning variables bound by quantifiers132. The details of this proposal and how it was intended to
dissolve paradoxes need not detain us for now133. What is relevant is that such claims made by
Russell in Les Paradoxes together with the letter quoted above may suggest that it was the liar
and related paradoxes that led Russell to withdraw his previous paper on Substitution. In fact,
a similar conclusion may also be extracted from another letter Russell wrote to Jourdain on 10
October of 1906, right after Les Paradoxes was published. Responding to Jourdain’s praise of
the Substitutional Theory, Russell wrote:

I am glad you feel attracted by the no­classes theory. I am engaged at present
in purging it of metaphysical elements as far as possible, with a view to getting
the bare residuum on which its success depends. I decided not to publish the

128 GRATTAN­GUINNESS, I., 1977, p.89.
129 RUSSELL, B., 1906b, p.278.
130 RUSSELL, B., 1906b, p.289.
131 See previous footnote 101. These points will be discussed in more detail in chapter 3.
132 Cf. RUSSELL, B., 1906b, p.289­292
133 Russell provides a bare outline of this approach in RUSSELL, B., 1906b, pp.288­95. For an attempt at recons­

tructing this idea in detail cf. LANDINI, G., 1998, pp.216­31.
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paper I read at the London Mathematical [Society] in May; there was much in
it that wanted correction, and I preferred to wait till I got things into more final
shape.134

When viewed in light of Russell’s previous letter and of the discussion of the Epimenides
in Les Paradoxes, the ‘purging of metaphysical elements’ can very reasonably be interpreted
as meaning the elimination of propositions as entities135 ­ or, at least just general propositions.
Similarly, Russell’s claim that the paper “wanted correction”may suggest that he thought that the
version of substitution he put forward in the abandoned paper was susceptible to some version
of the Epimenides. But the fact of the matter is that these statements are very vague136 and
they provide no detailed indication as to why Russell withdrew the paper much less to why he
abandoned substitution.

So commentators were still left in the dark and unable to satisfactorily put this puzzle
together. Despite having realized that “[...] the substitutional theory is the missing link between
Russell’s theory of denoting and Principia Mathematica”137, Grattan­Guinness concurred with
Quine and claimed that despite being “[...] an exceptionally ingenious construction even by Rus­
sell’s standards”, the substitutional theory “[...] fell soon after it rose” because it failed “[...] to
clarify the status of some of its components as linguistic or abstract objects”138. Thus, Grattan­
Guinness claimed, the withdrawal of Russell’s main paper on the Substitutional Theory ultima­
tely “[...] marked the demise of the theory itself”139. Others were led to conclude that paradoxes
related to the Epimenideswere the cause of the Substitutional Theory’s demise. Peter Hylton, for
instance, who also correctly recognized that “the substitutional theory is an indispensable part of
a general understanding of the philosophical context of Principia Mathematica”140 argued that
the downfall of the theory was its susceptibility to “paradoxes” that “[...] we would call semantic
rather than logical”141, calling attention, in particular, to a substitutional version of a paradox of
propositions142 that Russell had already considered in the Appendix B of the Principles of Mathe­
matics143. It was such paradoxes, according to Hylton, that led Russell to abandon Substitution
134 GRATTAN­GUINNES, I., 1977, p.93.
135 Cf., for instance, POTTER, M., 2000, p.131.
136 As observed in LANDINI, G., 1998, p.200.
137 GRATTAN­GUINNES, I., 1977, p.94.
138 GRATTAN­GUINNES, I., 1977, p.94. Similarly, Michael Potter claims that the Substitutional Theory was “[...]

extremely short­lived, even by Russell’s hectic standards of theory revision” (POTTER, M., 2000, p.131).
139 GRATTAN­GUINNES, I., 1977, p.94.
140 HYLTON, P., 1980, p.2.
141 HYLTON, P., 1980, p.23.
142 Cf. HYLTON, P., 1980, p. 24.
143 Cf. RUSSELL, B., 1903, p.527, §500. Russell had already communicated this paradox to Frege in a letter from

29 September of 1902 (cf. FREGE, G., 1980, p.147). The paradox in questions can be described in the following
general form: given a class m whose elements are all propositions, there is a proposition pm which asserts that
every element of m is true; this proposition may or may or may not belong to m; let p∗m be such a proposition
pm which does not belong tom and let w be the class of all such propositions p∗m; now, let pw be the proposition
which asserts that every element of w is true; problem: pw belongs to w if, and only if it does not belong to w ­
contradiction.
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and accept a hierarchy of so­called ‘ramified types’ inMathematical Logic and Principia144.

Even in light of the evidence available at the time, however, both conclusions, are un­
satisfactory. Grattan­Guinness’s claim that Substitution was short lived flies in the face of the
fact that Russell still considered it as a viable alternative to a theory which embraced (at least
in practice145) a hierarchy of ‘propositional functions’ at least by June or July of 1907 when he
wroteMathematical Logic as Based on the Theory of Types146. On the other hand, Hylton’s claim
that semantic paradoxes brought the theory down is entangled in severe interpretative issues and
problematic assumptions. For one thing, there is the following straighforward historical issue:
Russell was aware of paradoxes of propositions long before coming up to the Substitutional
Theory ­ are we to say, then, that he simply forgot about them or ignored them when he was
confident in the theory147? The most notable and important issue, however, concerns a point that
Nino Cocchiarella was the first to emphasize, namely, that paradoxes akin to that of Appendix
B of the Principles which arise in the Substitutional Theory should not be viewed as ‘semantic’
paradoxes akin to the Epimenides but as results that demonstrate that there is a conflict between
Cantor’s ‘Power­Class Theorem’ and the Substitutional Theory148. The conflict ­ as Cocchiarella
first pointed out ­ and as Landini later extensively investigated ­ does not depend on the intro­
duction of any semantic notion like ‘truth’ in the object­language of the Substitutional Theory,
but from the possibility of establishing, using the apparatus of the Substituitional Theory which
emulates sets of propositions, 1­1 correspondences between propositions and sets of propositions,
thus directly violate Cantor’s Theorem.

This point first set forth by Cocchiarella is central for understanding Landini’s ‘revolu­
tionary’ interpretation and the development of Russell’s views.

1.2.2 Landini’s Discovery of the po/ao Paradox and his ‘Revolutionary’ Inter­
pretation of Principia

Following Cocchiarella’s hint that the fundamental issue with Russell’s Substitutional
Theory was a conflict with Cantor’s theorem149, Landini made several important discoveries
while investigating the manuscripts and documents on Substitution in the Russell Archives150.
Perhaps the most striking of them was a letter Russell wrote to the mathematician Ralph Haw­
trey on 22 January 1907, where Russell described “the paradox which pilled the Substitutional
144 A similar conclusion is drawn by Michael Potter, who also assumes that a version of the Appendix B paradox

was responsible for the alleged ‘short life’ of Substitution (cf. POTTER, M., 2000, p.131­3).
145 Again, cf. RUSSELL, B., 1908, p.603.
146 Cf. MOORE, G., 2014, p.585.
147 Cf. GRATTAN­GUINNESS, I., 2000, p.364.
148 Cf. COCCHIARELLA, N., 1980, pp.90­1.
149 Michael Potter is also perceptive on this point, cf. POTTER, M., 2000, p.132.
150 Early reports of Landini’s investigations are given in LANDINI, G., 1987, 1989 and 1991.
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Theory”151. Like the Appendix B paradox, this paradox was not semantic but a diagonal cons­
truction conflicting with Cantor’s power­class theorem. After sketching a derivation of this new
contradiction that Landini first dubbed the “po/ao” paradox152, Russell informed Hawtrey that
“in trying to avoid this paradox”, he “[...] modified the substitutional theory in various ways, but
the paradox always reappeared in more and more complicated forms”153.

Landini’s meticulous studies of the manuscripts on Substitution that Russell produced
during 1906 showed that the “po/ao” paradox and its variants were indeed the driving force
that led Russell to modify the Substitutional Theory several times154. And, indeed, a brief look
at the now published manuscripts that Russell produced after May of 1906 show that several
formulations of the “po/ao” reappear not only across different texts but more than once in the
same manuscript155.

Now, although the details which Landini provides in reconstructing the many twists and
turns that happen in Russell’s manuscripts on Substitution are certainly interesting and valuable
on their own156, perhaps what is of greater importance (from a strictly historical point of view)
in his studies are the general conclusions to which his reconstructions point to. The main point is
that the po/ao paradox which he uncovered is clearly not a semantic paradox: it does not rely at
all on the use of a truth­predicate applied to propositions or sentences and it does not employ any
extra­logical vocabulary for propositional attitudes157. In the context of Russell’s Substitutional
Theory, it arises from assumptions of what may be called the ‘pure’ Substitutional Calculus of
propositions. This, in turn, strongly suggests that Russell was not led to ‘ramification’ and to
accept Poincaré’s ‘Vicious­Circle Principle’ in virtue of the semantic paradoxes158. Furthermore,
it strongly suggests that the ramified theory of types ofMathematical Logic (which embraces or­
ders of propositions) is Russell’s last unavailing attempt at keeping Substitution alive, and thus,
that at least by the time he wrote Mathematical Logic, Russell still had hopes for the Substitu­
tional Theory as a theory which allowed for the elimination of both classes and propositional
functions (understood as properties and relations­in­intension stratified into types), a hope that
most likely wavered because Russell became convinced that the po/ao paradox and its variants
could only be resolved by introducing hierarchy of orders of propositions159. In a nutshell, this
is what led Landini to formulate a completely novel interpretation of the Theory of Types of
Principia Mathematica.
151 RUSSELL, B., 1907c, p.125.
152 Cf. LANDINI, G., 1989 and 1998.
153 RUSSELL, B., 1907c, p.125.
154 Cf. LANDINI, G., 1998, in particular, pp.206­212, pp.216­220, pp.227­233, pp.235­246, and pp.251­254.
155 Besides the letter to Hawtrey, i.e., RUSSELL, B., 1907c, take, for instance, RUSSELL, B., 1906d, p.131, pp.150­1

and p.166; see also RUSSELL, B., 1906f, p. 351.
156 In fact, Landini insists that modifications of Russell’s Substitutional Theory may result in a viable alternative

for sustaining Logicism (cf. LANDINI, G., 2004).
157 Cf. LANDINI, G., 1998, p.254.
158 Cf. LANDINI, G., 1998, pp.213­215 and pp.275­279.
159 Cf. LANDINI, G., 1998, p.254.
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Putting things briefly and roughly, we may summarize Landini’s interpretation of Prin­
cipia as follows. According to Landini, the acceptance of orders of propositions understood as
entities proved philosophically intolerable to Russell, since it went against his most cherished
logico­metaphysical doctrine of the unrestricted variable and this reluctance to accept a hierarchy
of orders led to the demise of the system of Mathematical Logic, burying with it the Substitu­
tional Theory and its ontology of propositions160. Russell then embraced the ‘multiple­relation
analysis of judgement’161. Landini views the multiple­relation analysis of propositions as the
centerpiece of Russell’s attempt to preserve the doctrine of the unrestricted variable162. Against
the orthodox interpretation, he argues that Principia’s predicate variables163 are to be read with
implicit simple type indices that match their arguments, as in “ϕ(o)xo”, ϕ((o),o)(ψ(o), xo), etc164.
He also claims that the Axiom of Reducibility was meant as an impredicative comprehension
axiom for predicate variables165. In short, Landini argues that Principia’s official grammar166

was meant to have the same structure of a simple (i.e., not ramified) theory of types of attri­
butes ­ just like Russell’s original Substitutional Theory167. According to Landini, however, in
Principia’s Introduction Russell meant to offer an informal justification for type­distinctions in
terms of a nominalistic substitutional168 interpretation of quantified predicate variables169. Ac­
cording to him, the notion of ‘order’ as explained in Principia’s Introduction was meant to be
justified by a recursive definition of senses of “truth” and “falsehood” applied to formulas of
Principia’s language170. At the base of this recursion was the multiple­relation analysis applied
to atomic sentences (which expressed atomic judgements)171. On this interpretation, Russell’s
hierarchy of senses of “truth” and “falsehood” applying to ‘propositions’ of different orders was
meant to keep track of the complexity of the quantificational structure of formulas172. Predicate
variables, i.e., ‘predicative propositional functions’, are then interpreted nominalistically: their
occurrences can only be substituted (within a given formula) for formulas of the appropriate
order and distinguished from schemata standing for open formulas, i.e., ‘non­predicative pro­
positional functions’. Also, according to this interpretation a declarative sentence like “aRb”
functions like an incomplete symbol when flanked by “... is true” ­ it works like a definite des­
cription which purports to denote a fact that may or may not exist173. The general gist of this,
160 Cf. LANDINI, G., 1998, p.254.
161 Again, cf. WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].
162 Cf. LANDINI, G., 1998, pp.287­91.
163 I.e., ‘functional’ variables “ϕ”, “ψ” with the accompanying “!”, i.e., those variables that can be bound by quan­

tifiers.
164 Cf. LANDINI, G., 1998, pp.255­56.
165 Cf. LANDINI, G., 1998, pp.257.
166 I.e., that which is assumed and employed in its numbered propositions.
167 Cf. LANDINI, G., 1998, pp.261­67.
168 In the modern sense one finds, for instance, in KRIPKE, S., 1976, which has nothing to do with the notion of

“substitution” of Russell’s Substitutional theory.
169 Cf. LANDINI, G., 1998, pp.279­80.
170 Cf. LANDINI, G., 1998, pp.281­86.
171 Cf. LANDINI, G., 1998, pp.287­91.
172 Cf. LANDINI, G., 1998, pp.283­4.
173 LANDINI, G., 1998, p.287­91. It must be observed, however, that Landini does not regard the multiple­relation
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then, is that given the way Russell envisaged his nominalistic semantics, only individual varia­
bles are genuine variables ranging over entities, in accordance with the doctrine of the univocity
of being174.

If correct, this interpreation dismantles almost all of the traditional objections or diffi­
culties raised by those who hold the ‘orthodox’ view on the development of Russell’s views and
Principia Mathematica.

To begin with, this interpretation counters Quine’s charge that there is a serious use­
mention confusion at the core of the No­Class Theory as presented both inMathematical Logic
and Principia. With respect to Mathematical Logic, once one realizes that its type distinctions
are grounded on the realist view of propositions of the Substitutional Theory, there is no use­
mention confusion175. With respect to Principia, once we accept that predicate variables (i.e.,
predicative propositional functions) are interpreted substitutionally and distinguished from ‘non­
predicative propositional functions’, i.e., placeholders for arbitrary open formulas, the charge of
serious confusion or deep incoherence can no longer be upheld176. The most one can say is that
Whitehead and Russell carelessly but deliberately subsumed two very different ideas under the
ambiguous notion of a ‘propositional function’ or ‘propositional functionality’; this, of course,
is indeed a serious problem, but it is not rooted in a deep or irredeemable confusion as Quine,
for instance, claimed time and again177,178.

Similarly, the traditional objection against the ‘Vicious­circle Principle’ and the restric­
tions of orders is dissolved. If the notion of a ‘propositional functions’ is understood along the
lines indicated by Landini, Principia’s Introduction can no longer be seen as putting forward a
hierarchy of ramified types of entities and the Vicious­Circle Principle at once loses its proble­
matic status ­ either as a ‘constructivistic’ principle grounding type distinctions among mental
constructs, ideas, and so on, or as a ‘metaphysical’ principle grounding type distinctions among
mind­independent intensional entities, i.e., propositional functions, propositions, attributes, Fre­
gean concepts or what have you179. Indeed, on Landini’s interpretation, the ‘Vicious­circle Prin­
ciple’ is nothing more than a heuristic principle or guideline that does not serve as a justification
for anything. Distinctions of type and order are to be justified in terms of Russell’s nominalis­
tic (substitutional) semantics for predicate variables180. Landini’s interpretation is also able to
make sense of several aspects of Principia’s official syntax and of its presentation of the theory

theory as part of Principia’s formal system but only part of an informal semantics that Russell envisaged for
justifying type distinctions; this point will be addressed in more detail in chapters 4 and 5.

174 Cf. LANDINI, G., 1998, pp.291­2.
175 Cf. LANDINI, G., 1998, pp.253.
176 Cf. LANDINI, G., 1998, pp.277­278.
177 More recently a criticism almost completely analogous to that of Quine was put forward by Scott Soames (cf.

SOAMES, S., 2008).
178 In fact, it must be observed at once that Whitehead and Russell did distinguish predicative ‘propositional functi­

ons’ that are bindable variables from non­predicative ones that on Landini’s interpretation are then accordingly
treated as schematic letters

179 Cf. LANDINI, G., 1998, pp.275­79.
180 Cf. LANDINI, G., 1998, pp.279­87.
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of types that on rival accounts are otherwise puzzling or even incoherent181. In this regard, the
following particular points are most pressing and salient, namely: (i) Principia’s requirement
that arguments of a predicate variables must match in both type and order182; (ii) the abscence
of explicit concretion rules for Principia’s circumflex as a term­forming operator as well as the
abscence of explicit comprehension principles apart from axioms of reducibility183; (iii) Whi­
tehead and Russell’s explicit practice/rule that so­called ‘non­predicative functional variables’
are not to be bound by quantifiers184; (iv) the role played by the notion of scope and the way in­
complete symbols are employed by Whitehead and Russell185 ­ in particular, the fact their order
of elimination is not irrelevant, as indicated by Carnap186 and Gödel187, for instance.

But perhaps what is most important is that Landini’s interpretation is able to make sense
of the development of Russell’s views from thePrinciples toPrincipia in amuchmore charitable
way than the orthodox interpretation of Church, Hylton, Goldfarb and those who follow them.
Landini puts Russell’s doctrine of the unrestricted variable and of the univocity of being at
the center of his account of this development in a way that provides both an explanation as to
why Russell was attracted to the Substitutional version of the No­Class Theory and also why
Russell abandoned the Substitutional account in favor of Principia’s version of the No­Class
Theory. For if in Principia’s Introduction Russell intended a justification of type distinctions in
terms of a nominalistic semantics, then he was not after all abandoning (deliberately or without
acknowledging188) his most central logical doctrines but was, in fact, attempting to preserve
them.

But there is more.

1.2.3 The Axiom of Infinity, Again

Landini’s interpretation also provides us with a fresh perspective to evaluate the role
Russell (and, to some extent, Whitehead189) intended the so­called Axiom of Infinity to play in
their attempt to develop Pure Mathematics on a logical basis. To appreciate this we must say a
little more about Principia’s treatment of classes and cardinal numbers.

As we briefly discussed above, in Principia all occurrences of class expressions are
181 Cf. LANDINI, G., 1998, pp.258­67.
182 Cf. LANDINI, G., 1998, pp.267.
183 Cf. LANDINI, G., 1998, pp.265­6.
184 Cf. LANDINI, G., 1998, pp.263­5.
185 Cf. LANDINI, G., 1998, pp.165­171.
186 CARNAP, R., 1947, p.147­50.
187 GÖDEL, K., 1944, p.120.
188 HYLTON, P., 2005, p.106.
189 Landini has recently argued convincingly that Whitehead had a somewhat different ‘semantic interpretation’

of Principia and that he also thought that the assumption that infinitely many universals exist in all types in­
cluding the lowest could be taken as a logical truth, albeit an epistemically inaccessible one (LANDINI, G.,
forthcoming).

41



contextually eliminated in terms of the definitions of section k20. And as is well known, the
cardinal number of a given class α is defined by Russell as the class of all classes β that are
similar to α ­ i.e., the cardinal number of α is the class of all classes β whose elements can
be put in a one­one correspondence with the elements of α. In symbols, we may reproduce
Principia’s definition (in a slightly briefer form190) as follows:

Nc‘α =Df β̂(β smα) (1.2.1)

Where sm stands for the relation of similarity or equinumerosity191, which for the present pur­
poses may be defined as the relation (in extension) which holds between two classes α and β
whenever there is a one­one relation R whose domain is α and whose converse domain is β192.
Thus the symbol “β̂(β smα)” is a class expression, an incomplete symbol whose occurrences
must be eliminated in accordance with the definitions of k20. That is how Principia avoids any
commitment to a specific ontology of numbers: by defining the concept of number in terms of
the more basic vocabulary of higher­order logic and reducing the ontological commitments of
Arithmetic to those of higher­order logic193.

That is also why Whitehead and Russell need some assumption about the number of en­
tities of the lowest type (i.e., individuals) in order to secure several basic theorems of ordinary
Arithmetic. Skipping many (important) technicalities194 and putting things very roughly, the dif­
ficulty is that the existence (i.e., non­emptiness) of a given numberm (be it finite or not) depends
on the existence of some class which has exactly m many members. But if at the bottom of the
type hierarchy there are exactly n individuals, then there can be at most 2n classes of individuals,
22

n classes of classes of individuals, and so on; thus, if the number of individuals is finite, then
the very series of natural numbers will be finite in all given types, for there will always be some
m which exceeds the number of elements of the universal class of the particular required type.

Now, the need for a so­called ‘axiom’ of infinity arises in Principia independently of
whether the notion of a ‘propositional function’ is interpreted in realist or nominalist terms: the
190 Principia introduces actually introduces the proposition in question as a theorem, since they first introduce “Nc”

as a relation­in­extension (cf. k100). The proper definition will be discussed and explained in chapter 5.
191 For now we are employing a mix of modern notation and that of Principia. Our detailed discussion in chapter

6, however, will fully employ ­ and explain ­ Principia’s original notation.
192 It must be observed that in Principia this definition is framed is such a way that α and β may be classes of what

Whitehead and Russell call diferent relative type because Rmay be a heterogeneous relation with respect to the
types of its relata. This is a fundamentally important point because it gives rise to different notions of similarity
and consequently different notions of cardinal number (cf. WHITEHEAD & RUSSELL, 1912, pp.4­12). These
aspects of Principia’s theory of cardinal numbers will be discussed in detail in chapter 5.

193 This, of course, is not to say that Arithmetic remains with no substantial ontological commitments: settling
this question involves giving an account of the ontological commitments of higher­order logic. In any event,
even if higher­order is understood in terms of a simple type­theory of attributes (i.e., properties and relations­
in­intension) this reduction achieves something important: it dispenses with numbers as objects in the Fregean
sense (i.e., abstract particulars in a more Russellian terminology). For an excelent discussion of this issue cf.
KLEMENT, K., 2013. For another thorough discussion of this issue and for a defense of a strong eliminativistic
position of numbers, cf. LANDINI, G., 2011.

194 The issues related to the existence of cardinal numbers are discussed in Principia’s second volume. The issue
is discussed in general in the Prefatory Statement and in section A on the basic properties of cardinal numbers;
section ∗120 treats finite cardinal numbers. All of this will be discussed in chapter 5.
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need for some assumption about the number of individuals springs directly from the way Prin­
cipia emulates a theory of sets using a system of higher­order logic that has the same structure
of a simple type theory of attributes195. There is no way around this ‘difficulty’ other than ad­
ding some axiom ensuring an infinite (i.e., non­inductive) universal class in some type or by
modifying fundamental aspects of Principia196. From a purely historical point of view, howe­
ver, the most pressing question for scholars is this: does the use of the ‘axiom’ in Principia
compromises Russell’s claim that Logic and Pure Mathematics are identical?

As is the case with many of the issues we considered so far, ‘orthodox’ interpreters
have sometimes answered by portraying Principia in poor lights because crucial aspects of the
development of Russell’s views were either unknown at the time or simply ignored ­ in particular
with respect to Russell’s views on the ontological commitments of Logic.

Logic in the Principles of Mathematics, is best understood as the general science of
propositions197, a conception of Logic that Russell also took for granted when he was trying
to make the Substitutional Theory work. During this period Russell did assume that it was the
business of Logic to prove a theorem of infinity, and, in fact, one of the virtues of Substitutional
Theory was that it allowed Russell, as he put it, to “[...] manufactureℵ0 entities”198 from the basic
axioms and definitions of the theory. But Russell drastically changed his mind on this point199.

As Landini first showed in his detailed analyses and reconstructions of themany versions
of the Substitutional Theory that appear in Russell’s mansucripts, there are even versions of the
theory with which Russelll experimented that embraced orders of propositions and were still
able to prove an infinity theorem200. This is an immensely important point to notice. In fact,
it is so important that it bears spelling out in more detail: Russell’s manuscripts show that at
some point in 1907 he had formulated a version of the Substitutional Theory that blocked the
contradictions ­ including the po/ao paradox and its variants ­ and allowed a proof of a theorem
of infinity, a theory which he almost certainly abandoned because he could not accept orders of
propositions understood as entities ­ the same reason why he most likely abandoned the system
of Mathematical Logic!

In light of the orthodox interpretation, this change of heart on Russell’s part becomes
almost incomprehensible. If one accepts the view advocated by Church, Hylton, Goldfarb and
195 That is so whether one starts with a ramified structure and adds axioms of reducibility or assumes impredicative

comprehension axioms outright.
196 Recently two interesting suggestions have been made in this regard. On the one hand, Landini has proposed an

alternative axiom which entails the existence of infintely many natural numbers in a sufficiently high type while
dispensing the need for assuming infinitely many entities in the lowest type (LANDINI, G., forthcoming). On
the other hand, Landon Elkind has proposed a modification of Principia’s type­structure which allows for both
infinitely ascending and descending types. Elkind then introduces another alternative axiom which allows an
ingenious proof from Cantor’s power­class theorem that there are infinitely many entities in any type (ELKIND,
L., forthcoming). Both Landini and Elkind’s results employ relations of heterogeneous (simple) types.

197 Cf. RUSSELL, B., 1903, p.1. Cf. also LANDINI, G., 1998, chapter 2 and LANDINI, G., 2010, pp.136­7.
198 RUSSELL, B., 1906b, p.238. Cf. also GRATTAN­GUINNESS, I., 1977, p.103.
199 Cf. GRATTAN­GUINNNES, I., 1977, p.105­6.
200 Cf. RUSSELL, B., 1907e, pp.515­6; RUSSELL, B., 1906f, pp.350­1; also LANDINI, G., 1998, pp.240­6.
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many others that Principia embraces a ramified hierarchy of propositional functions and propo­
sitions ­ and thus deliberately abandons Russell’s most central logical doctrine, i.e., that of the
unrestricted variable ­ how can one explain his reasons for not keeping Substitution (with orders
of propositions) which avoided the need for an axiom of infinity and was (as far as we know) as
consistent as Principia’s system? It seems that the only possible answer that the ‘orthodoxy’ can
provide is that technically substituition proved unmanageably complex201. But despite its plau­
sibility, this answer goes against established evidence. To begin with, the technical complexity
of Substitution did not stop Russell from defending it in Mathematical Logic. In fact, Russell
knew from the very beginning that from a technical point of view the Substitutional Theory was
quite severe202, but considered writing Principia on its basis anyway203. Furthermore, we now
know that Russell at some point planned to include an appendix in Principia explaining how
the Substitutional Theory could have served as a foundation for Mathematics204 ­ and, in fact,
Russell considers this plan in the very manuscript where he claims that “[...] there is much to
be said for reviving substitution”205, precisely on the grounds that it “[...] will allow us to infer
Infin ax”206!

Why then would Russell completely abandon Substitution with orders of propositions in
favor of a theory that also betrayed his most central logical doctrines and failed to yield desired
results? The orthodoxy seems unable to provide a satisfactory answer to this question.

In light of Landini’s interpretation, on the other hand, the shift makes sense: according
to Landini, Russell’s attempt to provide a nominalistic justification for the hierarchy of orders
grounded on the multiple relation theory of judgement shows that Russell no longer viewed
Logic as the science of propositions, a change that was prompted, first and foremost, by his
drive to preserve the doctrine of the unrestricted variable and the univocity of being. According
to Landini, then, Logic and Pure Mathematics are viewed in Principia as one and the same
science, namely, the general science of relational structure or of structure as such207 without any
commitments to specific ontology of objects in the Fregean sense, i.e., Russell’s individuals or
201 As Russell himself suggests in Mathematical Logic (RUSSELL, B., 1908, pp.603).
202 In particular because of its notation.
203 Whitehead, however, was particularly dissatisfied with this idea (cf. LACKEY, D., 1973, pp.130­2), and he was

not alone in this (cf. CHURCH, A., 1976b, p.702), perhaps with good reason; as Landini himself acknowledges,
following (let alone producing) complex proofs formulated in terms of the Substitutional Theory can be a
daunting task (cf. LANDINI, G., 1998, p.vi); but be that as it may, it is quite doubtful that this by itself would stop
Russell and Whitehead from presenting the Substitutional Theory in Principia if they were truly convinced that
it was right. Since we are talking about the authors of Principia Mathematica one can hardly appeal to prudery
about technicalities as the sole excuse for a change of mind.

204 Cf. RUSSELL, B., 1907e, p.516. As far as I know, Landini was the first to notice this (cf. LANDINI, G., 1998,
p.175). We now also know that Whitehead was favourable the this idea (cf. MOORE, G., 2014, p.lii), despite
not being sympthetic to Substitution in general (cf., again, LACKEY, D., 1973, pp.130­2).

205 RUSSELL, B., 1907e, p.516.
206 RUSSELL, B., 1907e, p.516.
207 Cf. LANDINI, G., 1998, p.294. Cf. also LANDINI, G., 2010, p.95. LANDINI, G., 2011, pp.173­4 and p.187;

this idea that Logic and Mathematics are concerned, in general, with relational structure appears more or less
explicitly, for instance, in RUSSELL, B., 1924, pp.176; RUSSELL, B., 1919, p.59­61 and RUSSELL, B., 1959,
pp.99­100.
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entities of the lowest type. In this light, the need for an explicit Axiom of Infinity as a hypothesis
or conjecture of applied Mathematics is a feature, not a fatal defect of Russell’s approach.

This move would also be in accordance with another trend or pattern in the development
of Russell’s thought that also seems difficult to reconcile with an interpretation that attributes to
(or requires of) him any bloated ontology in Principia, namely: his insistence on the substitution
of constructions for postulated entities whenever possible. This methodological or “heuristic
maxim”208 of substituting “[...] constructions for inferences in Pure Mathematics”209, as Russell
would also later put it, was always a core element of his Logicism and there are many instances
of it even in Russell’s early work ­ most notably his definition of cardinal numbers as classes of
similar classes. As Russell explains in his in the Philosophy of Logical Atomism lectures:

I always wish to get on in philosophy with the smallest possible apparatus,
partly because it diminishes the risk of error, because it is not necessary to
deny the entities you do not assert, and therefore you run less risk of error the
fewer entities you assume. The other reason ­ perhaps a somewhat frivolous
one ­ is that every diminution in the number of entities increases the amount
of work for mathematical logic to do in building up things that look like the
entities you used to assume.210

In fact, Russell claimed that his “philosophical development” since the beginning of the
twentieth century “[...] may be broadly described as a gradual retreat from Pythagoras”211, in
the sense that he gradually drifted apart from a view of Mathematics that entailed eliminable
commitments to abstract particulars ­ most notably numbers. As Russell always made clear,
the paradoxes led him to further extend this eliminative “retreat” to classes and relations­in­
extension, and, as we saw, at some point to propositional functions and even propositions. And,
of course, the theory of incomplete symbols is a milestone in this respect ­ as Russell repeatedly
stated212 ­ and it was only after Russell discovered the theory that the ‘metaphysical purge’ really
took off213.

Again, in light of ‘orthodox’ interpretations it is difficult to reconcile this emphasis on
the use of ‘Occam’s Razor’214 with the sort of ontology that the Churchian orthodoxy attributes
to Principia. Indeed, Landini’s view that Principia embraces a conception of Logic as a science
208 RUSSELL, B., 1924, p.164.
209 RUSSELL, B., 1924, p.166.
210 RUSSELL, B., 1918, p.195. Our emphasis. Of course, as Russell makes clear in this passage, he thought that the

application of this methodological maxim was welcome in Philosophy in general. In fact, in the context of this
very passage is Russell explaining that he is attracted to Neutral Monism “[...] because it exemplifies Occam’s
razor”.

211 RUSSELL, B., 1959, p.208. Cf. also RUSSELL, B., 1944, p.13­14.
212 Cf., for instance: RUSSELL, B., 1924, pp.165­6; 1944, pp.13­14; 1959, pp.83­5.
213 Indeed, as Kevin Klement points out, in light of what we now know about the development of Russell’s views,

we see that “the core of Russell’s solution to the paradoxes was not the theory of types [...] but rather the doctrine
of incomplete symbols, the standpoint that words or phrases that apparently stand for such problematic entities
as classes or propositions must not be taken at face­value” (KLEMENT, K., 2013, pp.204).

214 RUSSELL, B., 1944, p.13.
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of Structure without any commitments to mathematical objects in the Fregean sense ­ thus trea­
ting assumptions of infinite classes as conjectures that occur as an antecedent clauses in certain
existence theorems ­ is also in accordance with this trend of ontological parsimony.

1.3 Overview of the Goals and Content of Present Work

At this point it should be needless to say that Landini’s interpretation is very controver­
sial, in particular since it challenges long­standing assumptions that most interpreters viewed
(and which some still view) as unproblematic. Indeed, that is why Landini himself refers to his
own interpretation as ‘revolutionary’ as opposed to ‘orthodox’.

In the note preceding this Introduction it was observed that the present dissertation does
not present a radically novel interpretation of Russell’s works in Mathematical Philosophy, but
only aims at slightly expanding and discussing in some detail points already defended by Landini
and other authors who follow (at least the most central points of) his interpretation, like Kevin
Klement215 and Graham Stevens216. My goal here is to do this by considering three interrelated
topics that are of central importance in the development of Russell’s views from the Principles
to Principia, namely: his views on the nature of Logic as a science, his views on the ontologi­
cal commitments of Logic and his thesis that Pure Mathematics (for our purposes, Arithmetic,
specifically) is nothing but a development of Logic217.

As I attempted to indicate in the present Introduction, these three intertwined topics form
a unified thread that we can follow in order to assess which interpretation provides the best ac­
count of the available textual evidence. The thread, in a nutshell, can be explained as follows.
Russell struggled, from the Principles onwards, to formulate a logical theory which satisfied
the following requirements218: (i) it should get rid of the contradictions; (ii) it should keep intact
what he thought to be philosphical ‘common­sense’ assumptions about Logic ­ most notably his
thesis of the unrestricted variable and univocity of being; and finally (iii) it should keep intact as
much as possible of the development of Pure Mathematics on the basis of this theory, with the
most crucial case being elementary Arithmetic. Russell’s whole logico­philosophical itinerary
from 1903 to 1910 consisted in attempts to balance these three goals, but as he explained on more
than one occasion, tasks (i), (ii) and (iii) were not on a par in terms of priorities. The first one was
the truly “imperative” one ­ in other words, solving the contradictions was themain driving task.
Reconciling this task with the sort of ‘naive’ ontological outlook of Russell’s early Logicism
proved impossible. So emerged Russell’s eliminative approaches towards classes, propositio­
nal functions and propositions on the heels of his theory of incomplete symbols. This made it
215 Cf., for instance, KLEMENT, K., 2010, 2013a, 2013b, 2014 and 2018.
216 Cf., for instance, STEVENS, G., 2003, 2004 and 2010.
217 Hence the title of the dissertation, “Logic, Ontology and Arithmetic”.
218 Cf., for instance, RUSSELL, B., 1959, pp.79­80.
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possible to satisfactorily reconcile (i) and (ii), with varying degrees of success with respect to
(iii)219.

According to the ‘Orthodoxy’, Principia failed drastically in reconciling these three
tasks, achieving success only with respect to (i), as if Russell had simply given up fullfilling
(ii) and (iii). Their conclusion is that the thread ended up in a loose end. This dissertation argues
that Landini’s interpretation provides a much better approach for untangling the thread.

The dissertation is roughly divided in two parts. The first part discusses the develop­
ment of Russell’s conception logic and of the logicist project from its genesis up to Principia
Mathematica. This first part sets the context for the second, which discusses Russellian Logic
and Logicism in their mature version as presented in Principia. Each part consists of two chap­
ters in addition to this Introduction220. The second chapter is concerned with the Logic and
Logicism of the Principles of Mathematics. Our starting point is a discussion of what Russell vi­
ewed as a fundamental deficiency in Peano’s logic: the absence of a treatment of relations. This
was, for Russell, the fundamental flaw that prevented Peano from offering nominal definitions
where the latter appealed to the so­called definitions by ‘abstraction’ and is what led Russell to
re­discover (and, to some extent reframe) Frege’s definition of cardinal numbers as classes of
equinumerous classes. We consider this genesis of the Russellian definition of cardinal numbers
and its place in the development of Russell’s early logicism. Some interpretative issues are also
considered and we side with Landini against the interpretation of Rodriguez­Consuegra. Also
following to a great extent Landini’s interpretation, we explain the conception of logic and the
formal system underlying the Principles of Mathematics. Our discussion focuses on contrasting
Russell’s Logic as presented (informally) in the Principles with the views of Peano and Frege.
Finally, we adress Russell’s conception of Logic and Logicism as presented in the Principles,
emphasizing that the work is tied to a conception of Logic according to which one may prove
on a purely logical basis that there are infinite classes.

The third chapter is about the development of Russell’s views on the ontological comitt­
ments of Logic andMathematics in face of the contradictions. The chapter has two main general
goals. First, to articulate the basic problem that permeates Russell’s entire logical­philosophical
itinerary from 1903 to 1910, namely: attempting to reconcile the absolute conception of logical
generality and of the univocity of being of the Principles with a technically satisfactory resolu­
219 If we were to resume even more the already condensed story told in this Introduction, the situation would be

the following. The Principles failed with respect to (i). Given what little is understood of Russell’s attempts at
fulfilling this task between the Principles and On Denoting, it seems that the main difficulties lay in satisfying
(ii). Russell’s many versions of the Substitutional Theory were sort of a mixed bunch: the original ‘simple’
substitutional theory failed with respect to (i) since it was vulnerable to the po/ao paradox; the ‘no­general­
propositions’ substituitional theory of Les Paradoxes fared somewhat worse: as far as the best conjecture can
lead us, the theory could deal with the contradictions in a philosophically sound way, but only at the cost of
developing Mathematics adequately ­ and Russell’s attempts at saving Mathematics within it re­introduced the
po/ao; then, there were versions of Substitution with orders of propositions that were successful in satisfying
(i) and (iii), but failed to satisfy (ii).

220 Given its extension, the Introduction is being counted as the first chapter.
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tion of the contradictions. Second: to discuss in detail why Russell came to think of his theory
of incomplete symbols as a means of solving the paradoxes. We begin by explaining the dif­
ficulties Russell faced early on in trying resolve the contradiction given his conception of the
nature of logic. To this end, we briefly consider the solutions to the contradictions that Russell
considered and rejected before the discovery of his theory of incomplete symbols, in particular
the type theory of Appendix B of the Principles. After that, we discuss Russell’s Substitutio­
nal Theory, taking Landini’s work as our main guide. Following Landini’s lead, our discussion
aims at refuting two groups of interpreters. The first consists of Quine and those who follow
him in interpreting Russell’s ideas with respect to his theory of incomplete symbols applied to
expressions of sets, functions, and so on as irreparably harmed by confusion between use and
mention of expressions. The second consists of those who hold what we are calling, following
Landini, an ‘orthodox’ interpretation of the development of Russell’s views221. The discussion
seeks to consider in detail the arguments and the overwhelming evidence222 against the ‘ortho­
dox’ interpretation. At the end of the chapter we discuss some issues which arise in connection
with Landini’s account of why Russell abanoned the Substitutional Theory, noting where there
is still place for dispute among ‘revolutionaries’. Also, in an appendix to the chapter, we attempt
to chronologize the ‘rise and fall’ of Russell’s Substitutional Theory.

Chapter four is about the logic of Principia Mathematica. The main task of this chapter
is to argue in favor of Landini’s interpretation of Principia. The bulk of this discussion revolves
around Principia’s problematic use of the notions of a ‘propositional function’ and of a ‘pro­
position’. We begin by considering different interpretative approaches for integrating Russell’s
multiple­relation theory of judgement with Principia’s theory of types. We then consider the
fundamental technical issues that give rise to interpretative disputes about Principia’s hierachy
of types and we contrast different approaches to dealing with them. In both cases we contrast
the realist interpretations of Nino Cocchiarella and Bernarnd Linsky with the nominalist inter­
pretation of Landini. Our goal is to show that Landini’s interpretation has the upper hand in light
of the available evidence.

The fifth and final chapter is about the logicism of Principia Mathematica. This chap­
ter has three objectives. The first is to provide an exposition of Principia’s treatment of elemen­
tary Arithmetic, in particular the proofs of (the analogues of) Peano’s postulates. The second
objective is to discuss a variety of problems involved in the use of the notion of ‘typically ambi­
guous cardinal number’ in the second volume of Principia. As Landini showed, there are several
221 I.e., authors who hold, for instance, that Russell assimilated Poincaré’s ‘vicious circle principle’ as a means

of justifying distinctions between types between entities (cf., for instance, HYLTON, P., 1990, pp.299­300;
GOLDFARB,W., 1989, pp.32­4; LINSKY, B., 1999, p.77); or that Russell was led to accept Poincaré’s principle
and to adopt a theory of types of entities in the 1908 articleMathematical Logic as Based on the Theory of Types
in virtue of paradoxes we now call “semantic”, which he did not distinguish at all from the set­theoretical
paradoxes (cf. HYLTON, P., 1980, pp.23­4 and GOLDFARB, W., 1989, p.35­6); or that the he type theory of
Mathematical Logic is essentially the same as that of Principia (cf. CHURCH, A., 1976, p.747; and again, cf.
HYLTON, P., 1980, p.1 and GOLDFARB, W., 1989, p.37­8).

222 First presented by Landini and now availabe in the fifth volume of Russell’s Collected Papers.
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pseudo­theorems in the opening sections of the second volume. We take heed of Landini’s detai­
led study223, and note the necessary corrections while fulfilling our first goal of discussing the
proof of the Peano’s postulates. The third objective is to discuss Whitehead and Russell’s use
the so­called ‘Axiom’ of Infinity to prove theorems about the existence of cardinal numbers224,
in order to clarify the nature of Principia’s logicism. The goal is to argue that there is an internal
coherence between the Epistemology and the Metaphysics of Logic underlying the Russellian
logicist project as put forward in Principia’s own terms225.

223 LANDINI, G., 2016.
224 Some observations and considerations on the use of the “Multiplicative Axiom” (Principia’s version of the

Axiom of Choice) are also made.
225 Before proceeding, it must be emphasized that there are important and relevant topics for discussing some of

the themes and issues of the present dissertation that won’t be addressed (either in detail or not at all) for reasons
of space and scope. One such theme that readers might expect to be discussed is the impact of Wittgenstein’s
ideas and criticism on Russell’s views. This expectative can certainly be justified. Wittgenstein was, after all,
extremely critical of the theory of types and of the multiple­relation analysis of judgement. While still a stu­
dent of Russell, Wittgenstein presented a criticism of the multiple­relation theory that famously left the former
“paralysed” and contributed in leading Russell to abandon his Theory of Knowledgemanuscript. Wittgenstein’s
claim in the Tractatus that all and only logical laws are “tautologies” also had an impact on Russell who ­ at least
apparently or superficially ­ seems to have accepted this idea, against his fomer view that Logic is a synthetic
science whose laws have content and are informative. Wittgenstein also played a major role in leading Russell
to consider modifications of the theory of types in the Introduction to Principia’s second edition. These deve­
lopments will not be discussed in any capacity in the following pages, however, for a very simple reason: the
present work is concerned with Russell’s works on Mathematical Philosophy leading to and including the first
edition of Principia ­ the three volumes of which were completed long before Russell even knew of Wittgens­
tein’s existence. And of course, the subject of the impact of Wittgenstein’s ideas on Russell’s (and vice­versa)
involves so many controversial and delicate issues and so vast a literature that it simply could not be addressed
in the present dissertation without completely altering its scope.
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2 The Logic and Logicism of The Principles
of Mathematics

The Nineteenth Century, which prided itself upon the invention of steam and
evolution,might have derived amore legitimate title to fame from the discovery
of pure mathematics. [...]
What is now required is to give the greatest possible development to mathema­
tical logic, to allow to the full the importance of relations, and then to found
upon this secure basis a new philosophical logic, which may hope to borrow
some of the exactitude and certainty of its mathematical foundation. If this can
be successfully accomplished, there is every reason to hope that the near future
will be as great an epoch in pure philosophy as the immediate past has been in
the principles of mathematics. Great triumphs inspire great hopes; and pure
thought may achieve, within our generation, such results as will place our time,
in this respect, on a level with the greatest age of Greece.1

2.1 Russell’s First Steps Towards Logicism

2.1.1 The Impact of Moore and Peano

The logico­mathematical origins of Russell’s Logicism can be traced to the work of 19th
century mathematicians on four main trends of investigation in the Foundations of Mathematics.
The first was the process of ‘rigorization’ of Analysis. As is well known, despite the unpreceden­
ted scientific progress brought about by the discovery of Calculus by Newton and Leibniz, the
discipline lacked a rigorous foundation since fundamental concepts such as limit and continuity
were not clearly understood. Despite the centrality of such notions, they were taken for granted
in terms of geometrical notions (e.g., defining a function as continuous if its graph has no ‘gaps’)
or by appeal to intuitions about continuous motion and dubious concepts such as that of infini­
tely small quantities. This situation changed drastically in the Nineteenth Century when many
major figures in the History of Mathematics like Augustin­Louis Cauchy (1789­1857), Bernard
Bolzano (1781­1848) and, perhaps, most importantly, Karl Weierstrass (1815­1897) worked on
providing a rigorous foundation for Analysis2.

The second was the culmination of the process of rigorization into what became known
1 RUSSELL, B., 1901a, pp.366 and 379.
2 Weierstrass made the most central contribution in this process of rigorization, namely: he showed how to elimi­

nate the appeal to infinitesimals in favor of a rigorously defined notion of a limit that relied only upon algebraic
properties of real numbers. For an introductory survey of the issues, protagonists and the main works involved
in this fundamentally important chapter of the History of Mathematics and Mathematical Philosophy, the re­
ader is referred to GRATTAN­GUINNNES, I. (ed.), 2000a; for a discussion which explicitly and thoroughly
contextualizes the developments in the foundations of Analysis aiming to discuss the developments of Russell’s
views, cf. GRATTAN­GUINNESS, I., 2000b, pp.14­74.
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as the ‘arithmetization’ of Analysis3. Since the efforts of Weierstrass and those before him
showed that an adequate definition of limit presupposes only the theory of real numbers, the
need for a rigorous foundation for this theory became manifest. What Weierstrass showed in ef­
fect was that the problem of giving a rigorous, non­intuitive4 foundation to Analysis was reduced
to problem of defining real numbers and proving the existence of limits without any recourse to
intuitions about the real line. Of course, the great revolution on the Foundations of Mathematics
that occurred in the 19th century was brought about by figures such as Georg Cantor (1945­1918)
and Richard Dedekind (1931­1916) who used the theory of sets as a means to do that and in doing
so solved a problem that perplexed mathematicians and philosophers since ancient times, na­
mely, that of giving precise definitions of irrational numbers5. What he and Cantor discovered
was that real numbers and operations with them could be defined and their properties proved in
a way that dispensed with geometrical intuitions about the real line, assuming only the algebraic
properties (and the existence) of the set of rational numbers. Since several means of defining ra­
tionals in terms of integers and these in terms of natural numbers were already known at the time,
this showed that the theory of natural numbers could provide a solid foundation for Analysis6.

The third was the development of the theory of cardinal and ordinal numbers by means
of set theory, most importantly of a theory of infinite numbers. While both Cantor and Dedekind
made contributions to the theory of finite cardinals and ordinals, it is in Cantor’s work7 that we
find the most important results and generalizations: not only Cantor offered a set theoretical
formulation for the arithmetic of finite cardinals and ordinals, but he showed how to extend this
theory to infinite numbers in a way that entailed a hierarchy of different orders of infinity ­ his
transfinite numbers. Cantor’s taming of the notion of infinity brought it out of the swamps of phi­
losophical speculation and made it a fruitful mathematical concept. Cantor introduced the notion
of one­one correspondence as the standard of measure for sets, exorcising pseudo­problems that
haunted Philosophy of Mathematics for centuries8, introducing a clear­cut distinction between
the power or cardinality of a set, which was what Cantor explained in terms of the notion of
one­one correspondence, and its extension, that is the totality of its members or elements9.
3 Cf., for instance, KLEIN, F., 1896.
4 To be clear: non­intuitive in the sense of not relying on intuitions about the real line.
5 Perhaps the most famous construction is that of Dedekind, in terms of what nowadays we call “Dedekind Cuts”.

Cantor also provided a different, albeit equivalent, definition, given in terms of limits of some sequences of
rational numbers.

6 The reader is referred again to GRATTAN­GUINESS, I. (ed.), 2000a and 2000b.
7 His main results are presented in CANTOR, G., 1915, originally published in two parts in 1895 and 1897.
8 One of these was the allegedly ‘paradoxical’ fact that the natural numbers could be put in a one­one correspon­

dence with the even naturals, for instance. Once one distinguishes, however, between cardinality and extension,
there is no paradox: the set of naturals which contains the set of even naturals, is more extensive than the latter,
but both have the same cardinality ­ or number. Making a (merely) terminological concession to a surpassed
tradition, one could say that despite the fact that the set of even numbers is a part of greater whole, the set
natural numbers, it has the same number of terms as that whole.

9 The classical survey of the historical development of Cantor’s seminal work on set theory is JOURDAIN,
P., 1915; for an even more comprehensive survey of Cantor’s life and work cf. DAUBEN, J., 1979. Again,
for a discussion of Cantor’s works which puts it in the broad context of the developments in the foundations
of Analysis, cf., GRATTAN­GUINNESS, I. (ed.), 2000; for a thorough discussion of the impact of Cantor’s
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Finally, the fourth trend of investigation consisted in the attempts of mathematicians
like Augustus DeMorgan (1806­1971), George Boole (1815­1864), Ernst Schröder (1841­1902),
Gottlob Frege (1848­1925), Giuseppe Peano10 (1858­1932) and Alfred North Whitehead (1861­
1947) to make Logic a serious mathematical discipline instead of a mere scholastic curiosity11.

For Russell the first two of these developments showed that the theory of natural numbers
could be used as the ultimate foundation upon which Real Analysis rested and indicated that
the whole of Pure Mathematics could be grounded on or reduced to Arithmetic, in the sense
that every theorem about higher forms of number (rationals and irrationals) which previously
seemed to depend on geometrical intuitions like that of points in a line could be ultimately
understood as a theorem about sets of natural numbers12. We find this idea clearly articulated in
Russell’s Principles of Mathematics and explicitly formulated as a definitive refutation of Kant’s
conception of Mathematical knowledge as knowledge grounded on forms of pure intuition:

[...] during the last thirty or forty years, a new subject, which has added quite
immeasurably to theoretical correctness, has been created, which may legiti­
mately be called Arithmetic; for, starting with integers, it succeeds in defining
whatever else it requires— rationals, limits, irrationals, continuity, and so on.
It results that, for all Algebra and Analysis, it is unnecessary to assume any
material beyond the integers, which, as we have seen, can themselves be defi­
ned in logical terms. It is this science, far more than non­Euclidean Geometry,
that is really fatal to the Kantian theory of a priori intuitions as the basis of
mathematics. Continuity and irrationals were formerly the strongholds of the
school who may be called intuitionists, but these strongholds are theirs no lon­
ger. Arithmetic has grown so as to include all that can strictly be called pure in
the traditional mathematics.13

The Principles, of course, was the culmination of Russell’s efforts up to 1903 to contribute to
the entreprise of expelling the Kantian schools from the strongholds of Mathematics. But, iro­
nically, before 1900, were such philosophical assault to be effected, Russell would not be in the
vanguard storming the walls, but defending them. As he vividly describes in My Philosophical
Development, what led him first to the serious study of Philosophy was his dissatisfaction with
the teaching of mathematics to undergraduates at Cambridge:

works on the development of Russell’s views, cf. RODRÍGUEZ­CONSUEGRA, F., 1991 and also GRATTAN­
GUINNESS, I., 2000b.

10 With Peano we should also include authors who were part of his ‘school’ of mathematicians like Cesare Burali­
Forti (1861­1931), Alessandro Padoa (1868­1937). For thorough and detailed discussions of Peano and his school
and their impact on Russell’s views, cf. RODRÍGUEZ­CONSUEGRA, F., 1991 and, again, also GRATTAN­
GUINNESS, I., 2000b.

11 Again, cf., GRATTAN­GUINNESS, I., 2000b for a thorough and detailed historical discussion of these deve­
lopments.

12 The sense and the extent to which Russell did accept arithmetization of all branches of Pure Mathematics
and also the extent to which Russell’s Logicism requires aritmetization is a controversial subject, however (cf.
GANDON, S., 2008; 2012). We provide some clarification on this matter in section 3 of this chapter, footnote
410.

13 RUSSELL, B., 1903, p.157­8 §149.
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The mathematical teaching at Cambridge when I was an undergraduate was
definitely bad. Its badness was partly due to the order of merit in the Tripos,
which was abolished not long afterwards. The necessity for nice discrimination
between the abilities of different examiners led to an emphasis on ‘problems’
as opposed to ‘book work’. The ‘proofs’ that were offered of mathematical
theorems were an insult to the logical intelligence. Indeed, the whole subject
of mathematics was presented as a set of clever tricks by which to pile upmarks
in the Tripos. The effect of all this upon me was to make me think mathematics
disgusting. When I had finished my Tripos, I sold all my mathematical books
and made a vow that I would never look at a mathematical book again. And so,
in my fourth year, I plunged with wholehearted delight into the fantastic world
of philosophy.14

But back then Cambridge’s ‘fantastic world’ of Philosophy was dominated by the British
Idealism of authors like Thomas Hill Green (1836­1882), Francis Herbert Bradley (1846­1924)
and John Ellis McTaggart (1866­1925) who were greatly influenced by German Idealism, espe­
cially Kant and Hegel. As a young student immersed in this intellectual environment, Russell
became convinced that progress in Philosophy could only be achieved through improvements
of German Idealism15. So it was that, despite his alleged disappointment with Mathematics, he
wrote a dissertation on the foundations of Geometry discussing non­euclidean geometries within
a broadly Hegelian outlook16. The starting point was the recognition that Kant’s (supposed) view
that Euclidean Geometry was ­ even in some subjective sense ­ the right geometry was irrede­
emable incorrect; Russell’s goal was to give a transcendental deduction of the axioms that are
necessary and sufficient for the development of any possible Geometry, Euclidean or not17.

The main idea of the work was that there were inherent contradictions in the concept of
Space and, therefore, within Geometry (in fact, within every science) that could only be over­
come through a ‘dialectical transition’ to a new science18. In fact, after dealing with Geometry,
Russell hoped to give an account of the other mathematical sciences based on this so­called He­
gelian dialectic19. His ambition was to eventually construct a ‘Logic of the Sciences’ that would
recognize (only) the ‘inevitable’ contradictions inherent to them. Such a ‘logic’ was envisaged
to enable the ‘dialectical transition’ from one Science to the next, more abstract one in which the
former contradictions would then be (somehow!) resolved. As Hylton points out, this general
idea seems to be summed up in Russell’s unpublished Note on the Logic of the Sciences20:

14 RUSSELL, B., 1959, p.37­8.
15 For a systematic study of this ‘idealist apprenticeship’, cf. GRIFFIN, N., 1991 and also the first part of HYLTON,

P., 1990.
16 The dissertation was presented for examination to George Frederick Stout (1860­1944) and Whitehead in 1895

and published in a revised form (which he had finished by 1896) as An Essay on The Foundations of Geometry
(RUSSELL, B., 1897). This was Russell’s first philosophical book.

17 GRIFFIN, N., 1991, p.129­130.
18 HYLTON, P., 1990, pp.84­89, pp.98­99; GRIFFIN, N., 1991, p.129­130.
19 AsRussell later said in recollection regardingFoundations of Geometry “therewasworse to follow” (RUSSELL,

B., 1959, p.40).
20 HYLTON, P., 1990, p.98­9.
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What we have to do, therefore, in a logic of the sciences, is to construct, with the
appropriate set of ideas, a world containing no contradictions but those which
unavoidably result from the incompleteness of these ideas. Within any science,
all contradictions not thus unavoidable are logically condemnable; from the
stand point of a general theory of knowledge, the whole science, if taken as
a metaphysic [sic], i.e. as independent and self­subsistent knowledge, is con­
demnable. We have, therefore, first to arrange the postulates of the science so
as to leave the minimum of contradictions ; then to supply, to these postula­
tes or ideas, such supplement as will abolish the special contradictions of the
science in question, and thus pass outside to a new science, which may then
be similarly treated. Thus, e.g., number, the fundamental notion of arithmetic,
involves something numerable. [...] Hence geometry, since space is the only di­
rectly measurable element in sensation. Geometry, again, involves something
which can be located, and something which can move for a position, by defini­
tion, cannot move. Hence matter and physics.21

In the case of Arithmetic, the alleged inherent contradiction was the fact that the funda­
mental notion of the science, namely, number could be used, as Nicholas Griffin puts it, “[...]
both for counting and for measuring”, so the fundamental question which Russell faced was
how could the transition be made from countable discrete quantities to continua22. Young Rus­
sell’s attempt to treat this problem was given in a paper entitledOn the Relations of Number and
Quantity ­ which he later claimed to be “unadulterated Hegel”23. Russell could also not decide
“[...] whether infinite collections have no number or an infinite number” ­ and in the first draft of
The Principles of Mathematics, finished around 1898, we still find him reluctant to fully accept
Cantor’s ideas:

Cantor has, I think, established a branch of mathematics logically prior to the
Calculus and even to irrationals, and has shown how it is presupposed in these.
But I cannot persuade myself that his theory solves any of the philosophical
difficulties of infinity, or renders the antinomy of infinite number one whit less
formidable.24

The mentioned difficult ­ what Russell called the ‘Antinomy of Infinite Number’ ­ was
still reminiscent of Kant’s mathematical antinomies, and ended up being considered “[...] irrele­
vant, except on the Kantian view that numbers must be schematized in time” in the Principles25.
So up until the turn of the century, Russell’s allegiance laid, at least in a broad sense, with the
‘Kantian theory’ against Weierstrass, Cantor and their followers.

What happened? There are two main factors to be considered, respectively, in the next
two sections.
21 RUSSELL, B.,1959, p.53.
22 GRIFFIN, N., 1991, P.234­5.
23 RUSSELL, B., 1959, p.40. As Russell described it, the basic claim concerning the concept of number was that

“extensions beyond the positive integers result from a gradual absorption of the properties of the unit, and give
a gradually diminishing information as to the whole” (RUSSELL, B., 1959, p.40). Those interested in the study
of logically alien thought can find similar patterns of reasoning in the following: “Quantity, as we saw, has
two sources: the exclusive unit, and the identification or equalization of these units. When we look, therefore,
at its immediate relation to self, or at the characteristic of selfsameness made explicit by abstraction, quantity
is Continuous magnitude; but when we look at the other characteristic, the One implied in it, it is Discrete
magnitude.” (HEGEL, G.W., ...)

24 RUSSELL, B., 1900a, p.119.
25 RUSSELL, B., 1903, p.355, §337.
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2.1.1.1 Moore: The Rejection of Idealism and the Realist Conception of Relations and Propo­
sitions

Concerning Philosophical questions in general, the main factor was the influence of
Russell’s friend and colleague, George Edward Moore (1873­1958). Perhaps the best way to
describe the Philosophy put forward by Moore is as “atomist, direct­realist, and radically anti­
psychologistic”26. As Russell famously recounts in the preface to the first edition of The Prin­
ciples, his views were fundamentally those imposed by Moore’s revolt against the idealistic
doctrines of Kant, Hegel and his fellow Cambridge colleagues27:

On fundamental questions of philosophy, my position, in all its chief features,
is derived from Mr. G. E. Moore. I have accepted from him the non­existential
nature of propositions (except such as happen to assert existence) and their
independence of any knowingmind; also the pluralismwhich regards theworld,
both that of existents and that of entities, as composed of an infinite number
of mutually independent entities, with relations which are ultimate, and not

26 GRIFFIN, N., 2013, p.383.
27 This break with Idealism by Russell and Moore is, for good or bad, frequently considered as the inauguration

of Analytic Philosophy (See HYLTON, P., 1990. A dissenting view is proposed by BELL, D., 1999 and, in a
sense, by DUMMETT, M., 1973, pp.665­684 and DUMMETT, M., 1994.). The tale ­ which Russell depicts as
a ‘revolt’ ­ has been extensively discussed both in favor of its historical accuracy (HYLTON, P., 1990, pp.105­
116; HYLTON, P., 2004, pp.1­9.) and against it (GRIFFIIN, N., 1991; RODRÍGUEZ­CONSUEGRA, F., 1991;
GRATTAN­GUINNESS, I., 1993.). Russell himself contributed to the narrative of a sudden definitive break
in several occasions, for he characterized his conversion to Moore’s pluralist realism as an abrupt and radical
change. In his Autobiography, for instance we find him claiming that “There is one major division in my philo­
sophical work: in the years 1899­1900 I adopted the philosophy of logical atomism and the technique of Peano
in mathematical logic. This was so great a revolution as to make my previous work, except such as was purely
mathematical, irrelevant to everything that I did later. The change in these years was a revolution; subsequent
changes have been of the nature of an evolution” (RUSSELL, 1959, p.11). Although any historical account of
Russell’s and Moore’s ‘rebellion’ against the idealist tradition as a sudden break ­ including the one Russell
himself sometimes sketches ­ is indefensible, Russell’s retrospective that his change of philosophical perspec­
tive was a revolution should be taken very seriously and should not be overstated. There is a radical difference
in philosophical outlook in Russell’s writings from, say 1901 owards, and those from his ‘idealistic excursus’
­ what Griffin and Rodríguez­Consuegra showed is that this Revolution was not effected with a sudden and
radical break. One indication of this is the fact that Russell was completely dismissive of his early idealistic
work. Commenting on the previously discussed paper described as “unadulterd Hegel” he observes that des­
pite Couturat ­ for whom Russell had much respect ­ having described the article as a “petit chef d’oeuvre de
dialectique subtile”, Russell simply dismissed the article as being “nothing but unmitigated rubbish”. In fact
most of Russell’s later recollections also display a similar dismissive and aggressive attitude towards Hegelia­
nism, as in Portraits from Memory: “My first serious contact with the German learned world consisted in the
reading of Kant, whom, while a student, I viewed with awed respect. My teachers told me to feel at least equal
respect for Hegel, and I accepted their judgment until I read him. But when I read him I found his remarks in
the philosophy of mathematics (which was the part of philosophy that most interested me) both ignorant and
stupid.” (RUSSELL, 1956, p.20). Such passages fit like a glove what Thomas Kuhn says about scientists who
reject their earlier work because they no longer find themselves practicing science in the same paradigm: “En­
try into a discoverer’s culture often proves acutely uncomfortable, especially for scientists, and sophisticated
resistance to such entry ordinarily begins with the discoverer’s own retrospects and continues in perpetuity. [...]
Systematic distortions of memory, both the discoverer’s memory and the memory of many of his contempora­
ries, are a first manifestation of resistance.”. As Paulo Faria ­ who called my attention to this observation of
Kuhn’s ­ puts it, the point is that “[...] a revolutionary scientist is unable to make sense of some of his own
earlier work through imposing upon it the new conceptual framework in which he has been working since the
heyday of the revolution” (FARIA, P., 2021, pp.61­2). It seems that this is precisely what we witness in Russell’s
reminiscences.
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reducible to adjectives of their terms or of the whole which these compose.
Before learning these views from him, I found myself completely unable to
construct any philosophy of arithmetic, whereas their acceptance brought about
an immediate liberation from a large number of difficulties which I believe to be
otherwise insuperable. The doctrines just mentioned are, in my opinion, quite
indispensable to any even tolerably satisfactory philosophy of mathematics, as
I hope the following pages will show.28

Despite the fact that studies of Russell’s unpublished manuscripts which predate the
Principles of Mathematics established that this break was gradual, and thus, that Russell’s remi­
niscence is historically inaccurate29, the main point which marked a departure from the Idealist
tradition is clear. Russell was mainly interested in two theses advocated by the Cambridge ide­
alists: (1) The idea that somehow features of our thoughts (be they disguised under the label of
concepts of understanding or what have you) are constitutive of the things about which we think;
and (2) That relations are analyzable in terms of properties or predicates, which for Russell was
to say that they were not real, independent entities.

In Portraits From Memory he goes into a little more detail about this story, explaining
that the denial of second of these theses was the one that most affected his views onMathematical
Philosophy:

At Cambridge I was indoctrinated with the philosophies of Kant and Hegel, but
G. E. Moore and I together came to reject both these philosophies. I think that,
although we agreed in our revolt, we had important differences of emphasis.
What I think at first chiefly interested Moore was the independence of fact
from knowledge and the rejection of the whole Kantian apparatus of a priori
intuitions and categories, molding experience but not the outer world. I agreed
enthusiastically with him in this respect, but I was more concerned than he
was with certain purely logical matters. The most important of these, and the
one which has dominated all my subsequent philosophy, was what I called ‘the
doctrine of external relations’. Monists had maintained that a relation between
two terms is always, in reality, composed of properties of the two separate
terms and of the whole which they compose, or, in ultimate strictness, only of
this last. This view seemed to me to make mathematics inexplicable. I came to
the conclusion that relatedness does not imply any corresponding complexity
in the related terms and is, in general, not equivalent to any property of the
whole which they compose.30

Russell also stresses this point in My Philosophical Development, explaining that “[...]
Moore was most concerned with the rejection of idealism” while himself “[...] was most inte­
rested in the rejection of monism”31. Moore’s refusal of the idealistic doctrine (1) mentioned
above was given in terms of a general conception of judgment based on a ­ now famous ­ rea­
list conception of propositions. As Peter Hylton observes, fundamental to Moore’s rejection of
idealism was the idea that the truth of any judgment should be completely independent of acts
of judging32. Moore and, following him, Russell, understood this idea in the most radical form,
28 RUSSELL, B., 1903, p.xviii.
29 See previous note.
30 RUSSELL, 1959, p.11­12.
31 RUSSELL, B., 1959, p.54.
32 HYLTON, P., 1990, p.109.
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claiming that all cognition consists in direct relation between a mind and the objects of thought.
Perhaps one of the best clear­cut explanation of their views is given by Russell in a letter which
he wrote to Frege on 12 December 1904:

I believe that in spite of all its snowfields Mont Blanc itself is a component part
of what is actually asserted in the proposition ‘Mont Blanc is more than 4000
meters high’. We do not assert the thought, for this is a private psychological
matter: we assert the object of the thought, and this is, to my mind, a certain
complex (an objective proposition, onemight say) in whichMont Blanc is itself
a component part. If we do not admit this, then we get the conclusion that we
know nothing at all about Mont Blanc. This is why for me the meaning of a
proposition is not the true, but a certain complex which (in the given case) is
true.33

As Michael Potter puts it, what this “[...] exchange with Frege concerning Mont Blanc
demonstrates vividly is that Russell conceived of objects literally as constituents of propositi­
ons”34; propositions were viewed by Russell as complex entitieswhose constituents are the very
things which the proposition is about.

As Russell would latermake explicit, the essence of the epistemological doctrine implicit
in the Principles is the idea that “[...] in every proposition that we can apprehend [...] all the
constituents are really entities with which we have immediate acquaintance”35. Truth and falsity
of a proposition was also understood in terms of something (undefinable) which we recognize
some propositions as having and others as not having. As Russell puts it in the Principles, “True
and false propositions alike are in some sense entities [...] but when a proposition happens to be
true, it has a further quality, over and above that which it shares with false propositions”36.

Now, from the point of view of the development of Russell’s views on Mathematical
Philosophy, Russell’s reasons for rejection of thesis (2) mentioned above are the most relevant.
Russell’s main target was Bradley’s view that all so­called ‘external’ relations can be analyzed in
terms of “identity and diversity of content”, which, themselves are not relations at all but intrinsic
properties ­ or, as Bradley called them, ‘internal’ relations. To make the point of disagreement as
simple as it can bemade, take two objects a and b and some relationRwhich holds between them;
are we to say that the correctness of some judgment like a has R to b is grounded solely on the
monadic predicates which hold of each relata or also because of the nature of the relation itself,
which is ontologically independent from the terms it relates? The answer which Moore, and
following him, Russell, advocated was that ‘external’ relations are ultimate or non­analyzable
constituents of reality, that is, that there are relations that are ontologically independent from
their relata and not reducible to any intrinsic property or so­called ‘internal relation’ of these.
33 FREGE, G., 1980, p.169.
34 POTTER, M., 2000, p.121.
35 RUSSELL, B., 1905a, p.415.
36 RUSSELL, B., 1903, p.49 §52.
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From a logical point of view, this amounted to nothing less than the rejection of the universal
analysability of propositions in terms of subject­predicate form, a thesis which Russell thought
had as its ultimate and unbearable consequence the disjunction between the two metaphysical
views he called ‘Monism’ and ‘Monadism’.

According to the first, the correct mode of analysis of aRb is to break it down into the
conjunction of two propositions concerning a and b, that is, a proposition which attributes a
property to a and another to b, while the second holds that aRb is to be analyzed as a proposition
that attributes a property to a ‘whole composed of a and b’. According to Russell, the first phi­
losopher ever to extract this fundamental consequence of the universal analysis of propositions
into subject­predicate form was Leibniz, who, Russell thought, stated the monadistic view with
“admirable lucidity”37 in the following passage:

The ratio or proportion between two lines L and M may be conceived three
several ways; as a ratio of the greater L to the lesser M ; as a ratio of the lesser
M to the greater L; and lastly, as something abstracted from both, that is, as the
ratio between L and M, without considering which is the antecedent, or which
the consequent; which the subject, and which the object. [...] In the first way
of considering them, L the greater is the subject, in the second M the lesser is
the subject of that accident which philosophers call relation or ratio. But which
of them will be the subject, in the third way of considering, them? It cannot be
said that both of them, L and M together, are the subject of such an accident;
for if so, we should have an accident in two subjects, with one leg in one, and
the other in the other; which is contrary to the notion of accidents. Therefore
we must say that this relation, in this third way of considering it, is indeed out
of the subjects; but being neither a substance, nor an accident, it must be a mere
ideal thing, the consideration of which is nevertheless useful.38

AsRussell read him, Leibniz was led, from the logical doctrine that every proposition has
the subject­predicate form, to the metaphysical consequence that “[...] relations [...] have only
a mental truth” and then to the ultimate conclusion that a “[...] true proposition is one ascribing
a predicate to God and to all others who perceive the relation”39. The study of Leibniz shaped
Russell’s understanding of the idealistic doctrines of Bradley, who he thought implicitly accepted
the universality of the subject predicate form and due to this was led to the third alternative, the
one Leibniz discards, namely that the correct analysis of a relational proposition like L is greater
than M is not as an assertion about L orM, but about a “whole composed of them”, which is the
true subject of the proposition40.
37 RUSSELL, B., 1903, p.222 §213.
38 GERHARDT, I.(ed.).,1890, Vol. VII, p.401. The translation is Russell’s.
39 RUSSELL, 1900, p.16. At this point in the text, Russell is commenting specifically on the following passage from

the New Essays in Human Understanding: “The units are separate and the understanding takes them together,
however scattered they may be. However, although relations are the work of the understanding they are not
baseless and unreal. The primordial understanding is the source of things; and the very reality of all things other
than simple substances rests only on the foundation of the perceptions or phenomena of simple substances. ”
(LEIBNIZ, G., 1765, p.145, §5; this is not Russell’s translation).

40 Russell also thought that ultimately, it was this doctrine that led to the idea that every proposition is about the
the same unique object, namely, reality ­ hence, the idea of a monist metaphysics.
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The best way to understand why Russell thought that these views led to ‘insuperable’
difficulties in the Philosophy of Mathematics is by considering what he called the ‘problem of
asymmetrical relations’. If we follow the terminology of the Principles, symmetrical relations
are such that xRy always implies yRx; and a relation is not symmetrical if for some x and y, we
may have xRy and ∼ yRx and an asymmetrical41 relation is one such that xRy always implies
∼ yRx. In symbols:

Symmetrical(R) = (x)(y) xRy ⊃ yRx

Not− symmetrical(R) =∼ Symmetrical(R)

Asymmetrical(R) = (x)(y) xRy ⊃ ∼ yRx

Relations of the latter kind are fundamental to any attempt to characterize order among some
given set of terms, and thus, are very important for Mathematics: greater or less than are the
typical examples42. Now, at its core, Russell’s argument is very simple: both the monadistic
as well as the monistic theory claim that relations are unreal (i.e., not ultimate constituents of
reality) and this claim is grounded on the logical doctrine that every proposition can be analyzed
in terms of a subject and a predicate ­ so to show that it is impossible to analyze propositions in
which asymmetrical relations occurs in these terms is to show that the logical basis of monadistic
and monistic metaphysics must be rejected. In the case of the monadistic theory, Russell shows
that any attempt to analyze “... has R to z” as an adjective (where R is asymmetric) fails due
to the unavoidable complexity of the resulting adjective, which presupposes the relation it was
supposed to replace:

Let a and b have an asymmetrical relation R, so that aRb and bR̆a43. Let the
supposed adjectives (which, as we have seen, must each have a reference to
the other term) be denoted by β and α respectively. Thus our terms become aβ
and bα. α involves a reference to a, and β to b; and α and β differ, since the
relation is asymmetrical. But a and b have no intrinsic difference corresponding
to the relation R, and prior to it; or, if they have, the points of difference must
themselves have a relation analogous to R, so that nothing is gained. Either
α or β expresses a difference between a and b, but one which, since either α
or β involves reference to a term other than that whose adjective it is, so far
from being prior to R, is in fact the relation R itself. And since α and β both
presuppose R, the difference between α and β cannot be used to supply an
intrinsic difference between a and b. Thus we have again a difference without
a prior point of difference. This shows that some asymmetrical relations must

41 The term “anti­symmetrical” is sometimes used in textbooks.
42 Of course, strictly speaking, what is required for a relation R to generate order among the members of some

set is the fact that given any two (different) terms x and y either xRy or yRx (R is connected), the fact that if
xRy and yRz, then xRz (R is transitive) and the fact no term has R to itself (R is irreflexive). Transitivity and
irreflexivity are sufficient to generate a partial order. But any relation that satisfies these conditions must be
asymmetric: assume that for some x and y, we have xRy. Assume also yRx. Given transitivity, it follows that
xRx, which contradicts irreflexivity. Thus, if R is transitive and irreflexive, it must be asymmetrical.

43 “R̆” is the notation borrowed from Schröder for the inverse of R, that is, the relation which holds between y and
x when, and only when, xRy holds.
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be ultimate, and that at least one such ultimate asymmetrical relation must be
a component in any asymmetrical relation that may be suggested.44

In the case of the monistic theory, the fundamental problem Russell identifies its the
incapacity of the theory to explain what he calls difference of sense. If aRb is understood as a
proposition about a whole composed by a and b, asymmetrical relations again become a problem.
For a sentence like “a is greater than b” stands for a different proposition than the one which
is expressed by “b is greater than a” or “a is lesser than b”. But if lesser than is understood as
the converse of greater than, then the two propositions have the exact same constituents, and
so there must be something that explains the difference between them beyond the mere sum of
their parts:

The proposition “a is greater than b”, we are told, does not really say anything
about either a or b, but about the two together. Denoting the whole which they
compose by (ab), it says, we will suppose, “(ab) contains diversity of magni­
tude”. Now to this statement—neglecting for the present all general arguments—
there is a special objection in the case of asymmetry. (ab) is symmetrical with
regard to a and b, and thus the property of the whole will be exactly the same
in the case where a is greater than b as in the case where b is greater than a.
[...] In order to distinguish a whole (ab) from a whole (ba), as we must do if
we are to explain asymmetry, we shall be forced back from the whole to the
parts and their relation. For (ab) and (ba) consist of precisely the same parts,
and differ in no respect whatever save the sense of the relation between a and
b. “a is greater than b” and “b is greater than a” are propositions containing
precisely the same constituents, and giving rise therefore to precisely the same
whole; their difference lies solely in the fact that greater is, in the first case, a
relation of a to b, in the second, a relation of b to a.45

As Peter Hylton observes the above argument for Russell “[...] is a paradigm case of the
interrelation of the philosophical and the technical”46: any theory of judgment which purports to
be adequate for handling Mathematics must account for the difference between a is greater than
b and b is greater than a (and that which makes them mutually exclusive), i.e., the fact that an
asymmetrical relation has a sense or a direction. Russell is providing a decisive argument which
shows that the monistic analysis cannot explain the difference between propositions in which
the same constituents occur with the same relations differing in sense. As Hylton aptly puts it,
for Russell the above argument shows that “Mathematics requires the notion of order, which in
turn requires irreducible relations”47. This is what led Russell to follow Moore in concluding
that relations should thus be considered as “ultimate entities”, i.e., must be considered genuine
constituents of propositions that can be analyzed away in terms of predicates or properties.

As we shall see next, this view was decisive in leading Russell to his first major contri­
bution to Mathematical Philosophy.
44 RUSSELL, B., 1903, p.224, §214.
45 RUSSELL, B., 1903, p.225, §215.
46 HYLTON, P., 1990, p.184.
47 HYLTON, P., 1990, p.184.
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2.1.1.2 Peano: Mathematical Logic and Axiomatic Method

With respect to the development of Russell’s logico­mathematical ideas, the major influ­
ence on Russell was Peano. Despite the fact that Russell had already read and partially accepted
the ideas of Cantor and Dedekind48, for instance, it was Peano who provided him with a big­
ger picture of how the works of these authors were truly revolutionary, mainly because Peano
showed how their results fitted into a unified conceptual whole tied up by the LogicaMatematica
developed by him and his disciples49.

As Russell recounts in his Autobiography, the most crucial moment in the development
of his ideas concerning Mathematical Philosophy was the International Congress of Philosophy:

The Congress was a turning point in my intellectual life, because I there met
Peano. I already knew him by name and had seen some of his work, but had
not taken the trouble to master his notation. In discussions at the Congress I
observed that he was more precise than anyone else, and that he invariably
got the better of any argument upon which he embarked. As the days went by,
I decided that this must be owing to his mathematical logic. I therefore got
him to give me all his works, and as soon as the Congress was over I retired
to Fernhurst to study quietly every word written by him and his disciples. It
became clear to me that his notation afforded an instrument of logical analysis
such as I had been seeking for years, and that by studying him I was acquiring
anew powerful technique for the work that I had long wanted to do.50

As he explains in My Philosophical Development, the ‘enlightenment’ received from
Peano came from “two purely technical advances”51, namely:

1. The distinction between (a) the relation of membership which holds between an element
x and a class α and (b) the relation of inclusion between a class β and another class α,
which Russell would later symbolise respectively as x ϵ α and x ϵ β ⊃x x ϵ α or β⊂α;
and

2. The distinction between the class ιa containing a single entity a and a itself.52

Of course, the notations used here to express these distinctions are also taken from the works of
Peano, together with other important distinctions like the one between real (free) and apparent
(bound) variables. Important as these distinctions were, marking a break with the part­whole
48 A detailed discussion of Russsell’s gradual acceptance of their works, in which the manuscripts of previous

versions of the Principles are thoroughly discussed, can be found in RODRÍGUEZ­CONSUEGRA, F., 1991.
49 For a study of Peano’s life and work which also discussed his ‘school’, see KENNEDY, H., 1980; again, for

details relating the works of Peano and his followers to the development of Russell’s views, cf. RODRÍGUEZ­
CONSUEGRA, F., 1991 and also KENNEDY, J., 1973, 1974.

50 RUSSELL, B., 1967, p.218.
51 RUSSELL, B., 1959, p.66.
52 Russell notes in the same passage that both distinctions were also emphasized by Frege, even before Peano.
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conception of a set or class and the acceptance of the superior Cantorian conception of set,
however, they barely scratch the surface of what Russell learned from Peano.

Against what was for some time the standard account of what Russell learned from Pe­
ano53, Francisco Rodriguez­Conseugra systematically showed54 that Russell learned from Peano
(and also, almost just as importantly, from his followers) a method of analysis of mathematical
theories which, by the time of the congress, was presented to Russsell in its most optimized form
in Peano’s Formulario mathematico or Formulaire de Mathématiques, in the French version.
Inspired by the procedure adopted in Geometry of laying down primitive notions and axioms
which embody the fundamental properties of these notions, Peano developed axiomatizations
of several branches of pure Mathematics and also of a logical calculus of classes and proposi­
tions. Russell recognized Peano’s logic and notation as powerful philosophical tools ­ so much
so that at the time Russell saw in Peano’s works “[...] the realization of Leibniz’s great idea
that, if symbolic logic does really contain the essence of deductive reasoning, then all correct
deduction must be capable of exhibition as a calculation by its rules”55. But Russell also lear­
ned from Peano a method of investigating formal theories56. What most impressed Russell in
Peano’s techniques was their wide scope of applications: the method of laying down primitive
notions and axioms and then extracting the consequences within a precise calculus was applied
by Peano and his school not only to Arithmetic, but also to several branches of Analysis and
Geometry and, perhaps most importantly for Russell, even to Logic itself.

The primitive logical notions of the Formulario were57: 1. Class symbolized in some
editions by “K” and others by “Cls”58; 2. Membership to a class, symbolized by “ϵ”59; 3. Material
implication, always symbolized by the ‘horseshoe’, “⊃”; 4. Formal implication between two
propositions that is, the relation which holds between p and q when “q can be deduced from p,
whatever x, ...z are”60, symbolized as “p⊃x,..,z q”; 5. The conjunction or joint affirmation of two
propositions p and q, symbolized by “p ��q” or “pq” or yet “p q”; 6. The notion of definition,
whichwas indicated by “Df” following the formula which defines some string of symbols; 7. The
53 Cf., for instance, KENNEDY, H., 1973. This, account, of course, was standard for good reason: Russell himself

suggested it many times, as the passages just quoted make clear.
54 RODRÍGUEZ­CONSUEGRA, F., 1991, pp.91­134.
55 RUSSELL, B., 1901c, p.353.
56 See, for instance Russell’s little known and even less discussed article Recent Italian Work on the Foundations

of Mathematics (RUSSELL, B., 1901c); some points concerning this article will also be discussed in the present
chapter.

57 PEANO, G., 1897, pp.3­4. We shall follow Russell’s exposition of Peano’s logic in the Principles very clo­
sely, complementing with details from Peano’s own presentation. Russell thought Peano’s best expositon of his
Symbolic Logic to be the first part of the 1897 edition of the Formulario, the reason being that it is the most
clear in distinguishing in detail the primitive notions and propositions of Logic. The choice is clearly justified
if one looks at the comparative sheer volume of space dedicated to Logic in this edition: in the 1897 edition,
Mathematical Logic takes the first seventy pages, while in the 1901 edition this space is almost cut in half.

58 In the 1897 edition he used the letter “K”, changing it to “Cls” in the 1901 edition. For the sake of uniformity
we employ the latter.

59 Peano used “ε”. For the sake of uniformity, we shall employ Principia’s counterpart of this symbol.
60 Peano, G., 1897, p.1.
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negation of a proposition, symbolized by “−”61. Peano’s notation andmethodology drew heavily
upon the the algebraic tradition of Boole and Schröder. He followed them in not distinguishing
as clearly as he should the operations of the algebra of classes from the those of the propositional
calculus, employing, for instance, the same symbol for equality and material equivalence and
also the same symbol for class inclusion and material implication, despite the fact that the did
drew the distinction62. Peano had63:

α, b ϵCls ⊃ a⊃ b = x ϵ a ⊃xx ϵ b Df

which, in fact, as Russell put it, defines “every a is b” as “x is an a implies that x is a b, whatever x
may be”, that is: x ϵ a formally implies x ϵ b. Given Peano’s definition of formal implication, x ϵ a
and x ϵ b are understood as propositions containing real (free) variables, a notion which Russell
repudiates in favor of what he calls a propositional function64. Peano also had an analogous
definition for the product (intersection) of two classes65

α, b ϵCls ⊃ a ��b = x ∋ (x ϵ a x ϵ b)Df

which employed a notion which Russell would later attach much weight to, namely that of such
that, defined as66:

a ϵCls ⊃ x ∋ (x ϵ a) = a Df

This is an attempt to define “the x’s such that so­and so” or “the x’s that satisfiy the condition
x ∈ a” as the class a. This was probably introduced due to the lack of (and distinction between)
a principle of class­abstraction and a principle of extensionality, since the definition seems like
a confused amalgam of both. This was later removed in the 1901 edition of Formulario after
the criticism of Peano’s disciple Alessandro Padoa67, who Russell followed in the Principles
calling the definition “perfectly worthless” (as we shall see, however, he retained the notion as
primitive).

With the primitive notions and definitions described above, Peano assumed the following
group of primitive propositions, the formulation of which again, showcase the influence of the
algebraic tradition:

a ϵCls ⊃ a⊃ a
61 Peano used a slightly shorter, bold bar symbol.
62 For more details, cf. GRATTAN­GUINNESS, I., 2000b, pp.225­7.
63 PEANO, G., 1897, p.3.
64 This notion had already appeared in a semi­articulate form (cf. GRATTAN­GUINNESS, I., 2000b, p.228) in Pe­

ano’s famous booklet on the principles of Arithmetic, in the following passage: “Let ϕ be a sign or an aggregate
of signs such that, if x is an object of the class s, the expression ϕx denotes a new object; we assume also that
equality is defined between the objects ϕx; further, if x and y are objects of the class s and if x = y, we assume
it is possible to deduce ϕx = ϕy. Then the sign ϕ is said to be a function presign in the class s [...]” (PEANO,
G., 1889, p.91). This passage, as Grattan­Guinness observes is introducing a notion akin to that of Dedekind’s
‘transformations’ (cf. GRATTAN­GUINNESS, 2000b, p.228).

65 With this he defined the sum (or union) of two classes was defined as a, b ϵCls ⊃ a ��b = −[(−a)(−b)] Df.
66 In the 1897 edition of the Formulario, Peano used a variable with a bar over it to indicate the use of such that,

defining: a ϵCls ⊃ x ϵ(x ϵ a) = a Df. In the 1901 edition this was indicated by an inverted ε. For the sake of
convenience and difficulties of typesetting this symbol, we shall employ its modern counterpart ∋.

67 RODRÍGUEZ­CONSUEGRA, F., 1991, p.131­4.
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a, b ϵCls ⊃ ab ϵCls

a, b ϵCls ⊃ ab⊃ a

a, b ϵCls ⊃ ab⊃ b

a, b, c ϵCls a⊃ b x ϵ a ⊃ x ϵ b

a, b, c ϵCls a⊃ b b⊃ c ⊃a⊃ c

a, b, c ϵCls.⊃ a⊃ b a ⊃ c ⊃ a⊃ bc

a ϵCls ⊃ −a ∈ Cls

a ϵCls ⊃ −(−a) = a

a, b, c ϵCls ab⊃ c x ϵ a x− ϵ c x⊃ x− ϵ b

Peano ­ as everyone else at this time with the exception of Frege68 ­ lacked a clear distinction
between axioms and rules of inference, with the latter being completely absent from the for­
mulation of his calculus. Despite its imprecision and shortcomings, though, the simple elegant
notation and axiomatic formulation of Logic was very effective for cataloging an enormous
number laws of propositional logic and the algebra of classes.

But despite the enormous positive impact that Peano’s works had on Russell, there emer­
ged a serious point of dispute between the two concerning the fundamental subject of definitions
in Mathematics. In the Formulario and other works69, Peano employed three different methods
of definition beside the usual nominal, or so­called eliminative ones, namely inductive or recur­
sive definitions, definition by postulates and what Peano called definitions by abstraction. Each
of these sorts of definition was employed by Peano in important places in his Formulario. In
fact, his five primitive propositions for Arithmetic can be understood as an attempt to ‘define’
the primtive notions of number theory. His now famous axiomatization of Arithmetic assumed
as primitives the notions of zero, number and successor, which he symbolized in the Formulario
as70:

0 =≪ zéro≫

N0 =≪ nombre (entier, positif ou null)≫

a ∈ N0. ⊃ .a+ =≪ le nombre qui vient après a ≫,≪ le successif de a≫,≪ a plus≫

And had as axioms what we now call the five Peano postulates, more appropriately name the
Dedekind­Peano postulates71:

0 ϵN0

68 And a little later Russell, who embraced the distinction in the Principles, as we shall discuss.
69 An important example is Peano’s previous, but better known work Arithmetices Principia, partially translated

and republished in van Heijenoort’s famous collection (van HEIJENOORT, J., 1967, pp.83­97).
70 PEANO, G., 1901, p.41.
71 Cf. PEANO, G., 1901, p.41­43. Dedekind had already made them the basis of Arithmetic in slightly different

form in his most famous article (DEDEKIND, R., 1888). Peano himself recognizes his debt to Dedekind in his
first exposition of an axiomatic formulation of arithmetic (PEANO, G., 1889). But the fact is that Peano had
offered an explicit axiomatic treatment of Arithmetic with these axioms, while Dedekind did not (POTTER, M.,
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a ϵN0 ⊃ a+ ϵN0

a, b ϵN0 a+ 1 = b+ 1 ⊃ a = b

a ∈ N0 ⊃ a+ 1 ̸= 0

s ϵCls 0 ϵ s x ϵ s ⊃x x+ ϵ s ⊃ N0 ⊃ s

According to Peano, these propositions could legitimately be taken as defining the three pri­
mitive notions. A very important example of Peano’s use of inductive or recursive definition
occurs in his treatment of Arithmetic, where he introduces the usual basic equations of addition
and multiplication as defining such operations72:

a ϵN0 ⊃ a+ 0 = a

a, b ϵN0 ⊃ a+ (b+) = (a+ b)+

a ⊃ a× 0 = 0

a, b ϵN0 ⊃ a× (b+ 1) = (a× b) + a

The last kind ­ definition by abstraction ­ was employed by Peano at crucial points in his deve­
lopment of Arithmetic, Analysis and Geometry, respectively when defining Cardinal Numbers,
Real Numbers and Directions73. By a definition by abstraction, Peano meant the procedure of
defining the identity of a class of terms (directions of lines, for instance) by means of an equiva­
lence relation (parallelism) that defines and equivalence class. His most famous explanation of
definition by abstraction is the following:

Let u be an object; by abstraction, one deduces a new object ϕu. We cannot
form an equality
ϕu = known expression,
for ϕu is an object of a nature different from all those that we have considered
up to the present. Rather, we define the equality ϕu = ϕv by setting
hu,v ⊃ ϕu = ϕv = pu,v

2000, pp.81­6). Often forgotten is the fact that Peano’s also thought a sixth proposition was necessary, namely
N0 ϵ Cls. Peano did not have a specific symbol for inequality, but we will use it for convenience. Also, Peano
sometimes denoted the successor of a with “a+” as in the second postulate, and sometimes with “a+ 1”, as in
the third postulate.

72 Peano, G., 1901, p.40, 51. In this respect, Peano’s axiomatic treatment was far inferior than that of Dedekind
who not only realized that such procedure presupposed a theorem of recursion, but proved the result (again, for
details we refer to POTTER,M., 2000, pp.81­6).Aswe nowadays know, this means that Dedekind was implicitly
working within a second­order logic. Although Peano, just like Dedekind (and everyone before the twenties) did
not distinguish between first and second order quantification (cf. GOLDFARB,W., 1979), we have every reason
to suppose that his logic was first order. Thus, Peano should have assumed a theorem of recursion as primitive
or added the recursive equations as additional axioms instead of definitions. An illuminating discussion of this
last point which connects it with Russell’s views can be found in LANDINI, G., 1998, pp.21­26.

73 Peano, .G, 1901 p.70, §32; p.122, §71; p.192­3, §91; for details see RODRÍGUEZ­CONSUEGRA, F., 1987, p.143;
1991, p.124­5; GRATTAN­GUINNESS, I., 2000b, pp.239­41.
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Where hu,v is the hypothesis on the objects u and v. Thus ϕu = ϕv, being
the equality defined, means the same as pu,v which is a condition, or relation,
between u and v, having a previously known meaning. This relation must sa­
tisfy the three conditions of equality that follow. [...]74

As Rodríguez­Consuegra notes, although there are three points at which the ‘chain of
logical definitions’ is broken in Peano’s Formulario75, the most important case for the purpose
of understanding the development of Russell’ ideas is the definition of the notion of cardinal
number. In the 1901 edition of the Formulario, Peano had76:

a, b ϵCls⊃ Numa = Numb = E(bfa)rcp

He called this a definition “by abstraction of Numa” and explained it thus:

≪ Numa≫ signifie≪ le nombre (numerus) des a≫. [...] La définition ·0
est exprimée par les seuls signes de logique. On peut commencer ici l’Arithmétique:
nous définirons directemente les signes> 0 N0 +× �, sans passer par les idées
primitives du §20.
La définition ·0 définit l’égalité≪ Numa = Numb≫, qui subsiste si l’on peut
établir une correspondance réciproque entre a et b.77

This is precisely the definition which Frege had already considered and rejected in his
Grundlagen der Arithmetik in 188478; “∃(bfa)rcp” is defined as the existence of a one­one func­
tion f between two classes a and b, and hence, what is proposed here is a definition of “the
number of the class a” via the symmetric, transitive and reflexive relation of similarity or equi­
numerosity: two classes have the same cardinal number if there exists a one­one function that
correlates their members. It is interesting to point out that this section explicitly refers to Can­
tor’s article of 1895 which introduces and works out his concept power or cardinal number of
a class or set [menge]. Taking a class as “[...] any collection into a whole M of definite and
separate objects m of our intuition or our thought”79, Cantor understood the cardinal number
or power of a class M as something which we obtain by abstracting “[...] from the nature of its
various elements m and of the order in which they are given”80, where the elements m are the
objects which we “separate” in “our intuition or our thought” into a single collection or class
M, so that from this double process of abstraction a new, definite object was created. This new
74 KENNEDY, H., 1974, p.397; RODRÍGUEZ­CONSUEGRA, F., 1991, p.124. The “three conditions” that follow

are, of course, reflexivity, transitivity and simmetry.
75 RODRÍGUEZ­CONSUEGRA, F., 1991, p.125.
76 PEANO, G., 1901, p.70.
77 PEANO, G., 1901, p.70.
78 FREGE, 1884, p.73­79, §§62­68. To be sure, the passage continues: “Nous n’ecrivons pas une egalité de la forme

Numa = (expression composée par les symboles précédents). La P·0 est une Df par abstraction de Numa.”
(Peano, G., 1901, p.70) We shall have occasion to compare briefly Frege’s number theory with that of Russell
later.

79 CANTOR, G., 1895, p.85.
80 CANTOR, G., 1895, p.86.

66



object he called the cardinal number of M and he denoted it by the expression “M”. According
to Cantor two sets have the same power if “[...] it is possible to put them, by some law, in such
a relation to one another that to every element of each one of them corresponds one and only
on element of the other”81 In other words, two sets have the same cardinal number when there
is one­one correlation between their elements. When such a condition is fulfilled Cantor called
the two sets M and N equivalent and abbreviated “M and N are equivalent” by “M∼N”. Using
this relation of equivalence as a standard of measure for classes, Cantor defined the relations of
greater and less and also the operations of addition, multiplication and exponentiation of cardi­
nal numbers without any recourse to the notions of finitude or infinity and could do so in a way
that applied both to infinite and finite sets. Peano is following Cantor here in not properly or
strictly defining the notion of power or cardinal number, but defining them ‘by abstraction’ via
the equivalence relation. Moreover, Peano claimed that it is impossible to (nominally) define
the concept of cardinal number using only the logical notions of the Formulario.

Now, despite the high regards that Russell had for Peano’s formal development of Logic
and Arithmetic, he thought Peano’s Logic was not sufficiently developed due to the absence of a
formal apparatus able to deal with relations. Peano introduced functional and relational symbols
as definable (as a rule) in terms of formal implication and membership to a class, as follows:

a, b ϵCls ⊃ u ϵ afb = x ϵ a ⊃xxu ϵ b

a, b ϵCls ⊃ u ϵ afb = x ϵ a ⊃x ux ϵ b

However, Peano conceived these defintions in a rather vague way, with “f” meant to “[...] repré­
senter par les symboles idéographiques les idées de ≪fonction, correspondence, operátion≫,
etc.”82. Due to the influence of Moore and the recognition of the ultimate reality of relations,
this was a fundamental aspect of Peano’s Logic that Russell found unacceptable83.
81 CANTOR, G., 1895, p.86­7.
82 PEANO, G., 1901, p.33.
83 In Russell’s logicist manifesto, Recent Work on The Foundations of Mathematics, written, as Russell said to

Jourdain, “for filthy lucre” and later published asMathematics and the Metaphysicians (RUSSELL, B., 1901c?),
we find: “The great master of the art of formal reasoning, among the men of our own day, is an Italian, Professor
Peano, of the University of Turin. He has reduced the greater part of mathematics (and he or his followers will, in
time, have reduced the whole) to strict symbolic form [...] if we wish to learn the whole of Arithmetic, Algebra,
the Calculus, and indeed all that is usually called pure mathematics (except Geometry), we must start with a
dictionary of three words. One symbol stands for zero, another for number, and a third for next after. What
these ideas mean, it is necessary to know if you wish to become an arithmetician. But after symbols have been
invented for these three ideas, not another word is required in the whole development. All future symbols are
symbolically explained by means of these three. Even these three can be explained by means of the notions of
relation and class; but this requires the Logic of Relations, which Professor Peano has never taken up”. In the
Principles, we find: “Peano’s logic proceeds by a smooth development. But in one respect it is still defective:
it does not recognize as ultimate relational propositions not asserting membership of a class. For this reason,
the definitions of a function and of other essentially relational notions are defective. But this defect is easily
remedied by applying, in the manner explained above, the principles of the Formulario to the logic of relations”
(RUSSELL, B., 1903, p.32 §36).
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So in 1901 Russell published his first major work in Symbolic Logic, the paper On The
Logic of Relations with Some Applications to the Theory of Series84. The goal of the paper
was to work within Peanese Logic in order to extend it with an explicit treatment of relations85.
This work was the culmination of the influence Moore and Peano had effected on Russell. His
goal was to show how the Logic of relations ­ based on the Moorean conception of these as
ontologically independent entities that were genuine constituents of propositions ­ allowed him
to provide nominal definitions in Mathematics, as Russell put it, “[..] wherever definition is
possible”86.

It is at this point that Russell’s Logicism was born as a project, for it is here that he pro­
poses a nominal definition of cardinal number as an equivalence class, providing the most basic
groundwork for establishing that Logic ­ in his sense ­ is enough for defining the most basic
notions of Mathematics and for proving its most basic propositions. As we shall discuss in the
next section, however, there are serious controversies involving the article, concerning both its
place in the history of Logic in general, and its philosophical significance within the develop­
ment of Russell’s Mathematical Philosophy. We shall present Russell’s main achievement in the
article, comparing it with the more definitive claims made in the Principles in order to adress
the controversy.

2.1.2 Russell’s Logic of Relations, the Principle of Abstraction and the Defi­
nition of Cardinal Number

The first two sections of Russell’s article contain, respectively, his first (published) for­
mal presentation of his logic of relations and a theory of cardinal numbers based on his celebrated
definition of cardinals as classes of similar classes.

At the basis of Russell’s calculus he introduced the notion of relation as primitive in the
style of Peano87: this meant that under the condition of R belonging to the class of relations Rel,
“xRy” meant that “x has the relation R to y”. Russell then defined the domain of a relation R as
the class of all individuals which stand in the relation R to something and the converse domain
of R as the class of all individuals to which something has the relation R. In symbols, Russell
84 RUSSELL, B., 1901c. The paper was first published in French as Sur la logique des relations avec des applica­

tions a la théorie des séries in the journal Révue de Mathématiques, edited by Peano and dedicated exclusively
for the topics related to the Formulario.

85 Rodríguez­Consuegra claims that Peano and his followers had already several (more or less) implicit elements
of a theory of relations, and that Russell’s claim to have invented it should be weakened; for details, see
RODRÍGUEZ­CONSUEGRA, F., 1991, pp.72­77; pp.103­105.

86 RUSSELL, B., 1901b, p.315.
87 Cf. RUSSELL, B., 1901c, pp.315.
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put88:
R ϵRel ⊃ ρ = x ∋ { E

y ∋ (xRy)}Df

R ϵRel ⊃ ρ̆ = x ∋ { Ey ∋ (yRx)}Df

Building upon Peano’s logic of classes and propositions, his calculus assumed a few additional
primitive propositions on the basis of which Russell then developed a logical theory of cardi­
nal numbers. He started by defining the relation of similarity, that is, the relation which holds
between two classes u and v whenever there exists a one­one relation R such that the domain of
R is u and its converse domain is v.

Building upon Peano’s notation Russell expressed this as89:

u, v ϵCls ⊃ u sim v = E1→ 1 ��R ∋ (u⊃ ρ ρ̆u = v)

where many­one, one­many and one­one relations are respectively defined as90:

Nc→ 1 = Rel ��R ∋ {xRy xRz ⊃x y = z}Df

1→ Nc = Rel ��R ∋ {yRx zRx ⊃x y = z}Df

1→ 1 = (Nc→ 1) ��(1→ Nc)Df

The crucial point of the section on cardinal numbers is Russell’s demonstration of what he called
“the principle of abstraction”91. This is the key theorem for understanding Russell’s reasons for
defining cardinal numbers as classes of similar classes. In symbols, Russell expressed it as92:

R ϵRel R2 ⊃R R = R̆ ER ⊃ ENc→ 1 ��S ∋ (R = SS̆)

As Russell put it, this asserts that “[...] all relations which are transitive, symmetrical, and non­
null can be analyzed as products of amany­one relation and its converse”93. In the article, Russell
defined R2 as the relative product of R and itself, or RR, so thatR2 ⊃R asserts that the relative
product of R and itself is contained in R, which is to say that xRy yRz ⊃ xRz, that is, that
R is transitive; R̆ is defined as the converse of R, so that R = R̆ means xRy ≡ yRx94, e.g. R
is symmetrical; finally, to say ∃R means that R is non­null which is to say that its domain and
converse domain are non­empty95. Thus, it can be unpacked and translated into modern notation
as:

(R)


 (x)(y)(z)(xRy ∧ yRz ⊃ xRz)∧

(x)(y)(xRy ≡ yRx)∧
( E

x)( E

y)(xRy)

⊃ ( ES)

(
(x)(y)(z)(xSy ∧ xSz ⊃ y = z)∧
(x)(y)(xRy ≡ ( E

ξ)(xSξ ∧ ξSz)

)
88 Cf. RUSSELL, B., 1901c, pp.315, definition k1·21 and k1·22. Recall that ϵ is being used for membership and ∋

for such that (for instance: “ρ = x ∋ {∃y ∋ (xRy)}” reads “ρ is the class of all x such that there is y such that
xRy”.

89 Cf. RUSSELL, B., 1901c, pp.315, definition k1·1.
90 Cf. RUSSELL, B., 1901c, p.319, definitions k5·1, k5·2 and k5·3, respectively.
91 RUSSELL., B, 1901c, p.320.
92 Cf. RUSSELL, B., 1901c, pp.320, theorem k6·2.
93 RUSSELL., B, 1901c, p.320.
94 Russell used equality for material equivalence, from this point forward we shall not follow him in this.
95 See propositions k2·2, k1·72 and k1·31·4 of section §1, respectively.
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This states that every equivalence relation implies the existence of a function96 S that maps every
x and y such that xRy to some ξ in the range of S. According to Russell, this theorem is “[...]
presupposed in the definitions by abstraction and it shows that in general these definitions do not
give a single individual but a class, since the class of relations S is not in general an element”97.

As Gregory Landini has urged, one must be careful in order to see the role this principle
plays in Russell’s definition of cardinal numbers98. We may start by making clear how Russell
understood the idea of definition by abstraction in the Principles of Mathematics, where he
treats the subject at lenght. According to Russell, we may take the definition by abstraction
of the cardinal number of a class u as an attempt to define the “common property” possessed
by every class which is similar to u ­ namely its number or cardinality. The reason why this
theorem is presupposed in definitions by abstraction is the fact that for such definitions to be
legitimate, there must be, for every equivalence relation R, a function δ such that, for every x
and y, δ(x) = δ(y) if and only if xRy and there must be some unique entity to which x and y are
mapped by δ if xRy, which is the entity (e.g., the property) supposedly defined by abstraction.
In the case of cardinal numbers, the attempt to define the cardinal number Nc(u) of a class u
by abstraction via the relation of similarity assumes that the function (or many­one relation) Nc
is such that Nc(u) = Nc(v) if and only if the classes u and v are similar and that u and v are
mapped to a unique entity Nc(u)which is the cardinal number of u. The problem, as Russell put
it, is that this sort of definition and “[...] generally the process employed in such definitions [...]
suffers from an absolutely fatal formal defect: it does not show that only one object satisfies the
definition”99. Russell continues:

[...] instead of obtaining one common property of similar classes, which is the
number of the classes in question, we obtain a class of such properties, with no
means of deciding how many terms this class contains. In order to make this
point clear, let us examine what is meant, in the present instance, by a common
property. What is meant is, that any class has to a certain entity, its number, a
relation which it has to nothing else, but which all similar classes (and no other
entities) have to the said number. That is, there is a many­one relation which
every class has to its number and to nothing else. Thus, so far as the definition
by abstraction can show, any set of entities to each of which some class has a
certain many­one relation, and to one and only one of which any given class
has this relation, and which are such that all classes similar to a given class have
this relation to one and the same entity of the set, appear as the set of numbers,
and any entity of this set is the number of some class. If, then, there are many
such sets of entities—and it is easy to prove that there are an infinite number
of them—every class will have many numbers, and the definition wholly fails
to define the number of a class. This argument is perfectly general, and shows
that definition by abstraction is never a logically valid process.100

96 Or many­one relation.
97 RUSSELL., B, 1901c, p.320.
98 LANDINI, G., 1998, p.21. Since his discussion of the point is very clear and instructive, we follow it very closely.
99 RUSSELL, B., 1903, p.114­15 §§109­110.
100 RUSSELL, B., 1903, p.114­15 §§109­110.
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The attempt to define the property of a class u which we call the number of u or the
cardinality of u via the equivalence relation of similarity fails because it does not define a uni­
que entity that can be identified as the number of u but a whole class of such properties. For
suppose we attempt to define the number of u or the cardinality of via the equivalence relation
of similarity, defining 0 as the number of all classes similar to the empty set, 1 as the number
of all singletons, and so on. According to the principle of abstraction, there is a function S such
that (x)(y)(x simy≡ ( Eξ)(xSξ∧ySξ)), which is supposed to map the empty set to the number
0, every singleton to the number 1, every couple to the number 2, and so on. But there may be
many (infinitely many, in fact) different functions S, each of which define different ‘numbers’;
thus, the method of abstraction does not define a unique property which is the cardinal number
or cardinality of u101.

Russell’s solution in the Principles of Mathematics is to define the number of a class as
the class of all classes similar to this given class (and, in general, where an equivalence relation
holds, to define the ‘common property’ that arises from it as membership to an equivalence
class):

Membership of this class of classes (considered as a predicate) is a common
property of all the similar classes and of no others; moreover every class of
the set of similar classes has to the set a relation which it has to nothing else,
and which every class has to its own set. Thus the conditions are completely
fulfilled by this class of classes, and it has the merit of being determinate when
a class is given, and of being different for two classes which are not similar.
This, then, is an irreproachable definition of the number of a class in purely
logical terms.102

Later in the book, he reiterates the point:

Since similarity is reflexive, transitive and symmetrical, it can be analyzed into
the product of a many­one relation and its converse, and indicates at least one
common property of similar classes. This property, or, if there be several, a
certain one of these properties, we may call the cardinal number of similar
classes, and the many­one relation is that of a class to the number of its terms.
In order to fix upon one definite entity as the cardinal number of a given class,
we decide to identify the number of a class with the whole class of classes
similar to the given class. This class, taken as a single entity, has, as the proof
of the principle of abstraction shows, all the properties required of a cardinal
number. [...] In this way we obtain a definition of the cardinal number of a
class.103

101 LANDINI, G., 1998, p.25.
102 RUSSELL, B., 1903, p.115 §§111.
103 RUSSELL, B., 1903, p.305 §§283.
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Now, at first sight, the role played by the principle of abstraction in the article is precisely
the same it plays in the Principles: it allows Russell to (nominally) define the cardinal number
of a class a as a class. Indeed, in the article we find:

If we wish to define cardinal number by abstraction, we can only define it as
a class of classes, of which each has a one­one correspondence with the class
“cardinal number” and to which belong every class that has such a correspon­
dence”104

It is clear from the passage above that Russell’s complain that a definition by abstraction
does “[...] not give a single individual but a class105” is about the fact that nothing can assure, in
general, that the entity defined by abstraction is unique106.

If we look at the demonstration of the ‘Principle of Abstraction’ this is further corrobo­
rated. The proof is as follows: assume R is some non­empty, transitive, symmetric relation; let
S be the function that maps x to the class {z : xRz}. In the case of cardinal numbers, let R be
the relation of similarity; ξ will be the class of all classes similar to some given class x: if we
identify this ξ as the number of x it follows immediately that another number µ of a class y is
equal to ξ if, and only if x and y are similar: thus, the cardinal number of a class u is the class of
all classes similar to u; to say that a class has the same cardinality of u is to say that it belongs
to the class of all classes similar to u. The uniqueness of the ξ which the process of ‘definition
by abstraction’ assumes is guaranteed when ξ is identified as the converse domain of R (this
is trivially entailed by the extensionality of classes: if R is a relation there is one and only one
converse domain of R). This, in fact, is surely the point Russell puts forward in the following
passage:

Meanwhile we can always take the class ρ̆, which appears in the demonstration
of Prop *6.2, as the individual indicated by the definition by abstraction; thus
for example the cardinal number of a class u will be the class of classes similar
to u”.107

So far, so good. Russell seems to have solved a fundamental problem Peano was unable
to solve: to define the cardinal number of a class using only logical notions and without relying
on definitions by abstraction108.

Some authors, however, have taken into account the fact that on the one hand, Russell
claims in the Principles that “[...] definition by abstraction is never a logically valid process”109

104 RUSSELL., B, 1901c, p.321.
105 RUSSELL., B, 1901c, p.320.
106 See LANDINI, G., 1998, p.25 for a clear demonstration that it is never unique.
107 RUSSELL., B, 1901c, p.320.
108 This was, for a long time, the received view, again, paradigmatically presented in KENNEDY, J., 1973.
109 RUSSELL, B., 1903, p.114­15 §§109­110.
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while he also claims, in the article, that the principle “[...] is presupposed in the definitions
by abstraction”110, something which may suggest that definitions by abstraction may, after all
be legitimate. Some have read him as if one could justify the definition of cardinal numbers by
abstraction via the principle. Also, the historical record shows that Russell’s (re)discovery of the
definition of cardinal number as an equivalence class is more complicated than usually thought.

Rodríguez­Consuegra111 points out that if we compare two of themanuscripts of Russell’s
1901 article written in French ­ a preliminary draft and the final published one ­ we see that
the earlier version does not contain the “Meanwhile...” passage quoted above, in which the
nominal definition is suggested112. Thus, given that by the time his article was sent to Peano
to be published in the Revue, Russell had already seen the material Peano had prepared for
the 1901 edition of the Formulario and the “Meanwhile...” passage was added to the article in
proof, Rodríguez­Consuegra further concludes that Peano is to be credited with the definition
of number as an equivalence class, since, in the 1901 Formulario we also find the following
passage113:

Etant donée une classe a, on peut considérer la classe de classes:
Cls ∩ x ∋ [ E(xfa)rcp];
l’égalité de ces Cls de Cls, calculées sur les classes a et b importe l’egalité
Numa = Numb; mais on ne peut pas identifier Numa avec la Cls de Cls consi­
dérée, car ces objets ont des propriétés différentes.114

There is no doubt that the definition being considered here is the same Russell considers
in his 1901 article and that Frege had already proposed in his Grundlagen by 1884: the notation
“Cls ∩ x ∋ [∃(xfa)rcp]” is Peano’s equivalent of the class of all classes x that are similar to a
given class a ­ precisely the class that Russell identifies as the number of the class a. But there is
more: in the same section we find zero defined as the number of the null class, the number one
as the class of all singletons, of an infinite class as one which can be one­one correlated with
110 RUSSELL., B, 1901c, p.320.
111 Similar considerations of his were antecipated ­ albeit in much less depth and detail ­ in Vuillemin’s article Le

«platonisme» dans la première philosophie de Russell et le «principe d’abstraction» (VUILLEMIN, J., 1975).
112 RUSSELL., B, 1901c, p.320.
113 RODRÍGUEZ­CONSUEGRA, F., 1987, p.148. Since Burali­Forti was also working with the possibility of tur­

ning definitions by abstraction into nominal ones, and Russell certainly knew about this becasuse Burali­Forti
discussed precisely this topic at the International Congress, Rodríguez­Consuegra also credits himwith the joint
priority, claiming that “Burali­Forti completely anticipated the logicist idea” (RODRÍGUEZ­CONSUEGRA,
F., 1991, p.34, footnote 1) of defining Peano’s primitive notions of Arithmetic. We concur with Landini, however,
in that the link between Burali­Forti’s views (which involve assuming a theorem of recursion and arithmetical
operations as primitive) is “tenuous” at best (LANDINI, G., 1992, p.608).

114 PEANO, G., 1901, p.70. In the Principles, Russell claims he fails to see which are these properties Peano thinks
cannot be attributed to cardinal numbers if they are understood as classes (RUSSELL, B., 1903, p.115 §111);
Peano was probably concerned with unexpected consequences of defining numbers as classes of similar classes
like the fact that any pair of entities {a, b} belongs, for instance, to the number 2. But from the mathematical
point of view these properties are completely irrelevant: they do not alter the formal development of Arithmetic
nor its applicability (e.g., as in counting).
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a proper subset of itself and the class of finite cardinal numbers as the class of all non­infinite
classes. Peano had115:

0 = NumΛDf

1 = ιNum‘[a ∋ ( Ea x, y ϵ a⊃x,y x = y)]Df

infn = Num‘{a ∋ [∃cls ��u ∋ (u⊃ a u ̸= a Numu = Numa)]}Df

N0 =(Num‘cls)− infnDf

Since we know that Russell saw the material for the 1901 edition of the Formulario before it
went to the press116 and that the ‘Meanwhile’ passage was added in print, Rodríguez­Consuegra
concludes Russell added it after seeing the definition above in the Formulario, where it was
rejected by Peano on rather flimsy grounds117.

This suggestion, however, is implausible, for mainly two reasons. First, since we do not
have a complete historical record of the exchange between Peano and Russell that allows us to
settle the question of the priority of the definition, it is at least just as plausible to suppose that
Russell suggested the definition to Peano while he was preparing the 1901 edition of the For­
mulario, but Peano rejected it. The second, much less conjectural and more definitive reason is
the fact that Russell was, as Nicholas Griffin put it, “[...] remarkably untouchy about matters of
priority”118, which makes Rodríguez­Consuegra’s claim very much implausible, especially since
Frege is the indisputably author the one who truly deserves credit for the definition ­ something
Russell always promptly acknowledged. The fact that Russell never mentioned Peano’s name
in connection with the discovery of the definition makes Rodríguez­Consuegra’s conjecture im­
plausible, despite the fact he showed ­ indisputably ­ that the story of how (and when) Russell
arrived at the definition is more complicated than generally supposed.

Apart from the question of historical priority over the rediscovery of Frege’s definition,
Rodríguez­Consuegra’s reading of the role played by the Principle of Abstraction in the philo­
sophical justification of the definition deserves close attention. He points to the puzzling fact
that nowhere in the published text there occurs an explicit definition given by a formula of the
form “u ϵCls⊃ Nc‘u = ...” which nominally defines the cardinal number of a class u. Such a
definition would only appear almost a whole year after the 1901 article, in another article for the
115 PEANO, G., 1901, p.71. Notice that Peano is following Dedekind’s definition of infinite classes here, something

that is far from a trivial decision: as Russell, Whitehead and Zermelo would soon find out, to show that this
definition coincides with the ‘ordinary’ definition of infinite classes as those that belong to every class s that
contains the empty set and x ∪ {a} whenever x belongs to s requires the Axiom of Choice. Peano’s definition,
for instance, would only have its full intended strenght in the presence of the Axiom of (countable/denumerable)
Choice, since it would not exclude the possibility that some ordinarily infinite but Dedekind finite cardinal be
a natural number. We shall adress this point in more detail later, when discussing Principia’s theory of cardinal
numbers.

116 RODRÍGUEZ­CONSUEGRA, F., 1987, p.156­7. This is absolutely indisputable since the references to the For­
mulario in the published article are to the 1901 edition.

117 PEANO, G., 1901, p.71.
118 GRIFFIN, N., 1993, p.218
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Revue des Mathématiques, entitled “On the General Theory of Well­Ordered Series”119. There
we find the proper definition of the the cardinal number of a class u and of the relation of a class
to its cardinal number as folloows:

u ϵCls⊃ Nc‘u = Cls ��v ∋ (u sm v)Df

Nc = Cls‘Cls ��w ∋ { ECls ��u ∋ (v ϵw = u sm v)Df

Furthermore, Rodríguez­Consuegra points to the fact that Russell had at some point toyed with
the idea of introducing the following definitions120:

sim = SS̆ u ϵCls ⊃ Nc = σ̆Df

sim = SS̆ u ϵCls ⊃ Nc‘u = ιusDf

But Russell gave them up, writing in the manuscript margin that “this Df won’t do. There may be
many such relations as S. Nc must be undefinable”121. On this basis, together with Russell’s ap­
parent ambiguity concerning the legitimacy of definitions by abstraction, Rodríguez­Consuegra
claims not only that at some point the principle of abstraction was “thought to strengthen the
method of abstraction and not to eliminate it”122 but also that “the section on cardinals [of the
published article] was not conceived to give a nominal definition of cardinal numbers in terms
of classes of classes”123. Thus, Rodríguez­Consuegra ends up claiming that in the paper On the
Logic of Relations:

[...] Russell was avoiding offering a definition of number, which can be inter­
preted, together with the former presentation of the principle of abstraction as a
justification of Peano’s methods based on abstraction, as an attempt to preserve
these methods through a definition by abstraction of cardinal number. In this
way the principle of abstraction would permit one all the necessary elements
to secure the existence of the entities defined by abstraction [...] and to avoid
any attempt to nominally define Nc.124

This prompts him to distinguish three distinct ‘stages’ the principle went through in
the development of Russell’s ideas from 1901 through 1910. He points out ­ correctly ­ that the
origin of the principle was the Moorean idea of substituting predicates for relations whenever
119 RUSSELL, B., 1902. Like Russell’s previous paper for the journal, this was published in two installments in the

Revue; it continued Russell’s project of incorporating relations within Peano’s logic, this time with applications
to Cantor’s theory of ordinal numbers. A detailed discussion can be found in Gregory Moore’s introduction of
the article in the Collected Papers third volume (MOORE, G., 1993, pp.384­8).

120 RUSSELL, B., 1901e, p.596. See the introduction to Appendix V of Russell’s Collected Papers volume 3 (MO­
ORE, G., 1993, pp.589) and the paper by Rodríguez­Consuegra (RODRÍGUEZ­CONSUEGRA, F., 1987, pp.146­
150) for details of the manuscript history.

121 As quoted in RODRÍGUEZ­CONSUEGRA, F., 1987, p.149.
122 RODRÍGUEZ­CONSUEGRA, F., 1987, p.149.
123 RODRÍGUEZ­CONSUEGRA, F., 1987, p.148.
124 RODRÍGUEZ­CONSUEGRA, F., 1991, p.160.
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possible125, with the first stage being represented by the (allegedly unsuccessful) paper On the
Logic of Relations, and the second and third by the Principles and Principia, respectively. For
now we adress his reading of the principle of abstraction in the Principles. He takes it to be “[...]
the true philosophical axis”126 of the work, where:

[...] the function of the principle consists in replacing the supposed common
property inferred from the equivalence relation for the class of terms having
the given relation to a given term. [...] Thus, the role of the principle is now
very different to that which it played in the first writings inspired by Peano,
where it seems to be destined to justify definitions by abstraction.127

Here we shall follow Landini’s contention that Rodríguez­Consuegra’s interpretation of
the role played by the principle of abstraction in the 1901 article is deeply flawed128.

To see that Landini is correct, we must, as he showed, look at three theorems related to
the following definition in Russell’s paper129:

S = Nc→ 1 ��S ∋ (sim = SS̆)Df

This defines S as the class of many­one relations S such that the relative product S and its con­
verse is co­extensive with similarity. This is precisely the class of many­one relations such that
(x)(y)(x sim y ≡ (∃ξ)(xSξ ∧ ξSy)); using the terminology Russell employs in the Principles,
this would be the class of functions S that yield the (infinitely many) different notions of cardinal
numbers which we obtain for each different S’s in the attempt to define cardinality by abstrac­
tion via the relation of similarity130. Since the proof of the principle of abstraction assures that ξ
can be identified with the converse domain of the relation of similarity131, Russell can prove132:

ENc→ 1 ��S ∋ (sim = SS̆)

which asserts that the class S of many­one relations co­extensive with similarity is non­empty.
Using this result and ∗6 · 2, Russell proves the following133:

S, S ′ ϵS ⊃ σ̆ sim σ̆′

S ϵS k sim σ̆ ⊃ ES ��S ′ ∋ (k = σ̆′)

125 RODRÍGUEZ­CONSUEGRA, F., 1991, p.189.
126 RODRÍGUEZ­CONSUEGRA, F., 1991, p.161.
127 RODRÍGUEZ­CONSUEGRA, F., 1991, p.161. Our emphasis.
128 More generally we disagree with the picture Rodríguez­Consuegra paints of the principle’s role in the develop­

ment of Russell’s Mathematical Philosophy. In particular, the principle re­appears in Principia Mathematica
as a justificatory device for Russell’s definition of cardinal number; there are also good reasons to question
Rodríguez­Consuegra’s reading of the principle in that work cf. footnote 288 of chapter 5.

129 RUSSELL., B, 1901c, p.321, ∗1 · 4.
130 RUSSELL, B., 1903, p.114­15 §§109­110.
131 LANDINI, G., 1998, p.26.
132 RUSSELL., B, 1901c, p.321 ∗1 · 3.
133 RUSSELL., B, 1901c, p.321, ∗1 · 52 and ∗1 · 54.
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which can be translated as:

(S)(R)(S,R ϵS ⊃ {x : ( Ey)(xSy)} sim {x : ( Ey)(xRy)})

(S)[(S ϵS ∧ k ≈ {x : ( Ey)(xSy)})⊃ ( ER)(R ϵS ∧ (k = {x : ( Ey)(xRy)})]

The first theorem asserts that if two relations S and R are many­one (i.e., functions) such that
the relative product of themselves and their converse is co­extensive with similarity, then their
converse domains are identical; the second asserts that if the relative product of S and its con­
verse is co­extensive with similarity and k is similar to the converse domain of S, then there is
a many­one relation (function) S’ (or R) the converse domain of which is identical with k. As
Landini puts it, theorems ·52 and ·54 above show that “[...] Russell provides grounds for clai­
ming his choice of S in S is not on a par with other possible choices”134, and, in fact, provide the
philosophical justification for Russell’s definition.

Landini’s point is that “[...] the principle is important to Russell because it can be used
to demonstrate that the range of any S such that (x)(y)(x simy ≡ x(S|S̆)y) will have all the
formal properties of the cardinal numbers”135. Moreover, as Landini observes, when the range of
similarity is restricted to finite classes, Russell’s choice of S gives us Frege’s “[...] construction
of natural numbers as finite cardinals”136. This according to Landini is the point made by Russell
that when he observes the above theorems “[...] prove that all classes which form the converse
domains of different relations of the class S are similar, and that all classes similar to one of
them belong to this class of classes”137 and thus, that “[...] the arithmetic of cardinal numbers
applies in its entirety to each of these classes”138. Thus, on this basis Russell goes on to offer
definitions of zero and successor analogous to the Fregean ones139:

0σ = ισ̆ΛDf

x ϵ σ̆ ⊃ x+ 1σ = ισ̆ ��y ∋ {uSx z ∼ ϵ u ⊃u,z u ��ιzSy}Df
The proof of the principle of abstraction and the aforementioned comment on it140 make clear
that Russell’s idea is to fix the meaning of “cardinality of a class u” in terms of the function (i.e.,
many­one relation) that maps u to the converse domain of similarity with respect to u. The role
of the principle of abstraction in the definition of cardinal number Nc(u) of a class u is to assure
the existence and uniqueness of such an entity when it is identified with the class of all classes
similar to u.
134 LANDINI, G., 1998, pp.28.
135 LANDINI, G., 1991, p.609.
136 LANDINI, G., 1991, p.609.
137 RUSSELL, B., 1901a, p.322.
138 RUSSELL, B., 1901a, p.322. Our emphasis.
139 Cf. RUSSELL, B., 1901a, p.322, ∗2·4 and p. 324, ∗4·1. The definition of successor is derived from the following

definitions: Russell also has (RUSSELL, B., 1901a, p.322, ∗2 · 7):
1σ = ῐσ ∩ x ∋ (u ∈ Elm. ⊃u .uSx) Df
S ∈ S. ⊃:: m,n ∈ σ̆. ⊃ .m+ n = ισ̆ ∩ x ∋ {uSm.vSn.uv = Λ. ⊃u,v .u ∪ vSx} Df
where the second is a general definition of cardinal.

140 RUSSELL, B., 1901a, p.322.
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This, in turn, allows for a nominal definition of cardinal number that dispenses with
the method of definition by abstraction and which allows the demonstration of the fundamental
properties of cardinal numbers. This is the same result that Russell would later announce in the
Principles as follows:

Mathematically, a number is nothing but a class of similar classes: this defini­
tion allows the deduction of all the usual properties of numbers, whether finite
or infinite, and is the only one (so far as I know) which is possible in terms of
the fundamental concepts of general logic. But philosophically we may admit
that every collection of similar classes has some common predicate applicable
to no entities except the classes in question, and if we can find, by inspection,
that there is a certain class of such common predicates, of which one and only
one applies to each collection of similar classes, then we may, if we see fit,
call this particular class of predicates the class of numbers. For my part, I do
not know whether there is any such class of predicates, and I do know that, if
there be such a class, it is wholly irrelevant to Mathematics. Wherever Mathe­
matics derives a common property from a reflexive, symmetrical and transitive
relation, all mathematical purposes of the supposed common property are com­
pletely served when it is replaced by the class of terms having the given relation
to a given term; and this is precisely the case presented by cardinal numbers.
For the future, therefore, I shall adhere to the above definition, since it is at
once precise and adequate to all mathematical uses.141

Thus what Russell accomplishes here is a solution to a problem Peano had failed to solve
adequately. In the 1901 edition of the Formulario, Peano recognized that the primitive notions of
zero, number and successor admitted an infinite number of different interpretations, all satisfying
the Peano postulates; thus he intended to introduce natural numbers as something ‘abstracted’
from these many different system which share certain structural properties encapsulated in the
five primitive propositions. Peano writes:

Ces Pp, dont nous avons vu la nécessité, sont suffisantes pour déduire toutes les
propriétés des nombres qu’on rencontrera dans la suite. Mais il y a une infinité
de systémes qui satisfont à toutes les Pp. P.ex. elles sont toutes verifiees si
l’on remplace N0 et 0 par N1 et 1. Tous les systemes qui satisfont aux Pp sont
en correspondance reciproque avec les nombres. Le nombre, N0, est ce qu’on
obtient par abstraction de tous ces systemes; autrement dit, le nombre, N0, est
le systeme qui a toutes les proprietes enoncees par les P primitives, et celles­la
seulement.142

In the Principles Russell argues that this method suffered from two fundamental logical
flaws. First, it fails “[...] in indicating any constant meaning for 0, number and succession”143; se­
cond, it fails “[...] in showing that any constant meaning is possible, since the existence­theorem
141 RUSSELL, B., 1903, p.116 §111.
142 PEANO, G., 1901, p.44.
143 RUSSELL, B., 1903, p.126 §122.
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is not proved”144, that is, it fails in showing that there are objects that satisfy the arithmetical pos­
tulates. This is a point Russell would emphasize even more clearly Introduction to Mathematical
Philosophy in terms of applicability:

Such a procedure is not fallacious; indeed for certain purposes it represents a
valuable generalisation. But from two points of view it fails to give an adequate
basis for arithmetic. In the first place, it does not enable us to know whether
there are any sets of terms verifying Peano’s axioms; it does not even give
the faintest suggestion of any way of discovering whether there are such sets.
In the second place, as already observed, we want our numbers to be such as
can be used for counting common objects, and this requires that our numbers
should have a definite meaning, not merely that they should have certain formal
properties.145

As Russell would later put it in the Introduction, what Peano’s method accomplishes is
a characterization of what Russell calls progressions146. And, indeed, in 1901 article contains a
definition of progressions as classes whose ordinal­type is ω147:

ω = Cls ��u ∋ { E1→ 1 ��R ∋ (u⊃ρ ρ̆u⊃ E

u ∼ ρ̆u s ϵCls ∃su ∼ ρ̆u ρ̆(su)⊃s ⊃s u⊃s)}Df

Russell then introduces ωρ as “the class of progressions of which R is the generating relation”148.
Russell then defines induction generally for any class u that is a progression:

u ϵ ω ⊃ R ϵRelu = 1→ 1 ��R ∋ (u ϵ ωρ)Df

Induct = u ϵ ω R ϵRelu ⊃ s ϵCls E

su ∼ ρ̆u ρ̆(su)⊃ s ⊃s u⊃ sDf

And shows that Peano’s recursive equations for the basic arithmetical operations for sum and
multiplication can be proved. We find149:

a ϵ u ⊃ a+ 0u = a

a, b, x ϵ u ⊃ (x+ a) + b = x+ (a+ b)

a0u = 0u

a, b, ϵ u ⊃ a(b+ 1u) = ab+ a

144 RUSSELL, B., 1903, p.126 §122.
145 RUSSELL, B., 1919a, p.10.
146 RUSSELL, B., 1919a, p.9.
147 Cf. RUSSELL, B., 1901, p.325, ∗1 · 1. This, as Russell puts it, “is the class of the classes u such that there is a

one­one relation R such that u is contained in the domain of R, and that the class of terms to which the different
u’s have the relation R is contained in u without being identical with u, and which, if s is any class whatsoever
to which belongs at least one of the terms of u to which any u does not have the relation R, and to which belongs
all terms of u to which a term of the common portion of u and s has the relation R, then the class u is contained
in the class s” (RUSSELL, B., 1901, p.325­6).

148 RUSSELL, B., 1901, p.325. Here “ρ” indicates the domain or R (cf. RUSSELL, B., 1901, p.315).
149 RUSSELL, B., 1901, p.330.
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Thus what sets Russell’s account apart from Peano is that he can (i) fix a definite meaning to
Peano’s primitive notions and (ii) construct an actual class of termswhich satisfy Peano’s axioms.
In a paper published shortly after Russell’s 1901 article (which is actually the first collaborative
work with Whitehead), Russell re­introduced his definitions of zero, number and successor in
the following terms150:

Nc = cls2 ��z ∋ { Ecls ��u ∋ (z = µu)}Df

0 = ιΛDf

n ϵNc ⊃ n+ 1 = cls ��u ∋ (x ϵ u ⊃ u ∼ ιx ϵ n)Df

The above state, respectively, that: Nc is the relation between a class u and the class of all classes
similar to u151; that zero is the class of classes whose sole member is the empty class; stated
informally, the last definition asserts that the immediate successor n+1 of a cardinal number n
is the class of all classes u such that if we take an element x from u, we get a member of n.

Using these definitions, Russell then introduced his version of Frege’s celebrated defini­
tion of finite cardinal numbers ­ and just as importantly ­ the principle of induction in their most
usual forms152:

Nc fin = Nc ��n ∋ {s ϵCls 0 ϵ s m ϵNc ��s ⊃mm+ 1⊃ s ⊃ n ϵ s}Df

Induct = s ϵCls 0 ϵ s m ϵNc ��s ⊃mm+ 1 ϵ s ⊃ Nc fin⊃ sDf

On this basis he proved a version of the Dedekind­Peano postulates, with the exception of the
second (which is curiously omitted in the paper). We find153:

0 ϵNc fin

n ϵNc fin ⊃ n+ 1 ϵNc fin

n ϵNc fin ⊃ n ∼= n+ 1

From these Russell showed that no two numbers have the same successor, thus proving that there
are infinitely many natural numbers. He defined the immediate predecessor R as follows154:

R = ı1→ 1 ��R′∩ ∋ {ρ’ = Nc fin xR′y = x+ 1 = y}Df

Then, given the above and induction he showed that this relation is contained in diversity155, i.e.,
that if xRy, then x ̸= y, fromwhich it immediately follows that if a, b ϵNc fin, then if a+1 = b+1,
150 WHITEHEAD & RUSSELL, 1902, p.425, defintions, k1·3, k1·4 and k1·5, respectively..
151 To make sense of k1·3, we need the previous definition “u ϵ cls ⊃ µu = cls ��v ∋ (u sim v)}” (cf. WHI­

TEHEAD & RUSSELL, 1902, p.425, k1·2).
152 WHITEHEAD & RUSSELL, 1902, p.426, k1·6 and k1·61, respectively.
153 WHITEHEAD & RUSSELL, 1902, p.427
154 WHITEHEAD & RUSSELL, 1902, p.427
155 cf. WHITEHEAD & RUSSELL, 1902, p.427­8
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then a = b. Thus, Russell’s definition of cardinal number dispenses the method of definition by
abstraction (both in the strict sense of ‘defining’ number directly in terms of similarity and in
the sense of ‘abstracting’ the structural properties of progressions given by Peano’s postulates);
the nominal definition of number in terms of number as a class of similar classes gives a definite
meaning together with his definition of zero and successor gives a definite meaning to Peano’s
primitive notions in a way that accounts for their applicability (e.g., counting) and allows for a
proof that there is a class of terms that satisfy the Peano postulates156.

At the heart of Russell’s definition of cardinal numbers ­ be it in the 1901 article or
in the Principles ­ is the belief that number is something we attribute to classes and that the
relation of similarity is the standard of numerical equality ­ something he shared with Cantor
and, most of all, Frege, who succeeded in finding a nominal definition long before him. This
idea is also the cornerstone behind the attempt to define the cardinal number of a class (or
concept) by abstraction via the relation of similarity. What Frege ­ perhaps with greater clarity
than anyone ever since ­ and later Russell realized was that a proper definition by abstraction
was impossible, for it does not tell what numbers are. Frege and Russell’s correspondence show
that they (unfortunately) talked past each other in many ways, but in one respect the two were
in complete agreement, and that is with respect to the idea that “to assign a number involves
an assertion about a concept”157, so to say of F and G that they have the same number is to say
that there is a one­one correspondence between the things that fall under F and the things that
fall under G. Frege rejected, however, a definition by abstraction via the following equivalence
which expresses this insight, called now, by default, ‘Hume’s Principle’158:

(HP) Nc(F ) = Nc(G) ≡ ( E

M)[M ϵ 1→ 1 M(Fx, Gx)]
159

His reason for doing so was the now famous so­called ‘Julius Caesar Problem’: the above princi­
ple does not allow us to determine, in every possible context, the identy conditions for an object
indicated by the expression Nc(F ); taking Frege’s example, the above equivalence would tell
us nothing about the truth­value of the following160:

156 The first interpreter to emphasize this point was Landini, see LANDINI, G., 1998, p.30.
157 FREGE, G., 1950 [1884], §46, §52.
158 This name has been made widespread by George Boolos (BOOLOS, G., 1987) and is now irreversibly standard.

Boolos followed Frege himself who quotes the following passage from David Hume’s Treatise: “When two
numbers are so combined as that the one has always an unit answering to every unit of the other, we pronounce
them equal” (HUME, D., 1960, p.71 [Book I, Part III, Chapter I]). As Michael Dummett emphatically observes,
the name is quite inadequate since “it credits Hume with an idea he probably did not have and certainly did not
state” (DUMMETT, M., 1998, p.x). If anyone at all deserves his name attached to the equivalence, it is Cantor.
Given its currency, however, we follow the usual terminology.

159 We follow Frege here in the use of expressions of the form “Mβ(Fβ , Gβ)”. The use of subscripted variables
agrees with Frege’s in marking which are the argument values for the higher­order function.

160 Frege first raises the Julius Caesar problem for the attempt to define numbers by means of numerically definite
quantifiers claiming that “we can never ­ to take a crude example ­ decide by means of our definitions whether
any concept has the number Julius Caesar belonging to it, or whether that same familiar conqueror of Gaul is a
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(JC) Julius Caesar = Nc(F )

As Landini suggested in his recent work, Frege’s objection can be understood as parallel with
Russell’s argument against definitions by abstraction161. The role played by the Principle of Abs­
traction in the 1901 article was in noway to justify definitions like the one considered and rejected
by Frege in Grundlagen §§63­68, namely of identity of cardinality by means of the existence
of a one­one correspondence between concepts. Rather, the role of the principle was in the phi­

number or is not” (FREGE, G., 1950 [1884], p.68 §56). He later raises the very same problem with the different
example for the equivalence the direction of a is equal to b if and only if a and b are parallel: “It will not, for
instance, decide for us whether England is the same as the direction of the Earth’s axis ­ if I may be forgiven
an example which looks nonsensical” (FREGE, G., 1950 [1884], p.78 §67). Frege claims that “for the same
reasons” (FREGE, G., 1950 [1884], p.79 §68) the attempt to define numerical indentity by means of so­called
Hume’s Principle is bound to fail. An attempt to show that Hume’s Principle gives the correct explanation if not
definition of the concept of number is given in the modern classic Frege’s Conception of Numbers as Objects
(WRIGHT, C., 1983) by Crispin Wright. For a critical discussion of Frege’s argument see DUMMETT, M.,
pp.131­139. For more studies attempting to clarify and further develop Frege’s ideas, cf. HALE & WRIGHT,
2001, HECK, R., 2011 and EBERT & ROSSBERG (eds.), 2017.

161 As Landini observes, if we were to express the Principle of Abstraction within Frege’s theory of functions, we
would have something like the following:

Eqx,y[r(x, y)].(∃x, y)r(x, y) ⊃ (∃k)[(x, y)(k(x, y). = .k(x) = k(y)]

Which reads for any first­order non­empty equivalence function (or, for Russell, many­one relation) there is a
function k which “associates an object with each equivalence group generated by the equivalence function r”
(LANDINI, G., 2006, p.231) (Observe that the expression “k(x, y). = .k(x) = k(y)” asserts an identity between
the value of k(x, y) and k(x) = k(y), not a material equivalence. Recall also that identity ­ like every relation,
for that matter ­ is, for Frege, a function, namely a function of α and β which has as a value the true if α and
β are identical and the false otherwise). This however, is only one principle of abstraction one can formulate
within Frege’s conceptual­notation. Using higher­order functional variables in the style of Frege, Landini points
out that we can also have the following second­order counterpart of the above principle (LANDINI, G., 2006,
p.232):

Eqf,g[Γβ(fβ , gβ)].(∃f, g)Γβ(fβ , gβ) ⊃ (∃k)[(f, g)(Γβ(fβ , gβ). = .k(Ωβfβ) = k(Ωβgβ)]

Where “Γβ(fβ , gβ)” is as a scheme for a relation between functions f and g) If we instantiate this with similarity,
we get the following, since similarity is a non­empty equivalence function:

(∃k)[(f, g)(fx ≈x,y fy). = .k(Ωβfβ) = k(Ωβgβ)]

Using Frege’s \y function wich attached to function f gives us the unique y such that fy, we could then define:

Nc(z̀fz) = (\z)(k(Ωβfβ) = z)

Landini’s point is that the problem here would then be the very same problem Russell raised in the Principles:
there may be many different k’s which give rise to different notions of cardinal number and thus, as with Rus­
sell’s many different S’s in S, Landini continues, “we don’t have the genuine cardinal numbers, but rather the
notion of ‘‘the cardinal numbers with respect to k,’’ and ‘‘the cardinal numbers with respect to k*,’’ and so
forth”, and so he claims that the “[...] the issue underlying the Julius­Caesar Problem, then, is that ‘‘definition’’
by means of Hume’s technique amounts to working from (PAFrege2)”. In parallel with the famous result redisco­
vered by Crispin Wright and baptized as Frege’s Theorem by George Boolos that an extension of second­order
Logic with Hume’s Principle is strong enough to derive the Peano postulates, Landini further claims that “The
analog of Frege’s Theorem [...] is Russell’s Theorem – the proof in ‘‘On the Logic of Relations’’ that the range
of any function K [S] satisfying the Principle of Abstraction (when the equivalence relation is similarity over
attributes exemplified by finitely many entities) forms a progression, and that all progressions are isomorphic”.
Despite the fact that Landini’s reading of Frege’s Caesar Problem is very unorthodox and it help us to clarify
Russell’s position.
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losophical justification of Russell’s choice of one relation S in S ­ namely, similarity ­ which
could formally give a set of terms that satisfy the Peano postulates. This is the first fundamental
result Russell obtained in Mathematical Philosophy which found its way into the Principles of
Mathematics.

2.2 The Logic of the Principles of Mathematics

Russell presents the Principles as having two main goals. First, to show that “[...] all
pure mathematics deals exclusively with concepts definable in terms of a very small number of
fundamental logical concepts and that all its propositions are deducible from a very small number
of fundamental logical principles”162. The second is to explain “the fundamental concepts which
mathematics accepts as undefinable”163. As Russell understood these objectives, the first was a
purely mathematical matter that could be established with “all the certainty and precision of
which mathematical demonstrations are capable”164, while the second is a “purely philosophical
task”165.

The work divides into seven parts, namely (I) The undefinables of Mathematics; (II)
Number; (III) Quantity; (IV) Order; (V) Infinity and Continuity; (VI) Space; (VII) Matter and
Motion. Together, parts II­VII are supposed to accomplish Russell’s first main goal of mathe­
matical character, namely, that of defining the concepts of pure Mathematics in terms of logical
ones and proving its theorems solely from logical premises. Part II offers a programmatic treat­
ment of Cardinal Arithmetic based on Russell’s definition of the cardinal number of a class α as
the class of all classes similar to α; Russell also develops a treatment of basic arithmetical ope­
rations, the distinciton of finite and infinite classes and also ratios and fractions. Part III mainly
treats of the notions of continuity and infinitesimals based on Russell’s quite complex distinction
between the notions of number and quantity. Part IV is mainly concerned with a theory of series
and contains the development of a theory of progressions and ordinal numbers with discussions
of the works of Dedekind and Cantor. Part V basically builds upon Cantor’s work, developing
a theory of irrational numbers, limits and continuity of functions and also a theory of transfi­
nite cardinals and ordinals. Part VI is concerned with geometries, with extensive discussions of
metric and descriptive ones and the development of distinct conceptions of continuity for these
distinct conceptions of spaces. The final part VII is concerned with the foundations of dynamics
based on Russell’s logicist conception of pure Mathematics and Geometry166.

Part I, The undefinables of Mathematics, is dedicated to Russell’s second, philosophical
goal ­ the analysis of the fundamental concepts of Logic upon which the developments of parts
162 RUSSELL, B., 1903, p.xv.
163 RUSSELL, B., 1903, p.xv­xvi.
164 RUSSELL, B., 1903, p.xv.
165 RUSSELL, B., 1903, p.xv­xvi.
166 For the history of the composition of the Principles, cf. the introduction and the first part of MOORE, 1993.
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II­VII should be grounded. The section divides into ten chapters, namely: (I) Definition of Pure
Mathematics; (II) Symbolic Logic; (III) Implication and Formal Implication; (IV) Proper Na­
mes, Adjectives and Verbs; (V) Denoting; (VI) Classes; (VII) Propositional Functions; (VIII)
The Variable; (IX) Relations; (X) The Contradiction. The purpose of part I is to enumerate and
explain the primitive notions of Mathematical Logic which, in the early chapters, Russell claims
to be the following six: 167: (1) “formal implication”; (2) “implication between propositions not
containing variables”; (3) “the relation of a term to a class of which it is a member” (4) “the
notion of such that”; (5) the notion of relation; and finally (6) “truth”; these, he also claims, are
sufficient to state “all the propositions of symbolic logic”. Later portions of the book, however,
present a corrected version that actually correspond to the notions discussed in chapters III­IX,
namely168: (1’) implication; (2’) the relation of a term to a class of which it is a member i.e.,mem­
bership; (3’) the notion of such that; (4’) the notion of relation; (5’) the notion of a propositional
function; (6’) the notion of class; (7’) the notion of denoting; and finally (8’) the notions of any
or every term that are involved in the idea of variation169.

