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Resumo

O presente trabalho tem por objeto de analise o desenvolvimento da Filosofia Matematica de
Bertrand Russell desde os Principles of Mathematics até - e inlcuindo - a primeira edi¢ao de
Principia Mathematica, tendo como fio condutor as mudangas no pensamento de Russell com
respeito a trés topicos interligados, a saber: (1) a concepgao de Russell da Logica enquanto uma
ciéncia (2) os compromissos ontoldgicos da Logica e (3) a tese Russelliana de que a Matematica
Pura - a Aritmética particular - ¢ nada mais do que um ramo da Légica. Esses trés topicos inter-
ligados formam um fio condutor que seguimos na tese para avaliar qual interpretacao fornece
o melhor relato da evidéncia textual disponivel em Principia Mathematica € nos manuscritos
produzidos por Russell no periodo relevante. A posicdo geral defendida é que a interpretacao
de Gregory Landini apresenta argumentos decisivos contra a ortodoxia de comentadores que
atribuem a Principia uma hierarquia de tipos ramificada de entidades confusamente formulada,
e mostramos que os trés pontos apontados acima que formam o fio condutor da tese corroboram
fortemente a interpretacdo de Landini. Os resultados que apontam para a conclusdo geral de
nossa investigacao estao apresentados na tese dividida em duas partes. A primeira parte discute
o desenvolvimento da légica de concepcao de Russell e do projeto Logicista desde sua génese
e nos Principles of Mathematics até Principia Mathematica. Esta primeira parte define o con-
texto para a segunda, que discute a Logica Russeliana e o Logicismo em sua versdao madura
apresentada em Principia. Mostramos que, ao fim e ao cabo, o a teoria Logica e a forma da tese
Logicista apresentada em Principia ¢ o resultado do longo processo iniciado com descoberta da
Teoria dos Simbolos Incompletos que levou Russell a gradualmente reduzir os compromissos
ontologicos de sua concepcao da Logica enquanto uma ciéncia, culminando na teoria apresen-
tada na Introdugdo de Principia, na qual ele procura formular uma hierarquia dos tipos que evita
o compromisso ontoldgico com classes, proposi¢des e também com as assim chamadas fungdes
proposicionais € que esse mesmo processo levou Russell a uma concepgao da tese de Logicista
de acordo com a qual a Matematica € uma ciéncia cujos compromissos ontolégicos nao incluem

qualquer espécie de objetos (no sentido Fregeano) sejam eles particulares concretos ou abstratos.

Palavras-chaves: Bertrand Russell. Filosofia Matematica. Logica. Fundamentos da Matema-

tica.



Abstract

The present work has as its object of analysis the development of Bertrand Russell’s Mathema-
tical Philosophy from the Principles of Mathematics up to - and including - the first edition of
Principia Mathematica, having as a guiding thread the changes in Russell’s thought with res-
pect to three interconnected topics, namely: (1) Russell’s conception of Logic as a science (2)
the ontological commitments of Logic and (3) Russell’s thesis that Pure Mathematics - in par-
ticular Arithmetic - is nothing more than a branch of Logic. These three interconnected topics
form a common thread that we follow in the dissertation to assess which interpretation offers the
best account of the available textual evidence in Principia Mathematica and in the manuscripts
produced by Russell in the relevant period. The general position held is that Gregory Landini’s
interpretation presents decisive arguments against the orthodoxy of commentators who attribute
to Principia a confusingly formulated hierarchy of ramfified types of entities, and we show that
the three points indicated out above that form the main thread of the thesis strongly corroborate
Landini’s interpretation. The results that point to the general conclusion of our investigation
are stated in the dissertation divided into two parts. The first part discusses the development of
Russell’s conception of Logic and the of Logicist project from its genesis and in Principles of
Mathematics up to Principia Mathematica. This first part sets the context for a second, which
discusses a Russellian Logic and Logicism in its mature version presented in Principia. We show
that, in the end, the Logic theory and the form of the Logicist thesis presented in Principia is
the result of a long process that started with the discovery of the theory of Incomplete Symbols
which led Russell to reduce the ontological commitments of his conception of Logic as a sci-
ence, culminating in the theory of types presented in Principia’s Introduction, in which Russell
seeks to formulate a hierarchy of types that avoids the ontological commitment to classes, pro-
positions and also with so-called propositional functions, and that this same process led Russell
to a conception of the Logicist thesis according to Mathematics is a science with no ontologi-
cal commitments to any kind of objects (in the Fregean sense) whether these are conceived as

concrete or abstract particulars.

Key words: Bertrand Russell. Mathematical Philosophy. Logic. Foundations of Mathematics.
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1 Introduction

I think many of us were drawn to our profession by Russell’s books. He wrote
a spectrum of books for a graduated public, layman to specialist. We were be-
guiled by the wit and a sense of new-found clarity with respect to central traits
of reality. We got memorable first lessons in relativity, elementary particles,
infinite numbers, and the foundations of arithmetic. At the same time we were
inducted into traditional philosophical problems, such as that of the reality of
matter and that of the reality of minds other than our own. For all this emer-
gence of problems the overriding sense of new-found clarity was more than a
match. In sophisticated retrospect we have had at points to reassess that clarity,
but this was a sophistication that we acquired only affer we were hooked."

As the subtitle of the present doctoral dissertation unoriginally indicates, this text is about
the development of Russell’s Mathematical Philosophy from the Principles of Mathematics to
Principia Mathematica. It must be said at the outset, however, that apart from a number of topical
points, there is no dramatic novelty in the conclusions reached or in the arguments considered
and put forward. The interpretation defended and the main arguments considered are mainly due
to Gregory Landini, whose works are cited and discussed less, perhaps, than those of Russell
alone’. In the chapter on Principia’s Logicism an attempt at further defending this interpretation
is made by connecting some generally neglected aspects of Russell’s ‘Regressive Method in
Mathematics’ and of methodological aspects of his ‘Logical Atomism’ to the development of
his views on the ontology of Logic and Mathematics between 1903-1910. These points, I think,
are generally not sufficiently emphasized - in particular by those who disagree with Landini’s
views - and my discussion may be considered an attempt at a clarificatory contribution to the

literature.

Landini has sometimes referred to his interpretation as ‘revolutionary’ in contrast to
what may be called the ‘orthodox’ interpretation of the development of Russell’s views. If | may
elaborate the use of this terminology by appealing to the ideas of Thomas Kuhn, the present
work is meant at the same time as normal and as revolutionary scholarship. It is ‘normal’ scho-
larship in the sense that it is intended mainly to present and defend an interpretation that has
been proposed and developed for some time, so I am aiming mostly at exposition and adjust-
ment of matters of detail. Hence the dearth of novelties or departures from conclusions already
reached by other scholars. The work follows, however, an interpretation - or, to maintain the

Kuhnian wordplay, a ‘paradigm’ - that is still being pushed forward by ‘revolutionaries’ against

' QUINE, W., 1967, p.657-8. Our emphasis.

? My doctoral research project as initally submitted aimed at a critical discussion/evaluation of Landini’s inter-
pretation and I was attracted to other interpretative approaches - in particlar that of LINSKY, B., 1999 which
will also be discussed later on. But I gradually became more and more persuaded that Landini’s views are right.
There are a few points where I depart slightly from Landini’s views, in particular in chapters 3 and 5, but this is
indicated in the discussion or in footnotes.
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an established orthodoxy that still has to be won over, or converted by persuasion. So, in this

sense, it is ‘revolutionary’.

In fact, still using the Kuhnian terminology, the present work may be seen as a survey
of some of the main controversies one finds in the scholarship on Russell’s Mathematical Philo-
sophy (Principia Mathematica, in particular) and some of the main arguments aimed at showing
why the new ‘paradigm’ must be accepted as common wisdom, at least in light of the curren-
tly available evidence. So one of my main goals is to provide a comprehensive exposition and
defense of the arguments in favor of Landini’s interpretation against what may called the ‘ortho-
doxy’. Whether I have in fact succeeded in this goal is for readers to decide, but if I did succeed

then this dissertation has fulfilled its main intended purpose.