As we discussed, a crucial circumstance which contributed in shifting Russell’s interests
to Symbolic Logic was his contact with Peano and his school ­ and the Logic of the Principles
owes very much to their works, especially Peano’s Formulario. As we mentioned, Russell vi­
ewed Peano’s new symbolic logic as being primarily a tool which allowed for the resolution of
old (and intractable) philosophical problems because, as Russell saw the matter, it broke free
from the shackles of ‘traditional’ Logic by accounting for methods of deduction that were es­
sential and commonplace in mathematical reasoning. As Russell explains in the opening pages
of the Principles:

There was, until very lately, a special difficulty in the principles of mathematics.
It seemed plain that mathematics consists of deductions, and yet the orthodox
accounts of deduction were largely or wholly inapplicable to existing mathema­
tics. Not only the Aristotelian syllogistic theory, but also the modern doctrines
of Symbolic Logic, were either theoretically inadequate to mathematical reaso­
ning, or at any rate required such artificial forms of statement that they could
not be practically applied. In this fact lay the strength of the Kantian view,
which asserted that mathematical reasoning is not strictly formal, but always
uses intuitions, i.e. the à priori knowledge of space and time. Thanks to the pro­

167 RUSSELL, B., 1903, p.11 §12.
168 RUSSELL, B., 1903, p.106 §106.
169 The analysis of the notion of the variable occupies a large portion of the first part of the work. Indeed, according

to Russell himself, it was his puzzlement with respect to this last primitive notion which actually led him from
the Philosophy of Physics and Geometry to Symbolic Logic, as Russell explains in the preface: “About six
years ago, I began an investigation into the philosophy of Dynamics. I was met by the difficulty that, when a
particle is subject to several forces, no one of the component accelerations actually occurs, but only the resultant
acceleration, of which they are not parts; this fact rendered illusory such causation of particulars by particulars
as is affirmed, at first sight, by the law of gravitation. It appeared also that the difficulty in regard to absolute
motion is insoluble on a relational theory of space. From these two questions I was led to a re­examination
of the principles of Geometry, thence to the philosophy of continuity and infinity, and thence, with a view to
discovering the meaning of the word any, to Symbolic Logic.” (RUSSELL, B., 1903, p.xvi­xvii).
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gress of Symbolic Logic, especially as treated by Professor Peano, this part of
the Kantian philosophy is now capable of a final and irrevocable refutation.170

In a letter to Jourdain from April 15, 1910, Russell further elaborates this same point,
emphasizing why he was also not satisfied with the works of the so­called “algebraic tradition
of symbolic logic” and where Peano’s own logic required supplementation:

Until I got hold of Peano, it had never struck me that Symbolic Logic would
be any use for the Principles of Mathematics, because I knew the Boolian stuff
and found it useless. It was Peano’s ϵ, together with the discovery that relations
could be fitted into his system, that ledme to adopt symbolic logic. I had already
discovered that relations which assigned formal properties (transitiveness etc.)
are the essential thing in Mathematics, and Moore’s philosophy led me to wish
to make relations explicit, instead of ϵ and ⊂. This hangs together with my
attack on subject­predicate logic in my book on Leibniz.171

The fundamental issue was, of course, the handling of relations, which were an essential
component of Russell’s break from idealism and the doctrine that every judgment is ultimately
analyzable in terms of subject and predicate. Though Russell did partially recognize the merits
and importance of the works of the ‘algebraic’ tradition172, he still thought that “the subject
achieved almost nothing of utility either to philosophy or to other branches of mathematics,
until it was transformed by the new methods of Professor Peano”173.

In a nutshell, the fundamental change brought about by Peano in his analysis of mathe­
matical reasoning was this: he broke with traditional logic by employing his primitive notions
of formal implication and of a Cantorian class174 in analyzing mathematical statements; as we
discussed, to Russell this amounted to abandoning the limited subject­predicate analysis of pro­
positions and giving place to an analysis in terms of variables, constants and Russell’s new
notion of a ‘propositional function’175. As we discussed, though Peano himself had not done so
in any systematic or detailed way, Russell realized that the framework which was laid down by
170 RUSSELL, B., 1903, p.4. For similar remarks, cf. RUSSELL, B., 1959, pp.65­6.
171 GRATTAN­GUINNESS, I., 1977, p.133.
172 Russell acknowledges the efforts and importance of George Boole towards the “the recognition of asyllogistic

inferences” (RUSSELL, B., 1903, p.10; Russell refers in particular to BOOLE, G., 1854; cf. also BOOLE, G.,
1847). Russell also explicitly recognizes (RUSSELL, B., 1903, pp.23­4, footnote*) the origins of the calculus
of relations in the works of Augustus De Morgan (cf. De MORGAN, A., 1864, 1847) and its systematic deve­
lopments in the works of Charles Sanders Peirce (Russell refers specifically to PEIRCE, C. S., 1880; cf. also
PEIRCE, C. S., 1870, 1885) and later by Ernst Schröder (cf. SCHRÖDER, E., 1895). Russell recognized Schrö­
der’s three volume treatise (i.e., SCHRÖDER, E., 1890, 1891 and 1895) as the “the most complete account of the
non­Peanesque methods” (RUSSELL, B., 1903, p.10, footnote *). For a classic survey of the early developments
of algebraic logic, cf. LEWIS, C. I., 1918; cf. also GRATTAN­GUINNESS, I., 2000, chapter 2.

173 RUSSELL, B., 1903, p.10.
174 I.e., a class viewed as an object as opposed to the part/whole conception which viewed a class as a mere aggre­

gate.
175 As Russell explained inMy Philosophical Development, Peano’s analysis of general propositions, i.e., propositi­

ons containing variables, made him realize that “every statement containing the word all involves propositional
functions, but does not involve any particular value of these functions” (RUSSELL, B., 1959, p.66).
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the Italian mathematician provided a calculus which could be adequately expanded to include a
treatment of relations.

The Logic of the Principles is by and large Peano’s formal system plus Russell’s calculus
of relations embedded within the realistic Philosophy inherited from Moore176. The symbolic
logic which is presented in the work rather informally (since the work almost as a rule does
not rely on symbolism) was intended to be fully developed in a second volume co­authored
with Whitehead, starting from the basic primitives of logic and advancing all the way from
Arithmetic throughAnalysis and intoGeometry177. So the presentation of logical grammar and of
the chain of deductions which is intended to demonstrate Russell’s claim that Pure Mathematics
is a development of Logic varies from informal to semi­formal. The logical calculus of the
Principles is divided into three separate branches, namely the calculus of propositions, of classes
and relations.

As it will become evident in the brief discussion of the Logic of the Principleswhich fol­
lows here, the system of logic that underlies the work looks quite antiquate from the perspective
of modern treatments of Logic. This, however, is due to the main logico­philosophical doctrines
which Russell holds in the work, not simply because it predates the results and standards of rigor
which one finds in modern textbooks.

2.2.1 A Brief Digression: Frege’s Begriffsschrift

Before discussing the Logic of Russell’s Principles of Mathematics which is heavily
influenced by Peano’s Formulario, we must make brief digression concerning Frege’s works
on logic. As is widely known, Frege had developed an analysis and notation for mathematical
statements that in many respects was far superior to that which Russell inherited from Peano and
which he modified to suit his technical goals and philosophical views. Indeed, by 1879 Frege
had published what may rightfully considered the most important work on Logic ever written178,
his Begriffsschrift 179.
176 Although, of course, things are not so straightforward: Russell’s logic corrects a lot of imprecisions in Peano’s

systems and further adopts principles of comprehension. This will be addressed in detail below.
177 In the preface we find: “The second volume, in which I have had the great good fortune to secure the col­

laboration of Mr A. N. Whitehead, will be addressed exclusively to mathematicians; it will contain chains of
deductions, from the premises of symbolic logic through Arithmetic, finite and infinite, to Geometry, in an order
similar to that adopted in the present volume; it will also contain various original developments, in which the
method of Professor Peano, as supplemented by the Logic of Relations, has shown itself a powerful instrument
of mathematical investigation”. (RUSSELL, B., 1903, p.xvi) As is well known, such a volume never appeared
in the way they planned.

178 As noted in van HEIJENOORT, J., 1967, p.1. Some, like Quine and Michael Dummett claim that the book
actually marks the inauguration of modern Mathematical Logic (cf. QUINE, W., 1960, p.163; DUMMETT, M.,
1981, p.xxxv). Perhaps the more historically accurate statement would be that Frege was the first to articulate
(or at least to publish a work in which he articulates) the modern apparatus of quantificational logic, although
the term “quantifier” itself is due to Pierce (cf. CHURCH, A., 288).

179 FREGE, G., 1879. Following an usual convention among commentators of Frege, we shall use “ Begriffsschrift
” with a capital “B” to refer to Frege’s first booklet on Logic and “begriffsschrift ” to refer to his conceptual
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As is well known, Frege was inquiring (again, long before Russell and Peano) whether
the concept of number should be understood as a logical concept and whether the laws of Arith­
metic should be understood as logical principles. Frege’s initial goal, as he described in his first
logical booklet, was to analyze the concept of series or sequence and to prove fundamental the­
orems about this notion in a way that prevented “anything intuitive” to remain “unnoticed” in a
way that kept “the chain of inferences free of gaps”180. In this respect, as he explained, natural
language became an insurmountable obstacle because “[...] no matter how unweldy the expres­
sions [he] was ready to accept” he “[...] was less and less able, as the relations became more
and more complex, to attain the precision that [his] purpose required”181 ­ and this is what led
him to formulate his “ideography” or, as he more frequently said, his “ Begriffsschrift ”, i.e.,
“concept­script”.

Frege’s Begriffsschrift contains the first formulation of our modern idea of a formal
system: a set of primitive symbols accompanied by rules for forming complex expressions from
simpler ones and a set of axioms and rules for manipulating symbols that allowed for a rigorously
defined notion of a demonstration or proof. Frege’s primitive notions were those of assertion182

(or jugement), conditionality183 (i.e., the material implication), negation184, of identity185, of func­
tionality186, i.e., the notion of function (and so also that of an argument) and finally, and perhaps
most importantly, that of generaltity187, i.e., the universal quantifier.

In Frege’s notation, the assertion of what he called a given ‘content A’ and the assertion
of not­A are respectively symbolized as follows188:

A

A

In the second formula above, the short vertical stroke is the sign for the primitive notion of
negation. Also, the sign “ ” itself is also composed of two distinct symbols; Frege used the
expression “ A” to stand for “[...] a mere combination of ideas, of which [he] does not state
whether he recognizes to be true or not”189; the role of the bold vertical bar was to indicate that the

notation. As is well known, Frege modified the original formulation of his begriffsschrift throughout the years,
most notably in his Grundgesetze de Arithmetik (FREGE, G., 1893 and 1903). Some of these changes will be
briefly mentioned below. For systematic and in depth discussios of these changes, the reader is referred to
the following authoritative studies of the complex development of Frege’s ideas: DUMMETT, M., 1967, 1981a,
1981b, 1991; DUARTE,A., 2009; HECK, R., 2012; LANDINI, G., 2012; cf. also the third part of DEMOPOULOS,
W., 1995; a good survey of some issues is given in the Introduction of RICKETTS & POTTER, 2010; for a more
recent authoritative collection of essays on Frege’s Grundgesetze, cf. EBERT & ROSSBERG, 2019.

180 FREGE, G., 1879, p.5.
181 FREGE, G., 1879, p.6.
182 Cf. FREGE, G., 1879, p.11­2.
183 Cf. FREGE, G., 1879, p.13­14.
184 Cf. FREGE, G., 1879, p.17.
185 Cf. FREGE, G., 1879, p.20.
186 Cf. FREGE, G., 1879, p.21­22.
187 Cf. FREGE, G., 1879, p.24.
188 Cf. FREGE, G., 1879, p.11 and 17­18.
189 FREGE, G., 1879, p.11.

87



content was not merely being considered but actually asserted190. Frege’s sign for conditionality
or material implication gives rise to the famous bi­dimensional aspect of his notation. Frege
used the following191:

B

A

The truth conditions of above are explicitly introduced as excluding the circumstance where A
can be (truly) affirmed and B (truly) denied192.

It is in connectionwith the above notation formaterial implication that another of Frege’s
sharpest and most important insights also appear for the first time. As we remarked above,
190 Uncharacteristically, at this point of Frege’s explanation of his notation we find some unclear aspects of the

exposition of the Begriffschrift which give rise to many complex and important interpretative issues about the
development of Frege’s views. As Frege observes, not every ‘content’ can be asserted or, as Frege put it, not
every content is ‘judgeable’ or “[...] can become a judgment” (FREGE, G., 1879, p.12). To take an obvious
example, one cannot consider the expression “ x”, where x is an individual variable as the expression of
a judgment. Frege requires that “[...] whatever follows the content stroke must have a content that can become
judgment” (FREGE, G., 1879, p.12). Still, Frege does not provide any clear­cut explanation as to what distin­
guishes a judgeable content from a non­judgeable content. Also, in theBegriffschrift Frege introduced the notion
of identity in a somewhat confused way. He put forward the following notation (which Russell would later use
for the material biconditional in Principia):

(A ≡ B)

As he first explained it, the above was meant to express that “[...] two names have the same content” (FREGE,
G., 1879, p.20) and thus, that it differed from the other symbols like the conditional and negation because
“[...] it applies to names not to contents” (FREGE, G., 1879, p.20, our emphasis). Both of these imprecisions
were addressed by Frege and clarified in his later writings, most notably his papers On Function and Concept
(FREGE, G., 1891) and On Sense and Meaning (FREGE, G., 1892) which introduce what may perhaps be his
most famous ideas. In those papers Frege distinguishes a peculiar sort of function which he calls concepts.
Differently from functions in general, concepts always have as their values for any given argument (or number of
arguments) a particular sort of object that Frege called a ‘truth­value’ (see footnote below); Frege also introduced
his famous distinction between the sense of an expression ­ its mode of presentation ­ and its Bedeutung ­ its
reference or meaning.

191 Cf. FREGE, G., 1879, p.13­14. Other propositional connectives are very easily expressible; the expression
“ B

A

”, for instance, asserts that A is true and B is true; while “ B

A

” asserts that A is true

or B is true.
192 FREGE, G., 1879, p.13­14. Of course, complex implications are formed by nesting implications within others,

i.e, putting expressions with the form B

A

within other expressions of the same form. For instance, the

Peanesque formula p ⊃ q⊃ p is written as follows:

p

q

p

The above is actually the first numbered proposition in Frege’s booklet and one of his axioms ruling the material
conditional (cf. FREGE, G., 1879, p.29); the other axioms are (2), (8), (28), (31) and (41) ­ cf. FREGE, G., 1879,
p.31, p.36, p.44, p.45 and p.41, respectively; the last two axioms also rule the behavior of negation. As Alonzo
Church observes, this is “[...] the first formulation of the propositional calculus as a logistic system” (CHURCH,
A., 1956, p.155­6); the systemwas later simplified since some axioms are not independent, as showed in TARSKI
& ŁUKASIEWICZ, 1930.
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Frege’s initial goal with his work on Logic was to show that basic propositions concerning the
notion of a sequence have no intuitive presuppositions and he intended to show this by exhibiting
proofs in such a way that all chains of inferences result “free of gaps”193. What Frege realized
was that in order to truly fulfill this task, it was necessary to not only explicitly articulate within
his symbolism the axioms that are needed for proofs, but also the rules for manipulation of signs
that capture the modes of inference that are allowed in the construction of proofs. So in addition
to axioms that were assumed as basic logical principles, Frege also introduced a way of repre­
senting the inference of a judgment from other judgments, i.e., a mode of inference, in a way
that actually provides a rule for manipulating expressions of his begriffsschrift , i.e, a rule which
states what is admissible in the construction of proofs. As his first rule, Frege had194:

B

A

A

B

The above is intended to capture, in terms of a symbolic rule, the fact that, as Frege puts it,
“[...] from the two judgments B

A

and A, the new judgment B follows”195. The

realization that the statement of such a rule is necessarymarks a tremendously important advance
towards Frege’s goals and for Logic as a whole. As Michael Dummett vividly puts it:

What Frege wanted was a framework within which all mathematical proofs
might be presented and which would offer a guarantee against incorrect argu­
mentation: of proof so set out, it would be possible to be certain that it was
not erroneous, or valid only within certain restrictions not made explicit, or
dependent upon unstated assumptions. To achieve this purpose, it was neces­
sary to device a symbolic language within which any statement of any given
mathematical theory might be framed, as soon as the required additional voca­
bulary for that theory was specified196. This would be, in modern terminology,
a formalized language: that is, there would be an effective method of recog­
nizing, for any given collocation of symbols, whether or not it was a formula
of that symbolic language. Furthermore, in reference to this language, it was
necessary to stipulate formal rules of proof, rules, that is, which would specify
in a manner which provided a procedure for effective recognition which se­
quences of formulas of the language constituted a valid proof. [...] Frege was,

193 Cf. FREGE, G., 1879, p.5.
194 Cf. FREGE, G., 1879, p.16. This is the full statement of the rule, but Frege finds this “[...] awkward if long

expressions were to take the places of A and B” (FREGE, G., 1879, p.16) so he uses an abbreviated form.
195 FREGE, G., 1879, p.15­16.
196 This is the point which generally used to mark the contrast between Frege’s work with those of Boole and

Schröder, which Frege famously explained as follows: “My intention was not to represent an abstract logic in
formulas, but to express content through written signs in a more precise and clear way than it is possible to do
through words. In fact, what I wanted to create was not a mere calculus ratiocinator, but a lingua characterica
in Leibniz’s sense” (FREGE, G., 1882, pp.1­2, as quoted in van HEIJENOORT, J., 1967, p.2).
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thus, proposing to take the step from the axiomatization of mathematical the­
ories with which nineteenth­century mathematics had been deeply concerned,
to their actual formalization. While the axiomatic method strove to isolate the
basic notions of each mathematical theory, in terms of which the other notions
of the theory could be defined, and the underlying assumptions, from which all
the theorems could be made ultimately to derive, what Frege wanted to do was
to subject the process of proof itself to an equally exact analysis.197

But Frege went (and had to go) even further in order to achieve the kind of complete
analysis which he needed. For as Dummett further observes, “[...] before an analysis of proof is
possible, an analysis has first to be given of the structure of the statements which make up the
proof”198 and that’s where the notion of functionality, i.e., of function and argument comes into
play.

The notions of function and argument and the role they play in Frege’s analysis of mathe­
matical judgments (and, in fact, judgments in general) present what is truly revolutionary in
Frege’s first work. The fundamental gist of Frege’s analysis of judgment is that the old dicho­
tomy of subject and predicate is supplanted by the dichotomy of argument and function. Gram­
matically speaking, Frege thought that statements like “a is a prime number” should not be
analyzed in terms of a subject and a predicate, but should be decomposed in the same way that
arithmetical expressions like “x2” or “x + 1” are ­ hence the subtitle of his booklet “a formula
language, modeled upon that of arithmetic, for pure thought”199. This idea sprang from a very
simple, yet also very deep insight that arose from observing what now seem as very common­
place facts, namely: the fact that functional expressions like “√ ” or “+1” are incomplete, that
is, they have gaps; that the use of variables is one possible way of representing these gaps; and
that it is by filling such gaps with expressions which have a determinate meaning that the mea­
ning of complex expressions composed of simpler ones is determined, e.g., by filling the gap in
“+1” to obtain “0 + 1” or the gaps in “√ ” to obtain “ 3

√
8”.

Frege’s insight was that even sentences which grammatically appear to have the form
of subject and predicate like “2 is a prime number” or “0 is less than 1” can also be analyzed in
terms of function and argument. As Dummett observes, what Frege realized was that complex
expressions, in particular sentences containing multiple markers of generality are constructed
in stages and that by employing his analysis of judgments in terms of function and argument
instead of subject and predicate, he could formulate a completely perspicuous symbolic device
for representing the stages of construction of such sentences, making their internal structure
manifest200.
197 DUMMETT, M., 1981, p.1.
198 DUMMETT, M., 1981, p.2. It must be observed that one can accept this point of Dummett’s without fully

accepting his somewhat anachronistic claim that Frege was interested in formulating a theory of meaning.
199 FREGE, G., 1879, p.1. It must be observed, though, that the use of lower­case italic letters as variables which in­

dicate the “gaps” of an open sentence does not coincide with that of Frege, who employed different conventions
for the use of lower­case italics and also employed Gothic lower­case letters bound by quantifiers to represent
generality (cf. FREGE, G., 1879, p.24­6).

200 Cf. DUMMETT,M., 1981a, pp.10­11. For what is surely one the most illuminating discussions of Frege’s insights
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It was building upon this analysis that in the Begriffsschrift Frege was able to present
for the first time a clear­cut explanation of the universal quantifier which may be, as Dummett
once put it, “[...] the deepest single technical advance ever made in logic”201. Frege employed
the following expression for representing generality202:

a X(a)

Which, as he explains in the Begriffschrift, stands for “the judgment that, whatever we may take
for its argument, the function is a fact”203. So, for instance, the following asserts, respectively,
that everything that is an Y is an X and that if everything is a X, then something is an X :

a X(a)

Y (a)

a X(a)

a X(a)

This simple and elegant notation is the very first formulation of a basic notation for what we
now know as ‘quantification theory’ or ‘quantificational logic’.

The above makes it clear how to construct complex statements from simpler ones in
stages, in particular those containing generality. If one intends to say, for instance, that every
number is odd, one starts from a simple statement like “2 is even”, or more shortly, “E(2)”; the
next stage is to replace “2” by a variable, to obtain a functional expression, i.e., “x is odd”, or
“E(x)”; generality comes in asserting that, for every argument which can be assigned for x, the
resulting statement is true ­ or as Frege put it in Begriffschrift when he did not yet had a notion
of a truth­value ­ a statement of a fact.

which led to the ‘discovery’ of quantification theory ­ and how truly penetrating and far­sighted Frege was in
this regard ­ cf. DUMMETT, M., 1981a, chapters 1 and 2.

201 DUMMETT, M., 1981, p.xxxiii..
202 Thus, to assert that there is an a such that X(a), one writes “ a

X(a)”.
203 FREGE, G., 1879, p.24. Though in his first presentation of his concept­script Frege does not discuss the issue

what a function is or what the values of a function may or may not be (As noted in van HEIJENOORT, J.,
p.2.), he elucidates his insight in posterior writings by explaining that a predicates like “ is a prime number”
should be viewed as a particular case of functional expressions that stand for a particular sort of functions that
Frege called concepts. Functions are opposed to objects which are capable of, so to speak, fill the ‘gaps’ of the
function. Shortly after publishing his Begriffsschrift, Frege distinguishes between two kinds of functions. On
the one hand, there are functions like those of ordinary mathematics that are represented by gappy expressions
like “+1”; when their gaps are filled, such then stand for a definite object, like, say, the number 1 in case the gap
in the expression is filled by the number 0. Concepts, on the other hand, are, for Frege, functions whose values
are always another peculiar kind of objects, namely, truth­values. So, for Frege, filling the gap of an expression
like “ is a prime number” may result in an expression which stands either for the value Truth or the value False,
depending on what object is assigned as the argument of the function ­ as Frege himself puts it “a concept is
a function whose value is always a truth­value”. Furthermore, the notion of an object, for Frege is incapable
of definition because “it is too simple to admit of logical analysis” (FREGE, G., 1891, p.147 [18]); similarly the
notion function can only be elucidated by observations that either pertain to expressions that represent functions
­ for instance observing that such expressions ‘haves gaps’ or ‘are incomplete’ ­ or by the use of metaphors ­ for
instance, Frege’s favorite one, that a “a function is unsaturated” (cf. FREGE, G., 1891, p.140­1. [7]).
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What is truly revolutionary in Frege’s analysis and notation is that this construction in
stages can be carried on to arbitrary levels of complexity. It is a muchmore precise (and powerful
in terms of expressivenes) tool than anything formulated by Boole or those who build upon his
work, including Peano. His notation made it possible to sharply distinguish logical forms of
sentences that always eluded traditional (syllogistic) logic like “Everyone loves someone” and
“Someone is loved by all”. With Frege’s symbolism, the two forms can be clearly distinghished
as follows:

a b R(a, b)

b a R(a, b)

Indeed, long before Russell, Frege had provided means for handling relations204 within a lo­
gical calculus that allowed every desirable inference205 to be represented and derived within
his system. Frege introduced two additional rules governing expressions containing generality,
namely206:

X(a)

a X(a)

Which is exactly what we nowadays call the rule of ‘universal generalization’ and also the fol­
lowing third (and final rule)207:

X(a)

A

a X(a)

A

under the condition that “A is an expression in which a does not occur and if a stands only in
the argument places of X(a)”208.

In what is a crucial aspect of Frege’s systems, he allowed his quantifiers to bind functi­
204 Relations, for Frege, were a particular case of functions, namely concepts of multiple arguments.
205 More precisely: every inference that is correct from the point of view of classical Logic.
206 Cf. FREGE, G., 1879, p.25.
207 Cf. FREGE, G., 1879, p.26.
208 FREGE, G., 1879, p.25­26. Frege had only one axiom for quantification theory, namely (FREGE, G., 1879, p.51):

X(c)
a

X(a)

which is what we now call the law of universal instantiation.
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onal variables. In his celebrated definition of the ancestral, for instance, Frege had:
F F(b)

a F(a)

f(a, a)

b a F(a)

f(a, b)

F(b)

Where the F above ranged over functions which take objects as arguments, not over objects
themselves. Frege’s begriffsschrift also had provisions for handling expressions for concepts in
both predicate and subject positions (or, more approppriately for concepts falling “within” as
arguments of higher­order concepts)209, employing markers for the gaps of functions with subs­
cripted variables, as in ‘Mβ(Fβ)’. In fact, as many authors have pointed out, implicit in Frege’s
Begriffsschrift are rules of inference for concepts analogous to those considered above. Fol­
lowing a formulation suggested by Gregory Landini, Frege’s rule of generalization for concepts
could be expressed as follows:

Mβ(Fβ)

A

F Mβ(Fβ)

A

where F does not occur free in A; similarly, Frege’s only axiom for quantification theory210 has
the following analogue for concepts:

Mβ(Gβ)

F Mβ(Fβ)

These axioms and rules, on their turn, have yet ‘higher­order’ analogues. The above, for instance
has the following analogue for concepts that apply to concepts of second order211:

ΩF (Pβ(Fβ))

M ΩF (Mβ(Fβ))

Thus, implicit in Frege’s Logic is an ever increasing hierarchy of rules and axioms ruling the
corresponding (ever increasing) hierarchy of functions. Indeed, also implicit in Frege’s Begriffs­
schrift is a family of axiom schemes of comprehension for functions, as in:

F a1 a2 ... an F(a1, a2, .., an) ≡ ϕ
209 In fact, the quantifiers themselves can be seen as “higher­order concepts” that apply to concepts.
210 Cf. footnote 208.
211 That is, concepts that apply to concepts that apply to objects.
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where ϕ stands for some judgeable content not containing F free. And the same applies to func­
tions likeMβ(Gβ), ΩF [Pβ(Fβ)], and so on212.

Now, at this point it must be clear that the contrast of Frege’s symbolic logic with that
of Peano’s is quite stark ­ and, in fact, this contrast was quite extensively discussed by the two
authors213. For our present purposes, we must consider three fundamental aspects of Frege’s
notations and analysis of mathematical statements which are much sharper than Peano’s ­ and
similar points will apply with to some aspects of the logic of Russell’sPrinciples of Mathematics.

First there is Frege’s notation and analysis of general judgments. In his correspondence
with Peano, Frege praises the former’s departure from traditional logic, observing that “[his]
designation for generality remedies an essential defect of Boolean logic”; but Frege also surgi­
cally notes that Peano’s notation “[...] is perhaps less generally applicable than [his]” and that
he does “not know whether [Peano] will be able to set sure limits to the scope of generality in
all cases”214; the latter point, in particular, is important. Peano’s notation was not as precise or
perspicuous as Frege’s. Frege’s notation was superior than that of Peano for distinguishing more
clearly the scope of quantified variables ­ in particular in contexts where multiple generality is
involved and by allowing relation­symbols215.

Second, there is Frege’s inclusion of rules of inference in his begriffschrift and his empha­
sis that the very notion of deduction or proof in mathematics should be subjected to analysis.
From Frege’s standard of what counts as a formal deduction or proof ­ i.e., a sequence of formu­
las manipulated according to a set of syntatical rules for forming expressions and for deducing
formulas from axioms or from formulas deducible from the axioms ­ there is not a single proof
in Peano’s Formulario, since there are no rules of inference explicitly articulated. Take, for ins­
212 Cf. LANDINI, G., 2012, p.52. As Landini points out, an important change that happens in Frege’sGrundgesetze

is that these implicit axiom schemes will be quite different there. In the Begriffsschrift (implicit schematic)
comprehension must be framed in terms of an ‘identity of content’ between an expression like a

F (a) or
F

Mβ(Fβ) and some judgeable content A; in Frege’s Grundgesetze, on the other hand, comprehension must
be framed in terms of genuine identity, as in (cf. LANDINI, G., 2012, p.57):

F a1 a2 ... an F(a1, a2, .., an) = α

where the schematic α stands for an arbitrary term. This is because in the Grundgesetze an expression like
“ x

F (x)” is assigned a value when asserted (either the true or the false) according to whether all objects x
fall under F or not.

213 Frege and Peano exchanged a significant number of very illuminating of letters (cf. FREGE, G., 1980, pp.108­
129). Peano reviewed the first volume of Frege’s magnum opus, the Grundgesetze (FREGE, G., 1893) in the
Rivista diMathematica (cf. PEANO,G., 1895b); Frege responded the reviewwith a paper discussing the contrast
between his views and those of Peano (cf. FREGE, G., 1897) and also a letter from 29 September 1896 (cf.
FREGE, G., 1980, pp. 112­18) which Peano then published in the Rivista accompanied by his own counter­reply
(cf. PEANO, G., 1896, pp.295­296); for some details about these exchanges, cf. GRATTAN­GUINNESS, I.,
2000, pp.247­251.

214 FREGE, G., 1980, p.109.
215 Which, again, for Frege, were a particular case of functional expressions.
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tance, the following demonstration from Peano’s Principles of Arithmetic216:

Proof :

P1 ⊃ 1 ϵN (1)

1[a](P6) ⊃ 1 ϵN ⊃ 1 + 1 ϵN (2)

(1) (2) ⊃ 1 + 1 ϵN (3)

P10 ⊃ 2 = 1 + 1 (4)

(4) (3) (2, 1 + 1)[a, b](P4) ⊃ 2 ϵN (Theorem)

Peano presents the above as a proof in which “[...] we have written explicitly all the steps”;
but nowhere in his booklet Peano does introduce an explicit rule which justifies step three ­
indeed, the very law “a a⊃ b ⊃ b” does not even appear in the initial catalog containing
around forty logical propositions217. This, of course, does not mean that Peano could not have
the rule in his system. Also, it must be observed, this does not mean necessarily that Peano did
not recognize ­ at least implicitly ­ the distinction between a rule which justifies inference of a
proposition from other propositions and an actual axiom or primitive proposition. In fact, the
best explanation for such a lacuna in Peano’s axiomatization is the confused way in which he
characterized his notation “a ⊃ b”. In the Principles of Arithmetic, in particular, he introduced
it as meaning “a deducitur b”218; in the French version of the Formulario he introduced it as “b
on déduit a”; these explanations suggest that his demonstrations employed an implicit rule but
also that his works were affected by a confusion between entailment and material implication;
this can explain the absence of an explicit rule of detachment: since he explained “a ⊃ b” as
“from a, one deduces b” or “from a, b can be deduced”, he may just as well found unnecessary to
introduce an explicit rule (much less a theorem) which stated that from from a and a⊃b one may
deduce b. Similar remarks apply to Peano’s notion of formal implication ­ Peano’s constructions
of proofs implicitly employed generalization and instantiation in connection with it. Frege, of
course, knew better219 and, given all of his concerns with the rigorous constructions of proofs,
he formulated modus ponens as as an explicit symbolic rule and clearly distinguished between
implication and detachment220. And even more importantly, Frege also formulated explicit rules
for quantification theory.

The points discussed above mark important contrasts in terms of procedures, goals and
clarity involved in their attempts at formalizing mathematical statements and show that ­ in
contrast to Frege ­ Peano was, after all, still tied to some aspects of the Boolean tradition that
216 PEANO, G., 1889, p.94.
217 cf. PEANO, G., 1889, p.87­8.
218 Cf. PEANO, G., 1889, p.
219 And as we shall see, so did Russell.
220 Still, it must be said that it is not clear whether Peano missed the distinction or whether he was just careless or

sloppy about it. As we shall see below, Russell himself clearly recognized the distinction in the Principles of
Mathematics.
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prevented substantial progress to be achieved in Logic. As we shall see next, Russell was caught
in the middle.221

2.2.2 Propositions and Russell’s Doctrine of the Unrestricted Variable

At the outset we must recall that the notion of a ‘proposition’ must be handled with care
in thePrinciples ofMathematics222. Russell was fully committed toMoore’s realist conception of
judgment according to which propositions are complex entities. As he put it: “[...] a proposition,
unless it happens to be linguistic, does not itself contain words: it contains the entities indicated
by words”223. Thus, when Russell speaks of propositions in the Principles he is not talking
about sentences, but about complex, mind­independent entities which have as constituents the
entities that are the subjects of the proposition. In other words, a ‘proposition’ in the sense
in which Russell employs the notion in Principles does not necessarily consists of words, but
of entities, namely, the entities which the proposition is about, i.e., the logical subjects of the
proposition in question224. This is one of the reasons why Russell’s calculus of propositions is
very different from Peano’s and, indeed, from any modern formulation of propositional logic.
Of course, the fundamental notions of Russell’s logic of propositions are implication and formal
implication, both inherited from Peano and also following Peano, Russell used “p ⊃ q” for
material implication. But given his understanding of propositions, he used the symbol “⊃” as a
name for an actual dyadic (indefinable) relation that holds between entities, not expressions.

Russell’s calculus of propositions also differed from Peano’s (and from modern formu­
lations of propositional logic) in virtue of one of the (if not the) most important and central doc­
trines of the Principles, namely Russell’s doctrine of the ‘univocity of being’ ­ a thesis which
we which shall discuss more extensively in the next chapter, but which we must also consider
from the outset in order to make sense of the Logic of the Principles.

The content of this doctrine of the ‘univocity of being’ is threefold. The doctrine consists
in the following metaphysical claim, as Russell puts it: “[...] there is only one kind of being,
namely being simpliciter”225. This absolute sense of being, Russell elaborates:

[...] belongs to every conceivable term, to every possible object of thought—in
short to everything that can possibly occur in any proposition, true or false, and

221 Another important point which we may also briefly mention concerns the issue of definitions. Frege voiced to
Peano the same concerns that Russell had over definitions: like Russell ­ but again, before him ­ Frege criticized
Peano’s liberal use of non­nominal or non­eliminative definitions, in particular conditional definitions, which
formed the great majority of in Peano’s Formulario.

222 And, in fact, in all of Russell’s works on Logic.
223 RUSSELL, B., 1903, p.47 §51. Notice that when Russell asserts that “unless it [a proposition] happens to be

linguistic”, he means something like “unless the [a proposition] happens to be about words or phrases”.
224 Cf. RUSSELL, B., 1903, p.47 §51.
225 RUSSELL, B., 1903, p.449 §427.
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to all such propositions themselves. Being belongs to whatever can be counted.
[...] being is a general attribute of everything, and to mention anything is to
show that it is.226

This doctrine was accompanied by a logical doctrine and also a ‘semantical’ thesis, for
lack of a better word. The logical doctrine was Russell’s doctrine of the ‘unlimited’ or ‘unres­
tricted variable’, i.e., the claim that strictly speaking, there are no variables, but only “the true
or formal variable” or “the variable”227 whose range is completely unrestricted: as Russell put
it, whenever the variable occurs, “the terms dealt with are always all terms”228. The semantic
doctrine is the claim that “[...] it is a characteristic of the terms of a proposition that any one of
them may be replaced by any other entity without our ceasing to have a proposition”229 ­ that
is, for every term b, whenever there is a proposition p whose subject is some term a, there is
a proposition p∗ which differs from p solely from the fact that its subject is b instead of a; in
effect, this doctrine boils down to the claim that every term can occur as the subject of every
predicate and as a related term of every relation in a way that results in a proposition ­ i.e., if
one can assert meaningfully (no matter if truly or falsely) that a number, say, one, is less than
three, one may also assert meaningfully that Alexander the Great is less than three.

In holding this threefold doctrine, Russell significatly reframed Peano’s calculus of pro­
positions and its (not explicitly articulated) syntax. Implication for Russell was viewed as a
relation that only actually holds between propositions but which can be meaningfully asserted
to hold between any entities whatsoever. In other words, for any terms230 x and y, one may me­
aningfully state that x implies y or that y implies x ­ even if they are not propositions ­ but this
can only be true if x and y are propositions231.

This gives rise to a fundamental feature of the Logic of the Principles that may seem
strange to the modern reader. One of the hallmarks of modern standard predicate or quantifi­
cational logic which was (at least partially232) shared by Frege, namely, the employment of a
formal language whose variables are ‘sorted out’ in the following sense: one distinguishes the
ranges of propositional, predicate and individual variables in some way or another and imposes
226 RUSSELL, B., 1903, p.449 §427.
227 RUSSELL, B., 1903, p.91 §88
228 RUSSELL, B., 1903, p.91 §88.
229 RUSSELL, B., 1903, p.45 §48.
230 The notion of term is used by Russell in the Principles as equivalent to entity. We shall discuss this notion at

lenght in the next chapter.
231 It is plausible to suppose that Russell thought this to be a self­evident truth, since he offers no justification for

it.
232 One sense that Frege’s logic is certainly many sorted is that his object variables are shar­

ply distinguished from functional variables. However, with respect to the propositional va­
riables things are more complicated. As Alessandro Duarte has pointed out (unpublished
manuscript, available here http://www.alessandroduarte.com.br/?page_id=454 and also here
https://www.researchgate.net/publication/313524003_On_a_Problem_concerning_the_Rule_of_Substitution_for_Functions_in_Begriffsschrift),
it seems that there is a problem with Frege’s rule of Substitution in the Begriffsschrift which allows substitu­
tions of non­judgeable contents for judgeable ones that result in ill­formed formulas. In case of Frege’s later
formulations of his begriffsschrift, things are also not straightforward given Frege’s introduction of truth­values
into the system. Thanks for Alessandro Duarte for calling these points to my attention.
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grammatical limitations with respect to what sort of terms of the language233 may or may not be
substituted within a given complex expression234. In contrast, the variables of Russell’s propo­
sitional calculus have an absolutely unrestricted range and in his axioms “[...] any conceivable
entity may be substituted for any one of our variables without impairing the truth of our pro­
position”235. So, for instance, Russell could not have an axiom or theorem like “p ⊃ p” ­ for it
would result false for any value of “p” that is not a proposition. That is why he actually defined
a proposition as anything which implies itself236.

As Russell explains, every primitive proposition or axiom of his calculus of propositi­
ons is an implication which has as an antecedent a clause “equivalent to the assertion that the
letters which occur in the consequent are propositions”237 and so “[...] all its propositions have
as hypothesis and as consequent the assertion of a material implication”238. In a footnote Russell
clarifies the status of his primitive propositions by explaining that “[...] the implications deno­
ted by if and then, in these axioms, are formal, while those denoted by implies are material”239.
Recall that the notion of formal implication was Peano’s device for expressing generality, his
formal rendition of the universal quantifier. So, for instance, Russell’s first axiom of his calculus
of propositions, which he informally introduces as asserting that “if p implies q, then p implies q;
in other words, whatever p and qmay be, “p implies q” is a proposition”240 should be translated
into symbolic language as something along the following lines:

p ⊃ q. ⊃p.q . p ⊃ q Pp

where the variables p, q, etc., have an absolutely unrestricted range. Furthermore, it must be
noted that one cannot ‘fix’ this peculiarity of Russell’s Logic by saying that certain variables of
the axioms only range over propositions, since the point of having them in this conditional form
is to preserve the unrestricted character of the variables and to guarantee that the axioms are true
no matter what sort of entities are assigned the variables241. This distinguishes Russell’s calculus
from modern formulations of propositional logic242: his axioms are quantified statements that
assert something about everything, given that the variables have an absolutely unrestricted range.
233 That is, linguistic terms in the modern sense, and not in Russell’s general sense of an entity.
234 Of course, the range of substitution of a given category of terms also determines whether such terms can occur

significantly in other ways in composing complex expressions other than sentences, for instance, as arguments
of certain functional expressions.

235 RUSSELL, B., 1903, p.7 §7.
236 RUSSELL, B., 1903, p.13 §14.
237 RUSSELL, B., 1903, p.13 §14. As we shall extensively discuss later, this is very misleading since, in the Princi­

ples, propositions are not letters, but are merely indicated by letters.
238 RUSSELL, B., 1903, p.13 §14.
239 RUSSELL, B., 1903, p.16 §18, footnote *.
240 RUSSELL, B., 1903, p.16 §18.
241 That is, in case they are not propositions the antecedents are false and thus the implications are true.
242 In effect, the propositional logic of the Principles can be understood as a sort of unique variant of what Alonzo

Church calls the ‘extended propositional calculus’ which allows propositional variables to be bound by quanti­
fiers. For details, cf. CHURCH, A., 1956, p.151. The first formal treatment of such calculus was given by Russell
in his 1906 article On the Theory of Implication (RUSSELL, B., 1906c); later investigations of such systems
were developed by Tarski and Łukasiewicz (cf. TARSKI & ŁUKASIEWICZ, 1930 and CHURCH, A., 1956,
p.151­2 for detailed historical information). This means, among other things, that the formal calculus implicit
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2.2.3 Quantification, the Notion of a Logical Subject and Denoting

Russell’s calculus for Logic is intended to have variables with an absolutely unrestricted
range: this applies not only to his calculus of propositions but also to his calculus of classes and
relations, and, in fact, to quantification in general. What, then, is the theory of quantifier of the
Principles?

As many authors have previously noted, the notion of formal implication is expected to
cover the legwork of the quantifiers in the Principles of Mathematics243. As we discussed, Peano
understood formal implication as a relation that held between two propositions p and q contai­
ning real variables x, ..., z whenever “q can be deduced from p, no matter what x, ..., z are”244.
Differently from Peano, who took this notion as a single primitive notion, Russell realized that
the notion is “complex” and “[...] should therefore be separated into its constituents”245.

The first step of this analysis consisted in noting that to assert a formal implication is to
assert all the values (which are propositions) of what Russell called a propositional function, a
notion which is akin to Frege’s notion of a concept and which we’ll further discuss in more detail.
The relevant point, for now, is that Russell understood a formal implication in a very different
way from Peano. For Russell, in the notation “p ⊃x,...,z q”, where p and q contaning real (free)
variables, “p ⊃ q” should not be viewed as a sentence expressing a complete proposition, but
as an expression that expresses a proposition when all its free variables x, ..., z are assigned
determined values or when it is formally asserted that is, when all the propositions resulting
from assigning a value to x, ..., z are asserted246. Thus, Russell analyzed a formal implication as
“[...] the assertion of a whole class of material implications”247. As Russell explains:

Given any proposition (not a propositional function), let a be one of its terms,
and let us call the proposition ϕ(a). Then in virtue of the primitive idea of a
propositional function, if x be any term, we can consider the proposition ϕ(x),
which arises from the substitution of x in place of a. We thus arrive at the class
of all propositions ϕ(x). If all are true, ϕ(x) is asserted simply: ϕ(x)may then
be called a formal truth. In a formal implication, ϕ(x), for every value of x,
states an implication, and the assertion of ϕ(x) is the assertion of a class of
implications, not of a single implication. If ϕ(x) is sometimes true, the values
of x which make it true form a class, which is the class defined by ϕ(x): the
class is said to exist in this case. If ϕ(x) is false for all values of x, the class
defined by ϕ(x) is said not to exist [...]248

in the Principles would not admit a schematic formulation, but would have to have a finite set of axioms and a
rule of substitution. This is precisely the route Russell adopted in RUSSELL, B., 1906c.

243 And, in fact, as we shall see in the next section of this chapter, Russell defines PureMathematics in thePrinciples
as the class of all (true) maximally general formal implications.

244 Peano, G., 1897, p.1.
245 RUSSELL, B., 1903, p.16 §18.
246 RUSSELL, B., 1903, p.38­9 §42. Of course, he had not yet fully realized (as Frege had) how to provide an

adequate treatment of the notions of all, any, etc.
247 RUSSELL, B., 1903, p.28 §33.
248 RUSSELL, B., 1903, p.28 §33.
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Russell went further, however, seeking an analysis of the very notion of variation or the
variable in the Principles which differs drastically with respect to modern approaches and also
with respect to Frege’s analysis of generality. The contrast with Frege here is illuminating, and
we shall use it to conduce our discussion

As we previously observed, following Dummett, we may understand the fundamental
insight behind Frege’s account of and notation for quantification theory as the idea that all com­
plex expressions are constructed in stages from simpler ones. Such a construction is able to be
carried out in several different ways. For example, in a standard language for predicate Logic,
we may distinguish two cases of complex expressions which form linguistic units generated in
stages from simpler expressions. First we have terms like “f (x)”, “f (a)” and so on, which are
formed by putting names or variables as arguments to functional expressions. These are contras­
ted to basic linguistic units that are formed by placing a singular term or proper name “a” or a
variable “x” as an argument to a predicate “F”, resulting in an atomic sentence like “F(a)” or
atomic open formula “F(x)”. The first case consists in the most basic kind of complex terms and
the second the in the most basic kind of well­formed formulas249. Another different kind of com­
position comes from prefixing what we call open formulas with quantifiers in order to construct
sentences containing logical generality250. The essential break with traditional logic that Frege
effected consisted in showing that this latter kind of composition was completely different than
assigning a predicate to a subject. The internal structure of general statements in Frege’s con­
ceptual notation is given by a grammar which has no counterparts for ordinary expressions like
“all F’s”, “some F’s” as subjects of a sentence.

Although there are important differences between Frege’s logic of functions and mo­
dern predicate calculi, we may call a language which, in some way or another, embraces such
structure a Fregean* Grammar251. The Russellian grammar ­ as put forward in the Principles ­
contrasts markedly with a Fregean* one. The contrast is best explained in terms of the logico­
metaphysical distinctions that give rise to it. The most fundamental category of the Russellian
grammar is that of a term in the sense of the Principles, i.e., an entity or being which can occur
as a logical subject of a proposition. Among terms Russell distinguishes between things and con­
cepts and roughly, the linguistic counterpart of these ontological categories are those of singular
terms and predicates; being terms, however, both things and concepts can be logical subjects
of propositions. In other words, from the perspective of Russellian grammar as presented in the
Principles what distinguishes “a is red” from “red is a color” is that the former sentence expres­
ses a proposition in which red occurs as concept ­ i.e., not as a the subject of the proposition ­
249 And, of course, iterations or combined iterations of these stages result in expressions of the same kinds but of

increasing complexity, as in “f (f (x)” or “F(fa)”, etc.
250 Of course a different kind of composition of complex expressions in stages comes from taking sentences and

iterating what we now call propositional connectives or operators to form new formulas.
251 Frege’s Logic was not a predicate calculus, but a logic of terms, so such a generic ‘Fregean*’ cannot strictly

be attributed to Frege himself (cf, previous footnote 232 of this chapter and footnote 7 of chapter 3). What we
are calling a Fregean* Grammar does, however, incorporate many of Frege’s most important and characteristic
loigical insights.
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while in the latter it does occur as a term, i.e., as the subject of the proposition.

The analysis of quantification of the Principleswhich arises from taking as fundamental
the notion of a term occurring as a logical subject of a proposition is drastically different from
that of Frege. As Hylton points out, Russell’s explanation of generality functions primarily in a
“non­linguistic level”252: the main problem of explaining generality in the Principles is not that
of providing an adequate symbolic apparatus for the quantifier, but rather that of reaching the
ultimate constituents of propositions involving generality. Russell referred to this problem as
‘The Problem of the Variable’. Upon his return from the Congress of Philosophy by 16 August
1900, Russell explained it to Moore as follows:

Have you ever considered the meaning of any? I find it to be the fundamental
problem of mathematical philosophy. E.g. “Any number is less by one than
another number.” Here any number cannot be a new concept, distinct from
the particular numbers, for only these fulfil the above proposition. But can
any number be an infinite disjunction? And if so, what is the ground for the
proposition? The problem is the general one as to what is meant by anymember
of a defined class. I have tried many theories without success.253

Russell was puzzled as to what sort of subject of a proposition would be indicated by
“Any number” or “All numbers”254. It cannot be the set of all numbers, for the proposition we are
considering is not about a certain class, which (so Russell though at the time) is a single entity,
but about each member of the class255. For, whenever someone asserts “every natural number
is either odd or even”, this statement is not meant to assert something about the set containing
1, 2, 3, ... nor about the concept of natural number but about the numbers themselves. As Russell
puts it, “[...] it is only particular numbers that are odd or even; there is not, in addition to these,
another entity, any number, which is either odd or even, and if there were, it is plain that it could
not be odd and could not be even”256.

In thePrinciples, the answer for this conundrum comeswith Russell’s notion of denoting,
which is amusingly introduced in the following passage, where Russell writes:

A concept denotes when, if it occurs in a proposition, the proposition is not
about the concept, but about a term connected in a certain peculiar way with

252 Cf. HYLTON, P., 1990, p.213. This, of course, is not to say that Russell did not recognize the (important) issues
of concerning the rules and axioms of quantification theory or that he did not grasped the difference between
formulating an adequate formalism and that of providing an analysis of general propositions (in a non­linguistic
sense); Russell clearly grasped the difference between a formula or sentence and the proposition that sentence
stood for.

253 MOORE, G., 1993, p.181.
254 As we shall discuss in some detail in the next chapter, Russell thought that each word of the sentence should

stand for a constituent of a proposition.
255 We are working, for the sake of discussion, with the naive assumption that there could be such a thing as the

class of all numbers.
256 RUSSELL, B., 1903, p.53 §56.
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the concept. If I say “I met a man”, the proposition is not about a man: this is a
concept which does not walk the streets, but lives in the shadowy limbo of the
logic­books. What I met was a thing, not a concept, an actual man with a tailor
and a bank­account or a public­house and a drunken wife.257

It is important to notice, again, that Russell is not speaking of denoting in the usual
sense that words denote something, but he is talking about a relation which holds between the
concept C and a term x when, whenever the concept occurs in a proposition, the logical subject
of the proposition is not the concept C but the term x. As Russell puts it, he is not worried
with ‘denoting’ in the sense that “we denote, when we point to or describe, or employ words as
symbols for concepts”258 but in ‘denoting’ as “[...] a logical relation between some concepts and
some terms, in virtue of which such concepts inherently and logically denote such terms”259.

Russell understood denoting concepts as derived fromwhat he called “class­concepts”260.
A class concept for Russell is a concept such that x is an a is a propositional function, i.e., when
the result of the substitution of a term­name for “x” in “x is an a” results in a sentence that
expresses a proposition. So Russell understood all quantifier­like expressions attached to class
concept­words as standing for denoting concepts (as in “every number”, “any number”, “some
number”, etc.). Russell expressed this, again, with his usual carelessness about use and mention,
as follows:

When a class­concept, preceded by one of the six words all, every, any, a, some,
the, occurs in a proposition , the proposition is, as a rule, not about the concept
formed of the two words together, but about an object quite different from this,
in general not a concept at all, but a term or complex of terms.261

Fortunately, he explains this more carefully (but still with his characteristic slips):

Consider again the proposition “I met aman”. It is quite certain, and is implied
by this proposition, that what I met was an unambiguous perfectly definite man:
in the technical language which is here adopted, the proposition is expressed
by “I met some man”. But the actual man whom I met forms no part of the
proposition in question, and is not especially denoted by some man. Thus the
concrete event which happened is not asserted in the proposition. What is as­
serted is merely that some one of a class of concrete events took place. The

257 RUSSELL, B., 1903, p.53 §56.
258 RUSSELL, B., 1903, p.53 §56.
259 RUSSELL, B., 1903, p.53 §56. Another alternative would be to say that the proposition is about the class of

numbers as many but according to the doctrine of the univocity of being, there is no such entity: whatever is a
being or is a possible logical subject of a proposition must be a single entity.

260 RUSSELL, B., 1903, p.74 §73.
261 RUSSELL, B., 1903, p.64 §65. This passage could be fixed as follows: “When a class­concept [word], prece­

ded by one of the six words all, every, any, a, some, the, occurs in a((((((hhhhhhproposition [sentence], the proposition
[indicated by the sentence] is, as a rule, not about the concept [denoted by the denoting­concept­expression]
formed of the two words together, but about an object quite different from this, in general not a concept at all,
but a term or complex of terms.”
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whole human race is involved in my assertion: if any man who ever existed or
will exist had not existed or been going to exist, the purport of my proposition
would have been different. 262

Thus, Russell thought that the constituent for which the expression “any number” stands
for is a peculiar kind of concept, namely a denoting concept (sometimes also called a denoting
complex). The peculiarity of a denoting concept is that despite being a constituent of a propo­
sition like Any number is less by one than another number, the proposition is not about the
denoting concept but about the totality (as many) of numbers263. This peculiarity, in turn, arises
from the undefinable nature of the relation of denoting.

The very notion of variation or the variable or yet “the true formal variable”264, as Rus­
sell also referred to it sometimes, is then identified with the denoting concept any term265. This
analysis of generality amounts to introducing ‘the variable’ as a genuine constituent of propo­
sitions, namely, as Russell puts it, “the object denoted by any term”266, which has “a kind of
individuality”267.

This individuality, according to Russell accounts for the apparently contradictory fact
that although “[...] different variables may occur in a proposition, yet the object denoted by
any term, one would suppose, is unique”; once the variable is viewed as this peculiar entity ­
namely the denoting concept any term ­ this is supposedly resolved because such constituent
of a proposition “does not denote, properly speaking, an assemblage of terms, but denotes one
term, only not one particular definite term”; thus, Russell concludes:

[...] any term may denote different terms in different places. We may say: any
term has some relation to any term; and this is quite a different proposition
from: any term has some relation to itself.268

Appealing again to the notion of propositional function, Russell concluded:

The individuality of variables appears to be thus explained. A variable is not
any term simply, but any term as entering into a propositional function. We
may say, if ϕx be a propositional function, that x is the term in any proposition
of the class of propositions whose type is ϕx. It thus appears that, as regards
propositional functions, the notions of class, of denoting, and of any, are funda­
mental, being presupposed in the symbolism employed. With this conclusion,

262 RUSSELL, B., 1903, p.62 §62.
263 In fact, strictly speaking, the proposition is about anything whatsoever, given that Any number is less by one

than another number is asserting that for every value of x if x is a number then x is is less by one than another
number. The point is that what is asserted about something in the proposition, the concept of odd number, is
not being asserted of the denoting concept, but of the things denoted by the concept.

264 RUSSELL, B., 1903, p.91 §88.
265 Cf. RUSSELL, B., 1903, p.91 §88.
266 RUSSELL, B., 1903, p.94 §93.
267 RUSSELL, B., 1903, p.94 §93.
268 RUSSELL, B., 1903, p.94 §93.
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the analysis of formal implication, which has been one of the principal pro­
blems of Part I, is carried as far as I am able to carry it.269

Asmany authors have pointed out, this account of generality based on the theory of deno­
ting concepts is certainly rich270 and interesting, but also full of puzzles and difficulties271. From
a technical standpoint this account does not seem to provide a tenable theory of the quantifier
because it fails to provide an adequate account of denoting concepts that do not denote anything
and because it fails to account for subtleties of scope of quantifier expressions.

Important details apart, the fundamental subjacent issue here is that Russell still could
not let go ­ as Frege had already done ­ of ordinary grammar as a guide for analyzing generality
(and in fact, for analyzing the structure of propositions in general). As Landini points out, Frege’s
Begriffsschfrift, in contrast to the Principles, “[...] allots no logical significance to the fact that
‘all men’ is the grammatical subject of ‘All men are mortal’ ”272.

This is another important aspect in which a Fregean*Grammar differs radically from that
of Russell’s in the Principles.AFregean* Grammar embraces whatMichael Dummett called the
hierarchy of levels. Embracing this hierarchy of levels amounts to distinguishing sharply the syn­
tatical role which functional symbols and predicates play in contrast to the role of proper names
and singular terms. Indeed, if we follow Dummett, we may characterize a Fregean* Grammar,
as one in which proper names and singular terms in general are complete linguistic units which
may be used (within sentences) to refer to objects. Similarly, a sentence is a complete linguistic
unit that may be used to assert something of a particular object or about any number of objects.
These complete linguistic units contrast, however, with functional expressions, predicates and
also with quantifiers which are incomplete expressions. As we mentioned very briefly, Frege
elucidated this contrast in terms of the metaphor of ‘saturation’: a proper name or singular term,
as Frege puts it, is saturated whereas a functional symbol “f(...)” or a predicate or concept sym­
bol “F (...)” is unsaturated. The point of the metaphor is to convey what is the fundamental trait
of a Fregean* Grammar: in order to make a contribution to the truth­conditions or meaning in
269 RUSSELL, B., 1903, p.94 §93.
270 For instance, Russell went to a great deal of effort in order to distinguish the workings of all, every, any, a, some

and especially the, all of which he understood as denoting concepts (cf. RUSSELL, B., 1903, p.56 §59).
271 An example appears in the following passage, where Russell writes: “Great difficulties are associated with the

null­class, and generally with the idea of nothing. It is plain that there is such a concept as nothing, and that in
some sense nothing is something. In fact, the proposition “nothing is not nothing” is undoubtedly capable of
an interpretation which makes it true [...]” (RUSSELL, B., 1903, p.73 §73). Indeed, nothing is more telling that
something is amiss in terms of logical correctness than the attempt to turn “nothing” into a substantive (although,
perhaps a case could be made for the attempt to turn “nothing” into a verb as a strong contender, but we shall not
address the issue). The underlying problem here becomes even more clear in the subsequent explanation of the
denoting concept nothing. Russell explains: “Wemay now reconsider the proposition “nothing is not nothing”—
a proposition plainly true, and yet, unless carefully handled, a source of apparently hopeless antinomies.Nothing
is a denoting concept, which denotes nothing. The concept which denotes is of course not nothing, i.e. it is not
denoted by itself. The proposition which looks so paradoxical means no more than this: Nothing, the denoting
concept, is not nothing, i.e. is not what itself denotes. But it by no means follows from this that there is an actual
null­class: only the null class­concept and the null concept of a class are to be admitted.” (RUSSELL, B., 1903,
p.75 §73).

272 LANDINI, G., 1998, p.63.
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a well­formed sentence, incomplete expressions must receive some supplementation or become
saturated. One such way is to put proper names or singular terms as arguments in them, resulting
in atomic sentences in the case of predicates or complex singular terms in the case of functional
symbols. Frege’s genius was to extend this idea of ‘completion’ or ‘saturation’ to the quantifier
which he viewed as a ‘higher­order’ incomplete expression that required a predicate or concept
expression in order to become saturated and to express a meaningful sentence. Frege’s account
of the quantifier and his analysis of generality relied on his modelling predication on functio­
nality. Just like a functional expression like “f(x)” is assigned to a value i.e., a specific object
according to which value is assigned to “x”, a sentence like “F (a)” is assigned a truth­value
(also an object) depending on whether the object a falls or not under the concept F. According
to Frege’s analysis as put forward in the Grundgesetze, the quantifier itself is also seen as an
incomplete symbol a kind modelled upon the idea of functionality: the expression “ a X(a)”
is assigned to a truth­value according to what obtains: the True when every object falls under
the concept X (...) and to the False otherwise.

Russell’s most central doctrines precluded him from accepting Frege’s explanation of
predication via the notion of functionality. For Frege, the notion of a function was more funda­
mental than that of a property or a relation­in­intension and, as Landini puts it, for Russell “[...]
to have a property or stand in a relation means to occur as a ‘term of a proposition’ predicating
the property or relation” and Russell could simply not accept “[...] the notion that some entities
are ‘unsaturated’ so that variables for them cannot occupy subject positions”273; thus he rejec­
ted Frege’s notion of a function. As Hylton also nicely puts it, “[...] the idea of an entity, or a
quasi­entity, which is not self­subsistent but is incomplete, is so alien to Russell’s metaphysics
at this time that he does not seem able to understand it, even as the idea of another”274. The very
statement of Frege’s doctrine of ‘unsaturatedness’ was contradictory for Russell as he repeatedly
argues throughout the Principles275: Russell thought that any attempt to assert a sentence like
“F cannot be a logical subject” turns F into a logical subject and this lead him to conclude, as
Landini nicely puts it, that “its very statement is self­refuting”276. As Hylton rightfully claims,
“here, if anywhere, we reach bedrock”277.

Russell could not but analyze the notion of generality in terms of the fundamental idea
of a term occurring as the subject of a proposition. This created a problem for which Russell
could simply not provide an adequate solution: that of explaining what sort of subject we have
in case of general propositions, in particular formal implications. At the bottom, the problem
was that Russell could not accept anything like Frege’s doctrine of incomplete or unsaturated
entities and this precluded him from understanding quantifiers along the lines of a Fregean*
Grammar. Russell had no alternative analysis, however, except one guided by ordinary grammar.
273 LANDINI, G., 1998, p.64.
274 HYLTON, P., 1990, p.220.
275 Cf. for instance, RUSSELL, B., 1903, pp.45­6 §49 or p.510 §483.
276 LANDINI, G., 1998, p.64.
277 HYLTON, P., 1990.
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The solution of the Principleswas given in terms of the notion of denoting concepts, in particular
that of any term, which he identified with the absolutely unrestricted variable of Logic and
Mathematics. A definite solution of the issue had to await Russell’s new theory of denoting and
of the variable, given in On Denoting.

2.2.4 Classes, Propositional Functions and Relations

Russell’s calculus of classes, which is build upon the logic of propositions, assumes
as primitive, besides the notion of variable that is presupposed in Logic as a whole, the three
primitive notions of membership of a term to a class, of propositional function and such that,
most of which are taken from Peano’s logic, with some modifications. As previously noted, one
of Russell’s debts to Peano is the distinction between membership and containment together
with the recognition of the conceptual priority of the former:

The insistence on the distinction between ϵ and the relation of whole and part
between classes is due to Peano, and is of very great importance to the whole
technical development and the whole of the applications to mathematics. In
the scholastic doctrine of the syllogism, and in all previous symbolic logic, the
two relations are confounded, except in the work of Frege. The distinction is
the same as that between the relation of individual to species and that of species
to genus, between the relation of Socrates to the class of Greeks and the relation
of Greeks to men.278

In the Principles, Russell adheres to Cantor’s conception of a set as a “[...] collection
M into a whole of definite, well­distinguished objects m of our intuition or thought” short of
the apparent psychologism involved in it. Put in another formulation that Russell would fully
accept, a class or set ­ in the Cantorion sense ­ is a “[...] many, which can be thought of as one,
i.e., a totality of definite elements that can be combined into a whole by a law”279. We find this
conception fully articulated in the Principles in the following passage:

A class, we have seen, is neither a predicate nor a class­concept280, for different
predicates and different class­concepts may correspond to the same class. A
class also, in one sense at least, is distinct from the whole composed of its
terms, for the latter is only and essentially one, while the former, where it has
many terms, is, as we shall see later, the very kind of object of which many
is to be asserted. The distinction of a class as many from a class as a whole is
often made by language: space and points, time and instants, the army and the

278 RUSSELL, B., 1903, p.20 §20.
279 CANTOR, G., We are borrowing Boolos’s translation (BOOLOS, G., 1971, p.215). Detailed discussions of Rus­

sell’s gradual acceptance of Cantor’s ideas are found in RODRÍGUEZ­CONSUEGRA, F., 1991, GARCIADI­
EGO, A., 1992 and GRATTAN­GUINNESS, I., 2000b.

280 This notion is a technical notion in the Principles, we explain it below.
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soldiers, the navy and the sailors, the Cabinet and the Cabinet Ministers, all
illustrate the distinction.281

So called ‘propositional functions’ were already considered in Russell’s aforementioned
analysis of formal implication as the assertion of a class of propositions. In place of Peano’s
notion of a proposition p containing a real variable x, Russell has a function ϕx, whose values
are propositions. Thus, in a proposition like Socrates is a man, if Socrates is replaced by a
variable, we get x is a man, which is a propositional function282.

As in the case of Russell’s theory of generality, the notion of a propositional function
plays an explanatory role in Russell’s theory of classes, but it is important to observe, in conti­
nuity with our previous discussion of the notion of a logical subject and constituents of proposi­
tions, that Russell did not assume an ontology of propositional functions as he did an ontology
of classes. This role is that of indicating what Russell calls a “constancy of form” of certain clas­
ses of propositions which Russell assumes as more fundamental than the notion of a class itself.
This notion is derived, again, from the fundamental concept of a term occurring as a subject in
a proposition. In the chapter on the notion of variable, he writes:

When a term occurs as term in a proposition, that term may be replaced by any
other while the remaining terms are unchanged. The class of propositions so
obtained have what may be called constancy of form, and this constancy of
form must be taken as a primitive idea. The notion of a class of propositions
of a constant form is more fundamental than the general notion of a class, for
the latter can be denned in terms of the former, but not the former in terms of
the latter. Taking any term, a certain member of any class of propositions of
constant form will contain that term.283

As Landini emphatically observes, however, there is no ontology of propositional func­
tions in the Principles. Russell recognizes this explicitly in the following ­ often neglected ­
passage:

According to the theory of propositional functions here advocated, the ϕ in ϕx
is not a separate and distinguishable entity: it lives in the propositions of the
form ϕx, and cannot survive analysis.284

Russell recognizes that this view may be in tension with the very argument he raises
against Frege’s notion of functions as incomplete entities which cannot be genuine logical sub­
jects. But the reason for Russell’s doubts against the recognition of propositional functions as
entities is none other than the threat of contradiction:
281 RUSSELL, B., 1903, p.68 §70.
282 Again, observe that the expressions “occurring in a proposition”, “substituted by a variable”, etc., have no

linguistic connotations here.
283 RUSSELL, B., 1903, p.89, §86.
284 RUSSELL, B., 1903, p.88, §85.
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If ϕ were a distinguishable entity, there would be a proposition asserting ϕ of
itself, which we may denote by ϕ(ϕ); there would also be a proposition not­
ϕ(ϕ), denying ϕ(ϕ). In this proposition we may regard ϕ as variable; we thus
obtain a prop­ ositional function. The question arises: Can the assertion in this
propositional function be asserted of itself? The assertion is non­assertibility
of self, hence if it can be asserted of itself, it cannot, and if it cannot, it can.
This contradiction is avoided by the recognition that the functional part of a
propositional function is not an independent entity.285

As we shall also discuss in the next chapter, this difficulty ­ like those involved in Rus­
sell’s account of the quantifier and of the nature of classes ­ will only be resolved with the new
account of generality which he comes up in the article On Denoting.

The notion of such that is, Russell tells us “[...] roughly equivalent to who or which, and
represents the general notion of satisfying a propositional function”286. Russell’s reluctance to
accept such that as a definable notion ­ as Peano did ­ is in accordance with the idea that there
are propositions which are not reducible to subject­predicate form. And this, of course, is due
to his acceptance of the reality of relations. As he explains, given a class of propositions of the
form xRb: “We cannot reduce this [form of]287 proposition to the form “x is an a’” without using
such that”288. The point here is closely related to Russell’s rejection of Leibniz’s, and Bradley’s
theories of judgment: if a proposition is relational, as in bRa, any attempt to reduce R­to­a to an
attribute of b or any other object would, in some cases289, presuppose the complexity involved
in what is indicated by the expression “has R to a”. This point re­appears with the definition of
such that: in cases where one would want to specify a class of all x such that xRa, it is pointless,
Russell tells us, to define the expression “all x such that xRa” in terms of membership to a class
a’, as in “x is an a’” because “a’ must be such that each of its terms, and no other terms, have
the relation R to a”290.

The notions of a propositional function and such that acquire their most basic signifi­
cance and importance in connection with the notions of class and class­concept. A class­concept
is a concept a such that “[...] ‘x is an a’ is a propositional function”; so a class­concept is just
a concept that, when asserted of an individual (or term), “asserts that an individual belongs [or
not] to a class”291. Thus given that “ϕx is a propositional function if, for every value of x, ϕx
is a proposition, determinate when x is given”292, a class can be conceived as the totality of en­
tities of which some given propositional function ϕx is true. In fact, Russell puts this forward
as a possible definition of the notion of class ­ as he put it, “[..] a class may be defined as all
285 RUSSELL, B., 1903, p.88, §85.
286 RUSSELL, B., 1903, p.83 §80.
287 This is surely a slip of Russell, since what contains a real variable cannot be a proposition, but a propositional

function. Russell is clearly concerned here with the specification of a class of propositions through a propositi­
onal function.

288 RUSSELL, B., 1903, p.82 §80.
289 Most notably in propositions which deal with asymmetrical relations.
290 RUSSELL, B., 1903, p.82 §80.
291 RUSSELL, B., 1903, p.54 §57.
292 RUSSELL, B., 1903, p.19 §22.

108



the terms satisfying some propositional function”293. But of course, Russell does not accept this
definition in virtue of the contradictions inherent to the naive conception of set the most famous
of which he discovered himself.

As is well known, however, the suggestion as it stands is nothing but catastrophic, as
Russell knew very well. Since Russell embraces Cantor’s conception of set, the central tenet of
the class theory of the Principles is the idea that “[...] classes must in general be regarded as
objects denoted by concepts, and to this extent the point of view of intension is essential”294. By
this, Russell means that despite the fact that “logically [...] extension and intension seem to be on
a par”, since an infinite mind could, in principle, determine an infinite class by enumeration of
its members, in our case “Death would cut short our laudable endeavour before it had attained its
goal”295. As Russell explains “[...] classes as many are the objects denoted by concepts of classes,
which are the plurals of class­concepts”296. But before his shocking discovery, now referred to
as ‘Russell’s Paradox’, he “took it as axiomatic that the class as one is to be found wherever
there is a class as many”297. This is precisely what engenders what he called the Contradiction:

A class as one may be a term of itself as many. Thus the class of all classes is
a class; the class of all the terms that are not men is not a man, and so on. Do
all the classes that have this property form a class? If so, is it as one a member
of itself as many or not? If it is, then it is one of the classes which, as ones, are
not members of themselves as many, and vice­versâ.298

Russell clearly identified the source of the problem as the so­called ‘naive’ assumption
that one can speak of any propositional function as determining a class as one:

The reason that a contradiction emerges here is that we have taken it as an
axiom that any propositional function containing only one variable is equiva­
lent to asserting membership of a class defined by the propositional function.
Either this axiom, or the principle that every class can be taken as one term,
is plainly false, and there is no fundamental objection to dropping either. But
having dropped the former, the question arises: Which propositional functions
define classes which are single terms as well as many, and which do not?299

This difficulty is not solved in the Principles. Far from a Cantorion Paradise, the set
theory of the work is more like Heaven during the Fall of Angels300. Nowhere in it we find a
definitive answer as to howwe can determine which concepts (or propositional functions) define
293 RUSSELL, B., 1903, p.20 §23.
294 RUSSELL, B., 1903, p.66 §66.
295 RUSSELL, B., 1903, p.69 §71
296 RUSSELL, B., 1903, p.106 §106.
297 RUSSELL, B., 1903, p.104 §104.
298 RUSSELL, B., 1903, p.102 §101.
299 RUSSELL, B., 1903, p.102­3 §102.
300 Revelation 12 : 7–10.
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a class and which ones do not. There is no axiom in the calculus of classes that can be identified
as what we nowadays call a comphrehension principle: a principle which tells what formulas of
a formal language determine a set and thus, what sets there are. The reasons why Russell failed
to find a solution will be discussed in the next chapter. For now we will review the main positive
aspects of the Principles theory of classes.

Russell assumed two specific primitive propositions for the calculus of classes, namely:

(Comp.*) If x belongs to the class of terms satisfying a propositional function ϕx, then ϕx is
true.301

(Ext.) If ϕx and ψx are equivalent propositions for all values of x, then the class of x’s
such that ϕx is true is identical with the class of x’s such that ψx is true302

The first of these is clearly Russell’s attempt to keep a class as the extension of a propositional
function without saying anything as to which propositional functions determine the class: all
that is entailed by the axiom is that if a class (as one) u is specified by a propositional function
ϕx, then ϕx is true of elements of u, but nothing is said as to what propositional functions
specify the class u (as one). So strictly speaking there is no actual axiom of comprehension for
classes assumed in the work. The second axiom is clearly a version of extensionality: given that
classes are the extensions of propositional functions (conceived, again, as one, not as many) the
axiom asserts that two classes u and v are identical if they are defined by materially equivalent
propositional functions. This axiom asserts that classes (as one) are identical when they have the
same elements. Class­concepts on the other hand can have the same extension and be distinct303,
since they are intensional entities.

Russell also did not identify relations with as classes of ordered pairs (or trios, and so on)
which was the approach taken not only by the Algebric tradition304, but also by Peano. Again,
Russell’s approach is grounded in his Philosophy of relations:
301 RUSSELL, B., 1903, p.20 §24.
302 RUSSELL, B., 1903, p.20 §24.
303 RUSSELL, B., 1903, p.20 §24.
304 It is well known that Peirce anticipated in many ways the modern treatment of quantification theory and his

‘calculus of relatives’ is no exception. Peirce’s method consisted in introducing relations as the sum of relatives,
that is, as classes of ordered pairs. As he put it: “A general relative may be conceived as a logical aggregate
of a number of such individual relatives. Let l denote “lover;” then we may write l = ΣiΣj(l)ij(I : J) where
(l)ij is a numerical coefficient, whose value is 1 in case I is a lover of J, and 0 in the opposite case, and where
the sums are to be taken for all individuals in the universe.” (PEIRCE, C., 1883, p.187). It is not surprising
that almost halfway through the twentieth century we find Tarski claiming that “though the significance of the
theory of relations is universally recognized [...] the calculus of relations, is now in practically the same stage
of development as that in which it was forty­five years ago” (TARSKI, A., 1941, p.74), since the essence of
the modern treatment of a (first­order) relation as the set of n­uples of indivduals from a specified domain D is
already given in the above passage. And, in fact, a fundamental result in model theory, Löwenheim’s theorem,
which states that if a first­order formula is true in some infinite model, then it is true in a model of cardinality
ℵ0, was proved originally within the framework of the Peirce­Schröder calculus of relatives (LÖWENHEIM,
L., 1915, p.235, §2, theorem 2); as is well known Lowenheim’s result was further investigated and developed by
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Peirce and Schröder have realized the great importance of the subject, but un­
fortunately their methods, being based, not on Peano, but on the older Symbolic
Logic derived (with modifications) from Boole, are so cumbrous and difficult
that most of the applications which ought to be made are practically not feasi­
ble. In addition to the defects of the old Symbolic Logic, their method suffers
technically [...] from the fact that they regard a relation essentially as a class
of couples, thus requiring elaborate formulae of summation for dealing with
single relations. This view is derived, I think, probably unconsciously, from a
philosophical error: it has always been customary to suppose relational propo­
sitions less ultimate than class­propositions (or subject­predicate propositions,
with which class­propositions are habitually confounded), and this has led to a
desire to treat relations as a kind of class.305

To be sure, Russell recognized that for the purposes of Mathematics (and its logicist
development) which only deals with extensions, nothing is required beyond the extensionality
of classes in order to handle a calculus of relations. Russell writes:

We may replace a relation R by the logical sum or product of the class of relati­
ons equivalent toR, i.e. by the assertion of some or of all such relations; and this
is identical with the logical sum or product of the class of relations equivalent
to R’ , if R’ be equivalent to R. Here we use the identity of two classes, which
results from the primitive proposition as to identity of classes, to establish the
identity of two relations.306

As we saw in the discussion of Russell’s 1901 article, Sur la Logique des Relations,
among the most important definitions of the calculus of relations are those of the domain of
a relation, “the class of terms which have the relation R to some term or other”, named in the
Principles as the referents with respect to R and the converse­domain, “the class of terms to
which some term has the relation R”307, referred to as the relata with respect to R. Despite the
fact that Russell repudiates the notion of an ordered couple as an entity, these two notions allow
him to speak of the extension of a relation. This, however applies only to the development of
Mathematics, for which only extensions matter. Russell assumes as more fundamental the in­
tensional character of relations and so co­extensiveness ­ in the sense specified ­ does not entail
identity:

The intensional view of relations here advocated leads to the result that two
relations may have the same extension without being identical. Two relations
R, R’ are said to be equal or equivalent, or to have the same extension, when
xRy implies and is implied by xR’y for all values of x and y.308

Thoralf Skolem (cf. SKOLEM., T., 1920). For a historical study of this often neglected chapter of the history of
Logic which is the development of the ‘calculus of relatives’, cf. BRADY, G., 2000.

305 RUSSELL, B., 1903, p.24 §27.
306 RUSSELL, B., 1903, p.24­25 §28.
307 RUSSELL, B., 1903, p.24 §28.
308 RUSSELL, B., 1903, p.24­5 §28.
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From the point of view of philosophical analysis ­ that is, of determining what, after all,
a relation is, Russell explicitly denies that one may define relations as classes of couples.

The fundamental issue Russell had with the Peirce­Schröder approach was the appeal to
the notion of ordered couple in the characterization of relations: in a nutshell, Russell thought
that there could be no such thing conceived as an entity309. As we had occasion to briefly con­
sider, relations, for Russell, must be taken, as he put it, as ultimate, non­analysable entities.
Russell’s point is quite simple, and again, it takes us back to the rejection of the logical doctrine
that every proposition could be analyzed as having the subject­predicate form or as asserting
membership to a class: Russell thought that if a relation R is identified as a class of couples,
the notion of couple should be either treated as a primitive idea or as a class ­ thus the sense
or ‘direction’ of R remains either unexplained or entirely lost. As Russell put it “it is necessary
to give sense to the couple, to distinguish the referent from the relatum: thus a couple beco­
mes essentially distinct from a class of two terms, and must itself be introduced as a primitive
idea”310. Again, the point is established by considering propositions containing asymmetrical
relations which cannot be analyzed in terms of subject­predicate form. Thus, Russell claims
that the more correct procedure is “to take an intensional view of relations, and to identify them
rather with class­concepts than with classes”311, so that whenever R is a relation, xRy “express
[...] the propositional function “x has the relation R to y””312.

2.2.5 Rules of Inference and the ‘Universality of Logic’

Before closing our discussion of the logic of the Principles we must consider how Rus­
sell’s handles rules of inference in the work.

The issue appears when Russell introduces the fourth axiom of his calculus of propo­
sitions, which is, in fact, the rule of modus ponens. Russell claims that it “[...] is a principle
incapable of formal symbolic statement” and that illustrates “the essential limitations of forma­
lism”313. This is a point which marks an important and fruitful break with Peano, since here
Russell is acknowledging ­ somewhat carelessly ­ two fundamental points:

1. The distinction between axioms and rules of inference;
309 He also thought his treatment was more convenient and more powerful as a purely mathematical tool, that is,

independently of philosophical considerations (RUSSELL, B., 1903, p.24 §27).
310 RUSSELL, B., 1903, p.99 §98. Of course, around this time the Wiener­Kuratowski definition had not yet been

discovered. We’ll discuss it in connection with Principia’s theory of relations later on.
311 RUSSELL, B., 1903, p.99 §98.
312 RUSSELL, B., 1903, p.24 §27. This requires him to assume a primitive a proposition “to the effect that xRy is

a proposition for all values of x and y”. (RUSSELL, B., 1903, p.24 §27).
313 RUSSELL, B., 1903, p.16 §18.
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2. The indispensability of rules formulated as such ­ and not merely as another axiom of for­
mal law ­ for an adequate formulation of a formal system (and the possibility of providing
rules in general).

Now, sincemuch has beenmade of the alleged ‘Universality’ of Russell’s Logic in thePrinciples,
the second point is worth close attention.

The status of so called ‘Axiom’ 4 is further explained in the discussion of Lewis Carroll’s
‘paradox’ as presented in What the Tortoise said to Achilles314. Russell’s resolution of Carroll’s
puzzle is to distinguish the meaning of the two locutions “p implies q” and “p therefore q”:

The principles of inference which we accepted lead to the proposition that, if
p and q be propositions, then p together with “p implies q” implies q. At first
sight, it might be thought that this would enable us to assert q provided p is
true and implies q. But the puzzle in question shows that this is not the case,
and that, until we have some new principle, we shall only be led into an endless
regress of more andmore complicated implications, without ever arriving at the
assertion of q. We need, in fact, the notion of therefore, which is quite different
from the notion of implies, and holds between different entities.315

We can understand Russell’s distinction here as one between implication and entailment,
the difference being that each of these relations hold between different sorts of entities. The
different entities in question are what Russell calls asserted and not­asserted propositions, where
the word “assertion” is taken in an (unexplained) “non­psychological sense”316.

Roughly, Russell’s point is the following. Take the following two assertions, where brac­
kets are inserted to distinguish different propositions which occur as constituents (i.e., terms
related by the relation of implication)317:

(Implies) {p implies q} and {p} implies q.

(Entails) {p implies q} and {p} entails q.

Russell is claiming that the second has subordinate assertions while the first does not, and that
this is what differentiates the assertion of an implication from an inference. The point is that to
314 CARROLL., L., 1899. Recall that the problem was the following: Not­so­bright Achilles was attempting to

deduce B as a conclusion from A implies B and A; a witty tortoise with socratic mannerisms convinces him
that in order to obtain B from A implies B and A, he should add a premise to the effect that if A implies B and
A is true, one can deduce B, leading poor Achilles into an infinite regress.

315 RUSSELL, B., 1903, p.35 §38.
316 RUSSELL, B., 1903, p.35 §38.
317 Observe that there is no use­mention confusion here. Since propositions are not expressions, the use of quota­

tion marks or even Quine’s corner quotation marks would give us what we need, which is a mere notational
indicator of individuating differently used (not mentioned) proposition­names or variables. We follow the no­
tation adopted by Landini, who was particularly worried with expressions of the form “{p ⊃ q} = q”, where
dots can become very inconvenient (LANDINI, G., 1998, p.44, in particular footnote 2).
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assert (Implies) is to assert that if {p implies q} and {p} are true, then q is true; while to assert
(Entails) one must assert {p implies q} is true and {p} is true, therefore q is true. The difference,
Russell as explains, is that:

When we say therefore, we state a relation which can only hold between asser­
ted propositions, and which thus differs from implication. Wherever therefore
occurs, the hypothesis may be dropped, and the conclusion asserted by itself.
This seems to be the first step in answering Lewis Carroll’s puzzle.318

Landini claims that the above is “Russell’s way of saying that an inference rule is meta­
linguistic and not itself an axiom among others”319. Although there are certainly are hints of
such a view in Russell’s discussion, it may be considered implausible and anachronistic to fully
project this distinction in this clear­cut way into the logic of the Principles. This, however is
not to say, as several authors have, following an interpretative tradition started by Jean van
Heijenoort320, that the distinction is antithetical to Russell’s Logic.

In an excellent paper321, Ian Proops scrutinized how the general and somewhat vague
claim that “Russell’s logic is universal” is often brought up in secondary literature as some sort
of bundle of claims such as that Russell’s logic is a “universally applicable theory”322; or that
Russell’s Logic is a “universal language”323; or Russell’s Logic consists of “maximally general
truths”324; or yet that Russell’s Logic is “all­encompassing”325. More importantly, he sistemati­
cally showed how these claims are not always clearly distinguished and are sometimes entangled
with others such as that “the range of the quantified variables in the laws of logic is not subject
to change or restriction”326 or that “Logic is not a system of signs that can be disinterpreted and
for which alternative interpretations may be investigated”327. The point is very relevant, since
from these vague characterizations, of course, many specific conclusions are drawn like the fact
that “the question of the completeness of a system simply could not arise for him”328 or still that
“there is no room for what we would call metatheoretic considerations about logic”329. His syste­
matic critical discussion of the so­called ‘Universalist interpretation’ presents definitive textual
evidence, however, to the effect that many of these views cannot be attributed to Russell without
318 RUSSELL, B., 1903, p.35 §38.
319 LANDINI, G., 1998, p.45.
320 van HEIJENOORT, J., 1967b.
321 PROOPS, I., 2007.
322 URQUHART, A., 1988, p.83.
323 HYLTON, P., 1990, p.200.
324 RICKETTS, T., 1996, p.59.
325 GOLDFARB, W., 1989, p.27.
326 GOLDFARB. W., 1989, p.27
327 GOLDFARB. W., 1989, p.27
328 HYLTON, P., 1990, p.202.
329 GOLDFARB, W., 1989, p.27.
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some serious qualifications or simply cannot be attributed to him at all330. The general lesson Ian
Proops gives is that this reading attributes “a general blindness on Russell’s part to the distinc­
tion between logic itself and one of the logical systems designed to capture it”331; a distinction
which Russell was well aware that could be made, as Landini and Ian Proops showed.

Taking into consideration the particular case of Russell’s ‘axiom’ 4, the inference rule of
Modus Ponens, how does such ‘universalist’ reading fits with Russell’s discussion? Goldfarb’s
central claims are that Russell’s Logic consists of “all­encompassing principles of correct reaso­
ning” and that “anything that can be communicated must lie within it”332. How does this fit with
Russell’s claim that the notion of entailment, generally marked by a “therefore” locution “is a
principle incapable of formal symbolic statement”333? When Russell asserts this, he seems to be,
if not plainly denying Goldfarb’s idea that for Russell Logic “is the framework inside of which
all rational discourse proceeds”334, at least saying that such a claimmust be somewhat weakened.
Perhaps a ‘universalist’ could claim in response that the laws of Logic are not exhausted by what
can be expressed by the formalism of Logic; but that goes against some of the claims they accept
­ for instance, that “Logic, for Russell, was a universal language, a Lingua characteristica” that
is “universal and all­inclusive”335

Is that to say that there is a strict distinction between theory and meta­theory involved
in Russell’s discussion of modus ponens and Carroll’s puzzle? No. But it makes it plausible that
some embryonic form of the distinction was there mixed with some confused ideas of Russell,
despite the claims of van Heijenoort’s followers. This indicates that Russell accepted:

1. No formal symbolic expression of a given formal system can capture what is characteristic
of inference within that formal system, i.e., that which is described by Russell in terms of
therefore, or what we called entailment; and

2. That there are are propositions which can capture a rule of inference.

In fact, since Russell was obviously aware of the possibility of formulating different formal
systems with different primitive notions axioms and rules, it is absolutely plausible to suppose
that Russell thought that “the limitations of formalism” are, in a sense relative to a given specific
formalism. Unless we are prone to admit an incoherence onRussell’s part or, worse yet, to project
some Tractarian doctrine that somethings can only be shown but not said into the Principles, it
330 The first systematic critique of the claim that Russell’s conception of Logic precludes the possibility of a meta­

theoretical considerations was presented by Landini in his book on Russell’s Substitutional Theory (LANDINI,
G., 1998, pp.30­41), and, in fact, many of his points are reiterated by Proops, albeit in more detail.

331 PROOPS, I., 2007, p.19.
332 GOLDFARB, W., 1989, p.27.
333 RUSSELL, B., 1903, p.16 §18.
334 GOLDFARB., W., 1989, p.27.
335 HYLTON, P., 1990, p.200.
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seems that such general claims like those made by Hylton and Goldfarb should be mitigated in
the face of such difficulties336.

2.2.6 Summary of the Formal System Underlying the Principles of Mathema­
tics

In the Principles Russell assumes ten axioms for his calculus of propositions, as fol­
lows337: (1) If p implies q, then p implies q; in other words, whatever p and q may be, “p im­
plies q” is a proposition; (2) If p implies q, then p implies p; in other words, whatever implies
anything is a proposition; (3) If p implies q, then q implies q; in other words, whatever is implied
by anything is a proposition; (4) A true hypothesis in an implication may be dropped, and the
consequent asserted; (5) If p implies p and q implies q, then pq implies p; (6) If p implies q and
q implies r, then p implies r; (7) If q implies q and r implies r, and if p implies that q implies r,
then pq implies r; (8) If p implies p and q implies q, then, if pq implies r, then p implies that q
implies r; (9) If p implies q and p implies r, then p implies qr; (10) If p implies p and q implies
336 It is worth noting that Russell’s views on inference in the Principles (and elsewhere) are tied to his views on

assertion, which are somewhat problematic. There is, in particular, a lack of clarity concerning the notion of
assertion in the “non­psychological” ­ and unexplained ­ sense in which Russell employs the notion in the Prin­
ciples. Russell claims that: “It is plain that, if I may be allowed to use the word assertion, in a non­psychological
sense, the proposition ‘p implies q’ asserts an implication, though it does not assert p or q. The p and the qwhich
enter into this proposition are not strictly the same as the p or the q which are separate propositions, at least,
if they are true.” (RUSSELL, B., 1903, p.35 §38). Naturally, Russell raises the question of what makes a pro­
position “differ by being actually true from what it would be as an entity if it were not true?” (RUSSELL, B.,
1903, p.35 §38 our emphasis) but he simply admits he does not have an answer. He explains that “[...] there are
grave difficulties in forming a consistent theory on this point, for if assertion in any way changed a proposition,
no proposition which can possibly in any context be unasserted could be true, since when asserted it would
become a different proposition. But this is plainly false; for in “p implies q”, p and q are not asserted, and yet
they may be true” (RUSSELL, B., 1903, p.35 §38). Yet, as we saw, the distinction is essential to his resolution
of Lewis Carroll’s paradox. The problem Russell is struggling with here is one Frege had already dealt with ­
as Russell himself admits (RUSSELL, B., 1903, p.502 §477) ­ in a much more subtle way, namely that of ex­
plaining how the word “true” can be seemingly “devoid of content” yet it “cannot be dispensed with” (FREGE,
G., 1915, p.252). Frege’s irreproachable solution is to “distinguish the judgment from the thought” so that the
judgment is just “the acknowledgment of the truth of a thought” (FREGE, G., 1893, p.9). Frege, of course, intro­
duces a special symbol for this acknowledgment of the truth of a thought, his judgment­stroke “|”, which, when
combined with his horizontal bar, yields the now familiar “⊢”, that, when attached to a sentence, expresses the
acknowledgment that the thought expressed by it is true. As is well known, Russell later adopts this symbol.
Russell took issue with Frege’s view. According to to him: “[...] a difficulty arises owing to the apparent fact,
which may however be doubted, that an asserted proposition can never be part of another proposition: thus, if
this be a fact, where any statement is made about p asserted, it is not really about p asserted, but only about the
assertion of p. This difficulty becomes serious in the case of Frege’s one and only principle of inference (Bs.
p. 9): “p is true and p implies q; therefore q is true”. Here it is quite essential that there should be three actual
assertions, otherwise the assertion of propositions deduced from asserted premisses would be impossible; yet
the three assertions together form one proposition, whose unity is shown by the word therefore, without which
q would not have been deduced, but would have been asserted as a fresh premiss.” (RUSSELL, B., 1903, p.504
§478) Perhaps the root of all evil here is this: Russell is convinced that, despite the fact “that assertion does not
seem to be a constituent of an asserted proposition”, the assertoric force must be “in some sense, contained in
an asserted proposition” (RUSSELL, B., 1903, p.504 §478) and this is why Russell is reluctanct to, as he puts it,
“divorce assertion from truth, as Frege does” (RUSSELL, B., 1903, p.504 §478).

337 RUSSELL, B., 1903, p.16 §18.
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q, then “‘p implies q’ implies p” implies p. In symbols, the can be put as follows338:

(1) p⊃ q ⊃p.q p⊃ q

(2) p⊃ q ⊃p.q p⊃ p

(3) p⊃ q ⊃p.q q⊃ q

(4) ­

(5) p⊃ p ⊃p.q q⊃ q ⊃ pq⊃ p

(6) p⊃ q ⊃p,q,r q⊃ r ⊃ p⊃ r

(7) p⊃ q ⊃p,q,r p⊃ r ⊃ p⊃ qr

(8) q⊃ q ⊃p,q,r r⊃ r ⊃ p⊃ q⊃ r ⊃ pq⊃ r

(9) p⊃ p ⊃p,q,r q⊃ q ⊃ pq⊃ r ⊃ p ⊃ q⊃ r

(10) p⊃ p ⊃p,q q⊃ q ⊃ p⊃ q ⊃p ⊃p

Given Russell’s doctrine of the unrestricted variable, some interpretative issues arise in connec­
tion with respect to Russell’s definitions of the logical connectives339, but we may charitably
read his definitions as follows:

pq = r⊃ r ⊃r p ⊃ q⊃r r ⊃ r

p∨ q = p⊃ q ⊃.q

∼ p = r⊃ r ⊃r p⊃ r

338 This formulation is borrowed from LANDINI, G., 1998, p.44, except for the use of letters p, q, r, etc., to empha­
size that these are not special propositional variables that is, that they are unrestricted variables ranging over all
terms. Also Landini observes (LANDINI, G., 1998, p.44, footnote 2) modern reconstructions of the Russellian
propositional Logic of the Principles like those of Church (CHURCH, A., 1984) and Anderson (ANDERSON,
A., 1986 and 1989) generally introduce special propositional variables, something that not only goes against the
most distinctive feature of the Principles Logic, its unrestricted variables, but also demands the introduction
of a special notation for propositional identity. Landini has also recently shows that this system requires some
modifications in order to solve what he calls the “conjunction problem” (cf. LANDINI, G., 2020).

339 Cf. BYRD, M., 1989.
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None of the interpretative issues with the connectives is very serious340, except one concerning
negation341. Be that as it may, what is of real importance is that the above axioms and definitions
must be read in accordance with Russell’s doctrine of propositions: every propositional variable
and expression is a term, or as Landini puts it, it is a “[...] grammatical rule that for any wff A,
340 For instance, Russell defined conjunction (logical product) as follows: “If p implies p, then, if q implies q, pq

(the logical product of p and q) means that if p implies that q implies r, then r is true. In other words, if p and
q are propositions, then their joint assertion is equivalent to saying that every proposition is true which is such
that the first implies that the second implies it.” (RUSSELL, B., 1903, p.16 §18). The problem is that his seems
to define conjunction only for propositions ­ having the look of a conditional definition in the sense of Peano.
Symbolically, Russell’s original definition seems to be the following:

p⊃ p ⊃ q⊃ q ⊃ pq = p ⊃ q⊃r r ⊃ r

But as Michael Byrd observed, this is at odds with Russell’s Simplification Axiom ­ that which asserts “If
p implies p and q implies q, then pq implies p” ­ for since p and q can be any terms, then “the component
“pq” must have an interpretation when p and q are not propositions” (BYRD, M., 1989, p.351). Despite the
apparent nonsensicality of it, a definition of conjunction should not exclude a conjunction of two terms that
are not propositions like Russell and Whitehead: if one can speak (albeit always falsely) of Russell implying
Whitehead, why should the conjunction be considered nonsensical? The above also faces the following problem:
even if both p and q are true propositions, pqwould be false if r is not a proposition, for in that case p ⊃ q. ⊃ .r
would be false! Byrd fixes the slip by adopting the same definition we are attributing to Russell above, since,
as Byrd claims, it the simplest solution, since it allows for the conjunction of non­propositional terms and
keeps pq vacuously true for non­propositional r’s. Landini observes that Russell’s Simplification Axiom avoids
the inconvenient question of whether one could derive p or q from pq in case either one of these is a non­
propositional term, since in order for pq to imply p or for pq to imply q, p or qmust be propositions in each case
(LANDINI, G., 1998, p.49.). A similar issue arises with disjunction. Russell has: “[...] “p or q” is equivalent
to “‘p implies q’ implies q”. It is easy to persuade ourselves of this equivalence, by remembering that a false
proposition implies every other; for if p is false, p does imply q, and therefore, if “p implies q” implies q, it
follows that q is true.” (RUSSELL, B., 1903, p.17 §18). Byrd reads this (charitably) as:

p∨ q = p⊃ q ⊃ q

Which gives us a non­conditional definition where p and q can be any terms. As Landini points out, however,
Russell’s subsequent remark suggests again a restriction to propositions and, again, we can take this as a slip.
We have, however, to live with an asymmetry pointed out by Byrd: if q is not a proposition then p ∨ q is false;
but if q is a proposition and p is not, then p ∨ q may be a true proposition (BYRD, M., 1989, p.351).

341 Russell defines negation as follows: “[...] not­p is equivalent to the assertion that p implies all propositions, i.e.
that “r implies r” implies “p implies r” whatever rmay be. (RUSSELL, B., 1903, p.18 §18)”. Once again, Landini
thinks that Russell intends a conditional definition since he comments on a footnote that “[...] the principle that
false propositions imply all propositions solves Lewis Carroll’s logical paradox”(RUSSELL, B., 1903, p.18).
Byrd, on the other hand, puts this as:

∼p = r⊃ r ⊃r p⊃ r

The serious point of dispute, however, is not about this which we may take as a minor slip on Russell’s part.
As Byrd observes, Russell’s definition of negation “depends on assumptions about existence” that require the
use of negation as a primitive notion to be stated: the definition presupposes that there are false propositions,
something which can only be expressed by asserting that there is a proposition p such that p is false, which
is the same as to say that p is not true or that p is not the case (BYRD, M., 1989, p.355). Landini claims that
if we accept that it is a rule of the grammar of logic that nominalized formulas are singular terms, then the
existence of propositions ­ false or not ­ would be “a logical assumption” (LANDINI, G., 1998, p.53, footnote
7). There are reasons to question Landini on this point, however. In The Theory of Implication, where Russell
offers systematic symbolic treatment of propositional logic and quantification theory, he drops the definition of
negation of the Principles and adopts it as primitive, but he also considers the definition of the Principles in the
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p{A}q is a singular term”342.

As noted above, Russell did not have a clear account of the notion of class and so is
hesitant with respect to the assumption of primitive propositions, in particular a principle of
comprehension. Building up on the numbering of the axioms for propositional logic, Russell
further introduced: (11) If x belongs to the class of terms satisfying a propositional function ϕx,
then ϕx is true343; and (12) If ϕx and ψx are equivalent propositions for all values of x, then the
class of x’s such that ϕx is true is identical with the class of x’s such that ψx is true344. Which
we may put in symbols as follows:

(11) ϕx⊃x x ϵ ẑϕz

(12) ϕx ≡x ψx ⊃ ẑϕz = ẑψz

Both of these fail in characterizing an adequate concept of class, however, because at no point
Russell provides an adequate or precise account of what sort of conditions ϕ are admissible or
not.

The Calculus of relations further assumes the following propositions345: (13) if R is a
relation, then xRy is a proposition for all values of x and y; (14) Every relation has a converse,
i.e. that, if R be any relation, there is a relation R’ such that xRy is equivalent to yR’x for all
values of x and y; (15) Between any two terms there is a relation not holding between any two
other terms; (16) The negation of a relation is a relation; (17) The logical product of a class of
relations (i.e. the assertion of all of them simultaneously) is a relation; (18) The relative product
of two relations must be a relation346; (19) Material implication is a relation; (20) The relation of
a term to a class to which it belongs is a relation. Differently from the calculus of propositions

article. The reason why he drops the older definition, however, is “the fact that it never enables us to know that
anything whatever is false” (RUSSELL, B., 1906a, pp.60). Similarly, in a letter to Couturat 23 July 1905, Russell
explains that “the reason that he abandoned ‘p = p ⊃ (r) r’” was that he realized “one needs the idea of
falsehood, and as soon as one defines the negation of a proposition, one can well say that the negation of p is
true, but not that p is false” (MOORE, G., 2014, p.19). This seems precisely the point raised by Byrd. Landini
is clearly right about the logical status of the assumption of propositions (regarding both the Principles and the
Theory of Implication). But the above passages shows that despite the fact that the existence of propositions
(true or false) is a matter of Logic, the matter which seems to concern Russell here is how one can construct a
logical vocabulary in which this (granted, logical) assumption can be stated. Perhaps we may say the following:
Russell did understand the existence of false propositions as a logical matter but still struggled over what is the
correct method of expressing that a proposition is false and to prove that there are false propositions. Russell
seems to have thought later on that the Principles’s system is inadequate regarding this latter task. This seems
in agreement with both Byrd’s point and Landini’s view, since the latter emphasizes in several occasions that
Russell did distinguish Logic as a science and the formal system that is supposed to capture it (LANDINI, G.,
1996, p.556; LANDINI, G., 1998, p.34).

342 LANDINI, G., 1998, p.53, footnote 7.
343 RUSSELL, B., 1903, p.20 §24.
344 RUSSELL, B., 1903, p.20 §24.
345 RUSSELL, B., 1903, p.25 §28.
346 Where the relative product of two relations R, S is the relation which holds between x and z whenever there is

a term y to which x has the relation R and which has to z the relation S
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and that of classes for which, by the time of the Principles, Russell did not yet have a symbolic
treatment of his own to offer, his calculus of relations had already been presented in some detail
in his 1901 article, which was incorporated practically unaltered in the Principles. In the article
we find the following axioms k1·1, k1 · 7, k1·18, k2·15, k1·194·195, k2 · 1 · 11 and k3·1 which
correspond, respectively, to347:

(13) R ϵRel⊃ xRy = x has the relationR to y

(14) R ϵRel ⊃ ERel ��R′ ∋ (xR′y = yRx)

(15) E

R ��R ∋ (ρ = ιx ρ̆ = ιy)

(16) ∼ R ϵRel

(17) K ϵCls’Rel ⊃ ��‘K = ιR ∋ {xRy = E

K ��R′ ∋ (xR′y)} ⊃ ��‘K ϵRel

(18) R,S ϵRel ⊃ xRSz = Ey ∋ (xRy yRz)⊃ xRSz ϵRel

(20) ϵ ϵRel

The only remaining axiom can be then put as:

(19) ⊃ ϵRel

2.3 The Logicism of the Principles of Mathematics

2.3.1 Russell’s Definition of Pure Mathematics

In the very opening Principles, Russell puts forward the following famous ­ and, admit­
tedly, “somewhat unusual” ­ definition of Pure Mathematics:

Pure Mathematics is the class of all propositions of the form “p implies q”,
where p and q are propositions containing one or more variables, the same in
the two propositions, and neither p nor q contains any constants except logical
constants. And logical constants are all notions definable in terms of the fol­
lowing: implication, the relation of a term to a class of which it is a member,
the notion of such that, the notion of relation and such further notions as may
be involved in the general notion of propositions of the above form.348

347 RUSSELL, B., 1901c, p.316­8.
348 RUSSELL, B., 1903, p.1 §1.
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What is most important in the above passage, of course, is the statement of Russell’s
logicist thesis: that the propositions of Pure Mathematics are propositions of Logic, with logical
propositions characterized as those which have as constituents only logical constants.

As is well known, Russell would later repudiate this definition in the preface to the
Principles’s second edition on the grounds that there seem to be propositions that satisfy it and
“[...] yet may be incapable of logical or mathematical proof or disproof”349. His examples include
his Multiplicative Axiom, which is perhaps the most famous equivalent of Zermelo’s Axiom of
Choice and the so­called Axiom of Infinity of Principia Mathematica. As Russell explains, his
later position is that “[...] the absence of non­logical constants, though a necessary condition for
the mathematical character of a proposition, is not a sufficient condition”350.

Russell also later repudiated the emphasis on conditional propositions in the Principles’s
definition of Pure Mathematics, i.e., the idea that every proposition of Pure Mathematics could
be analyzed as an implication. As Russell himself observes, he was “[...] originally led to empha­
size this form by the consideration of Geometry”351. The point in question was precisely the
problem which led Russell to write the Essay on The Foundations of Geometry, namely how to
account for the existence of both Euclidean and non­Euclidean geometries as branches of pure
Mathematics. After he abandoned his project of elaborating a ‘complete dialectic’ of the sci­
ences as conceived in the Essay, Russell accepted as completely unproblematic the possibility
of formulating different and incompatible geometries based on different conceptions of space:
to put it simply, after Russell abandoned the Kantian conception of Geometry as grounded on
some form of pure intuition of space, the question of which sort of Geometry is the ‘correct’ one
acquired the status of an empirical problem. In his entry for non­Euclidean Geometry for the
Encyclopedia Britannica, Russell explained the point very clearly:

[...] there are a number of possible Geometries, each of which may be deve­
loped deductively with no appeal to actual facts. But no one of them, per se,
throws any light on the nature of our space. Thus geometrical reasoning is assi­
milated to the reasoning of pure mathematics, while the investigation of actual
space, on the contrary, is found to resemble all other empirical investigations
as to what exists. There is thus a complete divorce between Geometry and the
study of actual space. Geometry does not give us certain knowledge as to what
exists. That peculiar position which Geometry formerly appeared to occupy,
as an a priori science giving knowledge of something actual, now appears to
have been erroneous. It points out a whole series of possibilities, each of which
contains a whole system of connected propositions; but it throws no more light
upon the nature of our space than arithmetic throws upon the population of
Great Britain.352

349 RUSSELL, B., 1937, p.viii.
350 RUSSELL, B., 1903, p.vii. Explaining in some detail how this change came about will be the task of the next

two chapters, where we’ll adress in some detail Russell’s discovery of the Contradiction, the Theory of Definite
Descriptions and the several versions of the Theory of Types which he developed over a whole decade.

351 RUSSELL, B., 1937, p.vii.
352 RUSSELL, B., 1902, p.503.
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Geometry ­ be it Euclidean or not ­ is a branch of Pure Mathematics inasmuch as it
consists in implications between an axiom or set of axioms which describe some consistent con­
ception of space and some of its logical consequences. The inquiry concerning which consistent
conception of space is the correct one, or, equivalently, the problem of determining which set
of geometrical axioms is the one that describes the properties of actual space does not belong
to pure Mathematics, but to applied Mathematics. This point, Russell later claimed, made him
“[...] lay undue stress on implication, which is only one among truth­functions, and no more
important than the others”353.

Another issue with the opening definition of the Principles which Russell himself calls
attention to at some points is that it is inadequate to say that he takes the propositions of Geometry
(and pureMathematics in general) to assert implications between two propositions p and q. Since
he claims that a distinctive characteristic of logical (and mathematical) propositions is that they
contain variables, what Russell intends is to define propositions of pure Mathematics as formal
implications. So the assertion that “Pure Mathematics is the class of all propositions of the form
“p implies q”, where p and q are propositions”354 should be read as something along the following
lines:

(LPoM ) “Pure Mathematics is the class of all propositions r of the form “p implies q”, where
p and q are propositional functions containing any number of variables x, ..., z and
r asserts that p implies q is true for all the values of x, ..., z”.

Russell corrects this in the preface to the second edition of the Principles, observing that “[...]
when it is said that ‘p and q are propositions containing one or more variables’, it would, of
course, be more correct to say that they are propositional functions”355.

Indeed, this conception of logical propositions was already present in the 1901 popular
article on the Foundations of Mathematics which Rodríguez­Consuegra rightly called Russell’s
logicist manifesto. We find it in the following famous passage:

Pure mathematics consists entirely of assertions to the effect that, if such and
such a proposition is true of anything, then such and such another proposition
is true of that thing. It is essential not to discuss whether the first proposition
is really true, and not to mention what the anything is, of which it is supposed
to be true. Both these points would belong to applied mathematics. We start,
in pure mathematics, from certain rules of inference, by which we can infer
that if one proposition is true, then so is some other proposition. These rules of
inference constitute the major part of the principles of formal logic. We then

353 RUSSELL, B., 1937, p.vii.
354 RUSSELL, B., 1903, p.1 §1.
355 RUSSELL, B., 1937, p.vii. He rightfully observes, however, that the slip should “may be excused on the ground

that propositional functions had not yet been defined, and were not yet familiar to logicians or mathematicians”.
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take any hypothesis that seems amusing, and deduce its consequences. If our
hypothesis is about anything, and not about some one or more particular things,
then our deductions constitute mathematics. Thus mathematics may be defined
as the subject in which we never know what we are talking about, nor whether
what we are saying is true.356

And, in fact, Russell also fully articulated it in the Principles:

We assert always in mathematics that if a certain assertion p is true of any entity
x, or of any set of entities x, y, z, . . ., then some other assertion q is true of those
entities; but we do not assert either p or q separately of our entities. We assert a
relation between the assertions p and q, which I shall call formal implication.357

The typical proposition of mathematics is of the form “ ϕ(x, y, z, ...) implies
ψ(x, y, z, ...), whatever values x, y, z, ... may have”; where ϕ(x, y, z, ...) and
ψ(x, y, z, ...), for every set of values of x, y, z, ..., are propositions. It is not
asserted that ϕ is always true, nor yet that ψ is always true, but merely that, in
all cases, when ϕ is false as much as when ϕ is true, ψ follows from it.358

These passages are also relevant in connection with the frequently made claim that for
Russell, Logic is the body of “[...] maximally general truths”359. To be sure, some version of this
view must be attributed to Russell, since he claims, for instance that “[...] so long as any term
in our proposition can be turned into a variable, our proposition can be generalized [...] and so
long as this is possible, it is the business of mathematics to do it”360. But as Ian Proops urges,
Russell should not be read as defending that “[...] logic counts as a body of maximally general
truths because its propositions are in some sense maximally generalized”361.

Rather, the point should be understood in the light of the idea that there can’t be any
constants beyond logical ones in the propositions of Logic. This is clearly illustrated by one of
Russell’s favorite examples which also appears in his posterior discussions about the nature of
logical truths and logical constants362. Take the following:

(Syl) If every man is mortal and Socrates is a man, then Socrates is mortal.

As Russell understood the idea of “[...] turning its terms into variables”, in this particular case
what we would get is the following363:

356 RUSSELL, B., 1901, p.366.
357 RUSSELL, B., 1903, p.5 §5.
358 RUSSELL, B., 1903, p.6 §6.
359 RICKETTS, T., 1996, p.59. This is also emphasized in GOLDFARB, W., 1989; HYLTON, P., 1990 and many

other works.
360 RUSSELL, B., 1903, p.7 §8.
361 PROOPS, I., 2009, p.10.
362 As in the Theory of Knowledge Manuscript, for instance RUSSELL, B., 1913 [1984]. These views will be dis­

cussed in connection with the views Russell held around the time of Principia Mathematica.
363 RUSSELL, B., 1903, p.7 §8.
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(Syl*) For all x, y and z, if x and y are classes such that z belongs to y whenever it belongs
to x and z belongs to x, then z belongs to y.

Russell thought that this process of generalization gave the “[...] formal essence of a proposi­
tion”364. The variables here are completely unrestricted and, most importantly, no mention is
made concerning any particular class or object: only variables and logical constants occur in it;
this is what Russell thought was characterstic of logical truths. As Proops put it, “[...] in urging
that it is the business of mathematics to generalize propositions, Russell is urging only that the
propositions of pure mathematics should be free of non­logical constants”365. Landini had alre­
ady made a very similar point, commenting that Russell’s intention is to characterize the laws
of Pure Mathematics as “[...] true universal generalizations all of whose constants are logical
constants”366.

Unfortunately, Russell’s definition of Pure Mathematics has also been widely read as a
defense of the so called ‘If­thenist’ position in the Philosophy of Mathematics367. The traditional
formulation of this view characterizes a proposition of pure mathematics as asserting that “[...]
if anything is a model for a certain system of axioms, then it has certain properties”368. The pro­
blem, of course, is that according to this view, to establish any branch of knowledge as a logical
theory all one needs is to specify a vocabulary and set of logical axioms ­ one can be a Logicist
about Chemistry, Sociology or what have you. One can only say that Russell defended this view,
however, if one ignores his explicit claim that the logical vocabulary of Pure Mathematics must
be a purely logical vocabulary. For Russell, however, a proposition of Logic can only have as
constituents logical constants: as we shall discuss below, that is the essence of his definition of
Pure Mathematics and of the Logicist thesis of the Principles.

Russell intended his characterization to encompass all propositions of pure Mathematics
including elementary Arithmetic. But as Ian Proops369 aptly observes, Russell also thought that
the propositions of Arithmetic have a different status than those of Geometry: as we saw, he
thought that a particular set of axioms for geometry cannot be adopted, much less proved on
a logical basis, while he firmly believed his logical theory provided a logical foundation for a
proof of the Peano axioms. In fact, as we shall discuss below, what characterizes one of the
central traits of logicism of the Principles is the idea that the ultimate analysis of a proposition
of elementary Arithmetic is not something like “Peano Postulates imply p” much less “If so and
so is the case, then the Peano postulates are true”, for Russell thought that all of Peano’s axioms
could be proved by purely logical methods.
364 RUSSELL, B., 1903, p.7 §8.
365 PROOPS, I., 2009, p.12.
366 LANDINI,G., 1998, p.16.
367 See, for instance, COFFA, A., 1981.
368 PUTNAM, H., 1975, p.32.
369 PROOPS, I., 2006, p.270.
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Before discussing this central point, however, we must discuss whether a substantial
distinction can be traced between Logic and Pure Mathematics as sciences in the Principles.

2.3.2 The Relation Between Logic and Mathematics in the Principles

Grattan­Guinness observes that there seems to be two distinct formulations of the Logi­
cist thesis in Russell’s writings and that Russell himself confused them at some points. On the
one hand, the thesis can be understood as an inclusion thesis, which asserts that Pure Mathema­
tics is part of Logic, that is, that every proposition of PureMathematics is a proposition of Logic.
In other words, this version of Logicism is the view that all propositions of pure Mathematics
are propositions of Logic, with the inverse not holding. On the other hand, Logicism can also be
understood as an identity thesis which asserts that Pure Mathematics is Logic, that is, that Logic
and Pure Mathematics are just the same thing. Grattan­Guinness claims that in the opening of
the Principles “Russell clearly stated logicism [...] as an inclusion thesis” and holds that the
second stronger claim is untenable370.

In the second edition of the Principles, however, Russell stated that “[...] the thesis of the
following pages, that mathematics and logic are identical, is one which I have never since seen
any reason to modify”371. Grattan­Guinness takes the latter view to be an indefensible position
since “logic can be used in many contexts where mathematics is absent, for instance, in an
inference like ‘I am hungry’, and ‘if I am hungry, then I will eat’; hence ‘I will eat’”372.

To be sure, there is a sense in which Grattan­Guinness’s point is indisputable. Russell
would not admit that the conjunction of the aforementioned propositions is a logical truth. For
they involve notions like hunger and whatever is denoted by the indexical “I”. What is a logical
truth for Russell in the Principles is something like this:

If p is a proposition and q is a proposition, then, if p implies q and p is true, then q
is true.

According to the conception of Logic which Russell holds in the Principles, the above state­
ment stands for a logical truth because it expresses a proposition which is a completely gene­
ral one and which contains only variables and logical constants. Grattan­Guinness’s absolutely
unquestionable point is that a logical principle like the above may be employed in apparently
non­mathematical contexts.

The claim that Logicism must be viewed as an “inclusion” thesis on the face of this,
however, does not stand scrutiny. Russell would surely agree that Logic is applied in non­
370 GRATTAN­GUINNESS, I., 2000b, p.317.
371 RUSSELL, B., 1903, p.xxxii.
372 GRATTAN­GUINNESS, I., 2000b, p.317­18.
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mathematical contexts. So are mathematical laws: Arithmetic is surely employed when one
deduces from the fact that two cows and one sheep are in a field that there are three animals
in the field, but again, a statement like “if there two sheep and two cows in a field, then there
are four animals in that field” surely does not express a proposition of Mathematics according
to the definition of the Principles. The relevant point here is this: according to the definition of
Pure Mathematics of the Principles, a principle of deduction like “If p is a proposition and q is
a proposition, then, if p implies q and p, then q ” is just as mathematical a statement as “two
plus two equals four” because according to the Logicism of the Principles both of them express
propositions that contain only variables and logical constants. Thus Russell’s later statement that
Logic and Pure Mathematics are identical can and should be charitably interpreted as the claim
that the principles of deduction should be viewed among the principles of Mathematics. In this
light, whether Logicism should be viewed as an inclusion or identity thesis actually becomes
merely verbal.

This reading fits, for instance, some of the things Russell says in his Introduction to
Mathematical Philosophy where he states that “[...] logic has become more mathematical and
mathematics has become more logical” and that “[...] they differ as boy and man: logic is the
youth of mathematics and mathematics is the manhood of logic”373. Russell quite clearly makes
a very similar point in the Principles:

The distinction of mathematics from logic is very arbitrary, but if a distinc­
tion is desired, it may be made as follows. Logic consists of the premisses of
mathematics, together with all other propositions which are concerned exclu­
sively with logical constants and with variables but do not fulfill the above
definition of mathematics (§1). Mathematics consists of all the consequences
of the above premisses which assert formal implications containing variables,
together with such of the premisses themselves as have these marks. Thus some
of the premisses of mathematics, e.g. the principle of the syllogism, “if p im­
plies q and q implies r, then p implies r”, will belong to mathematics, while
others, such as “implication is a relation”, will belong to logic but not to mathe­
matics. But for the desire to adhere to usage, we might identify mathematics
and logic, and define either as the class of propositions containing only varia­
bles and logical constants; but respect for tradition leads me rather to adhere
to the above distinction, while recognizing that certain propositions belong to
both sciences.374

The point is that for Russell ­ in the Principles and elsewhere ­ the attempt to draw a ge­
nuine distinction between pure Mathematics and Logic will fail, both because Mathematics can
be developed using only logical notions and primitive propositions and because Logic itself can
be reasonably understood as a branch of Mathematics. The fact that Logic can also be employed
in reasoning about extra­logical notions and propositions does nothing to impugn this claim.
373 RUSSELL, B, 1919a, p.194.
374 RUSSELL, B., 1903, p.9 §10.
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This discussion, however, leads us to a substantial issue. The claim that the propositi­
ons of Logic are premises of Mathematics has been widely read in association with the claim
that there must be a recursively characterization of set of axioms strong enough to derive every
proposition of Mathematics. Since Gödel showed that we cannot even formulate a (consistent)
axiomatic calculus that entails the consequences of Peano Arithmetic, Russell has been widely
read as defending a claim that is ultimately refutable by a technical result. This understanding of
Logicism, not only of Russell’s version, but also in general, was already present in Carnap’s arti­
cle where the thesis which asserts that Mathematics is part of Logic was dubbed “Logicism”375.
There, of course, the thesis is explicitly tied to the idea that there must be a formal calculus
which is strong enough to prove every proposition of Arithmetic, since Carnap understands the
thesis as the twofold claim that mathematical concepts are definable in terms of logical concepts
and mathematical theorems are provable by means of purely logical methods376.

Following Landini, however, we can distinguish the two following theses377:

(L) There is a consistent, recursively axiomatizable and semantically complete theory
of logic with all mathematical truths among its theorems.

(L*) Mathematical truths are logical truths.

Although it is out of question that Russell endorsed both of these theses in the Principles (and
­ arguably ­ also in Principia) the question about their independence is quite another matter.
The first is a mathematical conjecture that is demonstrably false; the second can be understood
either as a metaphysical claim about the nature of mathematical entities or about the meaning
of mathematical statements ­ or both378. In fact, the counterpart of (L*) in the Principles is the
following:

(RL*) All true propositions of Pure Mathematics are fully general and have only logical
constants as constituents.

There remains the question, however, of whether Russell had a clear understanding of the notion
of logical truth that did not rely on the notions of provability or deductive closure under the
axioms of his calculus for Logic.

Landini, for instance, observes that for Russell “[...] the purpose of deduction of mathe­
matical formulas within the formal calculus for logic is to demonstrate that intuitions which
375 CARNAP, 1983 [1931].
376 CARNAP, 1983 [1931], p.31.
377 LANDINI, G., 2011, p.167­8.
378 Cf. for instance, LANDINI, G., 2011 and KLEMENT, K., 2013.
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were thought to be uniquely mathematical are, in fact, logical”379 ­ and so he claims that Rus­
sell’s committment to (L) “[...] is incidental”380. Landini’s point is that for Russell the role played
by rigorous proofs within a logical calculus is to demonstrate the following epistemic thesis:

(LI) The only form of intuition required for understanding and recognizing the truth of
pure Mathematics is logical intuition.

This reading is supported, for instance, by the fact that Russell frames his opposition to Kant
not in stating that (pure) Geometry and Arithmetic are analytic but in claiming that Logic is
synthetic:

The question of the nature of mathematical reasoning was obscured in Kant’s
day by several causes. In the first place, Kant never doubted for a moment that
the propositions of logic are analytic, whereas he rightly perceived that those
of mathematics are synthetic. It has since appeared that logic is just as synthetic
as all other kinds of truth;381

If Landini is correct ­ and the passage above about the synthetic character of Logic
strongly corroborates his reading ­ then, the fact that (L) is false becomes less problematic. For
in crucial cases over which the truth of (LI) can be disputed ­ as in the case of the principle
of mathematical induction ­ Russell provides proofs that employ only purely logical methods
where non­logical intuition was thought necessary382.

But still the central question remains unanswered: does Russell provide an account of
logical truth independently of deductive closure under his logical axioms? I.e., does Russell
provide an account of Logical necessity in the Principles? Landini thinks the answer is given by
the idea that logical propositions are fully general in the sense which we previously discussed,
that is: the idea that logical truths are “[...] true universal generalizations all of whose constants
are logical constants”383. Landini boldly claims that:

Russell’s notion of logical necessity is similar, in one way, to the Tarski se­
mantic notion of “invariant truth in all interpretations.” But instead of inter­
pretations of linguistic syntactic structure in different domains, Russell has the
notion of propositional structure or “logical form” and the approximation of
the original proposition to a fully general proposition which is true. The full
generality captures the idea of different interpretations in different domains.
Russell’s approach, however, reaches a limit with fully general propositions.

379 LANDINI, G., 1998, p.16.
380 LANDINI, G., 1998, p.16.
381 RUSSELL, B., 1903, p.457 §434.
382 LANDINI, G., 1998, p.16.
383 LANDINI,G., 1998, p.16.
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For Russell, full generality and truth has to be sufficient for logical necessity
(logical truth).384

This account draws on an unpublished article Russell read to the Oxford Philosophical
Society on 22 October 1905 entitledNecessity and Possibility385. There Russell considers the pos­
sibility of giving an anti­Kantian account of the notion of analytic judgments as those judgments
that “[...] are necessary with respect to all their constituents except [...] logical constants”386.
Here the main contention is still that logical laws have only logical constants and variables as
constituents. Landini takes Russell to be defending something like Tarki’s conception of logical
truth explained in terms of logical structure.

Those who advocate the van Heijenoort interpretation would probably reject this pro­
posal on the grounds that Russell’s views were supposedly antithetical to the idea of varying
interpretations of the non­logical constants (in the linguistic sense). As the argument usually
goes, this is because Russell did not understood his Logic as a mere uninterpreted formalism
that could be interpreted differently for varying universes of discourses, but rather as a univer­
sal language whose universe of discourse ­ like that of Frege’s Logic ­ is the Universe, which
“[...] consists of all that there is, and it is fixed”387. The latter point is indisputable: Russell’s
idea that Logic must embrace an unrestricted variable which ranges over every possible term
requires that the universe of variation be unique and exhaustive. This is the very core of the
doctrine of the unrestricted variable, no question about it. However, this does not preclude an
attempt to approximate Russell’s ideas to those of later logicians as it is frequently claimed388.
The point to be emphasized is that Russell (and Frege) did not need to speak of different inter­
pretations. In the case of Frege he explicitly introduced his begriffsschrift as a basic framework
upon which any topic specific science could be developed axiomatically once a specific voca­
bulary was added to it. Speaking in somewhat anachronistic terms, restrictions of “universe of
discourse” were to be drawn by introducing non­logical vocabulary into the object language, not
by actually specifying a restricted domain in the metalanguage. The same applies to Russell.

Be that as it may, Russell does explain his conception of analyticity in terms of closure
under logical axioms. He first puts forward a purely syntactic account of deducibility:

The laws of deduction tell us that two propositions having certain relations of
form (e.g. that one is the negation of the negation of the other) are such that
one of them implies the other. Thus q is deducible from p if p and q either have
one of the relations contemplated by the laws of deduction, or are connected
by any (finite) number of intermediaries each having one of these relations to
its successor. This meaning of deducible is purely logical, and covers, I think,

384 LANDINI, G., 1998, p.41.
385 RUSSELL, B., 1905d, Collected papers p.507.
386 RUSSELL, B., 1905d, Collected papers p.507.
387 van HEIJENOORT, J., 1967, p.325.
388 Again, cf. van HEIJENOORT, J., 1967; RICKETTS, T., 1985; GOLDFARB, W., 1989; HYLTON, P., 1990.
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exactly the cases in which, in practice, we can deduce a proposition q from a
proposition p without assuming either that p is false or that q is true.389

Russell then defines analytic propositions as those which are deducible from the “[...]
small number of general logical premises” and concludes that the notion of a proposition that
“[...] can be deduced from the laws of logic” gives us “the class of analytic propositions”390. He
continues:

A certain large body of propositions, namely (approximately) those constitu­
ting formal logic and pure mathematics, all have some very important logical
characteristics in common and are all deducible from a small number of gene­
ral logical premises, among which are included the laws of deduction already
spoken of391. These general logical premisses fulfill the functions formerly sup­
posed to be fulfilled by the so­called “laws of thought”: they may be called the
“laws of logic”. From the laws of logic all the propositions of formal logic and
pure mathematics will be deducible.We may, then, usefully define as analytic
those propositions which are deducible from the laws of logic; and this defi­
nition is conformable in the spirit, though not in the letter, to the pre­Kantian
usage.392

Given the way Russell understands the notion of deducibility, this passage shows that
not only he was committed to Logicism in the sense that Gödel showed to be an untenable thesis
(namely (L) discussed above), but that he also wavers between accounts of logical necessity that
relies upon the idea of deductive closure under some set of axioms.

So, the appeal to the notion of analyticity defined in the paper on logical necessity does
not seem to settle the question of whether Russell embraced a definite account of logical neces­
sity independent of the notion of provability or deductive closure as Landini argues. Still, the
paper definitely establishes that we should follow Landini in dissociating logicism (RL*) from
(L), for there Russell explicitly draws a line between the idea of a proposition implying another,
in the sense of a relation which holds between propositions (thus, between ontologically inde­
pendent entities), and a proposition being deducible from another, making clear that the former
is the more fundamental:

It is to be observed that, although deducible from (as just defined) is a different
notion from implied by, it cannot be made to replace the notion of implied by.
For deducible from is defined bymeans of the laws of deduction, and these laws
employ the notion of implication. Hence we cannot substitute deducible from

389 RUSSELL, B., 1905d, Collected papers p.515. Our emphasis.
390 RUSSELL, B., 1905d, Collected papers p.521.
391 The laws in question were the “laws of identity, contradiction and excluded middle” which have been tradi­

tionally understood as having some privileged logical status. As Russell observes, these can be obtained as
consequences of his primitive proposisitions, so to some extent he thinks it is arbitrary to treat them as having
some privileged position as more fundamental than other logical laws. (RUSSELL, 1905x, p.516)

392 RUSSELL, B., 1905d, Collected papers p.516.
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for implied by in the laws of deduction, without incurring a vicious circle. The
notion of implication thus remains fundamental, and the notion of deducibility
is derivative from it.393

Also, we cannot bemislead into supposing, fromRussell’s revised terminology of logical
laws as analytic ­ in contrast to where they were viewed as synthetic ­ that Russell changed
his views on the nature of Mathematical reasoning. The change is merely terminological. The
fundamental issue is, for Russell, the same as it was for Frege: the claim that Logic is a science
that ampliates or extends our knowledge.

Frege framed his disagreement with Kant in terms of the scope of analyticity. He thought
that Kant’s conception of analytic propositions as founded on the Principle of Contradiction
characterized them “too narrowly” and so he claimed his “[...] the division of judgments into
analytic and synthetic is not exhaustive”394. Russell and Frege are in complete agreement in this.
In The Philosophy of Leibniz, we find:

We may argue generally, from the mere statement of the Law of Contradic­
tion, that no proposition can follow from it alone, except the proposition that
there is truth, or that some proposition is true. For the law states simply that
any proposition must be true or false, but cannot be both. It gives no indication
as to the alternative to be chosen, and cannot of itself decide that any propo­
sition is true. It cannot even, of itself, yield the conclusion that such and such
a proposition is true or false, for this involves the premise “such and such is
a proposition,” which does not follow from the law of contradiction. Thus the
doctrine of analytic propositions seems wholly mistaken.395

The agreement with Frege’s standpoint here is complete; so much so that in a footnote,
Frege observes that Kant himself anticipated “an inkling” of his view for, Frege claims, “[...]
he says that a synthetic proposition can only be seen to be true by the law of contradiction, if
another synthetic proposition is presupposed”396 ­ and this is precisely the point raised by Rus­
sell. Thus, we disagree with Ian Proops, who claims that Frege read Kant more charitably than
Russell did397. According to him, in the Principles “Russell is working with an extremely narrow
conception of analyticity that derives from his literal­minded construal of (what is standardly
taken to be) Kant’s most adequate formulation of an analyticity criterion”398. That criterion, of
course, is that the judgment “[...] can be cognized sufficiently in accordance with the principle
of contradiction”399. But Frege’s observation shows that he is also attributing to Kant the same
notion of analyticity. The change in terminology which Russell effected was nothing more than
393 RUSSELL, B., 1905d, Collected papers p.515.
394 FREGE, G., 1950 [1884], pp.99­100 §87.
395 RUSSELL, B., 1900, p.25­6 §11
396 FREGE, G., 1950 [1884], p.100, footnote 1.
397 PROOPS, I., 2006, p.286.
398 PROOPS, I., 2006, p.286.
399 KANT, I., 1998, p.279, A151/B190.
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that: a mere change of terminology (perhaps to avoid association with Kant’s views on the Phi­
losophy of Mathematics). In fact, as Michael Potter notes, in order for Frege to have claimed
that Arithmetic is fully analytic in his sense, “[...] he had to make the further claim that polya­
dic logic, despite being ampliative, is nevertheless analytic, by which he meant independent of
intuition”400. In the Principles, Russell is simply biting the bullet: he seems to be committed to
the idea that there is such a thing as logical intuition and these ground both our knowledge of
Logic and Mathematics. Both sciences are synthetic because the truth of their propositions is
not grounded in the ‘Principle of Contradiction’ alone.

Landini further elaborates this by noting that the crucial claim is not that polyadic logic
is informative, but that what we call higher­order polyadic logic that embraces some form of
impredicative comprehension principle is informative. That is, claims that according to Frege
and Russell “[...] logic is informative and extends knowledge” because “[...] it embraces com­
prehension axioms”401. For Landini, Frege’s logic is informative because it is committed to a
hierarchy of levels of functions akin to that of simple type theory.Mutatis mutandis, the logic of
Russell’s Principles ­ just like his intermediate versions of the No­Class theory ­ is committed to
comprehension principles for propositions as abstract entities402. It must be said, however, that
perhaps the strongest case to be made in favor of this interpretation is grounded in knowledge
we now possess about the meta­theory of predicate logic. With his completeness theorem for
first­order logic, Gödel showed that given some adequate set of axioms, every valid first­order
formula is a theorem, or, equivalently, that every consistent set ∆1 of first­order formulas has
a model403. When working with second and higher­order logic, we must distinguish between
so­called primary and secondary interpretations and models, and if we frame completeness in
terms of primary models, then the result does not hold for second­order logic. Henkin, showed,
however, that for models in general ­ primary and secondary ­ it can be proved that every con­
sistent set ∆2 of second­order formulas has a model404. And the result can be generalized for
the type hierarchy in general. Also, Turing and Church showed, building upon Gödel’s work,
that the class of theorems of both first­order and higher­order logic cannot be effectively cha­
400 POTTER, M., 2000, p.65. Potter further claims that “The keystone, then, is Frege’s claim that even polyadic

logic does not depend on intuition” (POTTER, M., 2000, p.65). The basis for his reading is Frege’s claim, in
connection with his definition of the ancestral of a relation in the Begriffsschrift, that “pure thought (regardless
of any content given through the senses or even given a priori through an intuition) is able, all by itself, to
produce from the content which arises from its own nature judgments which at first glance seem to be possible
only on the grounds of some intuition” (FREGE, G., 1879, p.55). Since Frege does not discuss in substantitve
detail how we apprehend logical laws, it seems hasty to conclude that he would not concur with Russell in
claiming that there can be such a thing as logical intuition. Ian Proops conjectures that “Russell arrived at this
more inclusive conception of analyticity as a result of reading Frege’s Grundlagen” (PROOPS, I., 2006, p.287)
and it is indeed plausible to suppose that he adopted this terminology to agree with Frege’s use rather than with
Kant’s.

401 LANDINI, G., 2011, pp.169­170.
402 And similarly, Russell’s mature theory of types can be understood in terms of a hierarchy of attributes.
403 CHURCH, A., 1956, p.233, §44; p.239­245.
404 This was proved by Leon Henkin in his doctoral dissertation and the proof was later published as HENKIN, L.,

1950. A textbook discussion can be found in CHURCH, A., 1956, pp.307­15, ROBBIN, J., 1969, pp.140­1 and
also MENDELSON, E., 2015, pp.389­393; a brief presentation can be found in ROGERS, R., 1971, p.92­4.
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racterized405. This makes a strong case in favor Landini’s view, in particular because it ties the
idea that Logic is informative with the idea that Logic has ­ in some way or another ­ ontologi­
cal commitments which, as we’ll see next, was central to Russell’s conception of Logic in the
Principles.

2.3.3 The Existence of Classes and The Epistemology of Logicism in the Prin­
ciples

The fact that Russell opens the Principles with his definition of Pure Mathematics may
be misleading, for some may take Russell to be arbitrarily choosing his definition. This, of
course, would be a gross misrepresentation of the work, since the book as a whole is an attempt
to justify the definition406. Russell’s goal with the logical analysis of mathematics is to reach
the claim that Pure Mathematics and Logic are identical as a conclusion, as he unequivocally
explains:

It will be shown that whatever has, in the past, been regarded as pure mathema­
tics, is included in our definition, and that whatever else is included possesses
those marks by which mathematics is commonly though vaguely distinguished
from other studies. The definition professes to be, not an arbitrary decision to
use a common word in an uncommon signification, but rather a precise analy­
sis of the ideas which, more or less unconsciously, are implied in the ordinary
employment of the term. Our method will therefore be one of analysis, and our
problem may be called philosophical—in the sense, that is to say, that we seek
to pass from the complex to the simple, from the demonstrable to its indemons­
trable premisses.407

The crucial case for demonstrating Russell’s view of the nature of Pure Mathematics
is, of course, that of elementary Arithmetic: since Russell accepts the arithmetization of all
branches of Pure Mathematics by means of set theoretical methods discovered by him and his
predecessors, the most central case for determining whether his conception of PureMathematics
stands or falls is that of Arithmetic.

In the Principles, as elsewhere, Russell reduces this task to that of defining the concept
of natural number, zero and successor and demonstrating the Dedekind­Peano postulates on a
purely logical basis. Russell explicitly frames his position ­ again, as elsewhere ­ in opposition
to Peano’s procedure of charaterizing these fundamental notions by assuming the Dedekind­
Peano postulates as primitives (i.e., by appealing to what Peano and Russell called “definition
405 It must also be recognized, however, that neither Frege nor Russell caught a whiff of this and that any interpre­

tation which relies on the distinction between first and second­order quantification theory must be held with a
grain of salt, since it appeals to our present knowledge of the meta­theory of predicate Logic.

406 Indeed, despite being the first claim of the book, were the Principles to be arranged from assumptions to con­
clusions, the definition of Pure Mathematics should be the last.

407 RUSSELL, B., 1903, p.1 §2.
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by postulates”). Russell observes that this method just like that of taking the fundamental notions
of zero, number and successor as primitive “[...] yields what mathematicians call the existence­
theorem, i.e. it assures us that there really are numbers”, but also that “[...] leaves it doubtful
whether numbers are logical constants or not, and therefore makes Arithmetic [...] a branch of
Applied Mathematics”408.

As we already discussed, Russell avoided Peano’s method appealing to his set theoretical
construction of cardinal numbers in general as classes of similar classes, showing how starting
from this definition he could then develop the basic notions of elementary Arithmetic and prove
the Dedekind­Peano postulates409. In a nutshell, given Russell’s acceptance of the Arithmetiza­
tion410 of all branches of pure Mathematics, it is this accomplishement ­ (I) the definition of
Peano’s primitive notions together with (II) the proof that there is a set of objects, i.e., natural
numbers, which satisfy Peano’s axioms ­ that gives Russell the needed justification for his claim
that the propositions of Pure Mathematics are propositions of Logic.

Indeed, in a sense the whole project of Principles is tied to the ‘logicization’ of Arith­
metic. In a beautiful passage from the Principles’s very last page411, Russell summarizes how,
starting from the theory of natural numbers, he can demonstrate not only the existence of ratio­
nal, real and complex numbers, but also of Cantor’s transfinite numbers and the mathematical
entities required by several branches of Pure Geometry and Mathematical Physics:

The existence­theorems of mathematics ­ i.e. the proofs that the various clas­
ses defined are not null—are almost all obtained from Arithmetic. [...] from
the class of the finite cardinal numbers themselves, follows the existence of
α0[i.e. ℵ0], the smallest of the infinite cardinal numbers; from the series of fi­

408 RUSSELL, B., 1903, p.126 §122. That is, of course, in light of Russell’s own definition of Pure Mathematics
which he puts forward in the Principles.

409 Of course, a previous ­ evenmore basic step ­ towards this goal was showing that the general concept of cardinal
number (not specifically natural numbers) could defined in purely logical terms, a task which, as we discussed,
was accomplished in Russell’s paper of 1901 On The Logic of Relations.

410 Sebastian Gandon argues that Russell’s Logicism as put forward in both The Principles of Mathematics and
Principia Mathematica does not require arithmetization of all branches of Pure Mathematics in the sense that
one must reduce the branches of Mathematics to Arithmetic beforehand in order to establish them as a branches
of Logic; on the contrary, according to Gandon, Russell intended Logicism to be established in a “topic­specific”
manner (cf. GANDON, S., 2008; 2012). Gandon bases this view on his detailed studies of the often neglected
logicist treatment of Geometry that Russell provides in the Principles (cf. RUSSELL, B., 1903 part III) and of
the theory of quantity presented in part VI of Principia (cf. WHITEHEAD & RUSSELL 1927b). At any event,
concerning much of the development of Mathematics as given in the Principles and Principia ­ in particular the
theory of transfinite numbers and some important parts of the theory of real numbers ­ it is on the basis of the
most basic existence­theorems of Arithmetic (e.g., that every finite cardinal n has a successor n + 1 such that
n ̸= n+1) that Russell establishes the existence theorems for higher forms of number, as he makes clear in the
very closing paragraph of the Principles (cf. RUSSELL, B., 1903, p.497­8, §474). So at least in a weak sense
there is in Russell’s thought an unquestionable link between arithmetization and his Logicism, namely: Russell
fully accepted that one can prove existential theorems concerning all higher forms of number without assuming
any sort of specific ontology of numbers beyond that of the finite or inductive cardinals whose theory, in turn,
can (at least to some extent) be constructed on a purely logical basis. It is merely this weaker relation between
arithmetization and Russell’s Logicism that we shall assume in the present work.

411 If we exclude the appendices.
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nite cardinals in order of magnitude follows the existence of ω, the smallest of
infinite ordinals. From the definition of the rational numbers and of their order
of magnitude follows the existence of η, the type of endless compact denume­
rable series; thence, from the segments of the series of rationals, the existence
of the real numbers, and of θ, the type of continuous series. The terms of the
series of well­ordered types are proved to exist from the two facts: (1) that the
number of well­ordered types from 0 to α is α + 1, (2) that if u be a class of
well­ordered types having no maximum, the series of all types not greater than
every u is itself of a type greater than every u. From the existence of θ, by the
definition of complex numbers (Chapter 44) [Dimension and Complex Num­
bers] , we prove the existence of the class of Euclidean spaces of any number
of dimensions; thence, by the process of Chapter 46 [Descriptive Geometry],
we prove the existence of the class of projective spaces, and thence, by remo­
ving the points outside a closed quadric, we prove the existence of the class
of non­Euclidean descriptive (hyperbolic) spaces. By the methods of Chapter
48 [Relation of Metrical to Projective and Descrivitive Geometry], we prove
the existence of spaces with various metrical properties. Lastly, by correLating
some of the points of a space with all the terms of a continuous series in the
ways explained in Chapter 56 [Definition of a Dynamical World] , we prove
the existence of the class of dynamical worlds.412

But, of course, in order for all of that to work as a vindication of Russell’s claim in the
beginning of the Principles, the following most crucial step of his argument must work:

The existence of zero is derived from the fact that the null­class is a member
of it; the existence of 1 from the fact that zero is a unit­class (for the null­class
is its only member). Hence, from the fact that, if n be a finite number, n + 1
is the number of numbers from 0 to n (both inclusive), the existence­theorem
follows for all finite numbers.413

It is this step that is the most central for Russell to conclude that “[...] throughout this
process, no entities are employed but such as are definable in terms of the fundamental logical
constants” and so, that “[...] the chain of definitions and existence­theorems is complete, and the
purely logical nature of mathematics is established throughout”414.

If intended at establishing the triumph of Logicism, however, the above sketch of the
proof that there are infinitely many natural numbers is inseparable from the idea that the exis­
tence of infinite classes can be proved from logical principles alone. And indeed, while writing
most of the Principles, Russell was convinced beyond any reasonable doubt that there is no
problem with this view:

That there are infinite classes is so evident that it will scarcely be denied. Since,
however, it is capable of formal proof, it may be as well to prove it.415

412 RUSSELL, B., 1903, pp.497­8 §474.
413 RUSSELL, B., 1903, pp.497 §474.
414 RUSSELL, B., 1903, pp.497 §474.
415 RUSSELL, B., 1903, p.357 §339.

135



Russell accepted several different alleged demonstrations of the existence of infinite
classes. One such ‘proof’ is the following:

A very simple proof is that suggested in the Parmenides, which is as follows.
Let it be granted that there is a number 1. Then 1 is, or has Being, and therefore
there is Being. But 1 and Being are two: hence there is a number 2; and so on.
Formally, we have proved that 1 is not the number of numbers; we prove that
n is the number of numbers from 1 to n, and that these numbers together with
Being form a class which has a new finite number, so that n is not the number
of finite numbers. Thus 1 is not the number of finite numbers; and if n − 1 is
not the number of finite numbers, no more is n. Hence the finite numbers, by
mathematical induction, are all contained in the class of things which are not
the number of finite numbers. Since the relation of similarity is reflexive for
classes, every class has a number; therefore the class of finite numbers has a
number which, not being finite, is infinite.416

The above ‘proof’ which Russell attributes to Plato (in Parmenides) is regarded by him
as analogous to Frege’s proof, sketched in the Grundlagen and fully developed in the Grund­
gesetze, that the number of the class of numbers which are less than or equal to n is equal to
n+ 1:

A better proof, analogous to the above, is derived from the fact that, if n be any
finite number, the number of numbers from 0 up to and including n is n + 1,
whence it follows that n is not the number of numbers.417

This is Frege’s famous proof, which employed a definition of cardinal number which
essentially coincided with that of Russell. The gist of it is to show that each finite cardinal
number n + 1 is the cardinal number of the class of all finite cardinal numbers less than or
equal to n; thus n+ 1 is shown to be the class that contains the class {0, 1, ..., n} as an element
(since the cardinal number of a class a is the class of all classes similar to a): 1 is the cardinal
number of the class {0} whose sole member is 0, so {0} ϵ 1418, also 2 is the cardinal number of
the class {0, 1},so {1, 2} ϵ 2, and so on... In this way, starting from 0 and 1 and then proceeding
by induction, it can be shown that each finite cardinal is a non­empty set, i.e., that each finite
cardinality n+ 1 is instantiated by at least the set {0, 1, ..., n}.

Russell also considered a famous ‘proof’ which purports to derive the existence of a
Dedekind infinite ­ or, as Russell called them later ­ reflexive class from the impossibility of
establishing a one­one correspondence between things and ideas of things:

416 RUSSELL, B., 1903, p.357 §339.
417 RUSSELL, B., 1903, p.357 §339. Surely, Russell would not endorse such a comparison after the Principles.

Frege’s proof is a legitimate piece of Mathematics which was unfortunately carried out within an inconsistent
theory; the attempt to show that the number 2 exists by treatint ‘being’ as something is just a blatant example
of the kind of nonsense which can be produced without a proper understanding of the existential quantifier.

418 Incidentally, since {Λ} = 0 by definition, 0 itself is also a member of 1.
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Again, it may be proved directly, by the correlation of whole and part, that the
number of propositions or concepts is infinite. For of every term or concept
there is an idea, different from that of which it is the idea, but again a term
or concept. On the other hand, not every term or concept is an idea. There are
tables, and ideas of tables; numbers, and ideas of numbers; and so on. Thus
there is a one­one relation between terms and ideas, but ideas are only some
among terms. Hence there is an infinite number of terms and of ideas.419

As Russell acknowledges in a footnote, this proof can be traced to the works of Bol­
zano420 and was famously put forward by Dedekind in his seminal paper on natural numbers421.
Russell’s remarks make it clear that he was convinced of the soundness of such demonstrations.

But of course, proofs of the kind considered above were formulated by Bolzano, Can­
tor, Dedekind, Frege and Russell by employing the notion of class in a disastrously liberalized
manner. All the works mentioned by Russell ­ most explicitly, importantly and famously, those
of Frege ­ assumed either formally or informally some form of naive comprehension for sets,
much like Russell did in thePrinciples.And as Russell found out around 1901 the laws governing
the ‘unrestricted’ conception of set employed by Cantor and his followers led to contradictions
which cast a shadow of doubt on the logico­mathematical results and set­theoretical definitions
that ground Russell’s claim that the laws of Pure Mathematics are logical truths as put forward
in the Principles. This calls for a discussion of how Russell understood what grounds his be­
lief that his chosen primitive propositions are true. And again, here it becomes somewhat more
doubtful that Russell had a tenable account or criterion for determining what should or should
count as a logical truth.

Russell speaks loosely in terms of varying degrees of self­evidence422, but does not deve­
lop his views on the epistemology of Logic andMathematics in any detail. There is, however, an
implicit general epistemology of Logic andMathematics behind the Principles. As Peter Hylton
puts it, despite the fact that the doctrines of the Principles “say little or nothing” about the nature
of mathematical knowledge (and knowledge in general), “[...] a view of knowledge is none the
less implicit in those doctrines”423.
419 RUSSELL, B., 1903, p.357 §339.
420 BOLZANO, B., 1851.
421 DEDEKIND, R., 1888, p.64. There, we find the following proof of theorem 66 which asserts that “there exist

infinite systems”; Following Boolos’s translation, we have: “The world of my thoughts, i. e., the totality S of all
things that can be objects of my thought, is infinite. For if s signifies an element of S, then the thought s’, that s
can be object of my thought, is itself an element of S. If s’ is regarded as the image ϕ(s) of the element s, then
the mapping ϕ determined thereby has the property that its image S’ is a part of S; and indeed S’ is a proper part
of S, because there are elements in S (e.g., my own ego), which are different from every such thought s’ and
are therefore not contained in S’. Finally, it is clear that if a and b are different elements of S, then their images
a’, b’, are also different, so that the mapping is distinct (similar). Consequently, S is infinite, q.e.d. (BOOLOS,
G., 1998, pp.202­3; DEDEKIND, R., 1888, p.64). Both Dedekind and Russell refer to this result as originally
proved by Bolzano. Rightfully, George Boolos refers to Dedekind’s ‘proof’ as “[...] one the strangest pieces of
argumentation in the history of logic” (BOOLOS, G., 1998, p.202) ­ although the proof Russell draws from the
Parmenides mentioned above is a very strong contender.

422 RUSSELL, B., 1903, p.17 §18.
423 HYLTON, P., 1990, p.111.
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The cornerstone of that view, of course, is Russell’s notion of acquaintance. This notion
is introduced in order to account for the sort of direct or immediate relation that is required by
the pluralistic realism Russell inherited from Moore. Thus, in the Preface of the Principles we
find the following striking passage:

The discussion of undefinables—which forms the chief part of philosophical
logic—is the endeavour to see clearly, and to make others see clearly, the enti­
ties concerned, in order that the mind may have that kind of acquaintance with
them which it has with redness or the taste of a pineapple. Where, as in the pre­
sent case, the undefinables are obtained primarily as the necessary residue in
a process of analysis, it is often easier to know that there must be such entities
than actually to perceive them; there is a process analogous to that which resul­
ted in the discovery of Neptune, with the difference that the final stage—the
search with a mental telescope for the entity which has been inferred—is often
the most difficult part of the undertaking.424

This paragraph gives a rough ­ and somewhat fantastic ­ picture of how Russell unders­
tood the process of arriving at the primitive notions of Logic. This picture indicates that the
epistemological grounds for accepting the axioms for the calculus of Logic is our capacity to
apprehend with clarity and distinction ­ to borrow a Cartesian mode of expression ­ the most
basic entities of Logic and Mathematics, as if these could be perceived through some ‘mental
telescope’; or, if we are to take the pineapple metaphor seriously ­ as it should ­ through some
sort of logical palate.

Fortunately, Russell had already put forward ­ albeit in a very rough and schematic form
­ elements of a much more interesting epistemology for Logicism. In 1901 Russell wrote a paper
that never saw print in his lifetime entitled Recent Italian Work on The Foundations of Mathe­
matics425, where he discussed and praised in detail the merits of Peano’s symbolic logic and
methodology. Concerning what he called Peano’s ‘logistic method’, Russell claims that:

Its aims is [sic] to discover the necessary and sufficient premisses of the vari­
ous branches of mathematics, and to deduce results (mostly known already) by
a rigid formalism which leaves no opening for the sinister influence of obvi­
ousness. Thus the interest of the work lies (I) in the discovery of the premisses
and (2) in the absolute correcteness of the deduction. Both these points are (or
rather should be) of great interest to the philosopher.426

Anyone familiar with Russell’s posterior discussions of his ‘regressive method’ of dis­
covering premises in mathematics (in which mathematical logic plays a prominent role) should
recognize here the roots of Russell’s later, more sophisticated ideas427. It is very plausible to
424 RUSSELL, B., 1903, p.xv.
425 RUSSELL, B., 1901c.
426 RUSSELL, B., 1901c, p.352.
427 RUSSELL, B., 1907; RUSSELL, B., 1919a; RUSSELL, B., 1924; WHITEHEAD & RUSSELL, 1910; These

views will be discussed in detail in chapter five.

138



suppose then, that by the time of the Principles Russell had realized that one way to justify the
choice of axioms of Logic was in in virtue of their consequences. So we have reason to believe
that Russell would endorse the idea that propositions of Pure Mathematics ­ which we have,
prima­facie, every reason to believe ­ can be derived from the axioms of Logic lends these very
axioms epistemic support. This point is important, because there is a fly in the ointment in the
attempt of justifying the choice of primitive notions and axioms through the postulation of some
sort of direct relation like acquaintance: Russell’s Paradox. The discovery of the contradiction
showed that the notion of class could not be taken for granted as transparent notion; as Quine
once observed, the discovery of the contradictions shows that the most basic and at first sight
self­evident ‘intuitions’ about the notion of set are, in fact, “bankrupt”428. But given the centra­
lity of the notion of class in the Logicist development of Mathematics in the Principles, this
means that Russell’s entire epistemology of Logic and Mathematics is jeopardized.

Indeed, it is no coincidence that in later writings Russell emphasizes the regressive
method as a way of not only discovering but justifying the premises of Mathematics: once ap­
parently self­evident principles and highly abstract concepts of Logic ­ in the sense in which
Russell understood this science ­ are shown to lead to contradiction, self­evidence loses what
little justificatory weight it had to begin with. Russell was, of course, the first to be shocked
by his discovery precisely because of this. Concerning the calculus of classes, Russell gave the
following warning in the preface of the Principles:

In the case of classes, I must confess, I have failed to perceive any concept
fulfilling the conditions requisite for the notion of class. And the contradiction
discussed in Chapter x. proves that something is amiss, but what this is I have
hitherto failed to discover.429

The analogy with perceptual experience cannot be overstated here: Russell is claiming
that he had failed to become acquainted with any sort of entity which satisfies the conditions
which pure Mathematics requires of classes. This is Russell’s first acknowledgment in print of
the damage done by Russell’s discovery to his conception of classes conceived as entities. But
this puts the very conception of Logic which Russell held in the Principles in check.

One of the central tasks of the next chapter is to discuss in more detail how this very
difficulty led Russell to reformulate the Logic of the Principles and eventually to retreat from a
conception of Logicism which embraced the existence of classes as a logical matter.

428 QUINE, W., 1969, p.x.
429 RUSSELL, B., 1903, p.xv. Our emphasis.
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3 Russell’s Ontological Development

I finished this first draft of The Principles of Mathematics on the last day of the
nineteenth century i.e. December 31, 1900. The months since the previous July
had been an intellectual honeymoon such as I have never experienced before
or since. Every day I found myself understanding something that I had not
understood on the previous day. I thought all difficulties were solved and all
problems were at an end. But the honeymoon could not last, and early in the
following year intellectual sorrow descended upon me in full measure.1

3.1 The Collapse of Russell’s Early Logicism

3.1.1 The Contradiction and the Notion of a Logical Subject in the Principles

As we discussed in the previous chapter, one of main goals Russell set out in the Prin­
ciples was to “[...] the endeavor to see clearly, and to make others see clearly” the entities with
which Mathematical Logic is concerned, so that “the mind may have that kind of acquaintance
with them which it has with redness or the taste of a pineapple”2. Unfortunately, in the course
of this endeavor Russell made a bitter discovery.

The tale of this discovery is familiar: Cantor famously proved that there cannot be a
greatest cardinal number and on the face of such result Russell was led to question if this could
be reconciled with the existence of the class of all things or terms or entities, the existence of
which, at the time, he thought plausible, if not inevitable to be admitted by any correct logical
theory. The question of whether phrases like “the greatest cardinal number” or “the class of
all entities” stood for genuine logical subjects, in turn, led Russell to consider other sorts of
problematic cases. As Russell vividly recounts this inMy Philosophical Development:

I thought, in my innocence, that the number of all the things there are in the
world must be the greatest possible number, and I applied his proof to this
number to see what would happen. This process led me to the consideration
of a very peculiar class. Thinking along the lines which had hitherto seemed
adequate, it seemed to me that a class sometimes is, and sometimes is not, a
member of itself. The application of Cantor’s argument led me to consider the
classes that are not members of themselves; and these, it seemed, must form a
class. I asked myself whether this class is a member of itself or not.3

The outcome of this is now recounted in almost every textbook of Mathematical Logic
and Set Theory as a tale of legend. By June 16 1902, almost a year after the discovery, Russell
1 RUSSELL, B., 1959, p.73.
2 RUSSELL, B., 1903, p.xv.
3 RUSSELL, B., 1959, pp.75­6. Compare also RUSSELL, B., 1903, p.101/§100.
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wrote a letter to Frege in which he reports “[...] a difficulty only on one point”4, namely with
Frege’s Basic Law V. In Frege’s Grundgesetze this law appears as follows5:

(z̀fz = z̀gz) = a f(a) = g(a)

Frege described the content of this law in terms of the “[...] transformation of the generalization
of an equality into an equality of course of values”6. Courses of values were Frege’s extensions
of functions, of which first­order concepts were treated as a particular case that took objects as
arguments and had truth­values as values. For our purposes, Frege’s Law V can be stated as:

(F )(G)(ẑF z = ẑGz ≡ (x)(Fx ≡ Gx))

The above can be read as: for every conceptF and every conceptG, the extension ofF is identical
to the extension of G if, and only if for every object x, x falls under the concept F if, and only
if x falls under G7. Framed in these terms, this axiom entails that every concept F has a unique
object associated with it, namely, its extension: the set of all things that fall under F. This is easily
demonstrated: instantiate Basic Law V as ẑF z = ẑF z ≡ (x)(Fx ≡ Fx); since the right side of
the bi­conditional is a logical truth, we have ẑF z = ẑF z; by existential generalization we have
( E

x)(x = ẑF z) and by universal second­order generalization we have (F )( E

x)(x = ẑF z); it
must be observed that one does not need Law V to show this; alternatively, since in Frege’s
system “ẑF z” is a genuine term, ẑF z =ẑF z holds and one gets (F )( E

x)(x = ẑF z) from the
laws of predicate logic alone8.

The one difficulty which Russell found was the result of instantiating F as the concept
“[...] not a member of its own extension”9, the extension of that concept, however, is a member
of itself if and only if it does not belong to itself. Since Frege’s Law was his fundamental axiom
assuring the existence of value­ranges, Russell took that this as a general difficulty of charac­
terizing correctly comprehension or abstraction axioms for classes. As we already remarked,
the naive or intuitive assumption that Russell made regarding classes was that the following
principle had unrestricted validity regarding the condition or concept F :

(F )( E

y)(x) x ϵ y ≡ Fx

Russell took as unproblematic that if classes are extensions of concepts or so­called propositional
functions, i.e, functions whose values are propositions, the class {x : Fx} must contain as
4 In: FREGE, G. 1980, p.131.
5 FREGE, G., 1893, p.61, §47. It must be observed that in Frege’s original system the conflict with Cantor’s power­

class theorem comes from the ‘implication’ from left to right, i.e., Law Vb (cf. LANDINI, G., 2017, in particular
pp.11­12), something one misses when on Frege’s notations are translated to the notation of modern predicate
logic. Thanks for Landini for calling my attention to this point.

6 FREGE, G., 1980, p.132.
7 This, of course, is not true to Frege’s own formulation, since Frege’s Logic is best interpreted as a Logic of

terms, not as a predicate calculus in the modern sense. For details, cf. DUARTE, A., 2009 and LANDINI, G.,
2012.

8 Thanks to Gregory Landini for calling my attention to this point.
9 This was, in fact, Frege’s correction: Russell spoke of a concept not applying to itself, but this violates Frege’s

hierarchy of levels (cf. FREGE, G., 1980, pp.132­3).
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members all, and only those objects x for which the propositional function Fx has as a value a
true proposition. The contradiction was forthcoming when it was supposed that the propositional
function Fx would result in a significant proposition for every possible value of x ­ even if x
was the the class {x : Fx} itself; this let the way open for the possibility of the following line
of reasoning: Let F be the condition x /∈ x, that is, x is not a member of x, then, there is a set
w = x̂(x ∼ ϵ x); it immediately follows that x ϵw ≡x ∼ (x ϵ x), and thusw ϵw ≡ ∼ (w ϵw).
This is the difficulty which became widely known as ‘Russell’s Paradox’.

Frege responded to Russell’s discovery on June 22 “[...] surprised [...] beyond words
and [...] thunderstruck, because it rocked the ground on which [he] meant to build Arithmetic”10.
By 1903, Russell had published his discovery within his Principles of Mathematics as an open
problem to which he had, at best, a sketch of solution and Frege discussed it in and Appendix
added in print to the second volume of his Basic Laws of arithmetic, where we witness the last
breath of his logicist project11.

Mathematicians and logicians ­ including Russell himself ­ were by no means unaware
of difficulties similar to Russell’s paradox at the time it was discovered. By 1897, one of Peano’s
followers, Cesare Burali­Forti12, had established the following: Let O be the class of all ordinal
numbers and assume that it can be well­ordered13; it follows that O has an ordinal number ­ call
it Ω; presumably Ω is the greatest ordinal number, since it is the number of the series of all
10 FREGE, G. 1980, p.132. The letter was published for the first time in van HEIJENOORT, J., 1967, p.124­5.
11 It is there that we find Frege’s haunting words: “Hardly anything more unfortunate can befall a scientific writer

than to have one of the foundations of his edifice shaken after the work is finished” (FREGE, G., 1997 [1903],
p.279 [253]) which constrast drastically with his enthusiastic remarks in the first volume of Basic Laws: “[...]
I will only be able to accept a refutation if someone shows, by actually doing it, that a better more durable
edifice can be erected on different fundamental convictions, or if someone proves to me that my principles lead
to obviously false conclusions. But no one will succeed in this.” (FREGE, G., 1997 [1893], p.207­8 [XXVI]).
Frege attempted to solve Russell’s contradiction in the Appendix, proposing a mitigated version of (V), namely:

(V’) ẑF z = ẑGz ≡ (x)(x ̸= ẑF z x ̸= ẑF z ⊃ Fx ≡ Gx)
Although Frege recognized that this modification would certainly demand revision of several proofs, he

claimed that “we need scarcely fear that this sill raise essential difficulties for the course of the proofs” (FREGE,
G., 1997 [1903], p.289 [265]). But he ended up giving up the thesis that arithmetic can be grounded in Logic
and concluded that the truths of number theory are grounded on Geometry: “[...] arithmetic cannot be based
on sense perception; [...] So an a priori mode of cognition must be involved here. But this cognition does not
have to flow from purely logical principles, as I originally assumed. There is the further possibility that it has
a geometrical source. [...] Only on this view does mathematics present itself as completely homogeneous in
nature.” (FREGE, G., 1925, pp.276­7). There is no conclusive textual evidence as to what led Frege to abandon
his amended system, but some later developments led to several conjectures. Sobocinski published a proof of
Lesniewski (from 1938) that the amended version of Basic Law V is also inconsistent (SOBOCINSKI, B., 1949),
while Quine and Geach generalized his result (QUINE, W.O., 1955; GEACH, P., 1956). Dummett claimed that
even if Frege did not know of the inconsistency of (V’), he must have known that several arithmetical theorems
could not be proved in the revised system, including the theorem that asserts the infinity of the natural number­
series (DUMMETT,M., 1967, p.225). Recently, Landini claimed that, although the reconstructions of Quine and
Geach do not make historical justice to Frege’s formal system, the best conjecture is that Frege himself realized
the amended system to be inconsistent (LANDINI, G., 2006, pp.18­19). And, of course, the works of George
Boolos, CrispinWright, Richard Heck and Bob Hale show that there is a viable to revive Frege’s Logicism from
his works (WRIGHT, C., 1983; BOOLOS, G., 1987; 1992; HECK, R., 1993; WRIGHT & HALE, 2001.).

12 van HEIJENOORT, J., 1967, p.104­5.
13 A setM is well­ordered by a relation R if and only if every non­empty subset ofM has a minimal element with

respect to R.
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ordinals; but since it is known that the class all ordinals up to some ordinal can be well­ordered,
it follows that ordinal number Ω′ of all ordinals O including Ω should be such that Ω′ > Ω.
Similarly, Cantor himself discovered arount 1899 the following: Let X be the cardinal number
of a set X , let ≤ and < have their usual meaning, let ℘(X) be the power set of X and, finally,
let U be the set of all sets; since U is the set of all sets, it follows that ℘(U) is a subset of U , and
thus, that ℘(U) ≤ U ; but Cantor’s power­class theorem states that for every set X, X < ℘(X).
But the fact of the matter is that neither Burali­Forti nor Cantor nor anyone else thought of these
results as paradoxes until Russell stated his discovery as a contradiction in the Principles of
Mathematics14. Russell himself would later observe that he thought “[...] that there was some
unimportant error in the reasoning”15 with Burali­Forti’s result16.

Leaving aside the details of how Russell came to actually recognize that he discovered a
genuine contradiction in the foundations of Set Theory17, it is clear that the fundamental question
which was brought up by the discovery was this: how should the ontology of classes be handled
once the general naive assumption that every propositional function defines a class is shown
to be contradictory? Resolving this problem was, of course, nothing less than a monumental
task since it was basically the search for a satisfactory logical theory which could (a) serve as
a foundation for Mathematics and (b) solve the contradictions while (c) being well motivated
from a philosophical point of view.

The problem was particularly pressing in the Principles of Mathematics given Russell’s
radical response to the ontological question about what is or has being. For, in the Principles,
Russell was committed to the doctrine of the unrestricted variable and of the univocity of being,
which, as we previously discussed, is encapsulated in the claims that “[...] there is only one
kind of being, namely being simpliciter”18 and that “Being is what belongs to every conceivable
term, to every possible object of thought ­ in short to everything that can possibly occur in any
proposition, true or false, and to all such propositions themselves”19. As we briefly discussed,
14 Burali­Forti was explicitly stating his result as a proof by reductio that there cannnot be a greatest ordinal

number; the same was the case with Cantor, but dealing with cardinals. See MOORE & GARCIADIEGO, 1981;
GARCIADIEGO, A., 1992.

15 RUSSELL, B., 1957, p.77.
16 By 1905, however, Russell had found a common source in all of these set­theoretical paradoxes. In On Some

Difficulties, Russell makes the following claim: “Burali­Forti’s contradiction is a particular case of the following:
‘Given a property ϕ and a function f, such that, if ϕ belongs to all the members of u, f ‘u always exists, has the
property ϕ, and is not a member of u; then the supposition that there is a class w of all terms having the property
ϕ and that f ‘w exists leads to the conclusion that f ‘w both has and has not the property ϕ.’ This generalization
is important, because it covers all the contradictions that have hitherto emerged in this subject.” (RUSSELL,
B., 1905b, p.71). This, as Landini observes, suggests that here Russell is sketching a the following theorem or
result about what sort of classes should be admissible or not (LANDINI, G., 2013a, pp.182­3):

(f) [((x)(x ϵ u ⊃ϕx ⊃ ( Ey) f ‘u = y f ‘u∼ ϵ ϕ(f ‘u)) ∼( Ew)((x) x ϵw ≡ ϕx]
In case of Russell’s own paradox, as he explain “we put ‘x is not a member of x’ for ϕ!x, and u itself for f ‘u.

In this case, owing to the fact that f ‘u is u itself, we have only one possibility: namely that ‘x is not a member
of x’ is non­ predicative” (RUSSELL, B., 1905b, p.71­2), where by “non­predicative” Russell means that it does
not determine a class.

17 For these, cf. MOORE, G., 1988 and GARCIADIEGO, A., 1992.
18 RUSSELL, B., 1903, p.449 §427.
19 RUSSELL, B., 1903, p.449 §427.
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“Term” is Russell’s technical expression for entity in the most general sense. In the Principles,
the notion is introduced in the following famous passage:

Whatever may be an object of thought, or may occur in any true proposition,
or can be counted as one, I call a term. This the, is the widest word in the
philosophical vocabulary. I shall use as synonymous with it the words unit,
individual, entity. The first two emphasize the fact that every term is one, while
the third is derived from the fact that every term has being, i.e is in some sense.
A man, a moment, a number, a class, a relation, a chimera, or anything else can
be mentioned, is sure to be a term; and to deny that such and such a thing is a
term must always be false. 20

Russell’s introduction of the notion brings about several important points about his on­
tology around the time of the publication of the Principles. For one thing, it is clear that in
introducing the notion, Russell is introducing an ontological category into his philosophical vo­
cabulary, not a merely linguistic one: when he asserts that men, moments, numbers and classes
are terms, he is not interested in categorizing the sortal concept­words “man”, “moment”, etc
as falling under the category of term, but is making a claim about ontology, namely that men,
moments, relations and even chimeras are entities, or have being. This is made clearer by the
following subsequent passage:

A term is, in fact, possessed of all the properties commonly assigned to subs­
tances or substantives. Every term, to begin with, is a logical subject: it is, for
example, the subject of the proposition that itself is one.21

It also shows that in the PrinciplesRussell was committed to a distinction between being
and existence. Everything that is an entity has being, but “[...] existence, on the contrary, is the
prerogative of only some amongst beings”, since, as Russell puts it, “[...] to exist is to have a
specific relation to existence—a relation, by the way, which existence itself does not have”22.
Differently from existence which, one can deny of some entities, being (allegedly) cannot:

[...] this distinction is essential, if we are ever to deny the existence of anything.
For what does not exist must be something, or it would be meaningless to deny
its existence; and hence we need the concept of being, as that which belongs
even to the non­existent”.23

This point of fundamental importance is echoed when Russell asserts that “[....] to deny
such and such a thing is a term must always be false”24. And the reason why “[...] it must always
20 RUSSELL, B., 1903, p.43 §47.
21 RUSSELL, B., 1903, p.44 §47.
22 RUSSELL, B., 1903, p.449 §427.
23 RUSSELL, B., 1903, p.450 §427.
24 RUSSELL, B., 1903, p.43 §47.
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be false” is this: in order for a sentence like “so­and­so does not have being” to be meaningful,
there must be something for which the phrase “the so­and­so” stands; but to say that so­and­so
is something is to say it has being, so it must be a term.

Aswe also discussed, Russell was led to this conclusion because the radicalmetaphysical
thesis of the univocity of being came hand in hand in the Principles with the idea that in a
sentence, every word must stand for a constituent of the proposition expressed by the sentence25:

I shall speak of the terms of a proposition as those terms, however numerous,
which occur in a proposition and may be regarded as subjects about which the
proposition is.26

[...] it must be admitted, I think, that every word occurring in a sentence must
have some meaning: a perfectly meaningless sound could not be employed in
the more or less fixed way in which language employs words. The correctness
of our philosophical analysis of a proposition may therefore be usefully chec­
ked by the exercise of assigning the meaning of each word in the sentence
expressing the proposition.27

Words all have meaning, in the simple sense that they are symbols which stand
for something other than temselves. But a proposition, unless it happens to be
linguistic, does not itself contain words: it contains the entities indicated by
words.28

According to such passages, propositions are complex entities which contain the terms
about which the proposition is (and the proposition itself is a term) and sentences are complex
linguistic items which denote the complex entities that are propositions. The complexity of a
sentence reflects the complexity of the proposition it denotes in such a way that to every expres­
sion in the sentence there will be a term to which the expression refers that is a constituent of
the proposition that the whole sentence denotes.

However, there are further taxonomic distinctions that must be observed, which is not
something particularly easy to do given Russell’s characteristic use­mention carelessness. Rus­
sell claims that words, in general, denote terms; proper names denote things, while all other
words denote concepts; among concepts, he distinguishes those that are denoted by adjectives,
which he calls class­concepts and those that are denoted by verbs, which are relations29. Rus­
25 Recalling that a proposition is understood as a sort of entity which has also entities as constituents, not neces­

sarily linguistic
26 RUSSELL, B., 1903, p.45 §48.
27 RUSSELL, B., 1903, p.42 §46.
28 RUSSELL, B., 1903, p.47 §51. Famously, Russell made similar considerations when discussing with Frege

whether “Mont Blanc with its snowfields” is or is not part of the thought that “Mont Blanc is more than 4000
metres high” in their correspondence. (Frege to Russell November 13 1904. In: FREGE, G., 1980, p.163). As Rus­
sell saw the matter the “[...] Mont Blanc itself is a component part of what is actually asserted in the proposition
‘Mont Blanc is more than 4000 metres high.’ We do not assert the thought, for this is a private psychological
matter: we assert the object of the thought, and this is, to my mind, a certain complex (an objective proposition,
one might say) in which Mont Blanc is itself a component part. If we do not admit this, then we get the conclu­
sion that we know nothing at all about Mont Blanc.” (Russell to Frege 12 December 1904. In: FREGE, G., 1980,
p.169)

29 RUSSELL, B., 1903, p.44 §48.
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sell’s distinctions are not clear enough mainly due to his selection of terminology. On the one
hand, when he makes a distinction among terms between things and concepts, it is clear that he
cannot be making a linguistic distinction: it is a distinction among sorts of entities. On the other
hand, the introduction of the further distinction among concepts is not that clear cut, for when
he speaks of those concepts indicated by adjectives and those indicated by verbs he asserts that
“[...] the former kind will often be called predicates or class­concepts; the latter are always or
almost always relations”30. Here, one must not be misled by Russell’s use of “predicate” as equi­
valent to “class­concept”; “attribute” would be a more appropriate choice. For when speaking
of relations as a sort of concept, it is clear what the point is: a relation is a sort of entity (term)
generally indicated in sentences by the occurrence of verb­words, and the same must be the case
for ajdective­words.

If we take as examples (p) “Brutus killed Caesar” and (q) “Caesar is human”, the first
sentence as a whole indicates a complex entity which consists of Brutus in a certain relation
to Caesar, namely that of being the agent of his death; this relation which is a sort of concept
(therefore a sort of term) is indicated by the verb “killed”, and the things (terms) which are
the relata of the relation are denoted by the proper names “Brutus” and “Caesar”. Similarly
the second indicates a complex which consists in Caesar and the concept humanity. Russell
introduces his taxonomy in order to introduce a further distinction between a term occurring as
a term and a term occurring as a concept31. Take as examples the two sentences (p) “Socrates is
human” and (p’) “Humanity belongs to Socrates”, both of which Russell thought to be names of
propositions (in the ontological sense). According to Russell, despite being equivalent32, these
propositions are distinct in the sense that in (p) “[...] the notion expressed by human occurs in
a different way from that in which it occurs when it is called humanity, the difference being
that in the latter case, but not in the former, the proposition is about this notion”33. Russell’s
point is that in (p) the logical subject of the proposition is Socrates whereas in (p’) the logical
subject is humanity.As he further explains “[...] the terms of a proposition” are “[...] those terms,
however numerous, which occur in a proposition and may be regarded as subjects about which
the proposition is”34

As Nino Cocchiarella showed long ago35, the notion of a logical subject is central for
understanding the tension which the contradiction generates within the philosophical framework
of the Principles36. The main reason for this is that the notion is the key for understanding Rus­
sell’s unrestricted conception of variation held in the work. It is Russell’s notion of a logical
30 RUSSELL, B., 1903, p.44 §48.
31 COCCHIARELLA, N., 1980, pp.72­3.
32 RUSSELL, B., 1903, p.45 §48. Presumably, when he speaks of equivalence, he is talking about material equi­

valence.
33 RUSSELL, B., 1903, p.45 §48.
34 RUSSELL, B., 1903, p.45 §48.
35 COCCHIARELLA, N., 1980.
36 COCCHIARELLA, N., 1980, pp.72­7.
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subject that entails what Cocchiarella dubbed the thesis of “univocity of being”37. In the Prin­
ciples, Russell summarizes this thesis with the claim that “[...] there is only one kind of being,
namely being simpliciter”38. As we discussed in the previous chapter, the most important con­
sequence of this thesis is that general statements, that is, statements involving all and any ­ i.e.,
statements involving variables ­ have an absolutely general character. As Russell explains, in a
statement like “Every x is so­and­so” we can make “[...] our x always an unrestricted variable”,
in the sense that “[...] we can speak of the variable, which is conceptually identical in Logic,
Arithmetic, Geometry, and all other formal subjects”39, that is: “[....] the terms dealt with are
always all terms”40, so there is no intrinsic restrictions upon the range of the variable. Accor­
ding to Russell, one can only ‘restrict’ a variable by explicitly stating antecedents in a formal
implication, as in “(x)(ϕx ⊃ ψx)”, but this can only be understood as an artificial ‘restriction’
or as no restriction at all for this in fact asserts of every term x that if x is a ϕ it is also a ψ. This
is Russell’s famous thesis of the unrestricted variable, the fundamental logical doctrine of the
Principles of Mathematics.

Concerning the terms of a proposition, that is, its logical subjects, Russell asserts that “It
is a characteristic [of them] that any one of themmay be replaced by any other entity without our
ceasing to have a proposition.”41. This means that a term can only be considered a logical subject
of a proposition if it occurs as a term and not as a concept and points to a fundamental difference
between things and concepts with respect to them as possible logical subjects of propositions: a
thing can only occur as a term, that is, as a logical subject. If “is a man” is substituted for “So­
crates”, we get the sentence: (p*) “Socrates is a Socrates” which is nonsensical, for two reasons.
First, there is nothing occurring as a term corresponding to “is a man” in (p*) to be substituted in
the proposition for Socrates, since the only expression which denotes a term occurring as a term
in (p*) is “Socrates”. Second, things like Socrates (not to be confused with the name “Socrates”)
can only occur in a propositions as terms, that is, as logical subjects. A concept, however, can
occur as a logical subject but also as a concept (or, in Russell’s more misleading terminology,
as a predicate). If we take the proposition (p) and substitute Socrates for a (or, better yet, the)
variable, we obtain what Russell calls a propositional function or propositional form, namely x
is a man. Given that the concept is a man is a term, there must be a proposition which results
from taking this concept itself as a value x. But this proposition is not expressed by the sentence
(p**) “Is a man is a man” which is also nonsense, but by (p***) Mankind is a man. And in this
proposition, the concept does not occur as a concept, but as a term. As Russell further explains:

Predicates, then, are concepts, other than verbs, which occur in propositions
having only one term or subject. Socrates is a thing, because Socrates can

37 COCCHIARELLA, N., 1980, p.72.
38 RUSSELL, B., 1903, p.449 §427.
39 RUSSELL, B., 1903, p.45 §48.
40 RUSSELL, B., 1903, p.45 §48. Our emphasis.
41 RUSSELL, B., 1903, p.45 §48.
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never occur otherwise than as a term in a proposition: Socrates is not capable
of that curious twofold use which is involved in human and humanity.42

Thus, up to this point, what the doctrine of the unrestricted variable states once put in
the context of Russell’s realist theory of propositions and of his views on the nature of terms can
be summarized as follows:

1. Although propositions have many terms as their constituents, not every term that occurs
in a proposition occurs as a term, that is, as a logical subject.

2. The logical subject of a proposition expressed by a sentence that contains an adjective is
the entity denoted by the grammatical subject to which the adjective is attributed and in
this proposition the term denoted by the adjective occurs as a concept, not as a subject.

3. The logical subjects of a proposition expressed by a sentence that contains a verb are the
relata of the relation denoted by the verb and in this proposition the relation occurs as a
concept not as a subject.

Now, Russell must answer a question that complicates this: given this “curious twofold use” of
predicates [concepts indicated by adjectives] which allows them to occur as terms, that is, as
logical subjects, and as concepts, does this mean that they occur as different sorts of entities?
To put it more specifically, given the two propositions (p) and (p’) of our previous example, we
have the occurrence of two different terms occurring in each, in one case a concept and in the
other a thing?43

These questions are particularly pressing in connection with class­concepts like x is a
class that does not belong to itself and they cast a shadow on the whole philosophical outlook
of the Principles, for they threaten Russell’s most fundamental theses: that whatever can be
mentioned is an entity or a has being; that whatever is is a term; and that “[...] any one of them
may be replaced by any other entity without our ceasing to have a proposition”44. As we shall see,
Russell’s philosophical development (regarding Mathematical Philosophy) from 1903 through
1910 can be seen as an attempt to reconcile these views with a solution of the contradiction.

3.1.2 Russell’s Failed Early Attempts at Solving the Contradiction

Russell’s first “tentative” attempt at a solution of the contradiction was his initial for­
mulation of the theory of types presented in the Appendix B of the Principles and in his corres­
pondence with Frege. The basic idea of that version of the theory was that “every propositional
42 RUSSELL, B., 1903, p.45 §48. Our emphasis.
43 RUSSELL, B., 1903, p.45 §48.
44 RUSSELL, B., 1903, p.45 §48.
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function ϕ(x) [...] has, in addition to its range of truth, a range of significance, i.e. a range within
which x must lie if ϕ(x) is to be a proposition at all, whether true or false45.”

Thus, the cornerstone of that theory is that there are values of x for which “ϕ(x)” is me­
aningless. In this theory ‘types’ are defined as ranges of significance of propositional functions
forming a hierarchy:

A term or individual is any object which is not a range. This is the lowest type of
object. If such an object ­ say a certain point in space ­ occurs in a proposition,
any other individual may always be substituted without loss of significance.
[...] The next type consists of ranges or classes of individuals. [...] The next
type after classes of individuals consists of classes of classes of individuals46.

So Russell’s schematic response to the contradiction in the Appendix B of Principleswas
to somehow weaken the doctrine of the unrestricted variable, admitting that variables could be
restricted when quantification over propositional functions and/or classes could lead to contra­
dictions. This however, threatened Frege’s and Russell’s early conception of Logic as a whole ­
as Frege himself pointed out to Russell in a letter from 29 June 1902 correspondence:

[...] if you admit a sign for the extension of a concept (a class) as a meaningful
proper name and hence recognize a class as an object, then the class itself must
either fall under the concept or not; tertium non datur. 47

Russell’s correspondence with Frege shows that the former had envisaged a way out the
difficulty by denying that classes such as the class of all classes that do not belong to themselves
were genuine entities, via his distinction of a class as one vs class as many. On 10 July 1902,
Russell wrote:

Concerning the contradiction, I did not express myself clearly enough. I believe
that classes cannot always be admitted as proper names. A class consisting of
more than one object is in the first place not one object, but many48.

Frege saw that this also would not do, pointing out that this was to ground Arithmetic
(for Russell, Pure Mathematics in general) on a theory of aggregates or systems (what today
we would call fusions49), thus failing to provide Arithmetic with objects. On 28 July 1902 Frege
replied the following:

45 RUSSELL, B., 1903, p.523 §497.
46 RUSSELL, B., 1903, p.523 §497.
47 FREGE, G. 1980, p.135.
48 FREGE, G. 1980, p.137.
49 AsMichael Potter puts it “[...] a fusion is conceived of as being nothing over and above its members” a plurality,

“whereas a set is thought of as distinct from that plurality” (POTTER, M., 1999, p.98).
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It seems tome that youwant to admit only systems and not classes. I myself was
reluctant to recognize ranges of values and hence classes; but I saw no other
possibility of placing arithmetic on a logical foundation. But the question is:
How do we apprehend logical objects? And I have found no other answer to it
than this: We apprehend them as extensions of concepts, or more generally, as
ranges of values of functions. I have always been aware that there are difficul­
ties connected with this, and your discovery of the contradiction has added to
them; but what other way is there?50

Frege had good reasons to see no way around this difficulty ­ reasons that were parti­
ally shared by Russell (at that time). Despite their famous and severe divergences on topics of
Philosophy of Language, Frege and Russell could not admit that something other than an object
(Frege’s term) or individual (Russell’s) could be the logical subject of a singular proposition ­
and if set theory was to serve as a genuine foundation for Mathematics, classes should be thus
taken as objects and class expressions as singular terms. Frege made the point with his usual
lucidity in a letter from 28 July 1902:

If a class name is not meaningless, then, in my opinion, it means an object. In
saying something about a manifold or set, we treat it as an object. A class name
can appear as the subject of a singular proposition and therefore has the cha­
racter of a proper name, e.g., ’the class of prime numbers comprises infinitely
many objects’51.

As long as Russell shared Frege’s view that every class­expression should be treated as
a proper name there was no way around this difficulty: either this or the unrestricted variable
had to go.

So it was that shortly after the publication of the Principles, Russell told Jourdain on 19
January 1906 he thought “[...] had solved the whole thing by denying classes altogether” while
keeping propositional functions as entities52. In fact, he wrote to Frege by 24May 1903, just days
after publishing the book53, asserting that he “[...] discovered that classes are entirely superfluous.
Your designation ὲϕ(ε) can be used for ϕ itself, and x ⌢ ὲϕ(ε) for ϕ(x)”54. But, again, at the
time this was another a dead­end.

It took Frege almost a year and a half to answer Russell’s letter and by the time he
did, Russell had already given up the strategy. As Frege pointed out to Russell, the short lived
solution was spurious since the the letters “ϕ”, “ψ”, etc., were “[...] no longer used as function
letters but as object letters”55. Frege’s sound criticism relied on his conception of functions as
‘unsaturated’ entities, as he explained in a letter to to Russell from 13 November 1904:
50 FREGE, G. 1980, p.140­1.
51 FREGE, G. 1980, p.140.
52 GRATTAN­GUINNESS, I., 1977, p78.
53 GRATTAN­GUINNESS, I., 2000b, p.328­9.
54 FREGE, G. 1980, p.159.
55 FREGE, G. 1980, p.162. Russell seems to have partially accepted Frege’s contention, for in his reply from 12

December 1904 he asserts: “I have known already for about a year that my attempt to make classes entirely dis­
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To use a function sign in isolation is to contradict the nature of a function,
which consists in its unsaturatedness. For this is how a function differs from
an object. This is also why function names must differ essentially from proper
names, the difference being that they can carry with them at least one empty
place ­ an argument place. And these argument placesmust always be preserved
in a function name and be recognizable as such; otherwise the function name
becomes a meaningless proper name. The same must hold for function letters,
at least wherever they are to be replaceable by function names.56

Russell’s reply shows how deep their disagreement on these matters was. He referred
back to the criticism he had already made in the Appendix B of the Principles to the consequen­
ces Frege extracted from his distinction between functions and objects, pointing specifically to
paragraph §483, in which he made the two following points57: 1. If one tries to claim that it is not
the concept, but the name that is involved, one is already making the concept a logical subject;
2. It is always legitimate to ask what entity a name names and if there is a positive answer (that
is, if it is a meaningful name), then, in the case of the symbol for a concept, the symbol must
name the concept, which is then a possible logical subject of a proposition.

Frege would accept neither of these points, for regarding both of them he would claim
that whenever we try to make a concept the subject of a possible judgment, we are not asserting
something about a concept, but about an object (hence his notorious assertion that “the concept
horse is not a concept”58). It is puzzling, then, that before making this point Russell asserts in
the same letter from 12 December 1904 that he “[...] knew, for about a year that [his] attempt to
make classes entirely dispensable was a failure, for essentially the same reasons as you give”59.
Probably by “essentially the same reasons” he means the fact the his strategy could not avoid
the use of function symbols as names of objects, for as Russell later explained in the letter from
19 January 1906 to Jourdain about his work on this period, he “treated ϕ as entity” and this was
precisely the reason the strategy “brought back the contradiction”60. Given that, according to his
unrestricted conception of variation, if a functional variable “ϕ” is treated as an entity variable,
one can define a functionW as follows:

(W ) W (ϕ) =∼ ϕ(ϕ) Df

pensable was a failure, for essentially the same reasons as you give.” However, he still refrained from accepting
Frege’s views on functions: “But it is not yet clear to me that it is never permissible to use a function letter in iso­
lation. On this point I do not quite share your view, for reasons you will find in my book, sects 480ff, especially
sect.483. My present belief is roughly as follows. In the case of a particular function, e.g., (ξ−1) · (ξ+1),what
arises through the mere omission of ξ can certainly not be regarded as an object. But I believe that if we use
the notation ϕx, the letter ϕ must designate something that remains the same when y is substituted for x. This
something is, I believe, what is designated by ϕξ” (FREGE, G. 1980, p.166­7).

56 FREGE, G. 1980, p.160­1.
57 RUSSELL, B., 1903, p.504 §483.
58 FREGE, G., 1892b, pp.192­3.
59 FREGE, G. 1980, p.160­1.
60 GRATTAN­GUINNESS, I., 1977, p78.
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Which is a function that applies to every function that does not apply to itself. Then, we have61:

(W ′) (ϕ)(W (ϕ) ≡ ∼ ϕ(ϕ))

The question that can obviously be introduced then is this: Does this W apply to itself or not?
In exactly the same way the paradox of the class of all classes emerged, we have:

(W ′′) W (W ) ≡ ∼ W (W )

Thus, the same problem remained and, as Russell put, he “[...] gained nothing by rejecting clas­
ses”62.

In reminiscence, Russell regarded his work along the period of 1903­1904 as being com­
pletely unsuccessful toward the goal of resolving the contradiction, with a breakthrough coming
with his discovery of the theory of descriptions63 first presented inOnDenoting. In what follows
we discuss why that was the case.

3.2 The ‘Rise’ of Russell’s Substitutional Theory of Classes and
Relations

3.2.1 Russell’s Reception of Frege and the Renewed Theory of the Variable

As noted in the previous chapter, the Logic of the Principles had significant improve­
ments with respect to Peano’s, but in many respects it also kept some of its shortcomings64. The
most notable of these are salient in Russell’s account of quantification: as in the case of Peano’s
works, there is no explanation of generality in the Principles as clear and precise as that of Frege
61 GRATTAN­GUINNESS, I., 1977, p78.
62 GRATTAN­GUINNESS, I., 1977, p78. What is even more puzzling however, is the fact that Russell himself

antecipated this outcome already in the Principles of Mathematics! For there, he had already claimed that “the
ϕ in ϕx is not a separate and distinguishable entity: it lives in the propositions of the form ϕx, and cannot
survive analysis”, precisely for the reasons discussed above: “If ϕ were a distinguishable entity, there would
be a proposition asserting ϕ of itself, which we may denote by ϕ(ϕ); there would also be a proposition ∼
ϕ(ϕ), denying ϕ(ϕ). In this proposition we may regard ϕ as variable; we thus obtain a propositional function.
The question arises: Can the assertion in this propositional function be asserted of itself? The assertion is non­
assertibility of self, hence if it can be asserted of itself, it cannot, and if it cannot, it can. This contradiction is
avoided by the recognition that the functional part of a propositional function is not an independent entity. As the
contradiction in question is closely analogous to the other, concerning predicates not predicable of themselves,
we may hope that a similar solution will apply there also.”(RUSSELL, B., 1903, p.88 §85).

63 RUSSELL, B., 1944, p.224; RUSSELL, B., 1959, p.79; RUSSELL, B., 1967, p.229.
64 Most notably, the problematic theory of denoting concepts. Indeed, Landini argues that the Substitutional Theory

began in the Principles itself, but it could not work together with the denoting concepts, so it could only take
off with the theory of incomplete symbols in place (cf. LANDINI, G., 1998, pp.89­93).
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and none of Russell’s works dealing with formal deductions produced up to the publication of
the Principles provide a notation that is precise (and also flexible) enough to adequately express
scopes of quantified variables in the way that Frege had done flawlessly ­ albeit unknowingly ­
long before.

This situation changed, however, shortly after the publication of the Principles. The
extent of Russell’s breakthrough is fully displayed in the paper The Theory of Implication65, his
first (published) formal development of the elementary portions of Mathematical Logic (i.e.,
propositional logic and quantification theory) and also the first to exhibit the acceptance of
Frege’s account of the quantifier66. The paper shows Russell modifying both his accounts of
propositional connectives and of quantifiers as given in the Principles. Russell assumed both
implication and negation as primitive and he simplified his definitions by changing the meaning
of “p ⊃ q” to “if p is true, then q is true”67. This, as Landini points out68, marks a separation
of the formal treatment of quantification theory from that of the calculus of propositions. This
separation greatly simplified the definitions and primitive propositions. Instead of the somewhat
archaic calculus of the Principles discussed in the previous chapter, we find the following very
familiar axioms and definitions in the 1906 system, where both implication and negation are now
assumed as primitive notions69:

⊢ p⊃ pPp

⊢ p ⊃ q⊃ pPp

⊢ p ⊃ q ⊃ q⊃ r ⊃ p⊃ r Pp

⊢ p ⊃ q⊃ r ⊃ q ⊃ p ⊃ r Pp

⊢ ∼∼ p ⊃ pPp

⊢ p⊃ ∼ p ⊃ ∼ pPp

⊢ p⊃ ∼ p ⊃ q⊃ ∼ pPp

p q = ∼ (p ⊃∼ q)Df

p∨ q = ∼ p ⊃ qDf

p≡ q = p⊃ q q⊃ pDf
65 RUSSELL, B., 1906 The paper was finshed writing the paper around July of 1905, but it was published only by

April of 1906 (cf. MOORE, G., 2014, p.14).
66 Short, of course, of Frege’s doctrine of functions as incomplete entities.
67 RUSSELL, B., 1906, p.24.
68 LANDINI, G., 1998a, p.53. Though, as Landini also observes, Russell may have still thought that a calculus

like that of the Principles was “still viable”. His choice in the 1906 was most likely a matter of simplicity in
exposition.

69 RUSSELL, B., 1906c, p.29­30, propositionsk2·5,k2·6,k2·7 , k2·8,k2·9,k2·91, k2·92 ,k4·1,k4·11 andk4·12.
Modus Ponenswas again put forward as a ‘primitive proposition’ that cannot be stated in symbols, namely, “[...]
anything implied by a true proposition is true” (RUSSELL, B., 1906c, p.27.).
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Russell used a notation which we can schematically represent by “(A G x1, ..., xn)” as
standing for propositional functions ­ i.e., a function whose values are propositions70 ­ of nmany
arguments. That is, he employed “(A G x)”, “(B G y)”, “(C G x, y)”, etc., as open formulas, i.e.,
sentences with real (free) variables. Crucially, employing this notion he introduced the notation
“(x).(A G x)” for the universal quantifier standing for the now primitive idea “(A G x) is true
for all values of x”71. Thus, in what was a major step forward with respect to Peano and his own
earlier works, Russell could then distinguish clearly the different scope of an apparent (bound
variable can have) using dots. This is clearly displayed in the primitive propositions which he
assumes72:

⊢ (x) (A G x) ⊃ (A G y)Pp

What is true of any is true of all.Pp

⊢ (x) p⊃ (A G x) ⊃ p ⊃ (x) (A G x)Pp

Indeed, all of the above are taken directly from Frege’s Begriffschrift: k7·1 is just the law of
universal instantiation, i.e., proposition number 58 of the Begriffschrift73 while k7·11 and k7·2
correspond to Frege’s rules for quantification theory74, with the second transformed by Russell
into a law or ‘primitive proposition’75.

This approximation to Frege was made possible because Russell gave up his previous
goal of giving an account or analysis of the constituents of general propositions ­ in particular
‘the variable’ ­ in terms of other notions, most notably that of denoting76. In fact, the change
was prompted by Russell’s abandonment of the Principles’s theory of denoting concepts. The
70 RUSSELL, B., 1906c, p.26. Since Russell understood propositional variables as genuine variables which ranged

over entities (namely, propositions), he also viewed formulas like “p⊃q” as propositional functions that become
sentences once the variables “p”, “q” are replace by actual sentences or are bound by quantifiers.

71 RUSSELL, B., 1906c, p.52.
72 RUSSELL, B., 1906c, p.54­55, propositions k7·1 and k7·1.
73 Cf. FREGE, G., 1879, p.51.
74 Cf. FREGE, 1879, pp.25­6.
75 Aswith the rule ofmodus ponens, the peculiar status of ‘proposition’ k7·11 is also explicitly recognized. Russell

writes: “This proposition is the converse of k7·1. It cannot be symbolized without inventing a new symbol for
the purpose, which seems not worthwhile, as this symbol would not be afterwards required. It might be supposed
at first that what we mean could be expresed by

⊢ (C G y) ⊃ (x) (C G x)
But this would mean: “(C G y) implies that (C G x) is true for all values of x, where ymay be anything”, which
is not what we mean, and is not in general true. What we mean is: “If (C G y) is true whatever y may be, then
(C G x) is true for all values of x”. When (C G y) is asserted, we have:

⊢ (C G y) ⊃⊢ (x) (C G x)

but we cannot adopt this as our formula, because we must only put the assertion sign before what really is true,
and here (C G y) is to be only a hypothesis, which may or may not be true.” (RUSSELL, B., 1906c, p.54­5).

76 It must be observed ­ and this is a point to be addressed below ­ that right after abandoning the theory of denoting
concepts in On Denoting Russell adopts an account of propositions which abandons general propositions, so
that particular problem of explaining their constituents vanishes. This, of course, does not mean that Russell
abandons the use of formulas or sentences which contain quantifiers and variables; as we shall see, variables as
part of the formal apparatus and the notation of the quantifier, in fact, are kept as primitive notions.
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transition was completed by the time Russell published77 his most famous and perhaps most
important technical paper, On Denoting78, on October of 1905. There Russell presents his new
view of denoting which completely overhauls the theory of the Principles:

I take the notion of the variable fundamental; I use “C(x)” to mean a proposi­
tion [in fact, as Russell indicates a footnote, “more exactly, a propositional func­
tion”] in which x is a constituent, where x, the variable, is essentially andwholly
undetermined. Then we can consider the two notions “C(x) is always true” and
“C(x) is sometimes true”. Then everything and nothing and something (which
are the most primitive of denoting phrases) are to be interpreted as follows:
C(everything) means “C(x) is always true”;
C(nothing) means “ ‘C(x) is false’ is always true”;
C(something) means “It is false that ‘C(x) is false’ is always true”;
Here the notion “C(x) is always true” is taken as ultimate and indefinable and
the others are defined by means of it. Everything, nothing, and something, are
not assumed to have any meaning in isolation, but a meaning is assigned to
every proposition in which they occur. This is the principle of the theory of
denoting I wish to advocate: that denoting phrases never have any meaning in
themselves, but that every proposition in whose verbal expression they occur
has a meaning. The difficulties concerning denoting are, I believe, all the result
of a wrong analysis of propositions whose verbal expressions contain denoting
phrases.79

Against the analysis of the Principles, Russell is explicitly denying here that phrases
like “all x” or “some x” must stand for genuine constituents of propositions. In fact, Russell is
also flat out refusing an important doctrine which in the Principles came hand in hand with the
doctrine of the unrestricted variable, namely, that every part of a significant sentence must stand
for a constituent of the proposition that the sentence in question expresses.

As is well known, however, this abandonment of denoting concepts is surrounded by
interpretative problems that are almost intractable. Famously, Russell puts forward in On Deno­
ting an argument against the theory of denoting concepts of the Principles that became known
in secondary literature as “the Gray Elegy argument”80. This argument, as Russell puts it, aims
at showing that “the relation of the meaning to the denotation involves certain rather curious
difficulties” which suffice to “prove that the theory which leads to such difficulties must be
wrong”81. It is reasonable ­ perhaps uncontroversial ­ to say, however, that the presentation of
the argument itself as given inOn Denoting may very well be the most controversial and proble­
matic set of paragraphs in Russell’s logico­philosophical works. The argument seems plagued ­
77 Most likely the paper was written between July 3 and August 3 of 1905 (URQUHART, A., 1994, p.li).
78 RUSSELL, B., 1905a.
79 RUSSELL, B., 1905a, p.416.
80 Russell claims that the argument is directed at what he takes to be Frege’s views on the matter, but this, it seems,

can only be the case if Russell distorted Frege’s views beyond recognition. As Peter Geach pointed out long
ago, the target of the argument are Russell’s own previous views on the matter (cf GEACH, P., 1959) which he
quite mistakenly thought to be essentially the same as Frege’s. This seems to be one of the very few consensual
points about the “Gray Elegy argument”.

81 RUSSELL, B., 1905, p.421.
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even more than usual ­ by Russell’s customary lack of care with use and mention, to the point
that many authors ­ including, for instance, Alonzo Church ­ have argued that there is nothing
but nonsense to be availed in the argument82. Furthermore, as some interpreters have observed,
Russell’s unpublished manuscripts dealing with the issue of denoting produced between the pu­
blication of the Principles and On Denoting are so dauntingly complex and obscure that they
seem to just raise more questions instead of providing helpful answers. Finally ­ although this
may be considered an ‘external’ issue, the literature which discusses the purpose and content of
the “Gray Elegy argument” is at this point so massive and abstruse that any attempt at a concise
and clear­cut discussion of it seems doomed from the start83. As Gregory Landini colorfully but
truly notes, the argument thus seems like “[...] a siren song which lives up to the Odyssey in
bringing to ruin all who hope to probe its pages” and “[...] sooner or later the interpreter is sedu­
ced by one or another of the songs and, impelled by its blissful soporific, dashed on the rocky
crags”84.

So here we shall take heed of Landini’s advice of “[...] navigating past the sirens by
being firmly lashed to the mast of the Principles”85. The key for understanding the core of the
argument, as Landini convincingly argues86, is to pay attention to how the theory of denoting
concepts threatens Russell’s central doctrine of the unrestricted variable. The central point to be
observed is this: the doctrine of the unrestricted variable requires that if there is such an entity
as a denoting concept C, then C must be capable of being a logical subject, i.e., occur as a term
in a proposition; but if C is a concept in the sense of the Principles, in order for C to be a logical
subject of a proposition p it must have what Russell refers to in Principles as the “[...] curious
twofold use”87 of concepts, that is, it must be capable of occurring as a concept and as a term in
a proposition. In a nutshell, Landini argues that this is the main issue to which Russell failed to
find a satisfactory account: the possibility of a denoting concept occurring as a term or entity in a
proposition. This is a straightforward and serious problem that in all likelihood led to the demise
of the theory of denoting concepts and for our purposes it is the main relevant issue underlying
the tortuous argument.

What then, of the variable? Isn’t it viewed as an entity by Russell and if so can it be
considered the last standing denoting concept? Some authors have argued in favor of this view.
Peter Hylton, for instance suggests that “[...] Russell eliminates denoting only by assuming the
crucial case of it ­ i.e. that he does not eliminate denoting but simply reduces it to the one
82 Cf. CHURCH, A., 1943, p.302.
83 For a sample of the controversies surrounding the “Gray Elegy Argument” of On Denoting, cf: GEACH, P.,

1958; BLACKBURN & CODE, 1978; GEACH, P., 1978; HYLTON, P., 1990, pp. 237­275; PAKALUK, M.,
1993; WAHL, R., 1993; KREMER, M., 1994; MAKIN, G., 1995; LANDINI, G., 1998a; DEMOPOULOS, D.,
1999; POTTER, M., 2000, pp.122­8; LEVINE, J., 2004; KAPLAN, D., 2005.

84 LANDINI, G., 1998b, p.43­44.
85 LANDINI, G., 1998b, p.44.
86 LANDINI, G., 1998b, p.59­67.
87 RUSSELL, B., 1903, p.45, §48.
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case of the variable”88; Hylton also thinks that the notion must survive because it is required to
make sense of propositional functions, specifically the following idea that later appears explicitly
articulated in Principia in the following terms:

When we speak of “ϕx”, where x is not specified, we mean one value of the
function, but not a definite one. We may express this by saying that “ϕx” ambi­
guously denotes ϕa, ϕb, ϕc, etc., where ϕa, ϕb, ϕc, etc. are the various values
of ‘ϕx’. When we say that “ϕx” ambiguously denotes ϕa, ϕb, ϕc, etc., wemean
that “ϕx” means one of the objects ϕa, ϕb, ϕc, etc., but an undetermined one.89

The question of the nature of propositional functions in Principia notwithstanding, the
claim that the variable is kept as a denoting concept which is the characteristic constituent of
propositional functions cannot be attributed to Russell at this point in time (i.e., between On
Denoting and Principia).

Already in the Principleswhere the variable was explicitly treated as a denoting concept,
Russell refused to acknowledge propositional functions as (complex) terms. Russell unequivo­
cally voices this view in the ­ often ignored ­ passage which we already had occasion to discuss
where he claims that “[...] the ϕ in ϕx is not a separate and distinguishable entity: it lives in the
propositions of the form ϕx, and cannot survive analysis”90; the reason for this apparent excep­
tion to Russell’s view that “[...] anything that can be mentioned”91 must be a logical subject (i.e.,
a term), is nothing less than the threat of Russell’s paradox framed in terms of predication. As
Russell explains:

I am highly doubtful whether such a view does not lead to a contradiction, but
it appears to be forced upon us, and it has the merit of enabling us to avoid a
contradiction arising from the opposite view. If ϕ were a distinguishable en­
tity, there would be a proposition asserting ϕ of itself, which we may denote
by ϕ(ϕ); there would also be a proposition not­ϕ(ϕ), denying ϕ(ϕ). In this
proposition we may regard ϕ as variable; we thus obtain a propositional func­
tion. The question arises: Can the assertion in this propositional function be
asserted of itself? The assertion is non­assertibility of self, hence if it can be
asserted of itself, it cannot, and if it cannot, it can. This contradiction is avoided
by the recognition that the functional part of a propositional function is not an
independent entity. As the contradiction in question is closely analogous to the
other, concerning predicates not predicable of themselves, we may hope that a
similar solution will apply there also.92

As we just discussed, however, no such solution is given in the Principles. But by the
time Russell published On Denoting he did have a solution given in terms of his Substitutional
88 HYLTON, P., 1990, p.254­5.
89 WHITEHEAD & RUSSELL, 1925, p.39 [1910, p.41].
90 RUSSELL, B., 1903, p.88, §85.
91 RUSSELL, B., 1903, p.43, §47.
92 RUSSELL, B., 1903, p.88, §85.
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Theory of Classes and Relations. As we shall discuss in detail below, the Substitutional Theory
dispensed completelywith propositional functions as entities of any sort. So the idea that Russell
had to appeal to the notion of a propositional function as an entity in order to account for the
variable in On Denoting simply cannot be right.

Still, Russell was still committed to general propositions understood as entities, so the
problem of explaining what sort of constituent characterized general propositions ­ i.e., variables
­ remained. But the fact of the matter is that Russell seems to have simply left this problem
unsolved. In a now famous letter that Moore wrote to Russell on 23 October 1905, the former
raised the issue as follows:

You say ‘all the constituents of propositions we apprehend are entities with
which we have immediate acquaintance.’ Have we, then, immediate acquain­
tance with the variable?93

On 25 October 1905, Russell replied as follows:

I only profess to reduce the problem of denoting to the problem of the variable.
This latter is horribly difficult, and there seem to be equally strong objections
to all the views I have been able to think of.94

This reply strongly corroborates Landini’s view that by the time Russell had published
On Denoting and adopted the Substitutional Theory he had “[...] abandoned all hope of giving
a metaphysical theory of the use of single letters as variables”95 On Denoting really departs
with denoting concepts. What remains seems to be the following. The notion of the variable
as a constituent of general propositions is kept but without any explanatory role. Variables as
expressions are introduced as part of the primitive symbolic vocabulary of Russell’s new logical
calculus. And, as we shall discuss next, the notion of a ‘propositional function’ is explained
away just like the notions of classes and relations­in­extension by Russell’s new method of
Substitution.

3.2.2 The Theory of Descriptions, the Genesis of the Substitutional Theory
and the Received View of Russell’s Ontological Development

Besides a new analysis of generality, i.e., a new theory of the variable, in On Denoting
Russell also introduces what may very well be his most famous and celebrated contribution to
93 URQUHART, A., 1994, p.xxxv.
94 URQUHART, A., 1994, p.xxxv.
95 LANDINI, G., 1998b, p.72.
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Mathematical Philosophy and Philosophical Logic: his new theory of definite descriptions. On
Denoting presents Russell’s new analysis of sentences containing ocurrences of definite descrip­
tions like “the present King of France” or “the center of mass of the solar system” informally. In
Russell’s manuscripts written in the period surrounding the publication of On Denoting, howe­
ver, we already find many formal statements of Russell’s contextual definition, whose canonical
form can be put as follows96:

ψ{(ıx)(ϕx)} = ( Ey) ϕz ≡z z = y ψyDf (3.2.1)

This defines the truth­conditions of any context ψ in which an expression like “the x which is
a ϕ”, i.e., “(ıx)(ϕx)” occurs as a subject in terms of a sentence which asserts that there is one,
and only one y such that ψy.

Apart from the ‘Gray Elegy argument’ against denoting concepts, in On Denoting Rus­
sell advocated his analysis mainly on the grounds that it was capable of dissolving a variety of
logico­philosophical ‘puzzles’ that are nowadays taught and discussed in almost every introduc­
tory course or text to the Philosophy of Language97. As Russell stated in his later publications,
however, at the time he thought that the chief merits of his new theory of denoting were connec­
ted to the resolution of the contradictions and the theory of types, somewhat to the bafflement
of his readers. In My Philosophical Development, for instance, he writes, concerning his work
on solving the contradictions, that:

Throughout 1903 and 1904, my work was almost wholly devoted to this matter,
but without any vestige of success. My first success was the theory of descrip­
tions, in the spring of 1905 [...] This was, apparently, not connected with the
contradictions, but in time an unsuspected connection emerged. In the end, it
became entirely clear to me that some form of the doctrine of types is essen­
tial.98

A similar remark is is also made by Russell in his Autobiography, where we find the
following passage which leaves the link between Russell’s work on the contradictions and the
theory of descriptions even more enigmatic:

In 1905 things began to improve. Alys and I decided to live near Oxford, and
built ourselves a house In BagleyWood. (At that time there was no other house
there.) We went to live there in the spring of 1905, and very shortly after we
had moved in I discovered my Theory of Descriptions, which was the first step

96 Again, this definition requires scope markers to properly work and to be properly understood. This will be
addressed in chapter 4.

97 At the time Russell had to convince the then editor of Mind, G.F. Stout, that the article deserved to be printed
since, according to Russell, Stout thought the views presented expressed in the article “presposterous” to the
point that he “begged [Russell] not to demand its publication as it stood” (Cf. RUSSELL, B., 1959, p.83 and
URQUHART, A., 1994, p.414).

98 RUSSELL, B., 1959, p.79.
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towards overcoming the difficulties which had baffled me for so long. [...] In
1906 I discovered the Theory of Types. After this it only remained to write the
book out.99

For quite some time, the above remarks connecting the discovery of the theory of des­
criptions with the resolution of the contradictions and the theory of types left readers baffled
and puzzled and remained without a good explanation in secondary literature.

One reason is this: the first appearance of the Theory of Types was in the Appendix B of
the Principles but the next one is in Russell’s famous paperMathematical Logic as Based in the
Theory of Typeswhich appeared only halfway through 1908 (andPrincipia’s first volume only by
the end of 1910)100. In My Mental Development Russell had also already claimed explicitly that
the theory of descriptions led him at the time to take class expressions as incomplete symbols:

What was of importance in this theory was the discovery that, in analyzing a
significant sentence, one must not assume that each separate word or phrase
has significance on its own account. “The golden mountain” can be part of a
significant sentence, but is not significant in isolation. It soon appeared that
class­symbols could be treated like descriptions, i.e., as non significant parts
of significant sentences. This made it possible to see, in a general way, how a
solution of the contradictions might be possible.101

This throws some light on the issue. As we saw, at the time of the Principles, Russell
thought that every descriptive phrases like “The class of all classes” or “The class of all classes
which do not belong to themselves” had to denote something so that sentences in which they
occur would not be disregarded as nonsensical. In On Denoting Russell abandons this view,
since there he adheres to the view that such linguistic expressions do not express a meaning
in isolation, but only in the context of complete sentences. Such expressions Russell called
‘incomplete symbols’. But Russell does not go into any detail on the relation of his theory of
denotingwith the solution of the contradiction, beyond the loose comparison of class expressions
with names of fictional entities. So still, the connection here with the Theory of Types is tenuous
at best.

The only well­known published text which gives a hint of what was going on with Rus­
sell’s views on the contradictions between 1905­08 is the article On Some Difficulties in the
Theory of Transfinite Numbers and Order Types. There, Russell discusses very briefly three
approaches which he considered up to 1905 for solving the contradictions. He called them the
“Zig­Zag Theory”, “The Limitation of Size Theory” and the “No­Class theory”. Each of these
theories was an attempt to avoid the contradiction by somehow mitigating existential assump­
tions about classes while at the same time preserving the unrestricted variable which was so
99 RUSSELL, B., 1967, p.229.
100 In this regard, as Gregory Moore obsrves, Russell’s remark that “it only remained to write the book out” is

“grossly misleading” (MOORE, G., 2014, pp.lxx).
101 RUSSELL, B., 1944, p.224.
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central to the general conception of Logic (and Mathematics) presented in the Principles. Ac­
cording to the Zig­Zag theory, “propositional functions determine classes when they are fairly
simple, and only fail to do so when they are complicated and recondite”102 and the basic idea
of the Limitation of Size Theory was to impose “[...] a certain limit of size which no class can
reach” in order to show that “any supposed class which reaches or surpasses this limit is an
improper class, i.e., is a non­entity”103. Russell worked on both theories from 1903 to 1905, but
in the end he was not satisfied with either of them. In the case of the zig­zag theory, the main
problem was that it was not clear at all where the line between legitimate and illegitimate classes
was to be drawn for any reason other than avoiding the contradictions. As he put it:

[...] in attempting to set up axioms for this theory, I have found no guiding
principle except the avoidance of contradictions; and this, by itself, is a very
insufficient principle, since it leaves us always exposed to the risk that further
deductions will elicit contradictions.104

In the case of the limitation of size theory, the problem was that it was unclear whether
the theory would be adequate for reconstructing Classical Mathematics, and so sufficient for the
purposes of Logicism:

A great difficulty of this theory is that it does not tell us how far up the series of
ordinals it is legitimate to go. It might happen that ω was already illegitimate:
in that case all proper classes would be finite.105

Finally, there was No­Class Theory also called the Substitutional Theory of Classes and
Relations. This was the most radical attempt to resolve the problem: according to it “classes and
relations are banished altogether”106.

As Ivor Grattan­Guiness once remarked, this No­Class sketched in the 1905 article and
later developed in writings from 1906 and 1907 as the Substitutional Theory of classes and rela­
tions “is the missing link between Russell’s theory of denoting and Principia Mathematica”107.
In the only published work in which Russell discusses this theory in detail, he asserts that:

Technically, the theory of types as suggested in Appendix B [of Principles]
differs little from the no­classes theory. The only thing that induced me at that
time to retain classes was the technical difficulty of stating the propositions

102 RUSSELL, B., 1905b, p.74.
103 RUSSELL, B., 1905b, p.74.
104 RUSSELL, B., 1905b, p.75.
105 RUSSELL, B., 1905b, p.80.
106 RUSSELL, B., 1905b, p.80.
107 GRATTAN­GUINNESS, I., 1977, p.94.
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of elementary arithmetic without them—a difficulty which then seemed to me
insuperable.108

In hisDear Russell, Dear Jourdain109 Grattan­Guinness made available Russell’s corres­
pondence with Jourdain in which the Substitutional Theory is discussed in detail (also providing
commentary informed byRussell’s then unpublishedmanuscripts). Therewe find conclusive evi­
dence for the connection between Russell’s famous theory of incomplete symbols and Russell’s
acceptance of some form of what he would later call the ‘doctrine’ of types110.

Unfortunately, several factors contributed in making this missing link either unknown,
ignored or misunderstood for quite a long time. First of all, Russell himself was not only quite
dismissive of it in reminiscence111, but he also never mentioned it explicitly in any published
work after 1908. Second, almost all the work he produced on this theory remained unpublished
for several decades. Between 1905 and 1907 Russell produced hundreds of folios dealing with
the No­Class theory. But only one paper dealing at some level of detail with that theory was
published in Russell’s lifetime. The paper in question was originally entitledOn Insolubilia and
Their Solution Through Symbolic Logic; it ended up being published in French by September
1906 as Les Paradoxes de la Logique in the Revue de méthaphysique et de morale in connec­
tion with a polemic with Poincaré112. But this work was not published in English until 1973 in
the collection Essays in Analysis, thus remaining unavailable and neglected. More importantly,
Russell’s main paper dealing with the theory, On The Substitutional Theory of Classes and Re­
lations which never saw print in Russell’s lifetime. Russell sent it to the London Mathematical
Society by 24 April of 1906 and read it by 10 May. The paper was accepted for publication, but
Russell had second thoughts about it113.

These circumstances and Russell’s cryptic historical remarks contributed to make wides­
pread a largely inadequate picture of the development of his views, which was put forward in
its most pristine and paradigmatic form in Quine’s Russell’s Ontological Development, which is
worth quoting in length:

Seeing Russell’s perplexities over classes, we can understand his gratification
108 RUSSELL, B. 1906, p.193, our emphasis. The paper was only amde widely available in 1973 when it was re­

published in enlgish for the first time. See previous footnote.
109 GRATTAN­GUINNESS, I., 1977.
110 RUSSELL, B., 1959, p.79.
111 In a letter to Lucy Martin Donnelly from April 22 1906, Russell wrote: “My work goes ahead at a tremendous

pace, and I get intense delight from it” (RUSSELL, B., 1967, p.280), however in his Autobiography written more
than sixty years later he added a footnote unfairly asserting that “It turned out to be all nonsense” (RUSSELL,
B., 1967, p.280; Ironically, in the same letter he claimed that “I feel better able than anyone else to judge what
my work is worth”).

112 MOORE, G., 2014, pp.xiviii­xlix. Details will be discussed below.
113 He reported to Jourdain by 10 october: “I decided not to publish the paper I read at the London Mathematical

[Society] in May; there was much in it that wanted correction, and I preferred to wait till I got things into more
final shape” (GRATTAN­GUINNESS, I., 1977, p78). This paper was also published for the first time only in
1973 in the collection Essays in Analysis.
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at accommodating classes under a theory of incomplete symbols. But the para­
doxes, which were the most significant of these perplexities, were not solved
by his theory of incomplete symbols; they were solved, or parried, by his theory
of types. One is therefore startled when Russell declares in “My Mental Deve­
lopment” that his expedient of incomplete symbols “made it possible to see,
in a general way, how a solution of the contradictions might be possible.”114
If the paradoxes had invested only classes and not class­concepts, then Rus­
sell’s elimination of classes would indeed have eliminated the paradoxes and
there would have been no call for the theory of types. But the paradoxes apply
likewise, as Russell knew, to class­concepts, or propositional functions. And
thus it was that the theory of types, in this its first full version of 1908, was deve­
loped expressly and primarily for propositional functions and then transmitted
to classes only through the contextual definitions.
The startling statement that I quoted can be accounted for. It is linked to the pre­
ference that Russell was evincing, by 1908, for the phrase ‘propositional func­
tion’ over ‘class­concept’. Both phrases were current in Principles of Mathe­
matics; mostly the phrase ‘propositional function’ was visibly meant to refer
to notational forms, namely open sentences, while concepts were emphatically
not notational. But after laying waste Meinong ’s realm of being in 1905, Rus­
sell trusted concepts less and favored the more nominalistic tone of the phrase
‘propositional function’, which bore the double burden. If we try to be as casual
about the difference between use and mention as Russell was fifty and sixty ye­
ars ago, we can see how he might feel that, whereas a theory of types of real
classes would be ontological, his theory of types of propositional functions had
a notational cast. Insofar, his withdrawal of classes would be felt as part of his
solution of the paradoxes. This feeling could linger to 1943, when he wrote “My
Mental Development,” even if its basis had lapsed.115

In order to correctly appreciate the proper role the theory of descriptions played on the
development of his views up to Principia Mathematica, we must take into consideration the
work on logical theories Russell produced in the period of 1905­1906 towards a solution of the
contradiction.

3.2.3 The Development of Russell’s Substitutional Theory in Russell’s Early
Manuscripts

As already noted, Russell would later state that his desiderata for an adequate logical
theory of classes, ordinary functions and propositional functions and relations­in­extension were
the following116:

1. It should make the contradictions disappear;

2. It should leave intact as much of mathematics as possible;
114 RUSSELL, B., 1944, p.14. This is the passage quoted above.
115 QUINE, W., 1966, pp.660­1.
116 RUSSELL, B., 1959, p.79­80.
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3. It should be well­motivated philosophically, or, as Russell put it, it should “[...] appeal to
what may be called ‘logical common sense’”117.

As we already discussed in the Introduction, from 1905­1907, the Substitutional Theory was Rus­
sell’s favored candidate theory for solving the contradictions, developing classical Mathematics
and preserving the unrestricted variable thus satisfying the three requisites.

The main idea involved in that theory was to emulate a theory of classes and propositio­
nal functions using his recently discovered theory of incomplete symbols. The first public appe­
arance of the theory was in the paper On Some Difficulties in the Theory of Transfinite Numbers
and Order types, which was finished by 24 November of 1905118. The paper was mainly concer­
ned with objections raised by the mathematician Ernest Hobson119 against the Cantorian theory
of cardinals and ordinal numbers, some of them connected to the contradictions and the Axiom
of Choice120. There Russell gave only a bare outline of how his new symbolic theory121:

Instead of a function ϕ!x, where the notation inevitably suggests the existence
of something denoted by “ϕ”, we proceed as follows: Let p be any proposition,
and a a constituent of p. (Wemay say that a is a constituent of p if a is mentioned
in stating p). Then let “p

x

a
” denotewhat p becomeswhen x is substituted for a in

the place or places where a occurs in p. For different values of x this will give
us what we have been accustomed to call different values of a propositional
function. In place of ϕ we have now two variables, p and a: in respect to the
different values of p

x

a
, we may call p the prototype and a the origin or initial

subject. (For a may be taken as being, in a generalized sense, the subject of p.)
Consider now such a statement as “p

x

a
is true for all values of x”. Let b be an

entity which is not a constituent of p, and put q = p
b

a
; then “q

x

b
is true for

all values of x is equivalent to “p
x

a
is true for all values of x”. Thus, subject to

certain reservation, the statement “p
x

a
is true for all values of x” is independent

of the initial subject a, and thus may be said to depend only upon the form of
p. Statements of this sort replace what would otherwise be statements having
propositional functions for their arguments. For example, instead of “ϕ is a unit
function” (i.e., “There is only one, and only one, x for which ϕ!x is true”), we
shall have “There is an entity b such that p

x

a
is true when, and only when, x is

identical with b”. 122

Unfortunately, On Some Difficulties does not give any real indication of how the theory
may be used as a foundation for a logical calculus strong enough for the development of Mathe­
matics and capable of resolving the contradictions. In particular, concerning the treatment of
117 RUSSELL, B., 1959, p.80.
118 MOORE, G., 2014, p.62.
119 HOBSON, E., 1905.
120 For details, see MOORE, G., 2014, pp.62­5.
121 As we mentioned, Russell considered in that paper not only the No­class theory, but also the ‘Zig­zag’ theory

and the ‘limitation of size’ theory.
122 RUSSELL, B., 1905b, p.81.
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classes, Russell only observes that the expression “[...] the values of x for which p
x

a
”, can be

used to proxy a class­expression without assuming that “[...] these values collectively form a
single entity which is the class composed of them”123. There is no indication, however, of how
the theory of relations­in­extension can be developed, and most importantly, there is no clear
answer to the contradictions besides the outright elimination of classes.

That is why scholars were somewhat puzzled for some time by the fact that in the begin­
ning of 1906 Russell was convinced that the Substitutional Theory was the correct alternative,
for he added a note to the paper by 5 February 1906 claiming that “[...] from further investigation
I now feel hardly any doubt that the no­classes theory affords the complete solution of all the
difficulties stated in the first three sections of this paper”124. Quine, for instance, conjectured that
the theory was short­lived precisely because it could not afford an adequate way to paraphrase
discourse about classes (and presumably relations­in­extension). Famously, Quine wrote:

The central idea of the no­classes theory was that, instead of speaking of the
class of all the objects that fulfill some given sentence, one might speak of
the sentence itself and substitutions within it. Now discourse about specified
classes lends itself well enough to paraphrase in terms of sentences and substi­
tution, but when we talk rather of classes in general, as values of quantifiable
variables, it is not evident how to continue such paraphrase. Russell had alre­
ady acknowledged that the no­class theory might prove inadequate to much
classical mathematics; and his more sanguine postscript of February was the
expression of renewed hope that he was shortly to abandon. For he soon turned
back to his theory of types and proceeded to develop it in detail. The result, pu­
blished in 1908, is the paper reproduced below [Mathematical Logic as Based
on the Theory of Types].125

Several issues emerge here. First, Russell’s notion of ‘substitution’ in a proposition has
no linguistic connotation whatsoever. At this time Russell still retained his ontology of proposi­
tions conceived as complex entities and when he speaks of a constituent being ‘substituted by
a variable’ (or vice­versa) in a proposition, the use of “substitution” is somewhat metaphorical.
Strictly speaking what can substituted (in the sense that we substitute) is a variable­letter, say
“x” for a constant or name letter, say “a” in a given formal expression (an open or closed sen­
tence, say “ϕx”). This sense of substitution was, of course, important in setting up the formal
grammar of his new symbolic theory but the fundamental sense of ‘substitution’ is that of an
entity a occurring in place of another entity x in a given proposition p (which is also an entity),
thus resulting in another proposition q (also an entity). This is because the notion of a subject a
of a proposition p here is that of the Principles, namely a occurring as a term in the complex of
123 RUSSELL, B., 1905b, p.82.
124 RUSSELL, B., 1905b, p.89. The sections in question discussed the contradictions and the existence theorems

of the theory of cardinal and ordinal (transfinite) numbers.
125 QUINE , W., 1967, pp.150­1.
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entities p126. The notion of a logical subject of a proposition understood as complex entity was
still the touchstone of Russell’s Logic.

Furthermore, Russell’s correspondence and work notes of the period show that Quine’s
historical account is quite inadequate. By 13 January 1906 Russell wrote to Jourdain presenting
him the new theory of descriptions, explaining that a descriptive phrase like “(ıx)(ϕx)” is not a
name of some kind of “non­entity” but “[...] merely a phrase which fails to describe anything”127.
Indeed, by 19 January 1906 Russell had provided a general outline of how expressions for classes
and relations could be proxied by incomplete symbols like “p

x

a
” briefly mentioned in the 1905

paper, which he now called “matrices”:

Classes, relations, etc. are now for me all of themwhat I callmatrices, of which
the nature (omitting subtleties) is as follows: Let p/a;x128 represent what p
becomes when x is substituted for a in those places (if any) where a occurs in
p. Similarly p/(a, b);(x, y) substitutes x, y for a, b, etc. Then p/a or p/(a, b)
or p/(a, b, c) or p/a is a class, p/(a, b) a dual relation, etc. [...]
Onemay use single letters for classes and relations, but if one does, these letters
are only significant in certain contexts. E.g. p/a;x requires that x should be an
entity; thus p/a;(p/a) is meaningless; thus u ϵ u is meaningless.129

This already provides a clear explanation of howRussell started to envision a dissolution
of his paradox through the elimination of classes: if an expression like “p/a” is an incomplete
symbol which does not denote a single entity and does not have meaning in isolation, it cannot
be substituted by the name of an entity in a given sentence; “p/a” is not a single entity, but a
pair of entities; thus, it does not denote any constituent of the proposition p in question and any
attempt to formulate a sentence by substituting this expression for the name “x” of the variable or
a name constant “a” would result in nonsense. It also gives a hint of how relations­in­extension
can be emulated by matrices with two or more argument places.

On 14 March 1906 Russell developed this line of thought explaining that a class expres­
sion α “[...] is nothing but a typographical abbreviation for something of the form q/b”130 i.e, a
matrix of some kind. He also (roughly) defines a class α as the totality of entities x such that,
given a proposition p and an entity a, if we substitute x for a in p, we obtain a true proposition,
making the parallel with the theory of descriptions even more clear. By 21 March 1906 this view
was completely consolidated, for Russell wrote yet another letter to Jourdain detailing how his
paradox is dissolved by the Substitutional Theory and addressing the notation for relations­in­
extension:
126 LANDINI, G., 1998a, p.98. Recall that a variable, or as Russell put in the Principles, the variable, is also a

non­linguistic entitty.
127 GRATTAN­GUINNESS, I., 1977, p.70.
128 This notation “p/a;x” is merely a more convenient way of writing “p

a

x
”.

129 GRATTAN­GUINNESS, I., 1977, p.75­6.
130 GRATTAN­GUINNESS, I., 1977, p.77.
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My view at present is that every class, great and small, is merely a symbolic
abbreviation; as such, they are all legitimate if they have any significant defini­
tion; but such forms as x̀(x ∼∈ x) are not significant; because one must have
x ∈ p/a or x ∼∈ p/a for significance, where we write:

x ϵ p/a = p
x

a
Df.

Thus, x ϵ x or x ∼ ϵ x is nonsense. Cls is a class of classes, and it is just as legi­
timate, in its proper context, as any other matrix. (I call a thing a matrix when
it consists of a prototype and one or more initial subjects, so that it requires
one or more arguments supplied to it to be significant. Thus in p

x

a
, p/a is the

matrix; in p
x, y

a, b
, p/(a, b) is the matrix. These replace classes and relations)131

Concerning the resolution of the paradoxes, these letters make it very clear why Rus­
sell was convinced of the adequacy of the No­class theory: by treating functional expressions
like “ϕx”, “fx”, etc, class expressions like “x̂ϕx” and expressions for relations in extension like
x̂ŷϕ(x, y) as incomplete symbols, problematic class expressions like “x̂(x ∼ ϵ x)”, “∼ ϕ(ϕ)”,
etc were ruled as ungrammatical, dissolving the problem. This afforded a resolution of such
difficulties which at the time Russell thought could preserve his unrestricted conception of va­
riation and univocity of being, for the theory allowed only type variable which ranges over all
entities, namely individuals and propositions.

In this regard, the letter from 14 March 1906 is of particular importance because here
Russell introduces the notion type of a matrix in his new solution of the Burali­Forti paradox:

W has now become wholly undefinable, for this reason, that if we call a type
such a thing as Cls2, Cls3, etc., the existence­theorems for segments of W re­
quire us to go further and further up the hierarchy of types, and no type will
give the whole series, because a higher type would always give more. Now, a
series is meaningless unless all its terms are of the same type; and there is no
such thing as Cls∞ or Clsω . Hence there is no such thing as the whole series
of ordinals. This is the solution of the Burali­Forti.132

Disregarding the technical details of the approach for now, this restores the core idea of
Appendix B from the Principles in a way that for Russell is philosophically acceptable: he no
longer has a hierarchy of classes as entities, but a hierarchy of matrices, which are incomplete
symbols. The Burali­Forti is thus also ruled out as ungrammatical without doing violence to
what Russell thought to be ‘logical common sense’.

Several of Russell’s manuscripts from the end of 1906 through the whole year of 1906
and at least half of 1907 show that he was quite convinced that the theory was also adequate
for the development of a great deal of Mathematics. The earliest detailed record of the formal
details of the Substitutional Theory is a letter from Russell to Hardy written in 15 December of
131 GRATTAN­GUINNESS, I., 1977, p.84.
132 GRATTAN­GUINNESS, I., 1977, p.77.
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1905133. The earliest text where Russell systematically develops the formal details of the theory
is the core manuscript On Substitution from 22 December 1905134. Between December of 1905
and April of 1906, Russell worked incessantly on the Substitutional Theory, producing many
interesting manuscripts that record the (sometimes tortuous and complicated) development of
the theory. This period of intense work culminated in a paper which Russell sent to the London
Mathematical Society by 24 April 1906135. This paper, entitled On The Substitutional Theory of
Classes and Relations is the singlemost important work dealingwith the logic of substitution, for
several reasons. First, it was the closest thing next to a finished formal development of the theory
which Russell ever produced. Second, it was the only work dealing with the formal details of
the theory which he made public (he read it to London Mathematical Society by 10 May 1906136);
in fact, Russell even submitted the manuscript to publication, but later withdrew it, for reasons
which we’ll discuss below. Moreover, the paper is important because it establishes once and for
all the real connection between the theory of incomplete symbols and the theory of types.

As put forward in On The Substitutional Theory of Classes and Relations, the basic idea
of the Substitutional Theory is to abolish propositional functions, classes and relations and exten­
sions as genuine entities (and possible values of genuine variables). Roughly, this amounts to the
following: instead of taking “ϕx”, “xRy”, or “x ∈ α” as the most basic sentential components
of the formal grammar of logic, the language adopts the following as a primitive notion137:

p
x

a
!q (Primitive Idea)

which is defined as meaning “q results from p by substituting x for a in all those places (if any)
where a occurs in p”. In terms of this notion Russell then defines138:

a ex p = (x) p
x

a
!p or “a does not occur in p” Df

∼ a ex p = “a occurs in p” Df

x = y = x
y

x
!x Df

Thus, the grammar of the theory is articulated in terms of occurrence as a term in a proposition
instead of occurring as argument in a function. As we mentioned above, the equivalent of a
functional expression like “ϕx” is the following139:

133 MOORE, G., 2014, p.90.
134 MOORE, G., 2014, p.90.
135 MOORE, G., 2014, p.236.
136 MOORE, G., 2014, p.236.
137 RUSSELL, B., 1906a, p.245.
138 RUSSELL, B., 1906a, p.245.
139 RUSSELL, B., 1906a, p.246.
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p
x

a
= (ıq) p

x

a
!q Df

which contextually defines the symbol “p
x

a
” as “the q which satisfies p

x

a
!q” ­ an incomplete

symbol, which, given the definition of “ψ{(ιx)(ϕx)}”, is equivalent to:

p
x

a
= ( E

q) p
x

a
!r ≡r q = r p

x

a
!q

Thus, the theory adopts only one style of entity variable that ranges over individuals and propo­
sitions (understood as entities) alike and emulates the notation of a functional calculus using the
incomplete symbols of the form “p

x

a
”. There is no genuine variable ranging over propositional

functions. As indicated in On Some Difficulties, using the incomplete symbols “px
a
” , which

Russell called matrices, one can, instead of saying that a function is true for all its values as in
“(x).ϕx”, assert that a certain type of substitution always yield a true proposition, for instance
in the case where “(x). px

a
!p” is to mean that every substitution of x for a in p is true. Using

only quantification over a single domain of propositions and individuals, this allowed for the
simulation of a theory of propositional functions without actually using functional variables.
Only propositions and individuals were taken as entities and so, as legitimate values of genuine
variables.

Classes could then be ‘explained away’ using this very procedure. Ordinarily classes
and relations­in­extension are viewed as the extension of a propositional function. In the Subs­
titutional Theory membership to classes and relation­in­extension can be defined in terms of
matrices and quantification over class­variables can be dispensed in favor of quantification over
individuals and propositions. The basic idea of the theory, in Russell’s own words, is that the
“[...] shadowy symbol p/a represents a class” and “[...] p/(a, b) will represent a dyadic relation”
and so on140. The general idea is to put:

x ϵ p/a = px
a
Df

x, y ϵ p/(a, b) = p (x,y)
(a,b)

Df

And so on...

Which are to mean that “ ‘x is a member of the class p/a’ is to be interpreted as ‘the result of
replacing a in p by x is true’ ”141, etc. This avoids commitment to an ontology of classes (and
relations in extension) given that in the Substitutional Theory the notation of a theory of classes
is proxied by the notation of matrices. As Russell puts it, although matrices occur in meaningful
140 RUSSELL, B., 1906a, p.246.
141 RUSSELL, B., 1906a, p.246.
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sentences “[...] it is not a part which means anything in isolation” for the matrix “[...] is not the
name of an entity, but is a mere part of symbols which are the names of entities”142.

Now, as Landini notes, it must be observed that Russell’s manuscripts show that he
envisaged more than one approach for developing a proxy for the calculus of classes within
the Substitutional Theory and that the alternative provided in On the Substitutional Theory of
Classes and Relations seems to suffer from fatal flaws143. But be that as it may, we can assess
with a fair degree of certainty that Russell recognized that the Substitutional Theory had the three
fundamental merits he required of a satisfactory logical theory independently of determining
which route for recovering set theory Russell would give preference to.

First the theory was able to avoid the set­theoretical contradictions. Russell’s paradox,
for instance was avoided due to the fact that any attempt to assert that a matrix is a member
of itself results in an improper nonsensical expression. To assert that “α ϵα” where “α” is any
given class expression would be something like “p/a; p, a!q” which is meaningless; “p/a” is
an incomplete symbol that does not name a singular entity that can be substituted for a term in
a proposition. As Landini puts it, Russell’s paradox was simply discarded as violation of the
grammar of logic ­ in practice, the grammar of the Substitutional Theory is that of the simple
theory of types, though there are no types of entities144.

Second, the theory had important virtues from a technical point of view, the most im­
portant being that it allowed proofs of several existential theorems, in particular the ‘existence’
of infinite classes. As Russell explained in another paper from 1906 which we’ll discuss shortly,
the existence of an infinite class could be given along the following lines:

Given one entity a, we have the proposition a = a; and by the axiom at the
beginning of the last paragraph [“that given any proposition p, there is at least
one entity uwhich is not explicitly mentioned in stating p”145] there is an entity
u such that u is not mentioned in ‘a = a’ . This entity is not a, since a is
mentioned in ‘a = a’. Hence there are at least two entities. There will be
similarly an entity not mentioned in ‘a = u’, which must be neither a nor u.
We can in this way show that, if n is any finite number, there are more than
n entities, and by taking propositions into account, we can manufacture ℵ0
entities. E.g. put
p0 = a = u [Df], pn+1 = pn = u [Df]

142 RUSSELL, B., 1906a, p.247. Russell further clarifies this statement as follows: “[...] when we say that a matrix
is not an entity, we mean that a matrix is a set of symbols, or a phrase which by itself has no meaning at all,
but by the addition of other symbols or words becomes part of a symbol which has meaning, i.e. is the name of
something.” (RUSSELL, B., 1906a, p.247).

143 Cf. LANDINI, G., 1998, pp.149­151.
144 LANDINI, G., 1998a. In particular, Landini’s rigorous presentation of the theory shows that a translation func­

tion from the Substitutional Theory for a simple type theory of attributes can be formulated (LANDINI, G.,
1998a, pp.140­5), thus showing that the Substitutional Theory has the expressive power of simple type theory
without its ontological commitments to classes or attributes (in extension).

145 RUSSELL, B., 1906b, p.288.
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it is not hard to prove that the successive p’s are all different, and that there are
therefore at least ℵ0 entities. Hence, the cardinals up to and including ℵ0 exist,
and the ordinals finite and of the second class exist.146

The above proof sketch shows how, assuming an ontology of propositions, it follows that
‘there is’ a class of cardinality ℵ0 whose elements are genuine entities. As we commented in the
preceding chapter, proving the existence of an infinity of entities fromLogical assumptions alone
became a pressing issue since the proofs considered by Russell in the Principles of Mathematics
were all compromised by the inconsistency of the naive conception of set. The Substitutional
Theory seemed to afford the most important existential theorems for Arithmetic without any
special assumptions about the existence of classes or individuals (though, of course, it assumed
an ontology or propositions as structured entities).

Third, the theory attended to what Russell thought, at the time, to be logical common
sense, for it avoided the contradictions without doing any damage to Russell’s absolute concep­
tion of logical generality (his thesis of the unrestricted variable) and his univocal notion of being
or logical subject. The theory, as he put in the end of the main paper dealing with it “[...] affords
what at least seems to be a complete solution of all the hoary difficulties about the one and the
many; for, while allowing that there are many entities, it adheres with drastic pedantry to the old
maxim that ‘whatever is, is one’ ”147.

3.3 The ‘Fall’ of Russell’s Substitutional Theory of Classes and
Relations

3.3.1 Propositional Paradoxes, the Substitutional Theory and the ‘Orthodox’
View

So far, our discussion of the Substitutional Theory did not address any really controver­
sial topic. As we saw, Quine’s old view of Russell’s ontological development was debunked long
ago by the material made available by Douglas Lackey148 and Grattan­Guinness149 and the archi­
val research started by these authors was then carried to new depths by Landini150 and Moore151

whose scholarly and editorial work establish the logico­mathematical potential of the Substitu­
tional Theory152. But there remain several interpretative issues and unanswered questions about
146 RUSSELL, B., 1906b, p.288.
147 RUSSELL, B., 1906a, p.261
148 LACKEY, D., 1973.
149 GRATTAN­GUINNESS, I., 1977.
150 Cf. LANDINI, G., 1987, 1989 and 1998.
151 Cf. MOORE, G. (ed.)., 2014.
152 There were, of course, many other important contributors to this (still ongoing!) process of reception of Russell’s

unpublished manuscripts, correspondence and even of some of neglected aspects of his published writings. A
small but comprehensive sample was provided in our introduction.
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the theory. As is well known, Russell ended up abandoning the substitutional approach in favor
of Principia’s so called ramified theory of types: the main interpretative difficulties are rela­
ted to the question of what exactly led Russell to abandon the Substitutional Theory, and many
conflicting accounts were given over the years in secondary literature.

We know for certain that by 10 May 1906, when Russell read On The Substitutional
Theory for the London Mathematical Society, the theory was still alive and well. For as we just
mentioned, he ends the paper observing that the theory resolves the contradictions in a way that
is technically and philosophically satisfactory153. However, by 10 October 1906 Russell wrote to
Jourdain with cryptic misgivings about the theory and reporting his decision to withdrawOn the
Substitutional Theory from publication:

I am glad you feel attracted by the no­classes theory. I am engaged at present
in purging it of metaphysical elements as far as possible, with a view to getting
the bare residuum on which its success depends. [...] I decided not to publish
the paper I read at the London Mathematical [Society] in May; there was much
in it that wanted correction, and I preferred to wait till I got things into more
final shape.154

At once this raises several important questions. What led Russell to change his mind
about his views as presented in On the Substitutional Theory? Did Russell give up the Substitu­
tional Theory together with the paper? And in the long run, what, exactly, led to the abandonment
of the Substitutional Theory?

Some clues for answering these questions are provided in the correspondence with Jour­
dain and also in the abandoned paper, where Russell tempered his confidence in the Substituti­
onal Theory with the following observation:

The only serious danger, so far as appears, is lest some contradiction should be
found to result from the assumption that propositions are entities; but I have
not found any such contradiction, and it is very hard to believe that there are
no such things as propositions155.

This indicates that Russell was not completely sure of the theory’s consistency at the time
he sent the paper, having reservations about an ontology of propositions. And, in fact, as we shall
briefly discuss in detail, Russell did find that the danger of contradiction from the assumption
of propositions was very real.

We also know for certain that by 1 June of 1907, Russell was convinced that an ontology
of propositions should be handled with care due to “[...] the paradox of the liar and its analogs”,
153 RUSSELL, B., 1906a, p.261.
154 GRATTAN­GUINNESS, I., 1977, p.93.
155 RUSSELL, B., 1906a, p.261.
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for he wrote to Jourdain explaining he no longer accepted the manufacturing of an infinite set
in terms of the method discussed in our previous section:

Consideration of the paradox of the liar and its analogs has led me to be chary
of treating propositions as entities. I therefore no longer regard as valid the
proof of ℵ0 entities. [...] I now think that existence­theorems beyond the finite
require a definite assumption that the number of entities is not finite.156

We also know that difficulties related to “Epimenides” led Russell to apparently recon­
sider the theory of types applied to propositions also, for by 10 September Russell wrote the
following to Jourdain:

I incline at present to the doctrine of types, much as it appears in appears in
Appendix B of my book [The Principles]. To this I add that propositions and
functions can never be apparent variables, so that statements about all of them
are meaningless.157

It is at this point that many controversies become salient leading to differing accounts
in secondary literature. Grattan­Guinness, for instance, claims that “[...] the withdrawal [of On
the Substitutional Theory] marked the demise of the theory itself”158. But we have plenty of
evidence to conclude that Russell was far from done with the Substitutional Theory.

In early May of 1906 Henri Poincaré published an article in Revue de Méthaphysique et
de Morale159 criticizing in detail some of Russell’s writings, in particular On Some Difficulties.
The article was in fact a sequel to a previous paper in the same journal160 which extensively
criticized Russell’s and other mathematicians’s use of logic and Cantorian set theory to provide
a foundation for Mathematics161. By the end of 1905 Russell was already considering a reply to
Poincaré (first paper), since in 19 December of 1905 he wrote the following to Couturat162:

The solution which, I believe, I have found to the contradictions is not yet
precise enough that I can publish it. First of all, it requires a new branch of
logistic ­ the theory of substitutions ­ which must replace functions, classes,
and relations. This theory is rather complicated from the technical viewpoint

156 GRATTAN­GUINNESS, I., 1977, p.105.
157 GRATTAN­GUINNESS, I., 1977, p.91.
158 GRATTAN­GUINNESS, I., 1977, p.94.
159 POINCARÉ, H., 1906.
160 POINCARÉ, H., 1906.
161 As is well known, the disagreement between Russell and Poincaré was very deep: it amounted to nothing less

than the clash between a Platonic Logicist and a Kantian Constructivist and there was hardly a (philosophical)
point about which they could concur. A good survey of the issues involved in the disagreement can be found in
GOLDFARB, W., 1988. A good critical discussion of Poincaré’s views on the Philosophy of Mathematics can
be found in CHIHARA, C., 1973, pp.139­173.

162 Who also was about to publish a reply. See COUTURAT, L., 1906.
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(though not from the philosophical viewpoint), and I will need time to develop
it. I intend to send a purely mathematical memoir to the American Journal of
Mathematics as soon as possible. Then I will be able to publish right away
an article showing that the contradictions have disappeared. This article will
avoid, so far as possible, technical difficulties, and will bring out as much as
possible the philosophical scope of the new theory. If you think that it would
be good to publish it in the Revue de Metaphysique, I will gladly send it there.
But I will probably need a year to assure myself that the new theory is solid.163

In 15 May 1906 Russell wrote to Couturat about the rebuttal to Poincaré, explaining
that he must clarify his resolution of the contradictions before responding. The same letter also
makes it clear that Russell was still convinced of the soundness of the Substitutional Theory, but
he observes that somehow the theory of incomplete symbols must be extended to propositions
in order for it to work:

I still believe that my solution to the contradictions (the no­classes theory) is
good, but it seems to me that it must be extended to propositions, i.e. that they,
like classes and relations, cannot be put in the place of ordinary entities. [...]
I will follow your advice in replying to Monsieur Poincaré. For this reason, I
will not respond immediately, since I would like to reduce to order what I have
to say about the solution to the contradictions.164

As GregoryMoore observes, this is one of the first indications that Russell “no longer re­
garded propositions as entities”165 because of contradictions which resulted from an unrestricted
assumption of these as entities. But there are several interpretative puzzles involved here.

Russell had already discussed contradictions connected to an ontology of propositions
long before abandoning the Substitutional Theory. In the Appendix B of the Principles, he pro­
vided a definitive argument establishing the incompatibility of an unrestricted (i.e., ‘untyped’)
ontology of propositions with Cantor’s power­class theorem:

If m be a class of propositions, the proposition “every m is true” may or may
not be itself an m. But there is a one­one relation of this proposition to m: if
n be different from m, “every n is true” is not the same proposition as “every
m is true”. Consider now the whole class of propositions of the form “every
m is true”, and having the property of not being members of their respective
m’s. Let this class be w, and let p be the proposition “every w is true”. If p is a
w, it must possess the defining property of w; but this property demands that p
should not be a w. On the other hand, if p be not a w, then p does possess the
defining property of w, and therefore is a w.166

163 As quoted in MOORE, G., 2014, pp.xiviii­xlix. The purely mathematical paper could very well be On the
Substitutional of Clases and Relations, which Russell later withdrew from publication.

164 MOORE, G., 2014, p.274­5.
165 MOORE, G., 2014, p.lii;
166 RUSSELL, B., 1937 [1903], p.527 §500.
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This paradox, generally referred to as the Appendix B paradox, was first considered by
Russell in his correspondence with Frege in early 1902. On 29 February Russell wrote to Frege
formulating it as a difficulty which his theory of types (that of Appendix B) could not resolve167.
Russell set out the paradox formally as follows:

Let me now put |’ for ‘is identical with’. We then have:
w = r ∋ ( Em ∋ {r|’(p ϵm ⊃p p).r ∼ ϵm}) ⊃ (q ϵw ⊃q q) ϵw ⊃

Em ∋ ((q ϵw ⊃q q)|’(p ϵm ⊃p p).(q ϵw ⊃q q) ∼ ϵm) (1)
(q ϵw ⊃q q)|’(p ϵm ⊃p p) ⊃ w|’m (2)
(1) (2) ⊃ (q ϵw ⊃q q) ϵw ⊃ (q ϵw ⊃q q) ∼ ϵw (3)

Similarly: (q ϵw ⊃q q) ∼ ϵw ⊃ (q ϵw ⊃q q) ϵw.
Hence the contradiction.168

Notice that nowhere above there occurs any use of a truth­predicate. Put in a more appro­
achable notation and employing brackets “[...]” for forming propositional terms out of formulas,
the difficulty arises if we consider a class of propositions w defined as follows169:

w = {p : ( Em)(p = [(q)(q ϵm ⊃ q)] ∧ p ∼ ϵm])}Df

Given such a class w, we can define the proposition r which asserts that all members of w are
true, that is:

r = [(p)(p ϵw ⊃ p)]Df

But by their respective definitions, it follows that r is a member of w if and only if it is not a
member of w, since r ϵw implies p ϵw ⊃p p r ∼ ϵ w, and since, by definition, r asserts that
p ϵw ⊃p p, assuming r ∼ ϵ w entails precisely that r ϵw. Contradiction.

Another propositional paradox which Russell had also considered earlier than 1906 was
the famous ‘liar paradox’. This ancient paradox is usually presented in terms of a self­referencing
statement that purports to assert of itself that it is false, as in “This statement is false”: this is
true, if and only if it is false. Russell usually refers to this paradox as the ‘Epimenides’ because
of another well known different version of it which is the “Paradox of Cretan”: it arises when
the Cretan Epimenides asserts that all Cretans are liars. The manuscript On Fundamentals from
June 1905 contains one of Russell’s first serious discussions of the liar170, where he considers
treating it as an analogue of his own paradox171.
167 FREGE, G., 1980, p.147.
168 FREGE, G., 1980, p.156.
169 In this formula we use the brackets [...] to form a propositional term.
170 URQUHART, A., 1994, p.359. Russell probably considered this paradox for the first time in lost manuscripts

from the first half of 1905, sinceOn Fundamentals opens with a discussion of the liar paradox under the heading
of “Summary of preceding” which according to Urquhart refers to a lost set of notes.

171 RUSSELL, B., 1905c, p.360. The discussion of the liar begins with the heading “summary of the preceding”,
which indicates that the discussion is a continuation of a manuscript that is no longer extant (cf. URQUHART,
A. (ed.)., 1994, p.359).
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But if Russell was aware of such difficulties well before submitting On the Substituti­
onal Theory, why did he seriously considered abandoning propositions only halfway through
1906? Several authors have argued that the withdrawal of the paper and the fall of the Substituti­
onal Theory were caused by the Appendix B paradox and/or the liar paradox. Several important
questions are tied to the problem of determining what sort of contradiction led Russell to aban­
don the Substitutional Theory and the question of what specific form of these contradictions led
Russell to abandon the theory was a matter of controversy in the literature for quite some time
because of this.

To begin with, the liar or Epimenides is the sort of paradox which we nowadays call
semantic: its formulation involves the use of truth­predicates or intensional vocabulary like those
of propositional attitudes; as we shall see in more detail below, the Appendix B paradox, on
the other hand, is a purely logical paradox: it involves nothing less than a diagonal argument
which shows that under certain assumptions about propositions, one may construct a one­one
correspondence between entities and classes of entities, thus a direct violation of Cantor’s power­
class theorem172.

Some authors, however, claim that Russell took these paradoxes like the Appendix B to
be of the same kind as the Liar and its variants. Hylton, for instance, has argued that it was a
version of the Appendix B paradox that eventually led Russell to the so­called ‘ramification’ of
types. As Hylton points out, some matrices p/a have only propositions as members, i.e., some
matrices emulate classes of propositions, and each of these matrices can be associated with a
proposition which asserts that every member of p/a is true173, i.e, (x) p/a;x ⊃ x. Now, let:

p = ( Er, c) [a = (x) r/c;x ⊃ x] ∼ (r/c; a) Df

From this it follows that174:

p/a; [p/a;x⊃ x] ≡ ∼ (p/a; [p/a;x⊃ x])

The problem here is exactly analogous to that of the Appendix B paradox: start from the notion
of a proposition q which asserts that all members of a given class m of propositions are true
i.e., (x) r/c;x ⊃ x; take all such propositions which assert this but that are such that they
do not belong to m, i.e., ∼ (r/c; a); this forms the class w of the Appendix B; now, does the
proposition pwhich asserts that all such propositions are true belong to this classw or not? From
each answer the opposite follows.
172 Cocchiarella was one of the first authors to emphasize this point in COCCHIARELLA, 1980, p.89­90.
173 HYLTON, P., 1980, p.24.
174 Cf. HYLTON, P., 1980, p.24 and also LANDINI, G., 1998, pp.202­3.
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In his own formulation, however, Hylton employs truth­predicates as part of the grammar
of the Substitutional Theory, something he takes as unavoidable: he claims that “we cannot,
for example, define membership in a matrix except by saying something equivalent to: ‘b is a
member of p/a’ is to mean ‘the q such that p/a; b!q is true’ ”175.

Hylton’s basic argument in favor of this claim is that Russell cannot distinguish between
the use of a sentence as the name of a proposition and as an assertion of one without making
“[...] an essential, if tacit, use of the notion of truth”176. This leads him to view the above paradox
as kindred to what we nowadays call semantic paradoxes and assumes that the so­called rami­
fication was introduced as a general solution to such difficulties including the Epimenides177.
Apart from some important aspects which we’ll address in detail below, Goldfarb follows the
general outline of Hylton’s interpretation, claiming that “Russell did not separate the theory of
orders, which embodies the ramification of propositional functions, from the theory of types”178,
by which he means that Russell did not separate semantic paradoxes from logical ones. From
this, there emerges a historical account of how Russell’s views developed which we called the
‘Orthodox View’ in the Introduction. We can summarize it as follows:

The Orthodox View. Russell was attracted to the Substitutional Theory because it
seemed to preserve the unrestricted variable. Consideration of paradoxes like the
Appendix B (understood as semantic in nature) and the Epimenides led him to intro­
duce type distinctions among propositions in some form or another179. This move,
however, undermined the basic feature which motivated the Substitutional Theory
of classes and relations, its capacity to preserve the unrestricted variable. Thus, from
late 1906 or early 1907 onward, Russell adopted ramified type theory on the heels
of Poincaré’s idea that impredicative definitions involve vicious circularities. And
the adoption of this theory involved assuming an ontology of propositions and pro­
positional functions understood as entities and not merely symbolic conveniences,
by means of which he emulated a simple type theory of classes (employing the
axiom of Reducibility). This theory was supposedly presented in its definitive form
in Russell’s 1908 paperMathematical Logic as Based on the Theory of Types, which
introduces essentially the same system as that of Principia Mathematica. Thus, the
unrestricted variable fell with the so­called simple Substitutional Theory.

The above account, even when developed in sophisticated ways (as in Hylton and Goldfarb’s
writings) leaves several questions without a satisfactory answer. For instance, if Russell was
175 HYLTON, P., 1980, p.24.
176 HYLTON, P., 1980, p.24.
177 HYLTON, P., 1980, p.25.
178 GODLFARB, W., 1989, p.24.
179 This is a point of disagreement between Hylton and Goldfarb. See HYLTON, P., 1980; GOLDFARB, W., 1989.

177



aware of difficulties involved in an ontology of propositions as early as 1902, how could it take
so long for him to realize that they affect the Substitutional Theory also? And if Mathematical
Logic marks the definitive abandonment of the Substitutional Theory why did Russell assert in
that paper that a hierarchy of functions “[...] of various orders may be obtained from propositions
of various orders by the method of substitution”180, with the former being preferable only for
being “more convenient” in practice?

We shall see next that the Orthodox View does not conform to the current established
knowledge we now posses about the development of Russell’s views. As Landini observes181,
any reasonable interpretation of the development of Russell’s views throughout 1906­1908 must
satisfactorily account for the views and changes which appear in the following published works
(one almost published):

1. On the Substitutional Theory of Classes and relations182 finisehd in April 1906 and read
to the London Mathematical Society 10 may.

2. On Insolubilia and Their Solution Through Symbolic Logic183, finished around July 1906
and published as Les Paradoxes de la Logique in September.

3. Mathematical Logic as Based on the Theory of Types184, finished around June of 1907 and
published by July of 1908.

We now also have available many of Russell’s unpublished manuscripts and work notes of the
relevant period. Among these, the most important for our purposes are the following:

1. The manuscript On Substitution dated April/May 1905185.

2. The manuscript The Paradox of the Liar dated September 1906186.

3. The manuscript Logic in Which Propositions are not Entities, also dated September of
1906187.

4. The manuscript On Types dated January 1907188.
180 RUSSELL, B., 1908, p.603
181 LANDINI, G., 2015, p.168­9.
182 RUSSELL, B., 1906a.
183 RUSSELL, B., 1906b.
184 RUSSELL, B., 1908.
185 RUSSELL, B., 1905f.
186 RUSSELL, B., 1906f.
187 RUSSELL, B., 1906e.
188 RUSSELL, B., 1907e.
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5. The set of notes Fundamentals dated January 1907189.

6. A letter Russell wrote to Ralph Hawtrey on 22 January 1907190.

In the next sections we attempt a discussion of the most relevant points of the above papers
and documents related to the abandonment of the Substitutional Theory. Needless to say that
given our purposes and the centrality and depth of Landini’s investigations of these issues, our
discussion will be largely driven by them. Our discussion of the unpublished manuscripts will
also take into account some recent issues raised by Jolen Galaugher191 about Landini’s views.

3.3.2 The Substitutional Theory and Insolubilia: the po/ao Paradox

On 16 June of 1906192 Russell sent his rebutal of Poincaré’s article to Couturat, so that he
could translate it to French. The paper was originally entitled Insolubilia and Their Solution by
Symbolic Logic and by Couturat’s request it was published under the title “Les Paradoxes de la
Logique” in september of 1906 in the Revue193. Russell’s response focused mainly on Poincaré’s
claims concerning the contradictions and their impact in principles of Logic and Set theory. Fa­
mously, the mathematician accused Russell (and all followers of Cantor) of indulging in the
assumption of illegitimate totalities194. And as is also well known one of Poincaré’s main con­
tentions was that the contradictions found at the foundations of logic involved ‘vicious circles’,
or ‘vicious circularities’. As Russell received Poincaré’s criticism, the latter was (informally, of
course) arguing that there are two kinds of propositional functions: those that determine a class
and those that do not; the former he called ‘predicative’, the latter ‘impredicative’. The criteria
proposed by Poincaré for distinguishing them was the sort of quantification involved in their
definition. If the definition of a function ϕ involved quantification over a range of values that
contained ϕ, then the definition was impredicative, otherwise it was predicative. Poincaré was,
of course, urging that in order to avoid contradictions one should avoid impredicative definiti­
ons, i.e, those that involve a “vicious circularity”. In Russell’s hands, this became the guiding
principle: “Whatever involves an apparent variable must not be among the possible values of
that variable”195. Thus, Russell recognized that there was “[...] an element of truth in Poincaré’s
objections”, namely that “[...] whatever in any way concerns all of any or some (undetermined)
of the members of a class must not be itself one of the members of a class”196.
189 RUSSELL, B., 1907h.
190 RUSSELL, B., 1907c. Cf. LINKSY, B., 2003 for a photocopy for Russell’s original handwriting.
191 GALAUGHER, J., 2013.
192 MOORE, G., 2014, p.274­5.
193 LACKEY, D., 1973, p.190; MOORE, G., 2014, p.273.
194 POINCARÉ, H., 1906, p.316­17.
195 RUSSELL, B., 1906b, p.284.
196 RUSSELL, B., 1906b.
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A long interpretative tradition which includes, but is not restricted to those authors that
hold what we called the Orthodox view, has understood this concession of Russell to the famous
French mathematician as marking the incorporation of the principle as playing some justifica­
tory role for type distinctions of a given domain of entities197. Hylton, for instance, claims that
Russell thought the principle “[...] could justify type distinctions for propositional functions
[conceived as intensional entities]”198 in both Mathematical Logic and Principia Mathematica,
while Goldfarb speaks of the principle as sufficient to “yield ramification”199, characterizing ra­
mification in general as “the result of requiring that legitimate specifications of such entities be
predicative”200. Also, since Poincaré’s main examples of contradictions which involve vicious­
circularity are semantic in nature, e.g., the Liar paradox, Russell’s adoption of Poincaré’s princi­
ple has been often understood as marking his failure to recognize the important distinction later
explicitly urged by Frank Ramsey201 between those paradoxes that can be avoided by the simple
theory of types (i.e, the logical paradoxes) and those that require the so­called ramified theory
(i.e., the semantic ones).

It is often neglected, however, that Russell accepted Poincaré’s principle only as a nega­
tive guideline ­ not as a positive principle which solved the contradictions. In Insolubilia Russell
makes this crystal clear:

It is important to observe that the vicious­circle principle is not itself the solu­
tion of vicious circle paradoxes, but merely the result which a theory must yield
if it is to afford a solution of them. It is necessary, that is to say, to construct a
theory of expressions containing apparent [bound] variables which will yield
the vicious circle principle as an outcome. It is for this reason that we need a
reconstruction of logical first principles, and cannot rest content with the mere
fact that paradoxes are due to vicious circles.202

In fact, Russell was still occupied, after accepting the Vicious­Circle Principle, with the
search for a genuine solution to the contradictions which avoided such vicious­circularity while
being well motivated from a philosophical point of view. And at this point Russell still thought
that any satisfactory solution should preserve the unrestricted variable and the “old maxim that
whatever is is one”.

In Insolubilia, Russell framed this task around the difficulties involved in dealing with
general propositions, for assuming that the variables of a logical calculus are completely un­
restricted, general propositions becomes problematic: assume for instance that p is general, i.e.,
197 This view can be traced back at least to Gödel’s famous paper on Russell’s Mathematical Philosopy (GÖDEL,

K., 1944), though some hints of it are also present in Carnap’s seminal paper on Logicism (CARNAP, R., 1931).
198 HYLTON, P., 2004, p.114. Hylton takes the vicious circle principle to be grounded upon the allegedmetaphysical

doctrine according to which “a propositional function presupposes its values”; still, Hylton assumes that the
principle embodies some sort of substantial thesis about the nature of mathematical entities.

199 GOLDFARB, W., 1989, p.37.
200 GOLDFARB, W., 1989, p.24. Our emhpasis.
201 RAMSEY, F., 1925.
202 RUSSELL, B., 1906b, p.289.
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that it contains an apparent variable x; if p is an entity, it itself must be a possible value of the
very variable x which occurs in it, and this leads to a vicious circularity of the kind Russell wan­
ted to avoid. The general idea Russell inclined to at the time was to treat general propositions
as incomplete symbols in order to reconcile an ontology of propositions with the unrestricted
variable:

To reconcile the unrestricted range of the variable with the vicious­circle prin­
ciple, which might seem impossible at first sight, we have to construct a the­
ory in which every expression which contains an apparent variable (i..e,which
contains such words as all, any, some, the,) is shown to be a mere façon de
parler.203

How did Russell envision such a solution? Well, the idea which he sketched involved
introducing a hierarchy of the senses of truth applied to statements, with each sense of truth trac­
king the number of apparent (bound) variables that occur in the statements in question (a view
which, as we’ll see in the next chapter, also appears in a modified form in Principia, as Lan­
dini showed204). Taking as his example the Epimenides, Russell explained that a truth­predicate
which applies to a statement like ‘There is a proposition p which I am affirming and which is
false’ must have a different meaning from one that applies to the proposition p itself. His rough
proposal in the paper is that statements or sentences must be distinguished between those that
are not general and express (and denote) actual propositions (which are entities) and those that
do not, with such distinctions being tracked by the number of apparent variables a statement
contains:

If we want to state what is equivalent to ‘I am making a false statement con­
taining n apparent variables’, we must say something like: ‘There is a propo­
sitional function ϕ(x1, x2, . . . , xn) such that I assert that ϕ(x1, x2, . . . , xn) is
true for any values of x1, x2, . . . , xn and this is in fact false’. This statement
contains n+ 1 apparent variables, namely ϕ(x1, x2, . . . , xn) and ϕ. Hence, it
does not apply to itself.205

Taking as an example the law of excluded middle, i.e., “every proposition is either true
or false”, Russell asserts:

In the restricted sense which we have given to proposition, the law of excluded
middle is not a proposition, since it contains an apparent variable. It is a true
statement, but true here has a different meaning, namely that all the propositi­
ons which the statement ambiguously denotes are true (in the previous sense).
As applied to statements the meaning of the word true varies as the number

203 RUSSELL, B., 1906b, p.292.
204 LANDINI, G., 1998a, p.281­5.
205 RUSSELL, B., 1906b, p.291.
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of apparent variables in the statements varies. The broad result for the sake of
which the above theory is adopted is this: If ϕx is true for all values of x, it
does not follow that ϕx is true of the statement that ϕx is true for all values of
x. Thus, the vicious­circle paradoxes which would result if this did follow are
avoided.206

The general idea considered here is to eliminate general propositions from the ontology
of the substitiutional theory; Russell’s idea is to take what he calls general statements ­ i.e., for­
mulas contanining apparent variables, which are, of course kept as part of the language of the
Substitutional Theory ­ and explain their truth and falsehood in terms of truth and falsehood of
genuine (non­general) propositions. Russell’s idea here is that only what he called ‘elementary
statements’, that is, statements that do not contain apparent variables denote propositions; gene­
ral statements are understood as incomplete symbols that assert that some class of elementary
propositions is true or false (with this class treated as a pseudo entity emulated by a matrix like
p/a, of course). This, in a sense, creates a hierarchy of types of general propositions and ex­
plains Russell’s letter of 10 September to Jourdain where he claims to “[...] incline at present to
the doctrine of types, much as it appears in appears in Appendix B of [The Principles]” with the
difference that “propositions and functions can never be apparent variables, so that statements
about all of them are meaningless”207.

But interpretations of Insolubilia, like that of Warren Goldfarb208, which take it as in­
troducing a form of ramification of entities are plainly inadequate. The hierarchy of types is a
hierarchy of statements, of incomplete symbols, and Russell makes it absolutely clear that the
point of treating them as such is to preserve the unrestricted variable which ranges over a single
unique domain, namely that of all entities. There are no types of entities in Insolubilia. A letter
to Jourdain from 14 July 1906 also makes it clear that the solution to the problem of vicious
circularity could be attained by treating them as pseudo­entities, like classes and propositional
functions:

[...] the no­classes theory shows that we can employ the symbol x(ϕx)without
ever assuming that this symbol in isolation means anything. I feel more and
more certain that this theory is right. In order, however, to solve theEpimenides,
it is necessary to extend it to general propositions, i.e.,to such as (x).ϕx and
(∃x).ϕx. This I shall explain in my answer to Poincare’s article in the current
Revue de Metaphysique.209

Now, this letter and some points of the discussion in Insolubilia strongly indicate that
Russell was in fact preoccupied with the liar paradox and its cognates, and thus, that he followed
Poincaré in not distinguishing logical paradoxes from semantic ones. Was this the case?
206 RUSSELL, B., 1906b, p.292.
207 GRATTAN­GUINNESS, I., 1977, p.91.
208 GOLDFARB, W., 1989, p.24.
209 GRATTAN­GUINNESS, I., 1977, p78.
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As Landini has extensively argued, the evidence pointing to a negative answer, on the
other hand, is quite strong. As we pointed out in the Introduction, in his archival research on the
manuscripts and documents Russell left concerning the Substitutional Theory, Landini made
a series of game­changing discoveries for understanding the abandonment of the Subsitutional
Theory. To begin with, Landini found a letter Russell wrote to the mathematician Ralph Hawtrey
on 22 January 1907, where he communicates a “paradox which pilled the Substitutional Theory”.
The letter reads as follows210:

Dear Hawtrey, ­ I forgot to send you the paradox which pilled the substitution­
theory. Here it is. Put

p0 = ( Ep, a) ao = p
b

a
!q ∼

(
p
ao
a

)
[where “p

b

a
!q” means “becomes q by substituting b for a”]. Then:

po

po
b

ao
!q

ao
= ( Ep, a) po

b

ao
!q = p

b

a
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ppo
b
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a
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a

 (3)

But if po
b

ao
!q is the same proposition as p

b

a
!q, it seems plain we must have

p = po a = ao, whence p
po

b

ao
!q

a
≡ po

po
b

ao
!q

ao
.

Thus it is impossible that p
po

b

ao
!q

a
should be false while po

po
b

ao
!q

ao
is true,

which, by (3) is shown to be involved.
210 The letter was discovered by Landini in the Russell archives (LANDINI, G., 1989). The first published (com­

plete) transcription of the letter was byGrattan­Guinness in his The Search forMathematical Roots (GRATTAN­
GUINNESS, I., 2000, pp.279­80.). Bernard Linsky pointed out that there are some errors in the original letter
(as well as some corrections which are probably due to Hawtrey) and published a new corrected transcription
together with Russell’s handwritten original and a formal reconstruction within a modern natural deduction sys­
tem (LINSKY, B., 2003, pp.151­160). There is also a type­set version in the recently published Collected Papers
5 (MOORE, G., 2014, p.125), but unfortunately the original plate was not published with it. We follow Linsky’s
corrected transcription, but not his reconstruction of the proof.
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In Trying to fix this paradox, I have modified the substitution­theory in various
ways, but the paradox always reappeared in more and more complicated forms.
Yours ever, Bertrand Russell.
20 Bagley Wood. Jan. 22, 1907211

Despite the cumbersome notation and the complex substitutions involved the version of
the paradox which appears in the letter, the problem posed there is quite simple. Line (1) intro­
duces by definition a proposition p0 from which a problematic matrix p0/a0 is obtainable. The
problem, as Landini puts it, is that there is “[...] a fundamental tension between the Substituti­
onal Theory and the diagonal method used by Cantor to generate his power­class theorem”212.
Put generally, the issue arises from the fact that one may prove within the substititional theory
the following:

p0 = ( Ep, a) a0 = f(p, a) ∼
(
p
a0
a

)
Where f is a one­one function from propositions into classes of propositions213. As Landini
observed and Russell’s manuscripts confirmed, there are many ways to prove the existence of
such a function f within the simple Substitutional Theory and Russell was well aware of them.
One of them, that developed by Hylton, is completely analogous to the Appendix B. Now, as
we mentioned, Hylton thinks the formulation of the paradox requires the use of truth­predicates
given Russell’s carelessness with use and mention. This is certainly not the case.

The only thing that is required for distinguishing an asserted proposition from a nominali­
zed one is an explicit device for nominalizing formulas, i.e., a term­forming operator, something
with which Russell was surely familiar214. Again, let us use brackets [ and ] for this, with “p”
being an asserted sentence and “[p]”, [p ⊃ q]”, “[(x) p

x

a
!q]”, etc being terms of the language of

the Substitutional Theory that can be flanked by the identity sign. Thus, to generate the Appendix
B paradox in the Substitutional Theory, we let215:

f(p, a) =
[
(r)(p

r

a
⊃r r)

]
From which we obtain:

[po] =
[
( Ep, a)

(
ao =

[
(r)(p

r

a
⊃r r

]
∼
(
p
ao
a

))]
Following Galaugher we may call this the Appendix B version of the p0/a0 paradox, since it is
the exact same contradiction formulated in terms of the language of substitution. The function f
employed in the letter Russell sent to Hawtrey which Landini originally called p0/a0 arises by
letting:

f(p, a) =

[
p
b

a
!q

]
211 RUSSELL, B., 1907c, p.125.
212 LANDINI, G., 2010, p.147.
213 LANDINI, G., 2010, p.147; GRATTAN­GUINNESS, I., 2000, p.363; LANDINI, G., 2014, p.170.
214 LANDINI, G., 1998a, p.43­4.
215 We follow Galaugher (GALAUGHER, J., 2013, p.15) in uniformly using the notation “p

x

a
” which Russell em­

ploys in his manuscripts more instead of “p/a;x”.
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From which it follows that:
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[
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))]

From whence, by the substitution po
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b
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ao
we obtain:
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And, again, from a series of elementary steps and assuming po
b

ao
!q = p

b

a
!q ⊃ p = po a = ao

as giving identity conditions for propositions, we have216:
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Another simpler way given by Landini is to just let217:

f(p, a) = [a ⊃ p]

By the axiom of identity of propositions, we have:

[po ⊃ ao] = [p ⊃ a] ⊃ po = p ao = a

We let the pair po/ao be such that 218:

(x)

(
po
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ao
≡
(
( E

p, a)
(
x = [p ⊃ a] ∼

(
p
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a

))))
Then, if we put forward the following substitution:[

po
po ⊃ ao
ao

]
=
[
( E

p, a)
(
[po ⊃ ao] = [p ⊃ a] ∼

(
p
po ⊃ ao

a

))]
We obtain:

po
po ⊃ ao
ao

≡∼
(
po
po ⊃ ao
ao

)
Assuming an unrestricted domain of propositions over which we let the individual variables
range, these paradoxes spring directly from the axioms of the Substitutional Theory which assert
that any two propositions are identical if and only if they have the same constituents. From
these assumptions one can show within Russell’s original Substitutional calculus that any one
216 We follow closely the formulation of GALAUGHER, J., 2013, p.14.
217 LANDINI, G., 2014, p.171.
218 LANDINI, G., 2010, p.147.
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of the above functions f is one­one. As already noted in the Introduction, the importance of
Landini’s re­discovery of this family of paradoxes in Russell’s manuscripts, in particular that
presented in the letter to Hawtrey cannot be overstated, not only because the letter brought to
light a completely new paradox unique to the Substitutional Theory, but because it strongly
indicates that it was this very paradox that eventually led to Russell to abandon the theory. In
the letter Russell reports to Hawtrey that “[...] in trying to avoid this paradox, [he] modified the
Substitutional Theory in various ways, but the paradox always reappeared in more and more
complicated forms”219.

Indeed, as we already briefly discussed in the Introduction, on the basis of this letter and
of his meticulous study of Russell’s manuscripts220 on the Substitutional Theory, Landini has
put forward a radical challenge to the Orthodox view and the interpretative tradition which takes
Russell to have been led to the ramified theory of types by the semantic paradoxes. Landini has
provided persuasive arguments and evidence to show that semantic paradoxes like the Epimeni­
des were not the driving force towards the abandonment of the Substitutional Theory, for as he
observes “like the PoM Appendix B this paradox is based on the diagonal method employed in
Cantor’s power­class theorem”221. We have, in fact solid evidence showing that Russell knew of
this paradox months before publishing Insolubilia/Les Paradoxes. In the manuscript On Substi­
tution222 dated April/May of 1906, for instance, we find the following:

po = ( Ep, a) ao = (p
b

a
!q) p

ao
a
!r ⊃r ∼ r

[...]

= ( Ep, a) po
b

ao
!q = p

b

a
!q ∼ (p/a); (po

b

ao
!r)

The only way to avoid oddities is to decree a doctrine of types as regards pro­

positions, so that in p
b

a
!q, b and a be of lower type than p and q, so that the

substitution of (p
b

a
!q) for a is illegitimate.223

Of Russell’s manuscripts dealing with the Substitutional Theory, On Substitution is cer­
tainly among the most difficult ones, with daunting twists and turns and blind alleys. This is, of
course, to be expected, since as Landini observes, these notes are nothing more than dialogues
Russell was having with himself224. It is clear, however, that the main issue with which Russell
was struggling was the reconciliation of the “oddities” involving the family of paradoxes po/ao.
Several different approaches are considered and discarded over and over again. Russell consi­
dered for instance distinguishing between propositional and non­propositional substitutions:
219 RUSSELL, B., 1907c, p.125.
220 Now published in the fifth volume of the Collected Papers of Bertrand Russell (Cf. MOORE, G. (ed)., 2014).
221 LANDINI, G., 1998a, p.204.
222 RUSSELL, B., 1906d.
223 RUSSELL, B., 1906d, p.131, folio 7.
224 LANDINI, G., 1998a, p.207.
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All we need is such a modification as will permit

p
b

a
!q = po

b

ao
!q p/a ̸= po/ao

Again we might notationally distinguish propositions and entities, and have
two sorts of substitution, propositional and entity. The notational distinction
may, to begin with, be as hitherto, by a difference of letters. Thus p, q, r, s will
be propositions. The different sorts of substitutions may be indicated in the
same way:

q

p
is a propositional substitution,

x

a
an entity substitution.

q

a
and

x

p
are to be meaningless.225

But as Landini showed well before the publication of the manuscripts, Russell recogni­
zed that the approachwas hopeless for several reasons226. In fact, time and again Russell returned
to type distinctions as the best approach, but found it unbearable to put aside the unrestricted
variable and to reconcile type­distinctions with propositions as entities. A typical passage which
labors this point in some detail is the following:

What is essential is not the denial that propositions, functions, classes, relations,
etc. are entities, but the denial that they can be substituted in the sort of func­
tions which we have called entity­functions. But it will be difficult to define
these functions, or to settle what among entities are the sort we have hitherto
considered as entities sans phrase. Thus it seems simpler to stick to the view
that propositions etc. are not entities.
It seems as if propositions must be entities. They may, however, be entities of
different kind from others, and such that ϕ(p) and ϕ(x) are never both signifi­
cant.
But if propositions are entities, how are we to avoid classes of propositions?
And if we once allow them , we can’t escape such propositions as ∧‘u ϵ u, if u
is a class of propositions227. And if we allow this, the liar becomes insoluble;
unless we introduce a hierarchy of propositions, which is intolerable.228

Thus, as Landini puts it, by the time Insolubilia was published Russell’s “[...] philo­
sophical objections to orders of propositions had won out”229. But none of the main manuscripts
dealing with substitution from April and May of 1906, namely On Substitution230 and Logic in
Which Propositions are not Entities231 consider the approach which Russell ended up defending
in Insolubilia232.
225 RUSSELL, B., 1906d, p.164, folio 94.
226 Roughly, the issue was that propositional substitutionswhich this approach permitted allowed the paradox to be

formulated. Cf. RUSSELL, B., 1906d, pp.164­5, in particular folio 96 and also LANDINI, G., 1998a, p.206­212
for details.

227 Recall that ∧‘u is the notation Russell employed for the logical product of all elements of a class u of proposi­
tions.

228 RUSSELL, B., 1906d, p.185, folio 140.
229 LANDINI, G., 1998a, p.213.
230 RUSSELL, B., 1906d.
231 RUSSELL, B., 1906e.
232 RUSSELL, B., 1906b.
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The approach of Insolubilia is considered in the manuscript The Paradox of the Liar233

dated September 1906, where we find it as one possible approach:

Another possible basis for a hierarchy of propositions is the following. There
are such things as propositions, but no propositions contain apparent [bound]
variables. Statements contain apparent variables, but are merely ambiguous:
they assert one of a number of propositions, without deciding which. Thus
statements containing ‘all propositions’ do not themselves state propositions.
This suffices to avoid the liar and kindred paradoxes.234

We also find it in the following summary of approaches to the contradictions:

I. In order to avoid the paradox of the liar, it is necessary to have a hierarchy
of propositions (i.e. of what one would naturally call propositions), so that a
proposition can never be about all propositions, but only about all at one grade
in the hierarchy; and a proposition about all propositions of a certain grademust
be of the next grade. So far as the liar is concerned, there are various ways in
which such a hierarchy might be constructed.
II. The hierarchy which seems both inherently the most plausible and the best
designed to obviate paradoxes is arranged according to the number of apparent
variables in a statement. A statement containing no apparent variables affirms a
definite proposition; a statement containing apparent variables affirms an ambi­
guous proposition, i.e. any one of the propositions which result from assigning
values to the variables. Hence a statement about all propositions does not state
a new proposition.235

However, in the same manuscript we find Russell considering several ways of forming
a hierarchy of propositions which he tried to avoid in Insolubilia by eliminating general propo­
sitions236.What happened?

3.3.3 From Insolubilia toMathematical Logic as Based on the Theory of Types

In Insolubilia Russell did not pursue in detail the question of how a viable logical theory
could be developed by not assuming general propositions. Although he ended his reply to Poin­
caré with confidence, stating that “[...] there seems reason to hope that the method proposed in
this article avoids all the contradictions, and at the same time preserves Cantor’s results”237 he
also recognized that this was not established beyond reasonable doubt: a demonstration of this
would require “[...] a lengthy symbolic development” and “[...] a long and patient labor of analy­
sis and reconstruction will probably be necessary before the principles of mathematics can be
233 RUSSELL, B., RUSSELL, B., 1906f.
234 RUSSELL, B., 1906f, p.328, folio 23.
235 RUSSELL, B., 1906f, p.332­3, folio 30.
236 For instance, RUSSELL, B., 1906f, p.352, folio 72.
237 RUSSELL, B., 1906b, p.296.
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stated in the absolutely best form”238. Well, it seems that in the process of carrying out this task,
Russell realized that adopting either a hierarchy of statements as in Insolubilia or of genuine pro­
positions as he tentatively considers in the Paradox of the Liar requires some mitigating axiom
for classical Mathematics to be developed. In the same summary quoted above he explains:

III. In order to be able to deal with things like mathematical induction where a
variable function appears, it is essential to have some means of inferring that
certain formulae, if they hold for all functions below a certain grade, hold for all
functions absolutely. For this purpose we need an axiom to assure us that any
propositional function containing a real variable x and any number of apparent
variables is formally equivalent to some function containing less than some
given (constant) number of apparent variables.239

The difficulty here is the essential impredicativity involved in the principle of mathe­
matical induction and some parts of Analysis240 and the required axiom is akin to the Axiom
of Reducibility formulated in terms of the Substitutional Theory without general propositions.
Indeed, Russell even considered this informally in Insolubilia, where explains that:

[...] unless this restriction241 is mitigated by an axiom, it will render most of
the usual uses of induction fallacious; and in other ways it will destroy many
pieces of ordinary mathematical reasoning.242

Such mitigating axiom is considered by Russell in Insolubilia as one which asserts of
any general statement that there is an elementary one equivalent to it, as he puts it: “[...] every sta­
tement containing x and an apparent variable is equivalent, for all values of x, to some statement
ϕx containing no apparent variable”243.

Landini conjectures that Russell must have realized that the theory of Insolubilia allowed
the introduction of p0/a0 paradoxes once such mitigating axioms were added to the theory and
that this was the sole cause of the abandonment of the Substitutional Theory of that paper244.
Unfortunately, there is no extant manuscript with a formal treatment of Insolubilia’s system to
238 RUSSELL, B., 1906b, p.296.
239 RUSSELL, B., 1906f, folio 30.
240 As is well known, the restrictions of the hierarchy of orders are quite severe: they don’t block only the con­

tradictions, but also portions of ordinary Mathematics. Among the casualties are, for instance, the definitions
of mathematical induction and the completeness property of the reals in terms of the existence of least upper
bounds. To remedy this Russell would later introduce a family of Axioms of Reducibility, which assert that given
any non­predicative monadic propositional function f, there is a predicative function ϕ!x̂ co­extensive with f,
and so on for every n­ary non predicative propositional function.

241 I.e., that “a statement involving an apparent function­variable must not be of the form ϕx even when it contains
x” (RUSSELL, B., 1906b, p.211).

242 RUSSELL, B., 1906b, p.211.
243 RUSSELL, B., 1906b, p.212.
244 Cf. LANDINI, G., 1998a, pp.227­231; also LANDINI, G., 2010, pp.155­8.
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confirm this, so Landini’s claim relies completely on his own reconstruction which does esta­
blish his conclusion. Landini shows, in fact, that his reconstructed system eliminates general
propositions and solves the Liar, the Appendix B and all variants of the p0/a0245. But the system
requires the introduction of mitigating axioms of the form of the following scheme246:

( E

p, a)(x)( E

q)
(
p
x

a
!q q ≡ A

)
where p, a are not free in A, and A is any wff (gene­

ral or otherwise) containing x free.

This does not allow the return of the liar or the Appendix B, but it reintroduces some forms of
the p0/a0, in particular the p0/a0 of the Hawtrey letter247. So, in sum, without mitigating axioms,
the system of Insolubilia could not recover Arithmetic and with them, it was vulnerable to some
forms of the p0/a0 paradoxes.

Landini’s conjecture is corroborated by the fact that in September of 1906 Russell was
considering a hierarchy of orders of propositions (not mere statements). At some point The
Paradox of the Liar he considers the view that “[...] there are propositions, though not in the
same sense in which there are individuals”248, and puts particular weight to the fact that the
Hawtrey variant of p0/a0 can be dissolved in this way:

A second­order proposition is one in which either “all values” or “any value”
of p occurs, or a complex p

x

a
!q occurs. I think the latter alone is a sufficient:

all second­order propositions that arise contain p
x

a
!q.

We shall need a notation, say p2, for any second­order proposition. Then we
have p2

x

a
!q2 and also p2

p

q
!q2: both are significant. The former substitution will

affect only origin and argument in p
x

a
!q, the latter will affect only prototype

and resultant. Both these substitutions are third­order propositions. Thus p
α

β
!q

is always of higher order than any of its constituents; this disposes of the fallacy
which led to the abandonment of substitution before, i.e.

po = ( Ep, a) ao = p
x

a
!q ∼ pao

a
⊃ po/ao; po

b

ao
!q ∼ po/ao; po

b

ao
!q

for here we substitute for ao the proposition po
b

ao
!q, which is necessarily of

higher grade than ao.249

245 See LANDINI., 1998, p.216­227
246 Cf. LANDINI, G., 1998a, p.229­30 for details.
247 LANDINI, G., 1998a, pp.227­33 for a full demonstration. Roughly, this is due to a fundamental difference

between some variants of p0/a0 and the Liar and Appendix B: the former does not require an identity between
f(a, p) and a general proposition in order to generate a one­one function between propositions and classes of
propositions (LANDINI, G., 1998a, p. 230).

248 RUSSELL, B., 1906f, p.352, folio 72.
249 RUSSELL, B., 1906f, p.352, folio 72.
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And, in, fact, Landini’s conjecture together with the available evidence also provides a
good solution to interpretative issues which puzzled scholars for quite some time about Russell’s
next main work,Mathematical Logic as Based on the Theory of Types.

Guided again, by the Vicious­Circle Principle, Russell introduced types in that work as
“[...] the range of significance of a propositional function, i.e. as the collection of arguments
for which the said function has values”250. There Russell employs the functional notation which
would later appear in Principia: he employs single letter variables for (propositional) functional
variables instead of matrices and he makes it clear that, in practice, the theory which is put
forward is a hierarchy of propositional functions from which a derived hierarchy of propositions
can be obtained:

A function whose argument is an individual and whose value is always a first­
order proposition will be called a first­order function. A function involving a
first­order function or proposition as apparent variable will be called a second­
order function, and so on. A function of one variable which is of the order
next above that of its argument will be called a predicative function; the same
name will be given to a function of several variables if there is one among these
variables in respect of which the function becomes predicative when values are
assigned to all the other variables. Then the type of a function is determined by
the type of its values and the number and type of its arguments.
The hierarchy of functions may be further explained as follows. A first­order
function of an individual xwill be denoted by ϕ!x (the letters ψ, χ, θ, F,Gwill
also be used for functions). No first­order function con­ tains a function as ap­
parent variable; hence such functions form a well­defined totality, and the ϕ in
ϕ!x can be turned into an apparent variable. Any proposition in which ϕ appe­
ars as apparent variable, and there is no apparent variable of higher type than ϕ,
is a second­order proposition. If such a proposition contains an individual x, it
is not a predicative function of x; but if it contains a first­order function ϕ, it is a
predicative function of ϕ, and will be written f !(ψ!ẑ). Then f is a second­ order
predicative function; the possible values of f again form a well­defined tota­
lity, and we can turn f into an apparent variable. We can thus define third­order
predicative functions, which will be such as have third­order propositions for
their values and second­order predicative functions for their arguments. And in
this way we can proceed indefinitely. A precisely similar development applies
to functions of several variables.251

On the surface, the hierarchy introduced here can be illustrated by some fairly familiar
examples and ideas. Take the following statements as examples, where “Joe” is a proper name,
where Dx stands for x is a dead parrot, Rx stands for x is resting and Q(ϕx̂) stands for ϕx̂ is
a quality of a dead parrot. Take the following statements: “D(Joe)”, “R(Joe)” , “(x) Dx

⊃ Rx ⊃ R(Joe)” and “(ϕ) Q(ϕx̂) ⊃ ϕ(Joe)”. The first two statements contain
(only) functions which take individuals as arguments and each statement is what Russell calls
an elementary proposition: they have no apparent (bound variables), individual or otherwise.
The third statement also contains only functions which take individuals as arguments, but it is
250 RUSSELL, B., 1908, p.601.
251 RUSSELL, B., 1908, pp.603­4.
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possible, by the substitution of the proper name “Joe” by a free variable z, to obtain a function
which contains bound individual variables, namely:

(x) Dx ⊃ Rx ⊃ R(ẑ)

This function is like the first two in that it also only takes individuals as arguments, but it con­
tains bound variables ­ so the propositions which are its values are not elementary. Now, the
fourth function is also true of individuals, but by turning “Joe” into a free variable we obtain the
following function, which we may call F :

(ϕ) Q(ϕx̂) ⊃ ϕ(ŷ)

This function, like the third, contains an apparent variable, but it is an apparent variable which
ranges over functions that take individuals as arguments. According to the distinctions introdu­
ced, all the four functions we considered that are involved in the statements above are of the
same type, for they take individuals as arguments, and not functions, functions of functions and
so on. Thus, according to type distinctions alone, we could have any of the above functions as
possible values of the same variable ψ. To take our example involving the deceased parrot Joe,
the function F ŷ, i.e., (ϕ) Q(ϕx̂) ⊃ ϕ(ŷ), involves quantification over a totality of functions
which contain, for instance, the functionRx̂ (i.e. x is resting); so ifRx̂ and F ŷ were of the same
type, we would have a “vicious circle”. Thus, besides distinguishing types of functions only in
terms of what sort of arguments it may take (individuals, functions of individuals, functions of
functions of individuals, and so on), Russell also distinguish types of functions by taking into
account what sort of quantifiers occur in them, thus introducing what he calls the order of a
function and the propositions which are their values, with the same applying, of course, to func­
tional and propositional variables. Put roughly, a function like F ŷ must be of a higher order
than the order of any bound variable which occurs in it. A predicative function is a function ϕ
of order n+ 1 which takes arguments of order n; thus, in the above, D(x) is predicative, while
(ϕ) : Q(ϕx̂). ⊃ .ϕ(y) is not. This gives us a hierarchy of functions from which a hierarchy of
propositions can be obtained: a proposition p is always of order n, where n is the highest order
among its apparent variables.