Having said that, the purpose of this Introduction is threefold. First, to provide the con-
text for and present what is the ‘interpretative orthodoxy’ that we aim to argue against. This is
done in the first section. Second, to provide the contextualization and motivation for the ‘revo-
lutionary interpretation that will be exposed and defended against this ‘orthodoxy’. This is done
in the second section.? Third, to provide a brief summary of the dissertation as a whole and of
the main topics/questions that it aims to adress, as well as a brief summary of each chapter and

the aims that each of them is supposed to achieve individually.

1.1 The ‘Received View’ of Principia Mathematica

Willard Quine, perhaps the most important philosopher of the second half of 20th cen-
tury, once justly claimed that Bertrand Russell and Alfred Whitehead’s joint work Principia
Mathematica is “one of the great intellectual monuments of all time”4. Similarly, Alfred Tarski -
certainly one of the most important logicians of all time - claimed that Principia is “undoubtedly
the most representative work of modern logic” and that the “influence it has exerted has been
no less than epoch-making in the development of logical investigations™. Quine and Tarski are
hardly giving excessive praise to Principia. The two thousand pages, three volume work is in-
deed monumental and its importance and influence in the development of Mathematical Logic

and the Analytic tradition in Philosophy is so great as to be almost inestimable.

But the fact of the matter is that the monumental character of Principia matches (perhaps,
only barely) the monumental character of the aims it was suppose to achieve. As is well known,
the work was conceived by its authors as an extended defense of the claim that all the main

3 1 tried writing these first two sections in such a way that they provide an actual (general and semi-technical)
introduction to the issues and literature that are discussed in the body of the text, so that some of it may even-
tually be useful for someone unfamiliar with some of the complicated historical details and some of the highly
specialized literature discussed. This, it must be said, was done at the cost of some repetition with respect to
some parts of the text.

4 QUINE, W., 1963, p.14.

5 TARSKI, A, 1941, p.229.
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branches of Pure Mathematics can be developed on the basis of Logic alone. As is also well
known, this view, which later became inextricable from labels like ‘Logicism’ and ‘logicist
project’ was originally envisioned by Leibniz in a very rough and programmatic form and then

developed systematically and in depth by Frege with respect to Arithmetic and parts of Analysis.

In a broad sense, Frege’s work succeeded in carrying out this project to a significant
extent, mainly by showing how definitions of ‘Zero’, ‘Number’ and ‘Sucessor’ could be given
on the basis of logical and set-theoretical notions and showing that the fundamental principles
of Arithmetic could be proved on the basis of a few logical and set-theoretical axioms. But as
every novice student of Mathematical Philosophy learns, Frege’s system had a fundamental flaw

with respect to its set theoretical assumptions: they led to contradictions.

Putting things in terms that are instructive, albeit anachronistic®, Frege’s system allowed
one (in practice) to assume the following principle that we nowadays call a ‘naive’ principle of

comprehension’:

(az)(y)(yex = dy) (1.1.1)

For now, we may read the above as stating ‘there is (set) x to which every y belongs if and only if
y satisfies the condition ¢’. The problem, of course, is that the lack of any restrictions as to what
sort of conditions determine our ‘¢’ in the above formla allows one to deduce contradictions
from it. The most simple of all such contradictions is forthcoming when in place of ‘¢y’ we put

‘y 1s not a member of itself’, that is, if we instantiate 1.1.13 above as follows:

(@z)(y)(yex =y ~ €y) (1.1.2)

Strictly speaking, Frege’s system as presented in his Grundgesetze (FREGE, G., 1893) differs radically from
any modern account of quantification theory and of naive set theory. Frege’s logic is best interpreted not as
predicate logic as one finds it in modern textbooks but as logic of terms (cf. DUARTE, A., 2009 and LANDINI,
G., 2012). For an excellent - albeit anachronistic - reconstruction of Frege’s system along the lines of modern
predicate logic and set theory, cf . HATCHER, W., 1980.

7 The notation used in the present work is mainly that of Principia Mathematica. The most basic notation for
propositional logic, predicate logic and set theory used throughout the text is the following:

D, 1, nete. for punctuation and also for conjunction.

(‘and ) for punctuation.

V for (inclusive) disjunction.

~ for (classical) negation.

D for material implication.

= for material equivalence

(x), (x,y), etc... for the universal quantifier.

(dx), (A, y), etc... for the existential quantifier.

oz, px, xx, etc... for Russellian ‘propositional functions’.

Da,...,x, for Peano and Russell’s notion of formal implication.

=,,.....x,, for Peano and Russell’s notion of formal equivalence.

¢ for the relation of membership to a class.

Other notations will appear in the text with variations in each chapter (in particular in the chapters dealing,
respectively, with Russell’s Principles of Mathematics and Principia Mathematica) but the above basic symbols
will be used throughout the whole text without variations, except in the appendices containing translations from
Principia Mathematica.

6
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where, x ~ €y is, of course, ~ (x € y). From the above, by instantiating x as z, it follows at once
that:

W (yez=y~ey), (1.1.3)

And, thus, by instantiating y as z above as well, we have:

Z€EZ=~zEZ (r.1.4)

This is the famous paradox that Russell communicated to Frege at the beginning of the 20th
century, in what is perhaps the most famous letter in the whole history of both Philosophy and
Mathematics®. Russell’s discovery was groundbreaking because it showed that the assumption
about the existence of sets as given by the ‘naive’ comprehension principle which was tacitally
accepted by so many logicians and mathematicians at the time (including Frege and Russell) is

contradictory.

To make a quite long story very, very short, in the outcome of this event Russell recruited
his friend and former teacher Whitehead to try to succeed where Frege had failed and, in fact, to
go quite beyond his work®. The result, after almost ten years of strenuous work were the three
volumes of Principia Mathematica, which present their attempt to overcome the contradictions
that affected the foundations of Set Theory as they stood at the beginning of the 20th century,
and to provide overwhelming evidence that Pure Mathematics is nothing but the development

of Mathematical Logic.

Again, the general outline of how these objectives were meant to be achieved in Prin-
cipia is well known. In the Introduction to Principia’s first edition, which was mainly the work
of Russell, the authors put forward the famous ‘Theory of Types’ as their approach to purge the
foundations of Mathematical Logic and Se Theory from contradictions. The gist of that theory
is the idea that not all things which can be meaningfully said or expressed about the members
of a class can be said of the class itself (and vice versa). In particular, according to the the-
ory of types, one cannot legitimately assert either that a class or set is or is not a member of
itself. Furthermore, Russell introduced several distinctions among what he called ‘orders’ of
statements involving quantification, distinctions which avoided what he called, following Poin-
caré, ‘vicious circularities’. Concerning the goal of providing evidence for what we nowadays
call the ‘Logicist thesis’, Whitehead and Russell showed - employing their symbolic language
which was by and large an enormous improvement over anything which existed at the time with
the possible exception of Frege’s - how an enormous amount of mathematical definitions and

theorems could be grounded on their chosen primitives ideas and propositions.

8 Cf. van HEJENOORT, J., 1967, pp.124-5.

9 Since Frege never made any claims about the logical status of mathematical laws beyond elementary arithmetic
and some parts of the theory of real numbers.

Which, of course, was what engendered paradox in Frege’s system.
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Since Principia’s publication (and still to these days), however, it is universally agreed
that the goals described above were achieved in Principia with radically different degrees of
success. Ivor Grattan-Guinnes, for instance, gives us a very representative statement of this

almost universal agreement:

As a technical exercise [Principia Mathematica] is a brilliant virtuoso perfor-
mance, maybe unequalled in the histories of both mathematics and logic; the
chain-links of theorems are intricate, the details recorded Peano-style down to
the last cross-reference, seemingly always correctly. However, one has to pass
beyond the unclear introductory material - an eccentricity these days - before
these virtues emerge, especially in the second Volume, which is easily the best
of the trio.”