Mathematical Logic also contains the exact same contextual elimination of class expres­
sions presented in Principia’s section ∗20, and relations in extension given in ∗21, namely252:

f{ẑ(ψz)} = ( Eϕ) ϕ!x ≡x ψx f{ẑ(ϕz)}Df

f{x̂ŷ(ψ(x, y)} = ( E

ϕ) ϕ!(x, y) ≡x,y ψ(x, y) f{x̂ŷ(ϕ(x, y)}Df

which Russell describes as guaranteeing the possibility of extracting an extensional function
from any intensional one253; Russell also introduces for the first time in print his Axioms of
252 Cf. RUSSELL, B., 1908, p.613.
253 RUSSELL, B., 1908, p.x; MARSH, C., 1956, pp.89; van HEIJENOORT, J., 1967, p.172­3.
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Reducibility254:
⊢ (∃f) ϕx ≡x f !x

⊢ (∃f) ϕ(x, y) ≡x,y f !(x, y)

which “states that, given any function ϕx, there is a predicative function f !x such that f !x is
always equivalent to ϕx”255. Thus on the surface everything looks as if Russell had assumed a
hierarchy of types of propositional functions as primitive entities.

Several interpreters took Mathematical Logic as the abandonment of the Substitutional
Theory, for one reason or another. First, there are close similarities between the formulation
of the type theory of Mathematical Logic and the final theory of types of 1910 put forward
in Principia ­ the notation, in particular, is exactly the same. Second, after the publication of
Mathematical Logic Russell never mentioned the Substitutional Theory again, not in Principia
nor in any of the works surrounding its publication. An interpretation which takesMathematical
Logic as putting forward a theory of types/orders of propositional functions faces some serious
difficulties, however. First, Russell initially introduces his hierarchy in terms of individuals and
propositions of any finite arbitrary order:

Elementary propositions together with such as contain only individuals as ap­
parent variables we will call first­order propositions. These form the second
logical type.
We have thus a new totality, that of first­order propositions. We can thus form
new propositions in which first­order propositions occur as apparent variables.
These we will call second­order propositions; these form the third logical type.
[...]
The above process can be continued indefinitely. The n+1th logical type will
consist of propositions of order n, which will be such as contain propositions of
order n−1, but of no higher order, as apparent variables. The types so obtained
are mutually exclusive, and thus no reflexive fallacies are possible so long as
we remember that an apparent variable must always be confined within some
one type.256

Second, and much more serious, Russell explicitly asserts that functional variables are
a mere convenience that may be eliminated by the use of matrices of the Substitutional Theory:

In practice, a hierarchy of functions is more convenient than one of propositi­
ons. Functions of various orders may be obtained from propositions of various
orders by the method of substitution. If p is a proposition, and a a constituent
of p, let “px

a” denote the proposition which results from substituting x for a
wherever a occurs in p. Thenp/a,which we will call a matrix, may take the

254 RUSSELL, B., 1908, pp.611..
255 RUSSELL, B., 1908, pp.611..
256 RUSSELL, B., 1908, pp.602­3.
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place of a function; its value for the argument x is px
a , and its value for the

argument a is p. Similarly, if “p (a,b)
(x,y)” denotes the result of first substituting

for a and then substituting y for b, we may use the double matrix p/(a, b) to
represent a double function. In this way we can avoid apparent variables other
than individuals and propositions of various orders. [...]
Although it is possible to replace functions by matrices, and although this pro­
cedure introduces a certain simplicity into the explanation of types, it is techni­
cally inconvenient. Technically, it is convenient to replace the prototype p by
ϕa, and to replace px

a by ϕx; thus where, if matrices were being employed, p
and a would appear as apparent variables, we now have ϕ as our apparent vari­
able. In order that ϕ may be legitimate as an apparent variable, it is necessary
that its values should be confined to propositions of some one type. Hence we
proceed as follows. 257

It is only after this clarification that Russell introduces the hierarchy of functions. As
Landini insists, these passages strongly indicate that Russell took the philosophical foundations
of the theory presented in Mathematical Logic to be the Substitutional Theory and that Russell
probably adopted functional variables given the fact that working with the Substitutional The­
ory’s notation is a daunting task258. Landini claims that the type theory ofMathematical Logic is
Russell’s last effort to put the Substitutional Theory to work and that the paper “[...] embraces the
hierarchy of orders of propositions that Les paradoxes [i.e., Insolubilia] sought so desperately
to avoid.”259

The manuscripts and the documented evidence strongly suggest that Landini is right.
In a manuscript entitled On Types260 ­ which we have conclusive evidence to believe to have
been written after The Paradox of the Liar261 ­ we find Russell still considering that “[...] there
is much to be said for reviving substitution”262. There Russell considers a typed version of the
Substitutional Theory which introduces a hierarchy that is very similar to the hierarchy of pro­
positions which starts with individuals and ascends to propositions of several orders that Russell
considers in the beginning ofMathematical Logic:

Assume for moment the substitutional view of functions.
Thus p/a will stand for a function, p being a proposition, called the prototype,
and a a constituent of p, called the initial subject.
The first type consists of individuals.
The second type consists of such propositions as contain no apparent variables
other than individuals. Any proposition of the second type will be denoted by
p1 or q1 or r1 or s1, and called a first­order proposition; p1/a or p1(a, b), or
etc. will be called a first­order function. [sic]

257 RUSSELL, B., 1908, pp.603.Wemodified Russell notation, putting the more readable “px
a” in place of “p/a;x”,

etc.
258 LANDINI, G., 1998a, p.235.
259 LANDINI, G., 1998a, p.236.
260 RUSSELL, B., 1907e.
261 RUSSELL, B., 1906f.
262 RUSSELL, B., 1907c, p.516, folio 3. Our emphasis.

194



The third type consists of such propositions as contain no apparent variables ex­
cept first­order propositions and individuals. [Thus the second type is included
in it.) Any proposition of the third type will be called a second­order proposi­
tion and denoted by p2 or q2 or r2 or s2. We can thence derive functions of
various kinds: p2/a, p2/(p1, a), p2/p1, p2/(a, b), p2/(p1, q1) and so on. Such
functions may be jointly called second­order functions, though they are of va­
rious types. Similarly for higher types.
Thus the order of a function depends upon that of its prototype, not upon that
of its argument. Owing, however, to the reducibility­axiom, a function can, in
most contexts, be replaced by one of the order immediately succeeding that of
its argument, or (in the case of a function of several variables) of the argument
of highest type among its arguments. In the above treatment, the only possible
apparent variables are a, p1, p2, p3, ...263

Russell claims, however, that “[...] for technical reasons, it is simpler to use functions
rather than substitution”, and that the formulas of the substitutional language “[...] can be easily
translated into functional language”264, and then goes on to describe a functional hierarchy that
fits closely (although not exactly265) that of Mathematical Logic:

The first type consists of individuals.
The second type consists of first­order propositions, as before; first­order func­
tions, which may be regarded instead as forming the second type, are such as
have first­order propositions for their values.
Second­order propositions will now be such as contain no apparent variables
except individuals and first­order functions. Second­order functions will be
such as have second­order propositions for their values. Etc.266

To recover classical Mathematics, Russell then considers the introduction of Substituti­
onal Axioms of Reducibility as in:

⊢ ( E

p1) pn/a≡ p1/a

Which asserts that every matrix of any arbitrary order is equivalent to some matrix of the first­
order.
263 RUSSELL, B., 1907e, folio 1.
264 RUSSELL, B., 1907e, p.515, folio 2.
265 For a detailed discussion and reconstructions of various approaches embracing orders of propositions with

which Russell experimented, cf. LANDINI, G., 1998a, chapter 9. The most pressing issue concerned how the
order of p

x

a
!q should be determined, in particular whether elementary propositions (i.e., those expressed by

sentences which do not contain apparent variables) should be of the same order of individuals or not. The issue
here is quite important because it impacts whether substitution can recover a theorem of infinity or not. Landini
meticulously compares the many different approaches Russell explores in the manuscriptsOn Substitution, The
Paradox of the Liar and On Types. Landini notes that it is not at all clear what route Russell intended to follow
in the Substitutional Theory underlyingMathematical Logic, but one difference is clear: inMathematical Logic
Russell refrains from letting elementary propositions in the same type of individuals, thus blocking a proof of
infinity (cf. RUSSELL, B., 1908, p. 620), although his reasons are not clear (cf. LANDINI, G., 1998a, p.239­40).

266 RUSSELL, B., 1907e, p.515, folio 1.
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Unfortunately, however, we do not know the specific date of On Types: we know that
it was written after The Paradox of the Liar, for Russell quotes the latter in it267; we also know
that although Mathematical Logic was published by the end July 1908, Russell had the manus­
cript sent to the American Journal of Mathematics fourteen months earlier, but they stalled the
publication268. As we mentioned before, in early January of 1907 Russell wrote to Hawtrey men­
tioning the paradox which “pilled” the Substitutional Theory. But as Landini observes “[...] to
pill is to despoil, but not necessarily to kill”269 and at some point after that Russell was led to
reconsider substitution with orders of propositions.

What prompted this?

The manuscript On Types provides a lot of information. It indicates that Russell’s confi­
dence in the Substitutional Theory had clearly not wavered ­ at lost not completely, for he even
considers putting it as an appendix to an unspecified work ­ perhaps inMathematical Logic but
most likely Principia itself:

If this form of substitution turns out feasible, perhaps it should be put into an
Appendix. It is philosophically simpler than functions, but technically vastly
more complicated.270

Furthermore, as Landini showed in detail by rigorously reconstructing and developing
the Substitutional Theory ofOn Types271, Russell had good reasons to be confident in the theory:
differently from the theory of Insolubilia which became inconsistent in the presence of mitiga­
ting/Reducibility axioms, the Substitutional Theory of On Types can block po/ao paradoxes and
what is more it can recover a theorem of infinity!272 The manuscript also gives us important
clues as to why Russell eventually gave up the theory. Russell observes that “[...] philosophi­
cally all we need to assume is the hierarchy of propositions, together with individuals” but also
that he does not “[...] think the complication is worth while”273; according to Russell, this is
because “[...] for technical reasons, it is simpler to use functions rather than substitution”274; but
employing functions seems to undermine the very point of putting up with the complications of
substitution:

267 MOORE, G., 2014, p.496.
268 MOORE, G., 2014, p.585.
269 LANDINI, G., 1998a, p.234.
270 RUSSELL, B., 1907e, p.516, folio 5.
271 Cf. LANDINI, G., 1998a, pp.240­251.
272 Cf. LANDINI, G., 1998a, pp.251­4. The same cannot be said about the Substitutional Theory of Mathematical

Logic which requires some assumption about the number of individuals to prove that there are infinite classes
(cf. RUSSELL, B., 1908, p.620). As to why that is the case, cf. the previous footnote 265 of the present chapter.

273 RUSSELL, B., 1907e, p.518, folio 7a.
274 RUSSELL, B., 1907e, p.515, folio 2.
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The point of view of substitution is perhaps unnecessarily complicated, seeing
that ϕx is needed in any case, and so is ϕ(x, y). The only thing we save is ϕ!x.
The necessity for ϕx makes the philosophical gain less than it would be. If ϕx
could be avoided, substitution would be worth adopting.275

So the state of affairs inOn Types seems to be this: on the one hand it shows that Russell
was still attracted to the some virtues of (typed) Substitution, namely (i) its avoidance of an
ontology of functions, since it embraces a hierarchy of individuals and propositions (and nothing
else) and (ii) its capacity to, in principle276, recover an infinity theorem. The problem is that the
approach remains excessively complicated andmuch less convenient than the plan of employing
with a hierarchy of functions ­ at least in practice.

All of this fits very well with Landini’s conjecture about the demise of Insolubilia and his
interpretation of Mathematical Logic. It shows that the most plausible answer to the question
of why Russell revived Substitution in Mathematical Logic was the reluctance to accept an
ontology of propositional functions.

In another important and very difficult manuscript entitled Fundamentals277 from 1907,
Russell was considering the difficulties involved in abandoning proposition and adopting some
form of contextual elimination of classes. There we find a possible explanation of the difficulties
which lead him back to substitution and an ontology of propositions278:

Note that the no­classes theory is in essence abandoned by distinguishing between
ϕx andx ϵ ẑ(ϕz). For this requires that ẑ(ϕz) should be a constituent ofx ϵ ẑ(ϕz),
and therefore that ẑ(ϕz) should be something. This difficulty seems inherent in
the no­classes theory, since functions must be allowed as apparent variables. A
value of an apparent variable must be something, and thus the no­classes theory
won’t work. It worked while we had propositions, because then they became
apparent variables where a variable matrix was wanted. But if propositions are
not to be apparent variables, functions must be, and therefore functions must
be admitted. But then they may as well be classes.279

275 RUSSELL, B., 1907e, p.517, folio 5.
276 Again, cf. the previous footnote 265.
277 RUSSELL, B., 1907h. This paper should not be confused with the manuscript On Fundamentals from 1905

published the fourth volume of Russell’s collected papers (URQUHART, A., 1994, p.359).
278 Initially, he considers what he calls axioms of classes and relations­in­extension in terms of what we would call

abstraction or concretion principles, namely (RUSSELL, B., 1907h, p.545, folio 1):

⊢ ϕx ≡x x ϵ ẑ(ϕz) [Axiom of Classes]

⊢ ϕ(x, y) ≡x,y x{x̂ŷϕ(x, y)}y [Axiom of Relations]

But he ends up considering this plan “useless” (RUSSELL, B., 1907h, folio 12) precisely because of the difficul­
ties involved in employing functions as apparent variables. In the same manuscripts Russell again reconsiders
this approach, but instead of assuming the above abstraction principles as primitive, he assumes theAxiom of Re­
ducibility and puts forward the contextual definition that ends up inMathematical Logic, i.e x ϵ ẑ(ϕ!z) = ϕ!x
and f{ẑ(ϕz)} = (

E

ψ) ϕz ≡z ψ!z f{ẑ(ψ!z)} as Df’s (RUSSELL, B., 1907h. p.563, folio 51).
279 RUSSELL, B., 1907h. p.542, folio 6.
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Although Russell goes back and forth through different approaches to resolving this
tension, even considering reviving classes as entities at some point280, we find him at the end
of the manuscript reconsidering the functional hierarchy, but explaining it in the exact way he
does inMathematical Logic, i.e., going back back to propositions:

First draft must be revived to the extent of re­introducing individuals as an
absolute type. Then elementary propositions are those which assign predicates
to individuals, or assert relations among two or more individuals. Then the first
type of functions consists of all definable by elementary functions, elementary
functions being such as have elementary propositions for values. Second type
of functions consists of all definable by means of individuals and first type, and
having functions as arguments; and so on.281

Thus, the manuscripts from early 1907 indicate that the best explanation for the revival
of he Substitutional Theory was this: Russell concluded that the elimination of classes required
either functions or propositions as the residual of analysis; but Russell found an ontology of
functions intolerable, which precluded him to accept functions as apparent variables; this led
him back to propositions, only stratified to a hierarchy of orders. Assuming this is correct and
that Landini’s interpretation of Insolubilia is right, this would explain the passage on the Subs­
titutional Theory present in Mathematical Logic. This is also further corroborated by a letter
wrote to Russell on 16 June of 1907, i.e., exactly within the period when Russell sent the manus­
cript of Mathematical Logic to the American Journal: there we find Whitehead agreeing with
Russell that “[...] the substitution theory is the proper explanatory starting point”282.

Why, then, did they abandoned the Substitutional Theory?

Well, the initial motivation for adopting the theory was that it seemed to preserve the
unrestricted variable. The many versions of po/ao showed, however, that the simple Substitu­
tional Theory put forward in On the Substitutional Theory of Classes and Relations required
emendation. The result was the Substitutional Theory without general propositions put forward
in Insolubilia: this theory could adhere “with drastic pedantry to the old maxim that “whate­
ver is, is one””, and in accord with its original motivation. But the cost was too high: Classical
Mathematics could not be developed within it without mitigating axioms assuring the existence
of elementary propositions equivalent to any general one; but if Landini is right, Russell eventu­
ally realized that such axioms re­introduced some versions of po/ao. The introductions of orders
of propositions blocked these contradictions, but at the cost of the unrestricted variable. This re­
ading is further corroborated by a letter Whitehead wrote to Russell on 7 October 1906:

280 Cf. RUSSELL, B., 1906f, pp.331­2, folios 30­32.
281 RUSSELL, B., 1907h. p.567, folio 62.
282 MOORE, G., 2014, p.lxxxvii. As with most of Russell’s letters to Whitehead, the one to which he latter was

responding is lost.
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The nastiness which you wanted to avoid is the Frege bugbear of propositional
functions becoming unmeaning when certain terms are substituted. According
to the doctrine of types we have got to put up with this. ­ Thus certain things
(such as functions) which can be named and talked about won’t do as arguments
in some propositional functions. The result is that we have to use the restric­
ted variable. The doctrine of substitution was on stronger ground here; for it
did without the function entities, and simply brought impasse a typographical
device for pretending that we were talking of one entity when we were really
talking of two. Hence if you want the unrestricted variable, the doctrine of
substitution is the true solution. ­ But then this doctrine won’t work, will it?283

If in its main points the interpretation endorsed here is correct, then the reason the theory
would not work was that, as both Russell and Whitehead came to see the matter, there was no
longer any reason to adopt the theory. Since type distinctions among propositions conceived as
entities went against the very motivation for adopting the theory, namely, that it preserved the
unrestricted variable, it remained without any philosophical motivation. Also from a technical
and, especially, notational, point of view the theory was a nightmare as Whitehead time and
again complained to Russell. All of this indicates that this was the theory’s undoing: it ended up
being technically inconvenient and lacking a philosophical motivation.

Some questions, however, remain unanswered.

3.3.4 The Paradoxes and the Demise of Insolubilia

Almost every turn in Russell’s views on Substitution which we discussed so far seem
accounted by Landini’s interpretation on the basis of abundant textual evidence. The following
claims, in particular, are definitely established:

• The po/ao paradox was the main force driving Russell to modify the Substitutional The­
ory. It was, in particular, this paradox that led Russell to withdraw the paper On the Subs­
titutional Theory of Classes and Relations from publication and to pursue theories that
eliminated propositions or embraced orders.

• The Vicious­Circle Principle was not introduced by Russell with any sort of justificatory
role.

• The purpose of the system behind Insolubilia was to reconcile the unrestricted variable
with Cantorian Set Theory by employing a theory of incomplete symbols to propositional
functions, classes and general propositions.

283 MOORE, G., 2014, p.lxxi.
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• By June/July of 1907 Russell had abandoned the version of Substitution of Insolubilia in
favor of a version embracing orders of propositions ­ which appeared in Mathematical
Logic cloaked under the convenient functional notation that was later used in Principia.

• Substitution was not only alive by January of 1907 when Russell wrote his letter to Haw­
trey reporting the po/ao paradox, but it survived (or was revived!) in many forms embra­
cing orders of propositions at least halfway through 1907.

There are, however, some claims made by Landini concerning the development of the Substitu­
tional Theory which cannot be endorsed on the basis of hard textual evidence alone. There are
three interrelated claims, in particular, for which we seem to not have enough available textual
evidence to settle, which concern (a) the abandonment of the Substitutional Theory of the first
half of 1906, i.e., that of the paperOn The Substitutional Theory of Classes and Relations and (b)
the transition from the later version of Substitution without general propositions of Insolubilia to
the versions of Substitution with orders of propositions that Russell put forward inMathematical
Logic and elsewhere284. The claims in question are the following:

• The p0/a0 is the “sole cause” of On The Substitutional Theory “[...] being withdrawn and
the cause of all the subsequent experimental alterations to the Substitutional Theory found
in the manuscripts”285.

• Russell must have realized that the introduction of mitigating axioms in the system of
Insolubilia revived the p0/a0, which in turn led him to abandon the approach of the paper
and to accept orders of propositions.

• The semantic paradoxes played no role in leading Russell to abandon the paper On The
Substitutional Theory or making any of the subsequent modifications.

The three claims are problematic (to varying degrees) with respect to textual evidence, but for
somewhat different reasons. The conjecture about mitigating axioms is problematic because, as
Landini himself observes, no manuscript where Russell discusses the inconsistency of the sys­
tem of Insolubilia amended by mitigating axioms is extant286. In fact, Landini further speculates
that such manuscript or group of manuscripts could be in the possession of Whitehead and were
thus destroyed with most of his Nachlass287. Still, the problem is that we simply cannot pinpoint
exactlywhen or why Russell became convinced that Insolubiliawas a failure given the available
evidence, despite the plausibility of Landini’s theory. The claim that the p0/a0 is “sole cause” of
284 For instance in themanuscriptsParadox of the Liar (RUSSELL, B., 1906f ) andOn Types (RUSSELL, B., 1907e)

and Fundamentals (RUSSELL, B., 1907h).
285 LANDINI, G., 2015, p.170. Our emphasis.
286 Cf. LANDINI, G., 2015, p.175­6.
287 Cf. LANDINI, G., 2015, p.173­4.
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Russell’s modifications of the Substitutional Theory is the least problematic, but problematic no­
netheless given all the information we now have available. The timing of Russell’s withdrawal
of the paper and the dates of the early manuscripts dealing with the p0/a0, in particular, make it
plausible. Russell read the paper On the Substitutional Theory on April of 1906 to the London
Mathematical Society and On Substitution ­ where the p0/a0 appears for the first time ­ is da­
ted April/May of 1906, which indicates that he discovered it right after composing and reading
the paper. The problem lies with the dates of the remaining manuscripts. The manuscript The
Paradox of the Liar, in particular, is dated September 1906. This, as we shall discuss in some
detail below, casts doubts about his views on the withdrawal of On the Substitutional Theory,
which happened on October and also seriously calls Landini’s theory about the abandoning of
Insolubilia into question. Then there is Landini’s claim about the semantic paradoxes. The pro­
blem here (also given the points raised above) is the fact that Russell repeatedly mentions the
Epimenides and related paradoxes as if they were genuine logical issues both in manuscripts
and published writings. Why would he do that, if the real issue were paradoxes of a completely
different nature?

In fact, as Jolen Galaughuer has observed in a relatively recent paper288, Russell seems
to repeatedly raise the Epimenides as a fundamental issue at several occasions ­ including On
Insolubilia and unpublished manuscripts. This, Galaugher points out, calls for an answer to three
questions: (a) If Landini is right in that Insolubilia was really concerned with the po/ao, “[...]
why did Russell advertise ‘Insolubilia’ as a solution to the Epimenides?” and (b) if Russell “[...]
was dissatisfied with the solution, as his correspondence suggests, why did he go on to publish
it?”289; this, in turn, leads Galaugher to speculate ­ given that Russell could not come to accept a
hierarchy of types, either of functions or propositions ­ “[...] why did substitution reappear with
orders [in Mathematical Logic] if he had rejected a hierarchy of orders as intolerable?290

Galaugher points out that some historical documents and specific dates established in
the fifth volume of Russell’s Collected Papers seem in tension with Landini’s claims. She notes
that Russell wrote a letter to Jourdain on 4 of July 1906 manifesting his doubts about his solution
to the Epimenides:

Many thanks for your ‘Topsy­Turvy Fairy Tales’. I was amused to see Epime­
nides the liar reappearing in your last fairy­tale. Have you any views as to how
he is to be dealt with? I have some views, but I am not very well satisfied with
them.291

Since we also know that Russell had already sent the manuscript of Insolubilia for Cou­
288 GALAUGHER, J., 2013.
289 GALAUGHER, J., 2013, p.5.
290 GALAUGHER, J., 2013, p.5.
291 GRATTAN­GUINNESS, I., 1977, p.91. In virtue of a clear typo Grattan­Guinness accidentally dates the letter

4 July 1905. The ‘Topsy­Turvy Fairy Tales’ was a little booklet published anonymously by Jourdain.
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turat to translate halfway through June of 1906292, this strongly indicates, as Galaugher points
out293, that the solution with which Russell was not satisfied is most likely that of Insolubilia.
Furthermore the Paradox of the Liar ­ where Russell gives up the solution of Insolubilia and
explores orders of propositions294 ­ is dated September of 1906295, which indicates that by the
time the paper was published Russell had already abandoned his plan of solving the paradoxes
by eliminating general propositions.

Galaugher also draws attention to and further develops a point made by Graham Stevens
in his excellent review296 of Landini’s book on the Substitutional Theory. Stevens claimed in his
review that there is a case to be made in favor of the view that there are structural similarities
between the Epimenides and some variants of the po/ao paradox. Stevens has in mind the fol­
lowing substitution which appears in Landini’s formal reconstruction of the version of the po/ao
that appears in the letter to Hawtrey:

( E

p, a)
(
a in p ∧ (z)

(
p
z

a
!
[
( E

r, c)
(
z =

[
(y)
(
r
y

c
⊃ y
)]
∧ ∼

(
r
z

c

))]))
Stevens somewhat cryptically claims that “[...] the Epimenides is almost amirror image, yielding
a proposition asserting the falsity of all propositions contained in its correlated class and yet
apparently also a member of that class”297. His point is that in case of the Epimenides, “[...] in
place of the resultant of the above substitution, we will have”298:
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Stevens claims that the “[...] similarity in structure is evident and, surely, unlikely to have es­
caped Russell’s notice” and it shows that “[...] Russell was interested in the Epimenides and
variants of the Liar because he thought they shared important features with the other paradoxes
of propositions”299. Stevens’s claim here seems twofold. One the one hand, he seems to be sug­
gesting, against Landini, that Russell viewed the Epimenides as a paradox whose structure is
similar to that of the po/ao, i.e., that Russell must have at some point formulated the Epimeni­
des as a diagonal paradox which violates Cantor’s theorem. On the other hand, Stevens claims
that this “[...] should make us wary of thinking that Russell clearly perceived the differences
between the logical and semantic paradoxes and of the distinction between logical and semantic
considerations generally”300, since he is not suggesting that “that the Epimenides is not a seman­
tic paradox”, but only that such formulation of the Epimenides “[...] shows, as the substitutional
paradox and Appendix B paradox do, that the assumption of propositions as logical objects tur­
ned out to introduce problems just as severe as (and remarkably similar to) those introduced by
292 Cf. MOORE, G., 2014, p.274­5.
293 Cf. GALAUGHER, J., 2013, p.8.
294 Cf., for instance, RUSSELL, B., 1906f, p.359­365, in particular folio 99.
295 Cf. MOORE, G., 2014, p.317.
296 STEVENS, G., 2004.
297 STEVENS, G., 2004, p.175.
298 STEVENS, G., 2004, p.175.
299 STEVENS, G., 2004, p.175­6.
300 STEVENS, G., 2004, p.175­6.
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the assumption of classes”301 The most central claim here is the first: that Russell construed the
Epimenides as a genuine logical paradox akin to the po/ao. The question then, is: does this claim
stand scrutiny? And if it does, does that mean that it was the Epimenides, after all, that Russell
was attacking in Insolubilia and which led him to the modifications of Substitution?

Galaugher argues in favor of a positive answer to these questions, with some compelling
points. She argues that “what the manuscripts reveal is that Russell entertained the notion that,
when the Epimenides was stripped of such psychological features as ‘assertion’, or ‘belief’, what
remained was a logical paradox with a form akin to that of the po/ao paradox”302. Her argument
draws mainly on the manuscript On Substituition from April/May of 1906303. There, we find
Russell struggling with the liar paradox and vindicating Galaugher’s claim: Russell explicitly
claims that “the liar must be put in a purely logical form to see what it comes to”304. Russell puts
forward the following as characterizing the liar305:
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If the above or something like it was in fact is what Russell intended by a “logical form of
the liar”, this seems to vindicate Stevens’s and Galaugher’s claim that Russell did formulate a
substitutional paradox which he regarded as yielding “[...] the purely logical form of the Epime­
nides,”306 as Galaugher puts it307.

The next question, then, is: was it this paradox that concerned Russell in Insolubilia and
that led him to modify his views on Substitution on more than one occasion? Again, Galaugher
argues that it is. On her view, in Insolubilia Russell “[...] intended to solve the ‘purely logical’
Epimenides, the Appendix B version of the po/ao paradox which shared its form, and the fa­
miliar Hawtrey version of the po/ao paradox”308 by dispensing with general propositions. And
although Galaugher recognizes that in both On the Substitutional Theory of Classes and Rela­
301 STEVENS, G., 2004, p.175.
302 GALAUGHER, J., 2013, p.16.
303 RUSSELL, B., 1906d.
304 Cf. RUSSELL, B., 1906d, p.159, folio 82.
305 This exact formulation is actually due to Galaugher (cf. GALAUGHER, J., 2013, p.17). The exact formulation

which Russell employed in the when claiming that “the liar must be put in a purely logical form to see what it
comes to” was the following (RUSSELL, B., 1906d, p.159, folio 82):
fp = ( Eq, b) p =∼ ∨‘q/b ∼ q p
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which unpacked means:
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Russell then applies this function to ∼ ∨‘fp̂, thus obtaining (Cf. RUSSELL, B., 1906d, p.159, folio 82.):
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As Galaugher notes, Russell was working with the above formulation assuming the distinction between
propositional and individual (or entity) substitutions (cf.GALAUGHER, J., 2013, p.16.), but when the above is
re­framed in terms of the original or simple Substititional Theory, it coincides with Galaugher’s formulation.

306 GALAUGHER, J., 2013, p.17.
307 As we shall see below, however, it is not completely clear whether this is the case.
308 GALAUGHER, J., 2013, p.19.
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tions and Insolubilia Russell “[...] gave semantic paradoxes of naming and defining a separate
treatment”309, on her view:

Russell was concerned with the Epimenides paradox in “Insolubilia” precisely
because it was an analogue of the Appendix B version of the po/ao paradox
and, on his own construction of it, “purely logical”, so that its solution could
be extended to the other propositional paradoxes which afflicted his theory.310

As noted above, this is indeed corroborated by some known dates, in particular the letter
Russell wrote to Jourdain on 4 July 1906, where he manifested his dissatisfaction with his current
solution to the Epimenides. This, as Galaugher notes, goes against Landini’s account, according
to which Russell was committed to the system of Insolubilia at least up to September of 1906
and perhaps even as far as January of 1907.

This, however, as Galaugher notes, leads to a somewhat pressing question: if Russell
was dissatisfied with the solution of Insolubilia to the Epimenides by July, how did he go on
to publish it in September? Galaugher’s answer is that Russell’s “[...] dissatisfaction was not
technical but philosophical”311. Galaugher notes that inOn Substitution Russell had raised philo­
sophical concerns about the view put forward in Insolublia according to which to assert a general
statement like “(x).ϕx” is not to assert a single proposition i.e., ϕx for all values of x312. As Ga­
laugher notes, Russell’s preoccupation is not strictly technical for he observes that “[...] the chief
merit of this method is that it is technically feasible, and avoids contradictions”313 but “[...] as
philosophy, [he is] dissatisfied with the view that ‘all men are mortal’ is an ambiguous assertion
of the mortality of this or that man”314; the problem, Russell continues, “[...] is that, in (x).ϕx,
we don’t primarily have the values of ϕx, but we have primarily ϕx̂; and our proposition is really
about ϕx̂ rather than about any of its values”315. The fundamental issue here, again, was that of
imposing limitations on the variable, which Insolubilia avoided by treating general statements
as incomplete symbols. Galaugher points out, however, that Russell “[...] vacillated more than
once during this period [i.e., from April to September of 1906] between a substitutional theory
and a theory which placed type indices on predicate variables”316, which, again, suggests that his
dissatisfaction stated in the letter from 4 July referred to Insolubilia. And in fact, as Galaugher
suggests, this does corroborate her claim that “[...] there is much in the manuscripts to suggest
that Russell regarded ‘Insolubilia’ as programmatic”317, above all from a philosophical point
309 GALAUGHER, J., 2013, p.19.
310 GALAUGHER, J., 2013, p.19.
311 GALAUGHER, J., 2013, p.22.
312 Cf. RUSSELL, B., 1906d, p.229, folio 250.
313 Cf. RUSSELL, B., 1906d, p.229, folio 250.
314 Cf. RUSSELL, B., 1906d, p.229, folio 251.
315 Cf. RUSSELL, B., 1906d, p.229, folio 251.
316 GALAUGHER, J., 2013, p.24. Cf., for instance, RUSSELL, B., 1906f, p.364, folio 99 or the whole manuscript

On the Functional Theory of Propositions, Classes and Relations (RUSSELL, B., 1906i)
317 GALAUGHER, J., 2013, p.24.
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of view. Galaugher conjectures, then, that “Russell’s inability to discover any philosophically
satisfactory substitution­ theoretic alternative to the solution set forth in ‘Insolubilia’ led him to
reject substitution in the late fall of 1906 or early winter of 1907”318 and thatMathematical Logic
“resurrected” substitution only to avoid quantification over propositional function variables”319

­ a point which is indeed corroborated by the manuscripts ­ in particular On Types ­ and also by
Whitehead and Russell’s correspondence, where they agree to adopt a language of functions but
taking substitution as “[...] the proper explanatory starting point”320.

So, what should we conclude from all of this? It seems that, in light of the currently
available evidence, Galaugher has established the following points :

• Russell did consider the Epimenides or liar paradox in its “purely logical form” together
with variants of the po/ao around April­May of 1906 as genuine issues for the Substituti­
onal Theory.

• So it is very likely that the Epimenides as considered in On Substitution played a role in
the withdrawal of the paper read to the London Mathematical Society.

• It is also very likely that the Epimenides as considered in On Substitution was one of
Russell’s concerns in Insolubilia.

• The dissatisfaction which Russell mentions in the letter to Jourdain from 4 July refers to
Insolubilia and it is most likely philosophically motivated.

• Even if Landini’s conjecture about mitigating axioms is correct, Russell had philosophical
misgivings about the solution of the ‘pure form Epimenides’ and the variants of the po/ao
which Insolubilia puts forward well before January of 1907, when he reports to Hawtrey
that the po/ao “pilled” the Substitutional Theory.

It seems also, however, that none of the above points present any fundamental difficulties for
Landini’s interpretation.

To be sure, the above shows that Landini’s claim that the po/ao was the “sole cause” of
Russell’s withdrawing the paper read to the London Mathematical Society may be partially mis­
taken, because it is plausible that philosophical concerns also played a role in the abandonment
of substitution. The same, however, cannot be said of Landini’s conjecture about mitigating axi­
oms, which is a more substantial aspect of his theory: like the Appendix B paradox, the “purely
logical form” of the Epimenides requires identity between a singular term and a general propo­
sition: thus it is not revived by Insolubilia amended by mitigating axioms. Thus: if Landini is
318 GALAUGHER, J., 2013, p.26.
319 GALAUGHER, J., 2013, p.27.
320 MOORE, G., 2014, p.lxxxvii.
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correct in conjecturing that Russell discovered that the system of Insolubilia was inconsistent
experimenting with mitigating axioms, then Russell would have to have noticed that the Epime­
nides did not survive, and in that case, Landini’s claim that po/ao was the “sole cause” of all
subsequent modifications of Substitution from Insolubilia up toMathematical Logic still stands.
Indeed, this very claim is strongly corroborated by substantial textual evidence prior to January
of 1907. As noted before, when commenting on the introduction of orders of propositions in the
The Paradox of the Liar, Russell wrote:

This disposes of the fallacy which led to the abandonment of substitution be­
fore, i.e.
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And here he is dealing with the version of po/ao paradox of the letter to Hawtrey. This
makes it quite clear that it was this version which was causing the real trouble with Substitution.

It must also be said that one cannot attach much weight to the fact that in Insolubilia
Russell is concerned with the Epimenides and does not even mention the po/ao paradox. One
likely reason for this is that Russell was meeting his audience halfway: a proper formulation of
the many variants of the po/ao paradox in Insolubilia ­ in particular that which appears in the
letter to Hawtrey ­ would require a heavy dose of formalism which Russell (understandably)
may have wanted to spare his readers of, since he was writing for a general philosophical and
mathematical audience. Thus, one possible explanation as to why Russell chose the Epimenides
to explain his resolution of the propositional paradoxes in Insolubilia (and elsewhere in his
published writings) is that he wanted a straightforward simply explicable problem that dispensed
with the subtle technicalities of the Substitutional Theory. Indeed, this would also explain why
Russell also does not formulate the Epimenides in its “purely logical form” in the paper.

Now, about the fact that Russell raised philosophical concerns over the approach of In­
solubilia. Again, all that this does establish is that Landini’s claim that the he p0/a0 is the “sole
cause” of On The Substitutional Theory “[...] being withdrawn and the cause of all the subse­
quent experimental alterations to the Substitutional Theory found in the manuscripts”322 may
be wrong. But here we seem to have two possibilities. The first and most plausible one is that
philosophical concerns about the approach of Insolubilia cropped up on top of the discovery that
the p0/a0 survived the introduction of mitigating axioms. The second is that the abandonment
of Insolubilia was motivated by purely philosophical reasons, which is highly unlikely. Russell
was always quite transparent in claiming that all approaches to solving the contradictions faced
­ quite often severe ­ philosophical difficulties; these were the rule, not the exception. And, in
fact, as we already discussed, textual evidence repeatedly appears in the manuscripts and docu­
ments suggesting the contrary conclusion: the difficulties which ultimately led to the demise of
321 RUSSELL, B., 1906f, p.352, folio 74.
322 LANDINI, G., 2015, p.170. Our emphasis.
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Substitution were technical. For instance, in The Paradox of The Liar Russell claims that “[...]
on the whole, it looks as if substitution could be employed usefully in the philosophy, but was te­
chnically rather tiresome”323 and that “[...] the chief point of substitution was to avoid functions
as apparent variables”324 which he realized was not doable after all. So we still have very strong
reasons to believe that the decisive reasons that led Russell to abandon the Substitutional Theory
­ and, as we shall see in the next section, also the ontology of propositions ­ were technical i.e.,
related to the contradictions.

Finally, the most crucial point of Landini’s interpretation that also seems to be preserved
is that strictly semantic paradoxes ­ like the Liar as ordinarily formulated ­ had no role to play
in shaping Russell’s views. To be sure, Russell repeatedly raises “the liar”, the “Epimenides”
or “the liar and related paradoxes” or “the Epimenides and kindred puzzles” when referring
to his reasons for embracing distinctions of orders. Apart from an already considered possible
(conjectural) explanation for that325, we have a solid reasons to downplay this fact. The main
point which has been established by Landini, following the initial hint of Nino Cocchiarella,
is this: the po/ao, which Russell constructed again and again in the manuscripts as a diagonal
paradox which violates Cantor’s Power­Class theorem and which does not rely on any kind of
semantic or epistemic vocabulary was driving the modifications; this claim stands even if we
accept Steven’s and Galaugher’s point that Russell also construed the Epimenides as a paradox
with such a similar structure, in fact, they further corroborate it, showing that in all likelihood
Russell mentioned the liar so frequently because he viewed it as a paradox that, when stripped
out of its semantic and/or psychological coatings can be understood as a logical paradox. This
is corroborated by Russell’s claim in The Paradox of the Liar that “[...] so far as appears, the
introduction of psychological considerations serves no purpose in solving the paradox of the
liar” and that “[...] it remains to seek out some logical theory by which the vicious self­reference
may be avoided”326, which was, in fact, the main task of that manuscript.

3.3.5 The Paradoxes and the Demise of Propositions

As is well known, just before the publication of Principia, Russell adopts his famous
Multiple Relation Theory of Judgment which marks, once and for all, the abandonment of his
theory of propositions conceived as singular logical subjects. Before proceeding to discussing
the solution which Principia Mathematica provides for the difficulties which baffled Russell for
so long, we need to address why this change came about. We’ll also do well to review what this
change amounted to in terms of Russell’s general philosophical views.
323 RUSSELL, B., 1906f, p.352, folio 74; similarly cf. also RUSSELL, B., 1906f, p.359, folio 86.
324 RUSSELL, B., 1906f, p.367, folio 105.
325 I.e., that Russell was meeting his audience halfway and avoiding the complications of the complex substitutions

involved in the many variants of the po/ao paradox.
326 RUSSELL, B., 1906f, p.322, folio 6
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We already observed that after the adoption of Moore’s pluralism, Russell thought that
“[...] a proposition, unless it happens to be linguistic, does not itself contain words”, but “contains
the entities indicated by words”327, that is, he became committed to the thesis that propositions
are complex entities that have other entities as constituents. This view came along with a picture
of understanding or apprehension of propositions that was tied to Russell’s well known notion
of acquaintance:

In every proposition that we can apprehend (i.e., not only in those whose truth
or falsehood we can judge of, but in all that we can think about), all the consti­
tuents are really entities with which we have immediate acquaintance.328

As Russell later explained in Knowledge by Acquaintance and Knowledge by Descrip­
tion what he meant by this is the following:

I say that I am acquainted with an object when I have a direct cognitive relation
to that object, i.e. when I am directly aware of the object itself. When I speak
of a cognitive relation here, I do not mean the sort of relation which constitutes
judgment, but the sort which constitutes presentation. [...] That is, to say that
S has acquaintance with O is essentially the same thing as to say that O is
presented to S.329

This sort of “direct cognitive relation” can evidently only be maintained with genuine
constituents of propositions, that is, those entities that are denoted by genuine proper names as
opposed to those that are denoted by incomplete symbols (like definite descriptions). Thus, up
until the adoption of the multiple­relation analysis of judgment Russell was committed to a view
of judgment that can be summarized in the following terms: (i) judgment is a dyadic relation
between a subject S and a proposition p; (ii) in order to judge a proposition p as true or false
one must be acquainted with the proposition p; (iii) to be acquainted with a proposition p is to
be acquainted with the constituents of p. Russell also accepted as unproblematic the view that
“[...] some propositions are true and some false, just as some roses are red and some white”330,
that is, that both sorts of propositions have being, i.e., are genuine entities. As Russell asserts
in On The Nature of Truth, if judgment is understood as a dyadic relation between a subject
and a proposition, the difference between true and false propositions should then be taken as
undefinable, with true propositions being identified with facts, that is, propositions which have
this undefinable property of being true331. Thus, Russell was also committed to: (iv) truth and
327 RUSSELL, B., 1937 [1903], p.47 §51. our emphasis.
328 RUSSELL, B., 1905a, p.427;.
329 RUSSELL, B., 1911a, p.148; RUSSELL, B., 1917, p.209­210.
330 RUSSELL, B., 1904a, p.473.
331 RUSSELL, B., 1907, p.451. This article was partially reprinted in Philosophical Essays but the embrionary

discussions of the multiple­relation theory of judgement were removed by Russell due to the fact he was not
satisfied with them anymore by of the publication of the collection.
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falsehood are qualities which belong to non­mental, non­linguistic complexes (propositions) and
(v) that there are two sorts of propositions: facts, which are true propositions, and fictions, which
are false propositions, both being sorts of genuine entities.

Russell started to change his mind regarding this cluster of views on propositions and
judgment332 around the time he discovered the po/ao paradox, the same period when he started
to consider abandoning propositions and adopting the multiple­relation analysis. The main ap­
pearances in print of the multiple­relation analysis before Principia occurred in the following
texts:

1. On the Nature of Truth, which Russell finished by the end of 1906 and published in the
Proceedings of the Aristotelian Society in early 1907.

2. On the Nature of Truth and Falsehood, which Russell finished early in 1909 and published
only in his Philosophical Essays in 1910.

In a nutshell333, the view that Russell considers in these papers is the idea that there is no single
logical subject that corresponds to a judgment, i.e., that there is not a single complex entity which
is the object of judgment, i.e., a proposition, but that judgment is a relation between a subject S
and the many constituents C1, ..., Cn about which the subject S is making the judgment334.

In On the Nature of Truth. Russell considers this view only tentatively that “[...] a belief
cannot be validly treated as a single thing”335, i.e., that a judgment not as “[...] one idea with a
complex object” but as consisting “[...] of several related ideas”336. In that paper he was incli­
ned to adopt this view, but was very cautious, claiming that “[...] the difficulties in its way are
formidable, and may turn out to be insuperable”337. There were two difficulties Russell thought
to be involved. The first was a vague skepticism regarding the possibility of giving an adequate
explanation of the notion of correspondence involved between a belief and a fact338, while the
second was involved in an argument in favor of the opposite view, i.e., the view according to
which there are objective falsehoods339. Russell considered the idea that a judgment points or
refers to a complex only if the complex is a fact, which amounts to treating false sentences as
332 “Judgement” and “belief” are interchangeable in this context, since what matters is that a proposition is the

object of the relation. See RUSSELL, B., 1910c, p.117, footonote 1.
333 Again, the details of the multiple­relation theory and its role in the Introduction of Principia will be discussed

in the next chapter.
334 I.e., for instance, if S judges that a is red, the constituents of such judgment are a and redness, while the complex

fact that arises from S making these judgment consists in S, a and redness; the point is that there is no longer a
single object of judgment here when S makes such judgment, but several, each of which S must be acquainted
with in order to make the judgment.

335 RUSSELL, B., 1907a, p.451.
336 RUSSELL, B., 1907a, p.452.
337 RUSSELL, B., 1907a, p.453.
338 Cf. RUSSELL, B., 1907, p.452­3.
339 Cf. RUSSELL, B., 1907a, p.453.
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incomplete symbols. This, as Russell explained was “an extension of the principle applied in
[...] “On Denoting” [...] where it is pointed out that such propositions as “the King of France
is bald” contain no constituent corresponding to the phrase “the King of France”.”340. And, in
fact, Russell refers to Les Paradoxes/Insolubilia in a footnote of the article, specifically to the
dissolution of the liar paradox by not treating “a belief as a single thing”.

The reference to Insolubilia suggests that Russell envisaged a treatment of false propo­
sitions analogous to that which he sketched for general propositions. However, there is not even
a sketch of such analysis of false propositions as being expressed by incomplete symbols in On
The Nature of Truth, probably due to the fact that Russell had no idea yet how to analyze the
notion of correspondence with a fact that characterized true propositions and was absent in false
ones. So both the problems of correspondence and of objective falsehoods remained unsolved
in the article.

In On The Nature of Truth And Falsehood341, Russell provides a solution for the first
difficulty and a dissolution of the second. Regarding the problem of objective falsehoods, Rus­
sell ended up abandoning the view that any sort of judgment consists in maintaining a relation
to a single object, thus abandoning the view that in the case of true judgments, they denoted
complexes which could be identified with propositions:

We cannot maintain this view with regard to true judgments while rejecting it
with regard to false ones, for that would make an intrinsic difference between
true and false judgments, and enable us (what is obviously impossible) to dis­
cover the truth or falsehood of a judgment merely by examining the intrinsic
nature of the judgment. Thus we must turn to the theory that no judgment con­
sists in a relation to a single object. The way out of the difficulty consists in
maintaining that, whether we judge truly or whether we judge falsely, there is
no one thing that we are judging. When we judge that Charles I died on the
scaffold, we have before us, not one object, but several objects, namely, Char­
les I and dying and the scaffold. Similarly, when we judge that Charles I died
in his bed, we have before us the objects Charles I, dying, and his bed. These
objects are not fictions: they are just as good as the objects of the true judg­
ment. We therefore escape the necessity of admitting objective falsehoods, or
of admitting that in judging falsely we have nothing before the mind. Thus in
this view judgment is a relation of the mind to several other terms: when these
other terms have inter se a ‘corresponding’ relation, the judgment is true; when
not, it is false.342

Thus, again Russell ended up following the most radical route suggested by the theory
of incomplete symbols: every sentence ended up being viewed as such and this led Russell to a
solution of the problem of correspondence in the following terms:

340 RUSSELL, B., 1907a, p.451.
341 RUSSELL, B., 1910a.
342 RUSSELL, B., 1910b, p.120;
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[...] the judgment that two terms have a certain relation R is a relation of the
mind to the two terms and the relation R with the appropriate sense: the ‘cor­
responding’ complex consists of the two terms related by the relation R with
the same sense. The judgment is true when there is such a complex, and false
when there is not. The same account, mutatis mutandis, will apply to any other
judgment. This gives the definition of truth and falsehood.343

Russell introduces the sense of a relation as distinguishing what sort of complex corres­
ponds to distinct judgments like ‘aRb’ and ‘bRa’ and correspondence to an existing complex
is introduced as a definite criteria for the truth of judgment: a judgment is true when there is a
complex which corresponds to what it asserts that exists: for instance, a complex consisting of a
bearing the relation R to b in the case of ‘aRb’; the absence of such a complex characterizes fal­
sehood. Here there are no longer objective truths or falsehoods understood as mind­independent
complex entities which are the objects of judgments; by a stretch of terminology what can be
called an ‘objective truth’ is a fact but strictly speaking this is now simply wrong: what is true or
false is a judgment depending on whether it corresponds to an existing complex (i.e., a fact). De­
clarative sentences, on their turn, are true or false in the derivative sense that they may express
true or false judgments and propositions as they were conceived in The Principles of Mathema­
tics and in the era of the Substitutional Theory become extinct344.

Now, in the previous sections we discussed what may have ultimately led Russell to
abandon the Substitutional Theory of Classes and relations and the conclusion we reached is that
Landini’s central claim is right: the major factor was the po/ao paradox, in particular the variants
which did not involve general statements flanked by identity (like that of the letter to Hawtrey)
­ this paradox is the main (even if not the sole) thing leading Russell to shape and re­shape the
Substitutional Theory in the manuscripts and that ultimately it was Russell’s failure to reconcile
(a consistent version of) the Substitutional Theory with the doctrine of the unrestricted variable
that led to the theory’s demise. A question which we did not address, however, is whether these
difficulties also played a major role in leading Russell to abandon the ontology of propositions
and to adopt of the multiple­relation analysis of judgment. Landini argues in favor of a positive
answer, claiming that “[...] the reason Russell abandoned propositions in 1910 was because of the
paradoxes of propositions and his desire to avoid introducing a hierarchy of orders and a calculus
for logic with restricted variables”345. Ian Proops has claimed in a relatively recent paper that
“[...] that this idea lacks compelling textual support”346.

Although Proops acknowledges that “[...] it is true that certain paradoxes ­ and especially
the Liar ­ were clearly operative in prompting Russell’s initial experiments with the MRTJ”, he
adds that “[...] something further is required to explain his shift from his earlier (1906) indecisive
343 RUSSELL, B., 1910b, p.123­4.
344 In fact, as Landini very aptly puts it, “[...] facts and Russellian propositions are like men and dinosaurs: they

never coexisted” (LANDINI, G., 2011, p.253).
345 LANDINI, G., 1996, p.323. Cf. also LANDINI, G., 1998a, p.275; 2010, p.160­1.
346 PROOPS, I., 2011, p.190.
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openness toward this theory to his later (1909) firm endorsement of it”347. Proops recognizes that
propositional paradoxes led Russell to accept eliminativism about general propositions in Inso­
lubilia and also to accept a ramified version of the Substitutional Theory inMathematical Logic.
Also, although Proops accepts that the typed version of Substitution which appears in Mathe­
matical Logic may have been abandoned because it amounts to abandoning the doctrine of the
unrestricted variable which “[...] was arguably one of the original rationales for the substitutional
theory”348, he claims that:

What is clear is that existing accounts of this matter become conjectural at this
point. The textual record simply fails to supply concrete indications of Russell’s
reasons for becoming dissatisfiedwith the ramified version of the substitutional
theory.349

The availability of Russell’s unpublished manuscripts provides overwhelming evidence
against Proops’s claim and confirms that in all likelihood Russell abandoned the Substitutional
Theory with orders of propositions because he could not accept orders and let go of the doctrine
of the unrestricted variable, which in turn led to the abandonment of the ontology of propositions.
In fact, in our previous discussion of the development of Russell’s Substitutional theory we
considered solid textual evidence in favor of this.

So before closing this chapter we may review our previous discussion and also take note
of some further points that appear in Russell’s manuscripts which we did not address and which
also strongly indicate that the ontology of propositions was also abandoned because of propositi­
onal paradoxes. Let us begin by reviewing what we may consider as established conclusions so
far, leaving what may correctly be called ‘conjectural’ claims aside. We may summarize them
as follows:

• First, there is no place for doubt that the “analogues of the liar” to which Russell refers
concern the paradox that Landini dubbed the ‘po/ao’ and its many variants andmost likely,
as Stevens suggested and Galaugher confirmed, also the paradox which Russell referred
to as ‘purely logical liar’350.

347 PROOPS, I., 2011, p.190. Furthermore, Proops also claims that Russell’s “[...] move from the apparent agnos­
ticism about propositions of the introduction to Principia to the eliminativism of ‘On the Nature of Truth and
Falsehood” (1910)’ demands explanation” (PROOPS, I., 2011, p.190­1). In the next chapter we shall address the
status of propositions in Principia and we argue, following Landini, that Principia fully embraces eliminativism
about propositions.

348 PROOPS, I., 2011, p.195.
349 PROOPS, I., 2011, pp.195. However, Proops mistakenly takes the paradox responsible for the withdrawal of

On the Substitutional Theory of Classes and Relations to be the substitutional version of the Appendix B. Also,
Proops notes that the referees of the paper made several critical comments and he assumes that “in the light
of those criticisms, Russell immediately withdrew that article”(PROOPS, I., 2011, p.192) The centrality of the
po/ao and its constant re­appearances in the manuscripts from April and May alone show that these views are
wrong.

350 Depending, of course, on whether one accepts Stevens’s and Galaugher’s arguments
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• It was Russell’s dissatisfaction with the solutions which he sketched to these paradoxes
between April and September of 1906351 that led him to incorporate orders of propositions
within the Substitutional Theory.

• We also know that Russell became dissatisfied with orders of propositions for at least
two important reasons. First and foremost we know that Russell became dissatisfied with
orders because it went against the core philosophical motivation for Substitution, namely,
that it preserved the unrestricted variable. Furthermore as Russell repeatedly observed,
the technical core motivation for the Substitutional Theory was that it avoided functional
variables. The price of this, however, proved too high and asMathematical Logic and the
correspondence with Whitehead confirmed352, Russell became convinced that technically
Substitution was not viable also.

The above consists in quite non­speculative, or as Proops puts it, ‘concrete’ indications of what
made Russell dissatisfied with the Substitutional Theory, indications that can be extracted from
extensive and solid textual evidence. In fact, what our discussion indicated above is that the only
matters which remain subject of speculation concern details, namely: the exact month and the
exact reason when Russell abandoned the system of Insolubilia in favor of orders of propositi­
ons ­ in particular whether Russell abandoned it because he discovered, as Landini claims, that
mitigating axioms re­introduced paradoxes, or whether philosophical reasons played a role as
well, as Galaugher claims. Our conclusion above amounted to an agnostic pluralism: that both
conjectures are compatible and that both are most likely (at least partially) right, i.e., that despite
the fact that no extant manuscripts confirm this, Russell must have at some point realized that
Insolubilia supplied by mitigating axioms revived the po/ao and that philosophical concerns that
may have been building up around Insolubilia also cropped on top of this. Speculation concerns
these points only, however. The claim that Russell gave up the so­called ‘ramified’ version of
Substitution because he was technically and philosophically dissatisfied with it ­ for several
different reasons ­ is established by the currently available textual evidence

Then there is issue of the ontology of propositions. Here, again, we have explicit textual
evidence connecting the abandonment of the ontology of propositions with concerns with the
paradoxes. Russell himself says in On The Nature of Truth that there are difficulties with the
view that propositions are entities and that “[...] the chief of these difficulties is derived from
paradoxes analogous to that of the liar”353. Russell also explicitly claims in other sources from
the same period that propositional paradoxes led him to reject the ontology of propositions. In his
correspondence with Jourdain he notes in a letter from 1 June 1907 that “[...] consideration of the
paradox of the liar and its analogs has led [him] to be chary of treating propositions as entities”354;
351 I.e., between the withdrawal of On the Substitutional Theory of Classes and Relations from publication and the

publication of Insolubilia.
352 Again, cf. the letter Whitehead wrote to Russell on 7 October 1906 (MOORE, G., 2014, p.lxxi).
353 RUSSELL, B., 1907a, p.451. Our emphasis.
354 GRATTAN­GUINNESS, I., 1977, p.104.
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similarly, doubts about propositions as entities appear almost as a rule scattered throughout the
manuscripts of 1906 through 1908 tied to a discussion of paradoxes. In the manuscript Logic in
Which Propositions are not Entities from September of 1906, for instance, we find the following
striking passage under the heading of “General considerations”:

Roughly speaking, the view that propositions are not entities amounts to this,
that the predicates that can be significantly asserted of propositions are different
from those that can be asserted of entities. “The Law of Contradiction is fond
of cream cheese” is to be as inadmissible as “The number 1 is fond of cream
cheese.” I can’t help thinking this would solve some problems as to the nature
of truth; also the Epimenides and kindred puzzles. All significant propositions
about propositions, on this view, will really be propositions about entities; just
as propositions about classes are. A proposition about a proposition, if it can’t
be reduced to the form of a proposition about entities, is to be meaningless.355

The very motivation of the manuscript is to abolish propositions in order to deal with
the contradictions. In the manuscripts we confirm again what Russell says in On the Nature
of Truth, that it is precisely in the context of dealing with the contradictions that he starts to
consider abandoning an ontology of false propositions. In the On Substitution manuscript, for
instance, he considers the view according to which “there is no such thing as ∼ p, but only the
denial of p” and “we may assert or deny p, but there is no such thing as not­p”356. Then there
is also the manuscript The Paradox of the Liar, where Russell repeatedly raises the elimination
of propositions in various different approaches as a means of dealing with the liar and ‘kindred
puzzles’357.

All of this shows, against Proops’s claim about lack of evidence, that the multiple­
relation theory of judgment conceived as an eliminative approach to propositions emerged from
the ashes of the Substitutional Theory after it was “pilled” by the po/ao paradox and revived by
the distinctions of orders, only to be abandoned again, this time for good.

What we shall discuss next, following Landini’s arguments, is that this eliminative appro­
ach was also adopted in Principia Mathematica, which was conceived by Russell to embrace a
No­Propositions, No­Classes and No­Propositonal Functions ontology for the calculus of Logic.

3.4 Chapter Appendix: timeline of the rise and fall of Russell’s
Substitutional Theory

What follows is a chronology of the relevant events which elapsed during the rise and
fall of Russell’s Substitutional Theory as cataloged by Douglas Lackey, Ivor Grattan­Guinness
355 RUSSELL, B., 1906e, p.265, folio 13.
356 RUSSELL, B., 1906d, p.150­1, folio 62.
357 Cf., for instance, RUSSELL, B., 1906f, p.336, folio 40; p.337, folio 43.
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and Gregory Moore.

­1905

October On Denoting is published on Mind.358

24­10­05 Russell submits On Some Difficulties in the Theory of Transfinite Numbers and
Order Types [Paper 1, V.5]359 to the London Mathematical Society.360

05­12­05 Whitehead writes to Russell and refers to paradoxes within the Substitutional The­
ory as “oddities”361

14­12­05 On Some Difficulties is read to the London Mathematical Society.362

19­12­05 Russell writes to Couturat about the Substitutional Theory, reporting his plan to
send “a purely mathematical memoir to the American Journal of Mathematics” and
another which “will avoid, so far as possible, technical difficulties, and will bring
out as much as possible the philosophical scope of the new theory” which he consi­
ders sending to the Revue de méthaphysique et de morale as Les paradoxes de La
Logique363.

­1906

January Jourdain writes to Russell requesting more published work on his new approach
presented in On Some Difficulties.

13­01­06 Russell writes to Jourdain presenting his recent breakthrough: the theory of definite
descriptions. Russell explains that he is hesitant of publishing his views because of
“errors which [he] keep[s] on discovering”364

05­02­06 Russell adds a note to On Some Difficulties in the press, stating that the no­class
theory is the definite solution to the paradoxes.365

21­02­06 Whitehead writes to Russell criticizing the “excessive formalism” of the Substituti­
onal Theory366.

22­02­06 Whitehead writes another letter complaining about the Substitutional Theory’s han­
dling of class­expressions367.

358 URQUHART, A., 1994, p.li; URQUHART, A., 1994, p.414.
359 RUSSELL, B., 1905b.
360 LACKEY, D., 1973, pp.135; MOORE, G., 2014, p.62.
361 MOORE, G., 2014, p.lxxiii; MOORE, G., 2014, p.105.
362 LACKEY, D., 1973, pp.135; MOORE, G., 2014, p.62.
363 MOORE, G., 2014, pp.xiviii­xlix.
364 GRATTAN­GUINNESS, I., 1977, p.70; GRATTAN­GUINNESS, I., 1977, p.74.
365 MOORE, G., 2014, p.62.
366 LACKEY, D., 1973, p.131.
367 LACKEY, D., 1973, p.131; MOORE, G., 2014, p.xlix.
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March Couturat publishes Pour La Logistique368, his reply to Poincaré’s first paper369 on
Logic and Logicism, in the Revue de méthaphysique et de morale.

08­03­06 Russell writes to Couturat praising his response to Poincaré and reporting his own
intention of writing a response in the Revue.370

24­04­06 Russell submits On the Substitutional Theory of Classes and Relations [Paper 6b,
V.5] to the London Mathematical Society.371

27­04­06 Augustus Edward Love, secretary of London Mathematical Society at the time, wri­
tes to the mathematician Alfred Bray Kempe requesting him to be a referee of Rus­
sell’s paper.372

April ­May Russell finishes a draft of Logic in Which Propositions are not Entities [Paper 7,
V5] and sends it to Whitehead.

May Poincaré’s second paper373 on Logic and Logicism is published in the Revue.

05­05­06 Whitehead writes back to Russell about the manuscript, pointing out difficulties
with false propositions. Couturat writes to Russell about Poincaré’s second paper
on Logic and Logicism374.

07­05­06 Kempe writes back to Love with an evaluation of Russell’s paper.375

April­May Russell works on two different manuscripts the final form of which cannot be dated
especifically, namely:On Substitution [Paper, 5a, V5] andOn the Functional Theory
of Propositions, Classes and Relations [Paper 8, V5].

09­05­06 Whitehead writes back to Russell mentioning a new “function­type” theory and
suggesting emendations for publishing the paper On the Substitutional Theory.

10­05­06 The paper On the Substitutional Theory is read to the London Mathematical Soci­
ety.376

15­05­06 Russell replies to Couturat about the rebuttal to Poincaré, explaining that before
responding he wants to clarify his answer to the contradictions; he observes in par­
ticular the need of extending the theory of incomplete symbols to propositions377.

368 COUTURAT, L., 1906.
369 POINCARÉ, H., 1906a.
370 MOORE, G., 2014, p.273.
371 LACKEY, D., 1973, p.165;
372 MOORE, G., 2014, p.236­7.
373 POINCARÉ, H., 1906b.
374 MOORE, G., 2014, p.262­3.
375 Cf. MOORE, G., 2014, p.236.
376 LACKEY, D., 1973, p.165; MOORE, G., 2014, p.236.
377 MOORE, G., 2014, p.Iii; MOORE, G., 2014, p.274­5.
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15­06­06 Russell writes to Couturat promising to send his reply to Poincaré the next day so
that he can start working in the translation to French. The reply in question is the
paper The Paradoxes of Logic [Paper 9, V5], also known as On ’Insolubilia’ and
Their Solution by Symbolic Logic.378

23­06­06 Russell writes to Couturat reporting his intention to make minor corrections in the
proof pages of Insolubilia.379

25­06­06 Couturat sends Russell the translation of Insolubilia before sending it to the press,
so that he can make corrections. Couturat asks that Russell put more emphasis on
the actual infinite and Mathematical Induction and to change the title.380

02­07­06 Russell replies to Couturat, refusing to add the emphasis on the points requested by
the latter, but agrees to change the title; Russell does not require any modification
for the proof pages except for the insertion of a minor observation in a footnote.381

04­07­06 Russell writes to Jourdain stating that he is dissatisfied with his current solution to
the Epimenides382.

10­09­06 Russell writes to Jourdain stating he is inclined “at present to the doctrine of types,
much as it appears in Appendix B of my book”383.

14­09­06 Insolubilia is published in the Revue.384

07­10­06 Whitehead writes to Russell stating the Substitutional Theory won’t work385.

10­10­06 Jourdain writes a note to Russell praising the No­class Theory.386

12­10­06 Love writes to Russell reporting the acceptance of the paper On the Substitutional
Theory for publication in the Proceedings of LondonMathematical Society; he also
sent Russell Kemp’s observations387.

13­10­06 Russell replies to Love and states his intention of withdrawing the paper from pu­
blication.388

October Russell withdraws the paper On the Substitutional Theory from publication.389

378 MOORE, G., 2014, p.274­5.
379 MOORE, G., 2014, p.275­6
380 MOORE, G., 2014, p.276.
381 MOORE, G., 2014, p.275.
382 Cf. GRATTAN­GUINNESS, I., 1977, p.91.
383 GRATTAN­GUINNESS­I., 1977, p.91­2; MOORE, G., 2014, p.lxxi­lxxii.
384 LACKEY, D., 1973, p.190; MOORE, G., 2014, p.273.
385 MOORE, G., 2014, p.lxxi.
386 GRATTAN­GUINNESS, 1977, p.93.
387 MOORE, G., 2014, p.238.
388 MOORE, G., 2014, p.238­9.
389 MOORE, G., 2014, p.239.
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14­10­06 Love writes to Russell lamenting the withdrawal of the paper On the Substitutional
Theory.390

22­10­06 Russell replies to Jourdain’s note from October 10 reporting that the paper On the
Substitutional Theory was withdrawn and explains that the paper and the theory
require corrections at several points, in particular the need of “purging it of me­
taphysical elements”.391

­1907

22­01­07 Russell sends the letter to Hawtrey with the p0/a0 that “pilled” the Substitutional
Theory392.

June­July Russell sends themanuscript ofMathematical Logic as Based in the Theory of Types
[Paper 22, V5] to the American Journal of Mathematics.393

16­07­07 Whitehead writes a very long letter to Russell reviewing the general outline of his
approach (by that point) and presenting presenting specific doubts.394

1908

06­01­08 Whitehead writes another letter about difficulties with the theory of types.

02­07­08 Russell writes to Jourdain reporting that Mathematical Logic is to appear in the
American Journal of Mathematics and that the journal stalled the publication of his
manuscript for a year.

30­07­08 Mathematical Logic is published in the American Journal of Mathematics.

03­09­08 Hawtrey writes to Russell thanking him for sending the paper and stating his reser­
vations about its content, in particular the Axiom of Reduciblity.

05­07­08 Russell replies to Hawtrey and reports that the American Journal kept his manus­
cript for fourteen months. He agrees with Hawtrey about the problematic status of
the Axiom of Reducibility.395

1909

26­05­09 Whitehead writes to Russell about the theory of types, inquiring about difficulties396.
390 MOORE, G., 2014, p.239.
391 GRATTAN­GUINNESS, 1977, p.93.
392 LANDINI, G., 1998a, p.234­5; MOORE, G., 2014, p.105.
393 MOORE, G., 2014, p.585.
394 MOORE, G., 2014, p.lxxvi­lxxvii. As Moore observes, Russell’s answer is lost, like most of Whitehead’s Na­

chlass
395 MOORE, G., 2014, p.585­6.
396 MOORE, G., 2014, p. 587.
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May­September Russell and Hawtrey begin an exchange of letters discussing the technical
details of what will become the last draft of Principia Mathematica.397

19­10­09 Whitehead and Russell deliver the final manuscript of Principia Mathematica to the
Cambridge University Press.398

397 MOORE, G., 2014, p.xc­xci..
398 MOORE, G., 2014, p.xc­xci..
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4 Propositional Functions and the Logic of
Principia Mathematica

My Philosophical Development, since the early years of the present century,
may be broadly described as a gradual retreat from Pythagoras.1

4.1 Introduction

Some features of Principia’s presentation of its formal system ­ like its axiomatic for­
mulation of propositional and quantificational logic in k1 and k10 ­ will probably look and feel
fairly familiar to anyone who has studied the subject frommodern textbooks; but others ­ like the
presentation of type theory of the Introduction and of quantification theory in k9 ­ will certainly
seem strange or archaic. But without question, what is most baffling to the modern reader of
Principia is the lack of any detailed explanation of the grammatical rules of the formal system,
i.e., of its syntax. And, indeed, Gödel once aptly observed that in Principia “what is missing,
above all, is a precise statement of the syntax of the formalism”2.

This lack of a precise statement of syntactical rules of formation of expressions is, of
course, most problematic with respect to distinctions of types. As we just discussed, the absence
of an explicit explanation of the formalism was also responsible for interpretative issues in the
paperMathematical Logic as Based on the Theory of Types. As we saw, that paper embraces in
practice a notation of functional variables with implicit order indices. On the surface the reso­
lution of the contradictions in Principia is the same given in Mathematical Logic as Based on
the Theory of Types. As in the case of Russell’s paper, the introduction of type distinctions in
1 RUSSELL, B., 1959, p.208.
2 GÖDEL, K., 1944, p.120. Gödel’s main complaint concerns the absence of an explicit rule of subsitution for

terms within arbitrary formulas, in particular when substituted symbols have complex definiens, as in the case
of incomplete symbols. As Gödel points out, there are cases in which the order of elimination or substitution of
defined expressions is not irrelevant ­ Gödel’s famous example is “ϕ!û = û{ϕ!u}. Indeed, the lack of care with
syntatic matters is by far Principia’s most serious defect, in particular since it is this shortcoming that generates
many of its complicated interpretative issues including much of the fuss involving the notion of a ‘propositional
function’. As we discussed in the very introduction of the present work, the main issue with the use of this notion
in Principia is that it seems to be ambiguous: sometimes the expression “propositional function” is used as an
alternate label for a scheme, a dummy letter which stands for some arbitrary open sentence, while at other times
the phrase must mean an actual object­language variable which can be bound by quantifiers. As we also had
occasion to discuss, Quine argued again and again that such dual role played by the idea is ultimately grounded
on a fundamental confusion between sign and symbol on the part of Russell. This issue will be adressed when
we discuss different interpretations of Principia’s syntax (section 4.4 below). The early attempts to fix the issues
are in HILBERT & ACKERMANN, 1928; CARNAP, R., 1934; QUINE, W., 1934. Church points out that none
of the early attempts to formulate an adequate rule of substitution were completely correct (CHURCH, A., 1956,
p.289), and that the first fully adequate statement of the rule was given in HILBERT & BERNAYS, 1934. For
further details cf. CHURCH, A., 1956, p.289­90, in particular footnotes 456, 457 and 461.

220



Principia is presented as a means to embody the Vicious Circle Principle3. Also, likeMathema­
tical Logic, Principia also embraces the contextual elimination of expressions for classes and
relations­in­extensions, and, in fact, the definitions which were already introduced in the paper
are kept intact in Principia’s sections k20 and k21. Thus, like the Substitutional Theory, the type
theory of Principia is not committed to classes; also, similarly to the Type Theory of Appendix
B of the Principles, Russell’s contradiction is solved by imposing restrictions upon the ranges of
significance of propositional functions4 and contradictions akin to the Liar are again dismissed
by employing a hierarchy of so­called orders of functions and propositions5.

There are many claims made in Principia’s Introduction, however that strongly suggest
that Russell was putting forward a radically different logical theory than that of his previous
paper. As we saw, the hierarchy of functions in Mathematical Logic was a mere device of no­
tational convenience6, for there Russell explicitly claims that the underlying logical theory of
Mathematical Logic is the Substitutional Theory, which is a realist theory of propositions that
eliminates the use of functional variables contextually. The Substitutional Theory, however, is
not even mentioned in Principia and the work’s Introduction explicitly endorses Russell’s new
‘multiple­relation’ analysis of judgment which handles declarative sentences as incomplete sym­
bols. In the section Definition and Systematic Ambiguity of Truth and Falsehood of the Intro­
duction, we find:

[...] a “proposition,” in the sense in which a proposition is supposed to be the
object of a judgment, is a false abstraction, because judgment has several ob­
jects, not one.7

Owing to the plurality of the objects of a single judgment, it follows that what
we call a “proposition” (in the sense in which it is to be distinguished from the
phrase expressing it) is not a single entity at all. That is to say, the phrase which
expresses a proposition is what we call an “incomplete” symbol; it does not
have meaning in itself, but requires some supplementation in order to acquire
a complete meaning.8

And concerning so­called ‘propositional functions’, we find the claim that:

A [propositional] function, in fact, is not a definite object, which could be or
not be a man; it is a mere ambiguity awaiting determination, and in order that
it may occur significantly it must receive the necessary determination, which it
obviously does not receive if it is merely substituted for something determinate
in a proposition.9

3 WHITEHEAD & RUSSELL, 1925, pp.37­8 [1910, pp.39­40].
4 Cf. WHITEHEAD & RUSSELL, 1925, pp.62­3 [1910, pp.65­6].
5 Cf. Cf. WHITEHEAD & RUSSELL, 1925, pp.63­4 [1910, pp.66­7].
6 Cf. RUSSELL, B., 1908, p.603 and our discussion in the previous chapter.
7 Cf. WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].
8 WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].
9 WHITEHEAD & RUSSELL, 1925, p.48 [1910, p.50].
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Such claims strongly suggest that in Principia’s Introduction Russell took a further eli­
minativistic step with respect to Mathematical Logic and adopted a no­class, no­propositional­
function and no­proposition logical theory. One gets exactly such impression from some of the
very early passages of Principia where the most basic part its logical vocabulary is introduced:

Wewill use such letters as a, b, c, x, y, z, w, to denote objects which are neither
propositions nor functions. Such objects we shall call individuals. Such objects
will be constituents of propositions or functions, and will be genuine constitu­
ents, in the sense that they do not disappear on analysis, as (for example) classes
do, or phrases of the form ‘the so and so’.10

Again, the above quite strongly suggests that classes, propositions and so­called ‘pro­
positional functions’ unlike ‘individuals’ are not part of the furniture of universe according to
Principia, but are, as Russell sometimes said, “logical fictions”. But of course, to this day the
interpretation of such passages is quite controversial and as we already indicated in the introduc­
tion to the present work, Russell’s eliminativistic hopes were (and, in fact, still are) often met
with incredulity.

As we had occasion to remark, Quine emphatically claimed that Russell failed to pro­
perly grasp the distinction between schematic letters and predicate variables and that any hopes
of ontological elimination which Russell may had about Principia sprang from such confusion11.
Perhaps the most famous of these bracing sermons on use and mention is given in Quine’s in­
troduction toMathematical Logic where his remarks apply to Principia as well:

Is Russell assigning types to his objects or to his notations? The confusion
persists as he proceeds to defined “n­th orders propositions”. His lowest type
comprises individuals; his next comprises what he calls first­order propositi­
ons; and so on up. These propositions, unlike individuals, are evidently nota­
tion; at any rate they can contain variables. Yet, like the individuals, they have
type and they figure as values of quantified variables. [...] From his hierarchy
of Types of propositions, Russell derives a hierarchy of functions. He speaks
here of substitution, in a way that suggests that his functions also are notation
in character; they seem simply to be open sentences, sentences with free varia­
bles. Still, he assigns them types and lets them be values of quantified variables.
[...] Failure to distinguish thus between open sentences on the one hand and at­
tributes and relations on the other had grave consequences for this paper and
equally for Principia Mathematica, for which this paper sets the style.12

For other authors, like Church, who insisted that Principia should be seen as presenting
a system of intensional logic, the claim that propositions are incomplete symbols was viewed as
10 WHITEHEAD & RUSSELL, 1925, p.51 [1910, pp.53­4].
11 QUINE, W., 1941, 1963, 1967 and 1969, pp.254­256. To be sure, the way in which the very passage above is

phrased raises the obvious issue: are the constituents of propositions and functions letters or the individuals
they denote? Since Russell speaks of classes (not class­expressions) as well as definite descriptions ­ which are
phrases ­ as “disappearing upon analysis”, it is far from clear which sense is intended here (as elsewhere).

12 QUINE, W.V., 1967, p.151.
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incompatible with the ramified type theory, since they argued that the background logic required
by such a theory is a fully realist theory of propositions and propositional functions. In Church’s
seminal paper on ramified type theory, for instance, we find:

Many passages in [Mathematical logic as based on the theory of types] and
[Principia Mathematica] may be understood as saying or as having the con­
sequence that the values of the propositional variables are sentences. But a
coherent semantics of Russell’s formalized language can hardly be provided
on this basis (notice in particular that, since sentences are also substituted for
propositional variables, it would be necessary to take sentences as names of
sentences). And since the passages in question seem to involve confusions of
use and mention or kindred confusions that may be merely careless, it is not
certain that they are to be regarded as precise statements of a semantics.13

Discussing Russell’s justification for the type­hierarchy of Principia, Warren Goldfarb
claims that “the substantive constraints on the complex structures of propositions and proposi­
tional functions that comprise ramification rely on the details of the theory of these entities that
Russell adopts”14. His reading completely accepts Church’s diagnosis, and echoing the latter’s
words, Goldfarb asserts:

It does not appear that this view [the multiple­relation theory of judgment]
is consistent with the logic of Principia (see Church, “Comparison,” p. 748).
Luckily, the view seems to play no real role in Russell’s explanations of his
logical system. In what follows, I shall take the charitable course of ignoring
it.”15

But although diagnoses of Quine and Church (and, of course, their followers) come from
two different philosophical outlooks16, there is a similar interpretative presupposition underlying
their views, namely, the assumption that the system of Mathematical Logic and Principia are
identical apart from some minor details17. This seems to be what led Quine to charge the system
ofMathematical Logic as affected by a serious confusion between use andmention and it is what
led Church to claim that Principia requires a realist theory of propositions and propositional
functions.

This assumption, however, is very contentious and so are many the consequences drawn
from it18. As we discussed in the previous chapter, Quine’s criticism that type­distinctions are
13 CHURCH, A., 1976a, p.748, footnote 4.
14 GOLDFARB, W., 1989, p.34, our emhpasis.
15 GOLDFARB, W., 1989, p.34.
16 One may recall that for Quine “intensions are creatures of darkness” to be joyfully “exorcised” (QUINE, W.,

1956, p.180).
17 Cf., for instance, QUINE, W., 1967; CHURCH, A., 1976a, p747; HYLTON, P., 1990, p.282; GOLDFARB, W.,

1989, p.37. More recently Moore seems to make this assumption in his introduction and commentaries to the
fifth volume of Russell’s collected papers (cf., for instance, MOORE, G., 2014, p.lxxvii and also p.585).

18 Incidentally, Goldfarb writes: “In Principia Mathematica it is by and large this theory of 1908 that is put to
work” (GOLDFARB, W., 1989, p.37)
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rooted in a confusion of use and mention is moot with respect to Mathematical Logic19: the lo­
gical theory of that paper is the Substitutional Theory, which is a realist theory of propositions;
the reason why the hierarchy of that work starts with individuals and ascends to propositions is
that these are the entities to which Russell’s logical theory was committed20. Church also seems
not to realize that the background logical theory ofMathematical Logic is different from that of
Principia and draws a conclusion which is, in a sense, opposite to that of Quine: Church does
realize that Mathematical Logic did assume a realist theory of propositions, but by assuming
that those systems are essentially the same he concludes that Principia should also assume such
a realist theory of propositions with an accompanying realist hierarchy of propositional functi­
ons. But Mathematical Logic still endorsed the ontology of propositions and the Substitutional
Theory and there is plenty of evidence that by the time he was done with Principia Russell had
abandoned both (which were, indeed, inseparable)21. Whatever logical theory Russell intended
to serve as a foundation for Principia it was not the system ofMathematical Logic.

This fact and its importance have eluded many interpreters of Principia22. Indeed, one of
the greatest interpretative puzzles about the development of Russell’s Mathematical Philosophy
was that of determining the specific reason that led Russell to abandon the Substitutional Theory,
which is apparently not even mentioned in Principia. In our previous chapter we saw that this
puzzle was solved by Landini, who found in the Russell Archives the now famous letter Russell
wrote to Hawtrey reporting the paradox that “pilled” the Substitutional Theory; this paradox,
which Landini baptized the “p0/a0” paradox, together with its many variants, led Russell to
introduce orders of propositions into the Substitutional Theory23. The final product was the
system of Mathematical Logic, which is a ramified version of the Substitutional Theory with
axioms of Reducibility. Russell abandoned this theory because it failed to preserve the most
important feature of the Substitutional Theory, namely, its completely unrestricted variables.
Landini’s work caused ­ or, at least it should have caused ­ nothing short of a revolution for
interpreters of Russell’s works adjacent to Mathematical Logic, especially Principia. For one
thing, it showed, once and for all, something that cannot be overstated: the system of Principia
19 This is not to say that Russell’s works are not infested with use­mention sloppines, they surely are. But this

is not as devastating as Quines thinks. Indeed, if Landini is correct ­ and we intend to argue that he is ­ then
Russell in many ways had views that were much similar to Quine’s regarding the status of functional variables.

20 Individual variables, as we previously discussed, were also at some point considered by Russell as entities
which occurred as genuine constituents of propositions, but this view stopped playing any explanatory role in
his account of quantification and nature of propositions.

21 As we discussed, the evidence that by the time of Principia Mathematica Russell was no longer commited to
a realist ontology of propositions like the one from the time of Principles of Mathematics and the era of the
Substitutional Theory is simply overwhelming, both in manuscripts and published writings.

22 Goldfarb, for instance, misses the first point completely, writing the following: “In "Mathematical Logic,” Rus­
sell’s view is quite different from that exhibited in the Substitutional Theory. Propositional functions are now
taken as legitimate entities; with their reappearance, the realistic view of propositions as complexes also returns”
(GOLDFARB, W., 1989, p.36). Hylton’s work (HYLTON, 1980), like those of Grattan­Guinness (GRATTAN­
GUINNESS, I., 1977) and Nino Cocchiarella (COCCHIARELLA, N., 1980), was pioneer in noticing the im­
portance of the Substitutional Theory, but lacking the evidence we now have at our disposal, they did not fully
realize what led Russell to abandon it.

23 This was first reported in LANDINI, G., 1989 and later developed in LANDINI, G., 1998a.
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is not the same as that presented inMathematical Logic24.

But be that as it may, one thing should be indisputable: the intent of the authors of Prin­
cipia is that no sentence denotes a single entity; so every expression of the form: “So­and­so is
the case” must be treated as an incomplete symbol. Thus, there is no ontology of propositions in
Principia if these are understood as entities in the same sense that Russell meant in the Princi­
ples and the era of Substitutional Theory25. This should be a point of agreement for anyone who
wants to make sense of Principia’s Logic in its entirety. And indeed this is a point that has been
widely regarded as unproblematic by scholars.

What scholars cannot agree on is how one should answer the following questions: Gran­
ted that propositions are not entities in the same sense that individuals, is there still a sense
admitted by Whitehead and Russell in which a proposition can be said to be an entity distinct
from the phrase (sentence) which expresses it? And if yes, what sense is that? Put in more precise
terms, should we take Whitehead and Russell’s words literally when they assert that “propositi­
ons are incomplete symbols”, “propositions contain variables”, and so forth, or should we take
these assertions as expressing a different view according to which propositions and propositional
functions constitute a different sort of entity distinct from (but constituted of) individuals? This
is the fundamental point of dispute between Russellian scholars concerning Principia Mathema­
tica.

Hylton, for instance, emphatically observes that Russell andWhitehead are quite careful
in their choice of words here: what they say is that the phrase which expresses a proposition
is an incomplete symbol not that propositions are incomplete symbols26, thus claiming that
there is still an ontology of propositions and so­called ‘propositional functions’ ­ as entities
distinguished from predicate variables and schematic letters ­ in Principia. Hylton’s position,
which is followed by several authors like Goldfarb and Bernard Linsky, is that “propositional
functions are complex, structured entities”27, and so are propositions:

Propositions, on Russell’s account, are complex structured entities. Two propo­
sitions which have some part of their structure in common are both values of
one and the same propositional function, which also shares that structure (one
might almost say,which is that structure).28

24 This point was also noticed in by Nino Cocchiarella (COCHIARELLA, N., 1980), although he did not fully
draw the consequences of this fact as Landini did.

25 As Peter Hylton aptly observes, it is certain that in using the notion of “proposition” and denying that there are
propositions, Russell “[...] is using the word in precisely the same sense as in his earlier works”(HYLTON, P.,
1990, p.342), and so “[...] what is he denying is that there are objective non­linguistic and non­mental entities”
which “contain the things they are about”(HYLTON, P., 1990, p.342).

26 HYLTON, P., 1990, p.342. Similar remarks are made by Bernard Linsky, who claims that “[...] the phrase that
expresses a proposition, he says, is an incomplete symbol or expression, but the proposition is not an incomplete
symbol or expression” (LINSKY, B., 1999, p.125).

27 HYLTON, P., 2004, pp.134.
28 HYLTON, P., 2005, p.133.
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Landini, on the other hand, claims that “[...] if there are no propositions in the ontological
sense, then individuals cannot be their constituents”29, and concludes that there is no ontology
of propositions and propositional functions in Principia. Thus, he claims that Russell was not
committed to a ramified type theory of entities and that the hierarchy of types is concerned
with the significance of the expressions for the language of logic and Mathematics, not with
their ontology. Also, according to Landini’s reading, Principia’s formulation of type theory was
meant to preserve the doctrine of the unrestricted variable, given that it was not committed to
any kind of ‘typed’ metaphysics and only allowed genuine (referential) variables to range over
individuals.

How should such dispute be settled?Well, we must investigate how these interpretations
fit within (i) themetaphysical viewswhich Russell held at the time ofPrincipia’s publication and
(ii) the technical exposition of Principia’s theory of types. We already had occasion to discuss a
long interpretative tradition that reads most of Russell’s exposition as blatant examples of use­
mention confusion; we also saw that there are some authors who think that aspects of Principia’s
logic and ontology that Russell clearly thought to be of central importance should be charitably
ignored. Since much has been written to show that these approaches are somewhat misguided,
they won’t be addressed here anymore. We will address two main sorts of interpretation:

1. Realistic intepretations of so­called propositional functions that take seriously
Principia’s multiple­relation theory of judgment and its accompanying thesis that
sentences are incomplete symbols.

2. ‘Nominalistc’30 interpretations of Principia’s according to which ‘functional’ or
predicate variables must be interpreted in terms of a substitutional semantics (in the
modern sense)31.

Our concern here is with what role the multiple­relation plays in the formulation and/or justifica­
tion of Principia’s theory of types32. On this regard, the first detailed attempt at an explanation
was given by Nino Cocchiarella. We shall consider his reading, and the more recent proposal of
Bernard Linsky, who, in a sense, offers a variant of Cocchiarella’s interpretation. Concerning the
29 LANDINI, G., 1998a, p.262.
30 It must be observed that “nominalism” and “nominalistic” are used here only for the lack of a better word ­

perhaps “deflationary” would be more adequate ­ for there is simply no debate about Russell’s commitment
to a realist view of universals by the time of Principia (and any other time of his life, for that matter). The
interpreation is nominalistic only with respect to Principia’s higher­order variables.

31 Note that expressions “substitution”, “substitutional”, etc., have nothing to do with “substitutions” within Rus­
sell’s Substitutional Theory of classes and Relations.

32 This excludes many influential realist interpretations, like that of Peter Hylton (for instance, HYLTON, P., 1980;
1990), who is rightly regarded as an important interpreter ­ but most of his work focuses on the question of how
Russell’s multiple relation theory can account for the kind of direct relation of acquaintance with the objects of
thought which Russell’s realism requires (in particular HYLTON, P., 1990) and he shares Church’s skepticism
about Russell’s commitment to sentences as incomplete symbols.
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second kind of interpretation, the first author to claim that Principia’s so­called ramified theory
of types should be interpreted in terms of a substitutional semantics for its functional varia­
bles was Kripke in his famous paper on substitutional quantification33. There, Kripke explicitly
observes that this is a way “[...] of casting doubt on Quine’s repeated assertion that Russell’s ra­
mified theory of types provides no significant ontological gain over ordinary set theory”34. Later,
Mark Sainsury35 took up Kripke’s suggestion as a way to reconcile the “apparent contradiction”
involved in Russell’s commitment, on the one hand, to the view that logical constructions are
fictions, and to the view that there are classes, relations­in­extension, etc. But neither Kripke nor
Sainsbury developed this interpretation in any detail. Landini was the first to develop a detailed
interpretation on this basis36; he was later followed by Kevin Klement37 and Graham Stevens38.
In the end, we will side with Landini: his interpretation affords the best means to make sense of
the text of Principia and the many twists and turns in the development of Russell’sMathematical
Philosophy39.

Before continuing, some cautionary observations concerning the phrases “proposition”,
“propositional function” and other similar expressions must be made. In a sense this chapter
is a concession to tradition, i.e., to what we are calling the ‘orthodoxy’, since we will consi­
der many issues and interpretations that arise from the supposition that “propositional function”
has a univocal use in Principia. Our conclusion, however, will be that the question “what is
a propositional function in Principia” is badly framed, for it assumes that there was a unique
sense intended by the authors for the expression “propositional function”. Following Landini,
we will conclude that the assumption must be rejected. We will not follow Quine, however, in
claiming that Russell was just confused about matters of use and mention, that being the reason
why “propositional function” does not have an univocal meaning. Whitehead and Russell were
not confused about “propositional functions”, they were careless. And though it must be con­
ceded that the line between carelessness and confusion is not sharp and that there is certainly
room for disagreement about where one ends and the other begins, our task will be to consi­
der here interpretations of Principia that attempt to make sense of “propositional functions”
without concluding that Whitehead and Russell’s exposition was the product of any confusion
of a fundamental kind like that imputed to them by Quine. Incidentally, this chapter will also
be a concession to tradition because we will use the expression “propositional function” as if
it could be a univocally referring term ­ but this will be done just for the sake of discussing
33 KRIPKE, S, 1976, p.368. It is fair to say that it is only after the publication of that paper that attempts to formulate

substitutional semantics for formal theories started to be really taken seriously.
34 KRIPKE, 1976, p.368. Kripke is, in fact, a little more emphatic: he claims that this “is just one way of casting

doubt on Quine’s repeated assertion [...]”.
35 SAINSBURY, M, 1980, pp.31­3.
36 LANDINI, G., 1998a.
37 KLEMENT, K., 2010; 2013; 2014; 2018.
38 STEVENS, G., 2003; 2004.
39 The focus of our discussion in the present chapter will be Landini’s work. Possible departures from that can

be made from his interpretation while still maintaining a nominalistic interpretation of so­called propositional
functions will be occasionally noted in footnotes or brief commentaries.
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different interpretations of the expression “propositional function”.

4.2 Principia’s Multiple­Relation Theory of judgment

In Principia, Russell and Whitehead sketch the following metaphysical picture of the
furniture of the universe:

The universe consists of objects having various qualities and standing in va­
rious relations. Some of the objects which occur in the universe are complex.
When an object is complex, it consists of interrelated parts. Let us consider
a complex object composed of two parts a and b, standing to each other in
the relation R. The complex object “a­in­the­relation­R­to­b” may be capable
of being perceived; when perceived, it is perceived as one object. Attention
may show that it is complex; we then judge that a and b stand in the relation
R. Such a judgment, being derived from perception by mere attention, may be
called a “judgment of perception.” This judgment of perception, considered as
an actual occurrence, is a relation of four terms, namely a and b and R and the
percipient.40

What is said here is straightforward, albeit very sketchy. They are claiming that objects
in general, that is, genuine entities, are divided into two fundamental sorts: those that are com­
plex and those that are simple, with complex objects ultimately being facts, i.e, simple objects
having qualities or standing in relations with other objects. Of course, implicit in the above is
a distinction between between universals and particulars, which Russell discussed extensively
in many writings published almost concurrently with Principia. In Knowledge by Acquaintance
and Knowledge by Description, for instance, we find:

Among particulars I include all existents, and all complexes of which one or
more constituents are existents, such as this­before­that, this­above­that, the­
yellowness­of­this. Among universals I include all objects of which no parti­
cular is a constituent. Thus the disjunction “universal­particular” is exhaustive.
We might also call it the disjunction “abstract­concrete”.41

As Russell further explains in On The Relation of Universals to Particulars, particulars
“[...] enter into complexes only as the subjects of predicates or the terms of relations and, if
they belong to the world of which we have experience, exist in time, and cannot occupy more
than one place at one time in the space to which they belong”42, while universals “[...] can
occur as predicates or relations in complexes, do not exist in time, and have no relation to one
40 WHITEHEAD & RUSSELL, 1925, p.43 [1910, p.45].
41 RUSSELL, B., 1911a, pp.150; RUSSELL, B., 1917, p.213­4.
42 RUSSELL, B., 1912a, pp.182; MARSH, C., 1956, p.124.
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place which they may not simultaneously have to another”43. Thus, the metaphysical picture
to which Principia’s Introduction adheres to is the following: there are complex and simple
objects; simple objects may be either particulars or universals; complex objects are articulated
complexes which consists of simple objects (either particulars or universals) having properties
or bearing relations (with these being universals).

Now, to see how the above metaphysical picture of the universe fits with the multiple
relation theory of judgment, we must consider howWhitehead and Russell intend to analyze the
meaning of sentences like “aRb” on the basis of this theory. Whitehead and Russell write:

[...] we may define truth, where such judgments are concerned, as consisting in
the fact that there is a complex corresponding to the discursive thought which is
the judgment. That is, when we judge “a has the relation R to b”, our judgment
is said to be true, when there is a complex “a­in­the­relation­R­to­b”, and is said
to be false when this is not the case. This is a definition of truth and falsehood
in relation to judgments of this kind.44

The above passage requires some care. Notice that Whitehead and Russell are not di­
rectly defining truth for elementary sentences, but for elementary judgments, which are not lin­
guistic items but complexes that consist in a judging mind and the objects of judgment. What
is defined above as true or false is not a sentence but a certain complex of entities. This com­
plex will be true when there is another corresponding complex composed of the same entities
occurring in the judgment complex and interrelated in the same way they are in the judgment
complex, and it will be false when there is no such complex. When m judges that aRb, there
is a judging complex m­J­a­R­b; if there is a complex a­R­b which corresponds to it, then the
judging complex is true, otherwise it is false. As Whitehead and Russell further explain:

It will be seen that, according to the above account, a judgment does not have a
single object, namely the proposition, but has several interrelated objects. That
is to say, the relation which constitutes judgment is not a relation of two terms,
namely, the judging mind and the proposition, but it is a relation of several
terms, namely the mind and what are called constituents of the proposition.
[...] When a judgment occurs, there is a certain complex entity, composed of
the mind and the various objects of judgment. When the judgment is true, in
the case of the kinds of judgments we have been considering, there is a corres­
ponding complex of objects, of the judgment alone. Falsehood, in regard to our
present class of judgments, consists in the absence of a corresponding complex
composed of the objects alone.45

Following Cocchiarella46 and Landini, we take Whitehead and Russell to be defining
truth regarding the elementary or atomic case “as the correspondence between a belief complex
43 RUSSELL, B., 1912a, pp.182; MARSH, C., 1956, p.124.
44 WHITEHEAD & RUSSELL, 1925, p.43 [1910, p.46].
45 WHITEHEAD & RUSSELL, 1925, p.43­4 [1910, p.46].
46 COCCHIARELLA, N., 1980, p.103­4.
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and another complex composed of the objects of the belief complex”47. We take it that this must
be the case since according to the multiple­relation theory, judging is a relation of various terms,
which includes the subject that judges or holds the belief, so there must be a complex of entities
which includes the terms about which the belief or judgment is, the mind that judges or holds
the belief and the relation of judging or believing. Since Russell and Whitehead (sometimes)
took the care to state that it is the phrase which expresses a proposition that is an incomplete
symbol, it cannot be the phrase which expresses the proposition which is true, but a particular
occurrence of judgment/belief, which is a complex of entities. Thus truth and falsehood are not
primarily defined for sentences: Whitehead and Russell’s definition is primarily a definition of
the truth of judgment occurrences. And, of course, we say primarily because one can speak of
the truth of a sentence occurrence, but only in a derivative sense: a true sentence­occurrence is
one that expresses a true judgment­occurrence.

It is on the basis of this analysis of the meaning of declarative sentences that Whitehead
and Russel claim in the Introduction to Principia that (a) “a ‘proposition’ in the sense in which
a proposition is supposed to be the object of a judgment, is a false abstraction” and (b) that “a
“proposition” (in the sense in which it is to be distinguished from the phrase expressing it) is
not a single entity at all”; and finally (c) that “the phrase which expresses a proposition is what
we call an ‘incomplete’ symbol”48. A sentence like “aRb” is not the name of a single entity
which is the object of judgment, because judgment always involves a complex (composed of
the judging mind and the many objects which the judgment is about) and this complex may or
may not correspond to a fact; in the most simple case which the authors are considering above,
a judgment always has as constituents some quality P or relation R and individuals a, a1, ..., an,
so that “Pa” just asserts that the individual a has the quality P and “R(a1, ..., an)” asserts that
the individuals a1, ..., an have the relation R. The authors put the point as follows:

A proposition is not a single entity, but a relation of several; hence a statement
in which a proposition appears as subject will only be significant if it can be
reduced to a statement about the terms which appear in the proposition. A pro­
position, like such phrases as “the so­and­so”, where grammatically it appears
as subject, must be broken up into its constituents if we are to find the true
subject or subjects.49

To make sense of this, it is crucial to realize that truth and falsehood are primarily appli­
cable to judgments, not to sentences; as Landini puts it, Principia’s truth­predicates are meant to
“flank statements and not names of statements”50, because “when a genuinely atomic statement
is flanked by “is true” it is to be viewed as a sort of name—viz., a disguised definite descrip­
47 LANDINI, G., 1998a, pp.287­8.
48 WHITEHEAD & RUSSELL, 1925, p.43 [1910, p.46].
49 WHITEHEAD & RUSSELL, 1925, p.48 [1910, p.51].
50 LANDINI, G., 1998a, p.287. Our emphasis.
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tion”51. Of course, the details of how this idea is to be interpreted are a matter of controversy,
and they will be addressed below.

For now, we must review how the above account gives rise to Principia’s hierarchy of
senses of truth and falsehood which, in fact, generates their hierarchy of orders of propositions,
i.e., declarative sentences. The general idea which they introduce here is that the senses of “truth”
which apply to expressions of the form (x) ϕx or (x) x is aman ϕx, “[...] is not the same as
that in which ϕx is or may be true”52. Judgments of the form aRb, Pa, etc., are what Whitehead
and Russell call elementary judgments and these, if true, are always so because there is a single
complex which corresponds to them. The truth or falsehood of general judgments, on the other
hand, is understood by Whitehead and Russell very differently:

[...] take now such a proposition as “all men are mortal”. Here, the judgment
does not correspond to one complex, but to many, namely “Socrates is mortal”,
“Plato is mortal”, “Aristotle is mortal”, etc. [...] For the purposes of illustration,
“Socrates is mortal” is here treated as an elementary judgment, though in fact it
is not one, as will be explained later. [...] Our judgment that all men are mortal
collects together a number of elementary judgments. [...] We must admit, the­
refore, as a radically new kind of judgment, such general assertions as “all men
are mortal”. We assert that, given that x is human, it is always mortal. That is,
we assert “x is mortal” of every x which is human. Thus we are able to judge
(whether truly or falsely) that all the objects which have some assigned pro­
perty also have some other assigned property; That is, given any propositional
functions ϕx̂ and ψx̂, there is a judgment asserting ψx with every x for which
we have ϕx. Such judgments we will call general judgments.53

More generally, the point is put by them as follows:

Let us take any function ϕx̂, and let ϕa be one of its values. Let us call the
sort of truth which is applicable to ϕa, “first truth.”54 [...] Consider now the
proposition (x) ϕx. If this has truth of the sort appropriate to it, that will
mean that every value ϕx has “first­truth.” Thus if we call the sort of truth
that is appropriate to (x) ϕx “second­truth,” we may define “{(x) ϕx} has
second truth” as meaning “every value for ϕx̂ has first truth,” i.e. “(x) (ϕx
has first truth).” Similarly, if we denote by “( Ex) ϕx” the proposition “ϕx
sometimes,” i.e. as we may less accurately express it, “ϕx with some value
of x,” we find that ( Ex) ϕx has second truth if there is an x with which ϕx
has first truth; thus we may define “{( E

x) ϕx} has second truth” as meaning
“some value for ϕx̂ has first truth,” i.e. “( E

x) (ϕx has first truth).” Similar
remarks apply to falsehood.55

51 LANDINI, G., 1998a, p.287.
52 WHITEHEAD & RUSSELL, 1925, p.46 [1910, p.49].
53 WHITEHEAD & RUSSELL, 1925, pp.44­5 [1910, p.47].
54 As they remark, this should be taken with the following disclaimer, that “This is not to assume that this would

be first truth in another context: it is merely to indicate that it is firs sort of truth in our context.”(WHITEHEAD
& RUSSELL, 1925 [1910], pp.42).

55 WHITEHEAD & RUSSELL, 1925, p.42 [1910, pp.44­5].
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That is, for Whitehead and Russell any general ‘proposition’ should be analyzed as as­
serting that a given propositional function ϕx̂ is true for all or some of its values56. Taking as an
example “(x) x is aman ⊃ x ismortal”, Whitehead and Russell analyze this as meaning
something like: “The propositional function x̂ is a man ⊃ x̂ is mortal has a true proposition as
a value for every argument x”. More generally, to say that “(x) ϕx ⊃ ψx”, or “(x) ϕx”, or
“(x) ∼ ψx”, etc., have truth of the n + 1 kind, is to say that ‘every value’ ­ as Whitehead and
Russell put it ­ of ϕx̂ ⊃ ψx̂, ϕx̂, or ∼ ψx̂ has truth of the appropriate n kind.

What remains to be seen is how expressions like “ϕx̂” fit within this view. Do they
stand for entities which enter in complexes as genuine constituents? Furthermore, what happens
when we extend the above definition of truth and falsehood to general propositions that contain
bound functional variables ϕ,ψ, etc? As we shall see, Cocchiarella, Bernard Linsky, and Landini
have very different answers to these questions ­ all worth considering in detail. Since Linksy’s
answer can be viewed as a modification of Cocchiarella’s and Landini’s is formulated in direct
opposition to Cocchiarella, we must start with the latter.

4.2.1 Cocchiarella’s Reconstruction of Principia’s Multiple Relation Analysis
of judgment

Cocchiarella was the first author to make a serious effort to fit Principia’s Multiple
Relation theory within the Theory of Types. He is also one of the first to recognize that the
system of Principia is not the same ofMathematical Logic, the contrast being, as he puts it, that
in Principia “propositions are no longer to be considered as single entities, and propositional
functions (of different orders) are no longer to be considered as non­entities”57. As wementioned
above, Cocchiarella, like Landini, takes truth and falsity as primarily a property of particular
judgment occurrences:

[...] instead of taking propositions of different orders as being single entities that
are themselves objectively true or false, Russell now assumes that judgments
as particular occurrences, or statements as potential judgments, are the primary
vehicles of a hierarchically ordered system of truth and falsehood.58

He claims that Russell andWhitehead intended to analyze an atomic or elementary judg­
ment as having the form:

(NC­eJ) Jn+2(m,Rn(x̂1, ..., x̂n), a1, . . . , an)
56 WHITEHEAD & RUSSELL, 1925, p.42 [1910, pp.44­5].
57 COCCHIARELLA, N., 1980, p.101.
58 COCCHIARELLA, N., 1980, p.104.
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Where m is some mind which judges/or believes that Rn(a1, . . . , an) is true, a1, . . . , an are
any objects, Rn(x̂1, ..., x̂n) is a propositional function which is to be identified with a univer­
sal59 and a1, . . . , an are any objects (particulars or universals) of appropriate type relative to
Rn(x̂1, ..., x̂n).

An elementary/atomic proposition then, is simply the judgment which is expressed by a
sentence of the form like (NC­eJ), that is, a complex that may or may not correspond to a single
fact60. Thus, he takes that truth can be defined in the case of elementary (atomic) judgments as
follows61:

(C­eT) Jn+2(m,Rn(x̂1, ..., x̂n), a1, . . . , an) has atomic truth iff there is complex (fact) cor­
responding to m’s judging with respect to a1, . . . , an and Rn, for some mind m.

Although Cocchiarella does not go into an explicit explanation as to why this amounts to treating
atomic sentences as incomplete symbols and the corresponding ‘proposition’ as “a false abstrac­
tion”, we may easily reconstruct a good reason for such claim on the basis of his reading: an
expression like “aRb” purports to denote a complex; but this complex may or may not exist; in
order for it to express something definite, then, this expressionmust enter as a subordinate clause
as part of an expression that actually expresses a judgment that stands for a judging complex, as
in Othello­believing­that­Desdemona­loves­Cassius. Indeed, Cocchiarella writes that:

[...] it is not the assertoric occurrence of a propositional phrase which is an
“incomplete symbol” but only the occurrence of a nominalized propositional
phrase, i.e., one occurring as a grammatical subject (or object) of a declarative
sentence, and especially one occurring as the nominal subject (or direct object)
of a sentence expressing a propositional attitude.62

Now, the central aspect of Cocchiarella’s interpretation is that propositional functions
are to be identified with universals, i.e. qualities/attributes and relations­in­intension, and thus
be included as constituents of judgments63:

As a particular occurrence, moreover, a judgment is a complex of entities con­
sisting of a mind and the objects, including the propositional functions (now
construed as properties and relations in intension) that would otherwise be ta­
ken as the constituents of the proposition being judged.64

59 COCCHIARELLA, N., 1980, p.102.
60 COCCHIARELLA, N., 1980, p.103.
61 COCCHIARELLA, N., 1980, p.102. We are somewhat adapting the authors terminology so that it fits better

with our subsequent discussion of Landini’s interpretation.
62 COCCHIARELLA, N., 1980, p.101.
63 COCCHIARELLA, N., 1980, p.102, 108.
64 COCCHIARELLA, N., 1980, p.104.
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Cocchiarella argues that since propositions conceived as entities are out of the picture,
the hierarchy of orders of judgments must be characterized in terms of the orders of propositional
functions:

The order of the judgment’s truth or falsehood is then to be identified with the
maximum order of the propositional functions occurring in that judgment.65

Thus, according to Cocchiarella’s interpretation,Whitehead and Russell’s analysis of “m
judges that all men are mortal” is to be understood along the following lines:

J4(m, (x)(ϕ̂!x ⊃ ψ̂!x), x̂ is a man, x̂ is mortal)

Where (x)(ϕ̂!x ⊃ ψ̂!x) is “[...] the second­order relation of material implication between two
predicative propositional functions of individuals”66, and since such function is of second order,
the proposition is also of second order. For a third­order case of truth and falsehood containing
quantification over functions which take functions as arguments, he takes the analysis to be
given as something like:

J ′
4(m, (ϕ)(χ̂!(ϕ!ẑ) ⊃ ϕ!x̂), f !(ϕ̂!ẑ),Napoleon)

Where “(ϕ)(χ̂!(ϕ!ẑ). ⊃ .ϕ!x̂)” is meant to stand for “a third­order relation between second­
order properties of predicative properties of individuals on the one hand and individuals on the
other”67.

The general idea is that the hierarchy of senses of “truth” and “falsehood” which applies
primarily to judgment occurrences is a by­product of type distinctions applied to propositional
functions understood as entities: if a judgment contains as (a genuine) constituent a propositional
function of order n, then the judgment itself must be of at least that order n and, in fact, any
judgment will be of the same order as that of the function of highest order which occurs in it68.

Thus, to sum up: Cocchiarella takes truth to be primarily defined for belief­complexes
(or judging complexes) that may or may not correspond to facts; he assumes (as we shall see,
incorrectly) that propositional functions must enter as constituents in both facts and belief com­
plexes; and thus, he concludes that a hierarchy of senses of truth and falsehood arises from a
hierarchy of judgments or judgement complexes, with the order of a judgment being given by
the propositional function of the highest order which occurs in it.

65 COCCHIARELLA, N., 1980, p.104.
66 COCCHIARELLA, N., 1980, p.104.
67 COCCHIARELLA, N., 1980, p.105.
68 COCCHIARELLA, N., 1980, p.104­5.
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4.2.2 Landini’s Reconstruction of Principia’s Multiple Relation Analysis of
judgment

Landini, like Cocchiarella, thinks that the multiple­relation analysis of judgment must
be taken seriously. But there are several points of disagreement between Landini’s reading and
Cocchiarella’s. The fundamental points which Landini (rightly) disputes are the following:

1. Propositional functions are universals which can enter into complexes as consti­
tuents.

2. The hierarchy of senses of truth and falsehood is derived from a hierarchy of
judgment­complexes/judgment­occurrences, and the order of judgment complex is
determined by the propositional functions of the highest order which occur in it.

Unlike Cocchiarella, Landini does not read the passage cited above which introduces the diffe­
rent senses of truth and falsehood69 as introducing a hierarchy of judgments ­ rather he takes
Russell and Whitehead to be recursively characterizing truth and falsehood for ‘propositions’
understood as declarative sentences using the multiple­relation theory applied to elementary
propositions as the base of the recursion. As Landini puts it:

The hierarchy of senses of ‘truth’ and ‘falsehood’ in Principia is applied to
what Whitehead and Russell call ‘propositions’. It is a hierarchy of orders of
propositionswhich is thereby generated, not a hierarchy of judgment­complexes.
Of course, the “propositions” here are not the objective truths and falsehoods
Russell formerly endorsed. They must be declarative sentences or statements
capable of truth or falsehood.70

Now, this does not mean that Landini disagrees that primarily truth and falsehood must
be applied to judgments (specifically atomic ones); on the contrary, he explicitly recognizes that
this is the correct interpretation:

[...] the foundational notions of ‘truth’ and ‘falsehood’ are defined in terms of
correspondence between judgment (or belief) and fact in accordance with the
multiple­relation theory. That is, when an atomic declarative sentence is asser­
ted there occurs an ‘elementary judgment’ insofar as there is a mental complex
involved with the assertion. An elementary judgment is then said to be ‘true’
when there is a corresponding complex and ‘false’ when there is no correspon­
ding complex. The truth conditions for an atomic proposition such as ‘a has
the relation R to b’ consist in the fact that there is a complex corresponding

69 I.e., WHITEHEAD & RUSSELL, 1925, pp.41­2 [1910, pp.44­5].
70 LANDINI, G., 1991, p.42. Cf. also LANDINI, G., 1998a, p.p.283­4.
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to the judgment­complex which is involved with the assertion of the atomic
proposition.71

Landini accepts that truth applied to an atomic sentence is derived from truth applied to
judgment­complexes, for he is aware that what corresponds or fails to correspond to a fact is a
judgment complex, not a declarative sentence.

However, Landini interprets Russell’s claim that the multiple­relation theory of judg­
ment “[...] is an extension of the principle applied in [...] “On Denoting” [...]” and the accom­
panying claim that propositions are incomplete symbols72 more radically than Cocchiarella. He
suggests that when the expression “a bears R to b” or “aRb” (not its name) is flanked by “. . . is
true”, the expression is in fact a definite description in disguise73, to be analyzed as something
along the following lines74:

(L­eJ) “The complex (fact) corresponding to m’s judgment with respect to a and R and b,
for some mind m”.

Thus, Landini claims that the correct interpretation is to take the sentence “aRb”, when flanked
by “... is true” or “... is false” to be functioning as incomplete incomplete symbol which purports
to denote the fact m­J­o­aRb for somemwhich judges/believes it. He gives the following general
characterization of atomic judgments where R is a relation, a1, . . . , an are objects (universals or
particulars),m is a mind or subject of belief/judgment and [Rn(a1, . . . , an)] is the complex wich
consists in the terms a1, . . . , an related by the n­ary relation R75:

(L­eT) [Rn(a1, . . . , an)] has atomic/elementary truth if and only if there is a fact corres­
ponding to m’s judging/believing with respect to a1, . . . , an and Rn, for some mind
m.

Since Whitehead and Russell claim that a general judgment “collects together a number of ele­
mentary judgments”76, without ever stating what the constituents of such judgment are, only
claiming that they are of a “radically new kind”77, Landini assumes that the only restraint on
the analysis of general judgments is that they must accord with the recursive definition which
71 LANDINI, G., 1998a, p.
72 RUSSELL, B., 1907a, p.453, footnote 16.
73 LANDINI, G., 1998a, pp.288.
74 LANDINI, G., 1998a, pp.288.
75 LANDINI, G., 1998a, pp.289.
76 WHITEHEAD & RUSSELL, 1925, p.45 [1910, p.47].
77 WHITEHEAD & RUSSELL, 1925, p.45 [1910, p.47].
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has the multiple relation theory as its base case78. He takes it that a general judgment is to be
analyzed as asserting the existence of multiple elementary complexes, and thus he analyses the
truth conditions of the judgment that all men are mortal as follows79:

(L­FoT) [(x)(Man(x) ⊃ Mortal(x))] has second truth if and only if for every x, if there is a
fact corresponding to m’s judging with respect to x and Humanity, for some mind
m, then there is a fact corresponding to m’s judging with respect to x and Mortality,
for some mind m.

Here, however, it is not a second sort of truth based on a second notion of correspondence that
is being introduced: a general judgment only differs from an atomic one because if true, it may
correspond to multiple complexes instead of a single one. But all judgment complexes are on
a par for Landini: their constituents are all particulars and universals and there are no type­
distinctions among them. Thus, strictly speaking, there is only one sense in which truth can be
applied to judgments, namely: in terms of correspondence between a judgment complex and
facts (either a single one or several).

As we mentioned and shall address in detail below, Landini claims that whenWhitehead
and Russell distinguish a whole hierarchy of senses of truth and falsehood, they are using truth­
predicates in a secondary way that applies to propositions understood as declarative sentences
and this hierarchy is recursively generated with the multiple relation theory applied to elemen­
tary judgments as the base case80: all senses of truth and falsehood for sentences/propositions,
including those of ‘higher­order’, are derived from the one legitimate sense of truth applied to
judgment complexes. This recursive characterization of senses of “truth” is meant to track what
sort of quantifiers occur in a sentence: according to Landini, “truth” applied to sentences con­
taining apparent (bound) variables does not apply to belief complexes because these must be
uniformly true in the exact same sense (that they correspond to facts). Thus, Landini claims:

78 He offers two possible alternative analyses of (m) which adequately fit within this. The two alternative analyses
he offers are the following (LANDINI, G., 1998a, pp.288­90):

(m­analysis­L1) [(x)(x is a man ⊃ x is mortal)] is true iff for every x, if there is a fact corresponding to
m’s understanding with respect to x and Humanity, for some mind m, then there is a fact corresponding to m’s
understanding with respect to x and Mortality, for some mind m.

(m­analysis­L2) [(x)(x is a man⊃ x is mortal)] is true iff for some m, the general belief complex consisting
of m related to Humanity and Mortality is true.

He takes ‘supposing’ or ‘understanding’ as more “appropriate multiple relations for the general recursive
definition” since “to define “truth” as correspondence between a mental state and a fact one must assume at
least one mind, but surely not one in a believing relation and not one for every entity. ‘Understanding’, on the
other hand, turns the trick so long as it is not viewed as an occurrent state” (LANDINI, G., 1998a, p.288). For
the sake of uniformity we shall discuss general judgments in terms of belief, to conform with Cocchiarella’s
and facilitate comparison; but one should be aware of the issue Landini points out.

79 LANDINI, G., 1998a, p.288.
80 LANDINI, G., 1998a, p.286.
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[...] Cocchiarella has things wrong side up. He takes a top­down approach
whichmakes the order of a propositional function occurring in a belief­complex
as fundamental and holds that this determines the nature of “truth” (correspon­
dence). But Whitehead and Russell would appear to be taking a bottom­up ap­
proach. The relation of ‘correspondence’ is fundamental. It is the nature of the
correspondence involved that establishes the sense of ‘truth’ and ‘falsehood’
and, accordingly, the orders of propositions.81

How then, does Landini’s interpretation fit Whitehead and Russell’s use of “propositio­
nal function”? Well, as we briefly mentioned, Landini’s main contention is that there are at least
two completely distinct uses of the term “propositional function” in Principia’s Introduction. In
one sense, “propositional function” means a predicate variable that can be bound by (substitu­
tional) quantifiers. In another sense, “propositional function” means a schematic letter which
may be substituted by well­formed formulas82. But to fully appreciate his reasons for this, we
must discuss the issues involved in Principia’s arguments in favor of types and orders in detail.

For now, we may sum up Landini’s interpretation of the multiple relation analysis of
judgment as follows: against Cocchiarella, Landini claims that there is no hierarchy of comple­
xes; the hierarchy of senses of truth and falsehood presented in Principia introduces a hierarchy
of truth­predicates that applies to sentences; but this recursively generated hierarchy of truth and
falsehood predicates is derived from the primary sense of truth and falsehoodwhich applies to be­
lief complexes and is founded on the fundamental notion of correspondence between judgment
complexes and facts (either a single one, or a multiplicity of them). According to this reading,
only individuals (either universals or particulars) forming a single non­typed domain enter into
complexes as genuine constituents: so­called propositional functions are just expressions.

4.3 The Hierarchy of Types and the Axiom of Reducibility

From a technical point of view, the core of Principia’s type theory is expressed by the
authors in the following terms: “any expression containing an apparent variable must not be in
the range of that variable, i.e. must belong to a different type”83. There are two presentations
of the hierarchy of types in Principia which attempt to explain how this idea avoids the contra­
dictions ­ one in the second chapter of the Introduction and another in ∗12, within the body of
the work, where the Axiom of Reducibility is officially introduced. If we look at the expositi­
ons in the two portions of the work, there are two main definitions: a recursive characterization
of the order of a propositional function and a definition of predicative propositional functions.
Concerning the notion of order, in the Introduction and ∗12, respectively, we find the following
characterization of first­order functions:
81 LANDINI, G., 1991, p.43.
82 LANDINI, G., 1998a, p.265.
83 WHITEHEAD & RUSSELL, 1910, p.168.
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We will denote any first­order function by “ϕ!x̂” and any value for such func­
tion by “ϕ!x”. Thus, “ϕ!x” stand for any value of any function which involves
no variables except individuals.84

A function of the first order is one which involves no variables except indivi­
duals, whether as apparent variables or as arguments.85

Both these definitions are clearly equivalent and give the base clause of their defini­
tion. The recursive clause of their definition of the order of a function is then presented in the
Introduction and ∗12, respectively, as follows:

If the highest order of [sic] variable occurring in a function, whether as argu­
ment or as apparent variable, is a function of the nth order, then the function in
which it occurs is of the n+ 1th order.86

A function of the (n + 1)th order is one which has at least one argument or
apparent variable of order n, and contains no argument or apparent variable
which is not either an individual or a first­order function or a second­order
function or a function of order n.87

These are also clearly equivalent, and thus, both the Introduction and k12 present the
same hierarchy of types in terms of the notion of the order a function.

Another important notion which is introduced at this point and then reconsidered at k12

is that of a matrix, i.e., a function which contains no apparent variables88. Their key idea is that
“all possible propositions and functions are obtainable from matrices by the process of turning
the arguments to the matrices into apparent variables”89. So the hierarchy of types begins with
“matrices [...] whose values are of the forms ϕx, ψ(x, y), χ(x, y, z), i.e., where the arguments,
however many there may be, are all individuals”90.

This passagemay seem again to introduce yet another instance of use­mention confusion.
But if we take the authors to be describing the hierarchy of functions in terms of their formal ex­
pressions91, their exposition can be reviewed as follows. They start with matrices which contain
only real individual variables92, that is, functions ϕ, ψ, χ which “contain no apparent variables
and have no arguments except individuals, [sic] do not presuppose any totality of functions”93.
84 WHITEHEAD & RUSSELL, 1925, p.51 [1910, p.54].
85 WHITEHEAD & RUSSELL, 1925, p.167 [1910, p.175].
86 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56].
87 WHITEHEAD & RUSSELL, 1925, p.167 [1910, p.175].
88 WHITEHEAD & RUSSELL, 1925, pp.50­1 [1910, p.53].
89 WHITEHEAD & RUSSELL, 1925, p.51 [1910, p.53].
90 WHITEHEAD & RUSSELL, 1925, p.51 [1910, p.54].
91 It is worthwhile to emphasize, yet again, that since Whitehead and Russell speak of functions and matrices as

containing and/or involving variables, it is clear that there is a legitimate sense in which these can be said to be
expressionswhich are stratified into a hierarchy, and that this in itself does not mean that propositional functions
must be, after all, just expressions.

92 Since there are no constants in Principia, we shall not bother to include them in our discussion, but it would be
evidently easy to do so.

93 WHITEHEAD & RUSSELL, 1925, p.51 [1910, p.54].
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Examples of such (first­order) matrices are:

ϕx, ψ(x, y), ϕx∨ ψ(x, y), χ(x, y, z), etc...

Next, by the process of turning real individual variables into apparent variables, i.e.,
binding them to quantifiers, they form the totality of first­order functions, which are either first­
order matrices or are obtained from matrices by turning real individual variables into apparent
variables. Examples of such matrices are the following:

( E

y) ψ(x, y), (x) ψ(x, y), (x, y) χ(x, y, z), etc...

Now, it is at this point that they introduce the shriek notation (as in “ϕ!x̂”, “ψ!(x̂, ŷ)”, etc.):

We shall denote any first­order function by “ϕ!x̂” and any value for such func­
tion by “ϕ!x”. Thus “ϕ!x” stands for any value for any function which involves
no variables except individuals.94

Using “ϕ!x̂”, “ψ!(x̂, ŷ)”, etc., for first­order functional variables, they form the totality
of second­order matrices, that is, the totality of all functions which contain only individual and
first­order functional variables, but no apparent variables95. Examples of such matrices are:

f(ϕ!ẑ), f(ϕ!ẑ, ψ!ẑ), f(ϕ!ẑ, x), etc...

Again, turning real individual variables and real first­order functional variables into ap­
parent variables, they thus form the totality of second­order functions, which are either second­
order matrices or are obtained from second­order matrices by quantifying over individual or
first­order functional variables, as in:

(ϕ) f(ϕ!ẑ), (∃ψ) f(ϕ!ẑ, ψ!ẑ), (x) f(ϕ!ẑ, x), etc...

Second­order functional variables are then introduced, as in f !(ϕ̂!ẑ), g(ϕ̂!ẑ, x), etc., which can
be used to define the totality of third­order matrices and functions, and so on, “indefinitely”96.
Put generally, a matrix of order n is such that it contains only real individual variables or real va­
riables of order less than n, while a function of order n is such that it contains apparent individual
variables or apparent individual variables of order less than n.

Crucially, then, they introduce the following definition of a predicative function:

94 WHITEHEAD & RUSSELL, 1925, p.51 [1910, p.54]. As Bernard Linsky observes (LINSKY, B., 1999, p.79.),
this can be confusing, since the shriek notation is employed to characterize predicative functions in general.

95 WHITEHEAD & RUSSELL, 1925, p.52 [1910, p.55].
96 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56]. It is at this point that Russell and Whithead reject the

possibility of having transfinite types which Russell had previously considered in Appendix B of the Principles,
and which Gödel would later consider: “We do not arrive at functions of an infinite order, because the number
of arguments and of apparent variables in a function must be finite, and therefore every function must be of a
finite order. Since the orders of functions are only defined step by step, there can be no process of “preceding to
a limit”, and functions of an infinite order cannot occur” (WHITEHEAD& RUSSELL, 1925, p.53 [1910, p.56]).
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We will define a function of one variable as predicative when it is of the next
order above that of its argument, i.e., of the lowest order compatible with its
having that argument. If a function has several arguments, and the highest or­
der of function occurring among the arguments is the nth, we call the function
predicative if it is of the (n + l)th order, i.e., again of the lowest order com­
patible with its having the arguments it has. A function of several arguments
is predicative if there is one of its arguments such that, when the other argu­
ments have values assigned to them, we obtain a predicative function of the
one undetermined argument.97

It is at this points that fundamental questions about the structure of their hierarchy begin
to emerge. Right after the above definition, we find the claim that “all possible functions in the
above hierarchy can be obtained by means of predicative functions and apparent variables”98

and that:

[...] speaking generally, a non­predicative function of the nth order is obtained
from a predicative function of the nth order by turning all the arguments of
the n − 1th order into apparent variables. (Other arguments also may be turn
into apparent variables.) Thus we need not introduce as variables any functions
except predicative functions.99

Thus, they claim in section k12:

We shall use ‘ϕx’, or ‘f(χ!x̂)’ or etc. to express functions (ϕ or f ) whose order,
relatively to its argument, is not given. Such a function cannot be made into an
apparent variable, unless we suppose its order previously fixed. As the only
purpose of the notation is to avoid the necessity of fixing the order, such a
function will not be used as an apparent variable; the only functions which will
be so used will be predicative functions, because, as we have just seen, this
restriction involves no loss of generality.100

This imposes an important restriction upon their symbolism: there are no non­predicative
variables inPrincipia. But if we follow the Introduction’s definition of predicative function, then
all the possible values of a functional variable are such that its order “[...] is of the next order
above that of its argument, i.e., of the lowest order compatible with its having that argument”101.
As we’ll see below when discussing Church’s reconstruction of ramified logic, this can be un­
derstood as a severe (and unwelcome) restriction on the range of functional variables or, as Lan­
dini argues, a fundamental aspect of the justification of type distinctions. The main issue here is
97 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56]
98 WHITEHEAD & RUSSELL, 1910, p.56.
99 WHITEHEAD&RUSSELL, 1925, p.53­4 [1910, p.56] Furthermore, they claim, in accordance with their custom

of not using functions with more than two argument­places, that “to obtain any function of one variable x”, they
“need not go beyond predicative functions of two variables”, since, generally, “ifϕ!û is a predicative function of a
sufficiently high order, any assigned non­predicative function of xwill be of one of the two forms (ϕ).F !(ϕ!û, x),
(∃ϕ).F !(ϕ!û, x)”, where F is a predicative function of ϕ!û and x” (WHITEHEAD & RUSSELL, 1910, p.56).

100 WHITEHEAD & RUSSELL, 1925, p.165 [1910, p.173]
101 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56]
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that the restriction to predicative variables apparently excludes some non­predicative functions
from their reach. One recurrent example from the secondary literature is the following102: let
“G(x)” mean “x is a great general”, let “B(x)” mean “x is brave” and let “Jones” and “Smith”
be the name of two individuals; now assume:

1. (x) G!(x) ⊃ B!(x) B!(Smith)

2. (x) G!(x) ⊃ B!(x) B!(Jones)

From these and higher­order universal instantiation, it follows, from 1 and 2103:

3. ( E

ϕ) (x) G!(x) ⊃ ϕ!x ϕ!(Smith)

4. ( Eϕ) (x) G!(x) ⊃ ϕ!x ϕ!(Jones)

These are obtained by the process Whitehead and Russell allow, that is, by turning real predi­
cative functional variables into apparent ones (and, of course, turning constants into variables,
which they allow, despite the fact that Principia does not have any constants). But with the
restriction to predicative variables, the following could not be obtained from 3 and 4:

5. ( E

ψ) ψ(Smith) ψ(Jones)

This is because the function ψ of y would have to be introduced as something like:

ψŷ =Df (

E

ϕ) (x) G(x) ⊃ ϕ!x ϕ!(ŷ)

This is a non­predicative function not obtainable by generalization on predicative variables. Are
we to understand such restrictions as intended by Whitehead and Russell or not?

This point actually leads us to another fundamental question about Principia’s system.
Most modern formulations of type­theory introduce, at some point, a notational device to turn
open formulas into (higher­order) terms that can be substituted for variables of the appropriate
kind, or occur as arguments of functions (of higher types). Perhaps themost well­known example
of such device is the λ operator introduced by Alonzo Church in his Calculus of λ­conversion.
102 Peter Hylton discusses it in his HYLTON, P., 1990, p.309­9, footnote 34 and attributes its formulation to Thomas

Ricketts; it is also discussed in LINSKY, B., 1999, p.80­1.
103 Notice here that if one applies k12·1 ­ ignoring the requirement that Principia must admit only ‘predicative’

comprehension for its predicate variables ϕ!,ψ!, etc., this problem vanishes. That is, indeed, one of the reasons
why Landini argues that k12·1 must be viewed as Principia’s sole comprehension principle and why there are
one only ‘predicative functional variables’ ϕ!,ψ!, etc., bound to quantifiers in the work..
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Such systems generally introduce, along with appropriate axioms104, an operator such as λ that
binds variables of open formulas to turn them into terms. If “Fx”, for instance is a formula
containing x free, then “λx(Fx)” or “[λx : Fx]” or something along these lines will be a name
for a new term105 (with the same applying for functional or relational expressions of any number
of arguments as in “[λxλy : R(x, y)]”, etc.). And according to the rules of such systems for
forming new terms from others, formulas of arbitrary complexity can be turned into terms via the
λ device (as in “[λxλy : (R)(R(x, y). ⊃ .Fx ⊃ Fy)]”, or “[λxλyλR : R(x, y). ⊃ .Fx ⊃ Fy]”
for instance). The question, then, is: should Principia’s circumflex be understood as a term­
forming operator which attached to any open formula yields a (higher­order) term, much like
Church’s λ operator?

Well, what Whitehead and Russell say in the Introduction regarding this point is the
following:

When we wish to speak of the propositional function corresponding to “x is
hurt”, we shall write “x̂ is hurt”. Thus, “x̂ is hurt” is the propositional function
and “x is hurt” is an ambiguous value of that function. [...] More generally, ϕx
is an ambiguous value of the propositional function ϕx̂, and when a definite
signification a is substituted for x, ϕa is an unambiguous value of ϕx̂.106

This has been almost universally read, in one way or another, as the introduction a term­
forming operator. Peter Hylton, for instance claims that “the circumflex notation [...] is used as
an abstraction operator”, in the following way: “[...] if “Fx” is an open sentence, then “Fx̂” is
the name of an entity, a propositional function”107. Echoing Hylton’s words, Warren Goldfarb
puts this as follows:

Russell uses the circumflex as an abstraction operator: ifFx is an open sentence,
then Fx̂ expresses the propositional function that, for each argument a, yields
as value the proposition expressed by Fa.108

This is turned into a criticism of Principia since, if the circumflex is to be understood
as term­forming operator, then some axiom of comprehension is required for the system, but
as the story goes “Russell never comes close to formulating this or to having axioms of this
form”109. In searching for a charitable interpretation, Goldfarb takes Principia to have implicit
concretion or abstraction principles embedded in the rules of generalization and instantiation
104 Of such axioms, the more characteristic are those determined by axiom schemata such as (x)([λz : A]x ≡

A[z/x]), (x, y)([λzλw : A]xy ≡ A[z, w/x, y]), etc., which are generally called principles of λ­conversion
together with comprehension principles for concepts, two­place relations and so on.

105 And what sort of thing this term denotes, of course depends on how the formal language is interpreted.
106 WHITEHEAD & RUSSELL, 1925, p.15 [1910, p.15]
107 HYLTON, P., 1980, p.27­8.
108 GOLDFARB, W., 1989, p.39, footnote 20.
109 GOLDFARB, W., 1989, p.32.
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for higher­order variables110; Hylton, on the other hand, suggests that the absence of a clear
account of circumflexion is due to Russell’s “unwillingness [...] to acknowledge the implications
of type theory”, since the operator “is never acknowledged as a piece of basic notation”111. Indeed,
Hylton is quite correct in claiming that Russell and Whitehead seem to have not intended the
circumflex to be part of their official grammar. In fact, they practically say so:

We have found it convenient and possible ­ except in the explanatory portions
­ to keep the explicit use of symbols of the type “ϕẑ” either as constants [e.g.,
x̂ = a ] or as real variables, almost entirely out of this work.112

The problem is that not only the authors continue to claim ­ in the body of the work ­
that the notation ϕx̂ “[...] means the function itself, as opposed to an ambiguous value of the
function”113, but much more seriously, the circumflex appears in their numbered propositions ­
crucially in the contextual definitions of ∗20 and ∗21 which we’ll discuss next. This point is
absolutely relevant in connection with the previous one, about the restriction of variables to
predicative values. To go back to the Ricketts­Hylton example, if we take an open formula like
“( E

ϕ) (x) G(x) ⊃ ϕ!x ϕ!(y)” and interpret the circumflex as a term­forming operator,
then “( Eϕ) (x) G(x) ⊃ ϕ!x ϕ!(ŷ)” should be considered a term; but were that the case,
then Principia’s formulation of type theory is incoherent: if the above function, call it ψŷ, for
brevity, is a genuine term, then it should be substituable for variables in universal instantiations,
for instance, or turned into a variable by universal generalization; but this is impossible if they
only allow predicative variables114. So either the circumflex is not a term­forming operator or the
predicative restriction is not really intended; or the notion of “predicative function” just means
a predicate variable as Landini claims.

But the trouble with the predicativity constraint is not over yet. In k12, Whitehead and
Russell officially introduce their problematic Axiom of Reducibility which asserts that “every
function of one variable is equivalent, for all its values, to some predicative function of the
same argument”115 and that “every function of two variables to a function of those variables”116.
In symbols, they put these as:

k12·1 ⊢ ( E

f) ϕx ≡x f !x Pp

k12·11 ⊢ ( Ef) ϕ(x, y) ≡x,y f !(x, y) Pp
110 GOLDFARB, W., 1989, p.32.
111 HYLTON, P., 1980, p.27­8.
112 WHITEHEAD & RUSSELL, 1925, p.19 [1910, p.20]
113 WHITEHEAD & RUSSELL, 1925, p.125 [1910, p.132]
114 This point is emphasized by Landini, who, as far as I know, first called attention to it in LANDINI, G., 1998a,

pp.265­6. More on this point below.
115 WHITEHEAD & RUSSELL, 1925, p.166 [1910, p.174]
116 WHITEHEAD & RUSSELL, 1925, pp.166­7 [1910, p.174] The authors observe that the same assumption could

be made for functions of three or more variables, as in (∃f) ϕ(x, y, z) f !(x, y, z), etc., but they refrain from
assuming them because “they are not indispensable”.
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As we saw, the order of a function is characterized in the same way in k12 and the Introduction.
But nowWhitehead and Russell seem to give conflicting statements concerning the structure of
the hierarchy, since the key notion of a predicative function is re­introduced in k12 as follows:

A function is said to be predicative when it is a matrix. It will be observed that,
in a hierarchy in which all the variables are individuals or matrices, a matrix is
the same thing as an elementary function.
‘Matrix’ or ‘predicative function’ is a primitive idea.
The fact that a function is predicative is indicated, as above, by a note of excla­
mation after the function letter.
The variables occurring in the present work, from this point onward will all be
either individuals or matrices of some order in the above hierarchy.117

The problem is that this seems to characterize a narrower notion of predicative function,
and thus a different hierarchy than that of the Introduction. In fact, the authors are the first to
note that they provide different explanations of the hierarchy in different portions of the work,
and explicitly endorse the version given in k12:

The explanation of the hierarchy of types in the introduction differs slightly
from that given in k12 of the body of the work. The latter explanation is stricter
and is that which is assumed throughout the rest of the book.118

This difference led several authors ­ perhaps the most prominent example being Alonzo
Church ­ to argue that there are two senses of “predicativity” at work in Principia ­ one much
more restrictive than the other119. As Charles Chihara explains, the difference seems to be that
“in k12, we are told that predicative functions are matrices, that is not all first­order propositional
functions would be predicative”, while “in the introduction predicative functions of individuals
are those that take individuals as arguments and that contain no bound variables that range over
propositional functions”120. But if the claim that the latter, more restrictive notion of predicativity
is the one used throughout the work, what are we to make of the exposition in the Introduction?

Thus, to sum up: there are three fundamental interpretative issues about Principia’s type
hierarchy. The first concerns the restriction to predicative variables: according toWhitehead and
Russell, the only functional variables admitted to occur bound to quantifiers are predicative; but
this is a problematic restriction if the circumflex is viewed as an abstraction or term forming
operator, so is this restriction really intended? The second problem, then, is just this: should the
117 WHITEHEAD & RUSSELL, 1925, p.164 [1910, p.172]
118 WHITEHEAD & RUSSELL, 1925, p.vii [1910, p.viii]
119 CHURCH, A., 1976a, p.747­8.
120 CHIHARA, C., 1973, p.22.
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circumflex be interpreted as a term­forming operator? The third concerns the notion of predica­
tive propositional function: are there really two distinct accounts of this important notion, one in
the Introduction and another on k12? And if there are, which one is that intended by the authors?

4.3.1 The Church­Linsky Reconstruction of the Hierarchy of Types

Church formulated what is generally considered the standard, or orthodox, reconstruc­
tion of the ramified theory of types of Principia Mathematica. The basic feature of Church’s
version of ramified type theory is that variables are assigned ramified types (r­types for short)
according to the domain over which they range: individual variables range over individuals,
while functional variables of a certain r­type range over propositional functions (understood as
abstracta) of matching r­type.

Church also “take[s] propositions as values of the propositional variables on the ground
that this is what is clearly demanded by the background and purpose of Russell’s logic”121 despite
the authors explicit claim “that what [they] call a ‘proposition’ (in the sense in which this is
distinguished from the phrase expressing it) is not a single entity at all”122.

The r­types of variables and constants are recursively defined as follows123: (i) There is
an r­type i to which every individual variable (or constant) belongs; (ii) If pt1, . . . , tmq are r­
types andm ≥ 0, then there is an r­type p(t1, . . . , tm)/nq of level nwhere n≥ 1, to which every
functional variable (or constant) of level n belongs; (iii) There is an r­type p( )/nq (or p0/nq,
for short) to which every propositional variable (or constant) of level n belongs; (iv) There are
no other r­types. Church defines an r­type p(t1, . . . , tm)/kq as directly lower than the r­type
p(v1, . . . , vm)/nq if pt1 = v1q, . . . , ptm = vmq and k < n; and an r­type v is directly higher
than t when t is directly lower than v124. Also, the order of a variable or constant is recursively
defined as follows125: (i) An individual variable (or constant) is of order 0; (ii) The order of a
variable (or constant) of r­type p(t1, . . . , tm)/nq is N+n where N is the greatest of the orders
of pt1, . . . , tmq and if m = 0, then N = 0. Finally, a variable of r­type p(t1, . . . , tm)/kq is
said to be predicative if and only if its level k = 1. As the reader can surely attest, there is some
terminological divergence between Church’s treatment and that of Principia, the main one being
that Church’s notion of level somewhat substitutes Whitehead and Russell’s notion of order126.
As Landini observes, if levels k are kept equal to 1, then “Church’s notation is just a variant
121 CHURCH, A., 1976a, p.748, footnote 4.
122 WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46]
123 CHURCH, A., 1976a, p.748.
124 CHURCH, A., 1976a, p.748.
125 CHURCH, A., 1976a, p.748.
126 See CHURCH, A., 1976a, p.747, footnote 2. Perhaps the best guide for the maze of terminological distinctions

one finds in the literature on Ramified Type Theory is given by Allen Hazen (HAZEN, A., 1983, p.397, foot­
note 7). One must be careful with Hazen’s historical remarks on Principia, however, for they are informed by
Church’s interpretation.
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of the notation of simple­types”127. Thus, Church’s hierarchy (with levels being equivalent to
Whitehead and Russell’s orders) follows the account of predicativity given in the Introduction,
rather than that of k12.

In terms of its grammar, what mainly characterizes Church’s formulation of type theory
is that an atomic formula ϕ(x1, ..., xn) is well formed if and only if ϕ is a functional variable or
constant of some r­type p(t1, . . . , tn)/kq, with k > 0 and x1, ..., xn are such that each respective
r­type vj of xj for j ≤ n is such that vj is either equal to, or directly lower than, the r­type tj ,
that is: pϕ(t1,...,tm)/n(αt1

1 , ..., α
tm
m )q is well­formed if and only if for each j ≤ n of the respective

r­types pt1, . . . , tnq of α1, ..., αn, either vj = tj or the r­type is of tj directly than that of vj 128.

Thus, these definitions characterize a cumulative hierarchy of r­types: the domain of a
variable α of r­type directly higher than that of a variable β will contain the domain of β. And
non­predicative variables are allowed. This is already a clear departure from Whitehead and
Russell’s original formulation129.

Church also introduces an explicit (predicative) axiom scheme of comprehension for
propositional functions130:

p( E

ϕ(t1,...,tm)/n)(αt1
1 ), ..., (α

tm
m ) ϕ(t1,...,tm)/n(αt1

1 , ..., α
tm
m ) ≡ Aq,

whereA is a well­formed formula such that: (i) the bound variables ofA are all of order less than
n; (ii) the constants occurring inA are of order not higher than n; and (iii) the free variables ofA
are of order not higher than n. And also an (explicit) axiom of comprehension for propositions131

p( E

p( )/n) p( )/n ≡ Aq,

where A is a well­formed formula such that: (i) the bound variables of A are all of order less
than n; (ii) the constants occurring in A are of order not higher than n.132

127 LANDINI, G., 2011a, p.113.
128 CHURCH, A., 1976a, p.748.
129 However, it must be observed at once that Church was completely aware that his formulation of type theory

was not historically accurate. Church’s paper follows the account he had given previously in his spectacular
Introduction toMathematical Logic (CHURCH, A., 1956), albeit with slight modifications (see CHURCH, 1976,
p.747, footnote 2); there he claims explicitly that his exposition “[...] is not a reproduction of Russell’s own
account of semantical matters [...] But it is rather a first step of a contemplated attempt to fit the ramified
functional calculi into our own semantical program and to provide for them “semantical rules” of a kind to
which Russell would certainly not consent.” (CHURCH, A., 1956, pp.347­8, footnote 577).

130 CHURCH, A., 1976a, p.749.
131 CHURCH, A., 1976a, p.749.
132 Since this axiom introduces only propositions which are logically equivalent to what is expressed by some

given formula A, it seems a stronger principle would be required in order to deal with intensional contexts
(as in “Alexander doubts every proposition which Xerxes believes”, etc.). Moreover, since Whitehead and
Russell explicitly claim that only variables and constants can be flanked by identity, Church suggest in an
earlier paper that a primitive connective for propositional identity should be introduced with accompanying
axioms. For details see CHURCH, A., 1974 and also CHURCH, A., 1984. A critical discussion of this proposal
and consideration of intensional logics inspired by Russell’s views can be found in ANDERSON, A., 1986, 1989
and 1998.
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As Church puts it, the core assumption of his reconstruction is that Principia’s system is
“best represented by supposing sentences to denote propositions, taking propositions as values of
the propositional variables, and properties and relations in intension as values of the functional
variables”133 ­ while allowing both predicative and non­predicative functional variables (in his
sense that intends to capture that of Principia’s Introduction).

To complete his reconstruction, Church also introduces axioms of reducibility that mi­
tigate the effects of the genuine ramification that characterizes his system, in terms of the fol­
lowing scheme134:

(ψ(t1,...,tm)/n)( E

ϕ(t1,...,tm)/1)(αt1
1 , ..., α

tm
m ) ψ(t1,...,tm)/n(αt1

1 , ..., α
tm
m ) ≡ ϕ(t1,...,tm)/1(αt1

1 , ..., α
tm
m )

This just asserts that given anym­ary functionψ of an arbitrary level n, there is a function
ϕ co­extensive withψ but of level 1; since the range of the functional variables of level 1 coincide
with those of the simple theory of types, the introduction of the axiom scheme of Reducibility
amounts, in practice, to abandoning the constraints of ramification altogether for extensional
contexts.135.

Sharing Church’s assumption that Principia requires an ontology of propositions, Ber­
nard Linsky has put forward an interpretation of the notion of propositonal function which seeks
to vindicate Church’s reconstruction in accordance with Russell’s views on Logic and Metaphy­
sics ­ in particular, Linsky seeks to reconcile the use of apparent propositonal variables with the
multiple­relation theory of judgment. The core of Linsky’s reading is that both propositions and
propositional functions are logical constructions, and thus, must be understood as “structured
entities”136. So, for instance, “a function x̂Rb will have the value aRb for argument” and “the
structure of the function, including its constituents R and b, is carried along into the proposition
which is its value”137. Thus, type distinctions are meant to reflect the structural complexity of
a function or proposition: these entities have constituents, which are the building blocks from
133 CHURCH, A., 1956, pp.347­8, footnote 577.
134 CHURCH, A., 1976a, p.758.
135 This, however, should not be overstated; as Church observes, “the rejection of impredicative definition is an­

nulled in extensional but not in intensional matters” (CHURCH, A., 1976a, p.758). In a footnote (CHURCH,
A., 1976a, p.758, footnote 25) of his beautiful paper, Church makes a decisive point against a huge tradition of
authors that claim that reducibility simply collapses ramified logic into simple type theory, thus fully restoring
impredicativity. This, as it happens, is only true if we are not working within an intensional logic that intends to
capture formally the behavior of locutions like “Prior believes that something he believes is false”, “George IV
believes something about Scott”, etc.; the effects of Reducibility are simply irrelevant in such contexts where
co­extensive functions and/or propopositions are not substitutable salva veritate. This is of some importance
since, as Church also observed (CHURCH, A., 1974, pp.23­4) the ramified theory of types can be a very useful
and sound philosophical tool for dealing with intensional paradoxes or so called blindspots, like Fitch’s paradox
of knowability and Moore’s paradox and also paradoxes like the Preface Paradox (see, for instance, PRIOR.,
1971, pp.84­89). On this topic, a small but growing literature has began to emerge since Bernard Linsky’s Fac­
tives, Blindspots and Some Paradoxes (LINSKY, B., 1986); recently many have considered the topic both in
favor or against the approach. See, for instance WILLIAMS, T., 2000, pp.280­3; PASEAU, A., 2008; LINSKY,
B., 2009; CARRARA & FASSIO, 2011; RACLAVSK�Y, J., 2018.

136 LINSKY, B., 1999, p.77.
137 LINSKY, B., 1999, p.77.
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which they are constructed and these constituents themselves may or may not be constructed
entities, and so on, until we arrive at simple entities, namely, universals and particulars. And
since any function or proposition is constructed from its constituents, their types “must be as
high as any of its constituents”138.

Accepting Church’s claim that Principia requires a realist background, the three inter­
pretative difficulties we found are considered by Linsky to be minor issues of exposition. Con­
cerning the restriction to predicative variables, he writes that:

While troubling, Russell’s claim seems better interpreted as an oversight than
as an expression of a startling logical doctrine. Russell clearly intends to show
how the whole hierarchy of types is generated by an iterative process. For each
type of argument, he thinks, we derive the ramification of the theory of types
by quantifying over some variables. At each level a quantifier over all propo­
sitions or propositional functions raises the type of a proposition or function,
even when its arguments are still of a lower type. Russell hypothesizes that
this quantification which requires a change in type to observe the vicious cir­
cle principle is in fact minimal; it is the only way that higher orders functions
can be derived.139

Linsky thinks the restriction should be seen as a mere “oversight” which results from
Russell overlooking “the role of abstraction in producing new functions”140, since he also takes
it as unproblematic that the circumflex should be understood as a term­forming operator (this is
understandable, since the comprehension axioms introduced by Church easily yield concretion
principles required to treat the circumflex as an abstraction or term­forming operator). Indeed,
Linsky also takes the divergence between the notions or predicativity from the Introduction and
k12 as being “ultimately a minor issue that does not challenge the coherence of PM”141, for
two reasons. The first is that Linksy takes the issue as moot given the presence of axioms of
reducibility; as he explains, though the strength of the axiom would vary according to which
notion of predicativity is adopted, the end result would be the same, since every non­predicative
function would end up having a predicative equivalent142; the second is not explicitly recognized
by Linsky, but clearly follows from his account: if Russell was led to the predicativity constraint
due to an oversight about “the role of abstraction in producing new functions”143, assuming
that all functions could be obtained from quantification over predicative functions, then the
formulation of predicativity in ∗12 could indeed be just a result of this same oversight. There
are serious reasons, however, to contest this account.

138 LINSKY, B., 1999, p.77.
139 LINSKY, B., 1999, pp.81­2.
140 LINSKY, B., 1999, p.82.
141 LINSKY, B., 1999, p.85.
142 LINSKY, B., 1999, p.85.
143 LINSKY, B., 1999, p.82.
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4.3.2 Landini’s Reconstruction of Principia’s Theory of Types

4.3.2.1 Principia’s Grammar as that of Simple Type Theory

Landini has provided substantive arguments to regard such reconstruction as historically
inadequate and unfaithful to central aspects of Principia’s Logic. The claims that form the core
of Landini’s interpretation are the following:

1. There are no variables in Principia which are non­predicative: so called non­predicative
functions are meant as schemata. That is: arguments to a predicate variable must agree
in order\type; all predicate variables are predicative; and (Predicative) predicate variables
must take predicative arguments.

2. Circumflexion was not a term forming operator, being “used only as a heuristic device in
introducing and explaining the system”144.

3. The Axiom (Scheme) of Reducibility is introduced as an impredicative comprehension
axiom which assures that given any well­formed formula A[xt11 , ..., xtnn ], there is a predi­
cative function ϕ! such that, for all xt11 , ..., xtnn , ϕ!(x

t1
1 , ..., x

tn
n ) if, and only ifA[xt11 , ..., xtnn ].

4. The intended official grammar ­ i.e., the grammar which is employed and presupposed
throughout Principia’s numbered propositions ­ for the predicate variables or so­called
‘predicative propositional functions’ is that of the simple theory of types.

5. The discussion of types in the Introduction of Principia backed by the account of quantifi­
cation in ∗9 presents Russell’s attempt to provide an informal nominalistic substitutional
semantics for the grammar of simple types which the body of the work employs. This
nominalistic semantics, however, is not part of the formal system.

His reconstruction is evidently in stark constrast with those of Church and Linsky. To see how
Landini argues in favor of these claims, we must discuss in some detail his reconstruction of
Principia’s formal grammar and how it dissolves many of the issues which we discussed earlier.

In place of Church’s r­types, Landini offers the following recursive characterization of
order\type symbols145. According to Landini’s reconstruction, the type aspect of an order\type
symbol is any expression which satisfies the following recursive definition146: (i). “o” is an
order\type symbol; If pt1, . . . , tnq are order\type symbols, then p(t1, . . . , tn)q is an order\type
symbol; and finally, nothing else is an order\type symbol; also, the order of an order\type sym­
bol is given by the following recursive definition147: the type symbol “o” has order 0; a type
144 LANDINI, G., 1998a, p.265.
145 Landini’s rendition draws largely fromWilliam Hatcher’s presentation of the theory of types in HATCHER, W.,

1980.
146 LANDINI, G., 1998a, pp.255; also LANDINI, 2010, p.107.
147 LANDINI, G., 1998a, pp.255­6; also LANDINI, 2010, p.107.
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symbol p(t1, . . . , tm)q is of order n + 1, where n is the highest order among the type symbols
pt1, . . . , tmq.

A fundamental consequence of the above recursive characterization of type symbols is
“that arguments to a predicate variable must match in order\type”148. And, in fact, what is charac­
teristic of Landini’s reconstruction of the syntax of Principia is that all variables are predicative
with all atomic well­formed formulas having the following form:

ϕ(t1,...,tn)(xt1 , ...., xtn)

Thus, according to his interpretation, Principia’s predicate variables are regimented by the struc­
ture of simple type­theory (with heterogeneous relations). In fact, to make this as clear is it can
be made, the notation which Landini officially adopts for his reconstruction drops the ϕ’s, ψ’s,
f ’s, g’s, etc and simply puts adequate superscripts in lower­case italic letters, as in x(o), x((o)),
x(o,o) x((o),o), x(o,(o)) x((o),(o)). Thus, what Whitehead and Russell would express as “ϕ!x” or
“ψ!(x, y)” and “f !(ϕ!ẑ)” or “g!(ϕ!ẑ, x)” etc... Landini expresses as x(o)(xo), x(o)(xo), x(o)(xo, zo),
x((o))(x(o)), x((o),o)(x(o), xo) etc. To facilitate readability, Landini adopts the (often convenient)
practice of separating the order aspect of an order\type symbol and of introducing Greek letters
for (unofficial) predicate variables. Take the following, for instance:

“xo” this is an individual variable of the lowest type; it can be re­written as oxo.

“x(o)” this is a monadic predicate variable of the lowest type; it can be re­written as 1ϕ(o\o).

“x(o,o)” this is a dyadic predicate variable of the lowest type; it can be re­written as 1ϕ(o\o,o\o).

“x((o))” this a monadic predicate variable which takes as arguments monadic predicate vari­
able of the lowest type; it can be re­written as 2ϕ(1\(o\o)).

“x((o),o)” this is a dyadic predicate variable which takes as arguments predicate variable of
the lowest type and individual variables; it can be re­written as 2ϕ(1\(o\o),o\o).

and so on...

As we mentioned above, the axiom of Reducibility is thus understood as the (only) comprehen­
sion axiom of the work, and rendered in terms of the following scheme149:

( E

ϕ(t1...,tn))(βt1 , ..., βtn) ϕ(t1...,tn)(βt1 , ..., βtn) ≡ A,

where ϕ(t1...,tn) is not free in A. This, again is in accordance with Landini’s claim that the gram­
mar of Principia is that of simple theory of types with predicate variables that admit arguments
148 LANDINI, G., 1998a, p.256.
149 LANDINI, G., 1998a, p.257; also LANDINI, G., 2010, p.109.
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of heterogeneous types: here the axiom (scheme) of Reducibility plays exactly the role of an
impredicative comprehension axiom for its predicate variables.

Crucially, according this reconstruction Principia’s original so­called ‘propositional va­
riables’ like p, q, r,etc., and so called ‘real (free) functional variables’, ϕ, ψ, f etc., (without the
the shriek “!”) are not variables at all. They are all schemata which stand for arbitrary well­
formed formulas: ‘propositional variables’ are read as schematic letters for sentences while
‘non­predicative functional variables’ are schematic letters for open formulas. In other words,
Landini’s reconstruction draws a fundamental distinction which he claims to be overshadowed
in Principia’s original presentation “by a particularly injurious misuse of typical ambiguity in
Principia”150. As he explains:

Typical ambiguity is only intelligible as a convention of suppressing order\type
symbols; the formal language and deductive system must be statable without
them. One cannot have indices on bound variables but drop them from free
variables in theses, else the ramified type regimented rules of universal genera­
lization and principles like universal instantiation become impossible to state.
All free variables must come with indices. Whitehead and Russell’s typically
ambiguous variables must be understood to be schematic letters for formulae.
Accordingly, a letter such as ϕmust not play a dual role ­ as predicate variable
and as schematic letter. In our reformulation, all variables, bound or free, are
alike fixed in order\type. It is schematic letters for wffs, letters such as “A”,
“B”, “C”, that realize Whitehead and Russell’s use of the typically ambiguous
“any”.151

The first point made here is beyond any reasonable criticism: many of the imprecisions
of Principia’s exposition of type theory arise because of Whitehead and Russell’s reliance on
typical ambiguity from the get­go instead of setting their notation for type distinctions from
the outset with rules for suppressing them. The second point is the most controversial aspect of
Landini’s reading: according to him, there are two completely distinct uses of the term “proposi­
tional function” in Principia. In one sense, “propositional function” means a predicate variable
that can be bound by quantifiers; in another sense, “propositional function” means a schematic
letter.152. In other words, Landini fully accepts Quine’s claim that the expression “propositional
function” plays a dual role, but he does not accept that Russell was simply confused.

Now, what motivates such a reconstruction of Principia’s formal grammar? Put gene­
rally, Landini claims that the ambiguous use of the notion of ‘propositional functionality’ is
more reasonably viewed as resulting from carelessness on Russell’s part, not confusion. But
Landini shows in meticulous detail that on the basis of the above interpretation he can dissolve
many persistent interpretative problems that arise from the presentation of type theory in Prin­
cipia’s Introduction, including those which we discussed in the previous section.
150 LANDINI, G., 1998a, p.262.
151 LANDINI, G., 1998a, p.263.
152 Cf. LANDINI, G., 1998a, p.257; also LANDINI, G., 2010, pp.109­10.
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Taking ‘propositions’ to be sentences, Landini can reasonably claim that when Whi­
tehead and Russell assert that “x is “individual” when it is neither a proposition nor a function”153

and that “ “Matrix” or “predicative function” is a primitive idea”154, they mean, respectively, that
“individual variables are primitive symbols of the language”155 and that “predicate variables are
primitive signs of the formal language”156.

Landini also reads the definition of predicativity of k12, i.e., that “a function is said to
be predicative when it is a matrix” together with the claim that “the variables occurring in the
present work [...] will all be either individuals or matrices”157 as asserting that “the only terms of
the language are to be individual variables and predicate variables; and the predicate variables
have order\type indices in accordance with the definition of predicativity”158. This dissolves the
problem of determining which definition of predicativity is the correct one: on this reading, the
one presented in the introduction and in k12 coincide, since a function is a matrix when, and
only when, it is a predicative variable, which, together with the matching requirement ­ i.e., the
requirement that arguments to a predicate variable must agree both in order and type ­ means
that all such functions are of the next order above that of their arguments. On his reading, the
two definitions agree completely.

Concerning the role of the circumflex, if Landini’s theses about the syntax of Principia
are correct, he has a conclusive argument to deny that the circumflex notation was intended by
Whitehead and Russell to be a term­forming operator: sharply distinguishing between schematic
letters and predicate variables in the way that Landini does makes circumflexion superfluous.
Furthermore, as Landini puts it, “since circumflexion always involves capping a variable, there
can be no predicate terms which take a non­predicative term as an argument”159; this means
that the problematic question we raised before: “how could the rules of universal generalization
and instantiation be applied to non­predicative terms?” can be turned as an argument against
circumflexion ­ such inference rules would simply not be applicable to non­predicative terms
for the good reason that these are not terms at all!160.

4.3.2.2 The Semantic Justification for Types and Orders in Principia

The cogency of Landini’s reconstruction ofPrincipia’s syntax is not his only argument in
favor of it. To support his interpretation, Landini also provides textual evidence which strongly
indicates that Principia’s Introduction is an attempt to provide an informal semantic justification
153 WHITEHEAD & RUSSELL, 1925, p.132 [1910, p.138]
154 WHITEHEAD & RUSSELL, 1925, p.164 [1910, p.172]
155 LANDINI, G., 1998a, p.263.
156 LANDINI, G., 1998a, p.263.
157 WHITEHEAD & RUSSELL, 1925, p.164 [1910, p.172]
158 LANDINI, G., 1998a, p.263­4.
159 LANDINI, G., 1998a, p.265.
160 LANDINI, G., 1998a, pp.265­6.
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for the grammar of simple types161.

Following the lead of Kripke and Sainsbury162, Landini argues that predicate variables
are meant to be interpreted in terms of a nominalistic substitutional semantics. This claim is
based on his reading of Whitehead and Russell’s justification for the distinctions of types and
orders, discussed, respectively in the sections Why a Given Function Requires Arguments of
a Certain Type and The Hiearchy of Functions and Propositions of Principia’s Introduction.
Following a terminology introduced by Charles Chihara, we may call the argument in favor of
type­distinctions “the argument of direct inspection”163, which is presented by Whitehead and
Russell in the following terms:

[...] direct consideration of the kinds of functions which have functions as ar­
guments and the kinds of functions which have arguments other than functions
will show, if we are not mistaken, that not only is it impossible for a function ϕẑ
to have itself or anything derived from it as argument, but that if ψẑ is another
function such that there are arguments a with which both “ϕa” and “ψa” are
significant, then ψẑ and anything derived from it cannot significantly be argu­
ments to ϕẑ. This arises from the fact that a function is essentially an ambiguity,
and that, if it is to occur in a definite proposition, it must occur in such a way
that the ambiguity has disappeared, and a wholly unambiguous statement has
resulted.164

The argument is “by direct inspection” because Whitehead and Russell think some cru­
cial examples are enough to establish the above, general, point. They take the function “x is a
man” and consider the possibility of stating, significantly, that “ϕẑ is a man”; according to them,
in such an assertion:

[...] there is nothing definite which is said to be a man. A function, in fact, is not
a definite object which could be or not be aman; it is a mere ambiguity awaiting
determination, and in order that it may occur significantly it must receive the
necessary determination.165

Since the authors explicitly state that significance and thus, presumably, ambiguity, is a
property of signs or expressions, a function in this context must be understood as an expression.
As Landini points out, the best way to make sense of such a claim is by taking the letters ϕ,
ψ, etc., to be interpreted in terms of a nominalistic semantics where every substitution must be
made as if the expression “ϕẑ” occurs as “falling within” the context in which it is substituted,
161 Landini has put forward his intepretation in great detail in his books and a number of papers (LANDINI, G.,

1998a; 2003; 2007; 2011; 2013;) Here I will follow what I take to be the best known exposition of his views,
namely that of his Russell’s Hidden Substitutional Theory (LANDINI, G., 1998a), but we will also draw some
examples from his LANDINI, G., 2010 adapting the variations of notation to fit to his former work.

162 KRIPKE, S, 1976, p.367­8; SAINSBURY, M, 1980, pp.31­3.
163 CHIHARA, C., 1973, p.23­4.
164 WHITEHEAD & RUSSELL, 1925, p.47 [1910, p.50]
165 WHITEHEAD & RUSSELL, 1925, p.48 [1910, p.50]
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and not “falling under” as a term in subject position166. Thus, for instance, if “x is a man” is
assigned to “ϕx̂”, the attempt to assert “ϕ(ϕx̂)” would result in the following:

“ x is a man is a man” or “ ... is a man is a man”

both of which are simply nonsense. But as Landini observes, if “ψ” is assigned as “(x)(...x...)”,
which is of a higher­type than ϕx̂, then to assert “ψ(ϕx̂)” is to assert “(x) ϕx”. As Landini
puts it, it is in this way that “type indices on the predicate variables of the formal grammar are
thereby philosophically justified”167.

Landini’s interpretation of howWhitehead and Russell justify the introduction of orders
relies on how he interprets the hierarchy of different senses of “truth” and “falsehood” applied
to elementary propositions, first­order propositions, and so on given in Principia’s Introduction.
Landini takes the passage introducing the hierarchy to be, “unquestionably”, “a recursive defi­
nition”168, where the basis of the recursion is given in terms of the multiple­relation theory of
judgment applied to atomic judgments. For Whitehead and Russell start by defining the truth of
sentences like “aRb” which express elementary judgments in terms of the existence of a corres­
ponding complex a−R− b ( the same applying for judgments involving any relation R and any
combination of individuals a1, ..., an). Thus, Landini takes Whitehead and Russell to be “offe­
ring a philosophical explanation and justification of the order part of the order\type indices on
predicate variables by appeal to an informal semantics”169 which is ultimately grounded in the
multiple relation theory of judgment.

Put in terms of Principia’s semantic metalanguage, Landini claims that their idea is that
if we go from ‘top to bottom’ eliminating the truth predicates of quantified formulas of order n
in terms of some substitutional class of formulas of order n− 1, no truth­predicate of order n or
higher should remain. As he explains:

[...] the hierarchy of senses of “truth” and “falsehood” are generated in such
a way that they step downward, one level at a time, until the base notions of
“truth” and “falsehood” for atomic wffs are reached. Since the truth­definition
is offered as a semantic justification for the introduction of predicate variables
with order\type indices, we get a philosophical explanation of the “matching
requirement” ­ that is, the formal requirement that arguments to a predicate
variable must match in their order indices as well as their type indices. The
definition defines “truthn” as applied to wffs containing at least one quantifier
binding variables of order n− 1 and no quantifiers binding variables of higher
order; and “truthn” means that in removing this quantifier (or all such if there
are many) the resultingwff has “truthn−1”. If we could instantiate the variables

166 LANDINI, G., 1998a, p.279­80.
167 LANDINI, G., 1998a, p.280.
168 LANDINI, G., 1998a, p.283.
169 LANDINI, G., 1998a, p.286.
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of order n − 1 to, say, n − 2, the definition of “truthn” would be lost. Higher
senses of “truth” (and “falsehood”) are recursively defined in such a way that
they collapse step­by­step to the base of atomic “truth” (and “falsehood”). The
matching requirement, therefore, is a product of the semantic justification ­ the
recursive definition of “truth” set out in the Introduction of Principia.170

Landini takes distinctions of order to be grounded on a semantic interpretation for Prin­
cipia’s variables that gives rise to a (recursively characterized) hierarchy of predicates of truth
and falsehood. Landini is thus claiming that Whitehead and Russell had a semantic justifica­
tion for their hierarchy of orders and the matching requirement: on their intended semantics for
predicate variables, they are interpreted substitutionally and order distinctions determine which
substitutions are legitimate for formulas within formulas171. At the basis of this recursive cha­
racterization is the multiple­relation theory of judgment applied to atomic judgments. Roughly,
his recursive clause for quantified sentences of the form (F )A is something along the following
lines:

(F )A is trueq if and only if (F )(pAq is truep), where p and q are appropriate indices
for truth­predicates.

170 LANDINI, G., 1998a, p.286.
171 Indeed, on the basis of Whitehead and Russell’s sketch of the hierarchy of the Introduction, Landini provides a

full semantic interpreation for Principia’s language, on the basis of which he formulates a full recursive defini­
tion of truth and falsehood. Individual variables are interpreted objectually and functional variables interpreted
substitutionally. In order to explain how this was meant to work in further detail, Landini introduces what he
calls “very finely grained indices” that track what sort of formula can be substituted for functional variables of
a determinate order\type. Though the full details need not detain us, looking at (and explaining) some examples
will help. Landini puts, for instance “1.s;e.aϕ(o\o)” for “1ϕ(o\o)”; this is a predicate variable that can only be
substituted for a wff which contains exactly m­many bound individual variables and a­many quantifier­free
propositional subordinate clauses (elementary propositions); 2.t;1.s;e.aϕ(1\(o\o)) for 2ϕ(1\(o\o)); this functional
variable can only be substituted for a wff which contains exactly exactly, t­many bound functional variables
(of order\type 1\(o\o)), s­many bound individual variables and a­many quantifier­free propositional subordi­
nate clauses (elementary propositions);3.v;2.t;1.s;e.aϕ(2\(1\(o\o))) for 3ϕ(2\(1\(o\o))); this functional variable can
only be substituted for a wff which contains exactly exactly, v­many bound functional variables (of order\type
2\(1\(o\o))), t­many bound functional variables (of order\type 1\(o\o)), s­many bound individual variables
and a­many quantifier­free propositional subordinate clauses (elementary propositions); and so on. Thus, an
atomic well­formed formula has the form 1.0;e.1ϕ(o\o,...,o\o)(xo1, ..., x

o
n). Landini is aware that his “very finely

grained indices” were not adopted byWhitehead and Russell, and if they were, some complications would have
to be introduced in Principia’s official grammar. His order indices keep track of the number and order of occur­
rences of quantifiers in a given formula; but as he observes, in practice, Whitehead and Russell meant for order
indices on predicate variables to “[...] reflect only the order of truth in the recursion, first, second, third, etc., and
not also the suborders within first, second, third, etc., which reflect the number of quantifiers of the given order”
(LANDINI, G., 1998a, p.285. Our emphasis.). It is at this point that Landini’s reconstruction also relies heavily
on his interpretation of ∗9. In Landini’s reconstruction of Principia’s informal semantics, the clauses where
A is possibly a quantified formula, A must be in prenex normal form, since, as Landini puts it, “the recursion
would not apply to wffs with quantified wffs occurring subordinate to a propositional connective”. This fits
perfectly with the core idea of Principia’s quantification theory of ∗9which is meant to show how, by means of
matrices, i.e., functions with no apparent variables, “propositions of any order can be reached” (WHITEHEAD
& RUSSELL, 1910, p.133.).
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With respect to predicate variables like “ϕ(o)”, ϕ(o,o), etc., which have either individual variables
or constants as their range of arguments, the semantic interpretation founded on the multiple­
relation assigns to these variables universals occurring as concepts or relating relations in com­
plexes like a­in­the­relation­R­to­b or a­having­the­propery­F. But predicate variables of higher
types are to be interpreted in substitutionally.

According to Landini’s reconstruction, if we take, say, a typically ambiguous sentence
of Principia like “( E

x)ϕ!x”, this must be read as a scheme for formulas of Principia’s object
language which can be obtained by restoring simple type­indices. Using Landini’s preferred
notation, we have, for instance:

( Exo)y(o)(xo) (4.3.1)

( Ex(o))y((o))(x(o)) (4.3.2)

( E

x((o)))y(((o)))(x((o))) (4.3.3)

Of course, as we just mentioned, instead of restoring type­indices, Whitehead and Russell em­
ployed the device of type­ambiguity, indicating differences of type in given contexts by em­
ploying different sorts of variables. So they would express 4.3.1, 4.3.2, 4.3.3, respectively, as
something like the following:

( E

x) ϕ!x, (4.3.4)

( Eϕ) f !(ϕ!x̂) (4.3.5)

( E

g) g!{f !(ϕ̂!x)} (4.3.6)

According to the nominalist semantics which Landini’s claims to be put forward in Principia’s
Introduction, a sentence like 4.3.4 is true if there is some individual a to which some universalU
assigned to “ϕ!” applies to; a sentence like 4.3.5, in turn, is true if there is a universalU assigned
to “ϕ!” which applies to xo. In sentences like 4.3.5 and 4.3.6 however, predicate variables are
explained in terms of a substitutional semantics. Simplifying things, a formula like 4.3.6 is true if
some possible substitution (for instance, putting “(x) ϕ!x” or “( Ex) ϕ!x” in place of “f !(ϕ!x̂”))
is true. And the same would apply to formulas of increasing complexity containing variables of
yet higher types. For instance, the truth­conditions of a sentence which involves quantification
over predicate letters of type (((o))), like:

(g)( E

f) g!{(f !(ϕ̂!x))} (4.3.7)

Will be given in terms of the possible substituends of formulas within this given formula. So
4.3.7 will be true if and only if each formula like:

( E

f)[(ϕ)(f !(ϕ!x̂)]
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( E

f)[( E

ϕ)(f !(ϕ!x̂))]

etc., is true; while, say:
(ϕ)(f !(ϕ!x̂)

will be true iff each formula like:
(ϕ)(x)(ϕ!x)

(ϕ)( E

x)(ϕ!x)

etc., is true. The point is that the senses of “truth” applicable to these sentences containing bound
variables of higher types will, so to speak, collapse from top­to­bottom: the truth conditions of
any sentence to which a given sense of truth is applicable will be given by some set of sentences
to which a ‘lower’ sense of truth is applicable. This, according to Landini is the general idea
behind the hierarchy of senses of truth and falsehood of Principia’s Introduction.

4.4 A Critical Discussion of the Approaches

4.4.1 The Multiple­Relation Analysis of judgment

We can summarize the points of agreement and disagreement between Cocchiarella,
Linsky and Landini on the issues we have been considering so far with the following chart:

Ontology of Principia Cocchiarella Linsky Landini
‘Propositions’ as entities: No Yes (Constructed) No
Sentences as incomplete symbols: Yes Yes Yes
‘Propositional functions’ as entities: Yes Yes (Constructed) No
‘Propositional functions’ as universals: Yes No No
Hierarchy of complexes Yes Yes No
Syntax of Principia
‘Predicativity’ constraint: No No Yes
Two senses of ‘predicativity’: Yes Yes No
‘Predicativity’ of the Introduction Yes Yes Yes**
‘Predicativity’ of ∗12: No No Yes**
Circumflex as a term­forming operator: Yes Yes No

We saw that, in a sense, all of the above interpretative issues are entangled by the quesiton of
how the phrase “propositional function” should be understood in Principia and furthermore, that
this question can only be answered if we analyze with care Russell’s multiple relation theory of
judgment and the idea suggested in Principia’s Introduction that declarative sentences are a kind
of incomplete symbols.
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Cocchiarella, like Linsky, endorsed Church’s rendition of Principia’s formal grammar
apart from some reservations about the admission of propositional variables and a comprehen­
sion axiom for propositions172. Like Church and Linsky, Cocchiarella also thinks that there are
two senses of ‘predicativity’ inPrincipia and he claims that the one ofk12 is “less appropriate”173

than that of the Introduction. And most importantly, Cocchiarella also takes type­distinctions to
have ontological import.

The fundamental assumption involved in Cocchiarella’s interpretation of Russell’smultiple­
analysis of judgment is that “without including propositional functions among the single entities
contained in a judgment or belief complex, there would simply be no multiple relation theory
of belief at all”174. Cocchiarella claims that this identification was already made in Russell’s
article On the Regressive Method of Discovering the Premises of Mathematics, where, Russell
enumerates informally what he, at the time, viewed as the fundamental principles required to
derive Pure Mathematics from Logic alone. Besides principles of pure deduction, i.e., laws of
propositional and quantificational logic, we also find there the following:

Any propositional function of x is equivalent to one assigning a property to
x.175

Any propositional function of x and y is equivalent to one asserting a relation
between x and y.176

Cocchiarella takes these to be identifying monadic and dyadic propositional functions
with attributes and relations­in­intension, respectively, with these being understood as universals,
i.e., entities which “subsist separately in a timeless, Platonic realm”177. Cocchiarella claims that
in Mathematical Logic “Russell attempted, albeit unsuccessfully, to do without them” and that
“though they are not stated peremptorily in [PM], they are in any case clearly assumed there”178.

All this is a misunderstanding, however. The ‘principles’ above are best read as infor­
mal statements of axioms of reducibility for monadic and dyadic functions. Indeed, just before
introducing them, Russell comments:

There remain two principles, less evident, but indispensable if we are both to
avoid contradictions and to preserve ordinary mathematics. The first of these
concerns the distinction between a general propositional function of x and a

172 COCCHIARELLA, N., 1980, p.106­109.
173 COCCHIARELLA, N., 1980, p.106.
174 COCCHIARELLA, N., 1980, p.108.
175 RUSSELL, B., 1907, p.281 / 579.
176 RUSSELL, B., 1907, p.281 / 579.
177 COCCHIARELLA, N., 1980, p.102.
178 COCCHIARELLA, N., 1980.

259



function assigning a property to x. [...] The second principle similarly distin­
guishes between a general propositional function of x and y and one which
asserts a relation between x and y.179

In fact, Russell alternatively referred to the Axiom of Reducibility in Principia as the
“axiom of classes” since “[...] it retains as much of classes as we have any use for, and little
enough to avoid the contradictions”180. Russell also frequently explained the assumption of clas­
ses as related to the assumption that one may legitimately speak about all the properties satisfied
by a given object x, for the assumption of classes is that one may interchangeably speak of “x is
an F” and “x belongs to the class of all F’s”; but Russell was also careful in making clear that
this is an informal and imprecise way of stating the assumption ­ and, in fact, in Principia itself
we find:

If mathematics is to be possible, it is absolutely necessary (as explained in
the Introduction, Chapter II) that we should have some method of making sta­
tements which will usually be equivalent to what we have in mind when we
(inaccurately) speak of “all properties satisfied by x.” [...] Hence, we must
find, if possible, some method of reducing the order of a propositional func­
tion without affecting the truth or falsehood of its values. This seems to be
what common­sense effects by the admission of classes.181

To be sure, Russell and Whitehead say, in that exact same passage above, that “a ‘pro­
perty’ of x” may be defined as a propositional function satisfied by x”182 but this is not the
straightforward identification of a propositional function with a universal; the point is that in
the presence of the Axiom of Reducibility the statements “x is ϕ” and “x belongs to the class of
all z such that ϕz” are equivalent. Cocchiarella’s identification of universals and propositional
functions on the basis of such passages is unwarranted.

Furthermore, there is a serious difficulty which is faced by the identification of propo­
sitional functions with universals, which can be put very succinctly: universals are objects of
acquaintance; but being such, they must be ultimate constituents of any analyzed judgment, and
thus, they must be simple; but not all propositional functions are simple. In fact, as Hylton and
Goldfarb correctly emphasize, if propositional functions are admitted as genuine intensional en­
tities, they must be structured entities if we are to make sense of Russell’s type­distinctions183.

Bernard Linsky seems to recognize the difficulty we just considered, and, in a sense,
Linsky’s interpretation can be understood as a variant or modification of Cocchiarella’s. Linsky,
like Cocchiarella, understands type­distinctions as having ontological import, but the main de­
parture from Cocchiarella’s reading is his refusal to identify propositional functions with univer­
179 RUSSELL, B., 1907b, p.579
180 WHITEHEAD & RUSSELL, 1925, p.67 [1910, p.174].
181 WHITEHEAD & RUSSELL, 1925, p.166 [1910, p.173]. Our emphasis.
182 WHITEHEAD & RUSSELL, 1925, p.127 [1910, p.133]. Our emphasis.
183 Cf., for instance, HYLTON, 1980; 1991; GOLDFARB„ W., 1989.
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sals184. Linsky does not take functions to be on a par with individuals (be them particulars or
universals) and not even with facts.

Commenting on a claim made by Russell in the Introduction to second edition in con­
nection with their contextual definitions of class symbols, that “[...] classes, as distinct from
functions, lose even that shadowy being that they retain in ∗20”185, Linsky writes:

It appears that propositions and functions must also be granted a “shadowy”
existence, enough to be quantified over and so [sic] the values of variables
and constants, without there being any analysis or elimination of such talk by
definition. The realist ontology I have found in Russell’s logic suggests that this
existence should be seen as some sort of dependence or supervenience on the
basic ontology of particulars, universals and facts. Here “logical” construction
has metaphysical import.186

Linsky elaborates this idea as follows:

Propositions are not “single entities”. They are constructed entities. Does the
construction serve as a reduction? Russell does indeed avoid quantifying pro­
positions in PM (with the notable exception of k14·3) usually allowing pro­
positional variables to appear as “apparent” or free187 variables. This practice
invites the interpretation of the symbols as really schematic letters. But Russell
does not maintain that propositions are merely linguistic entities such as senten­
ces. The phrase that expresses a proposition, he says, is an incomplete symbol
or expression, but the proposition is not an incomplete symbol or expression.
Propositions are real, constructed entities, just as numbers are real, but cons­
tructed entities. The model here is the construction of numbers188 from classes
rather than definite descriptions. It looks as though, in addition to sense data
and other particulars, universals and facts in Russell’s ontology, one must also
add functions and propositions with some sort of existence, albeit a derivative
or secondary sort.189

The problem with Linsky’s reading, however, is precisely the idea that propositions,
functions and classes retain this “shadowy” sort of being or existence. The whole problem is
that Linsky’s interpretation appears to be re­introducing into Russell’s metaphysics a view akin
to the Meinongian thesis that certain things have being but do not exist, since as Linsky himself
explains, classes, propositional functions and propositions are not real in the same sense that
individuals are ­ they have this “shadowy”, “derivative or secondary sort” of existence190.

But this sort of ontological limbo, which Russell came to emphatically repudiate was
meant to be obliterated by the theory of incomplete symbols. And indeed, even the conclusion
184 Cf. LINKSY, B., 1999, p.40.
185 WHITEHEAD & RUSSELL, 1925, p.xxxix.
186 LINSKY, B., 1999, p.126.
187 This is a minor slip: “apparent” means bound variable, not free, Linsky must have meant “real” variable here.
188 Linsky’s views concerning cardinal numbers in Principia will be discussed in some detail in the final chapter.
189 LINSKY, B., 1999, p.125.
190 LINSKY, B., 1999, p.125.
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that Russell was just confused about the status of the propositions and propositional functions,
as Quine claims, seems more plausible than any interpretation that attributes such doctrine to
Principia, since this viewwas so strongly disowned by Russell afterOnDenoting. For to say that
there are, in a genuine sense, entities that are not universals nor particulars nor facts just seems
to go against central aspects of Russell’s views on Metaphysics in the period of 1910­1913. Thus,
the plausibility of Linsky’s reading depends on how the “metaphysical import” of constructions
is to be understood. Are we to understand the theory of descriptions, the contextual definition of
classes and the analysis of propositions in terms of the multiple relation theory of judgment as
eliminative or reductive definitions? Linsky clearly takes them to be reductive. But what then,
is the residue to be identified with propositional functions?

Linsky is entertaining the idea that the ontological import of type distinctions should be
understood in terms of some notion of ontological dependency: an entity ϕ, say, a function of
individuals, is of a higher type than an individual a because it is constructed from some totality
of individuals; a function which takes functions as arguments is constructed from some given
totality of functions, and so on; thus Principia’s hierarchy of types ­ understood from bottom
up ­ should be interpreted as a hierarchy of entities of increasing complexity that is ultimately
dependent ­ in a strong ontological sense ­ on the entities at the bottom. The problem with this
reading is that there is no explicit textual evidence in Principia in favor of it191. On the contrary,
many of the things that Whitehead and Russell assert seem to go strongly against it, for instance,
191 Interestingly, there is evidence indicating that Russell and Whitehead did entertain an approach for justifying

type distinctions resembling that suggested by Linsky around the time that Russell was sending Mathematical
Logic to the American Journal of Mathematics. The evidence in question appears in the letter Whitehead wrote
to Russell on 16 June 1907, where he agrees that “the substitution theory is the proper explanatory starting point”
of their system” (MOORE, G., 2014, p.lxxvii). There Whitehead provides an “outline” of Russell’s “position”
as he understood it (ibid., p.lxxvi), the main point being the idea that “the hierarchy of propositions appears to
depend essentially on the distinction between dependent and independent entities ­ the dependent entities having
in some sense an essential reference to totalities ­ and thence also on the various modes of dependency” (ibid.;
our emphasis); Whitehead furthermore notes that “the independent entities (individuals) require no further logi­
cal discrimination” and that “Every entity (independent or dependent) must occur in a proposition containing it,
in a manner specifically relevant to its peculiar type of being” (ibid., our emphasis). Now, it must be observed
that there is room for dispute as to whether this corroborates Linsky’s reading, since Whitehead also considers
in the letter that “it is possible that all entities, not individuals, have no proper unity in any sense whatsoever; but
that as they appear in propositions they are simply a grouping of ideas which conceal an alarming complexity of
thought” (ibid.), which suggests that at this point he and Russell may have been considering that non­individuals
(including propositional functions) could be considered as some sort of mental constructions. However, if we
recall that in Mathematical Logic Russell was putting forward his last version of the Substitutional Theory
embracing orders of propositions understood as entities, it makes sense to interpret the notion of dependency
in ontological terms (with first­order propositions depending on individuals, second­order propositions depen­
ding on first­order propositions and so on, indefinitely). There is, in fact, another good reason to take Linsky’s
interpretation as a good fit for Mathematical Logic. Landini has observed that although Principia’s grammar
cannot be adequately retrofitted into Church’s r­types, that ofMathematical Logic can: Landini notes that all of
Church’s finely­grained distinctions among r­types of variables ­ including his non­predicative r­types that are
not to be found in Principia ­ are captured by the Substitutional Theory retrofitted with orders of propositions
as it appears in Mathematical Logic once the language of substitution is translated into the more “convenient”
language of functional variables (cf. LANDINI, G., 2011a, p.160). All of this is quite striking and very interesting
because it suggests that Linsky’s interpretation may provide a compelling way to make sense of the metaphysics
of a ramified theory of types of propositions such as that which Russell hinted at in Mathematical Logic and
which Church systematically develops, even if no such hierarchy can be attributed to Principia.
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when they claim that “[...] a function, in fact, is not a definite object” but a “mere ambiguity
awaiting determination”192. In fact, it does not seem that Linsky’s reading can account for the
following passage, which is the core of the “argument by direct inspection” in favor of type
distinctions:

[...] when a function can occur significantly as argument, something which is
not a function cannot occur significantly as an argument. But conversely when
something which is not a function can occur significantly as an argument, a
function cannot occur significantly. Take, e.g., “x is a man” and consider “ϕŷ
is a man.” There is nothing to eliminate the ambiguity which constitutes ϕŷ;
there is nothing definite which is said to be a man. A function, in fact, is not a
definite object, which could be or not be a man; it is a mere ambiguity awaiting
determination, and in order that it may occur significantly it must receive the
necessary determination, which it obviously does not receive if it is merely
substituted for something determinate in a proposition.*193

For in the footnote indicated by “*”, we find:

Note that statements concerning the significance of a phrase containing ‘ϕẑ’
concerns the symbol ‘ϕẑ’ and therefore do not fall under the rule that the eli­
mination of the functional ambiguity is necessary to significance. Significance
is a property of signs.194

Although nothing that is said here directly refutes Linsky’s interpretation, the claim that
a “function is an ambiguity”, that it “requires determination”, “that in order that it may occur
significantly it must receive the necessary determination” and that it can be “substituted for so­
mething determinate in a proposition” together with the above footnote make a strong case for
viewing the talk about propositional functions to be primarily viewed as talk about Principia’s
formal language195. Of course, this same point also applies (perhaps more incisively) to Cocchi­
arella’s reading: how could Russell think that propositional functions are entities that “subsist
separately in a timeless, platonic realm”196 and at the same type assert that “a function, in fact, is
not a definite object” but “a mere ambiguity awaiting determination”197? Things just don’t add
up. As Kevin Klement has recently put it:

It is pretty clear that if Russell had accepted an objectual understanding of
higher­order quantification, he would be committed to many entities besides

192 WHITEHEAD & RUSSELL, 1925, p.48 [1910, p.50].
193 WHITEHEAD & RUSSELL, 1925, p.48 [1910, p.50].
194 WHITEHEAD & RUSSELL, 1925, p.48 [1910, p.50], footnote.
195 This, obviously is not to say that Linsky’s views don’t have any interest in themselves ­ quite the contrary is

evidently the case, in particular concerning his views on the similarities between the cumulative conception of
sets and that of Principia. See chapter of this part.

196 COCCHIARELLA, N., 1980, p.102.
197 WHITEHEAD & RUSSELL, 1925, p.48 [1910, p.50].
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simple individuals and their properties and relations, entities entering into sa­
tisfaction relations unanalyzable into facts about simple individuals and their
simple properties.198

But it is pretty clear ­ in Principia’s Introduction, On Universals and Particulars and
On Knowledge by Acquaintance and Knowledge by Description, at least ­ that he didn’t: Russell
insists that universals and particulars exhaust the kinds of entities there are.

The above points have serious consequences for Cocchiarella’s and Linsky’s interpretati­
ons of Russell’s multiple­relation theory of judgment. Cocchiarella explicitly viewed the hierar­
chy of propositional functions, i.e. attributes and relations in intension, as generating a hierarchy
of judgment complexes. It seems that a hierarchy of complexes parallel to that of functions is
also implied by Linsky’s interpretation. But we have every reason to believe that there is no such
hierarchy of complexes. To begin with, when Russell and Whitehead explain that the sense in
which general judgments are true differs from the sense in which elementary judgments are true,
they claim that:

If ϕx is an elementary judgment, it is true when it points to a corresponding
complex”. But (x)ϕx does not point to a single corresponding complex: the
corresponding complexes are as numerous as the possible values of x.199

This makes it clear that Landini is right in claiming that “truth” explained in the funda­
mental sense of correspondence is only applicable to atomic/elementary judgments; other sen­
ses of “truth” applied to ‘propositions’ of any order are derived from this one elementary sense.
If propositional functions could enter into complexes as (possibly complex) constituents, then
there should be complexes of different order/type (with different senses of truth applicable to
complexes of different type/orders). But we have good reasons to conclude that complexes are
of an uniform ‘type’, or, better put, that there is no such thing as a type of complex. Principia’s
Introduction indicates that there can be no such hierarchy of complexes, for when Whitehead
and Russell introduce the metaphysical picture of the universe as consisting “of objects having
various qualities and standing in various relations”200 they also claim that “some of the objects
which occur in the universe are complex”201. This strongly suggest that complexes are, as Lan­
dini puts it, “on a par with individuals”202. If they were not, how could we account for the claim
that a “complex object “a­in­the­relation­R­to­b” may be capable of being perceived” and that
“when perceived, it is perceived as one object”203?
198 KLEMENT, K., 2018, p.163.
199 WHITEHEAD & RUSSELL, 1925, p.46 [1910, p.48].
200 WHITEHEAD & RUSSELL, 1925, p.43 [1910, p.45].
201 WHITEHEAD & RUSSELL, 1925, p.43 [1910, p.45].
202 LANDINI, G., 1998a, p.291.
203 WHITEHEAD & RUSSELL, 1925, p.43 [1910, p.45].
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One could object that Russell never formulated in any detail an account of how his
multiple relation theory would apply to general judgments (in particular those that are expressed
by sentences containing bound predicate variables), and thus, that it is arguable that it does not
follow from the above considerations that the multiple relation is not committed to a hierarchy
of complexes. But there are at least two answers to this concern. First, as Landini observes, one
may “hold that the multiple­relation theory is not part of the recursive truth (correspondence)
definition”204, but is meant only as one possible alternative to a realist view of propositions. As
he puts it:

On this view, the multiple­relation theory is only intended as a sketch which
shows how it is possible to disarm a central argument for an ontology of propo­
sitions. It is intended to show, that is, how onemight deny that belief (judgment)
must be a relation between a mind and a proposition.205

Second, it is plausible to suppose that Russell thought that the crucial case for which
the multiple relation analysis had to account for was the atomic/elementary case ­ and for this
reason he never addressed the molecular and general cases in any systematic detail. As Kevin
Klement observes:

This lacuna in his theories of judgment is perhaps best explained by his assump­
tion that it is only the words occurring in atomic or elementary judgments that
“refer” or “mean” things in objective reality, and hence an account of the kind
of truth involving the relationship between the mind and the world needs only
tackle atomic or elementary judgments.206

And indeed, Klement correctly notes that the exposition of Principia itself suggests that
this is the case207. Thus, the kind of dependency one finds in Principia between propositions
of order n + 1 and those of order n is best understood as a semantic one208. The best way to
make sense of the dependency one finds expressed in Whitehead and Russell’s hierarchy of
propositions is in terms of truth conditions of sentences: truth conditions for sentences of order
n + 1 are given in terms of those of order n. Ultimately, of course, this process has to stop and
truth is defined in terms of correspondence; but at this point we don’t have any sort of hierarchy
of entities and we are no longer talking about the truth or falsity of sentences ­ we are speaking
of correspondences between judging complexes and facts.

So with respect to the role played by the multiple­relation theory in Principia’s Intro­
duction, Landini’s nominalistic interpretation has the upper hand against both Cocchiarella’s
204 LANDINI, G., 1998a, p.291.
205 LANDINI, G., 1998a, p.291.
206 KLEMENT, K., 2018, p.161.
207 KLEMENT, K., 2018, p.162; cf. WHITEHEAD & RUSSELL, 1910, p.53.
208 KLEMENT, K., 2018, p.163.
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and Linsky’s interpretation: his interpretation completely dissolves the problem of explaining
how propositional functions enter as constituents of judgments which does not have a satisfac­
tory answer within the realist interpretations we considered.

4.4.2 Type Distinctions, the ‘Universality of Logic’ and the So­called ‘Logo­
centric Predicament’

Modern formulations of propositional logic as a formal axiomatic system usually cha­
racterize their set of axioms using schemata that specify infinitely many axioms that share a
certain form or by assuming a finite number of axioms and then introducing a rule of substitu­
tion. The Church­Linksy interpretation which we previously considered construes Principia’s
propositional logic with propositional variables ranging over propositions conceived as intensi­
onal entities; Landini’s interpretation, on the other hand, requires a schematic interpretation of
Principia’s propositional variables and assumes no ontological counterparts for Principia’s so­
called propositional variables. As Landini himself recognizes209, however, despite Whitehead
and Russell’s insistence that there are no such things as propositions understood as singular
logical subjects, from a purely syntactical point of view, it is somewhat unclear which route
was intended by Whitehead and Russell in Principia (i.e., schemata or finite number of axioms)
because they were simply too careless in distinguishing object­language from metalanguage.

In fact, the list of primitive notions of Principia also contains ideas which we would
nowadays explicitly consider part of the metalanguage. Consider, in particular, the first four
primitive notions introduced in section k1:

(Pi 1) Elementary proposition: “a proposition which does not involve any variables”210.

(Pi 2) Elementary propositional function: “an expression containing an undetermined cons­
tituent, i.e., a variable, or several such constituents, and such that, when the unde­
termined constituent or constituents are determined, i.e, when values are assigned
to the variable or variables, the resulting value of the expression in question is an
elementary proposition”211

(Pi 3) Assertion of a proposition: “In symbols, if p is a proposition, p by itself will stand
for the unasserted proposition, while the asserted proposition will be designated
by “⊢ p”. The sign “⊢ ” is called the assertion­sign; it may be read as “it is true

209 LANDINI, G., 1998a, p.259.
210 WHITEHEAD & RUSSELL, 1925, p.91 [1910, p.95].
211 WHITEHEAD & RUSSELL, 1925, p.92 [1910, p.96].
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that” (although philosophically this is not exactly what it means). The dots after the
assertion­sign indicate its range;”212

(Pi 4) Assertion of a propositional function: “Let ϕx be a propositional function whose
argument is x; then we may assert ϕxwithout assigning a value to x. [...] Thus when
we assert ϕx, leaving x undetermined, we are asserting an ambiguous value of our
function.”213

If we draw a sharp distinction between “propositional function” as meaning a schematic letter
versus a “propositional function” meaning a predicate variable214, all of the ‘primitive ideas’ in­
troduced above should be interpreted as metalinguistic215. A similar point applies to Principia’s
formulation of propositional Logic. Whitehead and Russell assume the following principles un­
der the guise of ‘primitive propositions’216:

212 WHITEHEAD & RUSSELL, 1925, p.92 [1910, p.96].
213 WHITEHEAD & RUSSELL, 1925, p.92 [1910, p.96].
214 Apart from the evidence scattered in Principia and many of Russell’s other published works and manuscripts

which support this view which we previously discussed, another good reason for doing this is to also keep
syntactic matters clearly distinguished from semantic ones. For, as we saw, Russell and Whitehead are not
consistent in their use of these expressions, but many of the things they say are meant to apply to formulas, since
they clearly intended to have a legitimate sense for the notion of ‘proposition’ (and ‘propositional function’) as
some kind of expression ­ for instance, when they assert that a propositional function is “an expression” that
may contain “an undetermined constituent, i.e., a variable” (WHITEHEAD & RUSSELL, 1927a, p.92 [1910,
p.96]).

215 That is, if we follow Landini, we conclude that the modern equivalent to Principia’s ‘elementary proposition’
would be an atomic or molecular well­formed sentence without any occurrences of bound variables. An equi­
valent to ‘elementary propositional function’ would be an open atomic or molecular well­formed formula, that
is, expressions such as “ϕ!x”, “ϕ!(x, y)”, “∼ ψ!x”, “ϕ!x ∨ ψ!x”, “ϕ!x⊃ ψ!x” etc., while ‘propositional func­
tions’ in general ­ as opposed to elementary and predicative ones ­ would be open formulas which are prefixed
by quantifiers or which contain quantified clauses, such as “(x) ϕ!(x, y)” or “ϕ!x ∨ (y) ψ!(x, y)”. Notice,
however, thatWhitehead and Russell do not bother to introduce an explicit distinction between atomic formulas,
e.g., formulas that do not contain propositional connectives and quantifiers and molecular formulas that contain
propositional connectives as principal operators. Similar considerations apply to the notions of ‘elementary pro­
position’ and of ‘proposition’ generally: the former is just a sentence with no variables (free or otherwise), the
latter is just a sentence which may be general or contain quantified clauses. Thus, the first two primitive notions
are introducing syntatical categories of complex expressions. Concerning the notion of assertion, according to
Whitehead and Russell, a special symbol for it is required for “distinguishing a complete proposition” which is
asserted or affirmed (either as an axiom or as a consequence of their axioms) “from any subordinate proposi­
tions contained in it but not asserted” (WHITEHEAD & RUSSELL, 1927a, p.9 [1910, p.8­9].). The symbol ⊢
which was, of course, taken from Frege’s Begriffsschrift, has a slightly different use in Principia than it had in
Frege’s system, where it was used to differentiate the mere consideration of the content of a possible judgment
and the assertion of the content, with the symbol “⊢” employed to mark the assertoric force in the latter. But,
of course, in Frege’s system the symbol “⊢” was composed of two different symbols: the horizontal bar and
the vertical bar. The former was used to indicate the mere consideration of the content of a judgment, while the
latter indicated its assertion.

216 WHITEHEAD & RUSSELL, 1925, pp.94­97 [pp.98­101]. Using disjunction and negation as primitives (WHI­
TEHEAD & RUSSELL, 1927a, p.93 [1910, p.97]), they define material implication (⊃), conjunction ( , , , ,
etc) and material equivalence (≡), in the usual ways, putting: “p⊃ q” for “∼ p∨ q”, “p q” for ∼ (∼ p∨ ∼ q)
and “p ≡ q” for “p⊃ q q ⊃ p” (cf. WHITEHEAD & RUSSELL, 1925, pp.94; p.109; p.115 [1910, p.98; p.114;
p.120]). This system was abandoned in Principia’s second edition, being substituted for the system of Jean Ni­
cod which assumed the so­called ‘Sheffer’s stroke’ as the sole primitive truth­functional operator with a single
axiom; for details cf. SHEFFER, H., 1913; NICOD, J., 1917 and WHITEHEAD & RUSSELL, 1925, pp.xv­xix.
As is also well known, the system of propositional logic of Principia’s first edition was used as the basis for the
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k1·1 Anything implied by a true elementary proposition is true. Pp

k1·11 When ϕx can be asserted, where x is a real variable, and ϕx ⊃ ψx can be asserted,
where x is a real variable, then ψx can be asserted, where x is a real variable. [and
so on, for functions of several variables] Pp

k1·2 ⊢ p∨ p ⊃ p Pp

k1·3 ⊢ q ⊃ p∨ q Pp

k1·4 ⊢ p∨ q ⊃ q ∨ p Pp

k1·5 ⊢ p∨ (q ∨ r) ⊃ q ∨ (p∨ r) Pp217

k1·6 ⊢ q⊃ r ⊃ p∨ q ⊃ p ∨ r Pp

These propositions are first introduced as applying only to so­called ‘elementary propositions’
that is, closed formulas containing no bound variables. The first of them, k1·1, is Russell’s
sloppy formulation of the rule of modus ponens, while the second, k1·11, acquires its signifi­
cance in connection with the way Russell andWhitehead extend the validity of the axioms above
to sentences containing apparent variables: it is meant as a rule of formal implication between
‘propositional functions’. But given Whitehead and Russell’s lack of care in handling and distin­
guishing the description of their formal system and the actual system, it is unclear whether the
above are proper variables or (metalinguistic) schematic letters.

There are, however, some good reasons to think that the authors favored a schematic
approach. Looking at a proof, say, of a familiar theorem like p⊃∼p ⊃ ∼p, we find:

k2·01 ⊢ p⊃∼p ⊃ ∼p
Dem. [

Taut
∼ p
p

]
⊢ ∼p∨ p ⊃ ∼p (1)

[(1) (k1·01)] ⊢ p⊃∼p ⊃ ∼p

As the authors explain, the notation “
[
Taut
∼ p

p

]
” is used to mean “what “Taut” beco­

mes when∼ p is written in place of p”218. This notation is taken from Russell’s paper The Theory
of Implication published in 1906219. In that paper Russell formulated a rule of substitution that

first systematic investigation of the completeness of propositional logic in POST, E., 1921. For further historical
details cf. also CHURCH, A., 1956, pp.156­9.

217 This proposition is redundant, as shown by Bernays. Cf. BERNAYS, P., 1926.
218 WHITEHEAD & RUSSELL, 1925, p.100 [1910, p.104]. “Taut” is their label for proposition k1·2, that is p∨ p

⊃ p
219 Cf., for instance, RUSSELL, 1906c, p.34, proof of theorem k3·34. The paper ­ published in the same journal

in which Russell would later publish his seminal paper on the theory of types, the American Journal of Mathe­
matics ­ is Russell’s first published treatment in length of propositional logic. Some parts of the paper ­ those

268



applied both to propositional and individual variables, which he called the “principle of substi­
tution of a dependent for an independent variable”220 and he used the aforementioned notation
to indicate substitutions. Principia, on the other hand, not only does not have a rule of substitu­
tion, but contains statements that deny the very legitimacy of formulating one, something that
strongly suggest a schematic approach:

The proofs of the earlier of the propositions of this number consist simply in
noticing that they are instances of the general rules given in ∗1. In such ca­
ses these rules are not premises, since they assert any instance of themselves.
[...] The recognition that a certain proposition is an instance of some general
proposition previously proved or assumed is essential to the process of deduc­
tion from general rules, but cannot itself be erected into general rule, since the
application required is particular, and no general rule can explicitly include a
particular application.221

The terminology used, that of ‘recognizing’ a proposition as an instance of a previous one
strongly indicates that they are taking their axioms as determined by schemata and that what they
lacked ­ as in various other places of the work ­ is an adequate and explicit distinction between
(meta)variables for arbitrary expressions of their formal language and the genuine variables of
the language. Moreover ­ although this is also unclear ­ the last point of the paragraph also
indicates a difference between recognizing an ‘instance’ of a ‘proposition’ ­ in the sense that
“p⊃ q ⊃ p⊃ q” is an instance of “p⊃ p”, or better yet, something like “A⊃ A” ­ and of
recognizing a case of universal instantiation, e.g., the passage from “(x) ϕx” to “ϕa”, since the
latter can clearly be “erected into a general rule”, namely k10·1.

It must be observed, however, as Alonzo Church pointed out long ago222, that Russell
seems to have changed his mind yet again on the question, writing later in the Introduction to
Mathematical Philosophy:

The primitive propositions, whatever they may be, are to be regarded as asser­
ted for all possible values of the variable propositions p, q, r which occur in
them. We may therefore substitute for (say) p any expression whose value is
always a proposition, e.g. not­p, “s implies t,” and so on. By means of such
substitutions we really obtain sets of special cases of our original proposition,
but from a practical point of view we obtain what are virtually new propositi­
ons. The legitimacy of substitutions of this kind has to be insured by means of
a non­formal principle of inference.

dealing with propositional logic without bound propositional variables ­ are quite similar to the first numbers
of Principia, with minor notational variations (besides the mentioned rule of substitution). Unfortunately, the
paper is, almost as a rule, neglected in secondary literature (an exception is LANDINI, 1998) and in historical
notes in modern textbooks (CHURCH, 1956, p.157­8 is also an exception).

220 RUSSELL, B., 1906c, p.28.
221 WHITEHEAD & RUSSELL, 1925, p.98 [1910, p.102].
222 CHURCH, A., 1956, p.158.

269



In a footnote, he writes that “no such principle is enunciated in Principia Mathematica”
and that “this would seem to be an omission”223. Church takes this as further evidence that
Principia required a rule of substitution after all. But of course, these remarks were made long
after Principia was written, and so are not conclusive.

Still, the best explanation to be found for Russell’s hesitation to formulate a substitution
rule is his reluctance to treat propositional variables as genuine variables: by the time of Princi­
pia’s publication he was done with propositions as entities and with the Substitutional Theory,
so anything like the substitution rule of the 1906 article that treated propositional variables on
a par with individual ones was out of the question224. Indeed, by 2 January 1911 he wrote to
Jourdain:

I no longer think it significant to deny x⊃ p, where x is not a proposition. I
think that, strictly, one ought not to use a single letter for a proposition, but
always some such symbol as ϕx.225

This strongly suggests that at this point Russell was interpreting the letters p, q, r, etc.,
as mere place­holders for formulas of Principia’s language. So the schematic approach is surely
the best interpretation.

This, as Landini points out, also corroborates his claim that the “the logical constants
are statement connectives; they are flanked by wffs to form wffs”226. Interpreting their calculus
in terms of a schematic approach as Landini suggests also helps to make sense of the following
further primitive ‘propositions’ that are introduced in ∗1, and which are sometimes singled out
by interpreters as having a problematic status227:

k1·7 If p is an elementary proposition, ∼ p is an elementary proposition. Pp
k1·71 If p and q are elementary propositions, p∨q are elementary propositions.
Pp
k1·72 If ϕp and ψq are propositional functions which take elementary propo­
sitions as arguments, ϕp∨ ψq is an elementary propositional function. Pp

Once we understand that the letters p, q, r, must be read schematically, all the above ‘pri­
mitive propositions’ can be read as recursive clauses for determining the well­formed formulas
of the formal system! That is, wemay translate the above as a recursive definition of well­formed
223 RUSSELL, B., 1919a, p.151. It is curious that Russell himself simply did not mention his 1906 article that did

have the said rule, even if he thought it inadequate.
224 Landini claims that a schematic reading of propositional ‘variables’ is indispensable for an adequate reading

of Principia’s quantification theory (LANDINI, 1998, p.258­9). Since his point is intimately connected to the
difficulties involved with ‘ typical ambiguity’ we will discuss it in the next section.

225 GRATTAN­GUINNESS, 1977, p. 136.
226 LANDINI, G., 1998a.
227 WHITEHEAD & RUSSELL, 1925, p.97 [1910, p.101].
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formulas, something along the following lines: If A is a well­formed formula containing no va­
riables, then so is ∼ A; If A and B are well­formed formulas containing no variables, then so is
A∨B; If A and B are well­formed formulas containing no variables, then so areA⊃B,A ≡ B

and A B228. An interpretation of ‘primitive propositions’ dealing with types along these lines
also allows us to dissolve a common objection one finds in the literature according to which
Principia’s exposition of type­theory violates its own grammar.

According to Landini, even if the formulation of propositional logic ofPrincipia by itself
does not provide enough evidence in favor of a schematic interpretation, “the quantificational
part of ramified type theory militates against the approach of axioms and a rule of replacement”,
since “schematic order\type indices and the distinction between predicate variables and sche­
matic letters for wffs are essential to the grammar and to the reducibility principles”229. In other
words, if Landini’s interpretation is correct, a schematic approach is required by whatWhitehead
and Russell intended typical ambiguity to accomplish230.

Recall that one of the fundamental problems of Principia’s presentation of type­theory ­
both in the Introduction and in the body of the work ­ was the absence of any set of explicit rules
for the restoration and suppression of type indices: instead of providing such rules, Whitehead
and Russell simply stated that only predicative ‘functional’ variables could be bound by quan­
tifiers; thus, type­distinctions were marked according to context as in “ϕx”, “ϕ!x”, “f(ϕ!x̂)”,
f !(ϕ!x̂)”. Among the axioms of their calculus was the following, for instance:

k10·1 ⊢ (x) ϕx ⊃ ϕy

This stood for a whole class of axioms, to be determined according to the type of variables
involved, for instance, “(ϕ) f(ϕ!x̂) ⊃ f(ψ!x̂)”, where ϕ!x̂ takes individual variables (i.e.,
variables of the lowest type) as arguments. This was their device of typical ambiguity. According
to Landini, it is because of the the absence of explicit rules that Whitehead and Russell were
forced to introduce further propositions like the following:

k9·131 Definition of “being the same type”: We say that u and v “are of the
same type” if (1) both are individuals, (2) both are elementary functions taking
arguments of the same type, (3) u is a function and v its negation, (4) u is ϕx̂
or ψx̂, and v is ϕx̂ ∨ ψx̂, where ϕx̂ and ψx̂ are elementary functions, (5) u is
(y) ϕ(x̂, y) and v is (z) ϕ(x̂, z), where ϕ(x̂, ŷ) and ψ(x̂, ŷ) are of the same
type (6) both are elementary propositions, (7) u is a proposition and v is ∼ u,
or (8) u is (x) ϕx and v is (y) ψy where ϕx̂ and ψx̂ are of the same type.231

228 Presumably, Whitehead and Russell intended that intensional operators could be added to the system. They
would then also covered by clause k1·72.

229 LANDINI, G., 1998a, p.259.
230 Cf. LANDINI, G., 1998a, p.259­63 and also our previous discussion in section 4.2.1.
231 WHITEHEAD & RUSSELL, 1925, p.133 [1910, p.138].
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Landini’s view is that the above “is just a statement of grammatical well­formedness
that governs the wffs of the system” and that such statements “are necessitated only by a quite
deplorable misuse of typical ambiguity”232. His point is that propositions like the above ­ and
many others, like k9·14·15·6·61·62·63 and k10·121·122·13 ­ would be unnecessary if rules for
restoring and suppressing type indices were given ­ much like propositions k1·7·71·72 would
be unnecessary had Whitehead and Russell grasped with more clarity the distinction between
metalinguistic definitions of the grammatical rules of their symbolism and the proper axioms
and definitions of their formal system.

Landini has compelling evidence in favor of his reading. In a letter Whitehead wrote to
Russell in May of 1910 we find the former struggling with this exact issue:

I don’t feel sure that k3 03 is right as it stands ­ or at least as it is explained. It
appears to me as if two ideas are muddled up together ­ namely, a true logical
premise and a test which supplements the incompleteness of our symbolism.
A true logical premiss must [be] such as would still be required, if our sym­
bolism were complete and adequate. Now in such a case the type is always
in evidence. E.g. let every letter representing an individual have i as subscript,
then we have ⊢ϕxi and ⊢ ψxi, we do not need any axiom to assure that xi and
yi are of the same type, and that any possible value of xi is a possible value of
yi and vice versa.233

Proposition k3·03 states the following234:

Given two asserted elementary propositional functions “⊢ ϕp” and “⊢ ψp”
whose arguments are elementary propositions, we have “⊢ ϕ ψp”.

As Landini observes, an analogue of the above is given by k10·13, which states235:

If ϕx̂ and ψx̂ take arguments of the same type, and we have “⊢ ϕx” and “⊢ ψx”,
we shall have “⊢ ϕx ψx”.

Thus, it is crystal clear that Whitehead is onto exactly the same point raised by Landini regar­
ding the aforementioned problematic propositions dealing with types. This strongly suggests
that wherever Whitehead and Russell assert that two so­called functions or propositions are of
the same type or something along these lines, what they meant to say is something about the
232 LANDINI, G., 1998a, p.260. Of course, as Landini further observes, such statements “are entirely avoided if

the formal grammar is set out” in terms of explicit rules for restoring and ommiting type indices.
233 As quoted in LANDINI, G., 1998a, p.260.
234 WHITEHEAD & RUSSELL, 1925, p.111 [1910, p.116].
235 WHITEHEAD & RUSSELL, 1925, p.140 [1910, p.146]. Cf also LANDINI, G., 1998a, pp.259­61.
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expressions of their formal grammar. While propositions like k1·7·71·72 give conditions for
well­formedness of certain classes of closed sentences, those like k9·131 fill the gaps left by
Principia’s problematic use of typical ambiguity. This in turn also strongly corroborates Lan­
dini’s claim that they are not meant as substantial assertions about obscure entities, i.e., so cal­
led ‘propositional functions’. For Whitehead himself recognizes that they constitute attempts to
“supplement the incompleteness” of Principia’s notation.

Oncewe interpretPrincipia’s type­distinctions as put forward in propositions likek9·131
as purely grammatical statements along the lines suggested by Landini, a supposed fundamental
problem or ‘tension’ that some authors detect in Russell’s early writings on Mathematical Phi­
losophy can be dissolved. The supposed general difficulty, as Peter Hylton puts it “arises from
the attempt to state type theory within type theory”236. Since his views are quite representative
of a widespread interpretation of Russell’s views, it is worth quoting his arguments fully and
considering them in some detail.

Hylton raises the difficulty in connection with several different aspects of Principia’s
presentation of type­theory. One concerns notions that can be applied “across types”237, as he
put it. Concerning the notion of a ‘predicative function’, in particular, he argues that:

[...] if the notion is to do any work at all, it must be truly applicable to some
propositional functions and falsely applicable to others (i.e. there must be both
predicative and non­ predicative functions). But then a single propositional
function (ϕ̂ is predicative) is applicable (truly or falsely) to entities of different
type: this contravenes type restrictions.238

According to Hylton, another, even more serious version of the “violation of types” pro­
blem appears in Principia’s definition of ‘being the same type as’ given in ∗9 · 131. He writes:

Proposition k9·131 is a definition of ‘being the same type as’. The primitive
proposition (axiom)k9·14makes essential use of this notion, asserting, ‘If “ϕx”
is significant, and if a is of the same type as x, then “ϕa” is significant, and
vice versa’. This proposition, and others which depend upon it, are essential
for Russell’s extension of logic from (what we should call) the truth­functional
to the quantificational. The relation ‘is of the same type as’ is one which itself
violates type restrictions. The clause of k9·14 which states ‘a is of the same
type as x’ must be true in some cases and false in others (if it were always true,
which it is not, it could be simply omitted; if it were always false the whole
axiom would be unnecessary). If we take some fixed entity a, we can truly
assert that b, say, is of the same type as a; we can also falsely, but with sense,
assert that an entity of another type, c, say, is of the same type as a. So both
b and c can be arguments to the same propositional function (that expressed
by ‘is of the same type as a’). By the ‘vice versa’ clause of ∗9 · 14 itself, it

236 HYLTON, P., 2005,p.76.
237 HYLTON, P., 1990, p.317.
238 HYLTON, P., 1990, p.317.
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ought to follow from this that b and c are themselves of the same type; but this
is contrary to the initial assumption that b is of the same type as a while c is
not. What this shows is that we cannot consistently treat ‘is of the same type
as’, and other notions that Russell employs in setting up type theory, as being
themselves subject to type theory. But Russell’s conception of logic gives him
no other way to treat them.239

Hylton also finds a fundamental tension related to the problem of ‘stating type theory
within type theory’ in the following passage of Principia:

We shall find that the unrestricted variable is still subject to limitations impo­
sed by the manner of its occurrence, i.e. things which can be said significantly
concerning a proposition cannot be said concerning a class or relation, and so
on. But the limitations to which the unrestricted variable is subject do not need
to be explicitly indicated, since they are the limits of significance of the state­
ment in which the variable occurs, and are therefore intrinsically determined
by this statement.240

The above statement, Hylton claims, attests that Russell was still commited in Principia
with the view “that the fundamental notion of the variable is that of the unrestricted variable,
ranging over everything”241; the problem, according to him, is that the above also implies that
“restrictions imposed by limits of significance [...] go without saying: they do not need to be
stated”242; but of course, they are stated ­ even in numbered propositions like k9·131 and many
others we mentioned above.

The above points raised by Hylton are all very acute instances of what became known as
the ‘logocentric predicament’243, i.e., the problem of not being able to state within Logic what
is required for formulating the laws of Logic244. As formulated above, all of the problems raised
against Principia’s theory of types crucially presuppose a radical interpretation of Russell’s so­
called ‘Universalist’ conception of Logic. In fact, according to Hylton propositions like k9·131
should be interpreted as substantial claims, not only because they are numbered, of course, but
first and foremost because he assumes that the possibility of a metatheoretic perspective is “fo­
reign to Russell’s thought”245. Similarly, with respect to the crucial passage of Principia just
quoted, Hylton finds it incoherent because he presumes that for Russell “logic applies to every
statement, and thus also to statements which are intended to limit the scope of the variable used
in other statements”246. So there are at least three issues entangled in Hylton’s discussion: there is
239 HYLTON, P. 1990, p.317. This is same argument appears elsewhere in his writings, for instance, in HYLTON,

P., 2005, pp.75­7 and pp.106­7.
240 WHITEHEAD & RUSSELL, 1925, p.4 [1910, p.4].
241 HYLTON, P. 1990, p.317.
242 HYLTON, P. 1990, p.318.
243 Cf. SHEFFER, H., 1926, p.228.
244 As Sheffer put it “In order to give an account of logic, we must presuppose and employ logic” (SHEFFER, H.,

1926, p.228).
245 HYLTON, P., 2005, p.85.
246 HYLTON, P., 2005, p.75.
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the issue of the possibility of a metatheoretical perspective in Logic; there is the issue of notions
like ‘is predicative’ and ‘is of the same type as’ being applied to entities and not to expressions
of Principia’s formal system; and then there is the issue of limitation (or absence thereof) in the
range of the variables for the calculus of logic.

At this point it should be pretty clear why Landini’s interpretation dissolves completely
all of these issues: according to him, there is no ontology of propositional functions and k9·131
must be understood as statements about conditions of significance for expressions (well­formed
formulas) of Principia’s language. Since the only variables which range over entities are indivi­
dual variables, there are no types of entities. Therefore, there can be no such thing as an object
language assertion about types and the variables of the calculus are indeed unrestricted.

Surely, those who accept Hylton’s argument would refuse Landini’s interpretation since
the latter takes it that Principia embraces the distinction between language and metalanguage
(at least in a somewhat tacit and/or unclear way). In the introduction of the present work and
in our previous chapter on the Logic of the Principles of Mathematics, we had occasion to dis­
cuss somewhat exaggerated claims that are often made concerning the so­called ‘Universalist’
conception of Logic. We also had occasion to discuss and refer to Ian Proops’s detailed critical
discussion of these interpretations. As we saw, these radical claims do not hold water, for several
different reasons247. This by itself seriously undermines Hylton’s claim that there is a deep in­
coherence at the heart of Principia and Russell’s conception of Logic. For once we drop the idea
the idea that for Russell “Logic is all encompassing” in the radical sense advocated by Hylton
(and many others) there is no reason to deny that of notions like ‘is of the same type as’, ‘is a
predicative function’, etc., can interpreted ­ at least in some embryonic sense ­ asmetalinguistic.
And so the issues raised by Hylton disappear248.

There is more that can be said in favor of Landini’s claim that statements like k9·131
were meant by Whitehead and Russell to be purely grammatical statements. To appreciate this,
we must look at what Whitehead and Russell say about types beyond Principia’s Introduction
and its initial sections. The main sections that must be considered are those concerning Princi­
pia’s so­called ‘relative types’, discussed in part II, Prolegomena to Cardinal Arithmetic and
in the brief ­ and often neglected ­ Note on negative statements concerning types of Principia’s
second volume. What the discussion of those sections makes clear is that there are at least two
ways of speaking of ‘types’ in Principia’s numbered propositions. There is one use of “types”
which is, in fact, required for their development of Mathematics, the one introduced in k63, k64

247 PROOPS, I., 2006. Most notably, Proops shows that the passages of Hylton’s works display a tendency to
conflate several different thesis under the label of “universality of logic”; the same applies to the writings of
others who accept the same general interpretation, like Warren Goldfarb. Again, we add that if van Heijenoort,
Hylton, Goldfarb were right, it would be quite hard to explain why Russell and Whitehead explicitly claim “the
process of inference cannot be reduced to symbols”.

248 To be sure, Hylton’s main point is correct: one “cannot consistently treat” expressions like “sameness of type”,
“is of the same type as”, etc., on a par with the relation symbols and the predicates of Principia’s object­language
on pain of incoherence. This is irreproachable. What is wrong is the assumption that Russell would or should
admit such expressions in the object­language of Principia.
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and k65249. It concerns what Whitehead and Russell called ‘relative types’. What is introduced
there are ­ as the authors put it ­ notations that “serve to express the type of one variable in terms
of the type of another”250. They introduce descriptive functions like “t0‘α”, for instance, which
means “the type of the elements of α”. What happens is that statements involving membership
to a class like t0‘α have a peculiar status: they are true whenever significant, for the cornerstone
of Principia’s type theory is that any statement like “‘xt ϵ αv’ is false whenever t ̸= v”. The
very statement made in the last line here, however, is of a whole other sort than “x ϵ t0‘α”; an
expression like “x ϵ t0‘α” is an expression of Principia’s object­language251. A statement like
“ ‘xt ϵ αv’ is false whenever v ̸= (t)” is a statement about Principia’s grammar. According to
Landini’s interpretation, statements like k9·131 are of the latter kind: they are statements about
grammar.

Now, as we’ll discuss further, there are very important differences between the notion
of ‘type’ as it appears in numbered propositions like k9·131 and that of a ‘relative type’ which
is treated in k63; still, the discussion of relative types in Principia unequivocally shows two
things: not only that Whitehead and Russell did consider the possibility of treating statements
about types as grammatical statements but also that theywere onto the problem raised byHylton;
the problem, as they liked to put it, is that most statements involving types are “true whenever
significant”252 ­ which, by contraposition means that by the standards of Principia’s (object)
language they can never be false but simply nonsensical. We find this in Principia’s second
volume in the Note on negative statements concerning types:

Statements such as “x ∼ ϵ t‘y” or “x ∼ ϵ t0‘α” are always false when they
are significant. Hence, when an object belongs to one type, there is no signifi­
cant way of expressing what we mean when we say that it does not belong to
some other type. The reason is that when, for example, t‘α and t0‘α are said to
be different, the statement is only significant if interpreted as applying to the
symbols, i.e., as meaning to deny that the two symbols denote the same class.
We cannot assert that they denote different classes, since ‘t‘α = t0‘α’ is not
significant, but we can deny that they denote the same class.”.253

Well, the moral to be drawn from such passages in connection with k9·131 is quite
straightforward: if Russell and Whitehead did consider the issue of statements of type having a
very peculiar status in ∗63 and the Note of volume II and explicitly claimed that “propositions
dealing with types acquire their importance largely from the fact that they can be interpreted as
249 This will be discussed in our chapter concerning the development of Arithmetic in Principia, but it is worth to

extracting some points here.
250 WHITEHEAD & RUSSELL, 1925, p.400 [1910, p.419].
251 Strictly speaking, this is incorrect: there are good reasons to think that lower­case greek letters for classes

are metalinguistic place holders for incomplete symbols; be that as it may, the same point put forward here
holds since an expression like “x ϵ t0‘α” can be translated into Principia’s object­language by eliminating all
incomplete symbols, while a phrase like “‘xt ϵ αv’ is false whenever t ̸= v” cannot.

252 WHITEHEAD & RUSSELL, 1925, p.400 [1910, p.419].
253 WHITEHEAD & RUSSELL, 1927a, p.34 [1912, p.35].
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dealing with the symbols”254, why should the statements of k9·131 be interpreted any differen­
tly? Indeed, the only reasonable explanation for the “largely” in the last quote is that Whitehead
and Russell were aware that despite the fact that some statements which involve (relative!) types
have some use in their development of Mathematics ­ those like “x ϵ t0‘α” ­ most of them are
best interpreted as statements concerning conditions of significance, instead of assertions about
entities of any sort. This, again, corroborates Landini’s interpretation.

But at this point one may raise the following question: is it not possible also to deal sa­
tisfactorily with the issue raised by Hylton by accepting that Principia allows a ‘metatheoretical
perspective’ while also accepting a realist view of ‘propositional functions’? This seems to be
the route adopted by Bernard Linsky. Attempting to answer Hylton’s problem, while preserving
a realist view of ‘propositional functions’, Linsky suggests that passages like k9·131 are meant
to “record some features of the logical form of a proposition, namely the chains of dependen­
cies on various totalities that are uncovered in the analysis of the constituents of a propositional
function”255. Thus, Linsky does not take numbered propositions like k9·131 to be simply ruling
out some expressions as just meaningless or nonsensical. According to him:

[...] it is more accurate to take the talk of “significance” as describing simply
what arguments a function can take, and thus as describing the dependencies
of propositions on propositional functions and arguments.256

Reading the talk of “meaninglessness” as only expressing violations of type
also provide a response to those who find some deep incoherence in the very
attempt to talk about the theory of types in general. [Principia] is not doomed
to incoherence by somehow violating its own strictures on types in its very
generalizations about types. Propositions about all types might be in violation
of type theory and so meaningless in this technical sense, but not in the more
general sense of being nonsense.257

So, at this point we may clarify the conflict between the two interpretations in the fol­
lowing terms. Statements like k9·131, k9·14, etc.,must be read as metalinguistic statements that
rule out expressions such as “ϕ!(ϕ!x̂)” and the like as ill­formed independently of the ontologi­
cal status of so­called ‘propositional functions’. This much seems to follow fromWhitehead and
Russell’s claim that “propositions dealing with types acquire their importance largely from the
fact that they can be interpreted as dealing with the symbols”258. According to Landini, proposi­
254 WHITEHEAD & RUSSELL, 1927a, p.34 [1912, p.35].
255 LINSKY, B., 1999, p.86. Our emphasis.
256 LINSKY, B., 1999, p.86.
257 LINSKY, B., 1999, p.86. Linsky, incidentally, also recognizes that there is a difficulty in reconciling k9·131with

Church’s reconstruction of Principia in terms of r­types. As he puts it: “It seems that while disjunctions will be
of the type of their disjuncts, as will a formula and its negation, the argument structure and quantificational form
of a function is relevant to its type. k9·131 seems to require that if two two­place propositional functions are of
different types, then the result of binding the same variable in each case will result in one­place propositional
functions of different types. As a result, the division of propositional functions would be finer than the system
of [Church’s] r­types indicates.” (LINSKY, B., 1999, p.86).

258 WHITEHEAD & RUSSELL, 1927a, p.34 [1912, p.35].
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tions like k9·131 are just meant as grammatical statements, not necessarily259 having anything
to do with types of entities. On Linsky’s realist interpretation, on the other hand, numbered pro­
positions dealing with types should be read as cutting both ways: they must assert grammatical
statements embodying metaphysical distinctions.

But here, again, the evidence seems to stack in favor of Landini’s interpretation. One
main issue involved here is this: once type distinctions are interpreted as distinctions between
ontological categories, there is a corresponding segmentation of the notion of logical generality,
or ‘variation’, which must be accepted. And this is problematic in several ways. To begin with, if
Linsky is correct, then there is something wrong in the passage quoted by Hylton above. For re­
call that there Russell claims that “the limitations to which the unrestricted variable is subject do
not need to be explicitly indicated”, because “they are the limits of significance of the statement
in which the variable occurs, and are therefore intrinsically determined by this statement”260.
On Landini’s interpretation, there is no conflict between k9·131 and this passage because there
are no types of entities and statements concerning types are not viewed as substantial claims
of any sort. Thus, statements like “ϕ is of the same type as ψ” or “ϕ is not of same type as
ψ” have truth­conditions in Principia’s metalanguage only so far as type­indices or symbolic
conventions are concerned. If we accept Linksy’s interpretation, on the other hand, it seems that
statements like “ϕ is of the same type as ψ” or “ϕ is not of same type as ψ” are substantial claims
which simply cannot be expressed in the object­language of Principia but do need to be stated in
the metalanguage. Though this is not the severe issue raised by Hylton, it is a problem. For one
thing, this goes against Whitehead and Russell’s explicit claim that statements of types should
be viewed as statements about symbols. For another, it is difficult to reconcile the metaphysical
interpretation of type distinctions in Principia with the development of Russell’s views from
the Principles to Principia in a satisfactory way. As we discussed in the previous chapter, a
fundamental driving force in the development of Russell’s views in the period was his resolve
to preserve what he called “the true formal variable” which has a completely unrestricted range.
As we also discussed, it was this resolve to preserve the unrestricted variable that gradually led
Russell to adopt an eliminativistic approach to classes, propositional functions via his Substitu­
tional Theory261; but the available evidence also shows that it was this same wish to preserve
the doctrine of the unrestricted variable that led him to abandon substitution and propositions as
singular entities and to adopt the multiple­relation analysis of judgment262. These points again
call the plausibility of Linsky’s interpretation into question.

Furthermore, once we see that Hylton is wrong in claiming that Russell’s views pre­
cluded him to accept any sort of metatheoretical perspective in Logic, we can follow Landini
in distinguishing sharply the purely syntactical aspects of Principia ­ i.e., the formal system
259 Cf. the point made below.
260 WHITEHEAD & RUSSELL, 1925, p.4 [1910, p.4].
261 Which, recall, was able to emulate the structure of the simple theory of types without any commitement to type

distinctions between entities.
262 Which, as we saw, is best interpreted as an attempt to eliminate ‘propositions’ in an ontological sense
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which is build from the primitive numbered propositions ­ and the semantics which Russell
(and Whitehead) intended for this formalism. Although it is certainly problematic or contenti­
ous to attribute to Russell and andWhitehead a clear or sharp grasp of this distinction as we have
of it today, once we agree with Landini that Principia’s Introduction puts forward an informally
sketched interpretation (i.e., a semantics) for Principia’s formal grammar, we must agree that
they were able to separate this interpretation or semantics from the formal system: this much
unquestionably follows from Whitehead and Russell’s claim in the preface that their “logical
system is wholly contained in the numbered propositions which are independent of the Introduc­
tion and the Summaries” and that “the Introduction and the Summaries are wholly explanatory,
and form no part in the chain of deductions”263; this separation is also in accordance with Rus­
sell’s later claim, concerning the Theory of Types as presented in Principia’s Introduction, that
he “lay[s] no stress upon the particular form of that doctrine which is embodied in Principia
Mathematica” , but that he remains “wholly convinced that without some form of the doctrine
the paradoxes cannot be resolved”264. This, on its turn strongly corroborates the following point:
whatever interpretation or semantics Russell (or Whitehead) intended for Principia’s formal sys­
tem ­ be it a nominalistic substitutional semantics which Landini attributes to the Introduction
to the first edition or a realistic semantics of ramified types of entities which Linsky attributes
to that Introduction, against Landini ­ it seems that a clear distinction between these interpreta­
tions or semantics and the purely syntactical statements about types contained in the numbered
propositions ought to be kept straight. Indeed, it seems that even if Hylton and Linsky are right
in claiming, against Landini, that Russell intended a realistic semantics in Principia’s Introduc­
tion, the statements concerning types in the numbered propositions can ­ and should ­ be kept
sharply distinguished from such a realistic interpretation, or in fact, any interpretation of the
formal system. This seems the general outcome of the author’s claim that their “logical system
is wholly contained in the numbered propositions which are independent of the Introduction and
the Summaries”265.

Thus, to sum up. It seems that Landini’s interpretation provides the best approach to
make sense of Principia’s type distinctions as presented in the Introduction and section k9, not
only because of the good amount of positive evidence supporting it that can be found scattered
throughout Principia’s text and elsewhere, but also because it is able to make sense of several
aspects of Principia’s exposition that are simply baffling or even incoherent in light of a realist
interpretation. This interpretation is strongly corroborated by the fact that Russell waswell aware
of the difficulties involved in treating “sameness of type” on a par with genuine relations and
it makes a very strong case for the view that Principia was not intended at all by Russell to
have a type hierarchy of entities as far as the Introduction to the first edition is concerned. On
263 WHITEHEAD & RUSSELL, 1925, p.vii [1910, p.viii]. Our emphasis.
264 RUSSELL, B., 1959, p.79.
265 WHITEHEAD & RUSSELL, 1925, p.vii [1910, p.viii]. Our emphasis. Indeed, Landini plausibly argues that

Whitehead and Russell had different conflicting semantic interpretations of the formal system (cf. footnote 189
of the introduction of the present dissertation).
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this account there is no incoherence in numbered propositions like k9·131, deep or otherwise.
The reason is that “sameness of type” and “difference of type” are meant to apply first and
foremost to expressions, not to entities. And in any case, numbered propositions like k9·131 are
best interpreted as statements about grammar or formal syntax266: in Landini’s own words, “they
concern the formal grammar of Principia and the conditions for well­formedness of symbols”267.

4.4.3 The Role and Status of the Axiom of Reducibility

One important issue which we considered in the introduction of the present work is the
(universally recognized) problematic character of the Axiom of Reducibility. The Axiom has fa­
mously struck readers of Principia as an ad hoc way to recover important results from Classical
Mathematics by circumventing the severe restrictions of the so­called ‘ramified’ theory of types.
It seemed to most readers, as Quine put it, that “[...] the axiom of reducibility implies the super­
fluousness of the very distinctions that give it substance”268. As we noted in the Introduction,
Quine yet again found that this situation was another problematic consequence of the unruly am­
biguity of the notion of a ‘propositional function’ in Principia, claiming that by “failing to distin­
guish sharply between formula and object, he [Russell] did not think of the maneuver of letting
a higher­order expression refer outright to a lower­order attribute or relation­in­intension”269.
Once again echoing Gödel’s criticism, Quine’s point is that “[...] there is an excuse for orders
only if a weak constructive theory is to be adhered to and the axiom of reducibility withheld”270.

Both Landini’s and Linksy’s interpretations provide grounds for refusing Quine’s nega­
tive assessment. Let us recapitulate how theAxiom of Reducibility is formulated according to the
rival interpretations which we are considering271. According to Church’s reconstruction which
Linsky advocates, axioms of reducibility are given by the following scheme which employs his
r­types:

(ψ(t1,...,tm)/n)(( Eϕ(t1,...,tm)/1))(xt11 , ..., x
tm
m )[(ψ(x1, ..., xm) ≡ ϕ(x1, ..., xm)]

In words, what this asserts is that given any so­called non­predicative ψ (i.e., of any arbitrary
level), there is a predicative function ϕ (i.e., whose level is 1) which is equivalent to ψ for all
arguments x1, ..., xm. On Landini’ reconstruction, on the other hand, reducibility axioms are
266 Much like k1·11 is an attempt to state rules of inference that Whitehead and Russell explicitly recognize that

cannot be expressed as laws within their symbolism.
267 LANDINI, G., 1998a, p.259.
268 QUINE, W., 1969, p.263. For other important references in this regard, cf. the previous footnote 47 of the

Introduction of this dissertation.
269 QUINE, W., 1969, p.254.
270 QUINE, W., 1969, p.254.
271 For a fuller discussion of how the Axiom of Reducibility fares according to Landini’s interpretation and that

of Linsky, cf., WAHL, R., 2011. Wahl addresses in detail many issues which we cannot discuss here, including
Ramsey’s criticisms and the relation between the Axiom of Reducibility and Leibniz’s principle of the ‘identity
of indiscernibles’.
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given by the following scheme, which employs Landini’s simple type symbols272:

( E

ϕ(t1,...,tn))(xt11 , ..., x
tn
1 ){ϕ(x1, ..., xm) ≡ A[x1, ..., xm]},

where A[x1, ..., xm] is a formula containing free occurrences of x1, ..., xm and where ϕ does
not occur free. What this asserts is that any formula A of Principia’s formal language which
contains free occurrences of xt11 , ..., xtn1 is equivalent to an atomic formula ϕ(t1,...,tn)(xt11 , ..., x

tn
1 ),

where each t1, ..., tn is a simple type­index. Understood in these terms, the above rendition of
the Axiom of Reducibility gives us a fully impredicative axiom scheme of comprehension, in
the sense that variables of the same (or higher) order\type of F can occur bound in A above.

Indeed, with respect to the Axiom of Reducbility, the main contrast between Church’s re­
construction and Landini’s is that, as we mentioned before, Church’s reconstruction’s attributes
to Principia another implicit axiom scheme of predicative comprehension, namely:

( E

ϕ(t1,...,tm)/n)(xt11 , ..., x
tm
m ){ϕ(x1, ..., xm) ≡ A[x1, ..., xm]},

where the bound variables of A are all of order less than n and the free variables of A are of
order not higher than n273. In practice, this contrast is not stark. Take as an example the defini­
tion of the concept Nc induct i.e., natural number. If we follow Church’s rendition of Principia,
the so­called ‘function’ Nc induct(α)would have to be defined first in terms of predicative com­
prehension, instantiated as follows:

( Eθ(t)/n+1)(γt){θ(t)/n(γt) ≡ (ϕ(t)/n)[ϕ(t)/n(0t) ϕ(t)/nαt ⊃α ϕ(t)/n(αt + 1t)t ⊃ ϕ(t)/nγt]}

This gives us a concept of natural number that is fixed to some given order r­type whose order
is higher than the bound variable ϕ which occurs the instance of predicative comprehension as
illustrated above. Reducibility is a further principle that gives us the fully impredicative notion
of natural number. Things are more straightforward if we follow Landini’s rendition274: com­
prehension for him is only given in terms of reducibility, which, of course, suffices alone for the
full impredicative notion to be obtained. The stark contrast between their accounts of Reducibi­
lity comes up, of course, in the underlying syntax and semantics of each formulation. Church
treats non­predicative functions as genuine variables, whereas Landini treats them as schemata.
Church and, following him, Linsky, takes all functional variables to be interpreted in terms of a
realistic semantics of intensional entities, whereas Landini thinks that the simple­type structure
of Principia’s grammar was meant to be justified by an informal (substitutional) nominalistic
semantics sketched by Russell in the Introduction.

The interpretation of the role and status of the Axiom of Reducibility within Principia’s
formal system depends on how the notion of a propositional function is understood. Linsky ar­
272 Russell and Whitehead explicitly refrained from assuming it for predicate variables of more than two argument

places. This, of course is a very minor issue.
273 Of course, if constants are included in a language, then the constants occurring in A should also be of an order

not higher than n.
274 For now we are ignoring the complications introduced by Principia’s No­Class Theory.
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gues that once the intensional Logic of Principia is understood as a theory of propositional func­
tions conceived as structured entities, then distinctions of orders are motivated independently of
the purpose of recovering the basic principles of set theory. So according to him the appropriate
response toQuine is to note that the ramified logic ofPrincipia should not be viewedmerely “as a
contructivist hierarchy of classes but rather as a theory of propositional functions which includes
as a part the theory of classes, but which does much more”275. Linsky points out that “[...] propo­
sitional functions of higher types are needed to capture intensional phenomena”276 and argues
that Quine’s criticism holds water only if one forgets “the intensional nature of logic, and hence
the use for all those additional, non­predicative propositional functions”277. Thus, Linsky’s con­
clusion is that the Axiom of Reducibility must be understood as a “metaphysical principle” of
“great generality”278 introduced to reconcile the logicist development of classical mathematics
with an intensional conception of Logic as the theory of propositions and propositional functi­
ons279. As we already discussed, such an interpretation of Principia is largely unwarranted for
several reasons: it goes against the many metaphysical views which accompanied Principia’s
multiple­relation analysis of judgment and it presupposes Church’s reformulation of Principia’s
syntax, whose many departures from Principia find no textual support.

The main point to be taken into consideration is that Whitehead and Russell did not in­
tend any predicate variables apart from predicative ones to be bound by quantifiers. This point
alone ­ which is almost never taken into serious consideration ­ seems to seriously undermine
Linsky’s interpretation. As we already discussed, Landini’s reconstruction allows us to make
sense of many aspects of Principia’s formal system that are otherwise bewildering. One such
case was that of so­called ‘non­predicative functions’, which are best interpreted as schematic
letters. Concerning the Axiom of Reducibility, instead of making it a metaphysical principle em­
bedded within a theory with an already exuberant ontological import such as a realist ramified
logic, Landini’s rendition of the Axiom of Reducibility is more in line with Russell’s claim that
the Axiom of Reducibility is “[...] a smaller assumption than the assumption that there are clas­
ses”280. But this is not to say that the Axiom does not have a quite problematic status according
to Landini’s interpretation. It does. Roughly, the problem is this: the nominalistic substitutio­
nal semantics cannot validate the Axiom of Reducibility; as Landini himself recognizes, the
semantics is too weak to account for the strength of the simple­types structure which is (by de­
sign) imposed by the Axiom of Reducibility281. So, if we accept Landini’s view, how can the
275 LINSKY, B., 1999, p.108.
276 LINSKY, B., 1999, p.101.
277 LINSKY, B., 1999, p.108.
278 LINSKY, B., 1999, p.108.
279 In holding this position Linsky is again following Church, who holds that: “If, following early Russell, we hold

that the object of an assertion or belief is a proposition and then impose on propositions the strong conditions of
identity which this requires, while at the same time undertaking to for­ mulate a logic that will suffice for clas­
sical mathematics, we therefore find no alternative except for ramified type theory with axioms of reducibility”
(CHURCH, A., 1984, p.521).

280 WHITEHEAD & RUSSELL, 1925, p.58 [1910, pp.60­1].
281 Cf. LANDINI, G., 1998, pp.293­4; 2011, pp. 134­5.
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Axiom of Reducibility be reconciled with Russell’s attempt to justify the distinctions of orders
in Principia’s Introduction? The answer is that it can’t.

To some this may seem like a good reason to refuse a substitutional interpretation ofPrin­
cipia’s predicate variables. Scott Soames282, for instance, has recently denied that a “[...] subs­
titutional reading of Principia Mathematica makes good philosophical or mathematical sense
on its own, or coheres well with Russell’s most important goals and doctrines”283. Soames’s
main concern can be put in the following terms. Suppose that we allow objectual quantification
over individual variables at the bottom of the type hierarchy but adopt a substitutional account
of higher­order variables. That is: rising to second­order quantification, we assume that given
any predicate variable, its substitution class will be, as Soames puts it, “[...] all simple predicates
used to construct atomic sentences, plus complex predicates”284; thus, a sentence like (X1)A[X1]

will be true if, and only if, “every sentence is true that results from substituting an occurrence
of a predicate, simple or complex, associated with X1”, for every occurrence of “X1” in A.285.
In doing this we are restricting ourselves to predicates “X1” which are first­order definable (in
the modern sense). Similarly, we assume the range of substituends for third­order variables is
framed in such a way that only second­order formulas can be obtained, and so on. As Soames
explains:

Looking at this from the outside (where we continue to allow ourselves to speak
of sets), this means that our substitutional construal of second­order quantifi­
cation parallels ordinary objectual second­order quantification over those sets
that are extensions of first­level predicates of individuals (including complex
predicates). This process is repeated for third­order quantification, except that
here complex predicates are the only ones in the substitution class. This level
mimics objectual quantification over those sets that are extensions of second­
level predicates, members of which are sets of individuals that are extensions
of first­level predicates. The hierarchy continues uniformly from there on.286

The problem with this procedure, as Soames puts it, is that “[...] whereas the objectual
quantifiers range over all sets at a given level ­ both those that are extensions of predicates at
that level (of the Russellian logical language) and those that are not ­ the substitutional quantifier
mimics only quantification over the former”287. This mirrors very closely Landini’s account of
higher­order quantification as based on his interpretation of the hierarchy of senses of truth
282 Professor João Vergílio Cuter has made similar considerations pertaining to a substitutional account of Princi­

pia’s higher­order quantifiers in my qualification exam for which I am grateful.
283 SOAMES, S., 2014, p.519. Soames appreciates in his response that an interpretation that views Russell’s quan­

tifiers as substitutional “does not, of course, credit him with mastering all of what we now recognize to be the
ins and outs of substitutional quantification and its difference from objectual quantification”, but only claims to
“to capture an important element in his thought, and to develop it more clearly, precisely, and consistently than
he himself did” (SOAMES, S., 2014, p.519).

284 SOAMES, S., 2014, p.520.
285 SOAMES, S., 2014, p.520.
286 SOAMES, S., 2014, p.520.
287 SOAMES, S., 2014, p.520.
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and falsehood given in Principia’s Introduction. Soames’s concern is that the resulting logic
would not be “[...] rich enough to provide a foundation for [...] higher mathematics”288. Soames
exemplifies this with the case of Arithmetic: on the substitutional construal, the range of second­
order quantifiers is restricted to those predicates that are first­order definable; and generally,
the range of predicate variables of order n + 1 are restricted to expressions that are nth­order
definable; since numbers are classes of classes, these should be defined by some third­order
expression that is second­order definable. This just leads to an exact analogue to the problem
we witnessed in connection with mathematical induction and Church’s r­types:

The crucial constraint on the substitutional quantifier leading to this result is
one that excludes any expressions in the substitution class associated with a
substitutional variable from containing that variable. (When this constraint is
violated, truth cannot be defined for the original quantified sentence.) So when
we have a substitutional interpretation of the quantification employed in the
definition of ‘N’ and the statement of mathematical induction, the complex
predicates that are substitutable for the third level predicate variable can’t them­
selves contain such a variable. With this, we lose the simple Fregean way of un­
derstanding and proving mathematical induction. Thus, the strongest argument
against the substitutional interpretation of quantification inPrincipiaMathema­
tica is that it threatens the reduction there”.289

Now, it must be observed that it is not clear whether Soames takes this be an objection
against interpreting Principia in terms of a substitutional semantics or whether this is a criti­
cism of Principia itself. But clearly there is a sense in which this issue cannot be raised as an
objection to interpreting Principia in terms of a substitutional semantics, for the above problem
just shows exactly why Principia requires the Axiom of Reducibility (and incidentally, just how
powerful the axiom is). In other words, what Soames takes as a strong argument against the
substitutional interpretation may just reflect a basic feature of the “ramified” structure which
results from the hierarchy of senses of truth and falsehood that Russell proposes explicitly in
Principia’s Introduction290. In other words, this was a difficulty which Russell and Whitehead
explicitly recognized and accepted. It cannot be straightforwardly taken as an objection against
interpreting Principia in terms of a nominalistic substitutional semantics.

But still, if Landini is right, then the difficulty which is so clearly explained by Soames is
a real problem for Russell’s intended semantics for Principia’s predicate variables: the problem
288 SOAMES, S., 2014, p.525.
289 SOAMES, S., 2014, p.522­3.
290 Of course, a similar point applies to Church’s reconstruction, since his system also requires reducibility prin­

ciples to recover classical mathematics, being much weaker than standard impredicative higher­order Logic. It
must also be observed that one can adopt a substitutional interpretation of the quantifiers while also adopting
Church’s syntax. In doing this, the restrictions imposed by the substitutional account just reflect the predica­
tivity constraint on the definability of functions. And in fact, as Allen Hazen pointed out, “the substitution
interpretation of the variables works so nicely, indeed, that one is almost tempted to identify it as the inten­
ded interpretation of the ramified logics” (HAZEN, A., 1983, p.354.). For another approach for developing a
predicative theory of types with a substitutional account of higher­order quantification cf. CHIHARA, C., 1973.
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is that this semantics simply cannot justify the acceptance of the Axiom of Reducibility. Landini
recognizes this, however. As he observes, what can be justified is the following predicative
comprehension principle (which, incidentally, is akin to Church’s, apart from the fact that he
allows non­predicative variables)291:

( E

ϕ(t1,...,tm))(xt11 , ..., x
tm
m ){ϕ(x1, ..., xm) ≡ A[x1, ..., xm]},

where: (i) A[x1, ..., xm] is a formula containing free occurrences of x1, ..., xm; (ii) ϕ does not
occur free; (iii) all bound variables are of a lower order than (t1, ..., tm); and (iv) the free va­
riables are all of an order which is at most equal to that of (t1, ..., tm). According to Landini,
the fully impredicative reducibility, on the other hand, is “an unwarranted [...] principle which
assures that order vanishes altogether in extensional contexts in favor of the impredicative com­
prehension of simple type­theory”292. In other words, he recognizes that if we accept Russell’s
intended nominalistic semantics there is nothing which can assure us of the truth of such axiom
in Principia, apart from the fact that desired consequences follow from it. But Whitehead and
Russell themselves say as much, when they claim that the reasons in favor of it are “largely in­
ductive” i.,e “many propositions which are nearly indubitable can be deduced from it, and that
no equally plausible way is known by which these propositions could be true if the axiom were
false, and nothing which is probably false can be deduced from it”293.

So at this point we must carefully distinguish the following two questions:

1. What is the informal justification provided in Principia’s Introduction (which is not part
of the formal system) for the grammar of types that the work embraces? and

2. What sort of interpretation for the grammar of simple types is required to sustain the
mathematical edifice built up from k12 onward in Principia?

Given all the points we discussed so far, we may reasonably claim that although Russell inten­
ded something along the lines of the substitutional semantics formulated by Landini to justify
the grammar of simple types which Principia adopts in practice, such semantics cannot account
for the richness of Principia’s language. This is because what Principia requires is (at least) so­
mething as strong as an intensional simple type theory, that is, a theory where each open formula
ϕ(o)(yo), ϕ((o))(ψ(o)), ϕ(o,(o))(xo, ψ(o)), etc, determines an attribute or relation­in­intension. But
this, of course, requires that predicate variables range over genuine entities, which amounts to
embracing actual types of entities. So we would have a realist semantics for predicate variables
291 LANDINI, G., 2011a, p.135.
292 LANDINI, G., 2011a, p.135.
293 WHITEHEAD & RUSSELL, 1925, p.59 [1910, p.62]. As we shall discuss later, when viewed in the broader

context of Russell’s views on Logicism andMathematical Philosophy in general, this is not as bad a justification
as many suppose.
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instead of a substitutional one. This, however, does not mean that Landini’s interpretation is
wrong, only that Russell’s plan for justifying Principia’s simple type­grammar was a failure ­
which is, in fact, Landini’s position294.

4.4.4 The No­Class Theory

The discussion about the role of the Axiom of Reducibility leads us to Principia’s No­
Class theory. Just like Russell’s previous Substitutional Theory, the basic idea of Principia’s
No­class Theory is to contextually eliminate class­expressions like “ẑϕz” and “ẑ(ϕ!z)”, trea­
ting them as incomplete symbols. The same is done for expressions “x̂ŷϕ(xy)”, “x̂ŷϕ!(xy)” for
relations­in­extension (which, following Landini we will refer to as “relationse” ). The treatment
of class­expressions is given in k20 and that of relationse in k21. At the core of these sections
lies a series of definitions on the basis of which Whitehead and Russell emulate a theory of
simple types of classes and (homogeneous and heterogeneous) relationse.

With respect to the No­class theory presented in k20, the most fundamental definitions
are those which Russell had already given in Mathematical Logic as Based in the Theory of
Types295, namely296:

k20·01 f{ẑ(ψz)} = ( E

ϕ) ϕ!x ≡x ψx f{ϕ!ẑ} Df

k20·02 x ϵ(ϕ!ẑ) = ϕ!x Df

Definition k20·01 gives the contextual elimination of class expressions like “ẑ(ψz)” from any
well­formed formula in which they occur, while k21·02 is introduced to emulate abstraction or
concretion principles. Observe that, in the above, theorems are framed using typically ambiguous
individual variables ­ as we’ll discuss below, this is a very important point.

Also following a convention of Russell’s previous paper, in Principia Whitehead and
Russell introduce lower­case Greek letters such as “α”, “β”, “γ”, etc to serve, as they put it,
“merely [...] as an abbreviation for an expression of the form ẑϕz”297. These lower case Greek
294 Cf. LANDINI, G., 1998a, pp.291­294 and 2011, pp.135­6. It must be also be said, however, that there is a precise

sense, in which a variant of Linsky’s and Cocchiarella’s interpretation, as based on Church’s reconstruction
of Principia, is vindicated. In a relatively recent paper, Edwin Mares formulated a formal semantics based on
Linsky’s interpretation which actually validates the Axiom of Reducibility. For details cf. MARES, E., 2007. It
is important to notice however, that Mares departs drastically from Linky’s interpretation with respect to two
crucial points: he treats predicative propositional functions as universals which enter as constituents of com­
plexes and his interpretation of non­predicative propositional functions is substititional, having no ontological
counterparts for them in his intended models for the Axiom of Reducibility. Again, for details cf. MARES, E.,
2007 and also WAHL, R., 2011, pp.54­55.

295 RUSSELL, B., 1908, pp.613­616.
296 As we shall briefly discuss below, these definitions have implicit scope markers.
297 WHITEHEAD & RUSSELL, 1925, p.194 [1910, p.204]. Similarly, for relations they introduce capital Latin

variables such as “P”, “ Q”, “R”, “S”, etc., to serve as place­holders for expressions like “x̂ŷψ(x, y)”.
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letters are introduced so that an arbitrary class can be represented by a single symbol, which is ob­
viously very convenient. But Principia’s No­Class theory goes into further detail than Russell’s
previous paper regarding the use of these. Despite employing such lower­case Greek variables
bound to quantifiers in Mathematical Logic, at no point in the paper Russell introduces expli­
cit conventions or definitions which allow for their contextual elimination. In Principia, on the
other hand, these ‘variables’ are to be eliminated according to the following definitions:

k20·07 (α) fα = (ϕ) f{ẑ(ϕ!z)} Df

k20·071 ( E

α) fα = ( E

ϕ) f{ẑ(ϕ!z)} Df

Just as important, Whitehead and Russell also have separate contextual definitions for classes of
classes, that is, expressions for the extensions of ‘functions’ whose range of arguments include
lower­case Greek variables, i.e., expressions like “α̂(ψα)”:

k20·08 f{α̂(ψα)} = ( E

ϕ) ψα ≡α ϕ!α f{ϕ!α̂} Df

k20·081 α ϵψ!α̂ = ψ!α Df

The above are just analogous to k20·01·02 applied to expressions for classes of classes instead
of classes of individuals.

Now, as we already discussed in the introduction of the present work, the status of these
definitions put forward in section k20 is a matter of serious debate in secondary literature, for
many reasons. The main point of controversy, of course, is the status of expressions like “ẑ(ψz)”
and lower­case Greek letters; in particular, whether they should be read as terms of Principia’s
language and whether they should be viewed as ranging over some kind of abstracta. And any
answer to such issue, on its turn, would obviously have to fall back on an account of Principia’s
problematic use of the phrase “propositional function” and of ‘circumflected’ expressions like
“ϕx̂” and “ϕ!x̂.

So, naturally, the two rival interpretations which we are discussing interpret the No­
Class theory in radically different ways. Linsky follows Hylton and Goldfarb in characterizing
so­called ‘propositional functions’298 as structured intensional entities. Thus, he does not take
the No­Class theory to be an attempt to ontologically eliminate classes from Mathematics; on
the contrary, according to him:

298 And also so­called ‘propositions’.
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The no­class theory provides a replacement of talk of classes by theses about
some of the universe of propositional functions. The technique used is contex­
tual definition, rather than explicit definition, but the effect is not any more of a
wholesale ontological elimination than is the theory of definite descriptions.299

Again, in stark contrast, Landini holds that Principia’s No­Class theory is designed as a
device of outright elimination. Since according to him there are no such things as ‘propositional
functions’ understood as abstract entities, the definitions put forward in k20 are viewed by him
as an attempt to eliminate discourse about classes completely with the help of the Axiom of Re­
ducibility viewed as an impredicative comprehension axiom for Principia’s predicate variables.

How can this dispute be settled with respect to Principia’s no No­Class theory? As Lan­
dini has observed in a recent paper300, simply analyzing the passages relevant to the main issues
surrounding the problematic notion of ‘propositional function’ may not be enough, so what we
must do is submit rival interpretations to an empirical tests: we must see which interpretation
leads to a reconstruction of k20 which is best fit to achieve the goals Whitehead and Russell set
out to achieve with their No­Class theory; we must see what happens when actual proofs in Prin­
cipia are viewed in light of each interpretation; we must see which interpretation requires less
modification in these proofs, and so on. Again, the evidence overwhelmingly favors Landini’s
view, and it is worth reviewing his arguments in detail.

Before proceeding, however, we need a little context of what is going on in section k20

­ we must have a clear grasp of what Whitehead and Russell intended to prove in k20 where the
contextual elimination of classes is given. There are three fundamental sets of theorems in sec­
tion k20. The first is meant to show that the fundamental formal properties which are ordinarily
expected of classes are preserved by their No­class theory. The most important theorems of this
first group ­ and perhaps of sections k20 as a whole ­ are the following:

k20·15 ⊢ ψx ≡x χx ≡ ẑ(ψz) = ẑ(χz)

k20·3 ⊢ x ϵ ẑ(ψz) ≡ ψz

k20·31 ⊢ ẑ(ψz) = ẑ(χz) ≡ x ϵ ẑ(ψz) ≡x x ϵ ẑ(χz)

These theorems show that the contextual elimination of expressions for classes and relationse
can achieve what they were designed for: the recovery of extensional contexts from intensio­
nal ones. Theorem k20·15, in particular, as Whitehead and Russell explain embodies “[...] the
essential properties of classes, and gives the justification of the definition k20·01”301; it is in­
deed Principia’s version of Frege’s Basic Law V. Theorems k20·3 is an emulated abstraction
299 LINSKY, B., 1999, p.133.
300 LANDINI, G., 2013b, p.169­70.
301 WHITEHEAD & RUSSELL, 1925, p.191 [1910, pp.201].
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principle and k20·31 is an (also emulated) extensionality principle302. There is also a second
group of theorems concerned with “dealing with both classes and descriptions”, as Russell Whi­
tehead put it. It is meant to prove results like the following, where class expressions interact
with descriptions:

k20·57 ⊢ ẑ(ϕz) = (ıα)(fα) ⊃ g{ẑ(ϕz)} ≡ g{(ıα)(fα)}

The third group of theorems is meant to to show that “variable classes satisfy all the primitive
propositions assumed for variable individuals or functions” and thus that “classes of classes
have all the formal properties of classes of individuals”303. The point is to show that the general
laws of quantification and identity hold good when theorems are framed with lower­case Greek
variables instead of individual variables, and thus that all previous results (of the first set of
theorems) which hold good of classes of individuals can be assumed to hold also of classes of
classes of individuals, classes of classes of classes and so on, indefinitely.

Now, to Landini’s arguments. Throughout several different texts, Landini has put forward
many strong arguments in favor of his interpretation of the No­Class theory. The three arguments
we shall consider have at their core very simple points, namely:

1. Principia’s theory of incomplete symbols employs Russell’s famous notion of ‘scope’ and
carefully observing the role played by this notion shows that no incomplete symbol ­ class
expressions included ­ should be considered as a genuine term of Principia’s language;

2. If Principia’s No­Class theory was simply designed to outright replace an ontology of
classes for an ontology of propositional functions, then supplementary definitions like
k20·08·081 would not have to be introduced to deal with classes of classes of individuals,
classes of classes of classes of individuals, and so on ­ but they are needed;

3. Church’s reconstruction of Principia’s syntax faces insurmountable difficulties dealing
with scope in section k20.

302 It must be observed that both theorems k20·15 and k20·3 depend crucially on the Axiom of Reducibility (the
demonstration of k20·15 assumes k20·13, which assumes k13·195, which, in turn, assumes k13·101; while the
demonstration of k20·3 introduces k12·1 explicitly in the fourth line of the proof). The same applies exactly
to the counterparts for relationse. Of course, this couldn’t be otherwise, since the bound variables which occur
in the definiens of k20·01 and k21·01 must necessarily be restricted to predicative values in order to work as
intended.

303 WHITEHEAD & RUSSELL, 1925, p.196 [1910, p.206]. The first set of theorems is ∗20 · 1− 43, the second we
mentioned is ∗20 · 5− 59; the third is ∗20 · 6− 81. Definitions and results that parallel those of ∗20 are given
in ∗21 for relationse. Since the definitions and theorems for the latter are almost completely analogous to those
of classes, we shall only discuss the definitions and theorems which are concerned with the emulated theory of
classes.
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At the center stage of Landini’s arguments is Principia’s notion of scope of a definite description
and other incomplete symbols.

It is important to recall that the contextual elimination of classes and relationse is intro­
duced in Principia as an extension of Russell’s treatment of definite descriptions. The formal
treatment of Russell’s celebrated theory is given in k14304. The two main definitions are the
following:

k14·01 [(ıx)(ϕx)] ψ(ıx)(ϕx) = ( E

b) ϕx ≡xx = b ψb Df

k14·02 E!(ıx)(ϕx) = ( Eb) ϕx ≡xx = b ψb Df

The use of brackets “[...]” is very important in the above definitions: they mark what Russell
calls the scope of descriptions. Taking the simplest of examples, let us look at the following:

[(ıx)(ϕx)] ∼ ψ(ıx)(ϕx) (4.4.1)

∼ [(ıx)(ϕx)] ψ(ıx)(ϕx) (4.4.2)

In the first formula, the description has what Russell calls a primary occurrence, in the second, it
has what he calls a secondary occurrence. Unpacking 4.4.1 and 4.4.2 according to ∗14 ·01would
respectively yield the following:

( E

y) ϕx ≡x x = y ∼ψy

∼ ( E

y) ϕx ≡x x = y ψy

If, for instance, we were dealing with an ambiguous sentence of ordinary language like “the ϕ
is not equal to z”, the difference of scope considered above would be given as follows:
304 Besides its centrality in terms of how the basic ideas of the section are applied by the authors, section ∗14 stands

out in the work for another important reason: it is the only number of the work where we find theorems in which
bound propositional variables occur. The most important is this:

k14·3 ⊢ p≡ q ⊃p,q f(p)≡ f(q) E!(ıx)(ϕx) ⊃

f{[(ıx)(ϕx)] (ıx)(ϕx)} ≡ [(ıx)(ϕx)] f{(ıx)(ϕx)}

This proposition establishes that the scope of an expression “(ıx)(ϕx)”, i.e., a definite description, is irrelevant
in determining the truth­value of any proposition (or, better yet, sentence) in which it occurs when E!(ıx)(ϕx).
The comments on it are are relevant in connection to the status of “propositions” and “propositional functions”.
The authors observe that “the use of propositions as apparent variables involves an apparatus not required
elsewhere, and we have therefore not used this proposition in subsequent proofs”. They explicitly claim that
the reason for this is that they cannot legitimately introduce p, q, etc., as bound variables “without the explicit
introduction of the hierarchy of propositions with a reducibility­axiom such as k12·1·11”. In response to the
“whole school of writers” who “state that Principia does not contain metatheorems” (KRIPKE, S., 2005, p.1013),
Kripke aptly observes that the above theorem is “an explicit counterexample to their claim, though there are
many others, and this is not even the most important counterexample” (KRIPKE, S., 2005, p.1013).
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( E

y) ϕx ≡x x = y y ̸= z

∼ ( E

y) ϕx ≡x x = y y = z

In the first formula of each pair of formulas above, the scope of the description operator is the
narrowest possible, in the second, it is the widest. Whitehead and Russell adopt the convention
of generally omitting “explicit mention of scope”305, for as they observe, “[...] the scope usually
required is the smallest proposition enclosed in dots or brackets in which ‘(ıx)(ϕx)’ occurs”306.

As Landini insists, the remarks made by Whitehead and Russell’s when introducing the
contextual elimination of expressions “(ıx)(ϕx)” for definite descriptions strongly suggest that
k14 is introducing a contextual elimination of expressions like (ıx)(ϕx) by employing the letters
ψ, ϕ, etc., as schematic letters, not predicate variables. Take the following:

For reasons explained in the Introduction, we do not define “the x which satis­
fies ϕx̂” but we define any proposition in which this phrase occurs. Thus when,
we say: “ The term x which satisfies ϕx̂ satisfies ψx̂” we shall mean: “There
is a term b such that ϕx is true when, and only when, x is b, and ψx is true”
That is, writing “(ıx)(ϕx)” for “the term x which satisfies ϕx”, ψ(ıx)(ϕx) is
to mean:
( Eb) ϕx ≡xx = b ψb

This, however, is not yet quite adequate as a definition, for when (ıx)(ϕx) oc­
curs in a proposition which is part of a larger proposition, there is doubt whether
the smaller or the larger proposition is to be taken as the “ψ(ıx)(ϕx)”.307

The only way to make sense of the above is by taking “ψ(...)” as a scheme standing for
well­formed formulas. And, in fact, if ψ above were understood as a bindable object­language
variable, there would be no need for scope markers308. As he also observes, definitions like
k20·01 must be read as containing implicit scope markers. And, in fact Whitehead and Russell
explicitly say this:

As in the case of f(ıx)(ϕx), so in that of f{ẑ(ϕz)}, there is an ambiguity
as to the scope of ẑ(ϕz) if it occurs in a proposition which itself is part of a
larger proposition. But in the case of classes, since we always have the axiom
of reducibility, namely
( Eψ) ϕx ≡x ϕ!x,
which takes the place of E!f(ıx)(ϕx), it follows that the truth­value of any
proposition in which ẑ(ϕz) occurs is the same whatever scope we may give to
ẑ(ϕz), provided the proposition is an extensional function of whatever it may
contain. Hence we may adopt the convention that the scope is to be always the

305 WHITEHEAD & RUSSELL, 1925, p.173 [1910, pp.181­2].
306 WHITEHEAD & RUSSELL, 1925, p.173 [1910, pp.181­2].
307 WHITEHEAD & RUSSELL, 1925, p.173 [1910, pp.181­2].
308 Cf. LANDINI, G., 2013b, p.191.
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smallest proposition enclosed in dots or brackets in which ẑ(ϕz) occurs. If at
any time a larger scope is required, we may indicate it by ‘[ẑ(ϕz)]’ followed
by dots, in the same way as we did for (ıx)(ϕx).309

Whitehead and Russell suppressed the scopes in accordance with the conventions of k14

­ so the scope intended is always the narrowest possible310. Thus, k20·01 should be read with
scope markers that are simply omitted for readability.

More importantly, Landini points out that observing the need for (implicit or explicit)
scope of descriptions ­ and incomplete symbols in general ­ shows that “(ıx)(ϕx)” is not a term
of Principia’s language and that the same applies to expressions for classes and relationse311.
Putting matters as directly as possible: Landini’s point is that there is no such thing as a formula
“ψ[(ıx)(ϕx)]” in Principia’s object language!312 Landini exemplifies this with the following the­
orem:

k14·18 ⊢ E!(ıx)(ϕx) ⊃ (x) ψx ⊃ ψ(ıx)(ϕx)

Restoration of scope markers and the elimination of “(ıx)(ϕx)” in accordance with the above
show this expression is not a term at all, and that “ψ(ıx)(ϕx)” is a mere scheme. First, we restore
the marker for a primary scope:

E!(ıx)(ϕx) ⊃ (x) ψx ⊃ [(ıx)(ϕx)] ψ(ıx)(ϕx)

Next, we eliminate the definitions, which yields:

( Eb) ϕx ≡x x = b ⊃ (x) ψx⊃ ( Eb) ϕx x = b ψb

Similarly, let us take the following theorem:

k14·2 ⊢ (ıx)(x = a) = a

Restoring primary scope and eliminating “(ıx)(x = a)” according to k14·01 gives us:

( E

b) x = a ≡x x = b b = a

Expressions of the form “(ıx)(ϕx)” clearly do not behave as terms. The subjacent issue here
is one raised by Gödel, who long ago complained that the order of elimination of incomplete
symbols is not irrelevant. As Landini observes, since incomplete symbols like “(ıx)(ϕx)” are
309 WHITEHEAD & RUSSELL, 1925, p.80 [1910, p.83].
310 Again, cf. WHITEHEAD & RUSSELL, 1925, p.173 [1910, pp.181­2].
311 LANDINI, G., 1998a, pp.165­171; see also LANDINI, G., 2011a, pp.117­124.
312 LANDINI, G., 2011a, pp.117­8.
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not terms of Principia’s language, one cannot apply definitions framed with individual variables
to them. Concerning theorem k14·2 above, for instance, one cannot eliminate the identity sign
directly according to Principia’s definition k13·01, which is:

x = y = (ϕ) ϕ!x⊃ ϕ!y Df

This would yield:
(ϕ) ϕ![(ıx)(x = a)]⊃ ϕ!a

Which, of course, is an expression which Whitehead and Russell do allow; but Landini’s point
is that the above should not be taken as an expression of Principia’s object language and that
it cannot be obtained directly from k14·2 by applying k13·01: that definition is framed with
proper individual variables and thus cannot be applied to descriptions directly! And a similar
point applies to expressions for classes: none of the expressions “ẑ(ψz)”, “ẑ(ϕ!z)” are genuine
terms. The pseudo­problems which arise if Landini’s point is not followed show that he is right.
Following Gödel, Carnap argued inMeaning and Necessity313 that Principia’s definition of class
expressions require modification in order to deal with the following issue. Assume, for the mo­
ment, that “Fx” asserts that x is featherless, “Bx” asserts that x is biped and “Hx” asserts that
x is human. Assume further, then that the following is true:

(x)(Fx Bx ≡ Hx) (4.4.3)

(Fx̂ Bx̂) ̸= Hẑ (4.4.4)

Now, take the two sentences:
{x : Hx} = Hẑ (4.4.5)

{x : Hx} ̸= Hẑ (4.4.6)

The conjunction of the above, Carnap argues, should be contradictory. It is not, however. If we
apply k20·01 to 4.4.5, we get:

{x : Hx} = Hẑ ≡ ( E

g)[(x)(gx≡Hx gẑ = Hẑ) (4.4.7)

The right side of 4.4.7 is provable: just let gẑ = Hẑ, from whence it follows that gx ≡ Hx

and generalize. Carnap recognizes that when applying k20·01 “the smallest sentence or matrix
in the actually given abbreviated notation is to be taken as corresponding to the left side in the
definition”314. Thus, applying the definition to 4.4.6, he observes that we get:

{x : Hx} ̸= Hẑ ≡ ( Eg)[(x)(gx ≡ Hx gẑ ̸= Hẑ) (4.4.8)
313 CARNAP, R., 1947.
314 CARNAP, R., 1947, p.149.
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But the right side of 4.4.8 is provable from 4.4.3 and 4.4.4: just assume their conjunction (x)(Fx
Bx ≡ Hx) (Fx̂ Bx̂) ̸= Hẑ; then apply existential generalization on Fx̂.Bx̂. It turns out,
then, that 4.4.5 and 4.4.6 are not only not contradictory ­ they are both true. Carnap finds this
misleading, since the notation “suggests the interpretation of 4.4.6 as “ẑ(Hz) is not identical
with Hẑ”315. The problem, Carnap argues, is that Russell’s definition was crafted so that “class
expressions should be such that they can be manipulated as if they were names of entities”316.
Carnap takes it that his “result makes this assumption doubtful”, because it shows that “Russell’s
definition is not quite in agreement with the intended purpose”317 What Carnap’s example shows
is that incomplete symbols should not be viewed as genuine terms and that the application of
any definition (or theorem) framed in terms of individual variables like k13·01 must wait the
elimination of expressions like “ẑ(ψz)”.

The above leads us to Landini’s second argument in favor of his interpretation of Prin­
cipia’s emulation of classes of classes. As he observes, “if classes were themselves identified
with propositional functions (i.e. entities of higher type) then these definitions [k20·01·02 and
k21·01·02] would be sufficient”318. They are not, however. As we discussed, one of the main
goals of section k20 is to recover basic principles governing extensional contexts. One impor­
tant example that we mentioned is k20·3, which, expressed with Landini’s simple­type indices
and with scope markers, is the following:

⊢ [ẑt(ψzt)] xt ϵ ẑt(ψzt) ≡ ψzt

As Landini points out, Principia can and should (but doesn’t) recover an analogue for classes
of classes of the above, namely:

⊢ [β̂(fβ)] α ϵ β̂(fβ) ≡α fα

This requires k20·08. Let us follow Landini’s reconstruction of the proof. First, we apply ∗20·07
to eliminate lower­case Greek letters, getting319:

[β̂(fβ)] [ẑt(ψzt)] ẑt(ψzt) ϵ β̂(fβ) ≡ f{ẑt(ψzt)}

For convenience, let us drop the scope markers for class symbols like “ẑt(ψzt)” since here their
occurrences are primary. Application of ∗20 · 08 gets us:

( Eg)(g!α ≡α fα ẑt(ψzt) ϵ g!α̂) ≡ f{ẑt(ψzt)}

Then, application of k20·01 to the left side of the equivalence then gets us:

( Eg)(g!α ≡α fα ( Eϕ)(ϕ(t)xt ≡ ψxt ϕ(t)x̂ ϵ g((t))α̂) ≡ f{ẑt(ψzt)}
315 CARNAP, R., 1947, p.149.
316 CARNAP, R., 1947, p.149.
317 CARNAP, R., 1947, p.150.
318 LANDINI, G., 2011a, p.121.
319 For readability, we have to employ more parenthesis for punctuation, reducing the number of dots, since the

latter become very inconvenient in great number.
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Then, applying k20·02, again, to the left side, we get:

( Eg)(g!α ≡α fα ( Eϕ)(ϕ(t)xt ≡ ψxt g((t))(ϕ(t)x̂)) ≡ f{ẑt(ψzt)}

We eliminate the remaining lower­case Greeks letters on the right side:

( E

g)((χ)(g!{zt(χtz)} ≡ f{zt(χtz)} ( E

ϕ)(ϕ(t)xt ≡ ψxt g((t))(ϕ(t)x̂)) ≡ f{ẑt(ψzt)}

And then apply k20·01 again to the left side, which becomes:

(χ)

 ( E

ϕ)(ϕ(t)xt ≡x χtx g((t))(ϕ(t)x̂))

≡
( E

ϕ)(ϕ(t)xt ≡x χtx f(ϕ(t)x̂))]

 ( Eϕ)(ϕ(t)xt ≡ ψxt g((t))(ϕ(t)x̂))

embedded in “(∃g)(... ≡ f{ẑt(ψzt)})”. And if we apply k20·01 to the right side of the equiva­
lence, we finally arrive at:

( E

g)



(

(χ)(( Eϕ)(ϕ(t)xt ≡x χtx g((t))(ϕ(t)x̂))

≡( E

ϕ)(ϕ(t)xt ≡x χtx f(ϕ(t)x̂))

)
( E

ϕ)(ϕ(t)xt ≡ ψxt g((t))(ϕ(t)x̂))]

≡ ( E

ϕ)(ϕ(t)xt ≡ ψxt f(ϕ(t)xt)


The above gives the true form of abstraction for classes of classes of individuals in Principia,
crucially relying on k20·08. And what does this very cumbersome formula tell us about the
No­Class theory? Landini rightfully insists that it shows that the No­Class theory was a genuine
attempt to get rid of classes as entities of any sort. The point, as Landini insists320, is that k20·01
together with its auxiliary definitions enabled Whitehead and Russell to emulate a theory of
classes of entities of any simple type and it is because classes of entities are not entities at all
thatk20·08 and auxiliary definitions are introduced, so that the theory can also emulate classes of
classes of entities (of any simple type). There is simply no term of Principia’s object­language
that outright takes the place of expressions for classes of individuals or classes of classes of
individuals.

Now, Landini’s third and most decisive argument also explores Principia’s notion of
scope and the aims that k20was supposed to achieve. The argument is very simple. Take ∗20·07,
that is:

(α) fα = (ϕ) f{ẑ(ϕ!x)}

According to Church’s rendition of Principia, “f ” above is a genuine object language variable,
not a schematic letter for well­formed formulas. This means that following Church’s formulation
a primary scope of “ẑ(ϕ!x)” forces itself in the above formula. In other words, according to
Church’s reconstruction, restoring scope markers in k20·07 would have to give us:

(α) fα = (ϕ) [ẑ(ϕ!x)] f{ẑ(ϕ!x)}
320 LANDINI, G., 2011a, p.122­3.
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Landini’s straightforward argument is that there are proofs that require a secondary scope in
applications of k20·07 in direct conflict with the above. One example he gives is the following
theorem:

k20·06 ⊢ ( E

α) fα ≡ ∼ {(α). ∼ fα}

In Principia, this is proved as follows. By definition k20·071, they have:

( E

α) fα ≡ ( E

ϕ) f{ẑ(ϕ!z)}

By definition k10·01 of the existential quantifier, they have:

( Eϕ) f{ẑ(ϕ!z)} ≡ ∼ [(ϕ) ∼ f{ẑ(ϕ!z)}]

From whence it follows:

( Eα) fα ≡ ∼ [(ϕ) ∼ f{ẑ(ϕ!z)}]

Now, from definition k20·07, they have:

(α) ∼ fα ≡ (ϕ) ∼ f{ẑ(ϕ!z)}

And thus:
∼ {(α) ∼ fα} ≡ ∼ [(ϕ) ∼ f{ẑ(ϕ!z)}]

From this and above the desired proposition follows.What is relevant here is this: the application
of k10·01 shows that Whitehead and Russell allowed secondary occurrences of “ẑ(ϕ!z)” in
applications of k20·07·071, against Church’s rendition321.

All of this shows, as Landini emphasizes, that Russell meant to be workingwith an actual
No­Class theory.

Indeed, this interpretation of the No­Class theory helps us to see a much more interesting
picture of Principia in face of those who still accept Quine’s concerns over Whitehead and
Russell’s use of “propositional function”. As we mentioned above, Soames has claimed that
the theory “remains dubious” as a device to contextually eliminate class expressions and that it
raises “too many problems for too little result”322. Echoing Quine’s views, Soames writes that:

The entities to which classes are supposed to be reduced ­ propositional func­
tions ­ are more taken for granted by Russell than seriously investigated. As
already indicated, he speaks confusingly and inconsistently about them, and
the view that seems to be uppermost in his mind ­ that they are expressions ­
is obviously inadequate. Although other choices ­ extensional1 functions and
gappy propositions ­ make more sense, he doesn’t systematically explore them,
and, as we have seen, they aren’t promising candidates for achieving ontologi­
cal economies anyway.323

321 Landini raises this same point in connection with the proof we considered above. Cf. LANDINI, G., 2013b,
pp.200­1.

322 SOAMES, S., 2008, p.217.
323 SOAMES, S., 2008, p.217.
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Similar remarks are easily found in recent literature324, but Soames’s interpretation ­ as
presented in his response ­ gives a paradigmatic representation of how Russell’s views are fre­
quently misunderstood. We can now see that the root of all misunderstandings is the idea that
what is defined by k20 · 01 is “[...] a notation containing complex singular terms for classes”325.
From this assumption, Soames is inevitably lead to the view that Russell was attempting a re­
duction of classes to so­called propositional functions.

Landini’s interpretation provides us a much more interesting appraisal of the No­Class
theory. For, as Soames correctly appreciates, “[...] whether or not an ontological reduction is
achieved [by k20·01 and its companion definitions] depends on how predicate quantifiers are
understood”326. If we interpet Principia’s predicate variables in terms of a nominalistic seman­
tics along the lines suggested by Landini we see clearly why Russell thought he was achieving
a genuine ontological economy. Furthermore this interpretation also provides a compelling ex­
planation as to why Russell abandoned the Substitutional Theory. The No­Class theory framed
within the nominalistic substitutional semantics appears to have the same appeal of the Substi­
tutional Theory of 1906 and more: the theory avoids any ontological commitments to classes,
propositional functions and also to propositions327!

The above interpretation also explains why Russell’s confidence in Principia’s contex­
tual elimination of classes never wavered328. It is clear that even if we concede that Russell’s
intended plan for justifying the structure of simple types of Principia’s predicate variables in
terms of a nominalistic substitutional semantics was a failure, we can still see that, on the above
account, the No­Class Theory would still have a strong appeal to him. For even on a realistic
semantics where each variable ϕ(o), ψ(o,o), ϕ((o)), ψ(o,(o)), etc., ranges over a totality of univer­
sals, the No­Class theory still avoids any commitments to classes and such interpretation would
still preserve the idea that all variables are individual variables (although, of course, this would
amount to abandoning Russell’s doctrine that there is only one kind of individual variable with
an unrestricted range). Surely, this shows that in a very important sense Quine was right all
324 Following Peter Geach, who claims that the use of “propositional function” in Principia is “hopelessly confused

and inconsistent” (GEACH, P., 1972, p.272), Richard Cartwright claims that “attempts to say what exactly a
Russellian propositional function is, or is supposed to be, are bound to end in frustration” (CARTWRIGHT, R.,
2005, p.915).

325 SOAMES, S., 2008, p.214.
326 SOAMES, S., 2008, p.214.
327 This of course, dos not mean that the approach worked: the problem with it, as we just discussed, is that the need

for the Axiom of Reducibility for the development of classical Mathematics undermines Russell’s nominalistic
semantics.

328 Russell repeatedly referred to his contextual elimination of classes put forward inMathematical Logic and Prin­
cipia’s section ∗20 as giving the definite elimination of classes from the primitive vocabulary and assumptions
of Mathematical Logic and Mathematics, even in posterior texts where he acknowledges that Principia does
have serious problems (most notably the need for the Axiom of Reducibility). Cf., for instance, RUSSELL, B.,
1919a, p.188; 1924, p.165; 1959, p.74­5. Indeed, even before Russell had settled for the approach put forward in
Principia we have reason to believe that he and Whitehead took the approach of ∗20 to be established beyond
doubt: on June of 1907 Whitehead wrote to Russell observing that “Your transition from intension to extension
by means of [∗20 · 01] is beyond all praise. It must be right. That peculiar difficulty, which has worried us from
the beginning is now settled forever” (MOORE, G., 2014, p.lxxxvi).
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along when he claimed that a simple theory of types which purports to avoid any commitment
to classes and to preserve most of classical Mathematics along the lines Russell intended must
embrace simple type theory with an ontology of attributes and relations­in­intension. But then
again, once we accept Landini’s account of Principia’s Introduction we must conclude with him
that Russell originally intended to completely avoid a hierarchy of types of entities of any sort
and that Russell’s plan to achieve that failed.

4.4.5 Russell’s Later Remarks on ‘Propositional Functions’

If we go beyondPrincipia for a discussion of the status of propositional functions and the
ontological import of type distinctions, yet more evidence against Cocchiarella’s and Linksy’s
interpretations can be found. In the articleOn The Notion of Cause, delivered as Russell’s second
Presidential Address to the Aristotelian Society on 4 November 1912329 ­ thus right after the
publication of Principia’s second volume ­ we find:

[...] when it is worth saying that something “would be true under all circums­
tances”, the something in question must be a propositional function, i.e. an
expression containing a variable, and becoming a proposition when a value is
assigned to the variable; the varying “circumstances” alluded to are then the
different values of which the variable is capable.330

In Russell’s abandoned Theory of Knowledge manuscript (the writing of which overlap­
ped with the preparation of Principia’s third volume for publication) we find:

By a “proposition”, here, I mean a phrase which is grammatically capable of
expressing a judgment; or one which, so far as form goes, might express a fact,
though it may fail to do so owing to falsehood.331

If we turn to Russell’s works published after Principia, the evidence that Russell took
“propositional function” to be primarily understood as a kind of linguistic item is simply overwhel­
ming. In Introduction to Mathematical Philosophy, we find:

We mean by a “proposition” primarily a form of words which expresses what
is either true or false. I say “primarily,” because I do not wish to exclude other
than verbal symbols, or even mere thoughts if they have a symbolic character.
But I think the word “proposition” should be limited to what may, in some
sense, be called “symbols,” and further to such symbols as give expression to

329 SLATER, J., 1992, p.190.
330 RUSSELL, B., 1912, p.194. Our emphasis.
331 RUSSELL, B., 1913, p.80, footnote 1.
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truth and falsehood. [...] A “propositional function,” in fact, is an expression
containing one or more undetermined constituents, such that, when values are
assigned to these constituents, the expression becomes a proposition. In other
words, it is a function whose values are propositions.332

InMy Philosophical Development we find Russell explicitly looking back at Principia’s
notion of propositional function and accounting for it in purely linguistic terms:

Whitehead and I thought of a propositional function as an expression contai­
ning an undetermined variable and becoming an ordinary sentence as soon as
a value is assigned to the variable: ‘x is human’, for example, becomes an or­
dinary sentence as soon as we substitute a proper name for ‘x’.333

What logic requires is propositional functions, that is to say, expressions in
which there are one or more variables and which are such that, when values are
assigned to the variables, the result is a proposition.334

More importantly, in Russell’s works afterPrincipiawe find him addressing the question
of what the ontological counterpart of higher­order variables could be. There are two texts that
provide conclusive evidence that at least after Principia’s publication, Russell would not endorse
the idea that constructions are ‘real’ or ‘exist’ in any sense, nor the idea that type­distinctions
have ontological import. The first is the 1918 set of lectures published as The Philosophy of
Logical Atomism. There Russell states explicitly that “The theory of types is really a theory of
symbols, not of things”335. When asked, by an unidentified member of the audience if he could
“lump all those classes, and classes of classes, and so on, together”336, Russell answered with
the following:

All are fictions, but they are different fictions in each case. When you say
“There are classes of particulars”, the statement “there are” wants expanding
and explaining away, and when you have put down what you really do mean, or
ought to mean, you will find that it is something quite different from what you
thought. That process of expanding andwriting down fully what youmean, will
be different if you go on to “There are classes of classes of particulars.” There
are infinite numbers of meanings to “there are”. The first only is fundamental,
so far as the hierarchy of classes is concerned.337

Here he is explicitly acknowledging that only what we nowadays call first­order ­ i.e.,
individual ­ variables are genuine variables in the sense that their values are entities.
332 RUSSELL, B., 1919a, p.155­6. Our emphasis.
333 RUSSELL, B., 1959, p.124. Our emphasis.
334 RUSSELL, B., 1959, p.167. Our emphasis.
335 RUSSELL, B., 1918, p.232. Our emphasis.
336 RUSSELL, B., 1918, p.233.
337 RUSSELL, B., 1918, p.233.
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The exact same point is also discussed in more detail by Russell in an important ­ and
often neglected article ­ from the fifties, Logic and Ontology, which is actually one of Russell’s
last technical works338. Besides introducing propositional functions again as mere expressions,
the paper presents an account of the ontological commitments of a given theory which on the
surface is much similar to that of Quine’s339:

I come now to the particular question of ‘existence’. [...] I maintain that the
only legitimate concept involved is that of E. This concept may be defined
as follows: given an expression fx containing a variable, x, and becoming a
proposition when a value is assigned to the variable, we say that the expression
( Ex) fx is to mean that there is at least one value of x for which fx is true. I
should prefer, myself, to regard this as a definition of ‘there is’, but, if I did, I
could not make myself understood.340

As Klement points out, however, “[...] it would be a mistake to read Russell as nothing
more than a proto­Quinean”341, for Russell did not take the ontological status of higher­order
variables to be settled in the same way as that of first­order variables.

Russell introduces a distinction between the sense of the locution “there are ...” when
applied to individual variables and when applied to higher­order terms, like numbers, explicitly
warning that the latter use must not be understood as having any sort of ‘Platonic’ connotation:

When we say ‘there is’ or ‘there are’, it does not follow from the truth of our
statement that what we say there is or there are is part of the furniture of the
world, to use a deliberately vague phrase. Mathematical logic admits the sta­
tement ‘there are numbers’ and metalogic admits the statement ‘numbers are
logical fictions or symbolic conveniences’. Numbers are classes of classes, and
classes are symbolic conveniences. An attempt to translate Einto ordinary lan­
guage is bound to land one in trouble, because the notion to be conveyed is
one which has been unknown to those who have framed ordinary speech. The
statement ‘there are numbers’ has to be interpreted by a rather elaborate pro­
cess. We have first to start with some propositional function, say fx, then to
define ‘the number of things having the property f ’, then to define ‘number’ as
‘whatever is the number of things having some property or other’. In this way
we get a definition of the propositional function ‘n is a number’, and we find
that if we substitute for nwhat we have defined as ‘1’, we have a true statement.
This is the sort of thing that is meant by saying there is at least one number, but
it is very difficult, in common language, to make clear that we are not making
a Platonic assertion of the reality of numbers.342

338 The article was published in 1957 ­ Russell was already in his eighties. It illustrates very clearly how ridiculous
is the claim that Russell never produced ’serious’ or ’technical’ philosophy after the 1920’s or 1930’s. A brief
skim through Russell’s An Inquiry Into Meaning and Truth from 1950 or the monumental Human Knowledge:
Its Scope and Limits published in 1948 would also suffice.

339 There other passages that showcase this influence of Russell on Quine’s views. One that is particularly striking
is this: “[...] when you take any propositional function and assert of it that it is possible, that it is sometimes
true, that gives you the fundamental meaning of ‘existence’.” (RUSSELL, B., 1918, p.204).

340 RUSSELL, B., 1957, p.235.
341 KLEMENT, K., 2018, p.156.
342 RUSSELL, B., 1957, p.234­5.
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He observes that though “we cannot do without such words as ‘precede’ [...] such words
do not seem to point at one of the bricks of the universe in the kind of way in which proper names
can do”343. Russell acknowledges that predicate and relational expressions “serve a purpose in
enabling us to assert facts which would otherwise be unstatable”, but explicitly claims that it
does not follow from this “that there is, in any sense whatever, a ‘thing’ called ‘preceding’ ”344.

Russell also addresses directly the question of how locutions like “there are ...”, “there
is a ... such that ...” should be understood when applied with predicate expressions when he
acknowledges and addresses Quine’s concerns over Principia’s bound predicate variables:

Quine finds a special difficulty when predicates or relation­words appear as
apparent variables. Take, for example, the statement “Napoleon had all the qua­
lities of a great general”. This will have to be interpreted as follows: ‘whate­
ver f may be, if “x was a great general implies fx, whatever x may be, then
f (Napoleon)” ’. This seems to imply giving a substantiality to f which we
should like to avoid if we could. I think the difficulty real, and I do not know
the answer. We certainly cannot do without variables that represent predicates
or relation­words, but my feeling is that a technical device should be possi­
ble which would preserve the differences of ontological status between what
is meant by names on the one hand, and predicates and relation­words on the
other.345

Granted that this last passage makes it plain that Russell did not had a definite position
on the ontological import of higher­order quantification, it is clear, as Kevin Klement points out,
that the lectures on Logical Atomism and the article Logic and Ontology do present conclusive
evidence that from 1918 onward “Russell thinks that first­order quantification is ontologically
committing in a way that higher­order quantification is not”346,347.
343 RUSSELL, B., 1957, p.236.
344 RUSSELL, B., 1957, p.237.
345 RUSSELL, B., 1957.
346 KLEMENT, K., 2018, p.164. Russell had already adressed the issue in passing in An Inquiry Into Meaning and

Truth. There we find Russell explaining, in a rather careless way, that higher­order variables do not have subs­
tantial ontological counterparts besides expressions: “In a language of the second order, “f(p) is true for every
p” , ‘f(ϕa) is true for every ϕ” , can be admitted as single sentences. This is familiar, and I need not dwell upon
it. In the language of the second order, variables denote symbols, not what is symbolized.”(RUSSELL, B., 1950,
p.202). As Kevin Klement observes, this is somewhat misleading since it suggests an objectual interpretation of
higher­order quantifiers over expressions which surely was not Russell’s intent; this poor manner of expression
can be overlooked, however, since, as Klement puts it, “Russell was writing for an audience that likely would
not pick at this nit” (KLEMENT, K., 2018, p.164).