Similarly, commenting on the development of Mathematical Logic as conceived by Leib-
niz in terms of his Characteristica Universalis and developed through the works of Peano, Frege,
Whitehead and Russell, Gddel famously observed that:

Frege, in consequence of his painstaking analysis of the proofs, had not gotten
beyond the most elementary properties of the series of integers, while Peano
had accomplished a big collection of mathematical theorems expressed in the
new symbolism, but without proofs. It was only in Principia Mathematica that
full use was made of the new method for actually deriving large parts of mathe-
matics from a very few logical concepts and axioms. In addition, the young
science was enriched by a new instrument, the abstract theory of relations. The
calculus of relations had been developed before by Peirce and Schroder, but
only with certain restrictions and in too close analogy with the algebra of num-
bers. In Principia not only Cantor’s set theory but also ordinary arithmetic and
the theory of measurement are treated from this abstract relational standpoint.

It is to be regretted that this first comprehensive and thorough-going presen-
tation of mathematical logic and the derivation of mathematics from it is so
greatly lacking in formal precision in the foundations (contained in %1 — %21
of Principia) that it presents in this respect a considerable step backwards as
compared with Frege."”

Godel’s remarks, like those of Grattan-Guinness, capture very well what is a quite wides-
pread (almost standard) view about Principia. In fact, with respect to its ‘foundational’ portions -
i.e., Russell’s Introduction which presents the so-called Ramified Theory of Types and the initial
sections which treat of elementary portions of Logic and Set Theory - Principia’s legacy was
incorporated into the canon of Mathematical Logic and Analytic Philosophy with a far greater

emphasis on its defects rather than on its merits.

" GRATTAN-GUINNESS, I., 200, p.388.
2 GODEL, K., 1944, pp.119-20.
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1.1.1 The Standard Criticisms of Principia’s Theory of Types

The main issues in Principia which gave rise to this situation are all, in one way or
another, related to the presentation of the Theory of Types. As it is presented in Principia’s
Introduction, the Theory of Types was designed by Russell to dissolve a number of ‘contradic-
tions’ or ‘paradoxes’ related to the fundamental notions of Logic and Set Theory. As Russell
had done in his paper that made the Theory of Types famous'4, Whitehead and Russell conside-
red a handful of such contradictions, in the following order: (1) the ‘Epimenides’, perhaps better
known as ‘The Cretan Liar’; (2) Russell’s own contradiction of the class of all classes which are
not members of themselves; (3) the relation version of Russell’s paradox; (4) the ‘Burali-Forti’
contradiction of the greatest ordinal number; (5) the ‘Berry Paradox’; (6) the ‘least indefinable
ordinal’ paradox; and finally (7) ‘Richard’s paradox’.

The general diagnosis which Whitehead and Russell provide concerning these contra-
dictions is that “[...] they all result from a certain kind of vicious circle” that “[...] arise from
supposing that a collection of objects may contain members which can only be defined by means
of the collection as a whole”'®. They are thus claiming that a common feature of all paradoxes
(1)-(7) indicated above is that they involve statements about sets or totalities such that “[...] if we
suppose the set to have a total, it will contain members which presuppose this total”"’. In their
own words “[...] what the theory of types aims at effecting” is to break up such pseudo-totalites
about which statements cannot be legitimately made “[...] into smaller sets, each of which is

capable of a total”'®, i.e., meaningully considered in a declarative sentence®.

In order to do this, they incorporate in Principia’s logical system what became known

as the ‘Vicious-circle Principle’, which they introduce as follows:

The Principle which enables us to avoid illegitimate totalities may be stated
as follows: “Whatever involves a/l of a collection must not be one of the col-
lection”; or, conversely “If, provided a certain collection had a total, it would
have members only definable in terms of that total, then the said collection has
no total.” We shall call this the “vicious-circle principle,” because it enables us
to avoid the vicious circles involved in the assumption of illegitimate totalities.
Arguments which are condemned by the vicious—circle principle will be called
“vicious-circle fallacies™*°.

Principia’s attempt to resolve the contradictions by incorporating the Vicious Circle

Principle within their formal system has three main components. Above we mentioned two,

3 Russell used these terms interchangeably.

4 RUSSELL, B., 1908.

'S WHITEHEAD & RUSSELL, 1925, p.37 [1910, p.39].

16 WHITEHEAD & RUSSELL, 1927 [1910], p.37.

7 WHITEHEAD & RUSSELL, 1925, p.37 [1910, p.39].

8 WHITEHEAD & RUSSELL, 1925, p.37 [1910, p.39].

9 And as they observe “by saying that a set has “no total”, we mean, primarily, that no significant statement can
be maid about “all its members” (WHITEHEAD & RUSSELL, 1927 [1910], p.37.).

*° WHITEHEAD & RUSSELL, 1925, p.37-8 [1910, p.40].
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namely the introduction of type distinctions and the introduction of order distinctions which
restricted what sort of condition or statement ¢x may be meaningfully formulated within their

formalism.

In what is a famously problematic choice of terminology, Whitehead and Russsell cal-
led expressions like “¢pz” (which stated the conditions for class membership in comprehension
principles like (1.1.1) considered above) ‘propositional functions’. Their hierarchy of types of
so-called ‘propositional functions’ restricted the arguments for which such functions had signi-
ficant values, i.e., so-called ‘propositions’. Speaking in terms of Principia’s syntax as explained
in its Introduction, at the lowest type they had individual variables x, y, z, etc., and a further
hierarchy of variables ¢, 1, f, g, etc., whose possible arguments were always restricted to some
type. The notation “¢2”, was meant to distinguish the “function itself “¢2” from “the undeter-
mined value “¢z” *' in their exposition**. So, for instance, according to Principia’s hierarchy
of types, if ¢ is a propositional function whose possible arguments are individual variables, all
of its significant values “¢a”, “¢b”, “¢c”, etc., are propositions - i.e., sentences - which result
from substituting an individual constant for “x”; any attempt to substitute anything else for the
variable x for would result in nonsense, and both “¢(¢z)” and “~ ¢(¢z)” , in particular, are

ruled out as ungrammatical.

The hierarchy of orders then further splits expressions of the same type according to what
sort of quantified variables appears in them in order to avoid another sort of “vicious circularities’.

As they explain:

[...] the hierarchy which has to be constructed is not so simple as might at
first appear. The functions which can take a as argument form an illegitimate
totality, and themselves require division into a hierarchy of functions. This is
easily seen as follows. Let f(¢Z, x) be a function of the two variables ¢Z and x.
Then if, keeping x fixed for the moment, we assert this with all possible values
of ¢, we obtain a proposition:

(6) - f(92, 7).

Here, if x is a variable, we have a function of x; but as this function involves
a totality of values of ¢z, it cannot itself be one of the values included in the
totality, by the vicious-circle principle. It follows that the totality of values of
¢z concerned in (¢) . f(¢pZ, x) is not the totality of all functions in which x can
occur as argument, and that there is no such totality as that of all functions in
which x can occur as argument.*?

Putting it more generally, and in terms of Principia’s syntax, the authors explain that
“if the highest order of variable occurring in a function, whether as argument or as apparent

variable, is a function of the nth order, then the function in which it occurs is of the n + 1th

2l WHITEHEAD & RUSSELL, 1927 [1910], p.40.
22 For instance, to indicate when a ‘function’ - i.e., a non-individual variable - occurred as an argument in some

given context, as in “f(¢2)”, “f(z, ¢2)”, ete.
23 WHITEHEAD & RUSSELL, 1925, pp.48-9 [1910, p.51].
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order”*4. These distinctions of orders together with those of types are introduced by Whitehead
and Russell so that the range of a given variable is always restricted to a given type and order
and vicious circularities are always blocked gramatically: the distinctions are built up in this way

so that the attempt to formulate any of the paradoxes mentioned above results in nonsense®.

This logical theory whose variables are stratified into types with “superimposed or-
ders”?%, as Quine puts it, is what became known as the ramified theory of types. The restrictions
of the theory as developed with the Vicious Circle Principle as its guide, however, are quite
severe for the purposes of developing classical Mathematics, and Whitehead and Russell were
forced to assume a special axiom to attenuate their impact. The assumption in question is their
infamous ‘Axiom of Reducibility’ which asserts that “given any function ¢z, there is a formally

equivalent predicative function””. In symbols, this is stated as follows:

(AY)(x)(px = Ylx) (1.1.5)

As Whitehead and Russell explain in Principia’s Introduction, a function is said to be ‘predica-
tive’, “when it is of the next order above that of its argument, i.e. of the lowest order compatible
with its having that argument”®. The import of this axiom is substantial: it allows one, for all
intents and purposes, to ignore the superstructure of orders upon types, for it asserts that given
any well-formed sentence of Principia’s grammar which contains a real (free) variable x, there
is a function ¢/ of the lowest order compatible with that of its arguments such that v is equivalent

to that open sentence for all arguments x.

The Axiom of Reducibility played a crucial role in what is actually the third and perhaps
most important component of Principia’s resolution of the set theoretical contradictions, namely
the ‘No-class’ theory of classes. This theory is developed in sections 20 and %21 of Principia
where Whitehead and Russell attempt to contextually define symbols for classes and relations-in-
extension and to recover extensionality principles which suffice for the development of Mathe-
matics without assuming any ontology of sets or classes. This approach was inspired by Russell’s
famous paraphrase or contextual definition of sentences containing occurrences of definite des-
criptions, i.e., expressions of the form “the x such that ¢x”. As is well known, in On Denoting*®
- perhaps Russell’s most celebrated paper - he proposed an analysis of a sentence like “the pre-
sent king of France is bald” in terms of an existential generalization asserting that: (i) there is a

king of France; (ii) that there is at most one King of France; and, finally, (ii1) that he is bald. In

24 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56].

35 Cf. WHITEHEAD & RUSSELL, 1925, p.60-5 [1910, p.63-8].
26 QUINE, W., 1941, p.25.

*7 'WHITEHEAD & RUSSELL, 1925, p.56 [1910, p.58].

28 WHITEHEAD & RUSSELL, 1925, p.53 [1910, p.56].

29 RUSSELL, B., 1905a.
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symbols, Russell would later express this in a general manner as follows3°:

Y(xpz) =pr (AY)(0y - (2)(d2 D 2 =y) . by] (1.1.6)

In the above, the expression “2z¢x” stands for the ordinary “the x such that ¢z”, and the right-
side of the definition provides a general way of paraphrasing sentences in which such expressi-
ons occur as subjects in a given context ¢(...). So this analysis made it possible to very conve-
niently (and rightly) avoid treating “ez¢x” as a singular term, but in fact treat it as what Russell

famously called an incomplete symbol.

Put roughly, what we find in sections %20 and %21 of Principia is an attempt to extend
this method of contextual paraphrase to expressions like “Z¢x” and “zy1x” that are generally
thought to stand, respectively, for the set of all things x which satisfy some condition ¢ and
the class of all couples = and y which satisfy some condition . Still putting things roughly,
the main definitions of %20 are intended to do this by letting an arbitrary predicative function
!z that is equivalent to the condition ¢z for all values of x more or less do the job of the set
which generally thought to be the referent of such expressions like “Z¢x”. This is done by first
letting any occurrence of an expression such as “z¢x” within a given condition or context y be

rephrased according to the following contextual definition:

f(202) =pr () () : 9z . = Ylw: x(¢!2)) (1..7)

And then, letting lower-case Greek variables be place-holders for expressions of the form “z¢z”,
Whitehead and Russell emulate quantification over sets by contextually defining “(a)ya” and
“(Ja)xa”, respectively, as “(¢)x(¢!2)” and “(3p)x(4!2)3". This strategy allowed them at the

same time to recover essential extensionality principles like:

(x)(px = ) = (2px = Zx) (1.1.8)

(@)(B)((z).zea=xeB.D.a=[) (1.1.9)

without the need to assume any ontology of classes and to dissolve the set-theoretical contradic-
tions. Russell’s paradox, in particular, is blocked directly by the impossibility of meaningfully
asserting that a propositional function can be its own argument. For according to the contextual

definitions above, any attempt to state anything about a class o always amounts to a statement

3% Principia also introduces scope markers in such definitions, which are very important since they also apply to
and required by the contextual definitions of class expressions. This will be addressed in chapter 4.

3t Similar definitions are provided by Whitehead and Russell to deal with relations-in-extension in section %21.
Further distinctions are also added by Whitehead and Russell for dealing with classes of classes as opposed
to classes of what Russell called classes of ‘individuals’. This is an often neglected and immensely important
aspect of Principia’s No-Class Theory, as Gregory Landini emphasizes (cf., for instance LANDINI, G., 1998,
pp.168-171 and LANDINI, G., 2013b, pp.184-201).
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about a predicative function ¢!z which is formally equivalent to the defining condition of «; so
in particular, the statement that a class « is not a member of itself, i.e., “~ aea” or “a ~ ea”,
must be reduced to a statement that a given function ¢ does not apply to itself, i.e., “~ ¢!(4!Z)”;
but this, as we already pointed out, is ruled by the restrictions of type as ungrammatical. In order
for the No-Class theory to work as intended, however, the Axiom of Reducibility is necessary:
without it, there is no guarantee that there is a predicative function which is formally equivalent

to the condition which determines the class « in question.

Indeed, the Axiom of Reducibility is also required to recover important results of Classi-
cal Mathematics within Principia’s formal system, since the restrictions of orders greatly impact
the strenght of the system. We may illustrate this with an informal survey of how Whitehead and
Russell define the concept of natural number in terms of their notion of the ancestral R, of a
relation R. Expressed in Principia’s notation, the definition of the notion of the ancestral is given
as follows**:

TRy =pr (¢)(dlz: zRw . Plz. D,y . Plw:D. dly)

In words, this states that x is an R-ancestor of y if, and only if, y has all the ‘R-hereditary’
predicative functions (or properties) possessed by x. In the presence of the Axiom of Reducibility,

the above entails the following:
TRy .=uYr:izRw. Yz, D, bw: D . Yy
That is, x is an ancestor of y with respect to R if, and only if any R-hereditary function (predicative

or not) which is true of x is also true of y.

As is well known, the concept of ‘natural number’ in Principia is defined using this

notion and their definition entails the following theorem of mathematical induction:33

Ncinduct(y) = ¢(0) : pa. Dy pla+1): D . oy

As is also well known, for classical mathematics to be preserved, it is crucial that in the formula
above one may legitimately have instead of the so-called ‘function’ ¢ the predicate ‘... is a natural
number’ or a more complex predicate which has this predicate as a subordinate part, as in ‘n is
a natural number less than some natural number m’. Perhaps the most obvious example is the

following version of the principle of induction:
#(0) . Neinduct(a) . pa. Dy« ¢ + 1) : D : Neinduct(y) . D . ¢y

The problem is that whenever one attempts to frame such a statement within a ‘ramified’ syntax,

the occurrences of all terms in it must be read as having implicit or explicit indices indicating

32 This is a simplified version of Whitehead and Russell’s definition, for Principia’s actual definition. Principia’s
actual presentation of the ancestral will be discussed in chapter 5.
3 As we shall see in chapter 5, this is actually a theorem scheme.
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their types/orders which determine what sort of substitutions are allowed in the formula in ques-
tion. A proof of the principle of strong induction requires just the kind of ‘vicious circularity’
which the restrictions of order aim at avoiding: it requires that the range of substituends of the so-
called ‘propositional function’ ¢ occurring in the definiens of “Nc induct” include expressions
whose order is higher than that of ¢, since if the definiens of “Nc induct(«)” contains a bound
variable ¢ whose order is n, then “Nc induct(a))” must of the order immediately above that of
¢. The Axiom of Reducibility cuts right across this difficulty since it asserts that any function

whatever is equivalent to a predicative function34.