347 Klement departs from Landini, however, in two central aspects of his interprtetation. The first departure con­
cerns the interpretation of Principia’s circumflex notation. Contrary to Landini’s view, Klement thinks that
“the circumflex notation does have a role to play in the object language of PM” (KLEMENT, K., 2013a, p.234),
though this role is, admittedly, “very narrow”: according to Klement there are circumflected terms inPrincipia’s
language, but a term of this kind can only occur “as an argument to a higher­type propositional function varia­
ble” (KLEMENT, K., 2013a, p.234). Klement observes that “[...] the circumflex is still necessary”(KLEMENT,
K., 2013a, p.234.) in some formulas of Principia’s original language to indicate that the predicate variable “ϕ”
is occurring as an argument for the higher­order predicate variable “χ”. And, in fact, formulas of this sort are
easily found in Principia. The second issue of dispute between Landini and Klement concerns the substituti­
onal interpretation of Principia’s predicate variables. Though Klement’s is largely in agreement with Landini,
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Now, though it must be also acknowledged at once that many of the texts quoted above
were written and published long after Principia and one concern that may quite legitimately be
raised is that all of them may be the result of Russell having changed his views, in particular
due to the influence of the likes of Wittgenstein, Carnap, and most likely than anyone else,
Quine. So the passages above must be handled with care: the views expressed in them cannot
simply be projected into Principia. Still, Russell’s later writings do provide strong evidence
for interpretations which claim that the notion of “propositional function” must be understood
primarily as being a purely linguistic notion ­ that is, either as meaning a bindable predicate
variable (which receives simple­type indices) or a schematic letter.

4.5 Concluding Remarks

In this chapter we attempted to thoroughly consider distinct interpretative approaches
that attempt to make sense of Principia’s problematic notion of a ‘propositional function’ in
the face of the traditional criticisms put forward in secondary literature. There were two main
approaches considered.

he thinks that “Russell accepts a substitutional account for all types” (KLEMENT, K., 2018, p.164. Our empha­
sis.), including for individual variables. This claim is based on two sources of evidence. First, Klement observes
that when Whitehead and Russell introduce the hierarchy of senses of truth and falsehood, their discussion “is
not specifically targeted at first­order quantification”. As in many other places in Principia, the point is rather
that a sentence like “(x).ϕx” has ’second’ truth or falsehood relatively to a sentence like “ϕa” which for the
purposes of their exposition they are treating as being capable of first truth and falsehood. Second ­ and more
importantly ­ Klement points to positive textual evidence that strongly indicates that Russell’s also entertained
the idea of interpreting first­order quantifiers substitutionally; cf., for instance, RUSSELL, B., 1950, p.196­7
and RUSSELL, B., 1918, in particular where Russell discussed his idea of a logically perfect language. Still,
concerning the latter point there are good reasons for being skeptical about Klement’s position. The main rea­
son for skepticism is that Russell’s conception of a “logically perfect language” as discussed in the lectures on
Logical Atomism reverberates Wittgenstein’s view in the Tractatus that what “the axiom of infinity is intended
to say would express itself in language through the existence of infinitely many names with different meanings”
(WITTGENSTEIN, L., 1922, §5.535.). So it is not at all implausible that Russell came to endorse this view due
to his student’s influence. And if that is the case, the view cannot be projected into Principia. A similar point can
also be made with respect to Russell’s remarks in An Inquiry Into Meaning and Truth.One important instance is
the following passage of An Inquiry into Meaning and Truth, where Russell discusses how general propositions
are obtained from particular ones by the operation of generalization: “Given any sentence containing either a
name “a” or a word “R” denoting a relation or predicate, we can construct a new sentence in two ways. In the
case of a name “a” , we may say that all sentences which result from the substitution of another name in place
of “a” are true, or we may say that at least one such sentence is true. (I must repeat that I am not concerned
with inferring true sentences, but only with constructing sentences syntactically, without regard to their truth
or falsehood.) For example, from “Socrates is a man” we derive, by this operation, the two sentences “every
thing is a man” and “ something is a man” , or, as it may be phrased, “ ’x is a man’ is always true” and “ ’x is
a man’ is some times true”. The variable “x” here is to be allowed to take all values for which the sentence “x
is a man” is significant, i.e., in this case, all values that are proper names” (RUSSELL, B., 1950, p.196). This
clearly suggests a uniform subsitutional understanding of quantification. Russsell is explicitly defining the truth
conditions of any sentence like “((x)) ϕx” or “(( Ex) ϕx”, where x is an individual variables, in terms of
the truth or falsehood of all or some of the sentences which result from the substitution of x for a name. Thus,
according to Klement, a first­order quantifier “carries existential import with it, because unlike other quantifiers,
the substituends for its variable are proper names, and proper names must refer to something outside language
in order to have meaning” (KLEMENT, K., 2018, p.165).
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One was that of Bernard Linsky, who followed Church’s reformulation of Principia’s
grammar and interpreted it in terms of a realist conception of so­called propositions and proposi­
tional functions. But despite involving very interesting and fruitful ideas, his interpretation was
found wanting for accounting for several important passages of Principia and other texts of Rus­
sell. The other was that of Gregory Landini, who claims that Principia’s official grammar for
its predicate variables is that of the simple theory of types and that Russell attempted to justify
the adoption of this grammar with an informal nominalistic semantics sketched in Principia’s
Introduction.

We saw that Landini has provided us with an interpretation of Russell’s views that ac­
counts for both the (full) text of Principia’s Introduction and many remarks made in Russell’s
posterior works. His interpretation makes sense of Whitehead and Russell’s ‘direct inspection
argument’, of the distinctions between orders of so­called ‘propositions’ and furthermore, his
interpretation affords us with the best approach to make sense of Russell’s abandonment of
‘propositions’ (in the ontological sense) and the claim that sentences behave like incomplete
symbols (i.e., like definite descriptions when flanked by truth­predicates). But most importantly,
Landini’s interpretation provides the best account available for the radical change that Russell’s
views went in the transition from the system ofMathematical Logic to that of Principia.

AsLandini348 observes, the editorial and scholarlywork effected since the 70’s byGrattan­
Guinness349 (and also by Douglas Lackey350) started a “revolution in Russell scholarship”351 by
presenting definitive evidence that there was much more to be said about what went on between
Insolubilia,Mathematical Logic andPrincipia. Landini effected a second revolution by showing
that the best way to make sense of what went on between the publication of these works is by
reconstructing Principia in a way that: (i) does this by formulating Principia’s logical grammar
on the terms envisaged by its authors and (ii) does not formulate Principia’s Introduction as
defending any sort of type­hierarchy of entities.

Long live the revolution!

348 LANDINI, G., 2015.
349 Again, cf. GRATTAN­GUINNESS, I., 1974, 1977.
350 LACKEY, D. (ed.)., 1973.
351 LANDINI, G., 2015, p.177.
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5 Logicism and the Development of Arith­
metic in Principia Mathematica

When a theory has been apprehended logically, there is often a long and serious
labour still required in order to feel it: it is necessary to dwell upon it, to thrust
out from the mind, one by one, the misleading suggestions of false but more
familiar theories, to acquire the kind of intimacy which, in the case of a foreign
language, would enable us to think and dream in it, not merely to construct
laborious sentences by the help of grammar and dictionary.1

5.1 TheRequiredBackground Logic for theDevelopment of Arith­
metic in Principia

In our discussion of the logicism of The Principles of Mathematics in the first chapter,
we saw that the two fundamental pillars of Russell’s Logicism in that work were:

(I) The arithmetization2 of the several branches of Pure Mathematics that Russell con­
siders; and

(II) His proof that there is a set of terms that satisfy the Peano axioms.

In the Principles, it is these two accomplishments that serve as Russell’s justification for the
claim that the propositions of Pure Mathematics are propositions of Logic. In his early work,
Russell relied essentially on Frege’s construction to prove that there are infinitely many natural
numbers. He intended to vindicate his definition of cardinal numbers by proving that: (1) “The
existence of zero is derived from the fact that the null­class is a member of it”; (2) “the existence
of 1 from the fact that zero is a unit­class (for the null­class is its only member)” and most
importantly (3) “if n be a finite number, n + 1 is the number of numbers from 0 to n (both
inclusive)”; thus establishing that “the existence­theorem follows for all finite numbers”3. He
thought that “[...] throughout this process, no entities are employed but such as are definable in
terms of the fundamental logical constants”4.

The aim of the present chapter is to discuss in some detail why Principia is simply
incapable of demonstrating (3) if the result is framed in such a way that it entails that the class of
1 RUSSELL, B., 1914a, p.105.
2 Again, the sense of “arihtmetization” presupposed is rather weak, given possible reservations Russell could have

had with respect to what extent arithmetization is required for several branches of Mathematics (cf. GANDON,
S., 2008; 2012; and also previous footnote 410 of chapter 2).

3 RUSSELL, B., 1903, p.497 §474.
4 RUSSELL, B., 1903, p.497 §474.
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finite cardinal numbers is infinite (i.e., not inductive). We’ll see that in Principia’s development
of Arithmetic as a logical theory, no such proof that there is a set of terms that satisfy the Peano
axioms is available anymore.

We shall also see, however, that this does not mean that Russell abandoned logicism.
Principia embraces this view just as much as the Principles and any other of Russell’s works on
Mathematical Philosophy.

Before proceeding, however, we must briefly discuss what sort of background Logic can
support Principia’s development of Mathematics, Arithmetic in particular. In the last two chap­
ters we discussed interpretative issues concerning what sort of justification Russell meant for the
formal grammar of Principia’s object language. On all essential points, we sided with Gregory
Landini’s interpretation5, according to which Russell attempted, in Principia’s Introduction, to
provide a somewhat complicated informal semantics (which is not part of Principia’s formal
system) meant to justify a “formal syntax of simple type­regimented predicate variables”6. As
we discussed, the core ideas involved in this interpretation consisted in the following points:

1. A schematic reading of so­called “propositional variables”, i.e., expressions like “p”, “q”,
“r”, etc.

2. A schematic reading of so­called “non­predicative propositional functions”, i.e., expres­
sions like “ϕx”, “ψx”, “f(x, y)”, etc.

3. A substitutional semantics for the bindable predicate variables of the object­language (the
so called “predicative propositional functions”), i.e., expressions like “ϕ!”, “ψ!”, “f !”, etc.

4. The Axiom­Schemes of Reducibility k12·1 11 understood as impredicative comprehen­
sion axiom schemes.

Such interpretation attributes to Principia the view according to which only individual variables
range over genuine entities, keeping it in accordance with Russell’s longstanding claim that
“there is only one kind of being, namely being simpliciter”7. But, as discussed, Russell’s attempt
to justify the grammar of simple types in this way was a failure.

Somewhat shortening the story, this semantics cannot account for the richness that Prin­
cipia’s language requires for the development of Mathematics ­ in particular where impredi­
cative comprehension is needed. Russell’s semantics failed to validate the axiom scheme of
Reducibility8. Thus Russell failed to reconcile the development of classical Mathematics with
his idea that a correct logical calculus should embrace only one sort of genuine variables which
5 Mainly as put forward in LANDINI, G., 1998a and 2011a.
6 LANDINI, G., 2016, p.1.
7 RUSSELL, B., 1903, p.449 §427.
8 Cf. LANDINI G., 1998, p.293­4; LANDINI, G., 2011a, pp.134­5; also our previous discussion in chapter 6.
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range over a single domain of entities. So at this point we must carefully distinguish the two
following questions:

(a) What is the informal justification (which, again, is not part of the formal system)
actually provided by Russell in the Introduction for the grammar of simple types
which Principia adopts?

and

(b) What is the required background Logic for sustaining the mathematical edifice built
up from ∗12 onward in Principia?

Question (a), as we saw, is still very controversial (and will probably remain so): it is a mat­
ter of providing the best interpretation of Principia’s text given the available (and sometimes
conflicting) background evidence left in Russell’s published and unpublished works and corres­
pondence. Our discussion of some of the available evidence in the last three chapters led us to
side with Landini, although, of course, there is still room for dispute. Question (b), on the other
hand, does not have such controversial status: what Principia requires is a background theory
or foundation which is strong enough to (formally) recover the structure and theorems of the
(impredicative) simple type theory of classes and relations­in­extension9.

As is well known, several alternatives were formulated along the years after the publica­
tion of Principia’s first edition10. In his famous paper The Foundations of Mathematics11, Frank
Ramsey proposed his reformulation ofPrincipia’s foundations by appealing to some ofWittgens­
tein’s ideas and to his own new notion of an “extensional propositional function” and infinitely
long conjunctions and disjunctions to get rid of Reducibility12. In his doctoral dissertation, A Sys­
tem of Logistic13, Quine argued, following some ideas already developed in detail by Gödel14, in
favor of the adoption of a simple theory of types of classes as the primitive basis for Principia
(along with several other modifications, like the adoption of the Wiener­Kuratowski definition
of ordered pair/couple15). Similarly, some of Church’s works16 consist in attempts to overhaul
the presentation of type theory in Russell’s Introduction, putting in its place a rigorously for­
mulated (realist) ramified theory of types of intensional entities, i.e., concepts and propositions
(plus his version of the axiom­scheme of Reducibility).
9 Including both homogeneous and heterogeneous relations. See 7.3 below.
10 Cf. previous footnote 47 of the Introduction of the present work.
11 RAMSEY F., 1926.
12 For detailed discussions of Ramsey’s views on the Theory of Types and the Axiom of Reducibility cf. POT­

TER, M., 2000, 206­22; LANDINI, G., 2011a, pp.360­8, WAHL, R., 2011. Russell himself wrote two reviews of
Ramsey’s works on Mathematical Philosophy (cf. RUSSELL, B., 1931 and 1932).

13 QUINE, W., 1934; cf. also QUINE, W., 1969, pp.239­265.
14 Cf. GÖDEL, K., 1933.
15 Cf., WIENER, N., 1914 and KURATOWSKI, K., 1921.
16 Cf. CHURCH, A., 1956, pp.346­356 and, especially CHURCH, A., 1976.
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Each of the approaches mentioned above are attempts at overhauling Principia’s origi­
nal foundations, clearing up the problematic or unclear aspects of Russell’s Introduction17 while
keeping (most of) Principia’s development of Mathematics intact. Formally, all of the above
reformulations are, arguably, up to the task. Philosophically, however, they are drastically de­
parting from Principia, and this takes us to a further question, namely:

(c) Is there a (formally satisfactory) answer to question (b) that would also be philo­
sophically satisfactory to Russell and/or Whitehead?

This is, of course, intimately related to question (a): in order to determine how Principia’s foun­
dations should be fixed, one must determine what they actually are.

We saw in chapter 5 that Landini and Bernard Linsky had quite different views as to
how Principia’s Introduction should be read. Linsky argues that Church’s rendition of Princi­
pia’s formal grammar in terms of his r­types can be viewed as faithful to what Russell meant,
and Linsky further claims that a realist interpretation of so­called “propositional functions” is in
accordance with what Russell (and, presumably, Whitehead) had in mind for justifying their sys­
tem. According to what we called the “Church­Linsky interpretation”, the simple­type surface
grammar which is the working theory in Principia from ∗12 onward rests upon a realist ramified
type theory of intensional entities. We also saw, however, that Landini, on the other hand, does
not accept the Church­Linsky formal reconstruction as faithful to Principia’s text on very sound
grounds18 and holds what is, in a sense, the opposite view. According to Landini, the simple
type grammar for predicate variables is meant to be Principia’s official formal grammar which
Russell tried to informally (and unsuccessfully) justify in the Introduction with his nominalistic
interpretation of its predicate variables. Thus, according to Landini, the best way to characterize
Principia’s background logic is along the following lines19:
17 Of course, in 1926, Russell himself sketched a reformulation ofPrincipia’s foundations in the Introduction to the

Second Edition (RUSSELL, B., 1927). The work was in the main inspired by Wittgenstein’s ideas as presented
in the Tractatus. He also discussed and incorporated some improvements made by Jean Nicod and Harry Sheffer.
The modifications suggested in this second edition are very problematic, however, both by themselves and from
a historical point of view, cf. POTTER, M., 2000, pp.195­205; LANDINI, G., 2011a, pp.341­368; LINSKY, B.,
2011.

18 See our previous chapter 5.
19 Cf. LANDINI, G., 1998a and 2011a; also “Bertrand Russell: Logic,” by Gregory Landini, The Internet Encyclo­

pedia of Philosophy, ISSN 2161­0002, https://www.iep.utm.edu/, September 9 2020. Several points connected to
his interpretation were kindly clarified to me by prof. Landini in personal correspondence, although, of course,
any possible imprecision or error in the formulation above are entirely my responsibility. Landini has also
pointed out to me that Whitehead probably had some very different ideas as to how Principia’s simple type
grammar should be justified and he called my attention to several passages that indicate this, for which I’m
also thankful. First, as he points out, there is evidence that Whitehead never fully bought Russell’s nominalis­
tic semantics for types sketched in the Introduction to the first edition just as he did not accept the revisions
Russell proposed in the Introduction to the second edition (this latter point being well estabilished and hardly
disputable cf. WHITEHEAD, A., 1926). In Process and Reality, for instance, we find Whitehead claiming that
“Philosophy has been misled by the example of mathematics; and even in mathematics the statement of the
ultimate logical principles is beset with difficulties, as yet insuperable, accompanied by the following footnote:
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1. The formal grammar of Principia’s predicate variables is that of the simple theory of types
(with both homogeneous and heterogeneous type indices, as in “(o, (o))”, for instance)20.

2. All variables range over individuals, which are stratified into simple types.

3. Each type of variable, starting from the lowest simple type o to any higher simple type,
(o), (o, o), ((o)), (o, (o)) and so on, ad infinitum, ranges over a totality of individuals of
that corresponding simple type. Here, we may distinguish two important cases:

a) Individual variables which have the lowest type index o range over the entities at
the very bottom of the hierarchy, namely individuals of the lowest type.

b) Predicate variables range over universals: either attributes or qualities of individuals
(of some type indicated by the type­index of the variable) or relations­in­intension
between individuals (also of some type indicated by the type­index of the variable).

4. Classes and relations­in­extension are not individuals of any simple type. Class expressi­
ons and class variables (lower­caseGreek letters) and expressions for relations­in­extension
and variables for relations­in­extension (latin capital letters in italic) are contextually eli­
minated by the definitions from k20 and k21. They are not part of Principia’s simple type
grammar21.

5. Class expressions and symbols for relations­in­extension do not receive simple type­indices
as individual variables do, but only relative type indices (according to k61−k65)22 ­ and
these notions of “type” are radically different: simple types are types of entities (i.e., ty­
pes of individuals) while relative types concern types of classes and relations­in­extension
which are not assumed as entities of any sort at all.

In what follows, we shall discuss Principia’s development of Arithmetic on the basis of the
above interpretation of its background logic, but without departing from its original notation
except where explicitly indicated.

“Cf. Principia Mathematica, by Bertrand Russell and A. N. Whitehead, Vol. I, Introduction and Introduction
to the Second Edition. These introductory discussions are practically due to Russell, and in the second edition
wholly so.” (WHITEHEAD, A., 1929, p.8). Furthermore, Landini points out that several passages in Principia
itself indicate that Whitehead did not entirely accept Russell’s semantic interpretation. In the Prefatory State­
ment to Volume II, which we have historical reason to believe to be sole work of Whitehead (cf. RUSSELL,
1948, p.138) we find: “We often speak as though the type represented by small Latin letters were not composed
of functions. It is, however, compatible with all we have to say that it should be composed of functions. It is to
be observed, further that, given the number of individuals, there is nothing in our axioms to show how many
predicative functions of individuals there are, i.e., their number is not a function of the number of individuals:
we only know that their number is≥ 2Nc‘Indiv, where “Indiv” stands for the class of individuals” (WHITEHEAD
& RUSSELL, 1912, p.vii); in another passage, Whitehead claims that “[...] it may be the case that the number of
individuals is inductive, but the number of predicative functions of individuals is not inductive” (WHITEHEAD
& RUSSELL, 1912, p.xxx).

20 Cf. LANDINI, G., 1998a, pp.255­257 for a full description of this grammar and also our discussion in the previ­
ous chapter.

21 See our discussion in the previous chapter 6.
22 See section 5.3 and 5.4 below.
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Our reasons for accepting this as the correct characterization can be summarized as fol­
lows.

First, this is in accordance with the authors’s explicit claim that the informal explanations
given in the Introduction are not part of their formal system. Whitehead and Russell are crystal
clear on this point. In the very preface we find:

Our logical system is wholly contained in the numbered propositions, which
are independent of the Introduction and the Summaries. The Introduction and
the Summaries are wholly explanatory, and form no part of the chain of deduc­
tions.23

In fact, Russell was quite explicit on several occasions in claiming that he was never
completely satisfiedwith the theory of types as it was presented in the first edition and that hewas
only convinced that some version of the theory of types should be adopted. InMy Philosophical
Development, for instance, we find:

In the end, it became entirely clear to me that some form of the doctrine of types
is essential. I lay no stress upon the particular form of that doctrine which is em­
bodied in Principia Mathematica but I remain wholly convinced that without
some form of the doctrine the paradoxes cannot be resolved.24

Second, the above realist interpretation of Principia’s type grammar can resonably be
said to fit with Russell’s view held at the time of writing and publishingPrincipia that individuals
are the only genuine constituents of the universe, there being two kinds of individuals: particulars
and universals (the latter category encompassing both qualities and relations).

Third, the above interpretation dissolves completely all the muddles involved with the
vague and ambiguous notions of “propositional function” and “proposition” and it is also in
accordance with the idea that there are no such thing as entities distinguished from individuals
(either universals or particulars).

Fourth, the above interpretation is in complete agreement with Russell’s repeated claim
that classes (and relations­in­extension) are not entities of any sort and that talk of classes is
only a façon de parler.

Before proceeding, we must also make a last observation on the notion of “propositional
function”. Landini aptly observes that “[...] lasting progress on understanding Principia can be
made only if interpreters stop using the expression ‘propositional function’ as if it were a univo­
cal referring term”25. In the present chapter we shall strictly follow this recommendation: when
23 WHITEHEAD & RUSSELL, 1925, p.vii [1910, p.viii].
24 RUSSELL, B., 1959, p.79.
25 LANDINI, G., 2013b, p.168.
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discussing Principia’s text and numbered propositions we shall adopt the policy of uniformly
translating the ambiguous notions of “propositional function” and “proposition” for open and
closed well­formed formula (sentence), except when dealing with so­called “predicative func­
tions”, i.e. expression like “ϕ!x̂” which, as mentioned above, we will interpret as as predicate
variables stratified in simple types.

Thus, following Landini, we may spell out an appropriate and historically accurate for­
mal system for supporting the construction of Mathematics given in Principia as follows.

For now, let italic capital letters A, B, C, D both with and without numeric subscripts26

be variables of our metalanguage ranging over well­formed formulas of Principia’s object lan­
guage. Also for now, let ρ, σ and τ both with and without numeric subscripts27 be metalinguistic
variables standing for object language variables, that is, individual variables x, y, z ranging over
individuals of the lowest simple type o or predicate variables ranging over individuals of some
simple type (o), (o, o), ((o)), (o, (o)), etc., other than those of the lowest simple type. The set of
well­formed formulas (henceforth just formulas) is defined by means of the characterization of
simple type symbols and the formation rules of molecular formulas by means of the propositio­
nal connectives and of general formulas by means of the universal quantifiers. That is, we can
describe the basic vocabulary of the object­language in the following terms:

1. Dots “ ”, “ ” “ ”, “ ”, etc., for punctuation28.

2. An infinite stock of individual variables x, y, z, x1, y1, z1, .... accompanied by simple­type
indices.

3. “∼” for negation and “∨” for disjunction.

4. “(σt)” for the universal quantifier, where σ is an individual variable of some simple­type
index t.

5. Nothing else is part of the primitive vocabulary.

And where t1, ..., tn are simple type indices as presented in our previous discussion, we have:

1. σ(t1,...,tn)(ρt11 , ..., ρ
tn
n ) is a (atomic) formula.

2. If A is a formula, then ∼ A is a (molecular) formula.

3. If A and B are formulas, then A∨B is a (molecular) formula.
26 To ensure an infinite stock of such variables.
27 Again, to ensure an infinite stock of such variables.
28 And also for conjunction, when it is defined by ∗3 · 01.
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4. If A is a formula containing free occurrences of a variable ρ, then (ρ)A is a (general)
formula.

5. Nothing else is a formula.

Then, the basic rules of inference, axioms and definitions of Principia are described in terms of
the following schemata:

k1·01 A⊃B =Df∼ A ∨B

k3·01 A B,A B,A B, etc... =Df∼ (∼ A∨ ∼ B)

k4·01 A ≡ B =Df A⊃B B ⊃ A

k1·1 From A and A⊃B, infer B.

k1·2 A∨ A ⊃ A

k1·3 B ⊃ A∨B

k1·4 A∨B ⊃ B ∨ A

k1·6 A∨B ⊃ C ∨ A ⊃ C ∨B

k10·01 ( E

σt)A =Df∼ (σt) ∼ A

k10·1 (σt)A(σt) ⊃ A[σt/τ t], where A[σt/τ t] results from substituting every free oc­
currence of σt in A(σt) for the variable τ t.

k10·11 From A infer (σt)A, where σt is variable that occurs free in A.

k10·12 (σt) C ∨A(σt) ⊃ ∨ (σt)CA(σt) where the variable σt does not occur free in
C.

k12·n ( E

σ(t1,...,tn))(ρt11 , ..., ρ
tn
n ) σ(t1,...,tn)(ρt11 , ..., ρ

tn
n ) ≡ A, where σ(t1,...,tn) does not

occur free in A.

k13·01 τ t = ρt =Df (σ
(t)) σ(t)(τ t) ≡ σ(t)(ρt)

This completes the primitive basis of the formal system.

Below we re­frame ­ on the basis of the rigorously formulated formal system set above ­
Principia’s contextual elimination for class expressions “ρ̂tB(ρt)” and expressions for relations­
in­extension “ρ̂tυ̂vB(ρ̂t, υ̂v)” set out in sections ∗20 and ∗21 (preserving scope markers)29:

29 Notice that none of the definitions introduce new terms into the language.
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k20·01 [ρ̂tB(ρt)][A(ρ̂tB(ρt))] =Df (

E

σ(t)) (ρt) σ(t)(ρt) ≡ B(ρt) A(σ(t))

k20·02 ρt ϵ σ(t) =Df σ
(t)(ρt)

k20·03 Cls(α) =Df (

E

σ(t)) α = ρ̂t(σ(t)(ρt))

k20·07 (α)A(α) =Df (σ
(t)) A(ρ̂t(σ(t)(ρt))

k20·071 ( Eα)A(α) =Df (

Eσ(t)) A(ρ̂t(σ(t)(ρt))

k20·08 [α̂B(α)][A(α̂B(α))] =Df (

E

σ(t)) (α) σ(t)(α) ≡ B(α) A(σ(t))

Notice that in the definitions above the lower­case Greek letters with simple type indices like
σ(t) or ρt are not class­expressions but metalinguistic placeholders for individual variables. For
relations­in­extension parallel definitions are easily provided:

k21·01 [ρ̂tυ̂vB(ρ̂t, υ̂v)][A(ρ̂tυ̂vB(ρ̂t, υ̂v))] =Df ( E

σ(t,v)) (ρt)(υ̂v) σ(t,v)(ρ̂t, υ̂v) ≡
B(ρ̂t, υ̂v) A(σ(t,v))

k20·02 τ t1{ρ̂tυ̂vσ(t,v)(ρ̂t, υ̂v)}τ v2 =Df σ
(t)(τ t1, τ

v
2 )

k20·03 Rel(R) =Df (
E

σ(t,v)) ( E
σ(t,v)) R = σ(t,v)(ρ̂t, υ̂v)

k20·07 (R)A(R) =Df (σ
(t,v)) : A(σ(t,v)(ρ̂t, υ̂v))

k20·071 ( E

R)A(R) =Df (

E

σ(t,v)) A(σ(t,v)(ρ̂t, υ̂v))

k20·08 [R̂ŜB(R,S)][A(R̂ŜB(R,S))] =Df

( Eσ(t,v)) (R)(S) σ(t,v)(R,S) ≡ B(ρ̂t, υ̂v) A(σ(t,v))

This concludes the contextual elimination of occurrences of class expressions and expressions
for relations­in­extension.

The resulting formal system has no variables other than individual variables and no
terms other than individual variables. The system is as strong as a system of standard (i.e., fully
impredicative) higher­order logic with predicate variables of ascending simple types.

5.2 Principia’s Elementary (‘Emulated’) Theory of Classes and
Relationse
In Principia, what would generally be considered a treatment of elementary Arithmetic

properly begins only in the second volume. The proofs of Principia’s analogues of the Dedekind­
Peano postulates, in particular, are in k120, two hundred pages into volume 2, so as it is to be
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expected, lots of preliminary definitions and theorems of fundamental importance were laid
down long before that.

In order to discuss the treatment of finite Arithmetic in Principia, focusing on the proofs
of Principia’s analogues of the Dedekind­Peano postulates, we must draw on some definiti­
ons and theorems from the second half of the first volume which forms Principia’s part II, the
‘Prolegomena’ to cardinal arithmetic. In what follows we present the development of cardinal
arithmetic in Principia’s second volume, drawing upon the definitions of volume 1 whenever
relevant and/or necessary.

We may start by reviewing Principia’s treatment of the Algebra of sets or classes. Whi­
tehead and Russell start by giving basic definitions for operations with classes at k22, with
analogous versions for relations­in­extension (henceforth, relationse) at k23:

k22·01 α⊂ β = x ϵ α ⊃x x ϵ β Df k23·01 R ·⊂ S = xRy ⊃x,y xSy Df

k22·02 α ��β = x̂(x ϵ α x ϵ β) Df k23·02 R ·��S = x̂ŷ(xRy xSy) Df

k22·03 α ��β = x̂(x ϵ α.∨ .x ϵ β) Df k23·03 R ·��S = x̂ŷ(xRy ∨ xSy) Df

k22·04 − α = x̂(x ∼ ϵ α) Df k23·04 ·−R = x̂ŷ{∼ (xRy)} Df

k22·05 α− β = α ��−β Df k23·05 R ·−S = R ·�� ·−S Df

These give standard definitions of containment, intersection, union, complement and subtraction
for classes with analogues for relations. Whitehead and Russell show that these definitions are
sufficient within their logic to prove standard axioms for a Boolean algebra of classes. They
define the universal and empty set/relation as:

k24·01 V =x̂(x = x) Df k24·02 Λ = − Λ

Df

k25·01 _V =x̂ŷ(x = x y = y) Df k25·02 Λ̇ = ·− ˙ Λ Df

And then demonstrate that Huntington’s set of (independent) axioms are derivable in their system
in both the theories of classes and relations30:

k22·51 ⊢ α ��β = β ��α k22·51 ⊢ R ·��S = S ·��R
k22·57 ⊢ α ��β = β ��α k23·57 ⊢ R ·��S = S ·��R
k22·68 ⊢ (α ��β) ��(α ��γ) = α ��(β ��γ) k22·68 ⊢ (R ·��S) ·��(R ·��T ) = R ·��(S ·��T )
k22·69 ⊢ (α ��β) ��(α ��γ) = α ��(β ��γ) k22·69 ⊢ (R ·��S) ·��(R ·��T ) = R ·��(S ·��T )
k24·21 ⊢ α ��−α = Λ k25·21 ⊢ R ·�� ·−R = Λ̇

k24·22 ⊢ α ��−α = V k22·22 ⊢ R ·�� ·−R = V̇

k24·24 ⊢ α ��Λ = α k22·24 ⊢ R ·��Λ̇ = R

k24·26 ⊢ α ��V = α k22·26 ⊢ R ·��_V = R

30 HUNTINGTON, E. 1904. Huntington’s work was explicitly written in continuation with Whitehead’s Uninver­
sal Algebra. He later also investigated an algebraic treatment of Principia’s propositional logic in HUNTING­
TON, E. 1932.
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Now they define the existence of classes and relations as non­emptiness:

k24·03 E!α = ( Ex) x ϵ α Df k25·03 ˙E!R = ( Ex, y) xRy Df

Notice that in all of the above, when the definiendum is either an expression containing lower­
case Greek letters or latin capitals in italic, the definiens is framed with individual variables,
which allows for the restoration of simple type indices only to these individual variables, not
to contextually defined expressions. To give a simple example, take α ��β, which by k22·03, is
just:

x̂t(xt ϵ α ∨ xt ϵ β), where x is of some simple type t.

To fully restore simple type indices in the above expression, α and β must first be substituted
for expressions of the form x̂(ϕ!x), x̂(ψ!x), etc which also do not receive simple type indices.
If, for instance, we let α and β be, respectively, ẑ(ϕ!z) and ẑ(ψ!z), we get:

α ��β for x̂t{xt ϵ ẑt(ϕ(t)!zt) ∨ xt ϵ ẑt(ψ(t)!zt)}

To get the fully restored expression we then apply k20·02, getting31:

x̂t(ϕ(t)!xt ∨ ψ(t)!xt)

This may cause some confusion, since Principia allows for expressions representing a class of
classes like “γ̂(ψγ)” to be substituted for lower­case Greek letters. Using our same example, but
with α and β being γ̂(ϕγ) and γ̂(ψγ), respectively, we would have α ��β as:

δ̂{δ ϵ γ̂(ϕγ) ∨ δ ∈ γ̂(ψγ)}

But of course, here simple type indices cannot be restored directly for δ, γ̂(ϕγ), etc. The same
applies, mutatis mutandis, to expressions for relationse as they occur in “xRy”, “xRα”, etc32.
These can only receive relative type indices, which we shall discuss below, in connection with
the typical ambiguity of the relation of similarity and cardinal numbers. For now, let us proceed
with the elements of Principia’s treatment of classes and relationse.
31 Notice also that if we had put, say, “ẑ(ψz)” in place of β, full restoration of simple type index would require

that the scheme ψ be turned into a definite well­formed formula of Principia’s object language.
32 Cf. LANDINI, G., 2016, pp.11­12.
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Another important aspect of Principia is the fact the work does not employ (and of
course, does not assume the existence of) ‘functions’ in the usual or ordinary mathematical
sense. They have only what Russell calls ‘descriptive functions’ which are defined using the
theory of descriptions and the emulated theory of relations­in­extension. The main definition is
this:

k30·01 R‘y = (ıx)(xRy) Df

This defines what can be read as ‘the R of y’, as in ‘the square of 2’, the ‘the father of Alexander’,
‘the greatest student of Plato’, etc. Such expressions as “R‘y” purport to denote the unique x
that bears the relation R to y; if either there is no x that has R to y or there is more than one, the
expression simply does not denote anything. Yet, since such symbols are contextually defined
via the device of incomplete symbols, any sentence in which they occur will still be meaningful
if they fail to denote, as in “The rational root of 2”. Whitehead and Russell also introduce a
similar device for ‘plural’ descriptive functions, expressions which represents a whole class of
things that bear a relation R with respect to a given class, as in “the sons of kings”, “the prime
factors of perfect numbers”, etc. They have:

k37·01 R“β = x̂{( E

x) y ϵ β xRy} Df

where “R“β” is to be read as “the R’s of β’s”. They also introduce a notation for the referents
and relata of given term with respect to a given relation (which is mostly used in connection
with descriptive functions), namely33:

k32·01 −→
R = α̂ŷ{α = x̂(xRy)} Df

k32·02 ←−
R = β̂x̂{β = ŷ(xRy)} Df

Here the first is the relation which holds between a class α of all x that bear R to y and the given
term y; and the second is the relation which hold between the class β of all y to which x has the
relation R and the given y. From the above they derive the followng which gives the form they
actually employ with frequence:

33 Whitehead and Russell also introduce in k32·03·21 and k32·04·211 the notation, sg‘R and gs‘R, which are,
respectively, equivalent to those of k32·01·02. The former are introduced merely for convenience of writing
down formulas when dealing with more complicated relations­in­extension. For instance, they allow one to
write sg‘(R|S|Q � β) instead of

−−−−−−−→
R|S|Q � β , since the former is more convenient.
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k32·13 ⊢ −→R ‘y = x̂(xRy)

k32·131 ⊢ ←−R ‘x = ŷ(xRy)

This identifies
−→
R ‘y with the class of all x such that xRy, e.g., the referents of y, and

←−
R ‘x with

the class of all y such that xRy, e.g., the relata of x: to give a simple example, if R is, for instance,
the relation of less than among natural numbers, then

−→
R ‘0 is the empty set, whereas

←−
R ‘0 is the

set of all natural numbers greater than 0. These are among the most used notations in the whole
work.

Next, they introduce domains, converse domains and fields of relations in a similar
fashion. First they introduce the proper definitions:

k33·01 D = α̂R̂[α = x̂{( E

y) xRy}] Df

k33·02 D

= β̂R̂[β = ŷ{( E

x) xRy}] Df

k33·03 C = γ̂R̂[γ = x̂{( E

y) xRy ∨ yRx} Df

Then they obtain the more convenient notation using the device of plural descriptive functions:

k33·11 ⊢ D‘R = x̂{( Ey) xRy}

k33·111 ⊢ D‘R = ŷ{( E

x) xRy}

k33·112 ⊢ C‘R = x̂{( Ey) xRy ∨ yRx}

Number k34 introduces the notations for relative product, which is also much used (for ins­
tance, in section k90, which concerns the ancestral of a relation and in the whole treatment of
‘inductive’ relations). They have:

k34·01 R|S = x̂ẑ{( E

y) xRy yRz} Df

k34·02 R2 = R|R Df

k34·03 R3 = R2|R Df

Then k40, which is the main number in section E of part I, introduces products (intersections)
and sums (unions) of classes of classes (what we nowadays call ‘families’ of sets):

k40·01 p‘κ = x̂(α ϵ κ ⊃ x ϵ α) Df

k40·01 s‘κ = x̂(( E

α) α ϵ κ x ϵ α) Df
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Notice that in the above the lower­case κ is a class of classes which must be of a higher relative
type than its members (which are themselves classes of lower relative type).

Now, starting part II of Volume 1, the Prolegomena to Cardinal Arithmetic, the authors
introduce singletons, or, as they call them, unit classes. They do this, however, in way that may
be puzzling to the modern reader. They first introduce identity as a relation­in­extension:

k50·1 I = x̂ŷ(x = y)

The above is not to be confused with identity as a relation­in­intension, which is a genuine
relation that holds only between individuals (of any given type). What is defined above is an
incomplete symbol, another façon de parler. To define unit classes they then introduce the
relation­in­extension ι which holds between a given term x and the class α of all y such that
xIy, i.e.:

k51·01 ι =
−→
I Df

k51·11 ι‘x = ŷ(y = x) Df

As the authors explain, the only reason the latter two are introduced is notational convenience:
the symbols “

−→
I ”, “

−→
I ‘x”, etc., become cumbersome when nested within other notations like

“
−̆→
I ” or “

−̆→
I ‘x”34.

Finally, before we proceed to Principia’s development of Arithmetic, we must consider
a last major definition, that of an ordered pair, or, as the authors call it, ordinal couple. Using
one of their definitions from the section on the limitation of the fields of relations k34, namely,
that of the Cartesian product of two classes α and β, they put:

k35·04 α ↑ β = x̂ŷ(x ϵ α y ϵ β) Df

They claim a pair could have been defined as in < x, y >=Df ι‘x ↑ ι‘y. But since this notation
“is cumbrous, and does not readily enable us to exhibit the couple as a descriptive function of x
for the argument y, or vice­versa”35, they introduce the following:

k55·01 x ↓ y = ι‘x ↑ ι‘y = x̂ŷ(x ϵ ι‘x y ϵ ι‘y) Df
34 Cf. WHITEHEAD & RUSSELL, 1925, p.331 [1910, p.338]. Cf. also theorems k51·51·511·56.
35 WHITEHEAD & RUSSELL, 1925, p.366 [1910, p.383].
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The above definition must be read carefully. Grattan­Guinness points out that since “the defining
expression is a conjunction, and so commutative [...] the order itself is determined by that of the
class abstraction operator”, and so the definition brings “no real advance”36. The point can also
be put in the following terms. Since “α ↑ β” defines a certain relation in extension, namely a
relation which holds between x and y whenever x ϵ α y ϵ β, then x ↓ y defines a certain relation
in extension which holds between x and y whenever x ϵ ι‘x y ϵ ι‘y; the problem, of course, is
that this is useless to introduce the notion of ordinal couple precisely because it defines it as some
sort of relation ­ which has a ‘direction’ ­ thus it presupposes the very idea it was supposed to
define.

But k55·01 is not meant to define ordered pairs, only to introduce a convenient notation
for them to be used in the (emulated) theory of relations­in­extension. Given a relation xRy,
the order of the couple x ↓ y is ultimately taken as indefinable and given by the order of the
arguments of the expression of the form “ϕ!(x̂, ŷ)” which contextually defines the relation (in
extension) R in question. The authors themselves unequivocally say as much when commenting
on k21·01·02 and their conventions for substitution of variables:

In k21·01 the alphabetical order of u and v corresponds to the typographical or­
der of x̂ and ŷ in f{x̂ŷψ(x, y)} [...] the mode of substitution depends upon the
alphabetical order of the letters which have circumflexes and the typographi­
cal order of the letters.37

If a capital Latin letter, say R, is used as an apparent variable, it is supposed
that the R which occurs in the form “(R)” or “( E

R)” is to be replaced by “(ϕ)”
or “( E

ϕ)”, while the R which occurs later is to be replaced by x̂ŷϕ!(x, y). [...]
In virtue of the definitions k21·01·02 and the convention as to capital Latin
letters, the notation “xRy” will mean “x has the relation R to y”. This notation
is practically convenient, and will, after the preliminaries, wholly replace the
cumbruous notation x{x̂ŷϕ(x, y)}y.38

As a student of Russell in Cambridge, Norbert Wiener suggested the following, which
was meant as an actual eliminative definition of the ordinal couple39:

x̂ŷϕ(x, y) = α̂{( Ex, y) ϕ(x, y) α = ι‘(ι‘ι‘x ��ι‘Λ) ��ι‘ι‘ι‘y} Df

But as some commentators observed, Russell was unimpressed40. Later, Kuratowski41 formula­
ted the now standard definition of an ordered pair < x, y > as {{x}, {x, y}}, which in Princi­
pia’s notation is a little simpler than Wiener’s:
36 GRATTAN­GUINNESS, I., 2000, p.394.
37 WHITEHEAD & RUSSELL, 1925, p.200 [1910, p.211].
38 WHITEHEAD & RUSSELL, 1925, p.201 [1910, p.212].
39 WIENER, N., 1914, p.225.
40 van HEIJENOORT, J., 1967, p.224; GRATTAN­GUINNESS, I., 2000, pp.420­1.
41 KURATOWSKI, 1921, p.171. Hausforff also put forward the definition< x, y >= {{x, 1}, {y, 2}} where 1 and

2 are any objects such that 1 ̸= 2.
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x̂ŷϕ(x, y) = α̂{( E

x, y) α = ι‘ι‘x ��ι‘(ι‘x ��ι‘y)} Df
Neither of these appealed to Russell however, for reasons we may never know with certainty,
although they are easy to imagine. First and foremost, these only work to homogeneous rela­
tions, that is, relations which have domains and converse domains of the same relative type,
but non­homogeneous relations are of fundamental importance to Principia’s development of
Mathematics; to give a simple example, Cantor’s power­class theorem asserts the non­existence
of a non­homogeneous 1­1 correspondence between a classα and the class Cl‘α of all sub­classes
of α; in order for it work generally, Wiener had to introduce a family of auxiliary definitions ac­
commodating non­homogeneous relations between individuals, classes, classes of classes, and
so on, along the following lines42:

α̂ŷϕ(α, y) = κ̂{( Eα, y) ϕ(α, y) κ = ι‘(ι‘ι‘α ��ι‘Λ) ��ι‘ι‘(ι‘ιy ��ι‘Λ)} Df

κ̂ŷϕ(κ, y) = µ̂{( E

κ, y) ϕ(κ, y) µ = ι‘(ι‘ι‘α ��ι‘Λ) ��ι‘ι‘[ι‘ι‘(ι‘ιy ��ι‘Λ) ��ι‘Λ]} Df

and so on...

x̂β̂ϕ(x, β) = κ̂{( E

x, β) ϕ(x, β) κ = ι‘[(ι‘ι‘x ��ι‘Λ) ��ι‘Λ] ��ι‘ι‘ι‘β} Df

x̂λ̂ϕ(x, λ) = µ̂{( E

x, λ) ϕ(x, λ) µ = ι‘{ι‘[(ι‘ι‘x ��ι‘Λ) ��ι‘Λ] ��ι‘Λ} ��ι‘ι‘ι‘λ} Df

and so on...

But as a device meant to simplify their treatment, these do a poor job. Second, the above are
inconvenient, since they unnecessarily raise the relative type of every relation­in­extension. Last,
but not least, for Russell these definitions were completely irrelevant from a philosophical point
of view, since to speak of relations in extension was a mere façon de parler. Ultimately, the
intensional view of relations was fundamental:

It is an old dispute whether formal logic should concern itself mainly with in­
tensions or with extensions. [...] the facts seem to be that while mathematical
logic requires extensions, philosophical logic refuses to supply anything except
intensions. Our theory of classes recognizes and reconciles these two apparen­
tly opposite facts, by showing that an extension (which is the same as a class)
is an incomplete symbol, whose use always acquires its meaning through a
reference to intension.43

42 WIENER, N., 1914, pp.225­6.
43 WHITEHEAD & RUSSELL, 1925, p.72 [1910, p.75]. Grattan­Guinness calls attention to this passage and notes

that the point is further emphasized in a letter Russell wrote to Jourdain by 12 February 1907, where we find:
“Rationals, and numbers which have sign, are relations, not classes (unless a relation is taken to be a class of
couples). It is a mistake to say that all definitions define classes ­ all define propositional functions, is the right
remark” (GRATTAN­GUINNESS, I., 1977, p.97).
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This point is sometimes missed by interpreters of Principia. Rodríguez­Consuegra, for
instance, claims that by the time of Principia Russell was “led to a reconsideration of the inten­
sional view about relations and to a victory of the Peanian approach, including the interpretation
of equivalence and propositional functions in terms of membership”44; that is, he assumes that
Principia rejects an ontology of relations even from an intensional viewpoint.

He was probably led to this conclusion by a somewhat misleading comment that Russell
makes in his correspondence with Jourdain. In April of 1910, Russell wrote:

Until I got hold of Peano, it had never struck me that Symbolic Logic would
be any use [sic] for the Principles of mathematics, because I knew the Boolian
[sic] stuff and found it useless. It was Peano’s ϵ together with the discovery that
relations could be fitted into his system, that led me to adopt symbolic logic.
[...] Oddly enough, I was largely guided by the belief that relations must be
taken in intension, a view which I have since abandoned, though I have not the
notations which it led me to adopt”.45

This may suggest that in Principia the extensional viewpoint of relations (as classes of
ordered couples) should be taken as fundamental. But the textual evidence in Principia simply
does not admit such reading; in terms of ontological priority, the primacy of the intensional view­
point is undeniable (despite the fact that there is some room for exegetical disputes concerning
the status of propositional functions). The real point of Russell’s letter is that in the Principles
(and elsewhere), he thought that it was illegitimate to treat relations extensionally, a view which
by the time of Principia he had abandoned since, through the use of incomplete symbols, one
could do precisely that. As Landini observes, for Russell the whole problem before the disco­
very of the theory of incomplete symbols, was that he thought “the notion of an ordered “couple”
logically odious”46 because it could not be taken as a single entity of any sort. But the logic of
Principia47 can, through the device of incomplete symbols, recover a theory of relations in ex­
tension without assuming these as genuine entities. What Russell abandoned is the idea that it
is illegitimate to talk about relations­in­extension, not the priority, much less the legitimacy of
speaking of the intensional character of relations as entities.

5.3 The Definition(s) of Cardinal Number, Typicial Ambiguity
and Relative Types

Obviously, the definition which is most fundamental to the development of Arithme­
tic is Principia’s version of Frege’s celebrated definition of cardinal number. In their informal
44 RODRÍGUEZ­CONSUEGRA, F., 1991, p.195.
45 GRATTAN­GUINNESS, 1977, p. 132­3.
46 LANDINI, G., 1992, p.606­7.
47 As well as that of the substitutional theory.
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summary, Whitehead and Russell initially present their version with the following formulas:

Nc = −→sm Df

Nc‘α = β̂(β smα) Df

NC = µ̂{( Eα) µ = Nc‘α} Df

That is, Nc is defined as “[...] a relation, namely the relation of a cardinal number to any class of
which it is the number”48 and NC, the class of all cardinal numbers, is defined as “[...] the class
of objects which are the cardinal numbers of something or other, i.e, objects which, for some α,
are equal to Nc‘α”49.

The typically ambiguous symbol “sm” stands for the relatione of similarity, which holds
between two classes whenever there is a one­one correspondence between their members. Whi­
tehead and Russell introduce sm as a relation that holds between any two classes α and β whe­
never there is a one­one relation R which has α as its domain and β as its converse domain. To
properly understand how similarity and the relation of a class to its cardinal number are defined
we must review some preliminary definitions. First, Whitehead and Russell have definitions of
one­many, many­one and one­one relations:

k71·01 ⊢ 1→ Cls = R̂(
−→
R“ D‘R⊂ 1) Df

k71·02 ⊢ Cls→ 1 = R̂(
←−
R“D‘R⊂ 1) Df

k71·03 ⊢ 1→ 1 = R̂(
−→
R“ D‘R⊂ 1)

←−
R“D‘R⊂ 1) Df

With 1 defined as the set of all singletons50 and α → β defined as the class of relations R such
that “

−→
R ‘y ϵ α whenever y ϵ D‘R, and

←−
R ‘x ϵ β whenever x ϵ D‘R”51, that is:

k70·01 α→ β = R̂(
−→
R“ D‘R⊂α)

←−
R“D‘R⊂ β Df

This defines the class of relationse which have as referents and relata members of a given classes
α and β respectively. Thus, for instance, α → β ��Cls → 1 is the class of all ‘functions’ from
α into β, β → α ��Cls→ 1 is the class of all ‘functions’ from β to α, etc. They then define the
48 WHITEHEAD & RUSSELL, 1927a, p.4 [1912, p.4].
49 WHITEHEAD & RUSSELL, 1927a, p.5 [1912, p.5].
50 Not yet identified with the cardinal number 1.
51 WHITEHEAD & RUSSELL, 1925, p.420 [1910, p.439]
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class sm of all one­one relations which have α as its domain and β as its converse domain and
then define “sm” as the relation which holds between α and β whenever sm is non­empty:

k73·01 α sm β = (1→ 1) ��←−D‘α ←−D‘β Df

k73·02 sm = α̂β̂( E!α sm β) Df

This yields the equivalence that would generally be used to define the relation of similarity,
namely:

k73·1 ⊢ α sm β ≡ ( E

R) R ϵ 1→ 1 α = D‘R β =

D‘R

In the above definitions, however, α and β are typically ambiguous and they may or may not be
the of the same (relative) type and each case, in fact, generates a different relatione of similarity.
The same is true of the ocurrences of “1” which receive their typical determination according to
the relative types of α and β.

Let us take, for instance, the following example, using the modern notation {a1, ..., an}
for the class whose members are a1, ..., an: let α = {a, b}, β = {c, d} and γ = {α, β}, where
a, b, c and d are individuals. They are all similar. But the relation of similarity which holds
between α and β is not the same as that which holds between, say, α and γ. For now52, we
may indicate the relative type indices for class expressions and relationse, with indices which
resemble simple type indices like (i), (i, i), ((i)), ((i), (i)), etc., where i is a given simple type
of individuals ­ but it must be kept in mind that none of these relative types of classes and
relationse are simple types. Keeping this in mind, an sm which holds between, say α and β
would have the index ((i), (i)), being what Whitehead and Russell call a homogeneous relation
of similarity. Similarity between α and γ, however, would have an index like ((i), ((i))) being
what they call an heterogeneous relation of similarity. This point is very important because it
allows them not only to state things like: “the class α of relative type (i) of individuals xi is not
similar to the class γ((i)) of all classes of individuals xi”53, but because it actually gives rise to a
taxonomy of different notions of cardinal numbers.

The actual definitions of the (completely ambiguous) cardinal number of a class and the
class of cardinal numbers are, respectively:

k100·01 Nc = −→sm Df
52 This is merely for the sake of exposition. Below we shall review the actual notation of relative types that is

actually employed in Principia.
53 Note, yet again, that this aspect of Principia’s theory of types would be either completely obliterated or made

much more complicated by defining ordered pairs as classes, as we indicated in our discussion of the Wiener
and Kuratowski’s definitions of ordinal couples.
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k100·02 NC = D‘Nc Df

Which, once unpacked by k32·01 and k33·01 give us:

k100·01′ Nc = κ̂γ̂{κ = β̂(β sm γ)}

k100·02′ NC = κ̂{( Eβ) κNc β}

The first defines the relation which holds between a class γ and the class κ of all classes similar
to it, e.g., β̂(β smγ); the second defines the class NC of all such classes of classes κ which
are the number of some given class. By employing the device of descriptive functions, we then
have:

k100·1 ⊢ Nc‘α = β̂(β smα)

The cardinal numbers 0 and 1 are defined respectively at sections *52 and *54 as the set that
contains the empty set and the number one as the class of all unit classes:

k54·01 0 = ι‘Λ Df

k52·01 1 = α̂{(∃x) α = ι‘x} Df

However, the actual proof that such numbers are, in fact, cardinals in the sense defined at k100

is only given in section k101, where we find the following theorems:

k101·1 ⊢ 0 = Nc‘Λ

k101·2 ⊢ 1 = Nc‘ι‘x

which presuppose, respectively, the following theorems from the section on similarity:

k73·48 ⊢ 0 = β̂(β smΛ)

k73·45 ⊢ 1 = β̂(β sm ι‘x)

Thus: 0 is the number of any set that does not have any members, e.g., the set of all sets similar
to the empty set, e.g., the set which contains only the empty set; the number 1 is the number of
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any set that has a single member, e.g., the set of all sets similar to some unit set, e.g., the set
which contains only unit classes54.

Now, all of the symbols defined above, however, are ambiguous as to their relative type.
In particular, the occurrences of “sm” in the definiendum of some of them may be, once relative
indices are restored, either homogeneous or heterogeneous. The same applies to the theorems
on cardinals which are stated in a typically ambiguous manner. This point is of fundamental
importance, because this possibility of restoring type indices in such different ways gives rise to
different notions of cardinal numbers. As we explained, sm can occur either as a homogeneous
or heterogeneous relation. This means that there are three possible cases which can occur for
any classes α and β that are similar, namely:

1. α sm β and α and β are of the same type.

2. α sm β and the type of α is lower than the type of β.

3. α sm β and the type of α is higher than the type of β.

Each of these different kinds of similarity relations give rise to different relations Nc and, con­
sequently, different notions of cardinal number. They generate, respectively, what Whitehead
and Russell call ‘homogeneous cardinals’, ‘ascending cardinals’ and ‘descending cardinals’.

Let us take the same example given before, letting α = {a, b}, β = {c, d} and γ =

{α, β}. Restoring type indices according to the informal conventions we employed considering
this same example above and, again, letting i be some simple type of individuals, we would have
an illustration of each case in 1, 2 and 3 below:

1. Take sm as it occurs in “α sm β” and use it to restore the typical determination in “Nc”.
Here Nc would be of relative type ((i), ((i))), with Nc‘α being the class of all classes of
relative type (i) similar to α, therefore, of relative type ((i)).

2. Take “sm” as it occurs in “β sm γ” and use it to restore the typical determination in “Nc”.
Here Nc would be of relative type ((i), (((i)))), with Nc‘β being the class of all classes
of relative type ((i)) similar to β, therefore, of relative type (((i))).

3. Do the same with “sm” in “γ sm β”, restoring relative typen indices for “Nc” accordingly.
Here Nc would be of relative type ((((i))), (i)), with Nc‘γ being the class of all classes
of relative type ((i)) similar to γ, therefore, of relative type ((i)).

54 From their definition of succession, of course, it will follow that 2 will be the class of all couples, 3 the class of
all trios, and so on, but this will be discussed on the next section.
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In the above, Nc‘α is a homogeneous cardinal because the relative type of its members is the
same as that of α; Nc‘β, on the other hand, is an ascending cardinal, since all of its members
are of a relative type above that of β; Nc‘γ, on its turn, is a descending cardinal, since all of its
members are of a relative type below that of γ. Notice, however, that, despite the terminology
what is “homogeneous”, “ascending” or “descending” are the similarity relations, not the cardi­
nals which are defined in terms of them. Every class is homogeneous with respect to the relative
types of their members: this is the cornerstone of Principia’s emulated simple type theory of
classes. Each of these kind of cardinal numbers are dealt with separately in Principia in sections
k103, k104 and k10555, but Whitehead and Russell also speak of cardinals in k100 and k101 in
a way that leaves it completely undetermined what kind they are. This, as we shall see, is done
in a very problematic way.

Complete typical ambiguity is at odds with heterogeneous relations. To understand this,
we must see in more detail that cardinal numbers generated by similarity relations of different
relative types may have quite distinct characteristics. Whitehead and Russell were, of course,
quite aware of that and explained the situation as follows:

The only difficulties which arise in Cardinal Arithmetic in connection with the
ambiguities of type of the symbols are those which enter through the use of the
symbol sm, or of the symbol Nc, which is −→sm. For it may happen that a class
in one type has no class similar to it in some lower type (cf. k102·72·73). All
fallacious reasoning in cardinal or ordinal arithmetic in connection with types,
apart from that due to the mere absence of meaning in symbols, is due to this
fact ­ in other words, to the fact that in some types E!Nc‘α is true, and in other
types E!Nc‘α may not be true.56

This explanation occurs in the introductory note to the second volume entitled Prefatory
Statement Concerning Symbolic Conventions. This is a famously problematic portion of Princi­
pia, often regarded as difficult and convoluted not only from the point of view of the historical
circumstances which led to its writing57, but also due to its content58. The problem presented,
however, is not complicated, as a simple example will illustrate. Suppose that α is a class of
relative type ((i)), a class of classes of individuals of type i; one of its (descending) cardinal
numbers will be, for instance, the class δ̂(δ sm((i),((i))) α); call it, just for the sake of the present
example, “Nic‘α”; this class is the class of all classes of individuals (of simple type i) similar to
α; suppose now that there is only one such individual of type i in the universe, call it a. Then
55 Section k106 also treats of cardinals of relational types which are cardinal numbers which contain classes of

relations as elements.
56 WHITEHEAD & RUSSELL, 1927a, p.xiii [1912, p.xv].
57 GRATTAN­GUINNES, I., 1977, p.107; GRATTAN­GUINNES, I., 2000, p. 385; LANDINI, G., 2016.
58 This should cause some alarm being a statement about a work that has a quite (only partially justified) reputation

for being dauntingly complex and convoluted. It is safe to say, however, that the Prefatory Statement is the most
complicated part of Principia’s first thousand pages (we abstain from making a more general statement since
that would require a discussion of Principia’s last thousand pages, which, as of yet, we are not prepared to
offer).
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the ‘hierarchy’ of relative types of classes which could be formed with the individuals of simple
type i at the bottom would be this, where each ‘type’ Tv can be understood as a class, e.g., the
class of things of type v59:

Ti = {a}

T(i) = {{a},Λ(i)}

T((i)) = {{{a}}, {Λ(i)}, {{a},Λ(i)},Λ((i))}

And so on, with every subsequent type T(v) having 2n members, where n is the
number of elements of the type tv.

Suppose now that α = T((i))−Λ((i)) = {{{a}}, {Λ(i)}, {{a},Λ(i)}}. The homogeneous cardinal
N0c‘α would then be the class of all classes of relative type ((i)) similar to α, and, therefore,
non­empty. Every ascending cardinal would also be non­empty. The descending cardinal, Nic‘α
however, would be empty: there are no classes of individuals similar to α.

The result does not depend in any way on the number of individuals at the bottom, howe­
ver, but is a direct consequence of Whitehead and Russell’s reconstruction of Cantor’s theorem
within Principia’s type theory60. Anticipating some notation that we have yet to explain, we find
the following:

k102·72 ⊢ β ⊂ α ⊃ ∼ (β smCl‘α)

k102·73 ⊢ Nc(α)‘t‘α = Λ

The first is an equivalent statement of Cantor’s power­class theorem: if β is a (not necessarily
proper) subset of α, then there can be no one­one correspondence between β and the power
class Cl‘α of α; since two sets are said to have the same cardinal number (in some relative type)
if they are similar, this means (in a sense not yet precisely defined in Principia61) that if β is
a subset of α, the cardinality Nc‘Cl‘α of Cl‘α is greater than Nc‘α. The second theorem is an
application of k102·72 to the case where β is substituted for α and α is substituted for the class
of all classes of the same type of α, that is, for the relative type of α, denoted by “t‘α”. Nc(α)‘t‘α
is the class of all classes similar to t‘α of the same relative type as α. Since Cl‘α⊂ t‘α, we also
have ∼ (α sm t‘α) in virtue of k102·72 and therefore, we have Nc(α)‘t‘α = Λ. Descending
cardinals like Nc(α)‘t‘α are always empty in virtue of Cantor’s theorem.
59 We emphasize, again, that the notation i, (i), etc., is not used in Principia and that we use it only for the sake of

presenting examples in the simplest possible way; again class expressions do not have simple type indices.
60 This point is extensively discussed in LANDINI, G., 2016.
61 Defintions of greater, less, etc. are introduced in k117. We’ll discuss them below.
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Thus, Nc‘α is, in a sense, empty in some types and non­empty in others. In virtue of
this, if we take the completely ambiguous Nc‘α, several results which we would expect about
it simply will not be provable due to its ambiguity and several apparently valid inferences will
be blocked. Another (at first, surprising) example is Hume’s Principle. The first half of the bi­
conditional is proved for Nc‘α:

k100·321 ⊢ α sm β ⊃ Nc‘α = Nc‘β

But as Whitehead and Russell explain, the second half of the bi­conditional cannot be so proved:

Note that Nc‘α = Nc‘β ⊃ α smβ is not always true. We might be tempted
to prove it as follows:

⊢ k100·1 ⊃⊢ Nc‘α = Nc‘β ≡ γ smα ≡γ γ smβ :
[k10·1] ⊃ α smα ≡ α smβ
[k73·3] ⊃ α smβ

But the use of k10·1 here is only legitimate when the ‘sm’ relation concerned
is a homogeneous relation. If Nc‘α, Nc‘β are descending cardinals, we may
have Nc‘α = Λ = Nc‘β without having α smβ.62

The first reason is quite simple: in order to correctly apply the rule of instantiation to
a scheme (x) ϕx ⊃ ϕy, “ϕ” must be the same formula except for having occurrences of x
substituted for y. If we restore type indices according to Whitehead and Russell’s conventions63,
we see this is not the case for the first line of the above proof, which would be “(γ) γ sm(γ,α) α

≡ γ sm(γ,β) β”, while the second line is “α sm(α,α) α ≡ α sm(γ,β) β”64. The second reason
has to do with the peculiarities of descending cardinals which we just discussed: these may be
empty in some (relative) types and not in others.

Before discussing in some detail the difficulties pointed out by Landini in Principia’s
handling of typical ambiguity in cardinal Arithmetic, we must briefly review Principia’s official
notation for relative types of classes and relationse. The notation we employed so far for making
clear the importance of relative types is good enough for the purposes of exposition, but in order
to get the record straight concerning the issues involved in Principia’s treatment of cardinal
numbers, we need to be careful in reading Principia’s own notations. The main definitions for
62 WHITEHEAD & RUSSELL, 1927a, p.15 [1912, p.15].
63 WHITEHEAD & RUSSELL, 1927a, pp.5­6, 23­4 [1912, pp.5­6, 24­5]. They use R(α,β) to indicate that the

referents and relata of R have, respectively, the relative types of α and β.
64 Landini says that Whitehead does not provide a reason as to why line (2) cannot count as an instance of k10·1

(LANDINI, G., 2016, p.18) but his comment that “the use of k10·1 here is only legitimate when the ‘sm’ relation
concerned is a homogeneous relation” indicates that Whitehead grasped clearly that it is a matter of keeping the
same ϕ in the antecedent and consequent.
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relative types of classes are the following65:

k63·01 t‘x = ι‘x ��−ι‘x Df k63·02 t0‘α = α ��−α Df

k63·011 t1‘x = t‘x Df k63·03 t1‘κ = t0‘s‘κ Df

k63·04 t2‘x = t‘t‘x Df k63·05 t2‘κ = t1‘t1‘κ Df

etc... etc...

Similar definitions are provided for relative types of relationse using ordinal couples:

k64·011 t11‘x = t‘(t‘x ↑ t‘x) Df k63·01 t00‘α = t‘(t0‘α ↑ t0‘α) Df

k64·012 t12‘x = t‘(t‘x ↑ t2‘x) Df k63·02 t01‘α = t‘(t0‘α ↑ t1‘α) Df

k63·013 t21‘x = t‘(t2‘x ↑ t‘x) Df k63·021 t10‘α = t‘(t1‘α ↑ t0‘α) Df

etc... etc...

In their summary, Whitehead and Russell explain that the above notations “[...] serve to express
the type of one variable in terms of the type of another”66. In the case of relative types of classes,
they informally explain that k63·01 defines “the type of which x is a member” and k63·02
defines “the type in which α is contained”67. If we accept that Principia’s primitive grammar is
that of simple types with both lowest type individual variables and predicate variables of every
simple type (also standing for individuals) then the above must be read with a grain of salt: we
must carefully distinguish genuine simple types (which differentiates the lowest type individuals
from properties and relationswhich hold between them, properties of their properties, etc...) from
relative types.

As Landini emphasizes68, if Principia really embraces the grammar of simple types, then
one cannot speak of these in its object­language: the key fact to be observed here is that the above
definitions just introduce a useful notation to speak, for instance of the relative type of a term x
to a class α; for instance, if we need to talk about the class of all individuals of the same type of
x, the class of all classes of the same relative type as α, the class of all terms of the same type
as the members of α, and so on (k63·01, for instance, employs individual variables of a given
simple type to define a class which is of a higher relative type than these individuals). The point
is that each of the definitions in k63, k64 and k65 defines a class or relatione and none of them
can be identified with an object of any simple type because none of them is in any simple type,
since neither classes nor relatione are genuine entities which belong in Principia’s simple type
structure69.
65 Recall that s‘κ is defined in k40·02 as the sum of all members of a class of classes κ, that is, as the class

x̂{( E

α) α ϵ κ x ϵα}.
66 WHITEHEAD & RUSSELL, 1925, p.400 [1910, p.419].
67 WHITEHEAD & RUSSELL, 1925, p.400 [1910, p.419].
68 Cf. LANDINI, G., 2016, p.4, cf. also WHITEHEAD & RUSSELL, 1912, p.34.
69 This is strongly corroborated by a passage from the Note on negative statements concerning types in volume 2:

“Statements such as “x ∼ ϵ t‘y” or “x ∼ ϵ t0‘α” are always false when they are significant. Hence, when an
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Now, using the definitions from k63 and k64, Whitehead and Russell introduce the fol­
lowing notations which indicate the various ways relative­type indexes are to be restored:

k65·01 αx = α ��t‘x Df

k65·02 α(x) = α ��t‘t‘x Df

k65·03 Rx = (t‘x) � R Df

k65·04 R(x) = (t2‘x) � R Df

k65·1 R(x,y) = (t‘x) � R � t‘y Df

k65·11 R(xy) = (t2‘x) � R � t‘y Df

k65·12 R(x, y) = (t2‘x) � R � (t2‘y) Df

Several definitions and propositions which will be discussed in what follows rely heavily on the
above, so they must be kept in mind.

5.4 Whitehead’s vs Landini’s Emendations

Another striking example of the problematic status of completely ambiguous occurren­
ces of “Nc” (an example analyzed at lenght by Landini70) is given by the authors in the following
passage:

Formulae which are typically ambiguous, or only partially definite as to type,
must not be admitted unless every significant interpretation is true. Thus, for
example we may admit
α ϵNc‘α
because here ‘Nc’ must mean ‘Nc(αα)’ so that the only ambiguity remaining
is as to the type of α, and the formula holds of whatever type α may belong
to, provided ‘Nc‘α’ is significant, i.e., provided α is a class. But we must not,
from ‘α ϵNc‘α ’ allow ourselves to infer ‘ E!Nc‘α’. For here the conditions of
significance no longer demand that ‘Nc’ should mean ‘Nc(αα)’: it might just
as well mean‘Nc(βα)’. And as we saw, if β is a lower type than α, and α is
sufficiently large of its type, we may have

object belongs to one type, there is no significant way of expressing what we mean when we say that it does
not belong to some other type. The reason is that, when, for example, t‘α and t0‘α are said to be different,
the statement is only significant if interpreted as applying to the symbols, i.e., as meaning to deny that the two
symbols denote the same class. We cannot assert that they denote different classes, since ‘t‘α = t0‘α’ is not
significant, but we can deny that they denote the same class.” (WHITEHEAD & RUSSEL, 1912, p.35).

70 Cf. LANDINI, G., 2016.
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Nc(βα)‘α = Λ

so that ‘ E!Nc‘α’ is not admissible without qualification. Nevertheless, as we
shall see in k100, there are a certain number of propositions to be made about
a wholly ambiguous Nc or NC.71

At a first glance, it could seem that the authors are simply denying an instance of the
following irreproachable deduction scheme:

[Hp]⊢ α ϵ µ (1)

[(1) k10·24]⊢ ( Eβ) ϵ µ (2)

[24·03]⊢ ( E

β)β ϵ µ⊃ µ ̸= Λ (3)

[(2) (3)]⊢ µ ̸= Λ (4)

But as Landini showed in a meticulous study72, matters are not so straightforward.

First, following Whitehead and Russell’s convention for restoring relative type­indexes,
we can pinpoint the reason why “[...] it is a fallacy to infer ‘∃!Nc‘α’ from the (true) propositions
‘⊢ α ϵNc‘α’ and ‘⊢ α ϵNc‘α⊃ E!Nc‘α’”73. The problem here lies in the non­uniform ambiguity
of Nc‘α. Take, for instance74:

[Hp] α ϵNc(β)‘α (1)

[k10·24]⊢ α ϵNc(β)‘α⊃ ( E
γ) ϵNc(β)‘α (2)

[(1) (2)]⊢ α ϵNc(β)‘α⊃ E!Nc(β)‘α (3)

[(1) (3)]⊢ E!Nc(β)‘α (4)

This is as good as it gets: there is no problematic ambiguity and every step can be adequately
justified. The following, however, is a fallacious deduction:

[Hp] α ϵNc(β)‘α (1)

[k10·24]⊢ α ϵNc(β)‘α⊃ ( E

γ)γ ϵNc(ξ)‘α (2)

[(1) (2)]⊢ α ϵNc(β)‘α⊃ E!Nc(ξ)‘α (3)

[(1) (3)]⊢ E!Nc(ξ)‘α (4)

Line two introduces a pseudo­instance of k10·24, since the typical determination of Nc‘α is not
uniform. Note that, apart from the confusing ambiguity which makes it appears as if the authors
were denying an instance of modus ponens, this is as it should be: if, in the above deduction,
Nc(ξ)‘α were a descending cardinal, it could be empty even if Nc(β)‘α is not ­ so E!Nc(ξ)‘α
ought not to follow fromα ϵNc(β)‘α.The lesson to be learned here is that completely ambiguous
“sm” and “Nc‘α” must be handled with the highest caution or, better yet, avoided at all cost.

Unfortunately, as Landini showed in meticulous detail75, Whitehead and Russell them­
71 WHITEHEAD & RUSSELL, 1912, p.12.
72 LANDINI, G., 2016.
73 WHITEHEAD & RUSSELL, 1912, p.34.
74 We use a simplified form of Landini’s example (LANDINI, 2014, p.15).
75 Cf. LANDINI, G., 2016, pp.16­24.
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selves were not careful enough. There are definitions and proofs in part III of volume 2 which
are in need of serious revision ­ in fact, there are invalid ‘proofs’ in Principia that result from
not observing the difficulties introduced by this sort of ambiguity. The most serious of all is
perhaps the case of the following ‘theorem’ :

k100·3 ⊢ α ϵNc‘α

This proposition is true whenever significant: for any κ, if it is meaningful to ask if either α ϵ κ
or α ∼ ϵ κ, then the members of κmust be of the same relative type as α ­ this is the cornerstone
of Principia’s emulated type theory of classes; and since α is similar to itself, it must belong the
class of all classes similar to α.

AsWhitehead andRussell themselves put it, in theoremk100·3 “‘Nc’mustmean ‘Nc(αα)’
so that the only ambiguity remaining is as to the type of α, and the formula holds of whatever
type α may belong to, provided ‘Nc‘α’ is significant, i.e., provided α is a class”76. As Landini
observes, however, “[...] the characteristic of being true whenever significant is a poor guide to
what is (and what ought to be) provable in Principia”77. In fact, we may have true, significant,
but not provable propositions. The proof Whitehead and Russell had in mind is this:

[k100·1]⊢ Nc‘α = δ̂(δ smα) (1)

[k73·3]⊢ α smα (2)

[(1)]⊢ α ϵNc‘α≡ α ϵ δ̂(δ smα) (3)

[(k20·3) (3)]⊢ α ϵNc‘α≡ α smα (4)

[(2) (4)]⊢ α ϵNc‘α (5)

The problem is that the occurrences of “sm” in line (2) must be different from those in the
rest of the proof: the sm which defines the ambiguous, possibly heterogeneous, Nc‘α must be
indeterminate as to the relative type of its referents, that is, it must mean “sm(δ,α)” where the
type of δ is left unassigned; conditions of significance, however require that the sm of line (2)
be of type “sm(α,α)”. This invalidates the proof: in order to get the desired result we should be
able to prove α sm(δ,α)α, which ­ although also true whenever significant ­ is not provable78.

The available historical record of the writing of volume 2 shows that Whitehead was
aware79 of some difficulties surrounding the completely ambiguousNc‘α and that fallacies could
arise in connection with it. We shall address this briefly below80. For now, it is enough to observe
76 WHITEHEAD & RUSSELL, 1927a, p.12 [1912, p.12].
77 Cf. LANDINI, G., 2016, p.19.
78 Cf. LANDINI, G., 2016, p.17.
79 He reported difficulties in a letter to Russell dated 19 January 1911 (GRATTAN­GUINNESS, I., 2000, p.585).

We shall discuss this letter below.
80 Again, for details the reader is referred to LANDINI, G., 2016. Also cf. GRATTAN­GUINNESS, I., 2000, pp.384­

6 and 1977, p.107.
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that the trouble is caused by their original sin of not presenting first their symbolism with deter­
minate type­indices (both simple and relative) and then presenting rules for their suppression.
Had they done this, the above problem (and so many other interpretative ones) would simply
not arise.

The purpose of the Prefatory Statement is to amend issues related to the typical am­
biguity of Nc and its variants, by introducing conventions for restoration and suppression of
relative types indices of what Whitehead and Russell call ‘formal numbers’, e.g., any expres­
sion defined directly or indirectly by sm81. The goal was to secure that every theorem scheme ­
even those that contain non­uniformly ambiguous expressions like sm and Nc‘α had what they
called a “stable truth­value”:

A symbolic form has a stable truth­value if, after any assignment of types to
the real variables, types can be assigned to the constant symbols so that the
truth­value of the proposition thus obtained is the same as the truth­value of
any proposition obtained by modifying it by the assignment of higher types to
some or all of the constant symbols. This truth­value is the stable truth­value.82

In order to understand the conventions we need to consider in some detail their ‘formal
numbers’ . They are classified in two sorts, namely constant and functional:

A constant formal number is any constant symbol for which there is a constant
α such that, in whatever type the constant symbol is determined, it is, in that
type, identical with Nc‘α. In other words, if σ be a constant symbol, then σ is a
formal number provided that “truth” is the permanent truth value of σ = Nc‘α,
for some constant α.
The functional formal numbers are defined by enumeration; they are
Nc‘α, ΣNc‘κ, ΠNc‘κ, sm“µ, µ+c ν, µ−c ν , µν

where in each formal number the symbols α, κ, µ, ν occurring in it are called
the arguments of the functional form even when they are complex symbols.83

The occurrences of formal numbers in formulas are also classified into five sorts, namely,
argumental, arithmetical, equational, attributive and logical:

The occurrence of σ in sm“σ is called an argumental occurrence
The occurrence of σ as an argument of an arithmetical formal number (which
may be a component of another formal number) or as one side of an arithmetic
inequality is called an arithmetical occurrence.
The occurrence of σ as one side of an equation is called an equational occur­
rence.

81 WHITEHEAD & RUSSELL, 1927a, p.xiii [1912, p.xv]; cf. also LANDINI, G., 2016, p.25.
82 WHITEHEAD & RUSSELL, 1927a, p.xiii [1912, p.xv].
83 WHITEHEAD & RUSSELL, 1927a, p.xiv [1912, p.xvi].
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The occurrence of σ in ‘ξ ϵ σ’ is called an attributive occurrence.
Any other occurrence of σ is called a logical occurrence, so also is σ = Λ.84

It is worthwhile to take a look at some examples in order to get a clear grasp of the
meaning of these distinctions. The idea is that any expression which contains an explicit or
implicit occurrence of sm in its definition is a formal number; thus, Nc‘α and its variants, and
all class­expressions of Principiawhich contain occurrences of operations like sum, subtraction
or exponentiation are formal numbers85.

The difference between constant and functional formal numbers is simple enough: apart
from type ambiguity, symbols like 1, 2, 3 etc., 1 +c 1, 1 +c 2, ℵ0, 2ℵ0 have definite meaning,
while symbols like Nc‘α, µ+c 1, µ+c ν do not, since they contain free class variables like α, µ,
ν which must be determined in order for them to have a definite meaning. The first are constant,
the latter functional. Now, the kinds of occurrences can be exemplified as follows:

1. Argumental: sm“Nc‘α, sm“µ, sm“µ+c 1;

2. Arithmetical: µNc‘α, νµ+cν , µ2, Nc‘α > Nc‘β, Nc‘α ≥ Nc‘β, µ+c ν;

3. Equational: Nc‘α = Nc‘β, Nc‘α = µ, Nc‘α = µ +c ν, µ +c ν = µ +c ν; sm“µ = Nc‘µ,
sm“Nc‘α = µ;

4. Attributive: β ϵNc‘α, α ϵ 1, γ ϵ µ+c ν;

5. Logical: E!Nc‘α, E!µ+c ν, Nc‘α = Λ,µ+c ν = Λ, E! sm“µ, sm“µ = Λ;

Obviously, the same formal number can occur in different parts of a formula in different ways.
Take for instance: Nc‘α = µ E!Nc‘α; the first occurrence of Nc‘α is equational, the second
logical; also, a formal number can occur within a formal number in complex ways; for instance,
in (µ +c ν) +c ν = ξ the first occurrence of µ +c ν is arithmetical, while the occurrence of the
whole formal number (µ+c ν) +c ν is equational; similarly in Nc‘α+c Nc‘α = Nc‘α, µNc‘α =

Nc‘α, etc86. Among arithmetical formal numbers, Whitehead and Russell also distinguish pure
arithmetical formal numbers, which have no component parts that are argumental occurrences
of formal numbers.87

Now, for the conventions introduced in the Prefatory Statement: their purpose is to esta­
blish when two occurrences of a formal number “are said to be bound to each other”88, that is,
84 WHITEHEAD & RUSSELL, 1927a, p.xix [1912, p.xxi].
85 They are absolutely explicit in the text that distinctions concerning formal numbers and their occurrences are

about expressions: “[...] the distinction between formal numbers depends on the symbolism and not the entity
denoted, and in considering them it is symbolic analogy and not denotation which is to be taken into account”
(WHITEHEAD & RUSSELL, 1927a, pp.xiv­xv [1912, p.xvii].).

86 WHITEHEAD & RUSSELL, 1927a, pp.xix­xx [1912, pp.xxii­xxiii].
87 WHITEHEAD & RUSSELL, 1927a, p.xv [1912, p.xviii].
88 WHITEHEAD & RUSSELL, 1927a, p.xxi [1912, p.xxiii].
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when two occurrences of a formal number are to be identified as having the same relative type
(index), but without “elaboration produced by the definition of types”. For our purposes at the
moment, the two conventions we must consider are the following:

IT All logical occurrences of the same formal number are in the same types;
argumental occurrences are bound to logical and attributive occurrences; and
if there are no argumental occurrences, equational occurrences are bound to
logical occurrences.89

IIT Whenever a formal number σ occurs, so that, if it were replaced by Nc‘α,
the actual type of Nc‘α would by definition have to be adequate, then the actual
type of σ is also to be adequate.90

The most general and most important is IT and for now it is the only one we need to
discuss; IIT will be considered when we discuss Principia’s definition of addition. If we go
back to the question as to why “it is a fallacy to infer ‘ E!Nc‘α’ from the (true) propositions
‘⊢ α ϵNc‘α’ and ‘⊢ α ϵNc‘α⊃ E!Nc‘α’”91 we can readily understand the point of IT.

Analyzing the occurrences of formal numbers in each of the sentences, we have in
“α ϵNc‘α” an attributive occurrence of Nc‘α and in “α ϵNc‘α⊃ E!Nc‘α” the first occurrence
of Nc‘α is attributive and the second logical; IT assures us that all logical occurrences of a for­
mal number are bound but says nothing about attributive ones being bound to logical ones; thus,
we know the inference to be fallacious without the need to fully restore type determinations.
Another example, which is in fact discussed in some detail by the authors in connection with IT
is a revised (and weaker) version of Hume’s Principle:

k103·35 ⊢ E!Nc‘α ∨ E!Nc‘β ⊃ Nc‘α = Nc‘β ≡ α ϵNc‘β ≡β ϵNc‘α ≡
α sm β

The authors explain:

In k103·35, IT directs the logical and equational occurrences of Nc‘α to be in
the same type, and similarly for Nc‘β. Also “meaning” secures that the equa­
tional types of Nc‘α and Nc‘β are the same. Thus these four occurrences are
all in one type, which has no necessary relation to the types of the attributive
occurrences of Nc‘α and Nc‘β. Thus, using the notation of k65·04 to secure
typical definiteness, k100·35 is to mean:

89 WHITEHEAD & RUSSELL, 1927a, p.xxi [1912, p.xviii].
90 WHITEHEAD&RUSSELL, 1927a, p.xxiii [1912, p.xxv]. There are others, namely, conventions ‘AT’ and ‘Infin

T’. Like IT and IIT, each of these is intended to deal with the different difficulties that arise either from the
ambiguity of formal numbers or from the possibility that a cardinal may exist in one type but not in another. For
discussion of all of these conventions the reader is referred to Landini’s study (LANDINI, G., 2016). Infin T
will be briefly discussed in connection with the difficulties involved in proving the existence of finite cardinal
numbers.

91 WHITEHEAD & RUSSELL, 1927a, p.12 [1912, p.12].
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⊢ E!Nc(ξ)‘α ∨ E!Nc(ξ)‘β ⊃ Nc(ξ)‘α = Nc(ξ)‘β ≡ α ϵNc(α)‘β
≡β ϵNc(β)‘α ≡ α smβ
The types of these attributive occurrences are settled by the necessity of “mea­
ning”.92

Since for the purposes of developing the basics of the theory of natural numbers, e.g.,
finite cardinals, homogeneous and ascending cardinals mainly suffice, one could hope that the
difficulties surrounding Nc‘α would be avoided in their treatment. Unfortunately, this is not the
case, as Landini showed93.

The homogeneous cardinal number of a class α is defined as follows:

k103·01 N0c‘α = Nc‘α ��t‘α Df

The idea is to intersect Nc‘α and t‘α, in order to fix the type of N0c‘α as t‘t‘α or, more shortly,
t2‘α. Such a class of classes N0c‘α ought to only be defined by a homogeneous similarity relation.
Unpacking the definition they get:

k103·11 ⊢ β ϵN0c‘α ≡ β ϵNc‘α β ϵ t‘α

This is completely inadequate, as a quick look at some proofs of important results will show.

Homogeneous cardinals are important because several results are provable for them that
have no analogues for Nc‘α. The most important are, perhaps, the following:

k103·12 ⊢ α ϵN0c‘α

k103·13 ⊢ E!N0c‘α

k103·42 ⊢ α sm β ≡ Nc(β)‘α = N0c‘β

The third theorem is the closest thing to Hume’s Principle to be found in Principia. The second
establishes that the homogeneous cardinal number of a given class α is never empty. The first
is the most important and must obviously be provable: α must be a member of the class of all
classes of the same relative type of α and similar to α. Whitehead and Russell’s demonstration
92 WHITEHEAD & RUSSELL, 1927a, p.xxi [1912, p.xxiv]. Still, as Landini notes, IT would be dispensable if

type indexes were not suppressed from the outset (LANDINI, G., 2016, p.27).
93 LANDINI, G., 2016.
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of the first theorem would be something along these lines94:

[k103·11]⊢ β ϵN0c‘α ≡β β ϵNc‘α β ϵ t‘α (1)

[(1) k10·1]⊢ α ϵN0c‘α ≡ α ϵNc‘α α ϵ t‘α (2)

[k63·103]⊢ α ϵ t‘α (3)

[k73·3]⊢ α sm(α,α)α (4)

[k100·1]⊢ α smα⊃ α ϵNc‘α (5)

[(4) (5)]⊢ α ϵNc‘α (6)

[(2) (3) (6)]⊢ α ϵN0c‘α (7)

The difficulty here seems to be none other than that encountered with theorem k100·3: line 5
must be read as “α sm(ξ,α)α⊃α ϵNc(ξ)‘α”. But “α sm(ξ,α)α” is not provable, only “α sm(α,α)α”
is. As Landini observes, the definition is useless because in order to show that α ϵN0c‘α cardinal
is homogeneous, one must, in fact, make use of the illicit ‘theorem’ α ϵNc‘α95.

Although it is somewhat astonishing that such an error was made by the authors96, the
situation is easily remedied. As Landini showed, since what we want is the class of all classes
similar toα and of the same type ofα, we can simply parallel the (typically indefinite) definitions
of k100 restoring relative type indexes according to the rules of k63− 6597:

sm0 = β̂γ̂{ E!(β ��t0‘γ sm γ)} Df

N0c = −−→sm0 Df

N0c‘α = δ̂(δ sm0 α) Df

These definitions solve the problem of typical (in)determination and allow for a corrected proof
of α ∈ N0c‘α since they fix the relative type of sm to (α, α). Parallel definitions are also suitable
(and necessary) for ascending and descending cardinals of any suffix:

smi = β̂γ̂{ E!(β ��ti‘γ sm γ) Df smi = β̂γ̂{ E!(β ��ti‘γ sm γ) Df

Nic =
−→
smi Df Nic = −→smi Df

Nic‘α = δ̂(δ smi α) Df Nic‘α = δ̂(δ smi α) Df
94 The proof is only is sketched, unfortunately. Had the authors gone on to fully state it we would have more

information in order to realize what exactly had gone wrong. Landini again attributes the responsibility to
Whitehead and claims that the problematic definitions are probably a result of his emendations (LANDINI, G.,
2016, p.19). Although this is very plausible, it is still very puzzling how the mistakes got past both him and
Russell. Perhaps the best explanation is their carelessness regarding syntactic matters. If our reading is correct,
this is corroborated by the letter Whitehead wrote to Russell by January 19, 1911 quoted above.

95 LANDINI, G., 2016, p.19.
96 Landini finds it “difficult to believe” that such “[...] flawed definitions were in the originalPrincipia” and claims

that “they must have been part of Whitehead’s emendations”(LANDINI, G., 2016, p.20). On this point, see the
previous note 94.

97 LANDINI, G., 2016, p.19­20
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Landini further introduces an additional definition t0‘α =Df t0‘α in order for the ascending case
to cover the homogeneous also98. We refrain from fully following him in this just to keep Prin­
cipia’s use of “N0c” , “N0c‘α” , etc., unaltered just to preserve and keep explicit, as Whitehead
and Russell do, the difference between homogeneous and ascending cardinals (Principia’s nota­
tion could also be preserved while subsuming homogeneous under heterogeneous cardinals by
putting N0c =Df N0c).

Be that as it may, the above provide us with corrected definitions of homogeneous, as­
cending and descending cardinal numbers of a given class α. In what follows we continue our
discussion of Principia’s development of Arithmetic, calling attention to the reader at points
where these modifications must be resorted to (they are of particular importance in the next
section).

5.5 The Definitions of Successor and Natural Number

To fully understand how the Dedekind­Peano postulates are obtained we still need a
definition of immediate successor and of finite cardinal. Let’s start with the former. The relation
of immediate successor is defined at k110 in three stages. As with their definition of cardinal
number (and, in fact, most of their definitions) Whitehead and Russell want the most general
definition possible. So in order to obtain the notion of immediate successor µ+c 1 of a cardinal
µ as a particular case they define first the cardinal sum µ +c ν of any two cardinals µ and ν ­
either finite or infinite99.

In order to do that, however, they define first what they call the ‘arithmetical class­sum’
of two classes α and β “[...] so as to give two mutually exclusive classes respectively similar to
α and β, so that the number of terms in the logical sum of these two classes is the arithmetical
sum of the numbers of terms in α and β respectively”100. They put:

k110·01 α + β =↓ (Λ ��β)“ι“α ∪ (Λ ��α) ↓ “ι“β Df

Now, despite its somewhat intimidating appearance, the idea behind this notation is simple and
elegant101. If we break it down according to k37·01 and k51·1, we see that ↓ (Λ ��β)“ι“α denotes
the class of ordered pairs which we obtain from α if we pair the singleton of each member of α
with the empty set of the same type of β; (Λ ��α) ↓ “ι“β is the class of ordered pairs we obtain
98 LANDINI, G., 2016, p.21
99 In fact, “µ+c ν” is significant even when µ or ν are not cardinals.
100 WHITEHEAD & RUSSELL, 1927a, p.72 [1912, p.75].
101 Russell himself gives a pretty straighforward explanation in RUSSELL, B., 1919, p.117­8. He gave an even

better one employing Principia’s notation to Jourdain in correspondence (GRATTAN­GUINNESS, 1977, p.119­
20). Curiously, no explanation of the somewhat compact symbolism is given in Principia.
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if we pair the empty set of the same type of α with the singleton of each member of β, where
α and β are any classes of whatever (possibly distinct) relative types; the arithmetical sum of α
and β is the union of theses classes of ordered pairs.

Themotivation for this definition is twofold: to guarantee that the number of the resulting
class is, in fact, the number which would be obtained by ‘summing up’ the members of the two
classes even if they are not disjoint and to adjust the type of each ordered pair as to guarantee
that the class of all of them forms an existent, legitimate class. Two simple examples will make
these points clear. First, assuming for convenience that α and β are of the same relative type,
let α = {a, b, d} and let β = {a, c, e}. Suppose we want to obtain directly the arithmetical­sum
α + β by simply putting their members together, that is, by putting:

α + β = α ��β = {a, b, c, d, e}

Obviously such definition would fail, because α and β are not disjoint and our class would
be one member short of what we informally expected. If we follow Whitehead and Russell’s
procedure, we see the problem is solved, since, using the standard notation for ordinal couples
or ordered pairs, we would get:

↓ (Λ ��β)“ι“α = {< {a},Λ >,< {b},Λ >,< {d},Λ >}

(Λ ��α) ↓ “ι“β = {< Λ, {a} >,< Λ, {c} >,< Λ, {e} >}

So that:

↓ (Λ ��β)“ι“α ��(Λ ��α) ↓ “ι“β =

{< {a},Λ >,< {b},Λ >,< {d},Λ >,< Λ, {a} >,< Λ, {c} >,< Λ, {e} >}

The resulting class α+β has the desired ‘number’ of members and is a legitimate class, since all
of its members are of the same type. Suppose, however, that the classes α and β are of distinct
types and that instead of pairing each singleton with the empty set of the type of the other class,
we take the empty set in each case to be of the same type of its pair. Let, for instance, α = {a, b}
and β = {{a}, {b}}, with a and b being individuals, so that:

↓ (Λ ��α)“ι“α = {< {a},Λα >,< {b},Λα >}

(Λ ��β) ↓ “ι“β = {< Λα+1, {{a}} >,< Λα+1, {{b}} >}
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The attempt to unite the resulting classes would be blocked by the theory of types: if a is of
type n, the classes {a} and {b} would be of type n + 1; in this case the pairs < {a},Λ > and
< {b},Λ > would be of type (n+1)+ 1; this is the reason why they had the following instead:

↓ (Λ ��β)“ι“α = {< {a},Λβ >,< {b},Λβ >}

(Λ ��α) ↓ “ι“β = {< Λα, {{a}} >,< Λα, {{b}} >}

Every pair of the first class will be either of type α or β whichever is higher and every pair of
the second class will be either of type α or β, whichever is higher, hence both of the same type.
The definition is designed to deal with cases in which the summed classes are not disjoint and/or
of different types.

We can see that the definition is adequate to capture (in precise terms) what we mean by
summing the members of two classes ignoring repetition, given the two theorems:

k110·11 ⊢ . ↓ (Λ ��β)“ι“α ��(Λ ��α) ↓ “ι“β = Λ

k110·12 ⊢ . ↓ (Λ ��β)“ι“α smα . (Λ ��α) ↓ “ι“β sm β

which establish that the classes ↓ (Λ ��β)“ι“α and (Λ ��α) ↓ “ι“β are not only disjoint, but are
also similar to α and β respectively.

Now, with the definition of the arithmetical sum of two classes at hand they define the
actual (cardinal) sum of two homogeneous cardinals as:

k110·02 µ+c ν = ξ̂{( E

α, β) µ = N0c‘α ν = N0c‘β ξ sm (α + β)} Df

This defines the cardinal sum of the (homogeneous) cardinal number of a class α and the (ho­
mogeneous) cardinal number of a class β as the cardinal number of the arithmetical sum α+ β.
The definition is framed so as to yield µ +c ν = Λ whenever µ or ν are not cardinals and it
does not require that µ and ν be of the same relative type, only that they are classes of classes102.
The requirement that µ and ν be homogeneous cardinals is due to the difficulties involved with
descending cardinals which may be empty in some types. The authors explain:

Suppose either µ or ν, say µ, is Λ. Then, by k102·73, µ = Nc(ζ)‘α, if ζ is of
the appropriate type. Hence, if we had put

102 WHITEHEAD & RUSSELL, 1927a, pp.63­4 [1912, pp.66­7].
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µ+c ν = ξ̂{( E

α, β) µ = Nc‘α ν = Nc‘β ξ sm (α+ β)} Df,
where the ambiguities of type involved in Nc‘α and Nc‘β may be determined
as we please, we should have
ν = Nc‘β ⊃ t‘ζ + β ϵ µ+c ν

ν = Nc‘β ⊃ t‘ζ + β ϵΛ +c ν

We should also have t‘t‘ζ + β ϵΛ +c ν and so on. Thus, Λ +c ν would not
have a definite value, i.e., it would not merely have typical ambiguity, which
it ought to have, but it would not have a definite value even when its type was
assigned. Thus such a definitionwould be unsuitable. For the above reasons, we
put µ = N0c‘α ν = N0c‘β in the definition, and obtain the typical ambiguity
we desire by means of the typical ambiguity of the “sm” in “ξ sm (α+ β)”.103

The point is again related to Principia’s version of Cantor’s theorem which assures that
some cardinals are empty in some relative types and some comments are necessary in connection
with the mentioned “typical ambiguity of the “sm” in “ξ sm (α+β)”. They require it in order to
allow the sum of cardinals of any (possibly) distinct relative types. Unfortunately, this ambiguity
also causes problems. As Whitehead and Russell explain “ξ is typically ambiguous, on account
of the ambiguity of “sm”” and thus “µ +c ν is also typically ambiguous”104. This means that
µ+c ν itself may be empty in some types when it is a descending cardinal, and also that µ+c ν

is subject to the difficulties that surround completely ambiguous formal numbers like Nc‘α.
Again, we may follow a simple solution suggested by Landini, which is to always read µ+c ν in
accordance with convention IT, making it typically definite; in other words we regard “+c” as
“+c(σ)”, or “+δ

c”, for some definite relative type index σ, as in Nc(ξ)‘α105. Thus, we fix ∗110·02
as:

µ+δ
c ν = ξ̂{( E

α, β) µ = N0c‘α ν = N0c‘β ξ smδ (α + β)} Df

As Landini showed in his systematic study, this correction does no harm to the development
of Arithmetic in Principia with the exception of theorems that also depend on ill­motivated
supplementary definitions introduced by Whitehead and Russell in order to allow expressions
of the form Nc‘α +c µ, Nc‘α +c Nc‘β, etc.106 Whitehead and Russell explain:

The above definition of µ +c ν is designed for the case in which µ and ν are
typically definite. But we must be able to speak of ‘Nc‘γ +c Nc‘δ’ and this
must be a definite cardinal, namely Nc‘(γ + δ). [...] It is obvious that we want
our definition to yield
Nc‘γ +c Nc‘δ = Nc‘(γ + δ)

103 WHITEHEAD & RUSSELL, 1927a, pp.64­5 [1912, pp.67­8].
104 WHITEHEAD & RUSSELL, 1927a, p.72 [1912, p.75].
105 LANDINI, G., 2016, p.30.
106 LANDINI, G., 2016, p.30­1.
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in all types, but in order to insure that this shall hold evenwhen, for some values
of ξ, Nc(ξ)‘γ = Λ, we must introduce two new definitions [...]
whence ⊢: Nc‘α+c Nc‘β = N0c‘α+c N0c‘β = Nc‘(α+ β).107

The authors apparently thought that Nc‘γ +c Nc‘δ should not only be allowed as mea­
ningful, but also that Nc‘γ +c Nc‘δ = Nc‘(γ + δ) ought to be provable; in order to ensure this,
they introduced the following supplementary definitions mentioned in the quote above, namely:

k110·03 Nc‘α +c µ = N0c‘α +c µ Df

k110·04 µ+c Nc‘α = µ+c N0c‘α Df

Their purpose is to avoid the possibility of either Nc‘α = Λ or Nc‘β = Λ when expressions
like Nc‘α +c Nc‘β are allowed. Again, if either Nc‘α or Nc‘β are descending, this is always a
possibility and in this case Nc‘α+cNc‘β = Nc‘(α+β)may hold for some relative types and not
for others108. A simple example can establish this. Let Nc‘α = Λ and Nc‘α+cNc‘β = Λ. Since
+c must be read as+ξ

c in accordance to convention IT, we should get Nc(ξ)‘(α+β) = Λ. But if
Nc(ξ)‘(α + β) is either a homogeneous or ascending cardinal, the theorem fails: in such cases
Nc(ξ)‘(α+β) will never be empty. In order to secure Nc‘α+cNc‘β = Nc‘(α+β), descending
typical determinations for Ncmust be excluded. Since homogeneous109 cardinals are always non­
empty, the supplementary definitions “exclude such determinations of the ambiguity”110. There
are analogous supplementary definitions for cardinal multiplication (k113·04·05), exponentia­
tion (k116·03·04) and for the definitions of greater and less than (k117·02·03). But, as Landini
observes, these are all illicit for being in direct conflict with the definition of Nc‘α. Simply put:
one cannot introduce a definition that alters the definiendum of an already defined symbol! Nc‘α
and N0c‘α are different formal numbers. It must not be permissible to treat them as the same in
some contexts and different in others.

The supplementary definitions, as Landini observes, are intimately connected with con­
vention IIT, which must fall with them111. Convention IIT ensures that if a formal number σ
“[...] were replaced by Nc‘α, the actual type of Nc‘α would by definition have to be adequate,
then the actual type of σ is also to be adequate”112. This is introduced in order to secure that

E!(µ+c ν) when ν is substituted for symbols like Nc‘α: the convention was introduced to work
107 WHITEHEAD & RUSSELL, 1927a, p.65 [1912, p.68].
108 LANDINI, G., 2016, p.31.
109 Homogeneous cardinals are selected merely for convenience, since ascending cardinals would also do the trick.

The point is just to ensure non­emptiness: “It does not make any difference to the value of Nc‘α +c Nc‘β
how the ambiguities of Nc‘α and Nc‘β are determined, so long as they are determined in a way that insures

E!Nc‘α E!Nc‘β” (WHITEHEAD & RUSSELL, 1912, p.75­6).
110 WHITEHEAD & RUSSELL, 1927a, p.72 [1912, pp.75­6].
111 Cf. LANDINI, G., 2016, p.31.
112 WHITEHEAD & RUSSELL, 1927a, p.xxiii [1912, p.xxv].
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with the supplementary definitions k110·03·04, k113·04·05, k113·04·05, k117·02·03, which
was intended to make the type of Nc‘α adequate, e.g., would ensure that Nc‘α is existent (as
well as µ+c Nc‘α)113. But the supplementary definitions are spurious.

What makes this problematic ­ and relevant to understanding the development of finite
Arithmetic in Principia ­ is the fact that important theorems rely on them. A very important
example is the following114:

k110·63 ⊢ Nc‘α +c 1 = ξ̂{( E

γ, y) γ smα y ∼ ϵ γ ξ = γ ��ι‘y}
The authors attach much weight to this proposition, which is not only used very often in the
treatment of finite Arithmetic but is also claimed to be the connection of “[...] mathematical
induction for inductive cardinals withmathematical induction for inductive classes (cf.k120)”115.
In fact, put in a simplified form in words, this proposition identifies the successor Nc‘α+c 1 of
Nc‘α as the class which contains every class ξ such that, for some γ that is similar to α and some
y that is not a member of γ, if we add y to γ, the resulting class is ξ; in other words, the successor
Nc‘α +c 1 of the cardinal number Nc‘α of a class α is such that, if we take any member γ of
Nc‘α and add to it (only) some y that does not belong to it, we get a member of Nc‘α +c 1, or
equivalently, if we take away (only) some y of a member of Nc‘α +c 1, we get a member of
Nc‘α.

From this it is easy to see that, in the lowest possible type where cardinal numbers are
definable, the number 1 will be emulated as the class of all classes containing a single indivi­
dual of some simple type, the number 2 will be emulated by the class of all classes of pairs of
individuals and so on, where, of course, classes are emulated in terms of the definitions of k20.
Unfortunately, theorem k110·63 is proved as follows:
113 Cf. WHITEHEAD & RUSSELL, 1927a, p.xxiii [1912, p.xxv].
114 Cf. LANDINI, G., 2016, p.34.
115 WHITEHEAD & RUSSELL, 1927a, p.82 [1912, p.85].
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[k101·2]⊢ Nc‘α +c 1 = Nc‘α +c Nc‘ι‘x (1)

[k110·33]⊢ ξ ϵNc‘α +c Nc‘β ≡ξ ( Eγ, δ) γ smα δ smβ γ ��δ = Λ ξ = γ ��δ (2)

[(1) (2)]⊢ Nc‘α +c 1 = ξ̂{( Eγ, δ) γ smα δ sm ι‘x γ ��δ = Λ ξ = γ ��δ} (3)

[k73·45]⊢ 1 = β(β sm ι‘x) (4)

[(3) (4)]⊢ Nc‘α +c 1 = ξ̂{( Eγ, δ) γ smα δ ϵ 1 γ ��δ = Λ ξ = γ ��δ} (5)

[k52·1]⊢ α ϵ 1 ≡α ( Ey) α = ι‘y (6)

[(5) (6)]⊢ Nc‘α +c 1 = ξ̂{( E

γ, δ, y) γ smα δ = ι‘y γ ��δ = Λ ξ = γ ��δ} (7)

[k51·211]⊢ y ∼ ϵ α ≡y ι‘y ��α = Λ (8)

[(7) (8)]⊢ Nc‘α +c 1 = ξ̂{( E

γ, y) γ smα γ ��ι‘y = Λ ξ = γ ��δ} (9)

[k13·195]⊢ y ∼ ϵ α ≡α,y ι‘y ��α = Λ (10)

[(9) (10)]⊢ Nc‘α +c 1 = ξ̂{( E

γ, y) γ smα y ∼ ϵ γ ξ = γ ��ι‘y} (11)

The problem is that k110·33, introduced in line two, depends on the following chain of theorems,
all of which depend essentially on k110·03·04:

k110·3 ⊢ Nc‘α +c Nc‘β = N0c‘α +c N0c‘β = Nc‘(α + β)

k110·31 ⊢ γ smα δ sm β ⊃ Nc‘γ +c Nc‘δ = Nc‘α +c Nc‘β

k110·32 ⊢ α ��β = Λ ⊃ Nc‘α +c Nc‘β = Nc‘(α ��β)
As the authors themselves claim, it was in order to obtain k110·3 that they introduced the sup­
plementary definitions in the first place. And without k110·03·04 both k110·31 and k110·32
are illicit, since some descending cardinals are empty in virtue of Cantor’s theorem. In fact, as
Landini observes116, both of the following theorems are illicit:

k110·33 ⊢ ξ ϵNc‘α +c Nc‘β ≡ξ ( E

γ, δ) γ smα δ smβ γ ��δ = Λ ξ = γ ��δ
k110·331 ⊢Nc‘α +c Nc‘β = ξ̂{( Eγ) γ smα ξ − γ smβ = Λ γ⊂ ξ}

At first this could seem very serious but, fortunately, their respective equivalents for homogene­
ous and ascending cardinals are recoverable using Landini’s revised definitions117:

116 LANDINI, G., 2016, p.34.
117 Cf. LANDINI, G., 2016, p.34.
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k110·33h ⊢ ξ ϵN0c‘α +σ
c N0c‘β ≡ξ ( E

γ, δ) γ sm0 α δ sm0 β γ ��δ = Λ ξ smσ γ ��δ
k110·331h ⊢ N0c‘α +σ

c N0c‘β = ξ̂{( E

γ) γ sm0 α ξ − γ smσ β = Λ γ⊂ ξ}

k110·33a ⊢ ξ ϵNic‘α +σ
c Nic‘β ≡ξ ( Eγ, δ) γ smi α δ smi β γ ��δ = Λ ξ smσ γ ��δ

k110·331a ⊢ Nic‘α +σ
c Nic‘β = ξ̂{( E

γ) γ smi α ξ − γ smσ β = Λ γ⊂ ξ}

All that is required is that the relative type indices be kept right. The above, in turn also allow
for the recovery of the following118:

k110·63h ⊢ N0c‘α +c 1 = ξ̂{( Eγ, y) γ sm0 α y ∼ ϵ γ ξ = γ ��ι‘y}
k110·63a ⊢ Nic‘α +c 1 = ξ̂{( E

γ, y) γ smi α y ∼ ϵ γ ξ = γ ��ι‘y}
As long as we read +c1 here according to convention IT, there is no problem. Also, theorems
concerning the successor of a cardinal number µ that rely on clauses which contain only argu­
mental occurrences of µ as in sm“µ are not affected, as Landini points out, since their clauses
ensure non­emptiness119. So we maintain the following theorems intact despite the need to drop
k116·03·04 and modify k110·63:

k110·631 ⊢ µ ϵNC ⊃ µ+c 1 = ξ̂{(( E

γ, y) γ ϵ sm“µ y ∼ ϵ γ ξ = γ ��ι‘y}
k110·632 ⊢ µ ϵNC ⊃ µ+c 1 = ξ̂{( E

γ, y) y ϵ ξ ξ − ι‘y ϵ sm“µ}

We can now pass to the definition of the set of finite cardinal numbers in order to complete the
preliminaries for the proofs of the Peano postulates.

Similarly to Frege, in order to define the class of all finite cardinals (the class of natural
numbers), Whitehead and Russell define the notion of “being an ancestor of a term with respect
to a relation R”. The main definition is, of course:

k90·01 R∗ = x̂ŷ{x ϵC‘R R̆“µ⊂µ ⊃µ y ϵ µ} Df

In Russell and Whitehead’s words this is to mean that “[...] xR∗y is to hold when x belongs to
the field of R, and y belongs to every hereditary class to which x belongs; a hereditary class
being a class such that R̆“µ⊂µ ”120. Of course, the ‘intuitive’ idea of the ancestral of a relation
118 Cf. LANDINI, G., 2016, p.34.
119 LANDINI, G., 2016, 34.
120 RUSSELL & WHITEHEAD, 1911, p.576.
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is perhaps better explained in terms of relative products R2, R2|R, R3|R of a relation R. Let R
be the relation is a parent of and let a and b be two terms in the field of R121. Take the following
formulas:

aR2b = ( E

x) aRx xRb

a(R2|R)b = ( E

x, y) aRx xRy yRb

a(R3|R)b = ( E

x, y, z) aRx xRy yRz zRb

and so on...

These would state respectively that a is a grandparent of b, that a is a great grandparent of b and
that a is a great­great grandparent of b; and, in general, to say that aRnb holds is to say that a is
an ancestor of b n steps removed: for n = 1, a is a parent of a parent of b, for n = 2 it is a parent
of a parent of a parent, and so on. This is why Whitehead and Russell named R∗ the “ancestral”
of R.

The idea to be captured by a precise definition is that of being n steps away from a term
in a series of terms in the field of a relation R. The notation R̆“µ⊂µ is somewhat compact.
Recall that by the definition of plural descriptive functions from k37, we have:

k37·01·1 ⊢ R“µ = x̂{( Ey) y ϵ µ xRy}

And by the definition of R̆ as the converse of a relation R from k31 we have, then:

k37·105 ⊢ R̆“µ = x̂{( E

y) y ϵ µ yRx}

From whence it follows:

k37·171 ⊢ R̆“µ⊂µ ≡ x ϵ µ xRy ⊃x,y y ϵ µ

Since they also show:

k90·102 ⊢ R̆“µ⊂µ x ϵ µ ⊃ y ϵ µ ≡ R“µ⊂µ y ϵ µ ⊃µ x ϵ µ

121 A brief account in these terms is given byWhitehead and Russell themselves (WHITEHED& RUSSELL, 1910,
p.570­2). Recall that R2 means the relative product of R and itself, that is R|R.
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Then, the unpacked proposition that just embodies the definition and which is most frequently
used is the following theorem:

k90·11 ⊢ xR∗y ≡ x ϵC‘R z ϵ µ zRw ⊃z,w w ϵµ x ϵ µ ⊃µ y ϵ µ

Thus, xR∗y holds when x is in the field of the relation R and y belongs to every hereditary class
to which x belongs, which is equivalent to the weak or non strict ancestral. Just like Frege’s own
version, R∗ holds between two terms x and y whenever y belongs to every hereditary class µ to
which x belongs or, equivalently, whenever y possesses every hereditary property possessed by
x, as proved in the more familiar theorem scheme122:

k90·112 ⊢ xR∗y ϕz zRw ⊃z,w ϕw ϕx ⊃ ϕy

Unlike Frege’s version, however, the field of R∗ is restricted to the field of R, that is, in order
for x to have the relation R∗with some y, it must belong to the set: x̂{( Ey) xRy ∨ yRx}.
The restriction is made for convenience and in order to avoid some undesirable consequences
of not assuming it. On the one hand, assuming it entails reflexivity of R­ancestrality within the
field of R, “but not elsewhere”, as Whitehead and Russell put it123. On the other, this avoids an
annoying fact that Frege’s (weak) ancestral had to put up with: according to his version we had
to accept that the posterity of, say, Julius Caesar with respect to the predecessor relation is the
set containing Julius Caesar himself or, in his terminology, we had to accept that the P­series
ending with Julius Caesar consists of him and no other object; restricting the possible relata of
R∗to the field of R avoids such undesirable (albeit innocent) consequences.

Following closely the treatment of Frege, Whitehead and Russell want to define the set
of finite cardinals as the posterity of 0 with respect to the relation (+1c) which holds between a
cardinal number n and its immediate successor n+c 1, where the posterity of a term x is the class
←−
R ∗‘x, that is, the class of all y of which x is an R­ancestor, i.e., the class of all ‘descendants’
of x with respect to R. Informally, what they want then is to define the class of finite cardinals
as the class of classes α̂{0 ϵ µ γ ϵ µ ⊃γγ + 1 ϵ µ ⊃µ α ϵ µ}, i.e., the class of all classes α
that belongs to every hereditary class that belongs to zero124. Put in more precise terms, we first
have, in virtue of k90:

x(+c1)∗y ≡
122 Most proofs ­ including that of mathematical induction at k120, where Arithmetic is actually developed ­ use

this straightforward formulation of the ancestral.
123 WHITEHEAD & RUSSELL, 1925, p.549 [1910, p.576].
124 WHITEHEAD & RUSSELL, 1925, p.570 [1910, p.544].
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x ϵC‘(+c1) w ϵµ w(+c1) ⊃z,w z ϵ µ x ϵ µ ⊃µ y ϵ µ

Then, using the definition of descriptive functions R‘y = (ιx)(xRy) of k30 and of double
descriptive functions ♀y = ẑx̂(z = x♀y) of k38125, the relation of immediate succession relation
can be put as126:

+c1 = α̂β̂(α = β +c 1) Df

And from these then, we get the more straightforward:

x(+c1)∗y ≡

x ϵC‘(+c1) w ϵµ⊃w w +c 1 ϵ µ x ϵ µ ⊃ y ϵ µ

The class of natural numbers, denoted by “NC induct” is thus defined as the class of all classes
(of classes) which bear the relation (+c1)∗ to 0:

k120·01 NC induct = α̂{α(+c1)∗0} Df

So we get:

k120·101 ⊢ α ϵNC induct ≡ ξ ϵ µ ⊃ξ ξ +c 1 ϵ µ 0 ϵ µ ⊃µ α ϵ µ

That is, α is a finite cardinal number if, and only if, it belongs to all classes that are hereditary
in the +c1 series that begins with zero. Notice that despite the fact that these definitions are
presented as apparently indefinite with respect to relative types, conditions of meaningfulness
impose some restrictions. First and foremost, ξ and ξ +c 1 must be of the same relative type
otherwise it would be nonsense to speak of ξ +c 1 as belonging to µ whenever ξ does. So in
125 The symbol “♀” has a sort of unique and problematic status in Principia. The basic notation of ∗38 introduces

what Whitehead and Russell refer to as a “double descriptive function” which stands for any “non­propositional
function of two arguments, such as α ��β, α ��β,R ·��S,R ·��S [...]” (WHITEHEAD & RUSSELL, 1910, p.311
[1925, p.296]). In short, “♀” functions basically as a variable for operators instead of a variable for functions.
Since the above use in the informal explanation of the notion of the ancestral and induction is the only (non­
problematic) instance of its use we need to consider of this notation, we shall not address it here, but we refer
to an illuminating discussion in GRIFFIN, N., 2019 and also a forthcoming paper of Landini that will discuss
k38 in length and detail; I leave him my thanks here for kindly letting me have a look at this unpublished paper,
which was very helpful.

126 Thus “α(+c1)β” reads “α precedes β immediately”.
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order to get a typically definite class NC induct, say, one whose members are of type η, type
indexes can be restored only for 0 as in:

k120·011 NηC induct = α̂{α(+c1)∗0η}

k120·102 ⊢ α ϵNηC induct ≡ ξ ϵ µ ⊃ξ ξ +c 1 ϵ µ 0η ϵ µ ⊃µ α ϵ µ

Whitehead and Russell adopt the strange (and inadequate) procedure of first stating the ambi­
guous theorems and definitions and then the versions with explicit relative type indices. But as
Landini emphasizes, the indefinite or ambiguous versions should be understood as the result of
suppressing the indexes of k120·011·102127.

5.6 The Peano Postulates and the Existence of Cardinal Numbers

5.6.1 Peano 1, 2, 4 and 5

At last, we may now review and discuss the proofs of the Peano postulates. In order of
appearance in the text, Principia’s analogues of the Peano postulate are the following:

[k120·11]⊢ α ϵNCη induct ϕξ ⊃ξ ϕ(ξ +c 1) ϕ0η ⊃ ϕα Peano 5

[k120·12]⊢ 0 ϵNC induct Peano 1

[k120·121]⊢ α ϵNCξ induct ⊃ (α +c 1)ξ ϵNCξ induct Peano 2

[k120·124]⊢ α +c 1 ̸= 0 Peano 4

All of them are easily proved and are not affected at all by the difficulties surrounding the typical
ambiguity of Nc‘α128.

Peano 5129 and 1 follow almost immediately from the definition of natural number. The
127 Cf. LANDINI, G., 2016, p.41­51.
128 See Appendix A for transcriptions from Principia’s proofs and (inevitably) loose translations into a modern no­

tation and deductive system. Another (informal) reconstruction is considered in Appendix B. For transcriptions
and translations of the main theorems from k90, see also Appendix A.

129 We are following here Russell’s own (not usual or standard) numbering of the Peano postulates put forward in
Introduction to Mathematical Philosophy, namely (RUSSELL, B., 1919a, pp.5­6):

(1) Zero is a number;
(2) The successor of a number is a number;
(3) No two numbers have the same successor;
(4) Zero is not the successor of any number;
(5) Any property which belongs to zero and, also to the successor of every number which has the property,

belongs to all numbers.
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former is proved as the following theorem scheme:

[k120·102]⊢ α ϵNηC induct ≡ α(+c1)∗0η (1)

[k90·112]⊢ α(+c1)∗0 ϕξ ⊃ξ ϕ(ξ +c 1) ϕ0 ⊃ ϕα (2)

[(1) (2)]⊢ α ϵNηC induct ϕξ ⊃ξ ϕ(ξ +c 1) ϕ0 ⊃ ϕα (3)

It is worthwhile to note that the proof of ∗90 · 112 used in line (2) relies on the contextual
definition of classes from ∗20, being proved as follows:

[k90·111]⊢ xR∗y ≡ z ϵ µ.zRw ⊃z,w w ϵµ x ϵ µ ⊃µ y ϵ µ (1)[
(1)

ẑ(ϕz)

µ

]
⊢ xR∗y ≡ z ϵ ẑ(ϕz) zRw ⊃z,w w ϵ ẑ(ϕz) x ϵ ẑ(ϕz) ⊃ y ϵ ẑ(ϕz) (2)

[k20·02]⊢ x ϵ ẑ(ϕz) ≡x ϕx (3)

[(2) (3)]⊢ xR∗y ≡ ϕz zRw ⊃z,w ϕw ϕx ⊃ ϕy (4)

[(4) (k3·31)]⊢ xR∗y ϕz zRw ⊃z,w ϕw ϕx ⊃ ϕy (5)

This means that for the theorem to have its full intended force, the Axiom of Reducibility is
required ­ and so the same can be said, of course, about the principle of mathematical induction.
Indeed, both theorems above are impredicative.

Peano 1 follows by a simple generalization on a tautology:

[∗120·101]⊢ 0 ϵNC induct ≡ ξ ϵ µ ⊃ξ ξ +c 1 ϵ µ 0 ϵ µ ⊃µ 0 ϵ µ (1)

[(k3·26) (k10·11)]⊢ ξ ϵ µ ⊃ξ ξ +c 1 ϵ µ 0 ϵ µ ⊃µ 0 ϵ µ (2)

[(1) (2)]⊢ 0 ϵNC induct (3)

Peano 2 is proved on the basis k90 · 172, which asserts that R|R∗ ·⊂ R∗
130:

[k120·102]⊢ α ϵNξC induct ≡ α(+c1)∗0ξ (1)

[k90·172]⊢ σRγ γR∗β ⊃R,σ,β,γ σR∗β (2)[
(2)

+c1, α, 0, α +c 1

R, σ, β, γ

]
⊢ α +c 1(+c1)α α +c 1(+c1)∗0ξ ⊃ α +c 1(+c1)∗0ξ (3)

[(3) ( ∗38·1)]⊢ α ϵNξC induct ⊃ α +c 1 ϵNξC induct (4)

Using the induction schemes k120·11 and k120·121 they also prove the following impredicative
130 For some explanations and translations of important theorems about the ancestral, see the appendices.
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induction scheme k120·13:

[k120·121]⊢ ξ ϵNCη induct ϕξ ⊃ξ ϕ(ξ +c 1) ⊃

ξ ϵNCη induct ⊃ξ (ξ +c 1)η ϵNCη induct ϕ(ξ +c 1)η (1)

[k120·12]⊢ ϕ0η ⊃ 0η ϵNCη induct ϕ0η (2)

[k120·11]⊢ α ϵNCη induct ϕξ ⊃ξ ϕ(ξ +c 1) ϕ0η ⊃ ϕα (3)[
(3)

ξ ∈ NCη induct ϕξ

ϕξ

]
⊢ α ϵNCη induct (1) (2) ⊃ α ϵNCη induct ϕα (4)

[(4)]⊢ α ϵNCη induct ξ ϵNCη induct ϕξ ⊃ξ ϕ(ξ +c 1) ϕ0η ⊃ ϕα (5)

This is a form of induction that requires impredicative comprehension very frequently used by
Whitehead and Russell. One important use is in the proof of theorem k120·57 which we will
discuss below.

Theorem k120·124, Principia’s version of Peano 4, is proved by cases. There are two:
(a) α = Λ and (b) E!α. Whitehead and Russell must consider case (a) due to their definition of
cardinal sum. Recall that they first define the arithmetical sum of two classes and cardinal sum
at k110 and then derive the successor function as a particular case. Their definition of cardinal
sum from k110·02 does not require that the classes summed be cardinals and is designed to
yield γ+c δ = Λ whenever either γ or δ are not cardinals. So they must consider the case where
α +c 1 is not a cardinal number, which results in α +c 1 = Λ ̸= 0 as required131. The proof can
be re­written as follows:

[k110·4]⊢ α +c 1 ̸= Λ ⊃ α, 1 ϵNC− ι‘� (1)

[(1) Transp]⊢ α ∼ ϵNC ⊃ α +c 1 = Λ (2)

[k101·12]⊢ 0 ̸= Λ (3)

[(2) (3)]⊢ α ∼ ϵNC ⊃ α +c 1 ̸= 0 (4)

[k110·632]⊢ α ϵNC ⊃ α +c 1 = ξ̂{( E

y) y ϵ ξ −ι‘y ϵ sm“α} (5)

[(5)]⊢ α ϵNC ⊃ ξ ϵ α +c 1 ⊃ ξ ̸= Λ (6)

[k24·63]⊢ Λ ∼ ϵ κ ≡κ β ϵ κ ⊃β β ̸= Λ (7)

[(7)]⊢ Λ ∼ ϵ α +c 1 ≡ ξ ϵ α +c 1 ⊃ ξ ̸= Λ (8)

[(6) (8)]⊢ α ϵNC ⊃ Λ ∼ ϵ α +c 1 (9)

[k54·02]⊢ β ϵ 0 ≡β β = Λ (10)

[(9) (10)]⊢ α ϵNC ⊃ α +c 1 ̸= 0 (11)

[(4) (11)]⊢ Prop. (12)

131 Thus the proof could be simplified by stating the theorem as “α ϵNC induct ⊃ (α +c 1) ̸= 0”. Notice also
that the proof only assumes that α ∼ ϵNC to show that α+c 1 = Λ. The assumption that Λ ∼ ϵNC is false for
every relative type due to descending cardinals and Cantor’s power­class theorem k102·73.
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For the sake of uniformity and readability we dropped the notation “ E!α” in this proof in favor
of “α ̸= Λ”. The law of transposition used in line two is k2·16, which isA⊃B ⊃ ∼B⊃∼A,
the only elementary step explicitly indicated in the original proof. The first line of the proof,
theorem k110·4, when fully stated reads as E!µ+c ν ⊃ µ, ν ϵNC− {�} µ, ν ϵN0C, but the
second conjunct in the consequent is irrelevant here, however. This completes the proof of the
Peano postulates 1, 2, 4 and 5.

5.6.2 The Problem With Peano 3

Differently from the other Peano postulates, the third which states that different numbers
have different successors cannot be proved in Principia without assuming some hypothesis as
to the number of individuals of some simple type. To see why that is the case, let us consider
the class NC induct at the lowest point in the ‘type’ hierarchy of classes in which it can be
defined, that is, as a class of classes of individuals of the lowest type. Some basic definitions
and theorems of Principia’s treatment of inductive and non­inductive (i.e., finite and infinite)
classes. First they have132:

k120·02 Cls induct = s‘NC induct

k120·021 Clsξ induct = s‘NξC induct

This defines the class of all inductive classes or classes that are finite in the ordinary sense,
i.e. those classes which are members of a natural or inductive. Notice that Whitehead and Rus­
sell again introduce two definitions: one of the completely ambiguous “Cls induct” in terms of
“s‘NC induct” and another which determinate as to relative type. From the above it is easily
shown that:

k120·21 ⊢ ρ ϵCls induct ≡ N0c‘ρ ϵNC induct

That is, ρ is an inductive class if and only if its (homogeneous) cardinal number is a finite cardinal
or natural number. As Whitehead and Russell observe, they cannot prove “ρ ϵCls induct ≡
Nc‘ρ ϵNC induct”, again, because Nc‘ρ may be empty in some types: to prove the completely
ambiguous result they must prove beforehand that if the empty class is an inductive cardinal,
then every class is inductive133.
132 Recall that the notation s‘ com from Principia’s volume 1 section E, k40·02, which defines s‘κ as x̂{( Eα)

α ϵ κ x ϵα}, that is: if κ is a class of classes s‘κ is the class of all classes that are members of κ.
133 Cf. WHITEHEAD & RUSSELL, 1927a, p.206 [1912, p.213]. However, the empty class may be an inductive

cardinal in one relative type and not in a higher relative. Thanks for Landini for calling this important detail to
my attention.
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Also, as they observe134, they could have defined inductive classes in a way that more
closely parallels their definition of finite cardinals, using the following as a definition instead of
obtaining it as a theorem:

k120·24 ⊢ ρ ϵCls induct ≡ η ϵ µ ⊃η,y η ��ι‘y ϵ µ Λ ϵ µ ⊃µ ρ ϵ µ

This defines the set of inductive classes as the set which contains Λ and every set obtainable
from it by successively adding a element y to it. Both definitions are equivalent, however: in
each case it follows that a class is inductive if, and only if, its (non­descending) cardinal number
is inductive.

Now to the question of Peano 3. Let ‘NCα(xo)induct’ be the class of all finite classes
of individuals of the lowest type, with each of its members being the (homogeneous) cardinal
number of some finite class of individuals of the lowest type. Suppose now that the number of
individuals of the lowest type in the universe is finite. In more precise terms, suppose that, where
“indiv” stands for the class of all individuals of the lowest type, we have:

N0c‘indiv ϵNC induct

By the (corrected) definition of (homogeneous) successor we would then have:

N0c‘indiv+c 1 = ξ̂{( E

γ, y) γ sm0 t‘indiv y ∼ ϵ γ ξ = γ ��ι“y}
That is: the successor N0c‘indiv +c 1 of the number of the class containing all individuals of
the lowest type would be the class of all classes such that if we take any member γ of N0c‘indiv
and add to it some y that does not belong to it, we get a member of N0c‘indiv +c 1. But by our
assumption that N0c‘indiv ϵNC induct, there can be no such y, and so N0c‘indiv+c 1 = Λ.

Put in simpler (albeit less precise) terms, if we let the number of individuals be a finite
cardinalm and ask “howmany classes containingm+1 individuals are there?”, the answer must
be none; for if there are exactly m individuals, then the class of all classes similar to a class with
m+ 1 individuals is the empty set, given that there is no class withm+ 1 individuals.

The point is general and applies to every finite cardinal that follows N0c‘indiv in the
+c1­series if N0c‘indiv ϵNC induct. We would, in fact, have:

N0c‘indiv+c 1 = Λ

134 Cf. WHITEHEAD & RUSSELL, 1927a, p.207 [1912, p.214].
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(N0c‘indiv+c 1) +c 1 = Λ

...

In this case, the third Peano postulate would be false: at least two different inductive or natural
numbers, namely N0c‘indiv and N0c‘indiv +c 1 would have the same successor, namely Λ135.
Here a comparison with the Fregean construction of the natural numbers is most relevant and it
is worthwhile to review it. We shall do it adapting it to Principia’s notation136.

What is characteristic of Frege’s logicism is his thesis that numbers are objects, that is,
entities which would be on a par, in terms of simple types, with Russell’s individuals of the
lowest type. Frege’s first attempt to vindicate this conception of number is presented in §68 of
the Grundlagen, where he defines137:

The number which pertains to the concept F is the extension of the concept ‘equi­
numerous with the concept F’.

We can use the notations “Fx̂”, “Gx̂”, etc., to represent the Fregeans concepts, and since we are
primarily concerned here with Frege’s definition of numbers as extensions of concepts, we can
substitute them uniformly for their counterparts for extensions of concepts “ẑ(Fz)”, “ẑ(Gz)”,
etc138. So, using Principia’s notation we can put139:

Nc‘Fx̂ = Ĝ(G!x̂ smFx̂) Df

which is the same as:

Nc‘ẑ(Fz) = α̂{( E

G) α = ẑ(G!z) α sm ẑ(Fz)} Df
135 Observe that if N0c‘t‘indiv is not inductive (infinite), then wewould have N0c‘t‘indiv = (N0c‘t‘indiv+c1)+c1,

since then (N0c‘t‘indiv+c 1) = (N0c‘t‘indiv+c 1) +c 1 = ℵn for some aleph n.
136 Our very brief exposition of Fregean Arithmetic will follow the Appendix of BOOLOS, G., 1998, pp.202­219,

apart from the notation. We note that what follows is a just a brief presentation of what is generally taken to
be Frege’s definition of natural numbers and how this enables him to prove the infinity of numbers; we are not
attempting to provide an exegesis of Frege’s texts and so we do not compare and discuss different interpretations.
For reasons of space we also do not discuss attempts at providing a “Neo­Fregean” foundation for Arithmetic at
this point, though from a philosophical and a technical point of view, the issues are interesting (cf., for instance,
KLEMENT, K., 2013b).

137 FREGE, G., 1950 [1884], §68.
138 There are, of course, many interpretative issues surrounding Frege’s formal systems and his development of

Mathematics within them and we obviously cannot consider such issues here here. For discussions of Frege’s
views, the reader is referred to DUMMETT, M., 1991, HECK, R., 2011, DUARTE, A., 2009 (unpublished doc­
toral dissertation) and LANDINI, G., 2012.

139 Frege’s constructions can be more elegantly formulated, for instance, in terms of the calculus of λ­conversion,
but for the sake of uniformity we’ll stick with Principia’s notation.
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Although, of course, the above are not the same as Principia’s “ẑ(ϕ!z)”, “ẑ(ϕz)”, etc. Frege’s
extensions are individuals of the lowest type.

The number zero is defined as the number that pertains to a concept that is true of no
objects; that is, zero is defined as the extension of the concept [x : x is different from itself]140

and the immediate successor relation is defined as the relation that holds between n and m when
there exists a concept F and object x such that x is an F and n is the number of ẑ(Fz) andm is
the number of ẑ(Fz.z ̸= x)141. These may expressed as:

0 = Nc‘ẑ(z ̸= z) Df

nSm = ( E

F, x) F !x n = Nc‘ẑ(F !z) m = Nc‘ẑ(F !z z ̸= x) Df

Using Frege’s own version of the ancestral of a relation R, this allows for a definition of the
notion of finite cardinal number (i.e., natural number). To do so, Frege defines a concept F as
hereditary with respect to a relation R as an F that satisfies the following condition:

xRy ⊃ F !x⊃x,y F !y

And then the strict ancestral of a relation R as the relation that holds between a and b whenever
they share all the hereditary properties of the R series, that is:

aR∗b = aRz⊃z F !z xRy ⊃x,y F !x ⊃ F !y ⊃F F !b Df

He also has the weak or strict ancestral, which we shall denote by “R∗=”. This is the relation
that holds between x and y whenever xR∗y or x = y.

With these definitions at hand, Frege can identify the concept x̂ is a natural number with
the concept x̂ possesses every hereditary property possessed by zero and the successor of every
number, that is:

Nx = F !0 zSy ⊃y,z F !y⊃ F !z ⊃F F !x Df

Or, more briefly: xS∗=0. Once induction is proved142, these definitions allow for a proof of
the proposition that the successor of the natural number n is the number which pertains to the
140 FREGE, G., 1950 [1884], §74.
141 FREGE, G., 1950 [1884], §76.
142 In fact, induction follows immediately from the definition of natural number by means of the ‘weak’ or non­

strict ancestral.
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concept x̂S∗=n, that is: the number succeeding n is the number which pertains to the concept
member of the S series which ends with n.

Intuitively, this is somewhat clearly seen: the conceptmember of the S series which ends
with n is true of (and only of) every number equal to, or less than, n. Since in Frege’s arithmetic,
as we have formulated it, numbers are treated as extensions of concepts and every concept has an
extension correlated with it and understood as an object, we have the guarantee that the number
zero exists: for we defined zero as the extension of the concept [X is equinumerous with the
concept [ x is different from itself]; but this number is an object ­ so the concept [less than or
equal to 0] does not have an empty extension, for 0 is a member of it; but this guarantees the
existence of the number 1: this number is the extension of the concept [X is equinumerous with
the concept [ x is equal to zero]], which, given the existence of zero, is also non­empty; but in
that case, the extension of the concept [less than or equal to 1] will also be non­empty, for the
concept is true of both 0 and 1 – and so the extension of this concept will contain both 0 and 1
and the number that pertains to the concept [less or equal to 1] is the number two, and so on, for
every natural number n.

From this it follows that every number has a successor and that no two numbers have
the same successor, and, therefore, that the natural number series has no last term. Roughly
sketching a formal proof similar to what Frege seemed to have in mind143, what we would have
is the following induction. For the base step prove144:

[Nc‘x̂(0S∗=x)]S0, that is: [Nc‘x̂(x ≤ 0)]S0.

For the induction step prove:

{Nc‘x̂[xS∗=Nc‘x̂(xS∗=n)]}S[Nc‘x̂(xS∗=n)], that is:

{Nc‘x̂[x ≤ Nc‘x̂(x ≤ n)]}S[Nc‘x̂(x ≤ n)].

This yields:

Nn⊃ [Nc‘x̂(nS∗=x)]Sn, that is: Nx⊃ [Nc‘x̂(x ≤ n)]Sn.
143 There are difficulties, however, in determining what exactly Frege attempted to prove or could actually prove

(cf. BOOLOS, G. 1998, pp.275­90).
144 Of course, this is easier said than done. For details see BOOLOS,G., 1998 [1994], pp.218­219 and also LAN­

DINI, 2011, p.188­9 and, especially, HECK, R., 2011, p.54­62 and pp.69­89, where detailed proofs are given and
compared and several interpretative issues concerning Frege’s number theory are thoroughly analyzed.
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The possibility of giving a proof along these lines presupposes a theory of numbers as extensions
of equinumerous concepts understood as objects.

On the surface, Principia’s construction resemble Frege’s. But, of course, Whitehead
and Russell do not treat numbers as objects in the Fregean sense: they define the set of natural
numbers as the set of all sets of equinumerous finite classes and no class is an individual (of
any simple type). Indeed, in Principia’s type theory, the existence of a given cardinal number n
depends on the existence of a certain number of individuals at the bottom of the type hierarchy
(or in some simple type)145. Thus, Whitehead and Russell cannot generate numbers in the same
way Frege does in his Grundlagen and Grundgesetze. In Frege’s proof, it is essential that each
number n can fall under the concept less than or equal to n, or, equivalently, that each number
n be a member of the extension of the concept less than or equal to n.

This is impossible within the theory of types if we are to deal with numbers of uniform
(non­ascending) relative types. Let n ϵNC induct(n), that is, let n be a member of the class of all
inductive numbers of the same relative type as n, so that each member of NC induct(n) will be
a class of similar finite classes of some relative type below n. For convenience, let us take n as
a class of finite classes of individuals (of the lowest possible type). In Principia, the ‘Fregean’
class:

N0c‘x̂(nS∗=x)

will be the cardinal number of the class of all finite cardinal numbers that are less than or equal
to n, so this class must be necessarily of a higher type than n. Thus, there is simply no escaping
the fact that the existence of cardinals in any relative type depends on the number of individuals
of some simple type.

Frege’s strategy allowed him to construct the numbers from scratch. In practice, his
assumption that extensions are objects allowed him to let 0 = ι‘Λ and the successor of any Nc‘α
as Nc‘(α ��{z}) for some z ∼ ϵ α. This requires no existential assumptions beyond extensions.
Take what we nowadays call the von Neumann ordinals, that is, the sequence:

Λ, {Λ} , {{Λ} ,Λ} , {{{Λ}Λ} , {Λ} ,Λ} , ...

where each term x is such that either x = Λ, or for some y in the sequence, x = y ��{y}. This
would be enough to instantiate every finite Fregean cardinal, since we have146:

0 = Nc‘Λ
145 Cf. previous footnote 196 of the Introduction on Landini’s and Elkind’s forthcoming papers on alternatives to

Principia’s Axiom of Infinity.
146 Note that this construction is not von Neumann’s: ∅ is not 0, {∅} is not 1, {∅, {∅}} is not 2, etc, as they would

be in Axiomatic Set Theory; but the series of von Neumann’s ordinals can be used to show that every one of
Frege’s finite cardinal numbers is non­empty. Also, the Frege­Russell construction is impossible in any standard
set theory like ZF, ZFC or NBG, etc, because each class Nc‘{0}, Nc‘{0, 1}, etc., is just too big to be a set, being
either straightly banned or admitted just as a proper class. What the von Neuman sequence of ordinals illustrates

356



1 = Nc‘ {Λ}

2 = Nc‘ {Λ, {Λ}}

3 = Nc‘ {Λ, {Λ} , {Λ, {Λ}}}
...

n+ 1 = Nc‘ {Λ, ..., {Λ, ...}}
...

Frege ingeniously showed that the set of numbers {0, 1, ..., n} could be used to show that n+ 1

is non­empty. So he had:
0 = Nc‘Λ

1 = Nc‘{0}

2 = Nc‘{0, 1}

3 = Nc‘{0, 1, 2}
...

n+ 1 = Nc‘ {0, 1, 2, ..., n}
...

Of course, vonNeumann’s sets are ungrammatical inPrincipia’s simple (non­cumulative) theory
of types, unless we restore relative type indices in a way that makes them entirely useless147.

There are theorems in Principia that on the surface resemble some of the above, namely:

k101·1 ⊢ 0 = Nc‘Λ

k101·2 ⊢ 1 = Nc‘ι‘x

k101·31 ⊢ 2 = Nc‘ι‘(ι‘ι‘x ��ι‘Λ)
But as Landini notes, “[...] these hardly do justice to Frege”148 and they are completely different
from standard set theoretical constructions of finite numbers.

In the above, for instance, if x is an individual of lowest simple type, we can only have
the guarantee that 2 is non­empty if it is of higher type than 1; and generally, without assumptions

clearly is that one can show that each finite Fregean cardinal is non­empty assuming naive set theory. Indeed, a
non­historical and very elegant reconstruction of Frege’s system which uses von Neumann’s ordinals to prove
that there are infinitely many natural numbers can be found in HATCHER, W., 1982, pp.85­6.

147 More on this point below.
148 LANDINI, G., 2016, p.48.
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about the number of individuals (of some simple type), one can only show that n + 1 is non­
empty in a higher type than that of n. This situation could be partly amended by accumulating
types, allowing one to form finite sets of finite cardinal numbers using Frege’s construction. But
even apart from the philosophical issues which prevent Principia to let types accumulate, in
order to really work149, Frege’s construction must, like that of Zermelo and von Neumann, “[...]
shatter type ceilings”150, as Quine once very aptly put it.

Whitehead and Russell themselves discuss the impossibility of giving a proof along the
lines of Frege’s based on their account of the lesser than relation. In section k120 on inductive
cardinals, we find the following proposition151:

k120·57 ⊢ µ ϵNC induct− ι‘Λ ⊃ Nc‘ν̂(ν ≤ µ) = µ+c 1

This is the closest thing Principia has to the main lemma of Frege’s proof of the infinity of
numbers: it asserts that the cardinal number of the class of all cardinals ν which are less than
some given cardinal µ is equal to µ +c 1. But, of course, k120·57 simply does not capture the
strength of Frege’s lemma. Concerning the result, the authors observe in the summary of its
section that:
149 The cornerstone of simple, non­cumulative type theory is that a class is always of a (in Principia, a relative)

type immediately above its members and that all (simple and relative) types are homogeneous. This blocks any
(useful) attempt to construct natural numbers by taking, say, 0 = Λ and S(x) = {x} (or, following von Neu­
mann S(x) = x ��{x}). This can be resolved by letting types be cumulative, i.e., eliminating the homogeneity
requirement. This allows one to construct heterogeneous classes like {Λ, {Λ}}, {Λ, {Λ}, {{Λ}}}, etc. But still,
they are of a type above any of their members. However, this is still not enough for the class of all natural num­
bers to be definable. The class would be such that Λ ϵN and (x)(x ϵN ⊃ S(x) ϵN). But there can be no such
class within any (finite) type n. Indeed, the legitimacy of such a set would require transfinite types, which Whi­
tehead and Russell also do not allow. As is well known, the axiomatic set theory of Zermelo (and the so­called
iterative conception of set in general) can be understood in terms of a generalization of the simple type­theory
of types. The locus classicus (at least in terms of exposition) for this approach to Zermelo’s Axiomatization as
a generalization of Type Theory using cumulativity and transfinite types is Quine’s Set Theory and its Logic
(QUINE,W., 1969 ), but, of course, this possibility was well known to logicians well before that. Gödel had alre­
ady fully developed this view in the 1930’s (cf. GÖDEL, K., 1933). It seems also that in private correspondence
the Mathematician Ralph Hawtrey suggested cumulative types to Russell around 1908. Hawytrey wrote: “[...]
under the hierarchy which I stood out for when I was writing to you in the Spring, no Axiom of Reducibility is
necessary. You simply state at the head of your page, “Let the type of the proposition of highest order hereafter
occurring be high enough.” Within the limit so laid down the propositions of different type can rub shoulders
as they like, subject always to the condition that, when intelligibility requires it, they must be of different type.
And any given proposition (x)ϕx will be asserted for all x’s of types not higher than a maximum derived from
the limit prescribed. The assumption of any limit of type becomes an unimportant formality and you can put it
as far up the ω’s as you like.” (MOORE, G., (ed.)., 2014, p.lxxxvii.). The fundamental issue with this approach,
however, is that for all intents and purposes the allowance of cumulative types ignores the distinction between
individuals and sets (of any type), something that Russell would certainly be willing to do. I intend to explore
this contrast between Russell’s conception of a set and those of his contemporaries and successors (specially
Zermelo and Gödel) in future research.