It is at this point that Principia’s traits which were universally considered problematic
and unsatisfactory become quite salient. To begin with, there is the quite problematic use of
expressions like “propositional function” and “proposition”. In its most strict sense, a ‘propo-
sitional function’ was certainly meant by Whitehead and Russell to be a complex expression
containing free variables, schematically symbolized as “¢px”, “vy”, “¢(x,y)”, “i(z,y)”, etc?;
in other words, in the most strict sense in which they employed the notion of a ‘propositional
funcion’ they most likely meant a formal expression ¢ which contained free occurrences of any
number of variables x, y, z, etc, and a ‘proposition’ in its most strict sense, was meant to be just a
declarative sentence (a statement which can be either true or false). But as Quine time and again
observed3®, Whitehead and Russell ambiguously used the expression “propositional function”
to mean (at least) two completely different things. Besides employing the label to mean what
is best understood as dummy letters or schemata standing for arbitrary open formulas of their
formal language, they also used the same label for proper variables of their formal language.
To mark this contrast, which was more or less explicitly recognized by the authors, they distin-

6"”

guished this latter use by employing the symbol “!”’, which distinguished so-called ‘predicative’
functions from ‘non-predicative’ ones. So “¢x” was just a scheme, a mere placeholder for an
actual expression containing the variable “x” occurring free at any number of places, while “¢!”
was an actual expression of their formal language which could occur as an argument of other so-
called functions and, crucially, also be bound by quantifiers.The result was that their exposition
was plagued by a conspicuously confusing use of the phrase “propositional function”, which to
this day is a source of both simple misunderstandings and serious interpretative disputes about
Principia.

Many of these arise at once. For instance, if we follow Quine in distinguishing genuine
terms and variables of the formal language from schematic letters, the circumflex notation should
be viewed as playing two different roles and, consequently, the symbols “¢!Z ” and “¢z should
be understood as being of radically different kinds: in the first case the role of the circumflex
is to indicate a formula where a genuine term occurs, as in “i»(¢!z)”; while in the second case,

the device is used (confusingly) for nominalizing open formulas?’. This, on its turn, strongly

34 It must be observed, however, that this applies only to extensional contexts.

35 WHITEHEAD & RUSSELL, 1925, pp.38-9 [1910, p.41].

3% Cf., for instance, QUINE, W., 1941, 1963 and 1969, pp.254-256.

37 For instance, in order to distinguish an open formula from the result of substituing another term a by a variable
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suggests that Whitehead and Russell’s lack of care with the use and mention of expressions
ended up (unintentionally) blurring the distinction between expressions themselves and what

they are be supposed to denote, as Quine vehemently insisted3®.

If we refrain, however, from following Quine’s sound advice to distinguish clearly between

variables and schematic letters and assume that “propositional function” has a univocal meaning,
severe difficulties also arise. To begin with, we seem to find no reasonable explanation whatso-
ever as to why letters such as “¢” never appear bound to quantifiers in Principia in a formula
without an accompanying “!”’3 . Much more serious, however, the ontological status of so-called
propositional functions becomes quite problematic since simply treating them either as entities
or as mere expressions may easily - perhaps inevitably - also saddle Whitehead and Russell with
a severe lack of care about use and mention and a corresponding ontologically confused use of

the phrase “propositional function”.

To give a very simple example, Whitehead and Russell repeatedly assert that a function
is “an ambiguity”4°. If they intended “propositional function” to univocally mean some sort of
abstract entity, this would be quite misleading, since what may or may not be strictly ambiguous
is an expression of some sort. On the other hand, if they intended propositional functions to be
mere expressions, they do not make it clear what such expressions stand for - if anything at all -

66'9,

most crucially in the case of the bindable variables accompanied by

In fact, the two most serious interrelated issues involved in the notion of a ‘propositio-
nal function’ concern directly their ontological status, in particular, whether they are anything
beyond linguistic expressions. First, their dubious status seriously calls into question whether
Principia attains any degree of success in its attempt at the ontological elimination of sets or
classes. Again, this is a point that has been emphatically pressed by Quine, who urged that the
variables “¢!”, “i)!”, etc., must range over attributes or properties if we are to make any sense of
their occurrences bound by quantifiers. This, however, calls into question the very motivation
for the contextual elimination of class expressions which is then framed as an outright substi-
tution of classes in favor of attributes on the basis of a confusion between sign and object. As

Quine puts it:

Russell had also a philosophical preference for attributes, and felt that in contex-
tually defining classes on the basis of a theory of attributes he was explaining
the obscurer in terms of the clearer. But this feeling was due to his failure to
distinguish between propositional functions as predicates, or expressions, and
propositional functions as attributes. Failing this, he could easily think that the

init, as in “¢!x O Y!la” and ¢la D ¢la”.

3% Cf, again, any of the following: QUINE, W., 1941, 1963 and 1969, pp.254-256.

3 This is an issue which arises for several interpretations and reconstructions of Principia. Cf., for instance,
CHURCH, A., 1976; HYLTON, P., 1990, pp.303-9, in particular footnotes 26 and 34, also LINSKY, B., 1999,

pp.79-82.
4° WHITEHEAD & RUSSELL, 1910, p.38-9
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notion of an attribute is clearer than that of a class; for that of a predicate is.
But that of an attribute is less clear.#'

Second, there is the question of the plausibility of the ‘Vicious Circle Principle’ as it
appears in Principia. Famously, Godel** argued that the principle is admissible only “[...] if the
entities involved are constructed by ourselves”, that is, if “[...] one takes the constructivistic (or
nominalistic) standpoint toward the objects of logic and mathematics™#. Following a criticism
first put forward by Ramsey#4, Gédel’s main point is that if we assume the independent existence
of ‘propositional functions’ and ‘propositions’ as abstract entities - attributes or properties, for
instance - then “[...] there is nothing in the least absurd in the existence of totalities” of such

entities that contain “members which can be described only by reference to this totality”43.

On the heels of Ramsey and Godel, Quine struck the nerve again, observing that the

whole business of order restrictions as imputed by the Vicious Circle Principle were ill-conceived:

This ramification of type theory is designed for the avoidance of certain con-
tradictions of a quite different sort from [Russell’s paradox]. But the treatment
is vague, on account of failure to distinguish between expressions and their
names. On restoring this distinction one finds that the contradictions against
which this part of type theory was directed are no business of logic anyways;
they can arise only in discourse that goes beyond pure logic and imports se-
mantic terms such as ‘true’ or ‘designate’. The whole ramification, with the
axiom of reducibility, calls simply for amputation.

It is readily seen also on other grounds that this part of type theory was bound to
be wholly idle. The axiom of reducibility assures us that from the beginning we
could have construed the notations of Principia as referreing exclusively to so-
called “propositional functions” (predicative attributes); but when this is done,
the resulting logic is the same as if neither “orders” nor “predicativity” nor
“reducibility” had been thought of in the first place. That this simple situation
escaped the attention of the authors is attributable, again, to the ambiguity of
‘propositional function” and the underlying difficulty over use and mention.4

Needless to say, all the points above do afford us with a very bad diagnosis for the
‘foundational’ portions of Principia. The above account, if correct, reveals that the mathematical

monument constructed by Whitehead and Russell actually rests on very shaky foundations.

4 QUINE, W., 1969, p.256-7.

4 GODEL, K., 1944, p.127. Famously, Godel also suggested that there may be several principles instead of one,
since Russell at times formulates it in terms of an object being “definable only in terms of” totality, at others is
terms of “involving” and also in terms of “presupposing”, none of which hold water if attributes are understood
as mind-independent entities.

4 GODEL, K., 1944, p.128.

4 Cf. RAMSEY, F., 1926, pp.41.

45 GODEL, K., 1944, p.128.

46 QUINE, W., 1941, pp.25-6. Cf. also QUINE, W., 1969, pp.254-6.
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1.1.2  Principia’s Theory of Types and the ‘Church Orthodoxy’

Many interpreters of Russell’s works as well as authors who were sympathetic to the
general approach to the contradictions which is given in Principia’s Introduction attempted to
reconsider or overcome, in some way or another, the negative assessment of Ramsey, Godel
and Quine#’. These attempts to present Principia’s foundations in a more favourable light can
be categorized in two broad (and sometimes overlapping) groups. First, there are attempts to
formulate Principia’s foundations in a way that is up to modern standards of rigour in order
to clear up the problematic and/or confused aspects of the sloppy presentation of the Theory
of Types given in the Introduction. Second, there are attempts to consider the views advocated
in Principia’s Introduction in a more charitable way by considering them in light of Russell’s
other works in Mathematical Philosophy and by also taking into account the development of his

views.

There are many examples of reconstructions of Principia’s formal system#®, but that of
Church - which at this point may be considered the ‘orthodox’ reconstruction - is by far the
best known. Church manufactured a rigorous formulation of the syntax of ramified type theory
which, apart from some (non-trivial) departures from Principia*®, was intended to capture the
resolution of the so-called ‘semantic’ antinomies or paradoxes by following the restrictions of

orders imposed by the Vicious-Circle Principle®. Crucially, Church’s reformulation also assu-

47 QUINE, W., 1969, p.263. The earliest version of this criticism was introduced by Leon Chwisteck, who endorsed
ramified type theory but rejected the Axiom of Reducibility (cf. CHWISTEK, L., 1921, 1922a, 1922b, 1924,
1925). In his Introduction to the second edition of Principia, Russell describes Chwistek’s choice of rejecting
Reducibility “without adopting any substitute” as “heroic” (WHITEHEAD & RUSSELL, 19274, pp.xiv). For a
discussion of Chwisteck’s original work on the theory of types see LINSKY, B., 2009; for a discussion relating
Chwisteck’s views and those of Russell, see LINSKY, B., 2004 and several sections of LINSKY, B., 2011;
for a discussion of the influence of Principia Mathematica not only on Chwistek but on the whole school of
Polish logicians cf. GRATTAN-GUINNESS, I., 2000, pp.489-97 and WOLENSKI, J., 2013. Another important
early version of Chwistek’s criticism was given by Ramsey, who, of course, rejected both the hierarchy of
orders and the Axiom of Reducibility and is generally credited for the concept of a “Simplified” theory of
types (cf. RAMSEY, F., 1925). Of course, many - including Quine himself - followed Chwistek and Ramsey
in doing this, another important example being Carnap (cf. CARNAP, R., 1929 and 1931) and also Hilbert (cf.,
HILBERT & ACKERMANN, 1928). Quine’s earliest version of this criticism was given in his dissertation, 4
System of Logistic from 1932, later published as QUINE, W., 1934; cf. also QUINE, W., 1936 for similar points.
As we already indicated, however, if Principia’s language is interpreted as allowing the formulation of non-
extensional sentential contexts (as it should), then this criticism is certainly not decisive. Again, the reader is
referred to CHURCH, A., 1974 and 1976. As is well known, this charge of redundancy or superfluousness of
order distinctions in the presence of the Axiom of Reducibility became standard in the literature (cf., for instance,
FITCH, F., 1938; COPI, 1., 1950 and 1971; HATCHER, W., 1980, pp.126-7). Through the nineteen-thirties, the
simple theory of types as urged by Principia’s achieved the status of a standard system for foundation studies and
was consolidated in works like GODEL, K., 1931, QUINE, W., 1938 and CHURCH, A., 1940 but; this situation
changed after the thirties and first-order systems became standard (cf. GOLDFARB, W. 1979, MOORE, G.
H., 1988b6; SHAPIRO, S., 1991, pp.173-202; for a very good study of this historical shift from type-theoretic to
first-order approaches in foundation studies, cf. SCHIEMER & RECK, 2013).

4 For instance, COPL L, 1971; CHIHARA, C., 1973; CHURCH, A., 1976; HATCHER, W., 1968, 1982. General
surveys and critical discussions of such reconstructions can be found in HAZEN, A., 1983; LANDINI, G., 1998,
pp.267-72 LINSKY, B., 1999, pp.66-72.

49 These departures and the historical Principia will be extensively discussed in chapter 4.

50 Cf. CHURCH, A., 1976 for details.
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med that the resulting logic - sometimes referred to as ‘Russellian Intensional Logic’™" - requires
a realist semantics according to which ‘functional’ and ‘propositional’ variables, respectively,
range over ‘propositional functions’ and ‘propositions’ conceived as abstracta. In short: Church
faced Quine’s criticism of the double role played by the notion of ‘propositional function’ by
biting the bullet and reframing Principia’s variables other than individual ones to range over

attributes and relations-in-intension stratified into ramified types®.

Church’s reconstruction of Principia has exerted a deep and widespread influence in
scholarly works on Russell’s Mathematical Philosophy. The claim that Principia’s so-called
‘Ramified” Theory of Types must be interpreted in terms of a realist semantics committed to
‘propositional functions’ and ‘propositions’ conceived as entities, in particular, acquired the sta-
tus of orthodoxy through the influential writings of many important scholars, most notably Peter
Hylton and Warren Goldafarb33. Apart from minor points of disagreement, what is characteristic
of the influential interpreations which these authors put forward is that they are attempts to spell
out and elaborate what sort of philosophical motivation lies behind Principia’s adoption of a

ramified type theory of entities>*.

Warren Goldfarb, for instance, captures quite well the general gist of such attempts at
making explicit ‘Russell’s reasons for Ramification’ (against Gédel’s and Quine’s criciticisms),

when he writes:

Godel and Quine make Russell out to have a general vision of what the exis-
tence of abstract entities comes to, and thus to be adopting constructivism as
a fundamental stance toward ontology. That does not seem accurate to Rus-
sell. Rather, the justification for ramification rests on the particular sorts of
entities to which it is applied, namely, propositions and propositional functi-
ons. To understand this, we must see more clearly why these entities are cen-
tral to Russell’s logical enterprise and what special features of their structure
Russell exploits. The results might have the appearance of constructivism, but
Russell’s most basic reasons for ramification are not the outgrowth of such a
general position; rather, they are far more particular to the nature of the entities
he treats.%

According to this general line of interpretation, ramification “[...] of a domain of abstract
entities is the result of requiring that legitimate specifications of such entities be predicative”,
and such a requirement is justified on the grounds that the entities in question - propositional

functions and propositions - are intensional structured entities>’.

5t Cf,, for instance, ANDERSON, A., 1989.

52 In fact, Church included axiom-schemes of comprehension for both propositional functions and propositions
and distinguished the former from his axioms of reducibility (cf. CHURCH, 1976; and also CHURCH, A., 1956,
pp-347-56).

53 Cf. HYLTON, P., 1980, 1990, 2005; GOLDFARB, W., 1989.

54 Cf. also COCCHIARELLA, N., 1980.

55 GOLDFARB., W., 1989, p.26.

¢ GOLDFARB., W., 1989, p.24. Our emphasis.

57 See, in particular, GOLDFARB, W., 1989, pp.32-3 and HYLTON, P., 2005, pp.134-6.
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Put briefly and roughly, Hylton and Goldfarb argue that the complex structure of the
syntax of Principia’s theory of types is meant by Russell to reflect to complex structure of the
entities which he assumes as fundamental®®; so against the traditional charges of confusing use
and mention and unitentionally assuming a ‘constructivistic’ stance towards mathematical enti-
ties (which would be quite wrong for a Logicist), these authors claimed that ‘Russell’s reasons
for Ramification’ are, on the contrary, grounded on a robust realism about propositions and pro-
positional functions. But still, even if such general approach at making sense of Principia’s text
(in particular the Introduction) is correct, several aspects of the work remain quite baffling and,

indeed, many serious interpretative problems remain without a satisfactory answer.

To begin with, the genuine segmentation of the very notion of logical generality which
is imputed to Russell in Principia by Hylton and Goldfarb is in tension - as they themselves
emphasize - with central aspects of Russell’s early conception of Logic as elaborated in the
Principles of Mathematics and many of his subsequent works. For a central logical doctrine
which is integral to Russell’s early conception of logic was his doctrine of the “unrestricted
variable” according to which the range of “the true or formal variable” must always be comprised
of “all terms”, i.e., all entities there are™. This was also expressed by Russell in terms of the claim

9960

that “there is only one kind of being, namely being simpliciter”°, i.e., the ontological counterpart

of the doctrine which Russell encapsulated in terms of the Leibnizan dictum “Quodlibet ens, est

unum’ i.e., “Whatever is, is one”®

. If taken seriously, this doctrine is plainly incompatible with
the genuine segmentation of the notion of logical generality which inevitably accompanies any

sort of type-distinctions among entities.