150 QUINE, W., 1969, p.283.
151 Where > and ≥ are, respectively defined as follows:

k117·01 µ > ν = ( Eα, β) µ = N0c‘α ν = N0c‘β E!Cl‘α ��Nc‘β ∼ E!Cl‘α ��Nc‘α Df
k117·05 µ ≥ ν = µ > ν ∨ µ, ν ϵN0C µ = sm“ν Df
Observe that “≥” does not strictly means “less than or equal”, for here µ and ν may perfectly well be of

different types.
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A proof that all inductive cardinals exist has often been derived from k120·57
(below). But according to the doctrine of types, this proof is invalid since “µ+c

1” in k120·57 is necessarily of higher type than “µ”.152

Very curiously, if we look at the rather long inductive demonstration of the theorem, we
find the following as the first line of the proof:

Nc‘ν̂(ν ≤ 0) ϵ 1

Which must be a typo. They must have meant Nc‘ν̂(ν ≤ 0) = 1. For the interested reader, we
restore most of the steps of the proof:
152 WHITEHEAD & RUSSELL, 1927a, p.186 [1912, p.192]. They also observe, in the body of the work, that “here

“µ+c 1” is necessarily of a higher type than “µ”, because it applies to a class of which µ is a member” (WHI­
TEHEAD & RUSSELL, 1927a, p.221 [1912, p.228].). Landini finds these comments “odd”. According to him,
what is said above may suggest that the difference of type between µ and µ +c 1 is grounded in Principia’s
disastrous acceptance of k100·3, which would lead the authors to accept ν̂(ν ≤ µ) ϵNc‘ν̂(ν ≤ µ). The claim
that µ+c 1 “applies to a class of which µ is a member” would then have to be explained as follows: assuming
that µ ̸= Λ, we would have ν̂(ν ≤ µ) ϵ µ+c 1, and since µ ϵ(ν ≤ µ), it follows that µ+c 1 is of higher type than
µ. But he finds this misleading given that, for any cardinal number µ, there is a class Nc‘ν̂(ν ≤ µ) which is of
the same type as µ ­ it is the possibly empty descending cardinal Nc(t0‘µ)‘ν̂(ν ≤ µ) = µ +t0‘µ

c 1. He claims
that “we can salvage Whitehead’s point by noting that it would be of no help in avoiding this situation to try
to employ the homogeneous cardinal N0c‘ν̂(ν ≤ µ) or the ascending cardinal Nnc‘ν̂(ν ≤ µ)”, since “neither
are empty, but both are necessarily of higher relative type than µ” (LANDINI, G., 2016, p.48.). Given the way
k120·57 is actually proved, this seems to be most charitable interpretation of the passage in question.
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[k117·511]⊢ µ ϵN0C− ι‘0 ≡ µ > 0 (1)

[(1)]⊢ µ ϵN0C− ι‘0 ⊃µ ∼ (0 < µ) (2)

[(2)]⊢ ν̂(ν ≤ 0) = ι‘0 (3)

(3) (k101·2)
(k110·641)

⊢ Nc‘ν̂(ν ≤ 0) = 1 = 0 +c 1 (4)

[k110·4]⊢ E!µ+c 1 ⊃ µ, 1 ϵNC− {�} (5)

[(5) Transp]⊢ µ = Λ ⊃ µ+c 1 = Λ (6)

[k120·429]⊢ ν ϵNC induct ⊃ µ > ν ≡ µ ≥ ν +c 1 (7)

[k120·442]⊢ α ϵNC induct− ι‘Λ β ϵNC− ι‘Λ ⊃

α < β ≡ ∼(α ≥ β) α > β ≡ ∼(α ≤ β) (8)

[(7) (8)]⊢ µ ϵNC induct E!µ+c 1 ⊃ ν ≤ µ ≡ ν < µ+c 1 (9)

[(9)]⊢ µ ϵNC induct E!µ+c 1 ⊃ ν̂(ν ≤ µ) = ν̂(ν < µ+c 1) (10)

[k117·104]⊢ µ ≥ ν ≡ µ > ν ∨ µ, ν ϵN0C.µ = sm“ν (11)

[k117·105]⊢ µ ≤ ν ≡ ν ≥ µ (12)

[(10) (11) (12)]⊢ µ ϵNC induct E!+c1 ⊃ ν̂(ν ≤ µ) = ν̂(ν ≤ µ) ∪ ι‘(µ+c 1) (13)

[k120·428]⊢ µ ϵNC induct E!+c1 1 ̸= 0 ⊃ µ+c 1 > µ (15)

[(15) (k101·22)]⊢ µ ϵNC induct E!+c1 ⊃ µ+c 1∼ ϵ ν̂(ν ≤ µ) (16)

[k110·631]⊢ η ϵNC ⊃η η +c 1 = ξ̂{( Eγ, y) γ ϵ sm“η y ∼ ϵ γ ξ = γ ��ι“y} (17)

[(16) (17)]⊢ µ ϵNC induct ⊃

Nc‘ν̂(ν ≤ µ) = µ+c 1 ⊃ Nc‘ν̂(ν ≤ µ+c 1) = µ+c 1 +c 1 (18)

I.p [(6) (18)]⊢ µ ϵNC induct µ = Λ ∨ Nc‘ν̂(ν ≤ µ) = µ+c 1 :⊃:

µ+c 1 = Λ ∨ Nc‘ν̂(ν ≤ µ+c 1) = µ+c 1 +c 1 (19)

[k120·13]⊢ µ ϵNCη induct ϕ0η ξ ϵNCη induct ϕξ ⊃ξ ϕ(ξ +c 1) ⊃ ϕµ (20)

I.s
[
(20)

ϕ

(19)

]
⊢ 0 = Λ∨ Nc‘ν̂(ν ≤ 0) = 0 +c 1

µ ϵNC induct µ = Λ ∨ Nc‘ν̂(ν ≤ µ) = µ+c 1 ⊃

µ+c 1 = Λ ∨ Nc‘ν̂(ν ≤ µ+c 1) = µ+c 1 +c 1 ⊃

µ ϵNC induct ⊃ µ = Λ ∨ Nc‘ν̂(ν ≤ µ) = µ+c 1 (21)

[(4) (21)]⊢ µ ϵNC induct ⊃ µ = Λ ∨ Nc‘ν̂(ν ≤ µ) = µ+c 1 (22)

[(22)]⊢ µ ϵNC induct ⊃ µ ̸= Λ ⊃ Nc‘ν̂(ν ≤ µ) = µ+c 1 (23)

[(23)]⊢ Prop. (24)

The above makes it clear why the attempt to replicate Frege’s result within the theory of types
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is bound to fail. The inductive step is:

µ ϵNC induct ∃!µ⊃Nc‘ν̂(ν ≤ µ) = µ+c1 ⊃ ∃!µ+c1 ⊃ Nc‘ν̂(ν ≤ µ+c1) = µ+c1+c1

this, on its turn is established by showing that the following lemma holds:

µ ϵNC induct ∃!µ+c 1 ⊃ ν̂(ν ≤ µ+c 1) = ν̂(ν ≤ µ) ��ι‘(µ+c 1)

from whence if follows:

µ ϵNC induct ∃!µ+c 1 ⊃ Nc‘ν̂(ν ≤ µ) = µ+c 1 ⊃ Nc‘ν̂(ν ≤ µ+c 1) = µ+c 1 +c 1

Aswith Frege’s proof, the crucial step explores the fact that Nc‘ν̂(ν ≤ 0) = 1, Nc‘ν̂(ν ≤ 1) = 2,
and so on. But in the above, the inductive step is framed in such a way that each cardinal µ+c 1

must be of a higher type than that of µ.

Thus, given theway they are constructed in the above proof, the formal numbers “Nc‘ν̂(ν ≤
µ)” and “µ +c 1” must be of different relative types: only in this way we can be sure that
Nc‘ν̂(ν ≤ µ) is not empty. This again, is because Principia simply cannot prove that there
is a class containing infinitely many natural numbers without assuming something about the
number of individuals (of some simple type).

5.6.3 Infin Ax and Finite Cardinal Arithmetic

The general point involved in what we just discussed is well known. Any attempt to
replicate Frege’s proof that NC induct is infinite violates the restrictions of the theory of types.
In Principia there is simply no way to show that there is a set containing infinitely many natu­
ral numbers without further existential assumptions about the number of individuals (of some
simple type). In order to deal with this, Whitehead and Russell introduce in section k120 their
so­called ‘Axiom of Infinity’. But, despite its misleading label, what we find at k120 · 03 is the
following definition:

k120·03 Infin ax = α ϵNc induct ⊃α

E!α Df

This introduces no proper axiom but, as the authors put it, “an arithmetical hypothesis”153 that
appears as a condition for existence theorems whenever necessary.

This hypothesis ­ which, put in informal terms ­ is equivalent to the assertion that the
cardinality of the lowest type N0c‘indiv is non­inductive (or infinite) ­ is true if and only if no
153 WHITEHEAD & RUSSELL, 1927a, p.203 [1912, p.210].
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inductive cardinal number is identical to its successor154, something which is established in the
chain of theorems starting from k120·31 to k120·33. It is among these theorems that Principia’s
close relatives of Peano 3 are to be found.

First, the authors show that if the successor of the cardinal number of a class α is (a)
non­empty and (b) identical to the succesor of the cardinal number of a class β, then (c) the
cardinal number of the class α is identical to the cardinal number of the class β and α and β are
similar. That is:

k120·31 ⊢ E!Nc‘α +c 1 Nc‘α +c 1 = Ncβ +c 1 ⊃ Nc‘α = Nc‘β αsmβ

This is perhaps the closest thing to Peano 3 that Principia can prove. The demonstration can be
reconstructed as follows:

[k110·63]⊢ Nc‘α +c 1 = Nc‘β +c 1 ≡

( E

γ, y) γ smα y ∼ ϵ γ ξ = γ ��ι‘y ≡ξ

( E

δ, z) δ sm β z ∼ ϵ δ ξ = δ ��ι‘z (1)

[(1) k10·1]⊢ γ smα y ∼ ϵ γ ⊃ ( E

δ, z) δ sm β z ∼ ϵ δ γ ��ι‘y = δ ��ι‘z (2)

[k73·72]⊢ γ ��ι‘y sm δ ��ι‘z y ∼ ϵ γ z ∼ ϵ δ ⊃ γ sm δ (3)

[k73·3]⊢ γ ��ι‘y = δ ��ι‘z ⊃ γ ��ι‘y sm δ ��ι‘z (4)

[(2) (3) (4)]⊢ γ smα y ∼ ϵ γ ⊃ (∃δ). δ sm β . γ sm δ (5)

[k73·32]⊢ γ sm δ δ sm β ⊃ γ sm β (6)

[k73·32]⊢ α sm γ γ sm β ⊃ α sm β (7)

[(5) (6)]⊢ γ smα.y ∼ ϵ γ ⊃ γ sm β (8)

[k73·31]⊢ αsm γ ≡ γ smα (9)

[(5) (7) (9)]⊢ γ smα y ∼ ϵ γ ⊃ α sm β (10)

[k100·321]⊢ α sm β ⊃ Nc‘α = Nc‘β (11)

[(10) (11)]⊢ Prop. (12)

Observe that line (1) stands in need of correction. As we discussed, k110·63 is not well put as it
stands, being in need of typical determination in order to avoid the use of the illicit supplementary
definitions k110·03·04. We may correct line one by employing homogeneous (or ascending155)
analogues of k110·63. Adopting the first alternative affords us with:

154 In fact, could N0c‘t‘indiv ∼ ϵNC induct could be introduced as an axiom of infinity in, were it not for the fact
“indiv” is not a proper expression of Principia’s object language. Also, Infin Ax (k120·03) should be introduced
first with relative indices and then have them omitted with rules of (relative) type ambiguity. Thanks for Gregory
Landini for calling that to my attention.

155 We are dealing with the homogeneous only for mere convenience. Ascending ones would serves as well.
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(1’) N0c‘α +c 1 = N0c‘β +c 1 ≡

( Eγ, y) γ sm0 α y ∼ ϵ γ ξ = γ ��ι‘y ≡ξ ( Eδ, z) δ sm0 β z ∼ ϵ δ ξ =

δ ��ι‘z
which gets the proof going. Next, Whitehead and Russell show that if the non­empty sucessor
of a cardinal number α is identical to the successor of the cardinal number β, then α identical
to the class of all classes similar to the members of β and α is non­empty, that is:

k120·311 ⊢ E!α +c 1 (α +c 1) = (β +c 1) ⊃ α = sm“β E!α

This is a slightly more convenient statement of k120·31. Here, however, a warning is in order
since the proof sketch which Principia has relies upon the following theorem:

k103·16 ⊢ N0c‘α = Nc‘β ≡ Nc‘α = Nc‘β

Which is accompanied by a somewhat problematic comment:

In this proposition, the equation ‘Nc‘α = Nc‘β’ must be supposed to hold in
any type for which it is significant. Otherwise, we might find a type for which
Nc‘α = Λ = Nc‘β, without having N0c‘α = Nc‘β.156

The authors correctly observe that if we let Nc‘α and Nc‘β be empty descending cardi­
nals, then we could have Nc‘α = Λ = Nc‘β and N0c‘α ̸= Nc‘β. But as Landini notes, this just
shows the “right­to­left direction of this bi­conditional is, in fact, false”157, for there is no guaran­
tee that the right­side will ‘hold in any type for which it is significant’158. Fortunately, k120·311
goes without modification, since it requires only the left­to­right implication of k103·16.
156 WHITEHEAD & RUSSELL, 1927a, p.36 [1912, p.38].
157 LANDINI, G., 2016, p.24.
158 The proof of k103·16 also assumes an illicit ‘theorem’, namely k103·31 which, despite being true whenever

significat, must be, like k100·3, substituted either for its homogeneous or ascending equivalent. It also relies
upon the illegitimate definition of homogeneous cardinals of k103·01 which, on its turn, relies upon the illegi­
timate pseudo­theorem k100·3(see LANDINI, G., 2016, p.21). To understand the apparent elementary mistake,
we must make a brief digression about the other conventions which which are introduced in the Prefatory Sta­
tement (more specifically, about what motivated their introduction). Whitehead and Russell’s claim that ‘Nc‘α
= Nc‘β’ must be supposed to “hold in any type for which it is significant” is to be read in accordance with
convention AT (WHITEHEAD & RUSSELL, 1912, p.xxxi­xxxii), as they point out in the Prefatory Statement:
“[...] in the few early propositions where AT is introduced, the fact is noted by stating that the equation hold
“in any type”. These propositions are k103·16 and k110·71·72.”. Ignoring the details which are not relevant
to our present discussion, convention AT basically makes conditions of non­emptiness for cardinals elimina­
ble in the satement of theorems. As the authors explain: “The result is that we may assume that the symbol
representing inductive numbers are never null, and thereby obtain the stable truth­values of propositions about
them.” (WHITEHEAD & RUSSELL, 1912, p.295). A letter from Whitehead to Russell from 19 January 1911
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Now, we can finally consider the theorems which establish the necessity and suffiency
of Infin Ax for showing that no number identical to its predecessor. First, we have the theo­
rem which establishes that if a finite cardinal number is non­empty, then it is different from its
successor:

k120·32 ⊢ α ϵNC induct E!α ⊃ α ̸= (α +c 1)

The (rather long) proof is by induction:

strongly suggests that what motivated this was Whitehead’s realization that there were fundamental difficul­
ties involved in propositions with unstable truth­values like k103·16(GRATTAN­GUINNESS, I., 2000, p.584­
5). And, in fact, Whitehead mentions about ∗103 · 16 specifically: “Can you tell from your list of references
where k103·16 is subsequently used? We may have a fine crop of fallacious proofs on our hands from it. But
I hope not.” (GRATTAN­GUINNESS, I., 2000, p.585). Grattan­Guinness reports that Russell replied the fol­
lowing: “k117·107·108·24·31·54, k120·311 [In some, only the implication wh. holds anyhow is required.]”
(GRATTAN­GUINNESS, I., 2000, p.585, footnote 4.).
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[k101·22]⊢ 1 ̸= 0 (1)

[k110·641]⊢ 1 +c 0 = 0 +c 1 = 1 (2)

B.s [(1) (2)]⊢ 0ξ ̸= 0ξ +c 1 (3)

[k120·311]⊢ E!α +c 1 α +c 1 = β +c 1 ⊃ = Nc‘α = Nc αsmβ α = sm“β (4)

[(4) k10·1]⊢ E!α +c 1 α +c 1 = α +c 1 +c 1 ⊃ α = sm“α +c 1 (5)

[k110·44]⊢ sm“(µ+c ν) = µ+c ν (6)

[(6) k13·12]⊢ E!α +c 1 α +c 1 = α +c 1 +c 1 ⊃ α = α +c 1 (7)

[(7)]⊢ α ϵNC E!α +c 1 α +c 1 = α +c 1 +c 1 ⊃ α = α +c 1 (8)

[(8) (Transp)]⊢ α ϵNC E!α +c 1 α ̸= α +c 1 ⊃ α +c 1 ̸= α +c 1 +c 1 (9)

[k118·2]⊢ (µ+c ν)ξ = η̂{( E

γ, δ) µ = N0c ν = N0c‘δ η smξ (γ + δ)} (10)

[(10)]⊢ (α +c 1)ξ = η̂{( Eγ, δ) α = N0c 1 = N0c‘δ η smξ (γ + δ)} (11)

[(10)] {(α +c 1)ξ +c 1}ξ =

η̂{( Eγ, δ) α +c 1 = N0c 1 = N0c‘δ η smξ (γ + δ)} (12)

[k118·25]⊢ (µ+c ν +c ϖ)ξ = {(µ+c ν)ξ +c ϖ}ξ = {µ+c (ν +c ϖ)ξ}ξ (13)

[(13)]⊢ (α +c 1 +c 1)ξ = {(α +c 1)ξ +c 1}ξ = {1 +c (α +c 1)ξ}ξ (14)[
(11) (12)

(14)

]
⊢ α ϵNC(ξ) E!(α +c 1)ξ α ̸= (α +c 1)ξ ⊃

(α +c 1)ξ ̸= {(α +c 1)ξ +c 1}ξ (15)

[(9) (15)]⊢ α ϵNCξ

E!(α +c 1)ξ α ̸= (α +c 1)ξ ⊃

(α +c 1)ξ = Λ ∨ (α +c 1)ξ ̸= {(α +c 1)ξ +c 1}ξ (16)

[k110·4]⊢ E!µ+c ν ⊃ µ, ν ϵNC− ι‘� (17)

[(17)]⊢ (α +c 1)ξ = Λξ ⊃ α, 1 ϵNC− ι‘� (18)

[(18).Transp]⊢ α ∼ ϵNC(ξ) ∨ α = Λξ ⊃ (α +c 1)ξ = Λξ (19)

I.p [(16) (19)]⊢ α = Λξ ∨ α ̸= (α +c 1)ξ ⊃

(α +c 1)ξ = Λξ ∨ (α +c 1)ξ ̸= {(α +c 1)ξ +c 1}ξ (20)

[∗120·11]⊢ α ϵNξC induct ϕ0η ϕξ ⊃ξ ϕ(ξ +c 1) ⊃ ϕα (21)

I.s

[
(21)

ϕ

(20)

]
⊢ α ϵNξC induct 0ξ = Λ∨ 0ξ ̸= 0ξ +c 1

ξ = Λξ ∨ ξ ̸= (ξ +c 1)ξ ⊃ξ

(ξ +c 1) = Λξ ∨ (ξ +c 1)ξ ̸= {(ξ +c 1)ξ +c 1}ξ
⊃ α = Λξ ∨ α ̸= (α +c 1)ξ (22)

[(4) (22)]⊢ α ϵNξCinduct ⊃ α = Λξ ∨ α ̸= (α +c 1)ξ (23)

[(23)]⊢ Prop. (24)
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Of course theorem k120·32 does not assure us either that every finite cardinal is non­empty or
that the succesor of a non­empty cardinal is non­empty.

Then k120·32 is used as a lemma for a step in the proof of k120·322, which, together
with k120·321, shows the necessity and sufficiency of Infin Ax for proving the basic existential
theorems of finite cardinal Arithmetic:

k120·321 ⊢ α ≠ α +c 1 ⊃ E!α

k120·322 ⊢ α ϵNC induct ⊃ E!α ≡ α ̸= (α +c 1)

The first states that if a cardinal number is different from its successor then it is non­empty, while
the second shows that if α is a finite cardinal, then it is empty if and only if it is different from
its successor. The first is proved as follows:

[k110·4]⊢ E!µ+c ν ⊃ µ, ν ϵNC− ι‘� (1)

[(1)]⊢ E!α +c 1 ⊃ α, 1 ϵNC− ι‘� (2)

[(2)]⊢ E!α +c 1 ⊃ E!α (3)

[(2) Transp]⊢ α = Λ ⊃ α +c 1 = Λ (4)

[(3) Transp]⊢ Prop. (5)

Observe that the above proof does not rely on any particular results for finite cardinal arithmetic,
but only on their general theory of cardinal addition. They only sketch a demonstration of the
second, since it is trivial. We can write it as the following:

[k120·32]⊢ α ϵNc induct E!α ⊃ α ̸= α +c 1 (1)

[(1)]⊢ α ϵNc induct ⊃ E!α ⊃ α ̸= α +c 1 (2)

[k120·321]⊢ α ̸= α +c 1 ⊃ E!α (3)

[(3)]⊢ α ϵNc induct ⊃ α ̸= α +c 1 ⊃ E!α (4)

[(2) (4)]⊢ Prop. (5)

And, finally, from the above theorems, they obtain:

k120·33 ⊢ InfinAx ≡ α ϵNC induct ⊃α α ̸=(α +c 1)

which establishes that every inductive cardinal is different from its immediate sucessor if and
only if no inductive cardinal is empty. Again, since the proof is trivial they offer only a sketch,
but we can write as follows:
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[k120·3]⊢ Infin ax ≡ α ϵNc induct ⊃ E!α (1)

[k120·322]⊢ α ϵNC induct ⊃ E!α ≡ α ̸= α +c 1 (2)

[(1) (2)]⊢ Infin ax ≡ α ϵNc induct ⊃ α ̸= α +c 1 (3)

[(3) (k10·11)]⊢ Prop. (4)

Curiously, as Landini observes159, a more straightforward theorem like:

⊢ InfinAx ≡ α ϵNC induct ⊃α,β (α +c 1) = (β +c 1)⊃ α = β

does not appear inPrincipia160.Aswe remarked, the closest analogues to this result arek120·31·311.
Also, as Landini observes, the following which appears in a chain of theorems concerning sub­
traction is also very close:

k120·41 ⊢ ν ϵNC induct E!α +c ν ⊃ α +c ν = β +c ν ⊃ α = sm“β

Be that as it may, Principia’s logical development of finite cardinal arithmetic must assume
some axiom to the effect that the number of individuals of some simple type is not finite in order
to establish the basic existential results of ordinary Arithmetic, e.g., that no two numbers have
the same successor or that the successor relation is one­one among natural numbers, or yet that
no natural number is identical to its immediate successor.

5.6.4 Infin Ax and Transfinite Numbers: ℵ0 and ω

Given Russell’s acceptance of arithmetization161 of the several aforementioned branches
of Pure Mathematics, aforementioned ‘failure’ also affects Russell’s original claim made in the
Principles that “from the class of the finite cardinal numbers themselves follows the existence
of α0 [i.e. ℵ0], the smallest of the infinite cardinal numbers” and that “from the series of finite
cardinals in order of magnitude follows the existence of ω, the smallest of infinite ordinals”162.
Similar considerations apply to their theories of higher forms of number beyond the positive
159 Cf. LANDINI, G., 2016, p.44.
160 The above (provable) theorem should not be confused with α ϵNC induct ⊃α,β (α+c 1) = (β+c 1)⊃α = β

that does not appear for the good reason that it is unprovable in Principia’s system!
161 Again the extent to which Russell’s Logicism requires aritmetization is a somewhat problematic subject (cf.

GANDON, S., 2008; 2012 and foonote 407 of chapter 2 on this topic in our previous chapter on the Logicism
of the Principles).

162 RUSSELL, B., 1903, pp.496 §474.
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integers, since ratios are (roughly) defined as certain classes of integers and reals as certain
segments of ratios.

FollowingCantor, in thePrinciplesRussell definedℵ0 as the cardinal number ofNC induct.
As Russell and Whitehead explain, this procedure cannot be strictly followed in Principia be­
cause nothing assures us that there are infinitely many finite cardinals:

Cantor defines ℵ0 as the cardinal number of any class which can be put into
one­one relation [sic] with the inductive cardinals. This definition assumes ν ̸=
ν +c 1, when ν is an inductive cardinal; in other words, it assumes the axiom
of infinity; for without this, the inductive cardinals would form a finite series
with a last term, namely, Λ.163

Without Infin Ax, nothing would asssure us that the first aleph coincides with a finite
cardinal. Their solution is to define ℵ0 as the class of all classes that are domains of progressions;
that is, ℵ0 is defined the class of all classes which “can be arranged in progressions”164:

k123·01 ℵ0 = D“Prog = α̂{( E

R) R ϵProg α = D‘R} Df

Whereas a progression is defined as:

k122·01 Prog = (1→ 1) ��R̂(D‘R =
←−
R ∗‘B‘R) Df

Where “B” denotes the relation begins and B‘R denotes the beginner of R. This is defined as:

k93·01 B = x̂P̂{x ϵD‘P − D‘R} Df

Thus: a relation R generates a progression if, and only if165 (1) R is one­one; (2) R has a beginning,
that is, a first term; and (3) the field of R is identical with the posterity of R’s first termB‘R with
respect to R. This definition is embodied in the following proposition:

k122·12 ⊢ R ϵProg ≡

R ϵ 1→ 1 E!B‘R x ϵD‘R ≡x B‘R ϵα z ϵ α zRw ⊃z,w w ϵα ⊃α x ϵ α

163 WHITEHEAD & RUSSELL, 1927a, p.260 [1912, p.268].
164 WHITEHEAD & RUSSELL, 1927a, p.260 [1912, p.268].
165 WHITEHEAD & RUSSELL, 1927a, p.246 [1912, p.253].
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As Whitehead and Russell observe, to show that their definition of ℵ0 is adequate, what must
be proved is that (1) ℵ0 ϵNC, i.e., that ℵ0 is a cardinal number; and (2) that if ℵ0 ̸= Λ, then ℵ0 is
the cardinal number of the class NC induct. For convenience, they introduce a definition of the
relation which holds between a finite cardinal number µ and its successor µ +c 1 (of the same
type as µ), symbolized by N :

k123·02 N = µ̂ν̂{µ ϵNC induct ν = (µ+c 1) ��t0‘µ} Df

Their proof that this relation can generate a progression in the presence of Infin Ax is roughly
divided in two parts. First, they show thatN ϵCls→ 1, that E!B‘N and that

←−
N ∗‘B‘N = D‘N .

This is done by the two following propositions:

k123·21 ⊢ .N ϵCls→ 1 D‘N = NC induct D‘N = NC induct −ι‘0 B‘N = 0

k123·23 ⊢ ←−N ∗‘0 = NC induct = D‘N

The second part of the proof consists in showing that N ϵ 1 → Cls, and thus, that N ϵ 1 → 1.
But as they observe, this amounts to proving Peano 3:

⊢ µ, ν ϵNC induct ⊃ µ+c 1 = ν +c 1 ⊃ µ = ν

Again Whitehead and Russell deal with this by introducing Infin Ax as a hypothesis.

Since section k120 establishes that Peano 3 is true if, and only if, the Infin Ax is true,
the second half of their proof consists in showing thatN ϵProg if and only if Nc‘(NC induct) =
ℵ0166. Thus, though they can prove that the usual properties expected of ℵ0 hold, namely:

k123·4 ⊢ ℵ0 = ℵ0 +c 1

k123·41 ⊢ ν ϵNC induct ⊃ ℵ0 = ℵ0 +c ν

k123·411 ⊢ ν ϵNC induct ⊃ ℵ0 = ℵ0 −c ν

k123·421 ⊢ ℵ0 = ℵ0 +c ℵ0 = 2×c ℵ0
166 This is established by the following chain of theorems:

k123·25 ⊢ Infin ax(x) ⊃ (t3‘x � N � t3‘x) ϵProg
k123·26 ⊢ Infin ax(x) ⊃ NC induct ��t3‘x ϵℵ0
k122·36 ⊢ E!Prog ��t11‘x ⊃ Infin ax
k123·18 ⊢ E!ℵ0(x) ⊃ Infin ax
k123·27 ⊢ E!ℵ0(x) ⊃ NC induct ��t3‘x ϵℵ0
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k123·422 ⊢ ν ϵNC induct− ι‘0 ⊃ ν ×c ℵ0 = ℵ0

The existence, i.e., non­emptiness of such class depends crucially on the truth of the Axiom of
Infinity: ℵ0 is a non­empty cardinal if, and only if, there is a progression.

We have a similar situation with the smallest of Cantor’s infinite ordinal number (or
order­type of a series) ω. In Principia, ordinal numbers are defined as a particular case of
Relation­Numbers treated in part IV of the second volume. Though this topic will be addres­
sed in some detail below when we discuss the importance of the notion of structure in Principia,
it is worth (and necessary) to review the basics of their treatment of ordinals in order to discuss
the definition of ω. The fundamental definition is that of ordinal similarity between two relations
P and Q:

k151·01 P smorQ = Ŝ{S ϵ 1→ 1 C‘Q =

D‘S xPy ≡x,y ( Ez, w) xSz ySw zQw}
Df

Roughly, this defines two relations as ordinally similar if, and only if, there is an isomorphism
function from P into Q167. Analogously to cardinal numbers, relation numbers are defined as
classes of ordinally similar relations, starting from the relation Nr between a relation and the
class of all relations ordinally similar to it168:

k152·01 Nr = −−→smor Df

k152·02 NR = D‘Nr Df

k152·1 ⊢ Nr‘P = Q̂(QsmorP )

Ordinal numbers are then defined as the relation numbers of well­ordered series169 (with a series
defined as well­ordered if its generating relation P is a well­ordering relation, that is: (i) it ge­
nerates a series170 and (ii) every non­empty subset of its field has a minimal (first) element with
respect to P171. In Principia’s notation this can be put as:

167 This will be addressed in more detail below.
168 Notice that similar considerations pertaining to typical ambiguity which we previously discussed must be kept

in mind here.
169 WHITEHEAD & RUSSELL, 1927b, p.1 [1913, p.1].
170 Principia’s treatment of series is given in volume 2, part V. The basic definition is given ink204, where a relation

R is defined as serial or as generating a series if it is (1) contained in diversity (or, as Russell sometimes says
it, is aliorelative), that isR ·⊂ J or xRy ⊃ x ̸= y; (2) is transitive, that is R2 ·⊂ R; and (3) is connected, that
is x, y ϵC‘ ⊃ xRy ∨ yRx∨ x = y. The authors put this succintly as:

k204·01 Ser = Rl‘J ��trans ��connexDf
171 The notation minP ‘α can be replaced for B‘(P � α).
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k250·01·121
⊢P ϵΩ ≡ P ϵSer α ⊂ C‘P E!α ⊃α E!minP ‘α

≡ P ϵSer

E!α ��C‘P ⊃α E!minP ‘α

An ordinal number is then defined as the relation number of some well­ordered relation:

k251·01 NO = Nr“Ω Df

The ordinal number ω, in its turn, is defined as the class of all relations P equal to Rpo where R
generates a progression172:

k263·01 ω = P̂{( ER) R ϵProg P = Rpo} Df

Roughly, this defines ω as the class of serial relations that generate progressions.173 And now we
can see precisely why the existence of infinite ordinals also depends on the Axiom of Infinity:
without it, the relation N from k123·02 fails to generate a progression. Whitehead and Russell
explain this very succinctly in their summary of section k263:

The axiom of infinity implies that “less to greater” with its field confined to
inductive cardinals is a member of ω, or, what comes to the same thing but

172 The notation Rpo comes from section k91 which treats what Whitehead and Russell call “powers of relations”;
the basic notion treated there is the already mentioned class of relations R, R2, R3, R2, ... etc. The basic fact
explored is that if the class is arranged in a series R,R2, R3, R2, ... each Rn bears to Rn+1 the relation |R
(which comes from the notation of k38; see previous footnote 125); thus, given any relation R and any product
Rn of it, R is an ancestral of Rn with respect to the relation |R; or yet, in other words: given any product Rn

of a relation R, R(|R)∗Rn holds (the reason for this is intuitively clear: to say that a is an ancestor of b with
respect to R is just to say that some product Rn of R holds between a and b (thus, the ancestral itself could be
defined in terms of the class of powers of a relation R). Now, the class of all such classes, that is, the class of
all ancestors of R with respect to |R is defined as:

k91·03 Pot‘R =
−−−→
(|R)∗‘R Df

This is the class of all powers of R. Whitehead and Russell also define the class of all powers including
identity restricted to the field of R:

k91·04 Potid‘R =
−−−→
(|R)∗‘(I � C‘R) Df

Thus, Rpo is the relation­sum of all members of the class of all powers of R:
k91·05 Rpo = ṡ‘Pot‘R = x̂ŷ{( EP ) P ϵPot‘R xPy} Df
And it is identical to R∗ as they prove in k91·55. Unpacking the above some more gives us the following

which parallels the ancestral defined in k90:
k91·13 ⊢ P ϵPot‘R ≡ S ϵµ ⊃S S|Rϵµ R ϵµ ⊃µ P ϵµ
k91·15 ⊢ P ϵPotid‘R ≡ S ϵµ ⊃S S|Rϵµ (I � C‘R) ϵ µ ⊃µ P ϵµ
k91·16 ⊢ xRpoy ≡ ( EP ) S ϵµ ⊃S S|Rϵµ R ϵµ ⊃µ P ϵµ .xPy

Also, by applying the universal instantiation
Ŝ(ϕS)

µ
and definition k20·02 in k91·13·15, Whithead and

Russell get:
k91·171 ⊢ P ϵPot‘R ϕS ⊃S ϕ(S|R) ϕR ⊃µ ϕP
k91·17 ⊢ P ϵPotid‘R ϕS ⊃S ϕ(S|R) ϕ(I � C‘R) ⊃µ ϕP

173 Landini
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is easier to prove, that {(NC induct) � (+c1)}po is a member of ω (k263·12).
Thus the axiom of infinity for the type of x implies the existence ofω in the type
t33‘x (k263·132); and generally, the existence of ω in any type of relations is
equivalent to the existence of ℵ0 in the type of their fields (k263·131), because
ℵ0 = D“ω = C“ω (k263·101).174

The situation is the same as in the case of ℵ0: if Infin Ax happens to be false, ω would be
empty, so again, they cannot define ω outright as the order­type of the series of natural numbers.
Instead, it is defined as the class of serial relations that generate a progression (of which there
may be none that is actually instantiated).

5.7 A Digression: Infinity and the Multiplicative Axiom

Unbeknownst to Russell while writing thePrinciples of Mathematics, some results in the
theory of infinite cardinal numbers also requires other assumptions with a problematic status be­
sides the Axiom of Infinity. Finite classes are usually defined as they are in Principia: as classes
which have n elements, for some n ϵNC induct. But another common way one can define a class
as infinite is this: α is infinite if, and only if α can be put into a one­one correspondence with
a proper sub­class of itself. Russell himself adopted this as a definition of infinity in the Princi­
ples175. Classes that satisfy this latter notion of infinity are generally called Dedekind­infinite176.
In the Principles and elsewhere, Russell thought that both definitions of infinite classes, that is,
as non­inductive and reflexive, could be shown to be equivalent without any special assumpti­
ons177. This, unfortunately, is not the case, as Russell and Whitehead discovered around 1904:
the proof of this result requires Zermelo’s Axiom of Choice178 or some of its many equivalents.
174 WHITEHEAD & RUSSELL, 1927b, p.143 [1912, p.143].
175 RUSSELL, B., 1937 [1903], p.121 §117.
176 Since Dedekind proposed it in his famous booklet (DEDEKIND, R., 1888, p.63). Cantor had also previously

employed it (cf. MOORE, G., 1982, pp.22­6).
177 Whitehead and Russell thought so in 1902 when they wrote their first joint work (cf. WHITEHEAD & RUS­

SELL, B., 1902, pp.427­8, theorems k2·75·76) , but they implicitly employed an equivalent to what we now
call the “Axiom of Countable Choice”. Cf. footnote 178 below for more details.

178 As is well known, Zermelo introduced the axiom (as such) in his first proof that every set can be well­ordered
(cf. ZERMELO, E., 1904, p.139­40). In his second proof that every set can be well­ordered Zermelo put the
axiom forward in the sharp form that we nowadays usually refer to: “If T is a set whose elements all are sets
that are different from 0 and mutually disjoint, its union G(T ) includes at least one subset S1 having one and
only one element in common with each element of T” (ZERMELO, E., 1908, p.204); or, more closely to current
terminology: “Given any family T of non­empty sets, there is a function f which assigns to each member
A of T an elementf(A) of A” (MOORE, G., 1982, p.5). As Gregory Moore notes, Zermelo was the first to
make explicit use of the axiom (MOORE, G., 1982, p.2), although Peano had considered it and rejected it as a
legitimate principle, stating that “[...] one cannot apply infinitely many times an arbitrary rule by which one
assigns to a class A an individual of this class, a determinate rule is stated here” (PEANO, G., 1957 [1890],
p.210; MOORE, G., 1982, p.5). Russell and Whitehead’s realization that a similar hypothesis was involved in
several crucial results came around the same time. As Moore notes (MOORE, G. (ed.), 1993, p.16), in their first
joint paper Whitehead and Russell implicitly assumed that every infinite class is the union of some family of
denumerable classes, which is an equivalent of the Axiom of ‘Countable’ or ‘Denumerable Choice’; they also
implicitly employed another equivalent which they later coined as the ‘Multiplicative Axiom’: ifM is a class of
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In what follows we discuss why exactly that is the case by reviewing Principia’s treatment of
Dedekind­infinite classes. We shall see that there is a parallel lesson that can be extracted from
their use of the Axiom of Choice and their use of the Axiom of Infinity179.

Whitehead and Russell call Dedekind­infinite classes reflexive. They define, respecti­
vely, reflexive classes and reflexive cardinal numbers as follows:

k124·01 Cls refl = ρ̂{( E

R) R ϵ 1→ 1

D‘R ⊂ D‘ E!
−→
B ‘R ρ = D‘R} Df

k124·02 NC refl = N0c“Cls refl Df

Principia can easily prove, without any special assumptions, that no reflexive cardinal is induc­
tive and that no reflexive class is inductive, thus:

k124·27 ⊢ NC refl ��NC induct = �

k124·271 ⊢ Cls refl ��Cls induct = Λ

But the proof that every non­inductive class is reflexive requires the hypothesis which Whi­
tehead and Russell called the ‘Multiplicative Axiom’, which asserts that given any class κ of
mutually exclusive classes α, there is a class which contains exactly one element x of each
element α of κ. This assumption is equivalent to the Axiom of Choice, to which Russell and
Whitehead referred to as ‘Zermelo’s Axiom’ since it was him that introduced it as an explicit
principle for first time180. To have a minimally clear grasp of the role played by the Multipli­
cative Axiom in Principia’s theory of infinite cardinals, we must consider briefly its theory of
cardinal multiplication181.

non­empty mutually exclusive classes A, then there exists a classC having exactly one member in commonwith
each A inM ; the name ‘Multiplicative’ results from its implicit use in Whitehead’s treatment of multiplication
in the paper and elsewhere (Principia included). Russell seems to have explicitly recognized the Axiom as such
in 1904. He told Jourdain the story as follows “As for the multiplicative axiom, I came on it so to speak by
chance. Whitehead and I make alternate recensions of the various parts of our book, each correcting the last
recension made by the other. In going over one of his recensions, which contained a proof of the multiplicative
axiom, I found that the previous prop­ osition used in the proof had surreptitiously assumed the axiom. This
happened in the summer of 1904. At first I thought probably a proof could easily be found; but gradually I saw
that, if there is a proof, it must be very recondite” (GRATTAN­GUINNESS, I., 1977, p.80). The fourth and
fifth volumes of Russell’s collected papers show him struggling over the Axiom, in particular whether there are
sound philosophical a priori grounds from accepting its truth (cf., in particular, RUSSELL, B., 1906g). As we
shall see, Russell never found any such a priori grounds for believing or disbelieving the Axiom, though he
did not discard the possibility that such grounds could at some point be found (cf., for instance, RUSSELL, B.,
1911c).

179 In a paper suggestively entitled “On the Advantages of Honest Toil Over Theft” (BOOLOS, G., 1998, pp.255­
274), George Boolos discusses the use of these axioms and draws attention to some parallel considerations. As
we shall see, however, Boolos fails to appreciate that Russell’s conception of Logicism is quite different from
that of Frege and this leads him to wrongly claim that Principia marks Russell’s abandonment of the Logicist
enterprise.

180 ZERMELO, E., 1904.
181 Which has its origins in the previous work of Whitehead
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As with their theory of cardinal sum, Whitehead and Russell wanted the most general
possible definition which preserved the usual formal properties of multiplication. But the case
of products was more complicated than that of sums and they had to put forward two different
definitions. First, they have:

k113·02·101 β × α = R̂{( E

x, y) x ϵ α y ϵ β R = x ↓ y} Df182

This, like the definition of the arithmetical sum α+ β of two classes, defines a class of couples.
Like the class α + β that is the arithmetical sum of α and β, the arithmetical product β × α of
these classes is intended to yield a class with the desired number of terms without assuming that
α and β are disjoint or of the same type. As the authors explain, k113·02 provides this because
“for a given y, the class of couples we obtain is ↓ “y [...]”183 that is, the class of all pairs x ↓ y,
where x is a member of α. The definition works because “[...] the number of such classes for
varying y, is Nc‘β”, which yields “[...] Nc‘β classes of Nc‘α couples, and β × α is the logical
sum of these classes of couples”184. On the basis of this definition of the arithmetical product of
two classes, they define cardinal multiplication in a way that is parallel to the definition cardinal
sum:

k113·03 µ×c ν = ξ̂{( E

α, β) µ = N0c‘α ν = N0c‘β ξ sm (α× β)} Df

This definition ­ like that of cardinal sum ­ applies to both finite and infinite numbers alike.
However, it can only be extended to a finite number of factors µ1 ×c µ2...×c µn, and not to an
infinite one185. In Principia, a definition which includes products of an infinite number of factors
requires what Whitehead and Russell called selections186.

A selection from a class κ of classes α is introduced by the authors as a class of represen­
tatives x from each member α ϵ κ , where a representative is a member of α picked by a selector,
i.e. a relation R such that

α ϵ κ ⊃α R‘α ϵα D‘R = κ

182 The official definiens is s‘α ↓
”
“β but for our purposes this is condensed to the point of inconvenience.

183 WHITEHEAD & RUSSELL, 1927a, p.101 [1912, p.104].
184 WHITEHEAD & RUSSELL, 1927a, p.101 [1912, p.104].
185 A clear informal survey of this point is given by Russell in the Introduction to Mathematical Philosophy (RUS­

SELL, B., 1919a, p.118­20).
186 WHITEHEAD & RUSSELL, 1925, pp.478­9 [1910, pp.500­1]. A treatment of ‘selections’ given in terms of

axiomatic set theory (employing only first­order logic) is given in the tenth chapter of Quine’s classic book
(QUINE, W., 1969).
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Or, equivalently, an R such that:

R ϵ 1→ Cls R ·⊂ ϵ

D‘R = κ

That is: given a class of classes κ, a selector R picks out an element x ­ which Whitehead and
Russell call a representative of α ­ from each α ϵ κ, thus forming what they call a selection
or selected class187. To take a simple example, if κ = {{a, b}, {c, d}, {e}}, for instance, then
{a, c, e} is a selection from κ, where a is the representative of {a, b}, c is that of {c, d} and e
that of {e}; other possible selections would be {a, d, e}, {b, c, e}, etc.

The notion of a selection from a class of classes κ is obtained by Whitehead and Russell
from the more general and fundamental notion of a selection from any given relation P, which
they define as:

k80·01 P∆ = λ̂κ̂{λ = (1→ Cls)Rl‘P ��←−D‘κ} Df

from which it almost immediately follows that:

k80·14 ⊢ R ϵP∆‘κ ≡ R ϵ 1→ Cls R ·⊂ P

D‘R = κ

k80·35 ⊢ R ϵP∆‘κ ⊃ D‘R = x̂{( E

y) y ϵ κ x = R‘y}

The case which is relevant for determining the properties of selections from classes of classes,
of course, is when P is the relation ϵ of class membership, for in that case, as Whitehead and
Russell explain, “if R ϵ ϵ∆ ‘κ,R picks out a representative R‘α from each class α which is a
member of κ”188. Also, in that case, we have:

ϵ∆ ‘κ = R̂{(1→ Cls) ��Rl‘ ϵ ��←−D‘κ
This is the class of selective relations, or selectors, of the class of classes κ. Also, the class of
all selected classes of κ will be D“ ∈∆ ‘κ which is just:

α̂{( E

R) R ϵ ϵ∆ ‘κ α = D‘R}
187 WHITEHEAD & RUSSELL, 1925, pp.478­9 [1910, pp.500­1].
188 WHITEHEAD & RUSSELL, 1925, p.479 [1910, p.501].
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That is, the class of all domains of the members of ϵ∆ ‘κ. This gives us enough of Principia’s
theory of selections to appreciate the connection with cardinal multiplication. As the authors
explain:

It will be seen that, ifα ϵ κ,R‘αmay be anymember ofα, andwe get a different
R for each different member of α. Thus if we keep the representatives of all the
other members of κ unchanged, the number of selective relations to be obtained
by varying the representative of α is the number of members of α. Hence the
number of selective relations together may be fitly defined as the product of the
numbers of terms possessed by the various members of κ. In case κ is finite or
infinite, the product so defined obeys all the formal laws of multiplication.189

Thus, they define the product of any number of (possibly infinitely many) factors as:

k114·01 ΠNc‘κ = Nc‘ ϵ∆ ‘κ Df

But not all classes of classes are what Whitehead and Russell call a multiplicative class (of
classes). The classes of classes which are multiplicative are defined as those which have a non­
empty class of selectors:

k88·02 Cls2Mult = κ̂{ E! ϵ∆ ‘κ} Df

Thus, the following theorems, for instance, establish that classes of classes which have the empty
set as a member are not multiplicative:

k83·1 ⊢ E! ϵ∆ ‘κ ⊃ Λ ∼ ϵ κ

k83·11 ⊢ Λ ϵ κ ⊃ ϵ∆ ‘κ = Λ

Since Whitehead and Russell ingeniously realized that “[...] the number of selective relations
together may be fitly defined as the product of the numbers of terms possessed by the various
members of κ”190, it follows that if some factor µ of any productΠNc‘κ is such that µ = Nc‘Λ =

0, then the product ΠNc‘κ = Nc‘ ϵ∆ ‘κ = 0 as well.

But Whitehead and Russell also eventually realized that they could not prove the fol­
lowing:

Λ ∼ ϵ κ ⊃ E! ϵ∆ ‘κ
189 WHITEHEAD & RUSSELL, 1925, p.479 [1910, p.501].
190 WHITEHEAD & RUSSELL, 1925, p.479 [1910, p.501].
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Which is equivalent to the assertion that any number of (possibly infinitely many) factors, none
of which are equal to zero, is not equal to zero. This, as it turns out is, is also one of the many
equivalents to the Axiom of Choice.

Indeed, they discovered that, generally, the question of whether an arbitrary (possibly
infinite) class of classes κ is such that κ ϵCls2Mult or not is problematic ­ even in cases where it
appears “evident” that they should be multiplicative. Perhaps the best example is that of classes
of non­empty mutually exclusive classes191:

k84·03 Cls ex2excl = Cls2excl−←−ϵ ‘Λ Df

In such cases, it is very intuitive to assume that the following should be provable from logic
alone:

κ ϵCls ex2excl ⊃κ

E! ϵ∆ ‘κ

But as it happens, this is not so: this assumption is also equivalent to Λ ∼ ϵ κ ⊃ E! ϵ∆ ‘κ.
Thus, Russell and Whitehead were led to introduce the following definition of a hypothesis that
they called theMultiplicative Axiom:

k88·03 Mult ax = κ ϵCls ex2excl ⊃κ ( E

µ) α ϵ κ ⊃α µ ��α ϵ 1 Df

This was used in their development of the theory of selections, multiplication and transfinite
numbers much like the Axiom of Infinity was used in the theory of inductive cardinals: as an
explicit undischarged hypothesis in the proof of an existence theorem wherever it was required.

This hypothesis is also needed for the theory of reflexive cardinals. It turns out that, as
Whitehead and Russell put it, “[...] if a product of ℵ0 factors, no one of which is zero, is never
zero, then the two definitions of the finite and the infinite coincide”192. The proof of this result
is rather long, but we can review the general idea. First, they define the class of multiplicative
cardinals, that is, cardinals which are numbers of selections:

191 Classes of mutually exclusive and possibly empty classes are defined as follows:

k84·01 Cls2excl = κ̂(α, β ϵ κ α ̸= β) Df

Observe that classes κ such that κ ϵCls ex2excl are important because otherwise it could happen that for some
α, β ϵ κ, that α ��β ̸= κ; and in this case, α and β may have the same representative in a selection. Thus, as
Russell puts it “there may be more selectors than selections” (RUSSELL, B., 1919a, p.120).

192 WHITEHEAD & RUSSELL, 1927a, p.271 [1912, p.278].

377



k124·03 NCmult = NC ��α̂{κ ϵ α ��Cls ex2excl ⊃κ

E! ϵ∆ ‘κ} Df

Now, an important property of inductive cardinals (which is easy to see, but tedious to prove) is
that all of them are mutually exclusive, and if Infin Ax is assumed they are all non­empty. This is
proved via the following proposition from the section on inductive cardinals and an immediate
lemma concerning multiplicative cardinals:

k120·61 ⊢ κ ϵCls induct Λ ∼ ϵ κ ⊃ E! ϵ∆ ‘κ

k124·4 µ ϵNCmult ≡ µ ϵNC κ ϵ µ ��Cls ex2excl ⊃κ

E! ϵ∆ ‘κ

From this Whitehead and Russell obtain:

k124·41 ⊢ NC induct ⊂ NCmult

Also, two important facts follow from this. First: the (class) sum s‘NC induct of all finite cardi­
nals will be such that its cardinal number is identical to 0 + 1 + 2 + ... + n + n + 1... Second,
the cardinal number of the class of selected classes of NC induct will be the same as the cardinal
number of the class of all selections of NC induct.

Now, the assertion that “[...] a product of ℵ0 factors, no one of which is zero, is ne­
ver zero” is just the claim that ℵ0 ϵNCmult, and their proof is framed in these terms. That is:
ℵ0 ϵNCmult implies the coincidence of the two definitions of infinity193. The demonstration is
rather long and complicated, taking the bulk of k124, so we shall not reconstruct or review the
full formal proof in detail. The final proposition is this:

k124·56 ⊢ : ℵ0 ϵNCmult ⊃ −Cls induct = Cls refl N0c− NC induct = NC refl

This just shows that the assumption that ℵ0 is a multiplicative cardinal ­ which is equivalent
to the assumption that “[...] a product of ℵ0 factors, no one of which is zero, is never zero”194 ­
implies that a class is infinite if, and only if it is Dedekind­infinite i.e., reflexive.

To have a rough grasp of how this is proved in Principia, we may follow Russell’s sketch
given in Introduction to Mathematical Philosophy195. Roughly, what we have is a (beautiful and
instructive) proof in three stages which we can summarize as follows:

193 WHITEHEAD & RUSSELL, 1927a, p.271 [1912, p.278].
194 WHITEHEAD & RUSSELL, 1927a, p.271 [1912, p.278].
195 RUSSELL, B., 1919a, pp.127­9.
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Stage 1: Let a class ρ be non­inductive. Given such class, show that for any ν ϵNC induct,
there is a proper non­empty sub­class δ of ρ such that Nc‘δ = ν. That is: show that
given any finite cardinal number, there is a proper sub­class of ρ that ‘instantiates’
that cardinal number. Show that the class of all classes of finite sub­classes of ρ
form a progression; this is the crucial step of the first­stage of the proof: the basic
idea is to show that the cardinal numbers ‘formed’ from ρ (by taking the class of all
its finite sub classes) is contained in the power class of the power class Cl‘Cl‘ρ of ρ.
This establishes the following: the class Cl‘Cl‘ρ has a subset which is a progression
if ρ is not inductive. This is enough to show that: (i) if ρ is non­inductive then
Cl‘Cl‘ρ ϵNC refl; (ii) if µ is a non­inductive cardinal then 22µ is a reflexive cardinal.
[In Principia, this stage is given by propositions k124·51·511, k124·57 and k124·6]

Stage 2: Assume the Multiplicative Axiom restricted to classes of cardinality up to ℵ0 i.e.,
ℵ0 ϵNCmult. That is: that from any given class κ of non­empty mutually exclusive
classes α, whose cardinal number is either equal to, or less than ℵ0, we can form a
class by taking a representative from each α ϵ κ. Let κ be the the class of all finite
cardinal numbers ρN formed from ρ in stage 1 above. Then: (i) each αwill be a class
of all finite sub­classes αν of cardinality ν of ρ; (ii) ρN is a class of mutually exclu­
sive classes; (iii) ρN contains a progression; (iv) ρN ⊂Cl‘Cl‘ρ. But then, omitting
the sub­class whose only member is Λ, and assuming the Mult Ax (up to classes
with ℵ0 terms), we can form, from ρN , a progression of classes α1, αa..., αn, ...,
where each αj is an element of Cl‘ρ. Thus, Cl‘ρ contains a progression. This pro­
ves that if ρ is non­inductive then Cl‘ρ ϵCls refl and if µ is a non­inductive cardinal
then 2µ is a reflexive cardinal. [In Principia, this stage is given by propositions
k124·512·513·514]

The next stage is the most complicated: it consists in showing that another application of the
Multiplicative axiom restricted to classes of cardinality up to ℵ0 allows us to prove that any
non­inductive class contains a progression and is thus reflexive.

Stage 3: Assume ℵ0 ϵNCmult. First, show, by induction, that each class αj , for j > n in
the progression α1, α2..., αn, ... must introduce at least one new term with respect
to some its predecessors. Base case: observe that if α1 = ι‘x, for some x ϵ α, then
α2 must be either equal to ι‘x ��ι‘y or ι‘y ��ι‘z, for some y, z ϵ α and such that
y ̸= z ̸= x; furthermore, observe that the next class α3 can be such that no new
term is introduced, e.g., α3 = ι‘x ��ι‘y ��ι‘z, but α4 must necessarily introduce a
new term w. Inductive step: observe that given the first n classes α1, α2..., αn, the
maximum number of terms of the union of all such classes is given by the arithmetic

progression
n∑

i=1

i =
n(n+ 1)

2
(in the case where no term x, y, z... is repeated); thus,
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the interval of classes αn, ..., αn(n+1)/2 could be formed without introducing any

new terms from α into any of the classes αi for n < i ≤ n(n+ 1)

2
; but the class

αi+1, on the other hand, must necessarily introduce a new term for it must have
n(n+ 1)

2
+ 1 elements. The next step consists in showing that from the progres­

sion α1, α2..., αn, ... we can form a subset of α which is also a progression: Russell
does this by letting β1, β2, ...β3, ... be obtained from α1, α2..., αn, ... by omitting “all
those classes that are composed entirely of members that have occurred in previous
classes”196, and then, from this, another progression γ1, γ2, ..., γn can be formed by
letting each γi the part of βi with ‘newmembers’, that is: each γi is such, for every x,
if x ϵ γi then x ∼ ϵ βh, where h ≤ i. But from the above it follows that: (i) the class
κ of all γi forms a class of mutually exclusive classes; and thus (ii) a selection ϵ∆ ‘κ
can be formed from Γ which is also a progression; from whence it follows, since
ϵ∆ ‘κ ϵ α, that (iii) α contains a progression and so is reflexive. Therefore: assuming
the axiom of countable choice, i.e, that ℵ0 is a multiplicative cardinal, it follows that
if α is a non­inductive class, it is reflexive; or equivalently: if ν ∼ ϵNC induct, then
ν ϵNC refl. [In Principia, this stage is given by propositions k124·52− 55]

In this proof, the first stage does not require in any way the Multiplicative Axiom, neither res­
tricted to classes whose cardinal number is ℵ0 nor otherwise.

The theorems which constitute the first stage of the proof are the following (where only
the first conjuncts of k124·51 and k124·511 are relevant to what is proved):

k124 · 51 ⊢ ρ ∼ ϵCls induct Q = (��Cl‘ρ)|N |Cnv‘(��Cl‘ρ) ⊃

QϵProg D‘Q⊂Cl‘Cl‘ρ D‘Q = (��Cl‘ρ)“NC induct
k124 · 511 ⊢ : ρ ∼ ϵCls induct ⊃ Cl‘Cl‘ρ ϵCls refl (��Cl‘ρ)“NC induct ϵℵ0 ��Cls ex2excl
These lemmas are, if not the most important, the most interesting part of Principia’s treatment
of reflexive cardinals, not only because they prove an original result discovered by the authors197,
but also because they exemplify perfectlyWhitehead andRussell’s handling of existence­theorems.

As they explain in their informal summary, assuming that ρ is non­inductive, they show
that “it contains classes having ν terms, if ν is any inductive cardinal”, so that for every inductive
cardinal ν, v ��Cl‘ρ is non empty. So each of these classes will be a class of sub­sets of ρ with ν
elements; but thismeans that these classes 0 ��Cl‘ρ, 1 ��Cl‘ρ, ..., v ��Cl‘ρ, ... “form a progression,
which is contained in Cl‘Cl‘ρ”198.
196 RUSSELL, B., 1919a, p.129
197 For proofs of their result given in the modern setting of Zermelo­Fraenkel set theory, see LEVY, I., 1979, p.80

and POTTER, M., 2004, p.
198 WHITEHEAD & RUSSELL, 1927a, p.271 [1912, p.279].
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This establishes the core of the beautiful result that some authors have come to call “the
proper analogue of Frege’s theorem”199: if ρ is non­inductive, then Cl‘Cl‘ρ is reflexive. When
put in terms of cardinal numbers, the result is embodied in the following theorem:

k124·57 ⊢ : µ ϵN0C− NC induct ⊃ 22
µ
ϵNC refl

The result is an almost direct consequence of k124·511 and k116·72 which is, in fact, a version
of Cantor’s power class theorem. Whitehead and Russell offer only a proof sketch, but one can
easily reconstruct a short demonstration:

Hp = µ ϵN0C− NC induct Df.

[Hp.k120·02]⊢ Hp ⊃ ( E

ρ) ρ ∼ ϵCls induct µ = Nc‘ρ (1)

[k124·511]⊢ ρ ∼ ϵCls induct ⊃ Cl‘Cl‘ρ ϵCls refl (2)

[k116·72]⊢ Nc‘Cl‘α =2Nc‘α (3)

[(3)]⊢ Nc‘Cl‘Cl‘ρ = 22
Nc‘ρ

(4)

[(1) (2) (4)]⊢ Prop. (5)

From k124·511, Whitehead and Russell also obtain the following:

k124·6 ⊢ ρ ∼ ϵCls induct ≡ Cl‘Cl‘ρ ϵCls refl

Which has a straightforward proof:

[k124·511]⊢ ρ ∼ ϵCls induct ⊃ Cl‘Cl‘ρ ϵCls refl (1)

[k120·74]⊢ ρ ϵCls induct ⊃ Cl‘ρ ϵCls induct (2)

[(2)]⊢ Cl‘ρ ϵCls induct ⊃ Cl‘Cl‘ρ ϵCls induct (3)

[k124·271]⊢ Cls refl ��Cls induct = Λ (4)

[(3) (4)]⊢ ρ ϵCls induct ⊃ Cl‘Cl‘ρ ∼ ϵCls refl (5)

[(1) (5)]⊢ Prop. (6)

This provides a ‘weak’ or ‘conditional’ identification of non­inductive and reflexive classes
without assuming any equivalent of the multiplicative axiom (countable or otherwise). And the
parallel with the use of Infin Ax here is clear enough: Whitehead and Russell refrain from ou­
tright assuming the Multiplicative Axiom but employ it only as a hypothesis just like Infin Ax.

What we must consider next is how such approach can be philosophically justified in a
way that is coherent with the assertion that Pure Mathematics is nothing but the development of
199 DEMOPOULOS & CLARKE, 2005, pp.160­1.
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Logic. In order to do this, we must see what is Russell’s conception of Logicism and of Logic
as a science.

5.8 Russell’s Regressive Method

We may start by discussing what the Epistemology of Logicism (and Logic) is that un­
derlies Principia Mathematica.

The first serious philosophical and mathematical attempt to establish that some branch
of Mathematics is a branch of Logic was made by Frege, who aimed to show this with respect to
Arithmetic and some portions of Analysis200. Frege’s fundamental claimwas that our knowledge
of arithmetical propositions does not depend on any form of spatial or temporal intuition, but
only upon recognition of the most basic laws of Logic. His project of developing a treatment of
Arithmetic on a logical basis was conceived, first and foremost, as a continuation of the process
of rigorization of Analysis started by mathematicians like Cauchy and Weierstrass and carried
on by the likes of Cantor, Dedekind and Peano. Of course, what Frege realized ­ to a depth that
was (and perhaps still is) unprecedented ­ was that the attempt to eliminate or reveal the appeal
to spatial or temporal intuitions from mathematical reasoning required an analysis of the laws
of reasoning themselves.

As he claimed in the first presentation of his Begriffsschrift, Frege’s goal was to for­
mulate a medium for the formulation of proofs that would “prevent anything intuitive from
penetrating” them and “keep the chain of inferences free of gaps”201. This effort to formulate
rigorous and gapless proofs was first directed at the laws of propositional logic and (first and
higher­order) quantification theory together with a theory of sequences (based on Frege’s notion
of the ancestral of a relation). Later, in his Grundgestze Frege extended it to Arithmetic, attemp­
ting a “derivation of the simplest laws of Numbers by logical means alone”202. And, clearly by
“logical means alone” Frege meant that every axiom of his system was a logical truth and every
one of its inference rules was sound.

But despite being at its core a mathematical project ­ in the sense that ultimately its
success depended on the possibility of obtaining a technical result ­ Frege’s attempt to develop
Arithmetic as Logic had a fundamental epistemic goal. Frege emphasizes that the logical analysis
of the most fundamental concepts and laws of Arithmetic is meant to show that they are neither
empirically grounded nor require some form of pure Kantian intuition in order to be known.
This is clear, for instance, when, in in the Introduction to the Grundgesetze, he looks back to the
Grundlagen and notes that:

200 For a discussion of this point, see DUMMETT, M., 1991, pp.277­291.
201 FREGE, G., 1879, p.5.
202 FREGE, 2013 [1893], p.1
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In my Grundlagen der Arithmetik, I sought to make it plausible that arithmetic
is a branch of logic and need not borrow any ground of proof whatever from
either experience or intuition.203

Frege’smain philosophical goal was to secure a privileged epistemic status to Arithmetic.
This claim appears more or less explicitly in the opening of theGrundgesteze, when Frege writes:

In the present book this is now to be established by deduction of the simplest
laws of cardinal number by logical means alone. In order for this to be done
convincingly, significantly higher demands have to be imposed on the conduct
of proof than is usual in arithmetic. We have to mark out in advance a few
modes of inference and consequence, and no step is allowed to occur which is
not in accordance with one of them. Thus, in the transition to a new judgment,
one is no longer to be satisfied, as mathematicians up until now nearly always
have been, with its obvious correctness, rather it must be analyzed into the
simple logical steps of which it consists, and these are often not particularly
few. Herein, no presupposition can remain unnoticed; every required axiom
must be uncovered. For it is precisely the presuppositions that are made tacitly
or without clear awareness that bar insight into the epistemological nature of a
law.204

Now, the question of whether Frege actually understood his project as having a fun­
damental epistemic component notwithstanding205, the passage above may naturally suggest a
particular picture of the essence of Logicism (to borrow a quote from one of Frege’s greatest
admirers)206. According to this picture, the ultimate goal of the logical analysis of Mathematics
is to present proofs of fundamental theorems in such a way that each premise is to be justified
either by being a logical self­evident axiom or by being obtainable from a logical axiom through
the successive use of some (logically sound) rule of inference. And this is done to ensure that
the proved proposition rests on ultimate, unshakable, foundations. Let us call this, following
Andrew Irvine, ‘Epistemic Logicism’207.

Much of this cannot be adequately said of Russell’s project. To be sure, there are some
clear parallels between the objectives of Russell’s project and the modus operandi for esta­
blishing them that were initially adopted by Russell with those of Frege, who, at some points
suggests commitments to Epistemic Logicism. Again, first and foremost, Russell understood the
attempt to ground Arithmetic in Logic as a continuation of the search for a rigorous foundation
203 FREGE, 2013 [1893], p.1.
204 FREGE, 2013 [1893], p.1. Our emphasis.
205 It may be argued, for instance, that Frege only wanted to establish, against Kant, that no sort of temporal or

spatial intuition ground knowledge of Arithmetic, which requires, so to say, only logical intuition. And in this
case, the claim that Frege’s project had a fundamental or substantial epistemological component would have
to be weakened with respect to the picture that passages like the above suggest. Addressing this issue in any
capacity here would require too large a detour, so we shall not commit to the idea that Frege actually meant
something stronger. The passage above do seem to suggest, at least, a stronger epistemological emphasis, so
we can refer to this ‘picture of logicism’ as at least inspired in or suggested by Frege’s works.

206 WITTGENSTEIN, L., 1953, p.1, §1.
207 Cf. Again, cf. IRVINE, A., 1989.
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for Mathematical Analysis effected in the Nineteenth Century ­ but he thought of it in a much
more broad and ambitious way than Frege ever did. For Russell, the results obtained by Weiers­
trass and his successors showed that the theory of natural numbers could be used as the ultimate
foundation upon which Real Analysis rests: that the whole of Pure Mathematics could be groun­
ded on or reduced to Arithmetic ­ and at some points he even thought this could be extended
to portions of Mechanics and Mathematical Physics208. Second, the crucial step towards esta­
blishing Logic as a foundation of Arithmetic was conceived ­ at least concerning its execution
­ precisely in the same way in which it was conceived by Frege: the goal Russell sets himself
to achieve in the opening of the Principles, namely: to prove “[...] that all pure mathematics de­
als exclusively with concepts definable in terms of a very small number of fundamental logical
concepts, and that all its propositions are deducible from a very small number of fundamental
logical concepts”209 is the same goal envisioned by Frege. There was, in both the Principles and
in Principia, a technical objective that was shared with Frege’s work.

But there are stark differences in the Philosophical motivation for their projects which
are, almost as a rule, neglected by interpreters of Russell. One important exception is Andrew
Irvine who, over two decades ago, called attention to the crucial differences between Epistemic
Logicism and Russell’s Logicism210. What mainly differentiates Russell’s conception of Logi­
cism as realized in Principia and Frege’s, as realized in his Grundgesteze, is that the former
was written as a response to the difficulties that showed the latter to be a failure. It is because
of Russell’s paradox211 that the Russellian project of developing Arithmetic as Logic acquired
a completely distinct character212 from Frege’s (or at least as Frege is generally understood213).
Epistemic Logicism, as Irvine puts it, aims at “[...] reducing “the problem of justifying mathema­
tical belief” to “[...] the comparatively easier problem of justifying the self­evident principles of
logic”214. This goal, which Russell shared with Frege before the discovery of the contradiction
was shown to be unachievable precisely because of that discovery.

But differently from Frege, who took the discovery as a fatal blow to the attempt to
develop Arithmetic as Logic, in the case of Russell his journey towards this goal was barely be­
ginning. As we discussed in the previous chapter, after the publication of the Principles, Russell
worked steadfastly in the search of a satisfactory logical theory which could serve as a founda­
208 It is worthile to observe, yet again, that in the Principles Russell’s opposition to Kant was not regarding the

thesis that Mathematics require some form of intuition ­ Russell’s complaint was that Kant did not realize that
the only form of intuition involved in the knowledge of (pure) Mathematics is logical intuition. Also, the points
made in previous footnote 410 of chapter 2 should be kept in mind here.

209 RUSSELL, B., 1903, p.xiii.
210 Cf. IRVINE, A., 1989
211 And, of course, the many other antinomies and paradoxes that later caught Russell’s attention in the course of

development of his many logical theories.
212 This was already indicated in the Principles, during the writing of which Russell discovered his paradox, since

there Russell acknowledges that he had “failed to perceive any concept fulfilling the conditions requisite for
the notion of class”(RUSSELL, B., 1903, p.v­vi).

213 See previous footnote 205.
214 IRVINE, 1979, p.305. A similar view is described aptly by Susan Haack as the attempt to make mathematical

propositions acquire “innocence by association” with logical ones (HAACK, 1978, p.10).
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tion for Mathematics and solve the contradictions and, as we saw, this was no trivial task. We
saw that the general issue that was brought up by the contradiction was the problem of salva­
ging what Russell viewed as the more fundamental achievements of Cantor, Dedekind, Peano
and Frege once the general naive assumption that every propositional function defined a class
(or an extension conceived as an object) was shown to be contradictory. Of course, Russell con­
cluded that the fault was with the naive notion of class or extension, not with Mathematics; and
indeed, as we saw, Russell shortly concluded that the very conception of an extension conceived
as a kind of abstract object had no place in Mathematics and that discourse about classes should
be paraphrased in terms of the more primitive vocabulary of Logic215; but this, in turn, raised
another fundamental issue: how can complex logical theories which deal with this difficulty
serve as a foundation for the propositions of ordinary Arithmetic which seem to have a much
less problematic epistemic status? As Russell puts it:

There is an apparent absurdity in proceeding, as one does in the logical theory
of arithmetic, through many rather recondite propositions of symbolic logic, to
the “proof” of such truisms as 2 + 2 = 4: for it is plain that the conclusion is more
certain than the premises, and the supposed proof therefore seems futile.216

Ignoring, for the moment, the obvious observation that there is much more going on in a
treatise like Principia than the proof of such truisms, it is plain that those who endorse a logicist
analysis of Mathematics must have an answer to this question. Or, at the very least, an answer
is needed if the analysis is to give any insight into the nature of mathematical knowledge.

An idea which was more or less implicit and only superficially developed in the works of
Frege and Russell before the discovery of Russell’s Paradox is the idea that self­evidence could
answer this question: that despite being laws which are discovered much later in the axiomatic
development of a science, the laws of Mathematical Logic enjoy the greatest degree of self­
evidence; but for Russell, the contradiction in Frege’s system showed this idea to be as untenable
as the naive conception of set. Indeed, by the time Principia was done, self­evidence became
almost irrelevant as a criterion for an axiom to be accepted as primitive or fundamental:

But in fact self­evidence is never more than a part of the reason for accepting
an axiom, and is never indispensable. The reason for accepting an axiom, as for
accepting any other proposition, is always largely inductive, namely that many
propositions which are nearly indubitable can be deduced from it, and that no
equally plausible way is known by which these propositions could be true if
the axiom were false, and nothing which is probably false can be deduced from
it. If the axiom is apparently self­evident, that only means, practically, that it
is nearly indubitable; for things have been thought to be self­ evident and have
yet turned out to be false. And if the axiom itself is nearly indubitable that me­
rely adds to the inductive evidence derived from the fact that its consequences

215 Like that of Russell’s Substitutional Theory or Principia’s No­Class Theory.
216 RUSSELL, 1907, p.272.
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are nearly indubitable: it does not provide new evidence of a radically diffe­
rent kind. Infallibility is never attainable, and therefore some element of doubt
should always attach to every axiom and to all of its consequences. In formal
logic, the element of doubt is less than in most sciences, but it is not absent, as
appears from the fact that the paradoxes followed from premises which were
not previously known to require limitations.217

So, in order to answer the above question, namely “what is the point of proving that 2
+ 2 = 4 through recondite laws of logic”, Russell came to rely on a methodology that became
known as the regressive method of discovering premises in Mathematics218.

This method consists in a two­stage analysis of mathematical theories whose concepts
are vague, imprecise, confused or even contradictory and whose propositions (as well as the
deductive relations that hold among them) could, consequently, be better articulated. The first
stage consists in the identification of a minimal cluster of concepts and axioms for the theory; the
second consists in the reconstruction of the theory starting from this minimal group of primitive
concepts and axioms, in order to obtain the greatest number of results of the original theory,
while ridding it of its conceptual and logical defects219.

Thus, Russell took the logicist enterprise as standing in a field of investigation that has
a very peculiar nature: it presupposes data to analyze, namely, Mathematical Theories ­ but its
main essential purpose is neither to discover new truths deducible from the theory nor to provide
reasons to believe the theory to be true (though, of course, nothing excludes the possibility that
one of these things can eventually happen as a result of logical investigations). Rather, it proceeds
in the opposite direction of discovering the premises of Mathematics ­ and, in fact, this field of
inquiry was the discipline which, in fact, Russell calledMathematical Philosophy:

Mathematics is a study which, when we start from its most familiar portions,
may be pursued in either of two opposite directions. The more familiar direc­
tion is constructive, towards gradually increasing complexity: from integers to
fractions, real numbers, complex numbers; from addition and multiplication
to differentiation and integration, and on to higher mathematics. The other di­
rection, which is less familiar, proceeds, by analyzing, to greater and greater
abstractness and logical simplicity; instead of asking what can be defined and
deduced fromwhat is assumed to begin with, we ask instead what more general
ideas and principles can be found, in terms of whichwhat was our starting­point
can be defined or deduced. It is the fact of pursuing this opposite direction that
characterizes mathematical philosophy as opposed to ordinary mathematics.220

217 WHITEHEAD & RUSSELL, 1925, p.59 [1912, p.62].
218 Russell generally spoke of the regressive method of discovering the premisses of Mathematics (for instance,

RUSSELL, B, 1907), but this seems to convey a narrower idea of what his methodology consists in; the point
is not merely that the premisses of Mathematics can be discovered via the logistic investigation, but also that
this investigation itself is a (more or less) typical mathematical activity.

219 RUSSELL, 1907, p.272.
220 RUSSELL, B., 1919a, p.1.
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From a technical point of view, the goal of this enterprise was still akin to that originally
set out by Frege: to define mathematical notions in terms of a logical vocabulary and prove the
basic principles of mathematics assuming only logical axioms. But, as Irvine has emphasized
long ago221, Frege’s ‘Epistemic’ conception of Logicism differs radically from that the episte­
mological outlook behind the regressive conception or methodology which underlies Russell’s
Logicism.

Russell’s methodology greatly approximates the natural and the mathematical sciences,
since the regressive investigation can only provide inductive support to the most basic principles
of Mathematics222:

We tend to believe the premises because we can see that their consequences
are true, instead of believing the consequences because we know the premi­
ses to be true. But the inferring of premises from consequences is the essence
of induction; thus the method in investigating the principles of mathematics
is really an inductive method, and is substantially the same as the method of
discovering general laws in any other science.223

And it was this epistemological outlook that was behind the development ofMathematics
of Principia Mathematica. Russell and Whitehead were quite explicit in affirming that most of
the conclusions that followed from their axioms have a greater “degree of self­evidence” than
the axioms themselves, and that the possibility of deriving such conclusions was the main reason
to adopt the axioms of their system, as indicated in the quote above224.

Thus, Principia was never meant as a defense of “Epistemic Logicism” a thesis that
may also fairly be called “Classical Logicism” and that has strong foundational undertones,
as attested in the quotes from Frege’s works above. But despite that, many authors take for
granted that Russell’s attempt to derive Mathematics from Principia’s axioms aims at making
ordinary Mathematics more certain, secure or well­founded than it was before. This may be
correct regarding Frege’s goal with his logical investigations, but it is quite inadequate regarding
Russell.

Indeed, in the context of Russell’s general philosophical outlook, the inverse is actually
the case: a logical system is to be regarded as more certain or well­founded according to how
much ordinary mathematics can be developed within the system. Of course, were it not for the
221 IRVINE, A., 1989.
222 RUSSELL, 1907, p.274.
223 RUSSELL, 1907, p.273.
224 Similar remarks are scatterd throughout Principia’s informal observations. In the preface, for instance, we find:

“The chief reason in favour of any theory on the principles of mathematics must always be inductive, i.e. it must
lie in the fact that the theory in question enables us to deduce ordinary mathematics. In mathematics, the greatest
degree of self­evidence is usually not to be found quite at the beginning, but at some later point; hence the early
deductions, until they reach this point, give reasons rather for believing the premises because true consequence
follow from them, than for believing the consequences because they follow from the premises.”(WHITEHEAD
& RUSSELL, 1925, p.v [1910, p. v]).
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contradictions, Frege’s system would have been a paragon for logicism: Frege’s construction
allowed him to prove something Russell could not prove, that there are infinitely many finite
cardinal numbers. But in virtue of the discovery of the contradictions at the foundations of his
theory of extensions, such as Russell’s paradox, Frege’s system ­ and naive set theory, in general
­ had to be abandoned.

One aspect of Russell’s regressive conception of Logicism that cannot be understated is
that for him it is not the business of the Mathematical Logician as such to determine whether
Mathematics as a whole or some of its portions are true or should be taken as true. The business
of Mathematical Logic and the goal of logicism is to analyze mathematical theories, by (a) cla­
rifying which propositions are necessary (and sufficient) for their development; and (b) purging
them from possible contradictions. But the amount of Mathematics that can be derived from the
theory is not an absolute standard of evaluation: it must be weighted against the threat of contra­
diction. In Principia, this is stated clearly in the very first page of the work, where Whitehead
and Russell put among their main objectives:

(a) “[...] effecting the greatest possible analysis of the ideas with which it deals and
of the processes by which it conducts its demonstrations, and at diminishing to the
utmost the number of the undefined ideas and primitive propositions”225; and

(b) “[...] solve the paradoxes which, in recent years, have troubled students of symbolic
logic and the theory of aggregates”226.

There is no foundational claim in Principia because the work was not meant to be part of any
foundationalist program in the Foundations of Mathematics. Principia is mainly a work in re­
gressiveMathematics which aims to establish that PureMathematics leads back to purely logical
assumptions.

Russell also emphasizes this aspect of his thought even more in a paper of the mid­
twenties, Logical Atomism, which is often neglected, despite being of first­rate importance: it
puts Principia and many of Russell’s technical achievements within the context of his broader
views on Mathematical Philosophy (and Philosophy of Science in general: we find in that paper
the idea that Science in general deals with structure, to be later developed in the monumental
Human Knowledge: Its Scope and Limits227). There Russell emphasizes yet again the regres­
sive method and is adamant about the importance of distinguishing the epistemic and logical
dimension of the work in Mathematical Philosophy:

225 WHITEHEAD & RUSSELL, 1925, p.1 [1910, p.1].
226 WHITEHEAD & RUSSELL, 1925, p.1 [1910, p.1].
227 RUSSELL, B., 1948.

388



When pure mathematics is organized as a deductive system ­ i.e. as the set of
all those propositions that can be deduced from an assigned set of premises ­ it
becomes obvious that, if we are to believe in the truth of pure mathematics, it
cannot be solely because we believe in the truth of the set of premises. Some
of the premises are much less obvious than some of their consequences, and
are believed chiefly because of their consequences. This will be found to be
always the case when a science is arranged as a deductive system. It is not
the logically simplest propositions of the system that are the most obvious, or
that provide the chief part of our reasons for believing in the system. [...] the
same thing happens in the pure realm of logic; the logically first principles of
logic—at least some of them—are to be believed, not on their own account, but
on account of their consequences. The epistemological question: “Why should
I believe this set of propositions?” is quite different from the logical question:
“What is the smallest and logically simplest group of propositions from which
this set of propositions can be deduced?” Our reasons for believing logic and
pure mathematics are, in part, only inductive and probable, in spite of the fact
that, in their logical order, the propositions of logic and pure mathematics fol­
low from the premises of logic by pure deduction. I think this point important,
since errors are liable to arise from assimilating the logical to the epistemolo­
gical order, and also, conversely, from assimilating the epistemological to the
logical order. The only way in which work on mathematical logic throws light
on the truth or falsehood of mathematics is by disproving the supposed antino­
mies. This shows that mathematics may be true. But to show that mathematics
is true would require other methods and other considerations.228

What are these “other” considerations involved in showing that the propositions ofMathe­
matics are actually true? Well, what is required is a criterion for determining whether there are
logical grounds for believing the truth or falsity of propositions like the Axiom of Infinity and
theMultiplicative Axiom or whether such propositions should be considered as purely empirical
and, hence, outside of the scope of Pure Mathematics and part of Applied Mathematics.

5.9 Infin Ax and Russell’s Conception of Pure Mathematics
In preface to the second edition of the Principles of Mathematics, written three decades

after its original publication, Russell states:

The fundamental thesis of the following pages, that mathematics and logic are
identical, is one which I have never since seen any reason to modify.229

Almost than a decade earlier, in the closing chapter of his Introduction to Mathematical
Philosophy, we find the following passage:

If there are still those who do not admit the identity of logic and mathematics,
we may challenge them to indicate at what point, in the successive definiti­
ons and deductions of Principia Mathematica, they consider that logic ends

228 RUSSELL, B., 1924, p.129­130. Irvine, who long ago called attention to this important and often neglected
passage notes that it also “shows how closely Russell’s mathematical epistemology was integrated within his
general theory of knowledge” (IRVINE, A., 1989, p.316).

229 RUSSELL, B., 1937, p.xxxi.

389



and mathematics begins. It will then be obvious that any answer must be quite
arbitrary.230

There are authors, however, who answered Russell’s challenge by pointing atPrincipia’s
section k120, specifically, k120·03 which defines the axiom of infinity. William and Martha
Kneale, for instance, claim that since “the axiom cannot be described as a truth of Logic in
any reasonable use of that phrase”, its use in Principia “amounts in effect to the abandonment
of Frege’s project of exhibiting arithmetic as a development of logic”231. There are others who
endorse the idea that Russell simply abandoned Logicism (without realizing, apparently) in favor
of a view that became known in the literature as “If­Thenism”. According to this view, every
mathematical (or arithmetical) truth is derivable from logical axioms plus non­logical (existence)
axioms such as the Axiom of Infinity. Alan Musgrave, for instance, claims that Russell retreated
to such a position:

By using the If­thenist manoeuvre, Russell arrives at a position which is far­
removed from his original logicism. The claim that all so­called mathematical
axioms can be deduced from logical axioms (thesis (B) of old­style logicism) is
weakened to read: (B*) either an apparently primitive proposition of mathema­
tics can be deduced from logical axioms or it is not to be regarded as a primitive
proposition at all but only as the antecedent of various conditional statements
[...] It turned out, in fact, that only a fragment of arithmetic (finite arithmetic)
could be ‘reduced to logic’ in the way that old­style logicism demands. The rest
of mathematics could be ‘reduced to logic’ only if the If­thenist manoeuvre was
applied to it first232.

But this is a complete trivialization of Logicism – for it can be applied to any branch of
knowledge whatsoever formulated as a deductive system233. Even authors that are a little more
sympathetic to Russell’s work and to the logicist project in general, like George Boolos, tried
to understand Russell in a more charitable way, realizing that he did not treat Infin Ax as a
genuine axiom, but only took it as an antecedent to ordinary theorems (such as Peano 3) where
necessary234.

But since this in itself does not account for how Russell and Whitehead understood
the need for the axiom and how it affects the claim that Arithmetic is a branch of Logic, even
more charitable readers like Boolos remained puzzled: seeing an unresolvable tension between
passages like the one from Introduction to Mathematical Philosophy quoted above235 and the use
of Infin Ax, Boolos concluded that Principia was not, after all, a work meant to “vindicate full­
230 RUSSELL, B., 1919a, p.194­5.
231 KNEALE & KNEALE, 1984, p.669.
232 MUSGRAVE, A., 1977, p.112. See also PUTNAM, H., 1975, p.20.
233 LANDINI, G., 2011a, p.97.
234 This much is certainly correct: it follows from the fact that the so­called Axiom of Infinity is simply not intro­

duced as an axiom in Principia, as we already observed.
235 RUSSELL, B., 1919a, p.194­195.
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fledged Logicism”236. His explanation for Russell’smore bold remarks is that they should be read
as “careless, if not propagandistic”237. But if Boolos’s assessment is correct, Russell expressed
himself quite inconsistently for quite some time, and what is even worst, apparently without
even noticing it. This, although better than the conclusion that Russell adopted if­thenism, is
still highly unsatisfactory. The root of the problem is that Boolos, like Musgrave, Kneale &
Kneale and many others, does not consider the possibility that Russell’s conception of Logicism
is not the one they take for granted.

Russell’s endorsement of Logicism long after Principia’s publication is not “careless”
or “propagandistic”.238. Russell never abandoned Logicism, nor did he change his conception
of it: it was always the thesis according to which all the laws of pure mathematics are laws of
logic. What happened is that Russell was led to revise his conception of pure mathematics. If
we go back to where we started the present work, to the Logicism of the Principles, we find the
laws of Pure Mathematics defined as the class of all true propositions r of the form “p implies
q”, where p and q are propositional functions containing any number of variables x, ..., z and
r asserts that p implies q is true for all the values of x, ..., z239. What Russell came to realize is
that this definition is, in a sense, too broad. In the preface to the second edition to the Principles
­ the same place where Russell claims he never abandoned the logicist thesis ­ we find:

[...] the absence of non­logical constants, though a necessary condition for the
mathematical character of a proposition, is not a sufficient condition. Of this,
perhaps, the best examples are statements concerning the number of things in
the world. Take, say: “There are at least three things in the world”. [...] This
statement can be enunciated in purely logical terms, and it can be logically pro­
ved to be true of classes of classes of classes: of these there must, in fact, be at
least 4, even if the universe did not exist. For in that case there would be one
class, the null­class; two classes of classes, namely, the class of no classes and
the class whose only member is the null class; and four classes of classes of
classes, namely the one which is null, the one whose only member is the null
class of classes, the one whose only member is the class whose only member is
the null class, and the one which is the sum of the two last. But in the lower ty­
pes, that of individuals, that of classes, and that of classes of classes, we cannot
logically prove that there are at least three members. From the very nature of
logic, something of this sort is to be expected; for logic aims at independence
of [sic] empirical fact, and the existence of the universe is an empirical fact. It
is true that if the world did not exist, logic­books would not exist; but the exis­
tence of logic­books is not one of the premises of logic, nor can it be inferred
from any proposition that has a right to be in a logic­book.240

The reason for this change should be evident by now: because of the contradictions,
236 BOOLOS, G., 1998, pp.271.
237 BOOLOS, G., 1998, p.272.
238 BOOLOS, G., 1998, p.272. This somewhat unfortunate remark is found in an otherwise insightful and instructive

paper on Principia’s development of Arithmetic and the theory of infinite cardinal numbers. We shall have
occasion to discuss it in some detail below.

239 RUSSELL, B., 1937 [1903], p.1 §1. Here we are using the paraphrasis provided in our first chapter, section 1.3.4.1.
240 RUSSELL, B., 1937, p.vii­viii.
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Russell was driven to eliminate more and more the ontological commitments to so­called logical
objects. As we saw, the abandonment of the Substitutional Theory marked also the abandonment
of a conception of Logic fully committed to proving that there are infinitely many entities. This
is why Principia has a no­class theory and a no­proposition theory. What Russell concluded,
then, is not that logicism as he understood it is false, but that results whose truth which depends
on the existence of particulars ­ either abstract or concrete ­ do not belong to pure mathematics.

One might argue that this is circular ­ that Russell would seem to be simply defining Pure
Mathematics as what can be derived from Logic and then declaring logicism to be true. But this
would be a gross oversimplification of his view. As Gregory Landini, and following him, Kevin
Klement have argued241, the way out of the puzzle is not merely to realize that Russell did not
assume the axiom of infinity as a proper axiom in Principia’s theory of Arithmetic, but also that
Russell did not take it as axiomatic to Logicism to show that propositions involving existential
claims about numbers, like the third Peano Postulate, are logical truths. In fact ­ perhaps in
a rather hasty way242 ­ Russell explicitly recognizes that existential assumptions involved in
theorems like Peano 3243 are empirical:

[...] such existence­theorems, with certain exceptions, are, I should now say,
examples of propositions which can be enunciated in logical terms, but can
only be proved or disproved by empirical evidence244.

The reason for this is that Russell gave up the idea that it is the business of Logic to
guarantee the existence of an infinity of objects like classes or propositions245.

For Russell, one of greatest achievements made with the use of the regressive method
was Peano’s and Dedekind’s ‘reduction’246 of the indefinable notions of Arithmetic to the three
notions of zero, number and successor and of the primitive axioms to the five propositions we
241 LANDINI, G.,2011, p.193; KLEMENT, K., 2013b, p.156.
242 Cf. previous footnote 196 of the Introduction on Landini’s and Elkind’s forthcoming papers on alternatives to

Principia’s Axiom of Infinity.
243 Recall that we following the numbering of the Peano postulates which Russell employs in Introduction to

Mathematical Philosophy (Cf. RUSSELL, B., 1919a, pp.5­6.
244 RUSSELL, B., 1937, p.viii.
245 Here it must be noted that the issue may lay in our epistemology of Logic which may be too weak and not

necessarily with the contingent status of the Axiom of Infinity, i.e., it may be a logical necessity that there
are infinitely many entities of the lowest simple type but even this were a logically necessary truth, it may be
unknowable to us. Thanks for Landini for calling my attention to this point.

246 Cf. RUSSELL, B., 1903, p.111­12 §107. Now, one must not be misled by Russell’s praise of the achievement of
Dedekind and Peano, however, into thinking that Russell accepted the widely held view the ‘reduction’ leads
to a theory of natural numbers understood as objects, or as Landini puts it, abstract particulars ­ Russell did not;
on the contrary, he ended up rejecting the view shared by Peano, Dedekind and Frege that numbers are objects;
the fundamental merit of the reduction, for Russell, was one of conceptual economy and of a better articulation
of Arithmetic and other branches of Pure Mathematics as axiomatic theories. Also concerning this latter point,
one must not be misled by the weak idea of reduction we are employing here into thinking that Whitehead
and Russell accepted that every branch of Pure Mathematics ­ including Geometry ­ is simply ‘reduced’ to the
theory of natural numbers; again, on this point cf. GANDON, S., 2008 and 2012.
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nowadays call Peano Postulates. Of course, the attempt by Frege and (and later, Russell) to
define Peano’s primitive notions and prove his primitive propositions on a purely logical basis
was a further, even more important, step. And until Russell’s discovery of his contradiction,
naive set theory seemed to provide the basic framework upon which Peano’s Arithmetic could
be built upon. But the contradiction showed that the principles of that theory were in need of
thorough revision. This revision led ­ through and a long and arduous road ­ to the theory of types
which made him reconsider the claim made in the Principles247 that the existence­theorems of
mathematics ­ those that involve the axiom of Infinity (and Choice whichwas not yet discovered)
­ could be proved on a logical basis.

Perhaps the best source for appreciating this is a lecture Russell delivered to the Société
Mathématique de France, in March 1911248. In the paper Russell asserts that “[...] pure mathema­
tics can be expressed and proved entirely in terms of ideas and axioms of logic”249, but tempers
this claim with the following qualification:

[...] a reduction to logic can only be obtained if we cease to demand with too
much insistence that there exist objects which verify the hypotheses whose con­
sequences we are considering. It will happen occasionally that such objects can
be constructed a priori; for example, we can construct a priori a class having a
finite number of arbitrary terms. [...] But most existence theorems (which, by
the way, are not necessary for the truth of other theorems, but only for their im­
portance) require data which are not purely logical. In pure mathematics, two
existence axioms provide just about all the existence theorems one might want.
These two axioms are: I. The axiom of infinity; 2. The multiplicative axiom,
otherwise known as Zermelo’s axiom.250

He also goes on to say that “these two axioms cannot be proved using logic alone” and
that they “are not intuitively obvious”.251. Yet, this does not mean that Russell abandoned logi­
cism ­ either unknowingly or otherwise.

Russell came to the conclusion that there are theorems of ordinary Mathematics­ like
those that assert the existence of infinitely many inductive cardinal numbers ­ which are not
propositions of Pure Mathematics, because they have empirical presuppositions252. Thus, what
Russell is attesting here is that axiom of infinity is “purely empirical”253:

247 RUSSELL, B., 1903, pp.497­8 §474.
248 This is a very important and instructive piece that was not made widely available until Grattan­Guinness pu­

blished a translation of it in his splendid commentary of the Russell­Jourdain correspondence (RUSSELL, B.,
1911c, p.41­53; GRATTAN­GUINNESS, I., 1977, pp.161­174.). Grattan­Guinness’s translation is more precise
than that given in the Collected Papers so we provide references to it jointly with that of the Papers.

249 RUSSELL, B., 1911c, p.43.
250 RUSSELL, B., 1911c, p.43; GRATTAN­GUINNESS, 1977, p.162­3
251 RUSSELL, B., 1911c, p.43; GRATTAN­GUINNESS, 1977, p.162­3
252 Again, for possible alternative approaches for addressing this, see previous footnote 196 of the Introduction on

Landini’s and Elkind’s forthcoming papers on alternatives to Principia’s Axiom of Infinity.
253 RUSSELL, B., 1911c, p.52; GRATTAN­GUINNESS, 1977, p.173.
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For any ν, whether is a finite or an infinite cardinal, it is a priori possible that
it is the number of individuals in the universe. But, according to empirical evi­
dence, given the divisibility of physical objects, it appears artificial to suppose
that there is a finite number of individuals in the universe. It does not seem to
me that the empirical data are sufficient to prove that the number of individuals
is not finite, but they suffice to show that the finitist hypothesis is much more
difficult and less simple than the other. And the logic of the infinite shows that
the finitist hypothesis is not at all preferable a priori. I conclude from this that,
for the reasons which usually decide scientific hypotheses, it is better to assume
that the number of individuals is infinite, while keeping in mind, however, that
this hypothesis could be false, even though the sensible evidence is such that
one could never know that it is false.254

In fact, when Russell observes above that finite classes can be constructed a priori, he
cautiously qualifies this by noting that this can be done “only if we admit as a priori the axiom
that there exists at least one object, or some equivalent axiom”255. Making even this assumption,
Russell would later observe, is a “defect in logical purity”256. The reason for this is that such
axioms have an ontological import of individuals, i.e, “beings of the actual world” which by the
time of Principia’s publication Russell had recognized as the mark of the non­logical.

Now, it is worth pointing out that Russell was “perceptive”257 , as Grattan­Guinness puts
it, of important differences between the Multiplicative Axiom and the Axiom of Infinity. To
begin with, Russell did not view the Axiom of Choice and its equivalent, the Axiom of Choice
as empirical hypotheses:

There is a difference between the axiom of infinity and themultiplicative axiom
which is important from the vantage point of the theory of knowledge. The
multiplicative axiom has the form and the nature of the axioms of logic, for
there can be no empirical demonstration of its truth. The considerations which
bear on the truth or falsehood of the multiplicative axiom are considerations of
logic, a priori considerations.258

Russell also thought that “there is no reason to believe that the multiplicative axiom is
true, whereas, for empirical reasons, it appears probable that the axiom of infinity is actualized
in the real world”259. Russell also thought that the need for the Axiom of Infinity was a result of
Principia’s type distinctions and he observed that it was perfectly possible that “by modifying
the theory of types, the axiom of infinity would become unnecessary”260.
254 RUSSELL, B., 1911c, p.52; GRATTAN­GUINNESS, 1977, p.173.
255 RUSSELL, B., 1911c, p.43; GRATTAN­GUINNESS, 1977, p.162­3.
256 RUSSELL, B., 1919a, p.205, footnote 1.
257 GRATTAN­GUINNESS, I., 1991, p.109.
258 RUSSELL, B., 1911c, p.52; GRATTAN­GUINNESS, 1977, p.173.
259 RUSSELL, B., 1911c, p.53; GRATTAN­GUINNESS, 1977, p.174.
260 RUSSELL, B., 1911c, p.52­3; GRATTAN­GUINNESS, 1977, p.173­4. Whether Russell was strictly right about

this, however, is certainly debatable. As already noted (cf. footnote 196 of the Introduction): Landini argues in
a forthcoming paper that what Principia requires is a new ­ philosophically motivated ­ axiom which allows
the proof of Peano 3 in a sufficiently high type, not a modification in the simple type structure; Elkind, on the
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Still, Russell thought both ‘axioms’261 should be used only as explicit hypotheses262,
albeit for different reasons. The Axiom of Infinity is used only as a hypothesis because at that
point Russell viewed it as an empirical assumption, and thus, as part of appliedMathematics.263

The Multiplicative Axiom is considered as a hypothesis because it has no intrinsic plausibility
and is employed and assumed only on the basis of its desirable consequences.

5.10 Numbers as Logical Constructions and Logic as the Science
of Structure

The appreciation of the difference in epistemological outlook betweenClassical logicism
and its Russellian counterpart opens the way for a different interpretation of the role of Infin ax in
Principia. And, in fact, it allows for a better understanding of Russell’sMathematical Philosophy
in general. The important difference we just discussed can be summarized in the following: for
Russell, the regressive approach of discovering premises in mathematics does not start from a
privileged set of primitive notions and axioms that have a privileged epistemic status to secure
a firmer foundation for Mathematics (or Arithmetic, in particular) but proceeds in the opposite
direction, by lending credibility to the primitive propositions through the derivation of ordinary
Mathematics.

Thus, in somewhat rough terms, we may say that the classical logicist wants to provide
a logical foundation for (almost) all of ordinary Arithmetic, while Russell aimed at reconstruc­
ting Arithmetic within a logical framework. The classical logicist assumes from the outset that
some propositions (like Peano postulates) must be provable from logic alone. In a way, the aim
of Russell’s logicist project, as presented in Principia Mathematica, was a more modest one,
namely, to determine how far one can go reconstructing Mathematics in terms of logical axioms
and definitions without being guided by the assumption that numbers must be logical objects ­
or, as Landini puts it, without being guided the traditional “metaphysical” view that numbers
are objects or abstract particulars264. And this objective is not incompatible with the discovery
that additional hypothesis such as Infin ax. are required to fully develop mathematics. As Kevin
Klement has aptly put it:

[...] Russell’s project was a reconstructive one; his aim was not to preserve all
aspects of the original ways of conceiving and talking about mathematical so­

other hand, puts forward a modified version of simple­type theory which allows both ascending and descending
simple types which, in turn, allows a proof of infinity when a suitable axiom ­ with quite a different import than
Principia’s Infin Ax ­ is added to the system.

261 Again, recall that ‘Infin Ax’ is a defined statement, not a proper axiom and the same applies to ‘Mult Ax’.
262 RUSSELL, B., 1911, p.53; GRATTAN­GUINNESS, 1977, p.174
263 Again, whether Russell was right about this is certainly debatable, cf. previous footnote 196.
264 Cf. LANDINI, G., 2011b.
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called entities. If a different logical form better represents the form of the actual
fact hinted at by the original doctrine, it is to be preferred265.

So, again, this “reconstruction” is not guided by any assumption that Logic must pro­
vide an ontology of numbers as objects and a proof that there must infinitely many of these
objects. To see how coherent this position is, we may compare Russell’s attempt at reconstruc­
tingMathematics in terms of Logic to the attempt (which Russell also indulged at some point266)
to reconstruct the discourse about ordinary physical objects in terms of perceptual vocabulary,
that is, as someone who maintains that physical objects are conjectures or constructions based
on our acquaintance with sense­data, that is, as someone who maintains that the common sense
theory of physical objects can be reconstructed from a theory of sense­data. Is it enough to point
out that the existence of ordinary physical objects does not follow from the existence of sense­
data in order to refute this position? Of course, the answer must be no, unless one assumes that
the existence of physical objects must be taken as a fundamental theoretical assumption or a
consequence of one.

The attempt to construct a theory of physical objects as a theory about sense data does not
(and should not) presuppose that every single proposition we assume true about physical objects
can be deduced from true propositions about sense data, but just establishes how far a theory
about physical objects can be carried out assuming only truths about sense­data as the “material”
for constructing physical objects. We have an analogous situation in the case of the derivation
of the Peano postulates in Principia’s theory of types. Russell’s logicism cannot be considered a
failure for not being able to prove some particular arithmetical proposition (albeit an important
one from the perspective of ordinary mathematics), because its aim is to reconstruct arithmetic
in another framework that does not presuppose the truth of any arithmetical proposition and,
more importantly, one that does not assume an ontology of mathematical objects on a par with
individuals (of any simple type).

We saw that this approach is motivated by a concern with consistency which is insepara­
ble from concerns with ontological commitments to some sort of abstract objects ­ or as Landini
prefers to call them, abstract particulars: invariably, the threat of paradox with which Russell
struggled sprang from assuming some sort of ontology ­ be it of classes, so­called ‘propositional
functions’ (that is properties and relations­in­intension that are type free) or propositions ­ that
was too broad. For Russell, the last straw in this regard was the discovery of the paradoxes of
the substitutional theory.

When Russell was committed to an ontology of propositions (as non­linguistic entities)
he was able to prove something like the axiom of infinity, by “manufacturing ℵ0 entities”267.
This “manufacturing” was done as follows. First, Russell assumed that for any entity a, there
265 KLEMENT, K., 2013b, p.156.
266 RUSSELL, 1914 is, of course, the locus classicus of such an enterprise.
267 LACKEY, D., 1973, p.203
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exists the true proposition that asserts a = a; but given the fact that no proposition can occur
within itself (which was guaranteed by the restrictions of the theory of propositions he held at
the time268), a must not be the proposition that asserts a = a. He concluded, therefore, that
there exists, besides the entity a, another entity p that asserts that the equality holds. Once this
reasoning is allowed (and it must be allowed once an ontology of propositions is allowed) it
can be proved that, given any finite number n, the number of entities that exists is not n, taking
p0 = (a = u) and pn+1 = (pn = u) and showing by induction that each pn is a distinct entity
from pn+1. From this it follows that there must be a Dedekind­infinite totality of entities distinct
from each other, and thus, that there are ℵ0 entities from logic alone. However, as we already
discussed, by the time of Principia Mathematica Russell had already abandoned any sort of
untyped ontology of propositions, propositional functions or classes taken as objects. Thus, this
proof was simply not available anymore. Russell wrote to Jourdain in June of 1907 explaining
the situation:

Consideration of the paradox of the liar and its analogues led me to be chary of
treating propositions as entities. I therefore no longer regard as valid the proof
of the existence of ℵ0 entities by putting
p0 = (u = u) [Df], pn+1 = (pn = u) [Df]
[...] I now think that existence­theorems beyond the finite require a definite
assumption that the number of entities is not finite. I put:
Infin ax = α ϵNC ⊃α

E!α(Indiv)) Df where
NC Induct = α̂{0 ϵ β γ ϵ β ⊃γ γ + 1 ϵ β ⊃β α ϵ β} Df
and α(Indiv) means “an α composed of individuals” (as opposed to classes, re­
lations, etc.). All existence­theorems that can reasonably be expected to follow
from Infin ax; i.e. ω, η, ℵ0, 2ℵ0 , ℵv (for finite v), etc. I do not assume Infin ax.
to be true but state it explicitly as hypothetical wherever I use it. It goes with
Mult ax, which together make up the two essentially arithmetical axioms.269

The logicism of the Principles was an attempt to derive Mathematics from a logical
theory that was committed to classes and propositions. The logicism of the substitutional era
was an attempt to reconstruct Mathematics within a logical theory that was committed to a
realist theory of propositions which was capable to emulate a theory of classes and relations­
in­extension. But by the time of Principia, both classes and propositions were abandoned as
genuine entities. How, then is the reconstruction of Mathematics in the work to be understood?

Following Landini we claim that “[…] Principia is following out the implications of
the new Cantorion notion of number, short of any commitment to an ontology of classes”270.
According to this reading, Russell’s logicism aims at reconstructing arithmetic as Cantorian
set theory short of a commitment to sets as entities on par with individuals (of whatever type).
268 LACKEY, D., 1973, pp.203­4.
269 GRATTAN­GUINNESS, I., 1977, p.105­6.
270 LANDINI, G., 2016, p.43.
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Numbers are constructed in terms of relations of one­one correspondence. This reconstruction
shows that an infinity of individuals must be taken as a hypothesis in order to secure that the
third Peano postulate holds.

Of course one can criticize, refute, or question the attempt to reconstruct some theory
in terms of another. One can question the legitimacy of basing a theory of physical objects on a
theory of sense­data by questioning the obscure character of these entities. That is a legitimate
criticism which, in fact, could be made regarding the status of classes as logical constructions in
Russell’s theory of types. For instance, one may easily imagine a Platonist who is convinced of
the intrinsic plausibility of, say, the Iterative Conception of Set271 arguing that the notion of a set
as an entitymust be taken as fundamental, for one reason or another. However, simply pointing
out that something which we generally take as a truth or that we think should be taken as a truth
cannot be derived from the theory without further assumptions is not a legitimate criticism in
this context. Pointing out that Peano 3 is not a theorem of Principia does not refute Russell’s
Logicism.

According to Russell’s new conception of Pure Mathematics, theorems like Peano 3 be­
long ­ if true ­ to applied Mathematics and, as Landini has argued, Russell’s position is that
those who think otherwise are (perhaps, incorrectly272) committed to a (metaphysical) view of
numbers as objects273. What led Russell to this conclusion, of course, was his gradual realiza­
tion that Logic must work with the method of construction rather than postulation. This idea
is encapsulated in Russell’s methodological guideline of “substituting, wherever possible, lo­
gical constructions for inferred entities”274, to which he sometimes referred as “the supreme
maxim in scientific philosophizing”275. Again, in the very important and often neglected article
Logical Atomism, Russell reviewed methodological aspects that guided, in general, his views
in Mathematical Philosophy. In that text Russell describes this idea as “a heuristic maxim” that
guided this gradual reduction of the ontological commitments of his Logic, and therefore, his
conception of Pure Mathematics:

One very important heuristic maxim which Dr. Whitehead and I found, by ex­
perience, to be applicable in mathematical logic, and have since applied to va­
rious other fields, is a form of Occam’s Razor. When some set of supposed
entities has neat logical properties, it turns out, in great many instances, that

271 As presented, for instance, in BOOLOS, G., 1971 or POTTER, M., 2006.
272 Cf. LANDINI, G., 2011b. Landini argues that the core of Logicism ­which can, in a sense, be seen as a framework

shared by Frege and Russell ­ is the idea that a correct analysis of the concept of number must be given in
terms of the existence of one­one correlations between concepts or attributes conceived extensionally within
the structure of the simple theory of types and he argues that, viewed in this light, the requirement that numbers
must be viewed as objects is a “metaphysical prejudice” that can be dispensed with.

273 Again, cf. LANDINI, G., 2011b, pp.199­204.
274 The first explicitly formulated appearance of this “maxim” was in Russell’s paper On the Relation of Sense­

Data to Physics (RUSSELL, B., 1914b), originally written for a presentation at Johns Hopkins University on 20
April 1914 (cf. SLATER, J. (ed.), 1986, p.3).

275 RUSSELL, B., 1914b, p.11. Our emphasis.
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the supposed entities can be replaced by purely logical structures composed
of entities which have not such neat properties. In that case, in interpreting a
body of propositions hitherto believed to be about the supposed entities, we can
substitute the logical structures without altering any of the detail of the body of
propositions in questions. This is an economy, because entities with neat logi­
cal properties are always inferred, and if the propositions in which they occur
can be interpreted without making this inference, the ground for the inference
fails, and our body of propositions is secured against the need of a doubtful
step. The principle may be stated in the form: “Wherever possible, substitute
constructions out of known entities for inference to unknown entities”.276

Indeed, there are several applications of this “heuristic maxim” within Mathematical
Philosophy throughout his works. As Russell recounts, the first time he applied the maxim was
in connectionwith he called “the principle of abstraction”, or “the principle which dispenses with
abstraction”, as he also observes in Our Knowledge of the External World277. Calling attention
to a point he had already made in the Principles, Russell observes that “we are apt to infer that
such [equivalence] relations arise from possession of some common quality” ­ but that such
supposition is unnecessary since:

[...] all the formal purposes of a common quality can be served by membership
of the group of terms having the said relation to a given term. Take magnitude,
for example. Let us suppose that we have a group of rods, all equally long.
It is easy to suppose that there is a certain quality, called their length, which
they all share. But all propositions in which this supposed quality occurs will
retain their truth­value unchanged if, instead of “length of the rod x” we take
“membership of the group of all those rods which are as long as x”.278

This point, in fact, brings us back to Russell’s Principle of Abstraction279 that we dis­
cussed in the first chapter on the Logicism of the Principles and it is worth making a brief
digression in order to discuss its role in Principia. In Part I, section C on one­may, many­one,
one­one relations, specifically at number k72, entitled “Micellaneous Propositions”, we find the
following:

k72·66 ⊢ S2 ·⊂ S S = S̆ ≡ ( E

R) R ϵCls→ 1 S = R|R̆

Which, for the sake of readibility, can be put less compactly as follows:

k72·66′ ⊢ xSy ySz ⊃x,y,zxSz wSv ≡w,v vSw ≡

( ER) R ϵCls→ 1 xSy ≡x,y,z ( Ez) xRz yRz

276 RUSSELL, B., 1924, p.164.
277 RUSSELL, B., 1914, p.42.
278 RUSSELL, B., 1924, p.326­7.
279 I.e., the principle which asserts that any equivalence relation R can be analyzed into (or implies the existence

of) a many­one relation S that is equivalent to the relative product of R and its converse R̆
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This is Principia’s version of the Principle of Abstraction and according to Whitehead and Rus­
sell, it “[...] embodies a great part of the reasons for our definitions of the various kinds of
numbers”280. Let’s see why.

Recall that in the Principles, the definition of the cardinal number of a class β as the
class of all classes similar to β is given in terms of Russell’s Principle of Abstraction: the prin­
ciple which asserts that every transitive symmetrical relation281 can be analyzed in terms of the
relative product of a many­one relation R and its converse R̆. Similarly, here, the principle sta­
tes that “every relation which has the formal properties of equality, i.e. which is transitive and
symmetrical is equal to the relative product of a many­one relation and its converse”282; again,
the idea behind the proof is to show that if a symmetric and transitive relation S holds between x
and y, there is a many­one relation (function) R and a term α such that x bears R to α and y has R̆
to y, or, as the authors put it, that “whenever the relation S holds between x and y, there is a term
α such that xRα yRα, where R is a many­one relation”283. Before we discuss what role this
principle plays in the justification of Principia’s definition, let’s see very briefly how the theo­
rem is proved. Since the proof is somewhat complex, mainly because the use of the condensed
notation Cnv‘(

←−
S � D‘S) which makes it hard to read (and even harder to reproduce/typeset),

and since parts of it are only sketched, it is a worthwhile exercise to reconstruct it. The principle,
proposition k72·66 is proved via the following chain of theorems:

k72·62 ⊢ R ϵ 1→ Cls S = R|R̆ ⊃ S2 = S S = S̆

k72·621 ⊢ R ϵ 1→ Cls ⊃ y(R̆|R)z ≡ R‘y = R‘z

k72·622 ⊢ R ϵCls→ 1 ⊃ y(R|R̆)z ≡ R̆‘y = R̆‘z

k72·63 ⊢ R ϵCls→ 1 S = R|R̆. ⊃ S2 = S S = S̆

k72·64 ⊢ S2 = S S = S̆ R = Cnv‘(
←−
S � D‘S) ⊃ R ϵCls→ 1 S = R|R̆

k72·65 ⊢ S2 = S S = S̆ ≡ ( E

R) R ϵCls→ 1 S = R|R̆

The proof of k72·66, the Principle of Abstraction itself, is only sketched with a reference to
theorem k72·65. Theorem k72·64 is the main lemma of the chain of theorems: it states that if
S is equal to its relative product and its converse and R is equal to the converse of

←−
S restricted

to the domain of S, then R is a many­one relation (a function) such that S is equal to the relative
product of R and its converse (where

←−
S is the relation of which holds between the class of

relata of x to x, defined at k32·02 as β̂x̂{β = ŷ(xSy)}). Since the notation Cnv‘(
←−
S � D‘S) is

280 WHITEHEAD & RUSSELL, 1925, p.442 [1910, p.463].
281 Thus in PrincipiaRussell shows that S does not need to be reflexive to prove the principle of abstraction. Thanks

to Landini for calling my attention to this detail.
282 WHITEHEAD & RUSSELL, 1925, p.442 [1910, p.463].
283 WHITEHEAD & RUSSELL, 1925, p.442 [1910, p.463].
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somewhat condensed, it is worth to unpack it to see clearly what is going on in the proof. By the
definition of R � β, we have:

←−
S � D‘S = βx̂{β

←−
S x x ϵD‘S}, and thus: β(

←−
S � D‘S)x ≡ β

←−
S x x ϵD‘S

Then, theorem k76·64 can be expressed more conveniently:

⊢ S2 = S S = S̆ R = Cnv‘(β̂x̂{β
←−
S x x ϵD‘S}) ⊃ R ϵCls→ 1 S = R|R̆

Recall that what the Principle of abstraction asserts is this: if S is a symmetric and transitive
relation, then there is many­one relation R such that xSy if, and only if there is a term α such
that xRα and yRα; but as the authors observe, “k72·64 shows that this term α may be taken to
be
←−
S ‘x, which is equal to

←−
S ‘y”284; To get the Principle of Abstraction, then, we then need the

right to left implication of the following theorem:

k34·81 ⊢R = R̆ R2 ·⊂ R ≡ R = R̆ R2 = R

From this and k72·65, the Principle of Abstraction ­ k72·66 ­ immediately follows. And we can
now see why it serves as a justification for their definition of cardinal number. Concerning their
definitions of number in general, they explain:

This principle embodies a great part of the reasons for our definitions of the
various kinds of numbers; in seeking these definitions, we always have, to be­
gin with, some transitive symmetrical relation which we regard as sameness of
number; thus by k72·64 the desired properties of the numbers of the kind in
question are secured by taking the number of an object to be the class of objects
to which the said object has the transitive symmetrical relation in question. It
is in this way that we are led to define cardinal numbers as classes of classes,
and ordinal numbers as classes of relations.285

The point being made here is this: let S be a symmetric and transitive relation and let xSy;
what the proof of k72·64 shows is that whenever this happens we have the guarantee that there is
a function that maps x and y to a uniqueα, lettingα =

←−
S ‘x =

←−
S ‘y, which (by k32·02) is simply:

α = ẑ(xSz) = ẑ(ySz). Thus, given some symmetric and transitive relation S that is used as
the standard of numerical equality that holds between any two classes β and γ (in the case of
cardinals), or relations P and Q (in the case of ordinals), there is always a unique class which is
284 WHITEHEAD & RUSSELL, 1925, p.442 [1910, p.463].
285 WHITEHEAD & RUSSELL, 1925, p.442 [1910, p.463].
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the number of such classes and relations, namely α = δ̂(βSδ) = δ̂(γSδ) in the case of cardinals
and Ω = R̂(PSR) = δ̂(QSR) in the case of ordinals. To put the point even more generally: in
Principia the Principle of Abstraction allows one to dispense the postulation of an entity which
is the property common to all members of an equivalence class by putting the equivalence class
itself in its place. Of course, if such a property were to be postulated, and thus assumed as a
primitive notion, axioms for it would have to be introduced too, thus increasing the number of
non­analyzed notions and undemonstrated propositions. If one can define nominally the notion
of cardinal number with the assurance that the definition yields uniqueness, such assumptions
can be avoided. This is what is assured by the Principle of Abstraction. The authors themselves
say this unequivocally:

The chief merits of this definition are (1) that the formal properties which we
expect cardinal numbers to have result from it; (2) that unless we adopt this
definition or some more complicated and practically equivalent definition, it
is necessary to regard the cardinal number of a class as indefinable. Hence
the above proposition avoids a useless indefinable with its attendant primitive
propositions.286

Thus, the general idea here ­ according to our reconstruction of the proof of k72·66
and our interpretation of Whitehead and Russell’s remarks ­ is precisely the same employed in
Russell’s 1901 paper On the Logic of Relations and in the Principles, where we find:

Mathematically, a number is nothing but a class of similar classes: this defini­
tion allows the deduction of all the usual properties of numbers, whether finite
or infinite, and is the only one (so far as I know) which is possible in terms
of the fundamental concepts of general logic. [...] Wherever Mathematics de­
rives a common property from a reflexive, symmetrical and transitive relation,
all mathematical purposes of the supposed common property are completely
served when it is replaced by the class of terms having the given relation to a
given term; and this is precisely the case presented by cardinal numbers.287

Again, in Principia, the point involves dispensing with definitions by abstraction or by
postulates. From a mathematical point of view the Russell’s nominal definition is preferable
because it allows the derivation of the expected formal properties of cardinal numbers without
further assumptions, in particular that of a specific ontology of numbers. But, of course, the
definition is also justified philosophically for it tells what numbers are: the definition identifies
a unique thing which is the number of a class α, namely the class of all classes similar to α. With
respect to Russell’s use of the Principle of Abstraction, these are the two fundamental points at
286 WHITEHEAD & RUSSELL, 1927a, p.4 [1912, p.4].
287 RUSSELL, B., 1937 [1903], p.116 §111.
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stake in the 1901 article, in the Principles and in Principia288. The same point re­appears in
the text Logical Atomism which led us to this digression, where Russell explicitly claims that
his definition of cardinal number ­ anticipated by Frege ­ is intended to preserve the formal
properties expected of cardinals without postulating any specific entities which satisfy these
properties:

288 Rodriguez­Consuegra disagrees. As we had occasion to briefly discuss in the first chapter, he thinks that there
are three distinct phases which the Principle of Abstraction goes through in the development of Russell’s Mathe­
matical Philosophy. The first was that of the 1901 article, where, supposedly, the role of the principle was me­
ant to strengthen the method of abstraction and not to eliminate it” (RODRIGUEZ­CONSUEGRA, F., 1987,
p.149); the second is that of the Principles where the Principle gives a “genuine foundation” (RODRIGUEZ­
CONSUEGRA, F., 1987, p.194). for the logicist treatment of cardinals leading Russell and was actually used to
“[...] criticize definitions by abstraction” (RODRIGUEZ­CONSUEGRA, F., 1987, p.192). He enumerates three
roles the Principle of Abstraction in that work: (i) “the older and more philosophical one according to which
properties are really other terms of certain relations;” (ii) “the technical one through which equivalence relations
may be analyzed into asymmetrical relations;” (iii) “the Ockhamian version allowing the elimination of suppo­
sed existing entities by replacing them with the corresponding classes”(RODRIGUEZ­CONSUEGRA, F., 1987,
p.192). The latter point concerns what Rodriguez­Consuegra calls the “ definitive constructive method from 1914
onwards” (RODRIGUEZ­CONSUEGRA, F., 1987, p.192.), namely that of substituting constructions for pos­
tulated entities, as paradigmatically exposed in Our Knowledge of the External World in explicit connection
with the Principle of Abstraction (RUSSELL, B., 1914, pp.33­4) Finally, the third and final stage of the principle
is given in Principia. According to Rodriguez­Consuegra, Principia “contains a definitive statement of this
last version” ­ the one which emphasizes conceptual and ontological economy. But despite Russell’s allegation
that the principle “embodies a great part of the reasons” for their definition of cardinal number, Rodriguez­
Consuegra thinks “the supposed philosophical content of the principle is referred to only by mere respect to a
venerable (but now useless) tradition” (RODRIGUEZ­CONSUEGRA, F., 1991, p.192). This is because: “[...]
the desired properties of the numbers of the kind in question are secured by taking the number of an object to
be the class of objects to which the said object has the transitive symmetrical relation in question. Nevertheless,
the supposed philosophical ground is completely avoided in fact because the property is replaced by the class
of objects, proposed only on the pragmatic basis that the class in question has the same mathematical properties.
Thus the principle is reduced to a mere description of an actually used method without being applied as a real
foundation in any formal deduction. That is to say, all definitions and demonstrations in PM would be exac­
tly the same without the principle of abstraction” (RODRIGUEZ­CONSUEGRA, F., 1991, p.193.) Indeed, he
points out, quite correctly, that the “the principle is not actually used and not even mentioned in the rest of the
book” (RODRIGUEZ­CONSUEGRA, F., 1991, p.192). This, however, is something that Whitehead and Russell
themselves are prone to recognize; right before starting the sequence of lemmas for k72·66 they observe: “The
following propositions lead up to the “principle of abstraction” (k72·66), which, though not explicitly referred
to in the sequel, has a certain intrinsic interest, and generalizes a type of reasoning frequently employed by
us.”(WHITEHEAD & RUSSELL, 1910, p.473). But this does not warrant his radical conclusion that “the final
destiny of the principle of abstraction possibly was the (secret) admission by Russell to have been pursuing an
illusion, and therefore the admission that to replace a property by another term and a certain relation was hope­
less” (RODRIGUEZ­CONSUEGRA, F., 1991, p.203.). This conclusion is grounded on the mistaken belief that
the Principle of Abstraction was retained in Principia “only as [sic] vague foundation in terms of conceptual
economy” (RODRIGUEZ­CONSUEGRA, F., 1991, p.203). But in the passage of Principia’s second volume
that indicates the “chief merits” (WHITEHEAD & RUSSELL, 1912, p.4) of Russell’s definition of cardinal
number, we find the following observation: “The grounds in favor of this definition will be found at lenght
in Principles of Mathematics, part II” (WHITEHEAD & RUSSELL, 1927a, p.4 [1912, p.4], footnote †). This
makes it clear that Russell still thought, when writing Principia, that his arguments in favor of the definition, as
presented in the Principles, were sound. So why would Russell refer to part II of the Principles as offering the
philosophical foundation of that definition if he changed his mind so radically about the role of the Principle of
Abstraction? Rodriguez­Consuegra seems to think that there is no continuity in the use of the principle except
as a means of “ontological or conceptual economics”, but this seems unwarranted given the explicit reference
Russell makes to his previous work. This reading also anachronistically projects a use of the Principle of Abs­
traction in the Principles that was neither emphasized nor explicitly made in there. What Rodriguez­Consuegra

403



A very important example of the principle is Frege’s definition of the cardinal
number of a given set of terms as the class of all sets that are “similar” to
the given set—where two sets are “similar” when there is a one­one relation
whose domain is the one set and whose converse domain is the other. Thus a
cardinal number is the class of all those classes which are similar to a given
class. This definition leaves unchanged the truth­values of all propositions in
which cardinal numbers occur, and avoids the inference to a set of entities called
“cardinal numbers”, which were never needed except for the purpose of making
arithmetic intelligible, and are now no longer needed for that purpose.289

In the context of Principia, however, the Principle of Abstraction also allows Russell to
dispense numbers as objects and, in fact, as entities of any sort, for, as Russell himself observes
right after the passage quoted above, “[...] classes themselves can be dispensed with by similar
methods”290, by which he means the contextual definitions of Principia’s section ∗20 ­ which,
on their turn, afford what may very well be the most important application of the principle of
avoiding postulated entities in favor of constructions, as Russell also notes291.

Another very important case in which Russell applied this method or procedure was that
of the real numbers, and we’ll also do well to review briefly how they are dealt with in Principia.
According to the classical theory of irrational numbers put forward by Cantor and Dedekind, an
irrational number should be defined as a limit of either a convergent sequence of ratios of natural
numbers (Cantor) or as a “cut” that partitions the set of ratios of natural numbers (Dedekind).

What is common to both methods is that the series of real numbers is characterized as a
Dedekindian series. In Principia’s volume 2, part V, a series is defined as Dedekindian “when
it is such that every class has either a maximum or a sequent with respect to it”292:

k214·01 Ded = P̂{(α) α ϵ

D‘maxP �� D‘seqP} Df

AsWhitehead and Russell explain, when P is a transitive relation ­ which is always the case with
a serial relation ­ then the assumption that P is Dedekindian is equivalent to the hypothesis that

calls the “Ockhamian [...] elimination of supposed existing entities” (RODRIGUEZ­CONSUEGRA, F., 1987,
p.192.) became a serious concern for Russell after the discovery of the contradiction; what is explicitly taken
as problematic and emphasized in the Principles about the postulation of a property defined by abstraction is
not that this approach is ontologically onerous but that it does not ensure uniqueness. Indeed, this aspect of the
use of the principle is not emphasized or explicitly made in Principia itself! What Whitehead and Russell do
say is that defining cardinal numbers nominally dispenses the need of assuming further primitive notions and
propositions (WHITEHEAD & RUSSELL, 1927a, p.4 [1912, p.4]); but numbers are still identified with classes,
just like in the Principles. The Ockhamian economy achieved by the Principle of Abstraction in Principia is
at best a secondary (not emphasized) gain in comparison to the mathematical issue of securing a definition
which yields the expected properties of cardinals numbers and the philosophical issue of defining a unique
entity which is the cardinal number of a class. In fact, it is only in Our Knowledge of the External World that
Russell says explicitly that the use of the Principle of Abstraction “clears away incredible accumulations of
metaphysical lumber”(RUSSELL, B., 1914, p.33) and it is only in Logical Atomism that Russell speaks of the
use of the Principle as an application of his “heuristic maxim” (RUSSELL, B., 1924, p.164.

289 RUSSELL, B., 1924, p.165.
290 RUSSELL, B., 1924, p.165.
291 RUSSELL, B., 1924, p.165­6.
292 WHITEHEAD & RUSSELL, 1927a, p.659 [1912, p.684].
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“that every segment of P which has no maximum has a limit”293. Of course, there are segments
of rational numbers defined in terms of convergent ratios or in terms of partitions of the set of
ratios that are not rational numbers: to take an ancient example, we have

√
2. The sequence of

all ratios less than x2 = 2 has no rational limit. But what right do we have to say that there is an
irrational one, a cut in the ratios that fill this gap?

Russell was convinced that the identification of irrationals with limits was problematic,
claiming that there is “no reason whatever to suppose that there are any irrational numbers in the
above sense”294; he also criticized the supposition that there are limits to segments of ratios with
no maximum (i.e., the assumption that the series of reals is Dedekindian) in the Introduction to
Mathematical Philosphy, where he puts the point very succinctly:

From the habit of being influenced by spatial imagination, people have sup­
posed that series must have limits in cases where it seems odd if they do not.
Thus, perceiving that there was no rational limit to the ratios whose square is
less than 2, they allowed themselves to “postulate” an irrational limit, which
was to fill the Dedekind gap. Dedekind, in the above­mentioned work, set up
the axiom that the gap must always be filled, i.e. that every section must have a
boundary. It is for this reason that series where his axiom is verified are called
“Dedekindian.” But there are an infinite number of series for which it is not
verified.295

Famously, following this criticism, he observed that “the method of ‘postulating’ what
we want has many advantages; they are the same as the advantages of theft over honest toil”296.

The now standard solution achieved with “honest toil” which Russell produced in the
Principles and which was later perfected in Principia was to construct real numbers as classes
of rationals that “have all the mathematical properties commonly assigned to real numbers”297:
this is done by defining a real number as the lower section of a Dedekind “cut”, that is: a real
number is any segment of ratios with no lower limit; rational real numbers are those segments
293 WHITEHEAD & RUSSELL, 1927a, p.659 [1912, p.684]. The notation for maximum and minimum of a class

with respect to a relation are defined in k91
k93·02 minP = min(P ) = x̂α̂(x ϵα ��C‘P − P̆ “α) Df
k93·0021 maxP = max(P ) = min(P̆ ) Df
In volume 2, the definitions of upper and lower limits are given in ∗207 together with definitions for “limit

or maximum” and “limit or minimum” :
k207·001 lt(P )‘α = precP � (− D‘maxP )Df
k207·002 tl(P )‘α = precP � (− D‘minP ) Df
k207·003 limaxP = maxP ·��lt(P ) Df
k207·004 liminP = minP ·��tl(P ) Df
In words, the first defines x as an upper limit of α in P if “α has no maximum and x is in the sequent of

α” and the second defines x as a lower limit of α in P if “α has no minimum and x is in the sequent of α”
(WHITEHEAD & RUSSELL, 1927a, p.575 [1912, p.594]).

294 RUSSELL, B., 1903, pp.270 §258.
295 RUSSELL, B., 1919a, p.53.
296 RUSSELL, B., 1919a, p.53.
297 RUSSELL, B., 1903, pp.270 §258.
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which have an upper limit while irrational real numbers are segments of ratios which have neither
a lower nor an upper limit.

In Principia we find the following semi­formal explanation:

[...] the properties which we desire real numbers to have will result if we iden­
tify them with segments of H [the relation less than for rationals], and give the
name “rational real numbers” to segments of the form

−→
H ‘X , i.e., to segments

which have ratios as limits. Thus
−→
H ‘X is the rational real number correspon­

ding to the ratio X, and a real number in general is of the form H“λ, where λ
is a class of ratios.H“λ will be irrational when λ has no limit or maximum in
H.298

Commenting on this definition in Introduction to Mathematical Philosophy, Russell wri­
tes:

The above definition of real numbers is an example of “construction” as against
“postulation,” of which we had another example in the definition of cardinal
numbers. The great advantage of this method is that it requires no new assump­
tions, but enables us to proceed deductively from the original apparatus of lo­
gic.299

Now, at this point it should come as no surprise for the reader that Russell’s construction
of the real numbers relies on Infin Ax to deliver the desired formal properties of them, most
notably, that they form a Dedekindian series. The relation H is Principia’s formal rendition of
the less than relation for rational numbers of a given type (excluding zero), and is defined in
k304:

k304·02 H = X̂Ŷ {X,Y ϵRat def X <r Y } Df

As Whitehead and Russell observe:

If the axiom of infinity does not hold, H and H’ will be finite series”300, for
if, for some ν, “ν +c 1 is the greatest integer in a given type (µ > 1), the first
term ofH is 1/ν and the last is ν/1 (k304·281). In a higher type, we shall get a
larger series forH, but at no stage shall we get an infinite series. If, on the other

298 WHITEHEAD & RUSSELL, 1927b, p.317 [1913, p.317].
299 RUSSELL, B., 1919a, p.73
300 H’ is the relation of less than for rationals of a given type including zero. The definition of <r in general is

given as follows:
k304·01 X <r Y = ( Eµ, ν, ρ, σ) µ, ν, ρ, σ ϵNC ind σ ̸= 0 µ×c σ = ν ×c ρ.X = µ/ν Y = ρ/σ Df

This just explores the fact that two ratios µ/ν and ρ/σ are identical whenever µ×c σ = ν ×c ρ.
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hand, the axiom if infinity does hold, H is a compact series (k304·3) without
beginning or end (k304·31) and having ℵ0 terms in its field.301

If Infin Ax is false, not only the series of ratios does not have its most basic property ­
that between any two ratiosX and Y such thatX <r Y , there is a ratio Z such that Z <r X and
Y <r Y ­ but it becomes a finite series; but then, since reals are defined as segments of ratios,
there will also be only finitely many real numbers. This is the price of choosing honest toil over
theft.

As we saw in the present chapter, this deal was settled from the moment classes and
relations­in­extension were constructed from individuals stratified within the superstructure of
the simple theory of types. The question, then, is why adopt this framework to develop Mathe­
matics?

Even apart from his failed hopes of grounding Principia’s development of Mathematics
upon a nominalistic interpretation of its grammar, Russell’s choice of treating classes as logical
constructions comes from the realization that the alternatives to this were ­ or so he thought ­
either logically or philosophically unsound. On the one hand, the admission of classes as entities
on a par with individuals led to paradox if adequate primitive propositions were not assumed.
Again, in Logical Atomism Russell makes it clear that the construction of classes from individu­
als was a fundamental step ­ perhaps the most important one ­ in resolving the contradictions:

Perhaps even more important is the fact that classes themselves can be dispen­
sed with by similar methods. Mathematics is full of propositions which seem
to require that a class or an aggregate should be in some sense a single entity—
e.g. the proposition “the number of combinations of n things any number at a
time is 2n”. Since 2n is always greater than n, this proposition leads to diffi­
culties if classes are admitted because the number of classes of entities in the
universe is greater than the number of entities in the universe, which would be
odd if classes were among entities. Fortunately, all the propositions in which
classes appear to be mentioned can be interpreted without supposing that there
are classes. This is perhaps the most important of all the applications of our
principle. (See Principia Mathematica, k20.)302

301 WHITEHEAD & RUSSELL, 1927b, p.278 [1913, p.278]
302 RUSSELL, B., 1924, p.326. The exact same point is repeated inMy Philosophical Development: “Without going

into difficult technical details, it is possible to explain the broad principles of the theory of types. Perhaps the
best way of approaching the theory is by examination of what is meant by a ’class’. [...] Suppose you have n
objects before you and you wish to know howmany ways there are of choosing none or some or all of the n. You
will find that the number of ways is 2n. To put it in logical language: a class of n terms has 2n sub­classes. This
proposition is still true when n is infinite. What Cantor proved was that, even in this case, 2n is greater than n.
Applying this, as I did, to all the things in the universe, one arrives at the conclusion that there are more classes
of things than there are things. It follows that classes are not ’things’. But, as no one quite knows what the word
’thing’ means in this statement, it is not very easy to state at all exactly what it is that has been proved. The
conclusion to which I was led was that classes are merely a convenience in discourse. I was already somewhat
bewildered on the subject of classes at the time when I wrote The Principles of Mathematics. I expressed myself,
however, in those days, in language which was more realistic (in the scholastic sense) than I should now think
suitable.” (RUSSELL, B., 1959, p.80­1)
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The alternative to the method of construction was that of postulation, exemplified in
its standard forms in the axiomatic set theories of Zermelo and von Neumann, later improved
by Fraenkel, Bernays, Gödel and many others. Russell’s reluctance to adopt such route was, of
course, not merely technical, but philosophical (I think no one would dispute how simple the
development of Arithmetic within an axiomatic theory like ZF is in comparison with Principia
or, to amuch higher degree of disparity, any one of Russell’s many versions of the Substitutional
Theory of classes and relations).

As we already had occasion to discuss, in his recounting of the desiderata for an ade­
quate solution of the contradictions in My Philosophical Development, Russell enumerates th­
ree fundamental ones: the first, “which was absolutely imperative, was “that the contradictions
should disappear”303; the second “which was highly desirable, though not logically compulsive,
was that the solution should leave intact as much of mathematics as possible”304; and the third ­
which Russell thought “difficult to state precisely”, was that “the solution should, on reflection,
appeal to what may be called ‘logical common sense’, i.e., that it should seem, in the end, just
what one ought to have expected all along”305. As far as we know, Russell did not correspond
with Zermelo306 or any one of the first pioneers involved in the creation of the now standard
formulations of axiomatic set theory, nor did he criticized explicitly their approach in published
works307. But he did correspond and commented on the works of one of the greatest expositors
of axiomatic Set Theory, namely Quine308.

Quine ­ who was profoundly influenced by Principia ­ wrote his doctoral dissertation
A System of Logistic309, as an attempt to remedy what he regarded as the defects of Principia.
Quine’s many emendations and innovations in that work reflect the needs of the Mathematician:
the adoption of “an extensional version of propositions, construed as sequences”, “the abandon­
ment of propositional functions in favor of classes” , and, of course, “the elimination of the
axiom of Reducibility”310. Russell read it with attention and replied with “the highest admira­
tion” for the work, observing that it had “reformed many matters as to which I [Russell] had
always been uncomfortable”311. But in his reply Russell also made the following observation:
303 RUSSELL, B., 1959, p.79.
304 RUSSELL, B., 1959, p.79.
305 RUSSELL, B., 1959, p.79­80.
306 It seems that the only comments Russell ever made about Zermelo’s Axiomatization of Set Theory ­ apart, of

course, from Zermelo’s Axiom of Choice and his well­ordering theorem ­ occur in the correspondence with
Jourdain (cf. GRATTAN­GUINNESS, I., 1977, pp.108­10).

307 Russell did make some remarks about Zermelo’s views in his correspondece with Jourdain. Unfortunately,
apart from discussions of Zermelo’s Axiom of Choice and his Well­Ordering Theorem, all we have are two
letters where Russell briefly considers Zermelo’s Axiom of Separation, the consistency of his axioms and his
construction of natural numbers (GRATTAN­GUINNESS, 1977, p.108­9). Although the details are interesting,
Russell’s comments in those letters clearly display his conviction that the theory of types was the solution for
the contradictions.

308 Who also formulated some not­so­standard systems of axiomatic set theory which also received much attention
in the literature.

309 QUINE, W., 1934.
310 QUINE, W., 1988, p.226­7.
311 QUINE, W., 1988, p.226.
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In reading you I was struck by the fact that,in my work, I was always being
influenced by extraneous philosophical considerations. Take e.g. descriptions.
I was interested in “Scott is the author of Waverley”, and not only in the des­
criptive functions of PM. If you look up Meinong’s work, you will see the sort
of fallacies I wanted to avoid; the same applies to the ontological argument.312

Presumably commenting on Quine’s systems ML and NF313, Russell writes In My Phi­
losophical Development:

The third condition is not regarded as essential by those who are content with
logical dexterity. Professor Quine, for example, has produced systems which
I admire greatly on account of their skill, but which I cannot feel to be satis­
factory because they seem to be created ad hoc and not to be such as even the
cleverest logician would have thought of if he had not known of the contradic­
tions. On this subject, however, an immense and very abstruse literature has
grown up, and I will say no more about its finer points.314

Though it is completely adequate to say that systems of Set Theory like ZF and NBG
do possess some “intuitive” appeal (for lack of a better word) which a system like Quine’s NF
and ML do not, it is also fair to say that all axiomatic systems of Set Theory share a common
feature which Russell certainly thought to be ad hoc: they postulate entities ­ genuine entities,
individuals ­ that satisfy some conception of set which provide Mathematics with the necessary
(and generally more than sufficient) amount of existential theorems315. By the time Principia
was done, Russell could not accept any theory which postulated the existence of classes, treating
them on par with individuals, as a basis for Pure Mathematics.

The need for the axiom of infinity springs directly from the very nature of Russell’s
definitions: they are eliminative definitions. They are meant to secure the structural (formal)
properties of the ordinary non­analyzed notions they substitute without presupposing that any
entities whatsoever satisfy them. To show that there are objects that satisfy them, one must cons­
truct them. Russell’s logicism is the thesis that all the ‘entities’ with which Pure Mathematics is
concerned, namely cardinal numbers, integers, ratios, series, progressions, real numbers, ordinal
numbers, or what have you, are all logical constructions.

But as Russell notes “[...] logical constructions, like all other constructions, require mate­
rials”316 and thesematerials, must be the “ultimate constituents of the world”317. But the existence
312 QUINE, W., 1988, p.226. Russell’s reply is dated by Quine as 6 June 1935.
313 QUINE, W., 1940; 1937; HATCHER, 1982, pp.213­36.
314 RUSSELL, B., 1959, p.80.
315 Obviously, we are not endorsing the claim that there can’t be a philosophical case in favor of axiomatic sys­

tems of Set Theory, in particular ZF and the so­called iterative conception of set: the locus classicus for such
discussion are BOOLOS, G., 1971 and PARSONS, C., 1975, both reprinted in BERNACERAFF & PUTNAM,
1984.

316 RUSSELL, B., 1924, p.330.
317 RUSSELL, B., 1924, p.326. As Russell vividly explains in the Introduction to Mathematical Philosophy: “Pure

logic, and pure mathematics (which is the same thing), aims at being true, in Leibnizian phraseology, in all
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or nonexistence of the world is not the business of Logic. Logic does not study the World as it is,
neither does Mathematics (although, Logic and Mathematics are applicable to the world). In the
1911 article in which Russell discusses the Axioms of Infinity and Choice and how they fit within
his new conception of Pure Mathematics, he observes that an “[...] individual signifies a being
of the actual world, as opposed to the beings of logic”318. Grattan­Guinness finds it somewhat
puzzling that Russell holds at the same time that an infinity of individuals is necessary for the
development of Mathematics as part of Logic, while accounting for them as “beings in the actual
world, as opposed to beings of logic”319. According to him, it “[...] seems strange for a logicist,
especially for one who wrote elsewhere that ’in pure mathematics, as such we do not consider
actual objects existing in the actual world’”320. But despite the puzzlement, Grattan­Guinness’s
assessment is on spot : “he [Russell] seems to have regarded such assumptions as antecedent to,
but not part of, pure mathematics”321.

But what then is the subject­matter of Logic and Pure Mathematics in Principia? In Lo­
gical Atomism, Russell asserts that “in science, structure is the main study”322. Logic and pure
mathematics, being the most general sort of sciences, are the study of the most general sort of
structure. Surprisingly, Russell’s claim that “[...] in science, structure is the main study”323 is al­
most never considered with his accompanying observation that “[...] the mathematical definition
and study of structure (under the name of “relation­ numbers”) form Part IV of Principia Mathe­
matica”324. Indeed, Part IV of Principia is widely neglected325 ­ even by Russellian scholars ­
despite the fact that Russell himself considered it one hismost original and relevant contributions
to Mathematical Logic, precisely because it gives a logicist account of the notion of structure:

possible worlds, not only in this higgledy­piggledy job­lot of a world in which chance has imprisoned us. There
is a certain lordliness which the logician should preserve: he must not condescend to derive arguments from the
things he sees about him.” (RUSSELL, B., 1919a, p.192)

318 GRATTAN­GUINNESS, I., 1977, p.106.
319 GRATTAN­GUINNESS, I., 1977, p.106­7.
320 GRATTAN­GUINNESS, I., 1977, p.107. Also, according to Grattan­Guinness, Russell’s description of Infin

ax as an “arithmetical axiom” rather than a logical one “seems an unnecessary phrase for a logicist for whom
anything essentially arithmetical would certainly be logical also”(GRATTAN­GUINNESS, I., 1977, p.106), and
so he is puzzled by Russell’s apparently unclear position regarding the “axiom”. Our discussion in the previous
section makes it clear why there is no need for puzzlement here. Following Landini, we argued that Russell stop­
ped regarding existential theorems that require the axiom of Infinity and Choice as parts of pure mathematics;
so results like Peano 3 are part of applied Arithmetic.

321 GRATTAN­GUINNESS, I., 1977, p.107.
322 RUSSELL, B., 1924, p.340.
323 RUSSELL, B., 1924, p.
324 RUSSELL, B., 1924, p.340. This is a topic which is also very important for a correct appreciation of Russell’s

views on the Philosophy of Science in general; to give a well­known example, Russell claims in The Analysis of
Matter that “[...] wherever we infer from perceptions, it is only structure that we can validly infer; and structure
is what can be expressed by mathematical logic, which includes mathematics” (RUSSELL, 1927, p.254) and
that “The only legitimate attitude about the physical world seems to be one of complete agnosticism as regards
all but its mathematical properties” (RUSSELL, 1927, p.270­1). A well­known objection to such a view was
famously put forward byMaxNewman (NEWMAN,M., 1928). For a careful discussion of the Russell­Newman
controversy, cf. LANDINI, G., 2018.

325 So much so that in My Philosophical Development Russell starts the chapter on the mathematical aspects of
Principia noting how disapponting it was for the authors to realize that Principia was not seriously studied as
a mathematical work (see RUSSELL, B., 1959, p.86).

410



From the mathematical point of view this was my most important contribution
to the work. What I called ’relation­numbers’ were numbers of an entirely new
sort of which ordinal numbers were a very specialized example. I found that
all the formal laws which are true of ordinal numbers are true of this far more
general kind. I found, also, that relation­numbers are essential to the understan­
ding of structure. ‘Structure’ is one of those phrases, like ‘and so on’ or ‘series’,
which are familiarly employed in spite of the fact that no precise significance
is attached to them. By means of relation­arithmetic the concept ‘structure’ can
be precisely defined.326

We discussed relation­numbers very briefly just now. To understand Russell’s claim we
must go into the topic in a little more detail. The fundamental definition of Relation Arithmetic
is that of a relation between relations which Whitehead and Russell call ordinal similarity or
likeness327:

k151·01 P smorQ = Ŝ{S ϵ 1→ 1 C‘Q =

D‘S P = S|Q|S̆} Df

This defines a relation which holds between two relations P and Q whenever there is a one­one
relation S which correlates the fields of P and Q such that xPy, if and only if there is a z and
a w, such that xSz, zQw and ySw, that is: if P holds between x and y, then for some z and w
for which Q holds, there is S maps x to z and y to w and vice­versa, where z = S̆‘x, w = S̆‘y,
x = S‘z and y = S‘z. The authors explain it in some detail as follows (with one of Principia’s
few graphs):

Two series generated by the relations P and Q respectively are said to be ordi­
nally similar when their terms can be correlated as they stand, without change
of order.

In the accompanying figure, the relation S correlates the members of C‘P
and C‘Q in such a way that if xPy, then (S̆‘x)Q(S̆‘y), and if zQw, then
(S‘z)Q(S‘w). It is evident that the journey from x to y (where xPy) may, in
such a case, be taken by going first to S̆‘x, thence to S̆‘y, thence back to y,
so that xPy ≡ x(S|Q|S̆)y, i.e. P = S|Q|S̆. Hence to say that P and Q are

326 RUSSELL, B., 1959, p.95.
327 The official definition given is: P smorQ = S{S ϵ 1→ 1 C‘Q =

D‘S P = S;Q}Df; where S;Q is defined
in k150·01 as: S;Q = S|Q|S̆ Df. The following theorem just embodies the definition:

k151·11 x(S|Q|S̆)y ≡x,y (

E

z, w) xSz ySw zQw}.
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ordinally similar is equivalent to saying that there is a one­one relation S which
has C‘Q for its converse domain and gives P = S|Q|S̆. In this case we call S
a correlator of Q and P.328

We saw briefly that relation numbers are defined as classes of ordinally similar relations,
starting from the relation Nr between a relation and the class of all relations ordinally similar to
it, in a manner which is exactly analogous to the definition of cardinal numbers:

k152·01 Nr = −−→smor Df

k152·02 NR = D‘Nr Df

k152·01 Nr‘P = Q̂(QsmorP )

And most results proved in the elementary portions of Relation Arithmetic also have exact ana­
logues of the theory of cardinal numbers329.