Moreover, as many authors®? - including Hylton himself®3 - have shown in studies about
the development of Russell’s views between the Principles and Principia, it was in order to
preserve this doctrine that Russell became more and more attracted to eliminativistic approaches
to classes; it was also in order to preserve this doctrine that Russell was led at some point to an
eliminativistic approach to propositional functions and to propositions as well. And, in fact,
Principia’s Introduction explicitly advocates an eliminativistic stance towards propositions by
adopting Russell’s ‘multiple-relation’ analysis of judgment according to which a proposition
“[...] is not a single entity at all”%4; like expressions for classes, Russell intended expressions like
P, g, r etc., to be treated as “incomplete” symbols which are contrasted with individual constants

and variables: the latter, unlike incomplete symbols, “[...] do not disappear on analysis%.

According to Hylton, however, the implication “[...] that only individuals (neither propo-

8 ¢f., for instance, HYLTON, P., 2005, pp.134-7.

5% RUSSELL, B., 1937 [1903], p.91, §88

60 RUSSELL, B., 1937 [1903], p.449, §427

61 RUSSELL, B., 19064, p.261.

62 Cf. COCCHIARELLA, N., 1980; HYLTON, P., 1980; LANDINI, G., 1998.
% Cf., in particular, HYLTON, P., 2005, pp.93-I0L.

% WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].

% WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].
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sitions nor propositional functions) are genuine constituents of propositions, constituents which

do not ‘disappear on analysis’” can only be explained as “[...] wishful thinking on Russell’s

9966

part”®® which displays “unwillingness of Russell to acknowledge the implications of type the-

ory”%7. Similarly, Goldfarb follows the established common wisdom of Church’s reconstruction
and claims that the attempt to treat sentences as incomplete symbols is not consistent with the

logic of Principia and that the multiple-relation analysis of judgment “seems to play no real role

9968

in Russell’s explanations of his logical system™*°. The implications of Goldfarb’s views are quite

like those of Hylton: both are basically claiming that any aspect or passage in Principia which
may suggest that type distinctions are not meant to apply to genuine entities - as in the case of
so-called propositions - is best understood as the result of Russell’s failure or “unwillingness”

to understand what his own logical system requires in order to make sense or be coherent.

Furthermore, Hylton claims that this same “unwillingness™ is also displayed in connec-
tion to another fundamental tension which emerges in Principia if the theory of types is interpre-
ted in terms of a realistic theory of propositional functions and propositions. Hylton and Goldfarb
follow van Heijenoort in attributing to Russell a somewhat naive conception of the “universality
of logic”%. Goldfarb, for instance, provides a paradigmatic explanation of this interpretation in

the following terms:

Russell took logic to be completely universal. It embodies all-encompassing
principles of correct reasoning. Logic is constituted by the most general laws
about the logical furniture of the universe: laws to which all reasoning is subject.
The logical system provides a universal language; it is the framework inside
of which all rational discourse proceeds. For Russell, then, there is no stance
outside of logic: anything that can be communicated must lie within it. Thus
there is no room for what we would call metatheoretic considerations about
logic.”

Hylton agrees entirely with that interpretation. He writes:

Logic, for Russell, is a systematization of reasoning in general, of reasoning as
such. If we have a correct systematization, it will comprehend all correct prin-
ciples of reasoning. Given such a conception of logic there can be no external
perspective. Any reasoning will, simply in virtue of being reasoning, fall within
logic; any proposition that we might wish to advance is subject to the rules of
logic. [...] If logic is to be unconditionally and unrestrictedly true in the sense
that Russell requires it to be, then it must be universally applicable. This, in
turn, implies that statements about logic must themselves fall within the scope
of logic, so the notion of a meta-theoretical perspective falls away.”

% HYLTON, P., 2005, p.106.

67 HYLTON, P., 2005, p.106.

% GOLDFARB., W., 1989, p.34. That is why Goldfarb takes “[...] the charitable course of ignoring [...]” (idem.)
any possible role that the multiple-relation analysis of propositions may play in Principia.

% Cf. van HEIJENOORT, J., 1967.

7 GOLDFARB, W., 1989, p.27.

7 HYLTON, P, 1990, p.203.
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Thus according to such interpretation, “intrinsic to Russell’s conception of the univer-
sality of logic is the denial of the metalinguistic perspective which is essential to the modern
conception of logic”7?>. Of course, an important consequence of imputing such a conception of
Logic to Principia is that it makes the very statement of the theory of types incoherent, in particu-
lar if type distinctions are considered as substantial claims about domains of entities. As Hylton
puts it, “the difficulty here clearly arises from the attempt to state type theory within type the-
ory”’73: for if propositional functions are entities after all and Principia’s lingua characteristica
is meant to be “all encompassing”, then any statement to the effect that two given functions ¢
and v are not of the same type would, if true, violate type distinctions, because such statement
would presuppose that there is propositional function x which can be meaningfully applied to

two entites ¢ and ) both when they are and when they are not of the same type’.

Thus, the general situation which we have here is the following. In their efforts to dispel
Godel’s and Quine’s verdict that the foundations Principia are pervaded by basic misunders-
tandings’>, Church, and following him, Hylton and Goldfarb have argued that Principia should
be interpreted as advancing an onerous theory of abstract entities that is motivated by a robus-
tly realist, albeit naive, conception of Logic. As Hylton puts it, however, this very conception
of Logic gives rise to “[...] a fundamental tension in Russell’s philosophy”7® which can only
lead us to conclude that Principia is “[...] a technical achievement which is marred by apparent

inconsistencies and incoherences””’.

1.1.3 The ‘Axiom’ of Infinity

Furthermore, although neither Church, nor Goldfarb nor Hylton explicitly mention this
in connection with the issue of propositional functions and propositions, there is a another point

that arises here related Principia’s so-called ‘Axiom of Infinity’.

As is well known, given type restrictions, it is impossible to prove in Principia’s system
that there are infinitely many objects in any given type. A little more precisely, what cannot be
shown in any type is that the universal class is non-inductive. In symbols, this may be schema-

tically expressed as follows:

V ~ eClsinduct (1.1.10)

Where “Cls induct” stands for the class of all ‘inductive’ or finite classes. In Principia, this class

7> HYLTON, P., 1990, p.202; cf., also, GOLDFARB., 1989, p.27

73 HYLTON, P., 2005, p.76.

74 Cf. HYLTON, P., 1990, pp.316-18; also HYLTON, P., 2005, pp.75-7.

75 In particular the confusion between the use and mention of expressions.
76 HYLTON, P., 2005, p.107.

77 HYLTON, P., 2005, p.107.

27



in characterized in terms of the following theorem, which expands its more compact definition:

Clsinduct = a{(u)(Aepu A (n)(y)(nep Dnu{yten). D.aen)} (1.1.11)

Put in terms of cardinal numbers, 1.1.10 is equivalent to the following:

Nc(V) ~ eNC induct (1.1.12)

Which states that the cardinal number of the universal class (of some type”) is not a finite
cardinal number, i.e., a natural number. Also, in Principia’s system there are many statements

which are equivalent to the above, including the following:

(n)(n € NCinduct D n # A) (1.1.13)

(n)(n € NCinduct Dn #n+1) (1.1.14)
(m)(n)(n,m € NCinduct. D.m+1=n+1>m=n) (1.1.15)
Nc(NCinduct) ~ € NC induct (1.1.16)

The last three, 1.1.14, 1.1.15 and 1.1.16, in particular cause some alarm: they assert, respectively,
that (@) no natural number is identical with its immediate successor; (b) that no two natural
numbers have the same successor and (c¢) that the cardinal number of the class of all natural
numbers is not itself a natural number, i.e., that there are infinitely many natural numbers. None

of these are provable in Principia.