Now, given Principia’s definitions and logic of relations, to say that two relations have
(or, as Russell sometimes put, generate) the same structure is to say that they are ordinally similar,
which is to say that they have the same relation number. The structure of a relation is its relation­
number. Clearly, this definition captures exactly what is meant informally by the “structure” of
a relation. For what it defines is an equivalence relation330 which holds between two relations
P and Q if and only if they share all the properties which do not depend on the specific terms
between which the relation holds: if two P and Q are ordinally similar, and thus have the same
relation number, we can easily show that ifP is either transitive or not, symmetric or not, serial or
not, many­one, one­many, one­one, implied by diversity or not, etc., then so isQ and vice­versa.
Russell also makes this point quite concisely inMy Philosophical Development331:

328 WHITEHEAD & RUSSELL, 1927a, p.295 [1912, p.301]
329 Cf. WHITHEAD & RUSSELL, 1912 [1927a], part IV; the summaries of sections A, B, and C make this quite

clear.
330 The relation smor is reflexive, symmetrical and transitive:

k151·13 Q smorQ
k151·14 P smorQ ≡ Q smorP
k151·15 P smorQ.Q smorR ⊃ P smorR

331 This also noted in Introduction to Mathematical Philosophy (RUSSELL, B., 1919a, p.59­61). Observe also that,
although in Principia only relation­numbers of dyadic relations were discussed, Russell was obviously aware
that n­adic relations also have structures and are meant to be encompassed by the theory of relation­numbers. He
briefly points this out in My Philosophical Development, where he sketches how Principia’s treatment could
be so extended: “When two relation­numbers are ordinally similar, we can say that they generate the same
’structure’, but structure is a somewhat more general conception than this [...] It is, however, fairly easy to see
how the conception of structure can be generalized. Suppose that P and Q are no longer dyadic but triadic
relations. There are many familiar examples of such relations, for example, between and jealousy. We shall say
of P and Q that they have the same structure if their fields can be correlated so that whenever x, y, z, in that
order, have the relation P, their correlates, in the same order, have the relation Q, and vice versa.” (RUSSELL,
B., 1959, p.99.).
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Structure is important for empirical reasons, but there are also purely logical
reasons for its importance. When two relations have the same structure, their
logical properties are identical, except such as depend upon the membership
of their fields. I mean by ‘logical properties’, properties such as can be ex­
pressed in logical terms, not only such as can be proved by logic. Take, for
example, the three characteristics by which serial relations are defined viz. that
they are asymmetrical, transitive and connected. These characteristics can be
expressed in logical terms; and if a relation has any one of them, so has every
relation which is ordinally similar to it. Each relation­number, whether finite
or infinite, is a logical property of any relation which has this number. Broadly
speaking, anything that you can say about a relation, without mentioning the
terms between which it holds and without bringing in any property that cannot
be expressed in logical terms, will be equally true of any relation similar to the
one with which you start.332

The distinction emphasized here is between characteristics or properties which can be
proved by logic and those that can only be expressed by logic is of fundamental importance and
illustrates clearly what the subject­matter of logic is as understood in Principia Mathematica.
Principia tells us that the “universe consists of objects having various qualities and standing
in various relations”333 and it attempts to capture the framework for the study of “relational
structure”334, as Landini puts it, in terms the grammar of the simple theory of types. Principia’s
numbered propositions, however, do not tell us what exactly are individuals of the lowest simple
type because that is a matter of interpreting Principia’s grammar, hence a subject that does not
belong in the numbered propositions which describe the formal system335.

This is an important point which must be bear in mind in considering the status of the
so­called ‘Axiom’ of Infinity in Principia. From the point of view of Principia’s numbered
propositions, “Infin Ax” is just a statement; if the variables of lowest simple type are understood
as ranging solely over concrete particulars, then its truth depends on the existence of such entities;
if, however, one considers a semantics which includes concrete and abstract particulars among
the possible values of the variables of lowest simple type, then Infin Ax can be made true in
virtue of the existence of such entities. This, however, is a matter of interpreting Principia’s
formalism and the numbered propositions do not address how individuals of the lowest type
should be conceived336. Be that as it may, the subject of Logic and Mathematics, according to
Principia, is relational structure and the work does not make any assumption about the existence
of individuals of lowest simple type besides those required by classical logic (i.e., that there is
at least one such individual).

We saw that by the time of the publication of Principia’s first edition, Russell wanted
no commitments to abstract particulars and he hinted at the idea that individuals of lowest type
should be viewed as “beings of the actual world” whose existence he considered an empirical
332 RUSSELL, B., 1959, p.99­100.
333 WHITEHEAD & RUSSELL, 1925, p.43 [1910, p.45]
334 LANDINI, G., 2011b, p.197.
335 Thanks to Landini for calling my attention to this important point.
336 Thanks again to Landini for calling my attention to this important point.
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matter337. So at that time Russell’s answer to the question concerning what are individuals of
the lowest simple type seems to be that they are concrete particulars. In this case it is not the
business of Logic to decide which (and more importantly, how many) such particulars exist and
which qualities and relations they instantiate (i.e., to determine which our how many particulars
have this or that property or bear some relation or other); if, for instance, the world consisted of
only two concrete particulars, then three­place relations contained in diversity that hold among
would not be instantiated, the same being the case for dyadic relations if there was only one
particular; to give some another simple example, if monism were true (in the lowest simple
type) no asymmetric relation between entities of that simple type would be instantiated. Logic
does not tell us anything as to which (or how many) particulars exist, nor what relations they
have to one another. What logic can tell us is what follows from the assumption that there are
a certain number of objects and relations (with certain determinate properties, i.e., transitivity,
symmetry, etc.) which hold between them: for these turn out to be truths about structure.

It is important to observe, however, that according to the conception of Logic which
is being ascribed to Russell here, which abstains from asserting the existence of (more than
one) individual of the lowest type, Logic does have ontological commitments, for it follows
that Logic is committed to the existence of logical ­ i.e., structural ­ properties of relations
even if these properties and relations are not instantiated338; for instance, whether there is any
symmetric or transitive relation holding between concrete particulars it is not the business of
logic to decide, but it is the business of Logic to tell us that there is such a thing as transitiveness
as a property which applies to relations. Similar considerations apply to relations (in higher
simple types) which hold between relations (in lower simple types) in virtue of their structural
properties. This, however, seems in complete accordance with Russell’s realism about universals
and its bearing on Russell’s views on Logic and Mathematics. As Russell once put it, what is
337 RUSSELL, B., 1911c, p.52; GRATTAN­GUINNESS, 1977, p.173. Again, it must be bear in mind, as Landini

notes (cf. previous footnote 196 of the introduction), that Whitehead and Russell had different semantic inter­
pretations of Principia; also, it seems that at this point my views depart slightly from Landini’s. In the last
chapter we argued, following Landini, that according to Russell’s original semantic interpretation put forward
in Principia’s Introduction, predicate variables are to interpreted substitutionally. But as we discussed in the
last chapter and the initial section of the present chapter, Principia requires a realist interpretation in order to
validate the Axiom of Reducibility. Landini has recently pointed out that Whitehead gives hints of a realistic in­
terpretation according to which predicate variables ­ i.e., variables of simple type other than the lowest ­ range
over universals and according to which both particulars and universals are among individuals of the lowest
simple type. A possible point of contention here is whether Russell would accept this latter idea around the
time Principia’s first edition was published; Landini argues that Russell came to reject this possibility in virtue
of the influence of Wittgenstein, which lead him to accept the view that variables of lowest simple type range
only over concrete particulars (cf., for instance, LANDINI, G., 2011a, p.343). However, the passage from the
1911 paper On the Axioms of the Infinite and the Transfinite, where Russell suggests that individuals of lowest
type should be viewed as “beings of the actual world” and that the Axiom of Infinity should be regarded as
“empirical” seems to go against this view and suggest that Russell had already rejected the idea that, in a realist
interpretation of Principia’s predicate variables, universals are among entities of the lowest simple type shortly
after Principia’s first volume was published. Be that as it may, the more substantial remaining point made below
that Russell viewed Logic as the general science of structure which does commit to the existence of any kind
of abstract or concrete particulars stands irrespective of this minor point.

338 Here I must thank Landon Elkind who called my attention to this point.
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relevant for Logic andMathematics is “[...] a world of universals and of truths which do not bear
directly on such and such a particular existence”339. Similarly, in the Problems of Philosophy,
for instance, Russell wrote:

It must be taken as a fact, discovered by reflecting upon our knowledge, that
we have the power of sometimes perceiving such relations between universals,
and therefore of sometimes knowing general a priori propositions such as those
of arithmetic and logic.340

Thus, this interpretation shows that it is possible to reconcile what some interpreters341

have taken as irreconcilable aspects of Russell’s views, namely: his eliminativistic or nominalis­
tic approach to numbers, classes, relations­in­extension and his general Platonistic conception
of universals. The point to be noted is that the former are not what Russell called ‘ultimate’ re­
sidue of analysis: they can be explained away in such a way that what remains are the notions
of Logic conceived as the science of structure. Principia attempts to ‘capture’ the laws of Logic
as the science of structure in terms of the theory of types with impredicative comprehension
embodied in the Axiom (scheme) of Reducibility: this commits Russell to a conception of Lo­
gic that does have ontological commitments. These commitments, however, are not to concrete
or abstract particulars ­ i.e., to what Frege called objects. In a realist a realist interpretation of
Principia’s simple type grammar, variables with simple type indices other than the lowest range
over universals ­ i.e., properties and relations­in­intension. Logic is committed to the existence
of universals (which are individuals stratified in simple types).

The interpretation proposed here also helps to disarm an allegedly fatal objection to de­
veloping Arithmetic within the Theory of Types that appears recurrently on secondary literature:
the fact that in Principia natural numbers are “replicated” or “repeated” in each type342. This fact,
which some authors find “intuitively repugnant”343 would indeed be a problem for anyone who
assumes that the subject matter of Arithmetic is an ontology of numbers understood as objects.
Fortunately, the subject­matter of Arithmetic, being a branch of Logic, is structure. The relevant
properties of cardinals and relation­numbers which are the concern of Logic and Mathematics
are the same in each type. They “repeat” because within the theory of types the same structure
can be replicated by constructing numbers (either cardinal numbers or relation­numbers) of as­
cending types. This is not to say that there are many different entities called cardinal or ordinal
numbers in different types: there are no such entities in any of Principia’s simple types. By itself
the fact that numbers “repeat” in each type in Principia is of no more ontological significance
than the fact that in each type we have ‘different’ quantifiers. According to the interpretation
339 RUSSELL, B. 1911a, p.39.
340 RUSSELL, B., 1912, p.105.
341 Cf., for instance, COFFA, A., 1991, p.128.
342 For recent example, cf. SOAMES, S., 2014, p.492.
343 HATCHER, W., 1982, p.123.
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which we have followed, endorsed and attempted to strengthen here, mostly due to Landini, the
whole point of Principia’s enterprise is to recover the structure of the theory of cardinal and
ordinal numbers within a theory whose vocabulary and axioms avoid any sort of existence as­
sumptions concerning abstract or concrete particulars. Given the conception of Logic which we
are, following Landini, attributing to Russell around 1910, Principia’s Logicism is the thesis that
Pure Mathematics requires no assumption about abstract or concrete particulars, because they
are concerned only with truths about structures generated by relations. Principia’s Logicism is
the thesis that the subject matter of both Logic and Pure Mathematics is relational structure344.

344 Which, in a realist interpretation of Principia’s simple type structure is given by relations­in­intension concei­
ved as universals (which are individuals of some simple type) whose existence is asserted by the Axiom of
Reducibility understood as an impredicative axiom of comprehension for attributes and relations­intension.
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6 Concluding Remarks and Assessments

This dissertation was concerned with the development of Russell’s views on Mathe­
matical Philosophy starting with Russell’s early conception of Logicism as presented in The
Principles of Mathematics and culminating in what we may call Russell’s mature conception of
Logicism as presented in the first edition of Principia Mathematica. The main objective of the
dissertation as sketched in the prefatory note and explained in some detail in the Introduction
was to defend Gregory Landini’s revolutionary interpretation1 of the development of Russell’s
views ­ and, in particular, Landini’s view that Russell intended a nominalistic substitutional in­
terpretation (in the modern sense) for Principia’s predicate variables in the Introduction to its
first edition ­ against the orthodox interpretations of authors like Alonzo Church2, Peter Hyl­
ton3 and Warren Goldfarb4 and also, more generally, interpreters who view that Introduction as
putting forward a ramified hierarchy of types of so­called ‘propositional functions’ understood
as abstract entities, like Nino Cocchiarella5 and Bernard Linsky6. This main task of exposing,
defending and, to some extent, expanding Landini’s interpretation was carried out by following
three intertwined threads that run through the development of Russell’s views between the pu­
blication of the Principles and that of Principia, namely: Russell’s conception of Logic as a
genuine science, his views on the ontological commitments of Logic and the idea that Pure
Mathematics ­ Arithmetic in particular ­ is nothing but a development of Logic. Hence the title
of the dissertation: Logic, Ontology and Arithmetic.

The division of the dissertation into roughly two parts corresponds, roughly, to two sta­
ges of the general argument I tried to present in favor of Landini’s revolutionary interpretation
against the orthodox views. Apart from context setting for the second part, the first part was
mainly intended to refute or reject, on the basis of careful consideration of Russell’s manus­
cripts now available in the fifth volume of his Collected Papers, what is ­ unfortunately, still ­
the received view of Russell’s ‘ontological development’ with respect to the period between the
discovery of ‘The Contradiction’ and the abandonment of the Substitutional Theory of Classes
and Relations. The bulk of our discussion focused on Russell’s attempt, after the discovery of
the contradiction, to reconcile what turned out to be three irreconcilable goals, namely:

1. Formulate a calculus for Logic which preserved the central doctrine of the Principles of
Mathematics, according to which the grammar of Logic should embrace only one style of

1 As put forward in LANDINI, G., 1998 and 2011a.
2 CHURCH, A., 1976a.
3 HYLTON, P., 1990.
4 GOLDFARB, W., 1989.
5 COCCHIARELLA, N., 1980.
6 LINSKY, B., 1999.
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entity variable, thus reflecting the thesis that there is only one kind being or entity.

2. Formulate a calculus for Logic a consistent formal system which avoided the contradicti­
ons like Russell’s paradox of predication and self­membership to a class.

3. Formulate a calculus for Logic strong enough to work as a foundation for classical Mathe­
matics ­ in particular, such that it yielded without extra­logical hypothesis a system strong
enough to prove that there exists a set of terms satisfying the Dedekind­Peano postulates.

As we discussed, Russell’s efforts throughout 1903­1906 to reconcile these goals culminated in
in the formulation of his Substitutional Theory of Classes and Relations which, in turn, was
grounded on his newly discovered theory of incomplete symbols. The Substitutional Theory in
its prime form embraced only one style of entity variables ranging over individuals (including
particulars and universals) and propositions; it also embraced a radically nominalistic approach
to class­expressions and predicate variables in order to avoid the contradictions; and it also
afforded a proof of a theorem of infinity. The theory came very close to satisfying Russell’s
desiderata short of consistency: as we now know, it was plagued by variants of the paradoxwhich
Landini unearthed from Russell’s manuscripts and dubbed the “po/ao paradox”. This paradox
and its variants, we argued, following Cocchiarella’s and Landini’s lead against the orthodox
interpretation, showed that there was a conflict between Cantor’s power class theorem and the
Substitutional Theory. Indeed, it was this paradox that led Russell to embrace a version of the
Substitutional Theory with orders of propositions in the paperMathematical Logic as Based to
Theory of Types and which led to theory’s demise, not variants of what we nowadays refer to as
semantic paradoxes like the ‘liar’ paradox. With respect to this latter point, we also considered
Graham Steven’s and Jolen Galaugher’s arguments in favor of a somewhat intermediate view
that aims at finding a place for what Russell referred to as the “purely logical” version of the
Liar within the development of Russel’s views. I concluded, however, that although their points
are solid, Steven’s and Galaugher’s arguments do not impugn Landini’s main contentions, and
that, in fact, they indicate that Russell most likely took this “pure form” of the liar seriously
because of its structural similarity to the Cantorian constructions involved in the formulations
of the po/ao. We also concluded, again endorsing a main point of Landini’s interpretation, that
although there may have been philosophical issues surrounding Russell’s abandonment of the
ontology of propositions around 1909­1910, the main cause of this shift in his views was the
po/ao paradox.

The second part of the dissertation was concerned with the aftermath of the demise of
Russell’s Substitutional Theory and its ontology of propositions and it was itself divided in two
main stages (whose arguments are, to some extent, independent). The first stage concerned the
Theory of Types as Russell and Whitehead present (and defend) it in the Introduction to the first
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edition of Principia. Against Church’s orthodox reconstruction7 (and its variants8) of the theory
in terms of his r­types, we argued in favor of Landini’s interpretation, according to which Russell
attempted, in Principia’s Introduction, to provide a nominalistic substitutional interpretation of
Principia’s predicate variables9. We also endorsed Landini’s claim that Principia formal gram­
mar ­ that explained and put forward in its numbered propositions ­ should be viewed as that
of simple type theory. This interpretation, we found, has ample textual support and affords the
best approach to make sense of many aspects of Principia’s exposition of type theory and its
reconstruction of set theory from higher­order logic on the basis of the contextual definitions
from ∗20 and ∗21. We also concluded with Landini, however, that Russell’s nominalistic seman­
tics cannot validate the Axiom of Reducibility, which in light of the distinctions of order that
are introduced informally in Principia’s Introduciton on the basis of the hierarchy of senses of
truth and falsehood is nothing but an ad hoc principle that can only be justified on the basis of
its consequences ­ i.e., the development of the theory of classes, mathematical induction and
the theory of real numbers. Thus, the somewhat underwhelming ­ but nonetheless correct from
the historical development of Russell’s views ­ conclusion which we reached was that despite
Russell’s efforts to construct a hierarchy of types that could preserve his central doctrine of the
unrestricted variable and the univocity of being, there is an important sense in which Quine was,
after all, correct in claiming that Principia ends up committed to a theory of types of attributes
and relations­in­intension, his claim that Russel was simply confused about use and mention of
so­called ‘propositional functions’ notwithstanding: Principia does require, in order to reconcile
the development of classical Mathematics with Russell’s metaphysics10, an interpretation of the
theory of types according to which each open formula of the language determines a universal
(either a property or a relation­in­intension).

The second stage of the second part concerned the development of Arithmetic and the
defense of Logicism that Whitehead and Russell put forward in Principia. The focus of the dis­
cussion, of course, was on the proof of Principia’s analogues of the Dedekind­Peano postulates
and the difficulties surrounding the proof of a theorem of infinity which, in turn, led them to
introduce the inappropriately named ‘Axiom’ of Infinity. Against the negative assessments ac­
cording to which Russell abandoned or trivialized the logicist thesis, we argued that Russell was
attempting what we called, following Kevin Klement11, a reconstruction of Arithmetic on a lo­
gical basis, not a derivation of all ordinary Arithmetic from logical foundations. We concluded
thus, that Russell was not a logicist in the same sense that Frege was12. Following Landini, we
7 CHURCH, A., 1976a.
8 I.e., those of Bernard Linsky (LINSKY, B., 1999) and Nino Cocchiarella (COCCHIARELLA, N., 1980).
9 And according to which so called ‘non­predicative’ functional variables and propositional variables are sche­

matic letters for well­formed formulas, i.e., part of metalanguage.
10 I.e., his view that the ultimate furniture of the universe consists of individuals among which there are universals

and particulars.
11 KLEMENT, K., 2013b.
12 In particular because Frege’s Logicism was the view that numbers are logical objects. Russell, on the other hand

rejects the idea that numbers are objects or, as Landini puts it, abstract particulars.
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argued that Logicism, according to Russell’s conception of it, is the thesis according to which
Arithmetic (and Pure Mathematics in general) can be reconstructed as part of logic, conceived
as the general science of structure13. Thus our assessment regarding Russell’s use of the Axiom
of Infinity in Principia is that it is a coherent aspect of his general conception of the relations
between Logic, Pure Mathematics and Mathematical Philosophy, not something that reveals his
logicism as a failure. In sum, our conclusion was that Russell may have failed to show that
Logicism as he envisaged it could demonstrate everything he thought desirable, but he never
failed to live up to his own standard of logical correctness. Against the suggestion that Russell
may have given in to the convenience of theft over honest toil, our conclusion is that what he
thought was desirable but could not prove he left as a hypothesis, but this was no thievery: it
was the culmination of his honest toil, in accordance with Russell’s methodological principles
of avoiding postulated entities in favor of constructions, numbers themselves being treated as
such.

Now, if the arguments presented in both parts of this dissertation are sound, then what we
established is that the interpretation of Russell’s writings14 on Mathematical Philosophy advoca­
ted here is the most plausible and compelling in light of the available evidence. This result, of
course, is of historical and exegetical nature and it does not allow us to decide whether Russell’s
project did actually succeed as a viable stance in the Philosophy of Mathematics and whether, in
case of a negative answer, there are prospects for fixing its most serious flaws ­ if there are any.
In what remains of this concluding section, I want to make a few remarks about this. Evidently,
I will not even attempt to come close to exhaust all the fundamental relevant points for asses­
sing Russellian Logicism as I characterized it here ­ for this would require at least a whole new
dissertation; but I want to briefly address what I take to be the hard core of Russellian Logicism
that may afford a tenable Philosophy of Arithmetic and what ­ from an ‘external’ perspective,
so to say ­ may be considered the most serious difficulties that Russell’s views, as they were
presented here, face.

As we characterized it here, the most fundamental trait of Russell’s logicism ­ which,
in fact, pending on perspective, consists in its main virtue or flaw ­ is that it completely re­
jects Frege’s framing of the task of establishing number theory as the province of Logic. Frege
famously wrote, in his correspondence with Russell, that the “[...] the possibility of placing arith­
metic on a logical foundation” hanged in balance with the question of “how do we apprehend
logical objects”15: the fundamental issue for Frege’s conception of logicismwas that of justifying
the introduction of numerical terms as singular terms standing for logical objects into his sys­
tem16. Russell’s version of the Logicist reconstruction of Arithmetic, in its turn, challenges the
13 LANDINI, G., 2011, pp.173­174.
14 Writings, that is, roughly from the period of 1903­1911.
15 FREGE, G., 1980, p.140.
16 Frege failed to fulfill this task because his system was inconsistent when adduced by his Basic Law V and

because he could not come to grips with a solution for the famous Caesar problem when such singular terms
were introduced via contextual definition by appealing to what Michael Dummett has called “the original equi­
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widespread assumption that Logicism died with Frege precisely because of this problem. For ins­
tance ­ in what is surely one of the best and most important contemporary works on Logicism
and, in fact, on the Philosophy of Mathematics in general ­ Michael Dummett wrote that:

The logicist thesis failed because of its inability to justify the existence of
mathematical objects, more particularly of systems of objects satisfying the
axioms of the theories of natural numbers and of real numbers.17

This, as we saw, is not a fair diagnosis of Russell’s version of the logicist enterprise:
numbers for Russell are not objects; cardinal numbers are defined as classes of similar classes
and classes are treated as logical fictions or constructions whose symbolic expressions are to be
eliminated in terms of the contextual definitions of Principia’s section k20. This point however,
is not missed by Dummett, who, at one of the many points in his book where he draws parallel
considerations about Frege’s views and those of Russell and Whitehead, writes:

The problem how to introduce abstract objects would have been avoided if
Frege could have dispensedwithmathematical objects altogether by construing
numbers of various kinds as concepts of second or higher order, beginning
by building on the rejected definitions of §55 (with the third of them suitably
amended). This was in effect Russell and Whitehead’s solution, or would have
been if Principia had been developed within the simple theory of types, rather
than the ramified theory required by the vicious circle principle. Arithmetical
theorems would then have been interpreted as yet more unproblematically in
character, and as admitting of yet more direct application.18

Dummett’s mention of paragraph §55 of Frege’s Grundlagen refers, of course, to the at­
tempt of introducing numbers as higher­order concepts that are completely analogous to what we
now nowadays refer to as ‘numerically definite quantifiers’. There are, in fact, different ways19

to translate Principia’s construction to this approach which dispenses with Whitehead and Rus­
sell’s use of “surrogate” classes, as Dummett puts it. One such translation or inspired reconstruc­
tion of numbers as higher­order quantifier­like concepts has been put forward by Landini who
on its basis develops a robust argument in favor of the view that the rejection of Logicism on the
grounds that Logic cannot supply an ontology of infinitely many numbers as objects is based on
a misguided or biased “intuition that it is necessary that there are infinitely many numbers ­ a

valence” and George Boolos called “Hume’s Principle”.
17 DUMMETT, M., 1991, p.307. Elsewhere, Dummett made a similar point as follows: “Logicism, represented

first by Frege and then by Russell and Whitehead, failed because it combined three incompatible aims: to keep
mathematics uncontaminated by empirical notions; to represent it as a science, that is, as a body of truths, and
not a mere auxiliary of other sciences; and to justify classical mathematics in its entirety” (DUMMETT, M.,
1991, p.312).

18 DUMMETT, M., 1991, p.225­6; Dummett also puts the same point forward in p.302.
19 Compare, for instance, LANDINI, G., 2011b and KLEMENT, K., 2015. I’ll be following closely Landini’s defi­

nitions, but my notation of choice is closer to that of Klement.
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de re intuition of a non­logical necessity governing special metaphysical objects (numbers)”20.
Altering Landini’s notation21, but keeping the letter of his definitions intact, the foundation of
such approach can be given along the following lines22:

(Func) Func(R) =Df (x, y, z)(((R(x, y) ∧R(x, z)) ⊃ y = z)

(1→ 1) 1→ 1(R) =Df Func(R) ∧ (x, y, z)(((R(x, y) ∧R(x, z)) ⊃ x = z)

(≈) λx : ϕx ≈ λx : ψx =Df

(∃R)[(1→ 1(R) ∧ (x)((∃y)R(x, y) ≡ ϕx) ∧ (y)((∃x)R(x, y) ≡ ψy)]

(Card) Card(λx : ϕx, λx : ψx) =Df λx : ϕx ≈ λx : ψx

(0) 0(λx : ϕx) =Df Card(λx : ϕx, λx : x ̸= x)

(P ) λϕ : m(λx : ϕx)Pλϕ : n(λx : ϕx) =Df

(∃ψ)(∃z)

 ψz

(ϕ)[n(λx : ϕx) ≡ Card(λx : ϕx, λx : ψx)]∧
(ϕ)[m(λx : ϕx) ≡ Card(λx : ϕx, λx : ψx ∧ x ̸= z)]


(<) λϕ : m(λx : ϕx) < λϕ : n(λx : ϕx) =Df

(F )

 [(m(λx : ϕx)Pλϕ : p(λx : ϕx) ∧ F (λϕ : m(λx : ϕx)) ⊃ F (λϕ : p(λx : ϕx)))∧
q(λx : ϕx)Pλϕ : r(λx : ϕx) ∧ F (λϕ : m(λx : ϕx)) ⊃ F (λϕ : r(λx : ϕx))] ⊃

F (λϕ : n(λx : ϕx))


(≤) λϕ : m(λx : ϕx) ≤ λϕ : n(λx : ϕx) =Df

λϕ : m(λx : ϕx) < λϕ : n(λx : ϕx) ∨ (ψ)(n(λx : ϕx) ≡ m(λx : ϕx))

(N) N(λϕ : n(λx : ϕx)) =Df λϕ : 0(λx : ϕx) ≤ λϕ : n(λx : ϕx)

Details apart, the relevant point, of course, is that such a translation can be made and that defini­
tions which employ structured variables like the above bring to the surface a point that can easily
be missed when reading Principia from k20 onward23, namely: that at its heart Principia’s ap­
proach to number­expressions amounts to treating them as higher­order concepts analogous to
20 LANDINI, G., 2011, p.172..
21 I find Landini’s use of subscripts in his structured variables somewhat inconvenient. I’ll be employing a variant

of the lambda notation for structured variables, although the lambda­abstracts are not singular terms here.
22 Cf. LANDINI, G., 2011b, pp.176­8. In the above each lambda­abstract like “λx : ϕx” stands for a nominalized

concept or attribute in extension ­ they are not singular terms then ­ to which higher­order concepts like 0, 1, 2,
... N, etc apply.

23 That is, when functional expression practically vanish from the work giving place to the convenient notation of
classes.
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quantifiers. The question then, is: is such a position tenable as a defense of Logicism, in particu­
lar when compared with other variants of Logicism which assume that numbers must be objects
after all24?

Despite being apparently sympathetic the approach, Dummett, like many others, thinks
not and gives a paradigmatic diagnosis as to why he thought that Whitehead and Russell failed
to establish Logicism:

Their attempt ran against the difficulty that would have supplied the only valid
ground for Frege’s insistence that numbers are genuine objects, the impotence
of logic (at least as they understood it) to guarantee that there are sufficiently
many surrogate objects for the purposes of Mathematics, forcing them to make
assumptions far from being logically true, and probably not true at all: to secure
the infinity of the natural­number sequence, they had to assume their axiom of
infinity, and to secure the completeness of the system of real numbers, they had
to assume the axiom of reducibility.25

The criticism presented here is the standard one:Principia’s reconstruction of Arithmetic
in terms of higher­order concepts cannot provide a proof of the infinity of the natural numbers
and Principia’s formulation of the theory of types requires the Axiom of Reducibility for the
development of ClassicalMathematics26. The prospects of rejecting Russell’s Logicism are quite
different, however, on the basis of each of these ‘faults’.

As we discussed ­ somewhat extensively ­ the fact that Principia does not provide a
theorem of infinity but only a conditional result, by itself, does nothing to impugn Russell’s
Logicism27. If we are to reject Russsell’s view that numbers are logical constructions or a Prin­
cipia­inspired construction like that of Landini, what is required are positive reasons to regard
such a reconstruction as inadequate, incoherent or insufficient; merely requiring that a proof of
infinity should be forthcoming begs the question, precisely because this involves assuming that
numbers have to be objects after all.

The central issue involved in determining whether the need for an Axiom of Infinity is
a vice or a virtue, then, concerns whether there are good reasons for rejecting Russell’s view
that numerical terms are not singular terms standing for objects. What is at stake, I think, is the
tenability of the position now referred to in the literature as “Syntactic Reductionism”. We may
borrow Kevin Klement’s sharp statement of it:
24 Even more specifically, I will be concerned with the views put forward by Crispin Wright in the modern classic

Frege’s Conception of Numbers as objects (WRIGHT, C., 1983) which has gained immense notoriety.
25 DUMMETT, M., 1991, p.302.
26 It must be noted that there is a slip in what Dummett says here. It is quite misleading to say that Whitehead and

Russell required the axiom of Reducibility for the development of the theory of real numbers for, although the
statement is correct, as is well known, without the axiom of Reducibility Principia cannot recover mathematical
induction and so the arithmetic of the natural numbers collapses without it.

27 Furthermore, there is also the aforementioned possibility (cf. footnotes 196 of the Introduction and footnote 260
of chapter 5) of adding new axioms to Principia that yield the desired results and which can be philosophically
motivated.
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Syntactic reductionism is the view that what appear to be terms for abstract
objects are not genuine syntactic terms at all; in a full or correct representation
of the syntax of sentences in which they appear they can be shown not to be
genuine individual terms at all.28

Russell, of course, fully endorsed this view with respect to numerical terms29. The op­
posite stance ­ which amounts to holding what is referred to in the literature as the “syntactic
priority thesis” ­ consists in the view that everything that is required for a class of expressions
to function as singular terms referring to objects is an appropriate criterion for determining the
truth­conditions of (certain classes of) sentences containing them. One famous statement of this
view is that of Crisipin Wright who puts the view forward both on behalf of Frege and of his
own version of Logicism in the modern classic Frege’s Conception of Numbers as Objects30:

Frege requires that there is no possibility that we might discard the precon­
ceptions inbuilt into the syntax of our arithmetical language, and, the scales
having dropped from our eyes, as it were, find in reality there are no natural
numbers, that in our old way of speaking we had not succeeded in referring
to anything. Rather, it has to be the case that when it has been established, by
the sort of syntactic criteria sketched, that a given class of terms are functio­
ning as singular terms, and when it has been verified that certain appropriate
sentences containing them are, by ordinary criteria, true, then it follows that
those terms genuinely refer. And, being singular terms, their reference will be
to objects. There is no further, intelligible question, whether such terms really
have a reference whether there are really such objects.31

As is well known,Wright advocates what became known in the literature as Neo­Fregean
Logicism, which consists in holding that the following ‘abstraction’ principle for number terms
provides, in the context of impredicative second­order logic, an adequate justification for the
introduction of numerical expressions as singular terms:

(F )(G)(#(λx : Fx) = #(λx : Gx) ≡ λx : Fx ≈ λx : Gx)

If one accepts this as an analytic truth about numbers and concedes Wright’s point that settling
the truth­conditions of sentences containing singular terms settles the question of whether or not
they have a reference, then the above does seem to provide exactly the sort of criterion required
to claim that numerical terms ­ e.g., “#(λx : Fx)” ­ are singular terms referring to objects and,
as is well known, the above not only settles this but also allows for a proof the Dedekind­Peano
28 KLEMENT, K., 2015, p.94; for a general critical discussion of the position cf. HECK, R., 2011, pp.180­199.
29 And, of course, many other classes of expressions which he took as incomplete symbols instead of singular

terms.
30 WRIGHT, C., 1983.
31 WRIGHT, 1983, p.14
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postulates, including the result that there are infinitely many numbers conceived as objects. But
why should we accept the Priority Thesis32?

According to Neo­Fregeans33, Frege’s adequate response comes from one of his central
methodological maxims put forward in the Grundlagen, his famous ‘context principle’:

Never ask for the meaning [Bedeutung] of a word in isolation, but only in the
context of a sentence.34

The disagreement between Russellians who hold the Syntactic Reductionism and the
Fregeans who hold the syntactic priority thesis would, putting things very roughly, amount to
this: Fregeans hold that there is a priority of syntactic categories (Name, predicate, etc...) with
respect to ontological categories (object, property, etc...) because there is a priority of truth over
reference and this view is grounded or licensed by the Context Principle, i.e., the idea that the
reference of a category of expressions can only be settled after settling the truth­conditions of
sentences in which they occur by appeal to some appropriate criterion. Granting this characteri­
zation of Frege’s Context Principle, the content of the syntactic priority thesis is that questions
pertaining to the reference of a certain group of terms (such as numerals) are questions “internal
to language”, as Dummett puts it35. Russellians who accept the eliminative treatment of nume­
rical expressions, on the other hand, must refuse the priority thesis and thus, the view that the
context principle ­ interpreted in such a robust fashion ­ has the unrestricted validity or strength
that Wright claims. How could this be done?

Well: it’s complicated. As Kevin Klement points out, settling this dispute would amount
to settling “[...] many of the fundamental questions in philosophical semantics and metaphy­
sics”36. I’ll risk, however, pointing to two very rough sketches of ways of answering.
32 Another important question concerns whether we should concede that the so­called Hume’s principle is an

analytic truth about numbers ­ or at least that it has such a privileged status as a principle of number­theory (cf.,
for instance, BOOLOS, G., 1998, pp.301­14 and DUMMETT,M., 1998, pp.367­387 for the main lines of criticism
and WRIGHT & HALE, 2001, for their extensive replies to the standard criticisms). Frege himself rejected the
idea that Hume’s principle provides a strong enough principle for settling the truth conditions of statements of
number­expressions as singular terms ­ this was the outcome of his famous discussion in the Grundlagen of the
notorious Caesar problem, which is also a pressing problem for Neo­Fregeans (cf., for instance, WRIGHT &
HALE, 2001, pp.335­396 for an attempt at a dissolution of the issue).

33 Cf., WRIGHT, C., 1983, p.50­2.
34 FREGE, G., 1884, p.x.
35 Dummett puts this point forward in the following terms: “The context principle, as enunciated in Grundlagen,

can be interpreted as saying that questions about the meaning (Bedeutung) of a term or class of terms are, when
legitimate, internal to the language. We know the meaning of a term, say, “the Equator”, when we know the
conditions for the truth of any sentence containing it; that is all we need to know, and all we can know. Hence, to
determine the meaning of a term, what we have to do, and all we do, is to fix the senses of sentences in which it
occurs. Reference therefore does not consist in a mental association between the term and the object, considered
as apprehended by the mind independently of language; nor can it consist, we may add, in the existence of a
causal chain leading from the object to an utterance of the term. It follows that any legitimate question about
the meaning of a term, that is, about what we should call its reference, must be reducible to a question about
the truth or otherwise of some sentence of the language.” (DUMMETT, 1991, p.192).

36 KLEMENT, K., 2013, p.150.
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The first, and most promising, I think, is simply to reply that a logical analysis of the
concept of number is possible37 without recourse to a conception of numbers as objects and
that this analysis avoids many of the severe issues which arise when one attempts to justify
the assumptions of numbers as objects on a logical basis. A case for Russellian Logicism on
this basis has, in fact, been made by Klement38, who discusses in some detail how the main
problems that affect the so­called Neo­Fregean form of Logicism are either solved or dissolved
by the Russellian approach. Thus, in a nutshell: conceptual and ontological economy, if anything,
favors the Russellian position, although, obviously, this by itself is does not settle the issue.

Settling the issue, would, I think, involve a second ­much harder ­ path for the Russellian,
which is to accept that she owes us an explanation of some linguistic or extra­linguistic criterion
that allows her, at least locally, to refuse the syntactic priority thesis. Needless to say that coming
up with such a (satisfactory) explanation or solution is nothing short of a Herculean task ­ for,
again, this would involve tackling or settling some of the most intractable philosophical issues
out there. The pressing question for the Russellian is to establish a philosophically sound motiva­
tion for, so to say, shave off mathematical theories with Occam’s razor: the problem, however, is
that simply pointing to conceptual or ontological economy begs the question against the Fregean,
who does have a philosophically motivated criterion for taking number­expressions as singular
terms. Furthermore, whether a eliminativistic approach to number­expressions like that of Prin­
cipia or Principia­inspired forms are really more simple or economical is itself a controversial
issue. Klement nicely sums this up when he claims that:

An abstract science that treats its special expressions in an eliminative, nomi­
nalist, way is metaphysically simpler than one that postulates abstracta as ge­
nuine references of its terms, or as values of ontologically committing variables.
But this is perhaps to take too narrow a view of what is involved in the intel­
lectual virtue of ‘simplicity’. It is not simply a matter of how many, or how
many kinds, of things are presupposed. It may have to do with the simplicity
and unity of the basic principles assumed in the theory, how well integrated
such a theory is with other theories, and so on.39

Klement also points, however, to reasons to be optimistic about the merits of the Russel­
lian approach, for as he observes “[...] the advantages, even the advantages regarding simplicity,
are not limited to a reduction in what is quantified over”40. As he notes, a case can be made
for adopting an eliminative approach to apparent singular terms of a theory like that of the
37 It is important to emphasize, as Klement aptly does, that what is at stake for the Russellian is a syntactic reduc­

tionist account of number­expressions within an artificial and/or ideal formal language; as Klement puts it the
relevant question “[...] is not whether or not ordinary language embodies syntactic reductionism, but whether
or not anything important is lost (and indeed, perhaps, whether anything is gained) in number theory or other
abstract science if we choose to employ an artificial language that decidedly does.” (KLEMENT, K., 2015,
p.110).

38 Cf. KLEMENT, K., 2013b and 2015.
39 KLEMENT, K., 2015, p.111.
40 KLEMENT, K., 2015, p.111.
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Arithmetic of natural numbers based on the following prospects of theoretical economy and/or
simplicity:

1. Epistemological Economy: It “[...] simplifies our epistemology in so far as we do not
need an account of special de re knowledge of abstract objects”41.

2. Philosophico­Semantical Economy: “It simplifies our semantic theories, in so far as we
do not need a special theory of reference for such terms”42.

3. Prospects of Consistency: “Depending on the abstract entities eliminated, it may simplify
our logic, as certain abstract objects (extensions, ordinal numbers) are prone to lead to
contradictions if taken realistically”43.

4. Prospects of Applicability: “It may simplify our account of the applicability of abstract
studies to the concrete world, as our account of abstract objects resolves such discourse
into quantification over concrete entities (and concepts applicable to them)”44

But again, it must be emphasized that the issue is not settled just by pointing that the Russellian
approach has these virtues for, as already noted, the issues involved here are deeply problematic
and complex. Nonetheless, I think it is established beyond reasonable doubt that the Russellian
approach which advocates Syntactic Reductionism with respect to Arithmetic along the lines
we considered both in the body of the present dissertation and in the present concluding section
does have strong virtues and a strong internal coherence.

We are not done, however, for there remains the more broad question regarding the
necessity of the Axiom of Reducibility. Given the interpretation of Principia we endorsed, the
problem of justifying the presence of this axiom in the system amounts to this: can Russell’s
conception of Logic as a science and the metaphysics which accompanies this conception of
Logic justify the introduction of impredicative axioms of comprehension? This is obviously a
very complex question that raises just as many if not more fundamental and complex issues in
almost every branch of Philosophy. For our purposes here, this question may be broken down
into amore tractable (but still complex) separate sub­question for which I can sketch a discussion
and prospects of future investigation, namely: Is there a tension between Russell’s conception
of Logic, the metaphysics which underlies it and the formal system which he adopts to embody
it ­ i.e., the simple theory of types of attributes and relations­in­intension with impredicative
axioms of comprehension?
41 KLEMENT, K., 2015, p.111.
42 KLEMENT, K., 2015, p.111.
43 KLEMENT, K., 2015, p.111.
44 KLEMENT, K., 2015, p.111.
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In order to address this, I want to take as my starting point the two following strikingly
different takes on higher­order Logic, which, I think, strike unequivocally at the very heart of
the issue:

The doctrine of logicism [...] is not a doctrine about the reducibility of mathe­
matics to a theory of membership (in a class or set) but about the reducibility of
mathematics to a theory of predication, and in particular to a theory about the
concepts which predicates stand for in their role as predicates. For this reason
both Frege and Russell maintain that the logistic framework within which clas­
sical mathematics is to be represented must consist at least of a second order
predicate logic where quantification is not only with respect to the role of sin­
gular terms but to that of predicates as well. The distinction between predicates
and singulars terms, it must be emphasized, is fundamental to both Frege’s and
Russell’s forms of logicism; and to fail to attend to this distinction is to fail to
understand the nature of predication in either framework.45

[...] tendency to see set theory as logic has depended early and late on ove­
restimating the kinship between membership and predication. An intermediate
notion, attribution of attributes, insinuates itself and heightens the illusion of
continuity In the innocent ‘Fx’ of the logic of quantification, the schematic let­
ter ‘F’ stands in place of a predicate. Or, more explicitly, the combination ‘Fx’
stands in the place of an open sentence in ‘x’ ; whether the sentence has ‘x’
on one side and an isolated predicate on the other is of no moment. What is
important is that in writing ‘F’ and ‘Fx’ we are just schematically simulating
sentences and their parts; we are not referring to predicates or other strings of
signs, nor are we referring to attributes or sets. Some logicians, however, have
taken a contrary line, reading ‘F’ as an attribute variable and ‘Fx’ as ‘x has
F’ . Some, fond of attributes, have done this with their eyes open; others have
been seduced into it by a confusion. The confusion begins as a confusion of
sign and object; a confusion between mentioning a sign and using it. Instead of
seeing ‘F’ steadfastly as standing in place of an unspecified predicate, our con­
fused logician sees it half the time as naming an unspecified predicate. Thus ‘F’
gains noun status, enabling him to read ‘Fx’ as ‘x has F’ without offending his
grammatical ear. Having got this far, he can round out his confusion by calling
F an attribute. This attunes his usage to that of the unconfused but prodigal
logician who embraces attributes with his eyes open. The prodigal logician is
identifiable with Frege. The confused logician could be Russell, despite his
great contributions.46

The merits of what is being with respect to Frege and Russell’s actual views notwiths­
tanding, I see an important and deep disagreement between Cocchiarella and Quine which, I
think points to why there is indeed an unsolvable tension in Russell’s Logicism. The core of the
issue, I think does not concern the legitimacy of quantifying over abstracta such as relations and
properties or whether logicians should indulge in commitments with such entities (or entities of
any sort for that matter). Quine would certainly claim that one should avoid at all costs surrende­
ring to the temptations of such “creatures of darkness”, but that is not what I have in mind. The
fundamental point underlying Quine’s criticism is deeply Russellian. In a nutshell: for Quine
if we are to talk about properties or relations as entities these should be referred to by the only
45 COCCHIARELLA, N., 1986, p.198­9.
46 QUINE, W., 1986, p.66.
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means which we have at our disposal to talk about anything whatsoever, namely by means of
object variables (i.e., what we now call ‘first­order’ variables) or singular terms/proper names.
Indeed, let me be even more clear as to why Quine’s point as deeply Russellian. If we really
take Quine seriously, then the very phrase “first­order variable” is just a pleonasm, for a correct
notation should ­ as Russell argued in the Principles of Mathematics ­ adopt one and only one
style of variable, namely individual variables ranging over whatever “can be counted as one”.
Were we to Russellianize Quine’s dictum, we could say: to be is to be a value of the unrestricted
variable.

Cocchiarella, on the other hand, better appreciates Frege’s prodigal path and recognizes
that it is precisely a fundamental distinction between the role fulfilled by predicates and singular
terms that is required by Logicism. The use of bound letters F which Logicism requires is one
that accepts that “predicates are not singular terms or what Frege called ‘proper names’ in his
extended sense” and that “the role of concepts in predication is not that of objects or individuals
to which other objects or individuals stand in a relation of exemplification”47. This is radically
anti­Russellian. Perhaps nowhere this is more clearly displayed than in Frege’s explanation of
the incomplete character of predicates ­ and their non­linguistic and also incomplete counterpart,
concepts ­ in terms of the metaphor of ‘saturation’. As we saw, Russell found the very statement
of this idea contradictory.

The most fundamental underlying disagreement that can be extracted from the passages
of Quine’s and Cocchiarella’s quoted above is whether Logic should embrace an ultimate cle­
avage between proper names and individual variables ­ which stand for objects, i .e., saturated
entities ­ on the one hand, and predicates standing for incomplete entities, i.e., concepts, on the
other. Apart from his doctrine of concept­correlation and the introduction of courses­of­values
or extensions into his system, Frege’s logic embraced this cleavage in the most strictest way pos­
sible. Frege did not view higher­level functions in complete analogy to first­level ones whose
arguments were objects. As he explains in On Concept and Object:

Second­level concepts, which concepts fall under, are essentially different from
first­level concepts, which objects fall under. The relation of an object to a
first­level concept that it falls under is different from the (admittedly similar)
relation of a first­level to a second level concept. (To do justice at once to the
distinction and to the similarity, we might perhaps say: An object falls under a
first­level concept; a concept fall within a second­level concept.)48

That is why Frege employed structured variables for second­level functions like “Mα,β(f(α, β))”.
A function as something incomplete is a radically different sort of thing than an object and it
cannot occur as an argument of another function in the same way as on object does: a function
is essentially predicative and thus one cannot ­ to smuggle Russell’s most central logical notion
47 COCCHIARELLA, N., 1986, p.199.
48 FREGE, G., 1892, p.201.
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­ make a function a logical subject in the same way one makes an object a logical subject. As we
had already said following Hylton and borrowing a Wittgensteinian saying: It is here that we hit
bedrock49.

Like Frege, Russell also wanted to ground Mathematics on Logic conceived as a theory
of predication ­ or, more appropriately in the case of Russell, a theory of property and relation
exemplification ­ (instead of a theory of classes) as embodied in the hierarchy of levels, i.e., the
simple theory of types, but Russell vehemently resisted accepting Frege’s interpretation of this
hierarchy in terms of the distinction between complete/saturated and incomplete/unsaturated
entities. Russell resisted this view in the Principles given his conviction that whatever can be
mentioned must be a genuine logical subject and thus, a term; and it was, in fact, this difficulty
which precluded him from accepting the theory of types as put forward in the Appendix B of
the Principles and to reject propositional functions as entities in the same work. Moreover it
was precisely this difficulty that led Russell to develop his Substitutional Theory of Classes
and Relations, which afforded a way of embracing a hierarchy of levels (of both classes and so­
called propositional functions) without assuming these as any sort of entities (either complete
or incomplete) and thus, without betraying his most central logical doctrine of the unlimited or
unrestricted variable. The approach did not work, as we saw, and Russell scrapped the Substi­
tutional Theory in its entirety, never mentioning it again after Mathematical Logic. Thus came
Principia’s Introduction, which was Russell’s ultimate attempt to reconcile a hierarchy of levels
with the doctrine of the unrestricted variable and the thesis that whatever is is an individual.
According to the interpretation which Landini’s offers and which we endorsed ­ according to
which Russell was offering a nominalistic semantics for typed predicate variables in Principia’s
Introduction ­ Russell’s attempted to follow Frege in characterizing the occurrence of a ‘predi­
cative propositional function’ ­ i.e., a predicate variable ­ as an argument of another in terms
of falling within instead of falling under without accepting an ontology of incomplete entities.
Russell’s attempt was a failure50, however, and one that struck at the very heart of the Logicist
enterprise: it requires comprehension axioms like the Axiom of Reducibility, without which
classical Mathematics cannot be recovered.

Indeed, it is this aspect of Russell’s logicism more than any other that elicited the most
sanguine and strident criticisms, in particular by those who favored constructivistic approaches
to the foundations of Mathematics. Weyl, for instance, wrote the following:

With his axiom of reducibility Russell [...] abandoned the road of logical analy­
sis and turned from the constructive to the existential­axiomatic standpoint, ­ a
complete volte­face.* After thus abolishing the several levels of properties, he
still has the hierarchy of types: primary objects, their properties, properties of
their properties, etc. And he finds that this alone will stop the known antino­
mies. But in the resulting system mathematics is no longer founded on logic,

49 HYLTON, P., 1990, p.220; WITTGENSTEIN, L., 1953, p.91 §217.
50 Because his intended nominalistic substitutional semantics cannot validate Reducibility.
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but on a sort of logician’s paradise, a universe endowed with an “ultimate furni­
ture” of rather complex structure and governed by quite a number of sweeping
axioms of closure. The motives are clear, but belief in this transcendental world
taxes the strength of our faith hardly less than the doctrines of the early Fathers
of the Church or of the scholastic philosophers of the Middle Ages.51

Even those who were prone to resist Weyl’s “Bolshevik”52 impetus of tearing down clas­
sicalMathematics shared this skeptical reaction: Carnap, for instance, deemed Ramsey’s attempt
to salvage the structure of Simple Type theory by outright rejecting distinction of orders and in­
troducing the so­called ‘extensional propositional functions’ in order to validate the Axiom of
Reducibility a “theological”53 form of Logicism. It is also with respect to this point that Quine’s
usual and well­known arguments against the theory of types and higher­order logic show their
real strength, for it is at this point ­ i.e., when impredicative principles of comprehension are
introduced or assumed ­ that one may reasonably question whether one is not dealing, after all,
with “Set Theory in sheep’s clothing”54.

Even in light of the charitable interpretation of Principia we have endorsed, a variant
of such concerns turn out to be well founded, even if we concede that Principia does manage
to eliminate commitments to an ontology of classes. As we discussed, also following Landini’s
lead, Russell’s desiderata for what a logical theory should accomplish forced the acceptance of
a version of the theory of types in which: (i) predicate variables are structured in terms of simple
types; (ii) predicate variables may occur both in predicate and subject positions; (iii) impredica­
tive comprehension is assured by assuming that each open well­formed formula of the system
determines an attribute or relation represented by a predicate variable. This is because Russell
needed type distinctions ­ in some form or another ­ in order to deal with the contradictions, most
crucially his own paradox, whichmay arise in terms of the vocabulary of classes but also in terms
of predication; the goal of preserving classical Mathematics, on its turn, required impredicative
comprehension; and since Russell’s required the preservation of “logical common sense”, which
amounted to preserving the univocal conception of being according to which whatever is must
be an individual, which, in turn, precluded him from accepting anything like Frege’s notion of
an incomplete entity, predicate variables had to be conceived as ranging over universals which
themselves had to be counted as individuals of some simple type. So although Principia’s pre­
dicate variables are not wolves disguised as sheep exactly in the sense Quine claims, they are
certainly not sheep in wolve’s clothing55 either.

The question, then is: can this interpretation of the theory of types which we are attribu­
ting to Russell here be motivated as a theory that deserves the label of Logic? My take is that
51 WEYL, H., 1946, p.6.
52 RAMSEY, F., 1926, p.56.
53 CARNAP, R., 1931, p.50.
54 QUINE, W., 1986, p.66.
55 Cf. QUINE, W., 1986, p.68­9. This is an expression Quine uses to refer to the opposite tendency of dressing

“Set Theory in sheep’s clothing”, i.e., that of “over­acknowledgment”, of speaking “[...] ostensibly of sets or
attributes where logic in a narrower sense would have sufficed” (QUINE, W., 1986, p.68).
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it cannot be so motivated. The root of the problem, I think, is one that has been hinted by Lan­
dini somewhat recently but which is also underlying the passage from Quine’s Philosophy of
Logic quoted above and which also appears in Dummett’s penetrating commentaries on Frege56.
Landini writes:

The theory of simple types of attributes in extension is well­motivated by the
conception that attributes have a predicable nature only. The simple­type indi­
ces on predicate variables track the predicable nature of attributes. Indeed, we
have already had occasion to note that, quite independently of any paradox of
classes/sets, Frege’s conception of functions as ‘unsaturated’ led him to adopt
a formal language of structured variables for this hierarchy of levels (simple
types). Simple­type theory rests on solid philosophical foundations. The solid
philosophical foundations of simple­type theory are obliterated by those who
reject Frege’s distinction between concept and object. Imposing a metaphy­
sics in which attributes are themselves objects undermines Principia’s logi­
cism, making simple­type theory ad hoc. Both Frege and Russell agreed that a
simple­type theory of objects is little more than an ad hoc dodge of the parado­
xes plaguing logicism.We now see that it also undermines Principia’s logicism
by obliterating its thesis that mathematics (and logic) are abstract sciences of
the structures given by relations, not by objects.57

The problem which Landini hints at here is that interpreting the theory of simple types
in terms of a hierarchy which has at the bottom variables ranging over particulars that can only
occur as subjects of predicate variables and then goes up, so to say, into an infinitely ascending
stair of universals with both a predicable and predicative nature dismantles the very motiva­
tion for the simple type structure that both Frege and Russell employ for their development of
Arithmetic. This is the point underlying the abyss that lies between Cocchiarella’s and Quine’s
perspectives on higher­order logic: the former accepts Frege’s doctrine of incompleteness while
the latter does not. Quine is on firm ground when he refuses to accept letters F, G, R, S, etc... as
ranging over universals or similar abstracta; for, as we already observed, if there are such and
we accept the Russellian doctrine that whatever is is an individual, then they must be values of
the same variables as other sorts of individuals ­ the only reason for not doing so being the need
of dodging contradictions ­ which seems exactly the predicament that Russell ends up finding
himself when Principia’s predicate variables with simple type indices are interpreted ranging
over attributes and relations­in­intension58. This, perhaps, is the main reason why Quine cannot
but see Russell’s acceptance of bound predicate variables as a product of confusion.

The fundamental issue here is that the very distinction between universals and particulars
as Russell conceived it is at odds with the theory of types that the contradictions and the demands
of classical Mathematics forced upon him. This, as Michael Dummett has pointed long ago, is a
56 DUMMETT, M., 1967; 1981.
57 LANDINI, G., 2011, p.200.
58 That is, in stark opposition to the nominalistic semantics that Russell originally had in mind in the Introduction

to the first edition.
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difficulty (likemany others surrounding the distinction between universals and particulars59) that
Frege’s logic obliterated completely, for, as Dummet puts it, “Frege’s distinction between objects
and concepts cuts clean across the traditional method of posing the problem of universals”60.
Dummet writes:

Traditionally a particular is that which can only be named (in order to have
something predicated of it), whereas a universal can either be predicated of
a particular or have some higher­level universal predicated of it; the dispute
concerns whether, and in what sense, universals are ‘real’. From this standpoint,
therefore, the universal, redness, is denoted by the word ‘red’ equally when it
is used as an adjective, as in ‘The carpet is red’, and as a noun, as in ‘Red is
a primary colour’; [...] For Frege such an approach was erroneous from the
outset. The word ‘red’ used as a noun is a proper name and must stand for an
object; a predicate like ‘... is red’, on the other hand, is an expression of such a
totally different kind that we cannot suppose it to be correlated with an entity
of the same sort at all.61

The point here is that if we are willing to accept something like the hierarchy of levels
whose structure is given along the lines of the simple theory of types, it seems that the the di­
chotomy of universals and particulars must be supplanted by that of concept and object ­ not
merely because of the simple reason that the latter seems philosophically more economical and
cogent ­ but more crucially because the very rationale for the hierarchy of levels which is em­
bodied in the theory of simple types requires the distinction. It is no wonder that Frege, in his
philosophical masterpiece, theGrundlagen, also included the following among his fundamental
methodological guidelines:

Never lose sight of the distinction between concept and object.62

Russell not only does not accept the distinction which this principle puts forward, but
his most cherished and fundamental logical doctrine precludes him from even acknowledging
the consistency ­ and perhaps the very ineligibility of the distinction.

Does this point, however, completely undermines the logical reconstruction of Arithme­
tic that is carried out in Principia and the other methodological principles that guide it, e.g.,
59 One such problem, as Dummett also puts it, is that of explaining “[...] how sentences succeed in actually saying

anything, true or false, for the sentence has appeared to degenerate into a list: Russell expresses this by saying
that the proposition disintegrates under analysis” (DUMMETT, M., 1981, p.174); the problem here is indeed
one Russell knew all too well. When he held a realistic view of propositions, the problem amounted to the
question about what, after all, is the ‘glue’ that holds a proposition together. When he abandoned propositions
and adopted his multiple­relation analysis of judgment, the problem became that of explaining how a relation
‘relates’ the terms of a judging complex, an issue which was famously involved in the abandoning of Russell’s
Theory of Knowledge manuscript.

60 DUMMETT, M., 1978, p.99.
61 DUMMETT, M., 1967, p.99­100.
62 FREGE, G., 1884, p.x.
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Russell’s “Heuristic Maxim” which yields his syntatic reductionism with respect to the terms of
number theory, and the view that numbers are “logical constructions”? Absolutely not. In fact, I
would argue that a Fregean*63 interpretation of the formal language of Principia lends a stronger
plausibility to Principia’s eliminative approach.

For one thing, once the Axiom of Reducibility is re­interpreted in terms of a Fregean*
conception of concepts and relations, the very statement of the axiom of amounts to an assump­
tion that is shared those who employ some version of second and higher­order Logic like that
presupposed by those who hold a Neo­Fregean or Abstractionist form of Logicism, namely, an
impredicative principle of comprehension for variables of arbitrary simple type whose range
comprises concepts and relations conceived as essentially predicative, i.e., not objects or in­
dividuals any sort. This, of course does not settle the complex issues surrounding second and
higher­order logics, in particular those surrounding impredicativity, but it makes the starting
point of the Russellian approach the same as that of many who advocate other forms of Logi­
cism and those who assume that impredicative second and higher­order logics are worthy of the
name64.

Moreover, if one follows Frege in assigning to predicates and relation­symbols a refe­
rence that is itself incomplete or ‘unsaturated’, a strategy for further justifying a Russellian form
of syntactic reductionism with respect to number terms becomes available. As we discussed,
the fundamental issue with syntactic reductionism centers around motivating the elimination
paraphrase on the face of the intrinsic plausibility of treating such terms as singular terms. The
paradigmatic approach for refusing reductionism is that put forth by Wright, who refuses “the
possibility that” once we “discard the preconceptions inbuilt into the syntax of our arithmetical
language” we may “[...] find in reality there are no natural numbers, that our old way of spea­
king we had not succeeded in referring to anything”65; Wright finds this possibility unacceptable
because he assumes that if we have an appropriate criterion for determining the truth conditi­
ons of sentences containing singular number­terms this settles the question of whether or not
numbers are objects. Well, once we ascribe reference to predicates and we show that number
terms may after all be conceived as higher­order concepts whose conditions of assertibility are
exactly analogous to that of numerically definite quantifiers, we may distinguish a criterion for
the existence of numbers as objects from a criterion of existence for numbers as concepts. This
suggestion appears in the following passage of Dummett’s commentary of Frege’s Philosophy
of Language:

63 Recall (cf. previous footnote 251 of chapter 2) that given the peculiarities of Frege’s actual formulation of his
Logic I refrained from calling a predicate calculus with structured variables a proper Fregean language, but
found it more appropriate to call it a Fregean* language.

64 And although argument by consensus is certainly not decisive, it must be noted that both of these groups are
quite well­represented in the literature.

65 WRIGHT, C., 1983, p.14.
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The criterion for the existence of a number considered as an object thus differs
from the criterion for the existence of the corresponding second­level concept
in just the same way as the criterion for the existence of a color considered as
an object differs from the criterion for the existence of the corresponding first­
level concept. Suppose there were only 8 objects in the universe. Then there
would still be such a thing as there being nine things of a certain kind (nine
objects falling under a given concept). The second­level predicate “There are
just nine a’s such that ϕ(a)” would still have a reference: it would be irrelevant
that there would be no concept to which it applied. But the symbol “9”, when
used as a singular term, as the name of an object, would have no reference: for
if “9” is defined, say, as the “number greater than 8”, there would be no concept
such that the number of objects falling under it was one greater than 8.66

If we follow Russell in contextually eliminating number­terms by employing higher­
order logic ­ as do Landini and Klement in their Principia­inspired reconstructions of Arithmetic
­ and follow Frege in assigning a reference to predicates that is itself incomplete, i.e., not an
object, then we have precisely a way of avoiding the situation that Wright finds unacceptable ­
i.e., that we end up discovering that number­term did not after all have a reference: as he put it,
that “[...] the scales having dropped from our eyes, as it were, and in reality there are no natural
numbers, that our old way of speaking we had not succeeded in referring to anything”67. On the
contrary, number­terms do have a reference, only not to objects. Embedded within a Fregean*
conception of predicates and relations, Russellian number­terms refer to quantifier­like concepts,
so they have a reference, only not to objects.

This, of course, does not settle the question of whether Logicism must dispense with a
conception of numbers as objects nor whether it requires it and, again, it is needless to say that
formidable problems remain and that new ones arise for the Russellian approach when such a
move is made. Also, it is clear by this point that we have drifted away considerably from Rus­
sell’s own views on Logic, Semantics and Metaphysics. We have, in particular, left behind the
doctrine that above all others shaped the development of Russell’s views on Mathematical Phi­
losophy, namely the doctrine of the unrestricted variable and the univocity of being. Still, the
approach does justice to a central aspect of Russell’s views on Mathematical Philosophy which
was ironically developed precisely to preserve this doctrine that is left behind at this point, na­
mely: the idea that number­terms are incomplete symbols, not singular terms. The approach
suggested here provides a way to keep Logicism alive and without the need to resort to any
postulated specific ontology of numbers. Numbers are construed in terms of quantificational
structures, as Landini puts it68, and the vocabulary of Arithmetic remains that of higher­order lo­
gic. Despite possible objections and problems that can be raised, I think we may thus claim that,
after all, that there may be still a quite substantial sense in which Russell’s Logicism is preserved
as a viable research program and also that the works of many contemporary Russellian scholars,
in particular those of Landini and Klement, have established quite clearly that engaging Rus­
66 DUMMETT, M., 1981, p.263.
67 WRIGHT, C., 1983, p.14.
68 LANDINI, G., 2011b, p.183.
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sell’s works on Mathematical Philosophy and Russellian­inspired approaches to the Philosophy
of Mathematics are worthwhile serious consideration and further research from contemporary
philosophers of Mathematics, in particular to those who recognize or are willing to defend that
Logicism may not be dead after all.

As is well known, Quine dedicated his finest work on Set Theory ­ Set Theory and its
Logic ­ to Russell. As is characteristic of Quine, one specific trait of that work ­ which he, in fact
inherited from Russell ­ is the effort put in minimizing existential commitments. When notified
in personal correspondence that the book was written in his honor, Russell ­ who was ninety
years old then ­ was flattered. As Quine reports, Russell responded at the end of October of
1962, with a letter that shows a mixture of appreciation, concern and enthusiasm wrapped in his
characteristic wit and humor:

I am highly honored and much pleased that you wish to dedicate your forthco­
ming book to me. If Kennedy and Khrushchev permit, I shall read it as soon as I
get it, but, at present, it looks very doubtful whether any book not yet published
ever will be.
I shall be interested to see how you manage with weakened existence axioms.
I always particularly admire your symbolic virtuosity and I am sure you will
manage the job better than anybody else would69.

The above display of wit also shows that more than five decades after Russell set himself
the task of establishing Logicism, he still kept his concerns about the ontological commitments
of Logic, Set Theory and Mathematics ­ concerns that I tried to emphasize as among the most
fundamental for the development of his thought ­ close to his chest, even under the threat of
nuclear fallout. Also, a year after after receiving the book, Russell wrote the following to him:

Thank you warmly for sending me your book on Set Theory, and still more
warmly for the dedication and inscription, both of which gave me the greatest
pleasure. [...] I found your dedication particularly gratifying because so many
logicians now­a­days seem to consider Principia Malhemalica worthless. I do
not at all mind any number of emendations, but I like to think that, considering
its date, it was not without merit. It is comforting to find that you think so.70

I hope that this dissertation may have also contributed, at least a little, in showing that
Principia Mathematica71 can be said to be many things, but worthless is not one of them.
69 QUINE, W., 1988, p.229.
70 QUINE, W., 1988, p.229­30.
71 And Russell works on Mathematical Philosophy in general, for that matter.
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Note on the Organization and Annotation of the Bibliography

The bibliography below is divided in three parts. The first contains all referenced texts
of Russell, including published papers, books and unpublished manuscripts, plus the works co­
authored by Russell and Whitehead. The second consists of collections of Russell’s papers. The
third consists of works by other authors. The bibliography includes works quoted and referen­
ced in footnotes; there are a few sources that were consulted but not explicitly referenced (e.g.,
textbooks in Mathematical Logic and Set Theory). All references to published papers and un­
published manuscripts of Russell are to the volumes of Russell’s Collected Papers. In each
published paper the original reference is enclosed within brackets, as in:

RUSSELL, B. On Denoting. In: URQUHART, A. (ed.). The Collected Papers of
Bertrand Russell vol 3: Foundations of Logic 1903­05. London: Routledge, 1994,
pp. [First published in:Mind, vol. 14, n. 56, 1905, pp. 479­493] [1905a]

In some primary sources of historical importance other than Russell’s works this is also indicated.
If a paper by Russell was first published in an idiom other than English, this is enclosed in
brackets as follows:

RUSSELL, B. General Theory of Well­Ordered Series. In: MOORE, G. The Col­
lected Papers of Bertrand Russell Volume 3: Towards The Principles of Mathema­
tics. London: Routledge, 1993, pp.384­421. [First published as: Theorie generale des
series bien­ordonnées. In: Revue de mathematiques, vol.8, pp.12­43.] [1902a]

Again, this is also indicated for other important primary sources. If a paper of Russell which
was written in an idiom other than english was first published before the Collected Papers this
is also indicated, as follows:

RUSSELL, B. On the Axioms of the Infinite and the Transfinite. In: SLATER,
J. (ed.). The Collected Papers of Bertrand Russell vol.6: 1909­13. London: Rou­
tledge, 1992, pp.41­53. [Orignally published as: Sur les axiomes de l’infini et du
transfini. In: Séances Soc. Math. France, 1911, pp.22­35; first published in english
in: GRATTAN­GUINNESS, I. Dear Russell, Dear Jourdain. London: Duckworth,
1977, pp.162­175.] [1911c]

If a cited work of Russell is an unpublished manuscript this is also disclosed in brackets. If
the manuscript was previously published in a volume other than the Collected Papers, this is
indicated as follows:
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RUSSELL, B. On The Substitutional Theory of Classes and Relations. In: MO­
ORE, G. The Collected Papers of Bertrand Russell Volume 5: Towards Principia
Mathematica. London: Routledge, 2014, pp.243­261. [Manuscript. first published in:
LACKEY, D. (ed.). Essays in Analysis. New York: Routledge, 1973, pp.165­189.]
[1906a]

This is also indicated for some primary sources other than works of Russell (mainly works of
Frege and Peano). For works of Russell and original sources of historical importance, the original
year of publication is always used in citations throughout the present work. As indicated above,
the year used for citations is enclosed within brackets in bold accompanied by italic lowercase
letters whenever more than one work by the same author with the same publication year is
referenced. No conventions for abbreviations are adopted.

Below follows a quick reference list of Russell’s cited works72:

1901a Recent Work on the Principles of Mathematics (orMathematics and the Metaphysi­
cians).

1901b* Recent Italian Work on the Foundations of Mathematic.

1902 The Logic of Relations with Some Applications to the Theory of Series.

1903 The Principles of Mathematics.

1904a Meinong’s Theory of Complexes and Assumptions.

1904b The Existential Import of Propositions.

1905a On Denoting.

1905b On Some Difficulties in the Theory of Transfinite Numbers and Order Types.

1905c* On Fundamentals.

1905d* Necessity and Possibility.

1905e* Letter to Hardy on Substitution.

1905f* On Substitution (22 December 1906).

1905g On the Relation of Mathematics to Symbolic Logic.

1906a* On The Substitutional Theory of Classes and Relations.
72 Those references marked with * are unpublished papers or manuscripts. As observed in the annotation of the

bibliography, all citatiotions of Russell’s published and unpublioshed papers (and manuscripts) refer to the Col­
lected Papers. Of course, for complete bibliographical information the reader should consult the bibliography
at the end of the dissertation.
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1906b The Paradoxes of Logic (or Insolubilia and Their Solution Through Symbolic Lo­
gic).

1906c The Theory of Implication.

1906d* On Substitution (April/May 1906).

1906e* Logic in Which Propositions are Not Entities.

1906f* The Paradox of the Liar.

1906g* Multiplicative Axiom.

1906h* List of Propositions.

1906i* On the Functional Theory of Propositions, Classes and Relations.

1907a On the Nature of Truth.

1907b The Regressive Method of Discovering the Premises of Mathematics.

1907c* A Paradox of the Substitutional Theory (Letter to Hawtrey from 22 January).

1907d* Types.

1907e* On Types.

1907f* Notes on Types.

1907g* Fourth Theory.

1907h* Fundamentals.

1907i* Individuals.

1908 Mathematical Logic as Based on the Theory of Types.

1910a The Theory of Logical Types.

1910b On the Nature of Truth and Falsehood.

1911a The Philosophical Importance of Mathematical Logic.

1911b Knowledge by Acquaintance and Knowledge by Description.

1911c On the Axioms of the Infinite and the Transfinite.

1911d Analytic Realism.

1912a On the Relations of Universals and Particulars.

1912b The Problems of Philosophy.

1912c* What is Logic?

1913* Theory of Knowledge: The 1913 Manuscript.

1914a Our Knowledge of the External World as a Field for Scientific Method in Philo­
sophy.
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1914b The Relation of Sense­Data to Physics.

1918 The Philosophy of Logical Atomism.

1919a Introduction to Mathematical Philosophy.

1919b On Propositions: What They Are and How They Mean.

1924 Logical Atomism.

1937 Introduction to the second edition of The Principles of Mathematics.

1944 My Mental Development.

1950 An Inquiry Into Meaning and Truth.

1957 Logic and Ontology.

1959 My Philosophical Development.

1967 The Autobiography of Bertrand Russell.
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APPENDIX A – The Ancestral and the
Peano Postulates in Principia

A.1 Guidelines for Reading This Appendix

We do not include the steps or theorems that would fully justifiy the introduction of
the previous theorems in a line of proof for that would require a lot of space. We do include,
however, some supplementary steps to make clear the general outline of the proofs. For a proof
of the Peano postulates in a modern (simple) theory of types of sets that is faithful to Principia’s
main traits, see the next Appendix.

We follow the general style of proofs employed by William Hatcher in his The Logical
Foundations of Mathematics1. Our goal was to preserve the general structure of Russell and
Whitehead’s proofs while balancing readabilty and concision. The guidelines for reading the
translated proofs are the following.

l,l’,MP. This indicates the use of the rule ofModus Ponens from two previous lines.

Taut. This indicates that the justification for introducing a formula on the line l is the fact
that it is a tautology.

l,Taut,MP. This Indicates a step that uses some tautological substitution and/or some tautology
(or tautologies) and the rule of Modus Ponens.

This will be used just like Whitehead and Russell use their Transp. justification for introducing
lines in proofs, as a means to shorten proofs when the the steps abbreviated are mere use of
1 HATCHER, W., 1980.

473



propositional logic [we include elimination of hypothesis in conditional proofs under this case].

For example :

{...}l. (p ∧ q) −→ (Fx −→ Gx) [...]

{...}l′. (p ∧ q) −→ (¬Fx ∨Gx) l, l′ Taut,MP.

Abbreviates :

{...}l. (p ∧ q) −→ (Fx −→ Gx) [...]

{...}m (Fx −→ Gx) −→ (¬Fx ∨Gx) Taut.

{...}n ([l] −→ ([m] −→ ((p ∧ q) −→ (¬Fx ∨Gx)) Taut.

{...}p [m] −→ ((p ∧ q) −→ (¬Fx ∨Gx) l, n,MP.

{...}l′. (p ∧ q) −→ (¬Fx ∨Gx) m, p,MP.

l,Pl. This indicates a step that uses laws of predicate logic (or predicate logic and propo­
sitional logic).

For example :

{...}l. (∃y)Hy −→ (x)(Fx −→ Gx) [...]

{...}l′. (x)((∃y)Hy −→ (Fx −→ Gx)) l,Pl.

Abbreviates :

{...}l. (∃y)Hy −→ (x)(Fx −→ Gx) [...]

{...}m. [l] −→ (x)((∃y)Hy −→ (Fx −→ Gx)) Pl Theorem.

{...}l′ (x)((∃y)Hy −→ (Fx −→ Gx)) l,m,MP.

l,l’,Pl. This indicates a step that uses laws of predicate logic with identity.

For example :

{...}l. Fa [...]

{...}l′ a = b [...]

{...}l′′. F b l, l′,Pl = .

Abbreviates :

{...}l. Fa [...]

{...}m. a = b [...]

{...}n. a = b −→ (Fa←→ Fb) Pl = Theorem.

{...}l′ Fb l,m, n,Taut,MP.
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km·n This indicates that the justification for introducing the formula is the fact that it is
previously proved theorem of Principia.

Example :

{...}l. 0 ∈ N ∗120 · 12.

[...]Df. This indicates that the justification for introducing the formula is a definition of
Principia (and the fact that the definiendum can always be substitued by the defini­
ens).

Example :

{...}l. 0 ∈ N [...]

{...}l {α : α = ∅} ∈ N l, 0Df.

l,UG. This indicates the use of the rule of Universal Generalization (i.e., from ϕ,infer
(x)ϕ).

l,UI. This indicates the use of the rule of Universal Instantiation (i.e., from (x)ϕ[x],infer
ϕ[x/y]).

l,m,Ext. This indicates the use of laws equivalent to or derived from the fact that two classes
α and β are identical iff they have the same members.

Example :

{...}l. (x)(Fx←→ Gx) [...]

{...}m α = {x : Fx} [...]

{...}l α = {x : Gx} l,m,Ext.

l,Comp. This indicates that some principle of comprehension for concepts or relations is
needed for this step.

Example :

{...}l. (F )(Fx −→ (Fx ∨Gx) [...]

{...}m. (∃y)(Hx ∧Rxy) −→ (∃y)((Hx ∧Rxy) ∨Gx) Comp, l

[
(∃y)Hz ∧Rzy

Fz

]
,UI.
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A.2 The Ancestral

This appendix transcribes and translates the proofs of the most useful theorems about
Whithead and Russell’s version of Frege’s ancestral. The main definition is:

∗90.01 R∗ =df {< x, y >: x ∈ C(R) ∧ (µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈
µ)]}

Which is embodied in the following theorem:

∗90 · 111 xR∗y ←→ [(x ∈ C(R) ∧ (µ)((z, w)(z ∈ µ ∧ zRw −→ w ∈ µ)) −→ y ∈ µ)]

This is the most used proposition in ∗90 and is proved just by doing what we did, unpacking the
successive definitions k90·01, k31·02 and k37·01.

Now, passing to the actual theorems, first we have:

k90·112 ⊢ xR∗y ϕz zRw ⊃z,w ϕw ϕx ⊃ ϕy

Dem.

⊢ ∗90 · 111 ẑ(ϕz)
µ

⊃

⊢ xR∗y ⊃ z ϵ ẑ(ϕz) zRw ⊃z,w w ϵ ẑ(ϕz) x ϵ ẑ(ϕz) ⊃ y ϵ ẑ(ϕz)

[k20·03] ⊃ ϕz zRw ⊃z,w ϕw ϕx ⊃ ϕy (1)
⊢ (1) Imp ⊃ ⊢ Prop

We may translate it as follows:

∗90 · 112 (xR∗y ∧ (z)(w)((ϕz ∧ zRw) −→ ϕw) ∧ ϕx) −→ ϕy

Λ1. xR∗y ←→

x ∈ C(R) ∧ (µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈ µ)] ∗90 · 111, R∗Df.

Λ2. xR∗y −→

(µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈ µ)] 1,Taut,MP.

Λ3. xR∗y −→

(z, w)((z ∈ {x : ϕx} ∧ zRw) −→ w ∈ {x : ϕx})

−→ y ∈ {x : ϕx}) 2[µ/{x : ϕx}],UG.

Λ4. x ∈ {x : ϕx} ←→ ϕx ∈ Df, ∗20 · 03.

Λ5. xR∗y −→ [(z, w)((ϕz ∧ zRw) −→ ϕw) −→ ϕy)] 3, 4,Taut,MP.

Λ6. [xR∗y ∧ (z, w)((ϕz ∧ zRw) −→ ϕw)] −→ ϕy 5,Taut,MP.
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Next, we have the theorem which asserts the reflexivity of R∗ within the field of R:

k90·12 ⊢ x ϵC‘R ≡ xR∗x

Dem.
⊢ k90·1 ⊃⊢ xR∗x ⊃ x ϵC‘R (1)
⊢ k3·27 k10·11 ⊃⊢ R̆“µ⊂µ x ϵ µ ⊃µ x ϵ µ

[k3·21] ⊃⊢ x ϵC‘R ⊃ x ϵC‘R R̆“µ⊂µ x ϵ µ ⊃µ x ϵ µ

[k90·1] ⊃ xR∗x (2)
⊢ (1) (2) ⊃⊢ Prop

We can translate it as:

∗90 · 12 x ∈ C(R)←→ xR∗x

Λ1. xR∗y ←→

x ∈ C(R) ∧ (µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈ µ)] ∗90 · 1, R∗Df.

Λ2. xR∗x −→ x ∈ C(R) 1,Taut,MP.

Λ3. [(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈ µ) ∧ x ∈ µ] −→ x ∈ µ Taut.

Λ4. (µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈ µ) ∧ x ∈ µ] −→ x ∈ µ 3,UG.

Λ5. x ∈ C(R) −→ (x ∈ C(R) ∧ [4]) Taut.

Λ6. (x ∈ C(R) ∧ [4)]←→ xR∗x ∗90·1,R∗Df.

Λ7. x ∈ C(R) −→ xR∗x 5, 6,Taut,MP.

Λ8. Prop. 2, 7,Taut,MP.

Next we have the theorem which asserts that any relation R is contained in its ancestral:

k90·151 ⊢ R ·⊂ R∗

Dem.
k11·1 ⊃⊢ z ϵ µ zRw ⊃z,w w ϵµ ⊃ x ϵ µ xRy y ϵ µ

[Exp.Comm] ⊃ xRy ⊃ x ϵ µ ⊃ y ϵ µ (1)
⊢ (1) ⊃ ⊢ xRy ⊃ z ϵ µ zRw ⊃z,w w ϵµ x ϵ µ ⊃µ y ϵ µ (2)
⊢ (2) k10·11 21 ⊃ ⊢ xRy ⊃ z ϵ µ zRw ⊃z,w w ϵµ x µ ⊃µ y ϵ µ

[k90·111 k33·17] ⊃ xR∗y ⊃⊢ Prop

Its translation is straightforward:
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∗90 · 151 (x)(y)(xRy −→ xR∗y)

Λ1. (z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ ((x ∈ µ ∧ xRy) −→ y ∈ µ) PL, ∗11 · 1.

Λ2. [(x ∈ µ ∧ xRy) ∧ (z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ)] −→ y ∈ µ 1,Taut,MP.

Λ3. xRy −→

[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) ∧ x ∈ µ −→ y ∈ µ] 2,Taut,MP.

Λ4. (µ)[3] 3,UG.

Λ5. xRy −→

(µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) ∧ x ∈ µ −→ y ∈ µ] 4,PL.

Λ6. xR∗y ←→

x ∈ C(R) ∧ (µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈ µ)] ∗90 · 111.

Λ7. xRy −→ (x ∈ C(R) ∧ y ∈ C(R)) ∗33 · 17.

Λ8. xRy −→

[x ∈ C(R) ∧ (µ)[(z, w)((z ∈ µ ∧ zRw) −→ w ∈ µ) −→ y ∈ µ)]] 5, 7,Taut,MP.

Λ9. Prop. 8, ∗90 · 01, R∗Df.

Next we have a group of propositions which are expressed using Principia’s notation of relative
products. Recall that the relative product of two relations R and S is defined as:

k34·01 R|S = x̂ŷ{( E

y)xRy ySz} Df

Which, translated, is the relation R|S such that:

∗34 · 1′ xR|Sz ←→ (∃y)(xRy ∧ ySz)

Almost all the proofs are straightforward. The only (somewhat laborious) proof is that of the
proposition which asserts that the relative product R/R∗ of a relation R and its ancestor is con­
tained in the ancestor of R (k90·172), because it is proved via the stronger proposition which
asserts that the relative product of R­ancestry and itself is contained in itself, i.e.,R∗ is transitive.
First we have:
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k90·16 ⊢ R|R∗ ·⊂ R∗

Dem.
k11·1 ⊃⊢ z ϵ µ zRw⊃z,w w ϵµ ⊃ y ϵ µ yRv ⊃ v ϵ µ (1)
⊢ k90·11 k10·1 Fact ⊃
⊢ xR∗y yRv ⊃ z ϵ µ zRw⊃z,w w ϵµ x ϵ µ ⊃ y ϵ µ yRv (2)
⊢ (1) (2) ⊃
⊢ xR∗y yRv ⊃ z ϵ µ zRw⊃z,w w ϵµ x ϵ µ ⊃ v ϵ µ. (3)
⊢ (3) k10·11·21 k90·111 ⊃
⊢ xR∗y yRv ⊃.xR∗v (4)
⊢ (4) k10·11·21 k34·1 ⊃ Prop

This asserts that the relative product of R and its ancestral is contained in the ancestral of R, that
is: for every x and z such that there is a y such that x has the relation R to y and y is an ancestral
of z with respect to R, x is an ancestral of z with respect to R. Once again, we may translate it
following Principia’s proof very closely:

∗90 · 16 (x)(v)[(∃y)(xR∗y ∧ yRv) −→ xR∗v]

1. (z)(w)[z ∈ µ ∧ zRw −→ w ∈ µ] −→ (y ∈ µ ∧ yRv −→ v ∈ µ) PL.

2. xR∗y −→

(z, w)(z ∈ µ ∧ zRw −→ w ∈ µ) −→ y ∈ µ) ∗90 · 111

3. xR∗y ∧ yRv −→

[(z, w)(z ∈ µ ∧ zRw −→ w ∈ µ) ∧ x ∈ µ −→ y ∈ µ ∧ yRv] 2,Taut,MP.

4. xR∗y ∧ yRv −→

[(z)(w)(z ∈ µ ∧ zRw −→ w ∈ µ) ∧ x ∈ µ −→ v ∈ µ] 1, 3,Taut,MP.

5. (µ)[4] 4,UG.

6. xR∗y ∧ yRv −→

(µ)[(z)(w)(z ∈ µ ∧ zRw −→ w ∈ µ) ∧ x ∈ µ −→ v ∈ µ] 5,PL.

7. xR∗y −→ x ∈ C(R) ∗33 · 17.

8. xR∗v ←→

[(x ∈ C(R) ∧ (µ)((z, w)(z ∈ µ ∧ zRw −→ w ∈ µ)) −→ y ∈ µ)] ∗90 · 111

9. xR∗y ∧ yRv −→ xR∗v 7, R∗Df.

10. (y)(xR∗y ∧ yRv −→ xR∗v) 9,UG.

11. (∃y)(xR∗y ∧ yRv) −→ xR∗v 10,PL.

12. (x)(v)[(∃y)(xR∗y ∧ yRv) −→ xR∗v] 11,UG.

Next, we have:
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k90·161 ⊢ S ·⊂ R∗ ⊃ S|R ·⊂ R∗

Dem.
⊢ k34·34 ⊃⊢ Hp ⊃ S|R ·⊂ R∗|R (1)
⊢ k90·16 ⊃⊢ Prop

This states that if a relation S is contained in the ancestor of R, then the relative product of S
and R is contained in the ancestor of R. This is quite easily proved from a ∗90 · 16 and a lemma
from ∗34 which assserts that if P, Q, T, U are relations such that P is contained in Q and T is
contained in U, then the relative product of P and T is contained in the relative product ofQ and
U :

∗90 · 161 (x)(y)(xSy −→ xR∗y) −→ (x)(z)((∃y)(xSy ∧ yRz) −→ xR∗z)

{1}1. (x)(y)(xSy −→ xR∗y) Hp.

Λ2. (P,Q, U, T ){[(w, v)(wPv −→ wQv) ∧ (w, v)(wTv −→ wUv)]

Λ −→ (w, v)[(∃u)(wPu ∧ uTv) −→ (∃u)(wQu ∧ uUv)]} ∗34 · 34.

Λ3. (Q,U, T ){[(w, v)(wSv −→ wQv) ∧ (w, v)(wTv −→ wUv)]

Λ −→ (w, v)[(∃u)(wSu ∧ uTv) −→ (∃u)(wQu ∧ uUv)]} [P/S]UI.

Λ4. (U, T ){[(w, v)(wSv −→ wR∗v) ∧ (w, v)(wTv −→ wUv)]

Λ −→ (w, v)[(∃u)(wSu ∧ uTv) −→ (∃u)(wR∗u ∧ uUv)]} [Q/R∗]UI.

Λ5. (T ){[(w, v)(wSv −→ wR∗v) ∧ (w, v)(wTv −→ wRv)]

Λ −→ (w, v)[(∃u)(wSu ∧ uTv) −→ (∃u)(wR∗u ∧ uRv)]} [U/R]UI.

Λ6. (w, v)(wSv −→ wR∗v) ∧ (w, v)(wRv −→ wRv)

Λ −→ (w, v)[(∃u)(wSu ∧ uRv) −→ (∃u)(wR∗u ∧ uRv)]} [T/R]UI.

Λ7. (w, v)(wRv −→ wRv) PL.

{1}8. (w, v)[(∃u)(wSu ∧ uRv) −→ (∃u)(wR∗u ∧ uRv)] 1, 7,MP.

Λ9. (w, v)[(∃u)(wR∗u ∧ uRv) −→ wR∗v] ∗90 · 16

{1}10. (w, v)[(∃u)(wSu ∧ uRv) −→ wR∗v] 9,PL.

Λ11. Prop. 1, 10,Taut,MP.

Observe that the only thing that extends the proof are the successive separate applications of UI
in steps 3­6, which we made explicit in order to make clear what is going on. This proposition
is proved as a lemma for the next, which has more direct applications, for instance in the theory
of series:

k90·162 ⊢ R|R ·⊂ R∗ [k90·151·161]

480



This asserts that for every x and z, if there is a y such that x has R to y and y has R to z, then x is
an ancestor of z with respect to R. The case of finite Arithmetic makes its meaning clear: let R
be the relation of immediate predecessor; for every x and z, if there is a y such that x precedes y
and y precedes z, then x is an ancestor of z with respect to the predecessor relation. TransLating
the proof we have the quite straightforward:

∗90 · 162 (x)(z)((∃y)(xRy ∧ yRz) −→ xR∗z)

Λ1. (x)(y)(xRy −→ xR∗y) ∗90 · 151.

Λ2. (S)[(x)(y)(xSy −→ xR∗y) −→ (x)(z)((∃y)(xSy ∧ yRz) −→ xR∗z)] ∗90 · 161,UG.

Λ3. (x)(y)(xRy −→ xR∗y) −→ (x)(z)((∃y)(xSy ∧ yRz) −→ xR∗z) [S/R]UI.

Λ4. Prop. 1, 3,MP.

The next two proofs are, by far, the trickiest to translate. First, we have:

k90·163 ⊢ R̆“
←−
R ‘x⊂←−R ∗‘x [k37·301 ·32·19 k90·16]

This proposition, together with k37·301 that is referenced in its proof is a good example of how
several of Principia’s propositions just indicate how the same facts can be written in different
ways. Theorem k37·301 is the counterpart for k37·3, both conerning respectively the notations
−→
R and

←−
R , respectively. They only provide proof for k37·3, but it is trivial to retrace step by step

how they would prove k37·301: “

k37·3 ⊢ {sg‘(P |Q)}‘z = P “
−→
Q ‘z k37·301⊢ {gs‘(P |Q)}‘x = Q̆“

←−
P ‘x

Dem. Dem.
⊢ k32·23·13 ⊃ ⊢ k32·231·131 ⊃
⊢ {sg‘(P |Q)}‘z = x̂{(P |Q)} ⊢ {gs‘(P |Q)}‘x = ẑ{(P |Q)}
[k34·1] = x̂{( E

y) xPy yQz} [k34·1] = ẑ{( E

y) xPy yQz}
[k32·18] = x̂{(( Ey) xPy y ϵ

−→
Q ‘z} [k32·181] = ẑ{( Ey) y ϵ

←−
P ‘z yQz}

[k37·01] = P “
−→
Q ‘z ⊃⊢Prop [k31·11] = ẑ{( E

y) y ϵ
←−
P ‘z zQ̆y}

[k37·01] = Q̆“
←−
P ‘x

Now, with the compact notation Q̆“
←−
P ‘x translated as the simpler ẑ{( Ey) xPy yQz}, the

meaning of theorem k90·163 is made clear: it is just the class counterpart of proposition k90·16;
it asserts that for every z, if z belongs to the class of all v such that ( E

y)(xR∗y ∧ yRv), then z
belongs to the class of all v such that xR∗v. That is:
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∗90 · 163 (z)[z ∈ {v : (∃y)(xR∗y ∧ yRv)} −→ z ∈ {v : xR∗v}]

Which is equivalent to (w, v)[xR∗w ∧ wRv −→ xR∗v]. As Whitehead and Russell put it, this
amounts to showing that {z : xR∗z} is an hereditary class, something that is used in the proof
of the next, very important proposition, in which k90·163 is referenced. Whitehead and Russell
have:

k90·17 ⊢ R∗|R∗ = R∗

Dem.
⊢ k90·13 ⊃⊢ xR∗y. ⊃ xR∗y yR∗y

[k35·5 k10·24] ⊃ xR∗|R∗y (1)

⊢ k90·163·1
←−
R ‘x
µ

. ⊃⊢ yR∗z. ⊃ y ϵ
←−
R ‘x ⊃ z ϵ

←−
R ‘x

[k32·181] ⊃ xR∗y ⊃ xR∗z (2)
⊢ (2) Imp. ⊃⊢ xR∗y yR∗z ⊃ xR∗z

[k11·11 k34·55] ⊃⊢ R∗|R∗ ·⊂ R∗ (3)
⊢ (1) (3) ⊃⊢ Prop

The theorem states that the relative product of R∗and itself is identical with R∗. The interesting
half of the theorem are the steps (2) and (3) which actually show that R∗ is transitive and then
derive the desired result using theorem k34·55, which is:

k34·55 R|R ·⊂ S ≡ xRy yRz ⊃x,y,z xSz [k34·5 10·21]

The theorem is proved using Principia’s theorem k10·23 which is the familiar scheme from
quantification theory:

∗10 · 23 (x)(A[x] −→ B) ≡ [(∃x)A[x] −→ B] where x does not occur free in B.

We can translate the interesting half of k90·17 as a conditional proof and make explicit several
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ommited steps of the original (second half) of the proof to make it more readable:

∗90 · 17 (x)(z)[(∃y)(xR∗y ∧ yR∗z)←→ xR∗z]

{1}1. xR∗y Hp.

{2}2. yR∗z Hp.

Λ3. yR∗z −→

(µ)((w)(v)(w ∈ µ ∧ wRv −→ v ∈ µ) ∧ y ∈ µ −→ z ∈ µ ∗90 · 111.

{2}4. [(w)(v)(w ∈ {u : xR∗u} ∧ wRv −→ v ∈ {u : xR∗u})∧ 2,Taut,MP,

y ∈ {u : xR∗u}] −→ z ∈ {u : xR∗} 3[µ/{u : xR∗u}]UI.

{2}5. [(w)(v)(xR∗w ∧ wRv −→ xR∗v) ∧ xR∗y] −→ xR∗z 4,∈ Df.

{2}6. ((xR∗y ∧ yRz −→ xR∗z) ∧ xR∗y) −→ xR∗z 5, [w/y; v/z]UI.

{2}7. (xR∗y ∧ yRz −→ xR∗z) −→ (xR∗y −→ xR∗z) 6,Taut,MP.

Λ8. xR∗y ∧ yRz −→ xR∗z ∗90 · 163.

{2}9. xR∗y −→ xR∗z 8, 7,MP.

{1, 2}10. xR∗z 2, 9,MP.

Λ11. (xR∗y ∧ xR∗y) −→ xR∗z 1− 9,Taut,MP.

Λ12. (x)(y)(z)[(xR∗y ∧ xR∗y) −→ xR∗z] 11,UG.

Λ13. (R,S){(x)(z)[(∃y)(xRy ∧ yRz) −→ xSz]←→

(x)(y)(z)[(xRy ∧ yRz) −→ xSz] ∗34 · 55.

Λ14. Prop. 13[R/R∗;S/R∗]UI,

12, 13,Taut,MP.

Finally, we have the theorem which asserts that the relative product of R and its ancestral R∗ is
contained in R∗:

k90·172 ⊢ R|R∗ ·⊂ R∗

Dem.
⊢ k90·151 ⊃⊢ R|R∗ ·⊂ R∗|R∗ (1)
⊢ k90·17 ⊃ ⊢ Prop
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Which has a straightforward translation:

∗90 · 172 (x)(z)((∃y)(xRy ∧ yR∗z) −→ xR∗z)

{1}1. (∃y)(xRy ∧ yR∗z) Hp.

Λ2. (w)(y)(wRy −→ wR∗y) ∗90 · 151.

Λ3. (∃y)(xRy ∧ yR∗z) −→ (∃y)(xR∗y ∧ yR∗z) 1, 2,PL.

Λ4. (x)(z)[(∃y)(xRy ∧ yR∗z) −→ (∃y)(xR∗y ∧ yR∗z)] 3,UG.

Λ5. (x)(z)[(∃y)(xR∗y ∧ yR∗z)←→ xR∗z] ∗90 · 17.

Λ6 Prop

Note, that using the scheme k10·23 (or theorem k34·55) it follows easily from theorems k90·16,
k90·162, k90·17 and k90·172 their counterparts with universal closure, as in:

∗90 · 16 (x)(y)(z)[(xR∗y ∧ yRz) −→ xR∗z]

1. (x)(z)[(∃y)(xR∗y ∧ yRz) −→ xR∗z] ∗90 · 16

2. (∃y)(wR∗y ∧ yRv) −→ xR∗v 1,UI.

3. [(∃y)(wR∗y ∧ yRv) −→ xR∗v] −→ (y)[(wR∗y ∧ yRv) −→ xR∗v] ∗10 · 23.

4. (w)(y)(v)[(wR∗y ∧ yRv) −→ xR∗v] 2, 3,MP.

The exact same application of k10·23 yields the same for the remaining theorems.

A.3 Peano Postulates in Principia

The present appendix contains a transcription of Principia’s version of the Peano pos­
tulates 1, 2, 4 and 5 with their respective proofs, and also the chain of theorems that ‘use’ the
axiom of infinity in order to ‘prove’ the third postulate.

We also offer more ‘unpacked’ translations of the proofs so that the previous theorems
being used in them be more apparent, ignoring the subtleties involved with relative types (indi­
cated by Greek subscripts as in “NCξ induct”). We do not restore type­indexes because the types
in question are clear from context.

Let us see the proofs of the Peano Postulates in the order they appear in Principia. First,
we have :

k120·11 ⊢ α ϵNCη induct ϕξ ⊃ξ ϕ(ξ +c 1) ϕ0η ⊃ ϕα

[k120·102 k90·112]
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This is Peano 5, the postulate of induction stated in its most usual form, which follows almost
directly from the definition ofN (the proof is pratically the same as that of theorem, only applied
to the succesor relation ∗90 · 112). We translate it as:

Peano 5 (F )[(F0 ∧ (ξ)(F (ξ) −→ F (s(ξ)) −→ (α ∈ N −→Fα)]

Proof :

Λ1. α ∈ N −→

[(µ)((0 ∈ µ ∧ (ξ)(ξ ∈ µ −→ s(ξ) ∈ µ)) −→ α ∈ ξ)] NDf.

Λ2. α ∈ N −→

[0 ∈ {β : Fβ}∧

(ξ)(ξ ∈ {β : Fβ} −→ s(ξ) ∈ {β : Fβ}))

−→ α ∈ {β : Fβ}] 3[µ/{β : Fβ}],UI.

Λ3. (γ)(γ ∈ {δ : Fδ} ←→ Fγ) ∈ Df.

Λ5. α ∈ N −→ [(F0 ∧ (ξ)(Fξ −→ Fs(ξ))) −→ Fα] 2, 3,Taut,MP.

Λ6. [(F0 ∧ (ξ)(Fξ −→ Fs(ξ))) −→ (α ∈ N −→Fα)] 5,Taut,MP.

Λ7. Prop. 7,GU.

Next, we have:

k120·12 ⊢ 0 ϵNC induct
[

k120·101 0
α

]
This is the first postulate and it also follows almost directly from the definition ofN. We translate
it as:

Peano 1 0 ∈ N

Proof :

Λ1. α ∈ N←→ (µ)((0 ∈ µ ∧ (ξ)(ξ ∈ µ −→ s(ξ) ∈ µ)) −→ α ∈ ξ) NDf.

Λ2. 0 ∈ N←→ (µ)((0 ∈ µ ∧ (ξ)(ξ ∈ µ −→ s(ξ) ∈ µ)) −→ 0 ∈ ξ) 1[γ/0],UI.

Λ3. 0 ∈ µ ∧ (ξ)(ξ ∈ µ −→ s(ξ) ∈ µ)) −→ 0 ∈ ξ Tautology

Λ4. (µ)((0 ∈ µ ∧ (ξ)(ξ ∈ µ −→ s(ξ) ∈ µ)) −→ 0 ∈ ξ) 3,GU.

Λ5. Prop. 4,NDf,Taut,MP.

Next, we have:

k120·121 ⊢ α ϵNCξ induct ⊃ (α +c 1)ξ ϵNCξ induct [k90·172 k120·102]
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Which we translate as a less compact, but also straightforward proof:

Peano 2 (α)(α ∈ N −→ s(α) ∈ N)

Proof :

{1}1. α ∈ N Assumption.

Λ2. α ∈ N←→ αS∗0 120 · 102/NDf.

{1}3. αS∗0 MP, 1, 2.

Λ4. (z, y, x)(xSy ∧ yS∗z) −→ xS∗z 90 · 172.

Λ5. (y, x)(xSy ∧ yS∗0) −→ xS∗0 4[z/0],UI.

Λ6. (x)(xSα ∧ αS∗0) −→ xS∗0 5[y/α]UI.

Λ7. (s(α)Sα ∧ αS∗0) −→ s(α)S∗0 6[x/s(α)]UI.

Λ8. (γ)(s(γ)Sγ) sDf,PL.

Λ9 s(α)Sα 8,UI.

{1}10. s(α)S∗0 3, 7,Taut,MP.

{1}11. s(α) ∈ N 10,NDf.

Λ12. Prop. (1)− (10),Taut,MP,GU.

Next, we have:

k120·124 ⊢ α +c 1 ̸= 0

Dem.
⊢ k·110·4 Transp ⊃⊢ α ∼ ϵNC ⊃ α +c 1 = Λ

[k101·12] ⊃ α +c 1 ̸= 0 (1)
⊢ ·k110·632 ⊃⊢ α ϵNC ξ ϵ α +c 1 ⊃ E! ξ
[k24·63] ⊃ ξ ∼ ϵ α +c 1

[k54·102] ⊃ α +c 1 ̸= 0 (2)
⊢ (1) (2) ⊃Prop
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This is te fourth postulate, which asserts that zero succeds no natural number. We translate it as:

Peano 4 (α)(s(α) ̸= 0)

Proof : (Proof by cases)

{1}1. α /∈ NC [Case(a) : α /∈ NC]

Λ2. s(α) ̸= ∅ −→ (α ∈ NC ∧ α ̸= {∅}) ∗ · 110 · 4.

Λ3. α /∈ NC −→ s(β) = ∅ Taut, 2,MP.

{1}4. s(β) = ∅ 1, 3,MP.

{1}5. 0 ̸= ∅ ∗101 · 12

{1}6. s(α) ̸= 0 4, 5,PL = .

{7}7. α ∈ NC [Case(b) : α ∈ NC]

Λ8. (µ)(µ ∈ NC −→ (s(µ) = {ξ : (∃y)(y ∈ ξ ∧ ξ − {y} ∈ α})) ∗110 · 632

Λ9. α ∈ NC −→ (s(α) = {ξ : (∃y)(y ∈ ξ ∧ ξ − {y} ∈ α}) 8,UI.

{7}10. s(α) = {ξ : (∃y)(y ∈ ξ ∧ ξ − {y} ∈ α} 7, 9,MP.

{7}11. (ξ)(ξ ∈ s(α) −→ ξ ̸= ∅) 10, ∅Df,PL.

Λ12. (κ)(∅ /∈ κ←→ (ξ)(ξ ∈ κ −→ ξ = ∅)) ∗24 · 63

Λ13. ∅ /∈ s(α)←→ (ξ)(ξ ∈ s(α) −→ ξ = ∅) 12[κ/s(α)]UI.

{7}14. ∅ /∈ s(α) 11, 13,Taut,MP.

Λ15. (ξ)(ξ ∈ 0←→ ξ = ∅) ∗54 · 102

Λ16. Prop. 15,Ext.

The following proposition embodies the definition of the Axiom of Infinity. We need it in oder
to prove the remaining lemmas for Principia’s version of Peano 3:

k120·3 ⊢ Infin ax ≡ α ϵNC induct ⊃α

E!α [(k120·03)]

Passing now to the lemmas for Principia’s version of Peano 3, we have:

k120·31 ⊢ E!Nc‘α +c 1 Nc‘α +c 1 = Ncβ +c 1 ⊃ Nc‘α = Nc‘β αsmβ
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Dem.
⊢ k110·63 ⊃⊢ Nc‘α +c 1 = Nc‘α +c 1 ≡
( E

γ, y) γ smα y ∼ ϵ γ ξ = γ ��ι‘y ≡ξ ( E

δ, z) δ sm β z ∼ ϵ δ ξ = δ ��ι‘z
[k10·1]⊃ γ smα y ∼ ϵ γ ⊃ ( Eδ, z) δ sm β z ∼ ϵ δ γ ��ι‘y = δ ��ι‘z
[k73·72·3] ⊃ ( E

δ, z) δ sm β γ sm δ

[k73·32] ⊃ γ sm β

[k73·32] ⊃ α sm β (1)
⊢ k110·63⊃⊢ Hp ⊃ ( Eγ, y) γ smα y ∼ ϵ γ (2)
⊢ (1) (2) k100·321 ⊃ Prop

This theorem states that if the successor of the cardinal number of a class α is (a) non­empty and
(b) identical to the succesor of the cardinal number of a class β, then (c) the cardinal number of
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the class α is identical to the cardinal number of the class β and α and β are similar.

Peano 3.1 s(c(α)) ̸= ∅ ∧ s(c(α)) = s(c(β)) −→

(c(α) = c(β) ∧ α ≈ β)

Proof :

{1}1. s(c(α)) ̸= ∅ Assumption.

{2}2. s(c(α)) = s(c(β) Assumption.

Λ3. (µ)(s(c(µ)) = {ξ : (∃y)(y ∈ ξ ∧ ξ − {y} ≈ µ}) ∗110 · 63.

Λ4. s(c(α)) = s(c(β))←→

(ξ)[(∃γ, y)(γ ≈ α ∧ y /∈ γ ∧ ξ = γ ∪ {y})←→

(∃δ, z)(δ ≈ β ∧ z /∈ δ ∧ ξ = δ ∪ {z})] 2, 3,Several Steps.

{2}5. (ξ)[(∃γ, y)(γ ≈ α ∧ y /∈ γ ∧ ξ = γ ∪ {y})←→

(∃δ, z)(δ ≈ β ∧ z /∈ δ ∧ ξ = δ ∪ {z})] 4,Taut,Mp.

{1}6. s(c(α)) ̸= ∅ −→ (∃γ, y)(γ ≈ α ∧ y /∈ γ) ∗110 · 63.

{2}7. (γ ≈ α ∧ y /∈ γ) −→

(∃δ, z)(δ ≈ β ∧ z /∈ δ ∧ (γ ∪ {y}) = (δ ∪ {z})) 5[ξ/γ ∪ {y}],UI.

{1, 2}8. (∃δ, z)(δ ≈ β ∧ z /∈ δ ∧ (γ ∪ {y}) = (δ ∪ {z})) 1, 6, 7,Taut,MP.

Λ9. (γ ∪ {y}) = (δ ∪ {z}) −→ (γ ∪ {y}) ≈ (δ ∪ {z}) ∗73 · 3.

Λ10. (γ ∪ {y}) ≈ (δ ∪ {z}) ∧ y /∈ γ ∧ z /∈ δ −→ γ ≈ δ ∗73 · 72.

{1, 2}11. γ ≈ δ 8− 10,PL,Taut,MP.

Λ12. γ ≈ δ −→ (δ ≈ β −→ γ ≈ β) ∗73 · 32.

Λ13. α ≈ γ −→ (γ ≈ β −→ α ≈ β) ∗73 · 32.

{1, 2}15. α ≈ β 11− 13,Taut,MP.

{1, 2}16. α ≈ β −→ (c(α) = c(β)) ∗100 · 321.

Λ17. Prop. 1− 16,Taut,MP.

This proposition is a lemma for the next, Peano 3.11, which is:

k120·311 ⊢ Nc′(α +c 1) ̸= Λ (α +c 1) = (β +c 1) ⊃ α = sm“β ∃!α

[k120·31 k110·4 k103·16·4·2]

This theorem states that if the non­empty sucessor of cardinal number α is identical to the suc­
cessor of a cardinal number β, then α and β are similar and α is non­empty. We translate it as a
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more explicit proof:

Peano 3.11 (s(α) ̸= ∅ ∧ s(α) = s(β)) −→ (α = β ∧ α ̸= ∅)

Proof :

{1}1. s(α) ̸= ∅ Assumption.

{2}2. s(α) = s(β) Assumption.

Λ3. (γ, δ)[s(c(γ)) ̸= ∅ ∧ s(c(γ)) = s(c(δ))

Λ −→ (c(γ) = c(δ) ∧ γ ≈ δ)] ∗120 · 31

Λ4. (µ, ν)((µ+c v) ̸= ∅ −→ ((µ, v ∈ NC− {∅} ∧ µ, v ∈ NC)) ∗110 · 4

Λ5. s(α) = α +c 1 sDF

Λ6. s(β) = β +c 1 sDF

{1}7. α +c 1 ̸= ∅ 1, 5,PL =.

{1, 2}8. β +c 1 ̸= ∅ 1, 2, 6,PL =.

{1, 2}9. α, β ∈ NC− {∅} ∧ α, β ∈ NC 7, 8, 4PL =

{1, 2}10. α, β ∈ NC− {∅} −→ α, β ̸= ∅ Extensionality.

{1, 2}11. α, β ̸= ∅ 9, 10,Taut,MP.

Λ12. (µ)(µ ∈ NC←→ (∃ξ)(µ = (ξ)) ∗103 · 2

{1, 2}13. (∃γ)(α = c(γ)) 9, 12,PL =.

{1, 2}14. (∃δ)(β = c(δ)) 9, 12,PL =.

{1, 2}15. s(α) = s(c(γ)) = s(c(δ)) 1, 13, 14,PL =.

{1, 2}16. c(γ) = c(δ) ∧ γ ≈ δ 3, 15,PL =.

{1, 2}17. c(γ) = c(δ) = α = β 13, 14, 16,PL = .

Λ Prop. 1− 17,Taut,MP.

The proposition is proved as a lemma for Peano 3.2, which is:

k120·32 ⊢ α ϵNC induct E!α ⊃ α ̸= α +c 1

490



Dem.
⊢ k101·22 k110·641 ⊃⊢ 0ξ ̸= 0ξ +c 1 (1)
⊢ k120·311 k110·44·⊃⊢ α ϵNC E!α +c 1 α +c 1 = α +c 1 +c 1 ⊃ α = α +c 1

[Transp] ⊃⊢ α ϵNC E!α +c 1 α ̸= α +c 1 ⊃ α +c 1 ̸= α +c 1 +c 1

[k118·2·25] ⊃⊢ α ϵNCξ

E!(α +c 1)ξ α ̸= (α +c 1)ξ ⊃ (α +c 1)ξ ̸= {(α +c 1)ξ +c 1}ξ (2)
⊢ (2) ⊃⊢ α ϵNCξ

E!(α +c 1)ξ α ̸= (α +c 1)ξ ⊃
(α +c 1)ξ = Λ ∨ (α +c 1)ξ ̸= {(α +c 1)ξ +c 1}ξ (3)

⊢ k110·4 Transp⊃⊢ α ∼ ϵNCξ ∨ α = Λξ ⊃ (α +c 1)ξ = Λξ (4)
⊢ (3) (4) ⊃⊢ α = Λξ ∨ α ̸= (α +c 1)ξ ⊃

(α +c 1)ξ = Λξ ∨ (α +c 1)ξ ̸= {(α +c 1)ξ +c 1}ξ (5)
⊢ (1) (5) k120·11 ⊃ α ϵNCξinduct ⊃ α = Λξ ∨ α ̸= (α +c 1)ξ ⊃⊢Prop

This is a slightly stronger theorem thanPeano 3.1 and 3.11. It states that if a finite cardinal number
is non­empty, then it is different from its successor. Still, it does not assure us either (a) that every
finite cardinal is non­empty or (b) that the succesor of a non empty cardinal is non­empty. Our
translation turns out to be simpler than the original since our notational modifications dispense
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with the need of assuming the commutativity of homogeneous cardinal addition (∗110 · 2 · 25):

Peano 3.2 (α)((α ∈ N ∧ α ̸= ∅) −→ α ̸= s(α))

Proof : (Induction)

�1. (β)[(s(α) ̸= ∅ ∧ s(α) = s(β)) −→ (α = β ∧ α ̸= ∅)] Peano 3.11

Λ2. (s(α) ̸= ∅ ∧ s(α) = s(s(α))) −→ (α = s(α) ∧ α ̸= ∅) 2[β/s(α)],UI.

Λ3. ¬(α = s(α) ∧ α ̸= ∅) −→

Λ ¬(s(α) = ∅ ∨ s(α) ̸= s(s(α))) 2,Taut,MP,PL = .

Λ4. (α ̸= s(α) ∨ α = ∅) −→ (s(α) = ∅ ∨ s(α) ̸= s(s(α))) 3,Taut,MP,PL = .

Λ5. (α = ∅ ∨ α ̸= s(α)) −→ (s(α) = ∅ ∨ s(α) ̸= s(s(α))) 4,Taut,MP,PL = .

[I.p]6. (α)[(α = ∅ ∨ α ̸= s(α)) −→

Λ (s(α) = ∅ ∨ s(α) ̸= s(s(α))] 5,UG.

[B.s]7. 0 ̸= s(0) ∗101 · 22

Λ8. 0 = ∅ ∨ 0 ̸= s(0) 7,Taut,MP..

[I.s]9. (F )[(F0 ∧ (β)(Fβ −→ Fs(β)) −→ (α ∈ N −→ Fα)] Peano 5.

[Ind]10. 0 = ∅ ∨ 0 ̸= s(0) ∧ [6] 9,Comp,UI,

Λ −→ [α ∈ N −→ (α = ∅ ∨ α ̸= s(α))]

[
γ = ∅ ∨ β ̸= s(γ)

Fγ

]
Λ11. α ∈ N −→ (α = ∅ ∨ α ̸= s(α))] 8, 6, 10,Taut,MP.

Λ12. α ∈ N −→ (α ̸= ∅ −→ α ̸= s(α)) 11,Taut,MP.

Λ13. (α ∈ N ∧ α ̸= ∅) −→ α ̸= s(α)) 12,Taut,MP.

Λ14. Prop. 13,UG.

The proposition is used in the proof of Peano 3.22, which is the final lemma for k120·33. Below
we have the proofs of k120·321 and k120·322:

k120·321 ⊢ α ≠ α +c 1 ⊃ E!α

Dem.
⊢ k110·4 Transp ⊃⊢ α = Λ ⊃ α +c 1 = Λ (1)
⊢ (1) Transp ⊃⊢ Prop

k120·322 ⊢ Infin ax ⊃ E!α ≡ α ̸= α +c 1

[k120·3·322]
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We translate them as follows:

Peano 3.21 α ̸= s(α) −→ α ̸= ∅

Proof : (Proof by cases)

{1}1. α ̸= s(α) Assumption.

{2}2. s(α) = ∅ [Case(a)]

{2}3. α ̸= ∅ 1, 2,PL = .

{3}4. s(α) ̸= ∅ [Case(b)]

Λ5. s(α) = α +c 1 sDf.

Λ6. (µ, ν)((µ+c v) ̸= ∅ −→ ((µ, v ∈ NC− {∅} ∧ µ, v ∈ NC)) ∗110 · 4

{3}7. α ∈ NC− {∅} 4, 5, 6,PL = .

{3}8. α ̸= ∅ 7,Ext.

Λ9. Prop. 1− 8,Taut,MP.

Peano 3.22 α ∈ N −→ (α ̸= ∅ ←→ α ̸= s(α))

Proof :

{1} 1. α ∈ N Assumption.

{2} 2. ⇒α ̸= ∅ Assumption.

Λ3. (α)((α ∈ N ∧ α ̸= ∅) −→ α ̸= s(α)) Peano 3.2

{1, 2} 4. α ̸= s(α) 1, 2, 3,PL.

{5} 5. ⇐α ̸= s(α) Assumption.

Λ6 (α)(α ̸= s(α) −→ α ̸= ∅) Peano 3.21

{1, 5}7. α ̸= ∅ 5, 6,PL.

Λ8. Prop. 1− 7,Taut,MP.

Peano 3.21 states that if a cardinal number is different from its successor it is non­empty (the
proof has two cases α as empty and α as non­empty). Peano 3.22 states that if α is a finite
cardinal, then it is empty if and only if it is different from its successor. Both Peano 3.21 and
Peano 3.22 are lemmas for 3*, that is k120·33:

k120·33 ⊢ Infin ax ≡ α ϵNC induct ⊃α α ̸= α +c 1

[k12·3·322]

This theorem establishes that different numbers have different successors iff Infin.Ax is true. It
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is the closest to Peano 3 that Principia can prove. We translate the proof as follows:

Peano 3∗ Infin.Ax←→ (α)(α ∈ N −→ α ̸= s(α))

Proof :

{1}1. ⇒Infin.Ax Assumption.

{1}2. (α)(α ∈ N −→ α ̸= ∅) Infin.Ax.Df.

Λ3. (α)(α ∈ N −→ (α ̸= ∅ ←→ α ̸= s(α)) Peano 3.22.

{1}4. (α)(α ∈ N −→ α ̸= s(α)) 1− 3,PL.

{5}5. ⇐(α)(α ∈ N −→ α ≠ s(α)) Assumption.

{5}6. (α)(α ∈ N −→ α ̸= ∅) 3, 5,PL.

Λ7. Prop. 1− 3,PL.

This completes the proof (and our translation) of Principia’s analogues of the Peano postulates.
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APPENDIX B – Principia­Style Arithmetic

B.1 The Language and Background Logic

Our language is that of the simple theory of types, that is of higher­order logic1. Aside
from standard comprehension axioms for concepts and relations, we assume, for convenience
purposes of avoiding contextual or eliminative definitions of class expressions, axioms of com­
prehension for sets, which are also stratified in simple types ­ although an eliminative approach
to these notations could be adopted. Our goal here is to capture closely the way Principia de­
velops Arithmetic in the most concise and simplest way possible and for this the notation of
classes indispensable. Apart from the assumptions of Standard higher­order Logic, then, our
main axioms are the following:

Axiom 1. Comprehension for sets. Let x, α be variable­terms of type t and t + 1 respectively.
Then, for every concept F there is an α such that for every x , x ∈ α iff only F (x) is true. In
symbols: (F t+1)(∃αt+1)(xt)(xt ∈ αt+1 ≡ Fxt)

We take first­order variables x, y, z,etc., to range over individuals that is, objects of the
lowest type, namely i. So, informally, sets of individuals are of type i+ 1, sets of sets of indivi­
duals of type i+ 2 and so on. We also add an axiom­scheme of extensionality for sets:

Axiom 2. Extensionality for sets: Let α and β be sets. α and β are identical iff they have the
same members. In symbols: (αt+1 = βt+1) ≡ (xt)(xt ∈ αt+1 ≡ xt ∈ βt+1).

To make the proofs more readable we omit type­indexes since it is clear from context
what the relative types of the variables must be.

1 We employ the term “order” here as in “first­order Logic”, “second­order Logic” and so on, not in the sense
it is sometimes employed in the study of ramified systems of second and higher­order Logics. This coincides
with the most usual use Russell makes of the term “type” when applied to so­called propositional functions.
For an instructive discussion of the many uses of the notions of type, order and level see HAZEN, A., 1983,
p.396, footnote 1. The basic principle that guides the formulations os such theories is that every variable has a
type which determines its domain or range: a variable of type t ranges over things of type t and nothing else.
We start with first order variables which range over individuals in the sense of Russell or objects in the sense
of Frege and ascend to concepts of arbitrarily large order. The hierarchy is simple in the sense that each type
is disjoint or not cumulative: a given formula Fx is only meaningful if x is of a type immediately lower than x,
that is, the range of a variable of type t does not include the range of any variable of lower type. We assume as
our background logic classical standard (impredicative) higher­order logic of any arbitrarily large order.
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B.2 Definitions for Finite Arithmetic

Definition 1. [Domains, Converse Domains and Fields of Relations ­ Russell 1901; Simila­
rity] Let R be any relation and α, β sets of the same type. Then:

The domain ofR is the set of all terms x such that for some y, xRy. In symbols: Dom(R) =

df{x : (∃y)xRy};

The converse domain of R is the set of all terms y such that for some x, xRy. In symbols2:
Cont(R) = df{y : (∃x)xRy};

The field of a relation R is the union of its domain and converse domain. In symbols:
Campus(R) =df {z : z ∈ Dom(R) ∨ z ∈ Cont(R)}

R is a one­one relation iff for every x such that xRy, there is exactly one y and for every
y such that xRy there is exactly one x. In symbols: 1→ 1(R) =df (x)(y)(z)(xRy ∧ xRz ⊃ y =

z) ∧ (x)(y)(z)(xRy ∧ zRy ⊃ z = x)

α is similar (or equinumerous) to β iff there is a one­one relation R such that α is the
domain of R and β is the converse domain of R. In symbols: α ≈ β =df (∃R)(Dom(R) =

α ∧ Cont(R) = β ∧ 1→ 1(R))

Remark: We adopt the restriction that α and β must be of the same type in order to
simplify our treatment. In the terminology of Principia this means that every cardinal number
with which we shall be concerned Nc(α) is homogeneous: all its members are of the same type
as the set α. This makes several results provable about Nc(α) without the need to make type
symbols explicit (such as α ∈ Nc(α)). It also facilitates the treatment of finite arithmetic, since
it collapses the class of all classes similar with α with its homogeneous cardinal number: if
non­homogeneous relations of similarity were allowed this would not be the case, since then
the cardinal number of α could be of a higher or lower type than α. Also, if non­homogeneous
similarity relations were allowed, the cardinal number of α could be empty in some types and
not in others: for suppose there was only one individual, a; there are types in which the cardinal
number of a given class such as Nc({{a},Λ}}) would be empty, namely in the type of the sets
of individuals; but in every other type it would be non­empty.

Next we have the Frege­Russell definition of cardinal number.

Definition 2. [Cardinal Number of a Set ­ Frege 1884; Russell 1901] The cardinal number of
a set α or Nc(α) is the set of all sets similar to α.

In symbols: Nc(α) =df {β : α ≈ β}.

2 We take “Cont” from the Latin “contrarium”, in order to avoid Whithead and Russell’s very inconvenient
inverted D.

496



Definition 3. [Zero ­ Frege 1884; Russell 1901; Whitehead & Russell 1912] 1: Let Λ be the
empty set, defined as the set of all things that are not self identical. (ii) The cardinal number 0
is the cardinal number of the empty set.

In symbosl we have Λ =df {x : x ̸= x} and 0 =df Nc(�).

Definition 4. [Successor ­ Frege 1884;Whitehead&Russell 1912] 1: The immediate successor
Nc(α) +c 1 of a cardinal number Nc(α) is the number of elements of the set which consists of
the elements of α together with an element x which does not belong to α; in other words, the
successor of Nc(α) is the class of all classes γ such that, for some x, if we take away some unique
member of γ, we get a member of Nc(α). 2: A cardinal number m precedes a cardinal number n
whenever there is a set δ and an individual x such thatm = Nc(δ) and n = Nc(δ ∪ {x}), where
x /∈ δ (this definition is introduced merely for notation convenience; see the corollary below).

In symbols we have3 Nc(α) +c 1 =df {γ : (∃x)(x ∈ γ ∧ γ − {x} ∈ Nc(α))} and
αPβ =df (∃δ)(∃x)(x /∈ δ ∧ α = Nc(δ) ∧ β = Nc(δ ∪ {x})).

Corollary. α precedes β iff β is the immediate successor of α. That is: αPβ ≡ α +c 1 = β.

Remark. We are following Russell simplified definition given in Introduction to Mathe­
matical Philosophy, where he puts: “The successor of the number of terms in the class α is the
number of terms in the class consisting of α together with x, where x is any term not belonging
to the class”. This coincides with the definition we shall use. PM, however, does not use this
simple definition, but:

k110·01 α + β =↓ (Λ ��β)“ι“α ∪ (Λ ��α) ↓ “ι“β Df

k110·02 µ+c ν = ξ̂{( E

α, β) µ = N0c‘α ν = N0c‘β ξ sm (α + β)} Df

The second defines the actual sum of two cardinal numbers, while the first defines what Whi­
tehead and Russell call the arithmetical sum of two classes. These somewhat complicated defini­
tions are designed to deal with some difficulties introduced by the theory of types and to ensure
that the arithmetical sum of two non­disjoint classes yields a class with the intended number4.
We avoided such complications by giving up generality. We did not not define the operation
of cardinal sum of any two cardinals in general, only the succesor function/relation. In other
words, we did not obtain+c1 (or immediate successor) as a particular case. Whitehead and Rus­
sell develop a whole theory of addition which applies both to finite and infinite numbers and
3 Here “γ − {x}” abbreviates γ ∩ ¯{x}.
4 Russell explains these definitions in Introduction toMathematical Philosophy (pp.117­119). Another explanation

can be found in the correspondence with Philip Jourdain (GRATTAN­GUINNESS, 1977, pp.119­120).
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which accomodates +c1 as a particular case. Their theory is based on an account of “equinume­
rosity” or “similarity” as a possibly heterogeneous relation, that is, a relation which may hold
between classes of any types (possibly distinct). As we noted in the begining (first remark) we
are avoiding these subtleties to simplify our treatment.

Next, we have the celebrated definition of the Ancestral of a relation R:

Definition 5. [Ancestral of a Relation ­ Frege 1879, 1884; Whitehead & Russell 1910] Let R
be a relation, F be a concept and α a set. Then:

5.1: F is hereditary in the R­series or R­hereditary iff it belongs to xwhenever if xRy and
Fx, then Fy. In symbols: Her(F,R) =df (x)(y)(Fx ∧ xRy ⊃ Fy).

5.2:α is hereditary in the R­series orR­hereditary iff its defining property isR­hereditary.
In symbols: Her(α,R) =df (∃F )(Her(F,R) ∧ α = {x : Fx}).

5.3: a is an R­ancestor of b iff a belongs to the field of R and falls under every R­
hereditary concept unde which a falls. In symbols: aR∗b =df (F )(Fa ∧ a ∈ Campus(R) ∧
Her(F,R) ⊃ Fb).

5.4: The R­posterity of a is the set of all y such that a is an R­ancestor of y. In symbols:
←−
R ∗(a) =df {w : aP∗w}.

Corollary 1. a is an R­ancestor of b iff b belongs to every hereditary class to which a belongs.
That is: aR∗b ≡ (α)(a ∈ α ∧ a ∈ Campus(R) ∧ Her(α,R) ⊃ b ∈ α)

Definition 6. [Natural Number ­ Frege 1884;Whitehead&Russell 1912] 1. The set of natural
numbers, that is, of finite cardinals or inductive numbers is the posterity of zero with respect to
the relation of immediate predecessor. In Symbols:

NC induct =df
←−
P ∗(0) =df {α : 0P∗α} =df {α : (F )(F0 ∧ Her(F, P ). ⊃: Fα)}

B.3 Some Facts About the Ancestral

Fact 1. (v)(w)(vRw ⊃ vR∗v)

Dem.Assume vRw. By the definition ofR∗, xR∗y iffFv∧v ∈ Campus(R)∧(x)(y)(Fx∧
xRy ⊃ Fy) ⊃ Fw. If for some w we have vRw, it follows that v ∈ Campus(R). Assume Fv
and (x)(y)((Fx ∧ xRy) ⊃ Fy). By UI we get Fv ∧ vRw ⊃ Fw. Hence Fw. �

Fact 2. (v)(w)(z)(vR∗w ∧ wR∗z ⊃ vR∗z).

Dem.Assume vR∗w andwR∗z. By vR∗w, Fv∧Her(F,R) entails Fw. BywR∗z, Fw∧
Her(F,R) entails Fz. Hence, vR∗w and wR∗z imply Fv ∧Her(F,R) ⊃ Fz. �

Fact 3. (v)(w)(z)(vR∗w ∧ wRz ⊃ vR∗z).
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Dem. Assume vR∗w and wRz. By fact 1 above wRz ⊃ wR∗z, hence we have vR∗w ∧
wR∗z; and again, by the previously proved fact 2 we get vR∗z. �

B.4 Peano Postulates 1, 2, 4 and 5

In what follows we play very loose with theorems of the predicate calculus and the
algebra of classes (especially concerning results such as γ − {x} ≈ {y} ⊃ (∃z)(γ = {z}),
x /∈ γ ∧ y /∈ δ ∧ γ ∪ {x} ≈ δ ∪ {y} ⊃ γ ≈ δ, etc.).

Theorem. [Whitehead & Russell 1912 ∗120 · 12 ­ Peano 1] 0 ∈ NC induct

Dem. By definition, 0 ∈ NC induct iff (F )(F0 ∧ Her(F, P ) ⊃ F0). Since F0 ∧
Her(F, P ) ⊃ F0 what we want follows by UG. �

Theorem. Peano 2. (α)(α ∈ NC induct ∧ αPβ. ⊃ .β ∈ NC induct)

Dem. Assume that α ∈ NC induct and αPβ. By definition, we have 0P∗α. Thus, by fact
1 about the ancestral, we have αPβ ⊃ αP∗β; then again, by fact 3 about the ancestral we have
0P∗α ∧ αPβ ⊃ 0P∗β and hence 0P∗β. But for any γ, γ ∈ NC induct iff 0P∗γ and that’s it. �

Theorem. [Whitehead&Russell 1912k120·121 ­ Alternative Peano 2] (α)(α ∈ NC induct ⊃
α +c 1 ∈ NC induct)

Dem. Immediate from Peano 2 and the fact that αPβ ≡ α+c 1 = β (corollary from the
definiton of successor). �

Theorem. [Whitehead & Russell 1912 k120 · 124 ­ Peano 4] (α) ∼ αP0

Dem. Assume that for some α, αP0. That is: for some δ, α = Nc(δ) = 0 and αP0. By
the definition of zero and extensionality, δ ∈ 0 iff δ = Λ. But by the definition of successor αP0
iff for some δ and some x /∈ δ, α = Nc(δ) and 0 = Nc(δ ∪ {x}). Contradiction. �

Theorem. Peano 5. (F )(F0 ∧ (α)(Fα ∧ αPβ ⊃ Fβ) ⊃ (γ)(γ ∈ NC induct ⊃ Fγ))

Dem. Assume F0 and that F is hereditary, that is F0 ∧ (α)(Fα ∧ αPβ ⊃ Fβ). By
definition, γ ∈ NC induct iff F0 ∧ (α)(Fα ∧ αPβ) ⊃ Fγ. Therefore γ ∈ NC induct∧F0 ∧
(α)(Fα ∧ αPβ ⊃ Fβ) ⊃ Fγ. By propositional logic and UG we are done. �

Corollary. [Whitehead &Russell 1912 k120 ·13 ­ Alternative Peano 5]. (F )(F0∧(α)(Fα ⊃
F (α +c 1)) ⊃ (γ)(γ ∈ NC induct ⊃ Fγ)).

Dem. Immediate from Peano 5 and the fact that αPβ ≡ α+c 1 = β (corollary from the
definiton of successor). �
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B.5 The Axiom of Infinity and the Existence of Cardinal Num­
bers

Conjecture. [Whitehead & Russell 1912 k120·03 Axiom of Infinity] The emtpy set is not a
natural number. That is: (α)(α ∈ NC induct ⊃ α ̸= Λ). For short we shall call it InfinAx.

In order to show that Peano 3 is equivalent to it InfinAx we need to prove some lemmas.
We follow the structure of Principia’s proofs as close as possible.

Lemma. [Whitehead & Russell 1912 k100·321 ­ First Half of Hume’s Principle] If α ≈ β,
then Nc(α) = Nc(β).

Dem. Assume α ≈ β, since ≈ is an equivalence relation, we have α ≈ β ⊃ (γ ≈ α ≡
γ ≈ β). Since, by the definition of cardinal number, we have (δ)(γ ∈ Nc(δ) ≡ γ ≈ δ), we
also have: α ≈ β ⊃ (γ ∈ Nc(α) ≡ γ ∈ Nc(β)); which, by predicate logic is equivalent yields
α ≈ β ⊃ (γ)(γ ∈ Nc(α) ≡ γ ∈ Nc(β)); which by extensionality gives us α ≈ β ⊃ Nc(α) =
Nc(β). �

Lemma. [Whitehead & Russell 1912 k120·31 ­ Peano 3.1] If the sucessor Nc(α) +c 1 of the
cardinal number Nc(α) is non­empty and identical to Nc(β) +c 1, then Nc(α) = Nc(β). That
is: Nc(α) +c 1 ̸= Λ ∧ Nc(α) +c 1 = Nc(β) +c 1 ⊃ α ≈ β ∧ Nc(α) = Nc(β).

Dem. Assume, (1). Nc(α)+c 1 ̸= Λ and (2). Nc(α) +c 1 = Nc(β) +c 1. By the definition
of successor, we have:

(γ)(γ ∈ Nc(α) +c 1 ≡ (∃x)(x ∈ γ ∧ γ − {x} ∈ Nc(α))})

(γ)(γ ∈ Nc(α) +c 1 ≡ (∃x)(x ∈ γ ∧ γ − {x} ∈ Nc(β))})

By our first assumption, we have some δ such that δ ∈ Nc(α) +c 1, and by extensionality and
our second assumption we have δ ∈ Nc(β) +c 1. Now, by the definition of successor, for some
x ∈ δ and some we have δ − {x} ∈ Nc(α) and δ − {x} ∈ Nc(β), therefore δ − {x} ≈ α and
δ − {x} ≈ β. But since δ ≈ δ and thus (δ − {x}) ≈ (δ − {x}), we get α ≈ β. But if α ≈ β we
have, by the previous lemma, Nc(α) = Nc(β). �

Lemma. [Whitehead & Russell 1912 k120·311 ­ Peano 3.11] If α+c 1 is a non empy cardinal
and α +c 1 = β +c 1, then α = β and α ̸= Λ. That is: (α +c 1 ̸= Λ ∧ α +c 1 = β +c 1 ⊃ α =

β ∧ α ̸= Λ.

Dem. Assume (1). α +c 1 ̸= Λ and (2). α +c 1 = β +c 1. Again, by the definition of
successor we have, for some sets γ and δ:

α +c 1 = β +c 1 = Nc(γ) +c 1 = Nc(δ) +c 1
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From the previously proved lemma Peano 3.11 and the first assumption we get α = β. By the
definition of successor, for some γ and some x, we have α = Nc(γ−{x}) and since γ−{x} ≈
γ − {x}, also γ − {x} ∈ α. Now, either γ − {x} = Λ or γ − {x} ̸= Λ. If, γ − {x} = Λ, then
Λ ∈ α and α ̸= Λ. If γ − {x} ̸= Λ, then α is also non­empty. �

Lemma. [Whitehead & Russell 1912 k120·32 ­ Peano 3.2] If α is a non empty finite cardinal
then α is different from α +c 1. That is: α ∈ NC induct ∧ α ̸= Λ ⊃ α ̸= α +c 1.

Dem. Induction. Base step: 0 is a non­empty finite cardinal number. By Peano 4, 0 ̸= 0+c

1. Inductive step: from Peano 3.11, UI and propositional logic we get5 (α = Λ ∨ α ̸= α +c 1) ⊃
(α+c 1 = Λ∨α+c 1 ̸= α+c 1+c 1). Instantiating “Fα” in the induction axiom as α = Λ∨α ̸=
α +c 1, we get:

(0 = Λ ∨ 0 ≠ 0 +c 1) ∧ (α = Λ ∨ α ̸= α +c 1) ⊃

(α+c 1 = Λ∨α+c 1 ̸= α+c 1+c 1) ⊃ (γ)(γ ∈ NC induct ⊃ γ = Λ∨ γ ̸= γ+c 1)

Since, by propositional logic, γ ∈ NC induct ⊃ γ = Λ ∨ γ ̸= γ +c 1 is equivalent to γ ∈
NC induct ∧ γ ̸= Λ ⊃ γ ̸= γ +c 1 we are done. �

Lemma. [Whitehead & Russell 1912 k120·321 ­ Peano 3.21] If α is finite a cardinal different
from α +c 1, then α is non­empty. That is: α ∈ NC induct ∧ α ̸= α +c 1 ⊃ α ̸= Λ.

Dem. Assume α ∈ NC induct and α ̸= α +c 1. There are two cases to be considered.
(a) α +c 1 = Λ and (b) α +c 1 ̸= Λ. Assume α +c 1 = Λ. By hypothesis, α ̸= α +c 1,
therefore α ̸= Λ. Assume α ∈ NC induct and α +c 1 ̸= Λ. For some δ, α = Nc(δ) and
α+c 1 = Nc(δ) +c 1 = {γ : (∃x)(x ∈ γ ∧ γ − {x} ∈ Nc(δ))}; this means that there is some δ′

such that (γ − {x}) ≈ δ and δ′ ∈ Nc(δ). �

Remark. Notice that in the above proof, even if δ′ = Λ the result holds, since in that
case Nc(δ) = {Λ} which is non­empty. Notice also that in such sentences like {Λ} ̸= Λ, the
two occurrences of “Λ” are, strictly speaking, different, since if we were to restore type­indexes
they would have to have different types.

Lemma. [Whitehead & Russell 1912 k120·322 ­ Peano 3.22] If α is a finite cardinal, then α
is non­empty iff α +c 1 is different from α. That is: α ∈ NC induct ⊃ (α ̸= Λ ≡ α ̸= α +c 1).

Dem. Assume α ∈ α ∈ NC induct and α ̸= Λ. By Peano 3.2 we have α ̸= α +c 1.
Conversely, assume α ∈ α ∈ NC induct and α ̸= α +c 1, then by Peano 3.21 α ̸= Λ. �
5 First substitute β for α +c 1, thus getting: (α +c 1 ̸= Λ ∧ α +c 1 = α +c 1 +c 1) ⊃ (α = α +c 1 ∧

α ̸= Λ). Then, by contraposition, the laws of De Morgan, and the equivalence A ∨ B ≡ B ∨ A, we get:
(α = Λ ∨ α ̸= α +c 1) ⊃∼ (α +c 1 ̸= Λ ∧ α +c 1 = α +c 1 +c 1). And applying De Morgan again gets us:
(α = Λ ∨ α ̸= α+c 1) ⊃ (α+c 1 = Λ ∨ α+c 1 ̸= α+c 1 +c 1).
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Corollary. [Whitehead & Russell 1912 k120·33 ­ Peano 3.3]. InfinAx is true iff every number
is different from its successor. That is: (α)(α ∈ NC induct ⊃ α ̸= Λ) ≡ (α)(α ∈ NC induct ⊃
α ̸= α +c 1).

Dem. Assume InfinAx and α ∈ NC induct. Then α is non­empty. By Peano 3.22, if α
is non­empty it differs from its successor. Conversely, assume α ∈ NC induct and α ̸= α +c 1.
Then, by Peano 3.22 α is non­empty. �

Remark. This establishes that no finite cardinal number is identical to its immediate suc­
cessor iff the Axiom of Infinity is true, and thus, that different numbers have different successors
iff the Axiom of Infinity is true.

B.6 Principia’s Most Famous Theorem: 1+1=2

Here we prove the famous and “occasionally useful”6 proposition which asserts that one
plus one equals two, or, equivalently, that the number two is the immediate successor of one.
First we define 1 and 2:

Definition 7. [Whitehead & Russell 1910 k52·01, k54·02] 1 =df {α : (∃x)(α = {x})};
2 =df {α : (∃x, y)(x ̸= y ∧ α = {x} ∪ {y})}.

In volume one of Principia Whitehead and Russell prove the following proposition
which is sometimes mastaken7 for Principia’s equivalent of 1 + 1 = 2:

Lemma. [Whitehead & Russell 1910 k54·43] α, β ∈ 1 ⊃ (α ∩ β = Λ ≡ α ∪ β ∈ 2)

Dem. Assume α, β ∈ 1. Then for some x, y α = {x} and β = {y}. Assume α ∩ β = Λ.
Then, extensionality and predicate logic yield x ̸= y. But then, by the definition of 2 as {γ :

(∃x, y)(x ̸= y ∧ γ = {x} ∪ {y})}, we have {x} ∪ {y} ∈ 2 and thus α, β ∈ 1 ⊃ (α ∩ β = Λ ⊃
α ∪ β ∈ 2). Conversely, assume α, β ∈ 1 and α ∪ β ∈ 2. By the definition of 1, α = {x} and
β = {y} and by the definition of 2we have x ̸= y. But then, by predicate logic and extensionality,
we have α ∩ β = Λ and, therefore, α, β ∈ 1 ⊃ (α ∪ β ∈ 2 ⊃ α ∩ β = Λ). �

Remark. As the authors explain, “from this proposition it will follow, when arithmetical
addition has been defined, that 1 + 1 = 2” 8. The actual proof of 1 +c 1 = 2 occurs in the second
volume. Curiously it does not reference this lemma, but another theorem, namely:
6 WHITEHEAD & RUSSELL, 1912, p.82.
7 MARION, M., 2012, p.143
8 WHITEHEAD & RUSSELL, 1910, p.379.
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54 · 3 2 = {α : (∃x)(x ∈ α ∧ α− {x} ∈ 1}

which actually just embodies the definition of successor which we are using here. The reason
as to why they proceed in this way is clear: the proof becomes trivial. For the sake of their
observation in the first volume, we offer the following proof via the lemma k54·43.

Proposition. [Whitehead & Russell 1912 k110·643] 1 +c 1 = 2

Dem. Assume γ ∈ 2, that is (∃x)(∃y)(x ̸= y∧ γ = {x}∪{y}). If x ̸= y and γ = {x}∪
{y},then γ−{x} = {y}. By definition, {y} ∈ 1, and since γ−{x} = {y}, γ−{x} ∈ 1. Thus, we
have (∃x)(x ∈ γ∧γ−{x} ∈ 1). If γ ∈ 2, then γ ∈ 1+c1. Conversely assume γ ∈ 1+c1, that is,
(∃x)(x ∈ γ∧γ−{x} ∈ 1). If (∃x)(x ∈ γ∧γ−{x} ∈ 1), then (∃x)(∃y)(x ∈ γ∧γ−{x} = {y}).
By lemma ∗54 · 43 , we have {x}, {y} ∈ 1 ⊃ ({x} ∩ {y} = Λ ≡ {x} ∪ {y} ∈ 2). By
definition, for any x and y, {x}, {y} ∈ 1 is true. Thus, {x} ∩ {y} = Λ ≡ {x} ∪ {y} ∈ 2.
If x ∈ γ ∧ γ − {x} = {y}, then x ̸= y. But if x ̸= y, then {x} ∩ {y} = Λ and, therefore,
{x} ∪ {y} ∈ 2 Since {x} ∪ {y} = γ, it follows γ ∈ 2 and we are done. �

B.7 Finite, Infinite and Russell’s Theorem

Definition 8. [Whitehead & Russell 1912] 1. A set is finite in the ordinary sense or finite or yet
inductive iff it belongs to every class λ which contains the empty set, and, for every set β and
every individual a, if β belongs to λ, so does β ∪ {a}; 2. A set is infinite in the ordinary sense,
or non­inductive or yet infinite iff it is not finite. In Symbols:

Fin(α) =df (λ)(Λ ∈ λ ∧ (β)(β ∈ λ ⊃ β ∪ {a} ∈ λ). ⊃ .α ∈ λ)

Infin(α) =df∼ Fin(α);

Corollary 2. 1. A set α is finite iff Nc(α) ∈ NC induct. 2. Let indiv be the set of individuals. If
Infin(indiv), then InfinAx is true.

Definition 9. [Dedekind 1888; Cantor 1895] 1. A set α is infinite in the sense of Dedekind or
reflexive iff it can be put into a one­one correspondence with a proper, subset of itself; 2. A set
is finite in the sense of Dedekind if it is not infinite in the sense of Dedekind. In Symbols:

Refl(α) =df (∃R)(∃β)(1→ 1(R) ∧ Dom(R) = α ∧ Cont(R) = β ∧ β ⊂ α);

Irrefl(α) =df ∼ Refl(α);

Lemma 1. [Whitehead & Russell 1912] If α is a non­inductive set, then there is an injective
correlation between NC induct and the power set of the power set of α. That is: ∼ Fin(α) ⊃
(∃ξ)(ξ ⊂ ℘(℘(α)) ∧ ξ ≈ NC induct).9
9 We follow the proof in BOOLOS, G., 1998, pp.262­3 and DEMOPOULOS & CLARKE, 2005, pp.160­1.
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Dem. Λ ⊂ α. Therefore there is a β ⊂ α such that Nc(β) = 0. Suppose now there is some set
γ ⊆ α such that Nc(γ) = n, for some n ∈ NC induct. Since, by hypothesis, β is non­inductive,
there is an element a of α such that Nc(γ ∪ {a}) = n +c 1. By induction, we know then that,
for every n, there is a γ, such that Nc(γ) = n. Thus we can identify the Russellian number n as
Sn =df {γ : γ ⊆ α ∧ Nc(γ) = n} and the class of all Sn as NC induct. By definition, it follows
that, for every n: (a) Sn ̸= Λ;(b) Sn ⊆ ℘(α); (c) for all m = n, Sm ̸= Sn; Therefore, since
℘(α) ⊆ ℘(℘(α)), we have an injection of NC induct into ℘(℘(α)). �

Corollary 3. If indiv is non­inductive, then NC induct is reflexive.

Dem. If indiv is non­inductive, then the successor function which maps each Sn = {γ :

γ ⊆ indiv ∧ Nc(γ) = n} to Sn+1, given that Infin(indiv) ⊃ InfinAx ⊃ Peano 3. Thus, the
successor function is one­one. Let NC induct− 0 be the set of all Sn except 0; since this set can
be correlated one­one with NC induct, NC induct is reflexive. �

Theorem. [Whitehead & Russell 1912] Russell’s Theorem. If λ is non­indutive, then ℘(℘(λ))
is reflexive.

Dem. By corollary above, if λ is non­inductive, the set r of all Sn = {γ : γ ⊆ λ ∧
Nc(γ) = n} is reflexive. Since r ⊂ ℘(℘(λ)), by lemma 2 follows ℘(℘(λ)). �
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