Whitehead and Russell handled this ‘difficulty’ by introducing 1.1.13 as a hypothesis -
not as a proper axiom of their system - wherever it was necessary. So instead of proving, say,

1.1.14, they proved only:
Infin Ax D (n)(neNCinduct D n #n+ 1) (1.1.17)

Where ‘Infin Ax’ is a label for 1.1.13. Even independently of the issue of the status of ‘pro-
positions’ and propositional functions, the impossibility of proving 1.1.14 rather than 1.1.17 was
universally recognized as attesting Principia’s failure to establish the Logicist thesis, since 1.1.13
is actually equivalent to the assumption that there are infinitely many objects of the lowest type,
i.e., infinitely many individuals. For instance, William and Martha Kneale’s (nearly infuriated)
comments on the status of Infin Ax provide a quite representative reaction to its employment in

Principia. They write:

78 Cf. %120 and %120-24.
79 For reasons that will be discussed further, it would be more appropriate to speak of the universal class of some
relative type. Cf. for instance, LANDINI, G., 2016, p.4-5. This issue will be discussed in chapter 5.
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There is something profoundly unsatisfactory about the axiom of infinity. It
cannot be described as a truth of logic in any reasonable use of that phrase,
and so the introduction of it as a primitive proposition of arithmetic amounts in
effect to abandonment of Frege’s project of exhibiting arithmetic as a develop-
ment of logic. Nor is it a sufficient defence to suggest, as Russell has sometimes
done, that we may treat as a postulate or hypothesis rather than as an axiom in
the old sense. For we want to assert that the series 1/2 + 1/22 + 1/23 + ...
converges to I as a limit, not that it converges to 1 as a limit if there happens to
be an infinity of individuals in the world. But even if we abandon all hope of
carrying out Frege’s programme in full and say boldly that Russell’s axiom is
required as an extra-logical premiss for mathematics, how can we justify our
acceptance of it? What are the individuals of which Russell speaks, and how
can we tell whether there infinitely many of them?%

Similar remarks are easily found in the literature about the subject® and even authors
who are much more sympathetic to Whitehead and Russell’s modus operandi also agree that

Principia fails in sustaining the claim that Arithmetic is nothing but the development of Logic®2.

Hylton - like the Kneales and many others - agrees that “Russell’s attitude towards the
axiom of infinity does [...] threaten the fundamental project of logicism”, so much so that ac-
cording to him “[...] it might be said that Principia represents not so much the culmination of
Russell’s logicism as Russell’s abandonment of logicism™®3. When viewed in light of the highly
Platonistic interpretation of type theory which is put forward by Cocchiarella, Golfarb and Hyl-
ton himself, we seem to be left with a very negative assessment of the development of Russell’s
views. Putting matters in a rather blunt way, how could Russell (and Whitehead) have ended
up adopting a logical system which at the same time betrayed the philosophical conception of
Logic as a science that motivated it (in virtue of the considerations about types made above)
and also failed to deliver the technical results which were central to the project of establishing

Logicism?

As we shall see next, there is an alternative interpretation which provides a more chari-

table and interesting portray of the Logic and Logicism of Principia, that of Gregory Landini.

1.2 Re-assessments of the ‘Received View’

1.2.1 Russell’s Manuscripts and the ‘Substitutional Theory’ of Classes and Re-

lations

Before presenting the general outline of Landini’s interpretation, it is necessary to pro-

vide some context for it, in particular, in order to make clear why several aspects of what we are

8 KNEALE & KNEALE, 1962, p.669.

8t Cf., for instance, HATCHER, W., 1980, pp.123-4; MENDELSON, E., 2010, p.295, footnote; SOAMES, S., 2014,
pp-487-8.

8 Cf., for instance, BOOLOS, G., 1998, pp.271-2.

8 HYLTON, P, 2005, p-78. Cf., also, HYLTON, 1990, pp.318-20.
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calling ‘orthodox’ interpretations remained unquestioned for so long.

In the last three quarters of a century®4, we may distinguish three stages of Russellian
scholarship as far as Russell’s logico-mathematical writings are concerned. The first stage lasted
until the end of the nineteen-sixties and was dominated by the negative assessments of Ramsey,
Godel and Quine which we discussed above. In particular, it was a commonplace to assume that
the development of Russell’s views from the publication of the Principles up to the publication
of Principia was that Russell went through several different dead-ends that were plagued by
irresolvable technical difficulties and/or philosophical incoherences, until settling for the type
theory of Principia. The beginning of the second stage is marked by the acquisition of Russell’s
library and Nachlass by McMaster University, establishing there the Bertrand Russell Archives
and the Bertrand Russell Research Centre, leading to the creation of the quarterly newsletter
Russell: the Journal of the Bertrand Russell Archives - now called The Journal of Bertrand
Russell Studies and publsihed semiannually - and of the monumental series of The Collected

Papers of Bertrand Russell.

These developments prompted a complete revolution in our understanding of what hap-
pened between the publication of the Principles of Mathematics and that of Principia Mathema-
tica. Scholars soon found out that the amount of (already fairly voluminous) works that Russell
published between his two seminal works on Mathematical Philosophy was but the tip of an
iceberg of material that included an enormous amount of manuscripts and a vast (and inesti-
mably informative) mathematical correspondence. A little (albeit very important) part of this
material was made available in the seventies with the publication of some of Russell’s so-called
‘Essays in Analysis’®5 and thanks to the pioonering efforts of Ivor Grattan-Guinness®®. Then, th-
roughout the eighties and nineties, several scholars dedicated an enormous amount of time and
effort editing and studying this material, resulting in the publication of many important studies®”
and approximately the first half of the manuscripts Russell produced in the period between the
Principles and Principia in the fourth volume of the Collected Papers®. And finally, what we
may justfiably distinguish as a third stage has recently began with the publication of the long-
awaited fifth volume of Russell’s Collected Papers®, where we find the published papers and
unpublished manuscripts that Russell produced between 1905 and 1908, by far the most crucial

period leading to the completion of Principia Mathematica.

84 Taking the publication of Schillpp’s volume on Russell (SCHILPP, P. A., 1944) as a (somewhat arbitrary) starting
point for detailed Russellian scholarship in general.

8 LACKEY, D., 1973, in particular paper 8 (i.e., RUSSELL, 1906a), now published in the Collected Papers Volume

5 (MOORE, G., 2014), which we’ll soon discuss below.

An important early survey and appraisal of the content of these manuscripts is given in GRATTAN-GUINNESS,

1., 1974. And, of course, there is the classic GRATTAN-GUINNESS, 1., 1977 which will be extensively quoted

and discussed in the present text.

87 To name just a few: GRATTAN-GUINNESS, 1., 1985; COCCHIARELLA, N., 1980; HYLTON, P., 1980; GRIF-
FIN, N., 1980, 1991; URQUHART, A., 1988; RODRIGUEZ-CONSUEGRA, F., 1989, 1991; GARCIADIEGO,
A., 1992; GOLDFARB, W., 1989; LANDINI, G., 1987, 1989, 1991, 1998.

8 URQUHART, A. (ed.), 1994.

8 MOORE, G., 2014.

86
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Now, although there are many, many authors, editors (as well as editorial advisers) and
scholarly studies that can be mentioned in detailing how this revolution gradually came about
in the use of the Russell Archives and Russell’s posthumously published works, four studies
deserve particular mention in connection with our topic, namely: Ivor Grattan-Guinness’s Dear
Russell, Dear Jourdain®®, Nino Cocchiarella’s The Development of the Theory of Logical ty-
pes and the Notion of a Logical Subject in Russell’s Early Philosophy®', Peter Hylton’s Russell
Substitutional Theory®* and, lastly and most importantly, Gregory Landini’s Russell s Hidden
Substitutional Theory”3. The common thread in all these works was that they considered (in in-
creasing amount of detail) a theory that Russell developed between the Principles and Principia,

the ‘Substitutional Theory of Classes and Relations’.

The core idea of the Substitutional Theory of Classes and Relations was the same as that
of Principia’s No-Class Theory®4: to treat expressions for classes and relations-in-extension as
incomplete symbols. The crucial difference, however, is that the Substitutional Theory assumes
an ontology of propositions that are treated on par with individuals and functional variables are
also explicitly contextually eliminated. Thus, the theory embraces a logical grammar in which
all variables are individual variables that have a completely unrestricted range in accordance
with Russell’s thesis of the univocity of being. The fundamental notions of the theory are those
of an entity occurring as a subject (or term) in a proposition and of a proposition g which dif-
fers from p by having x occurring in place of term a whenever a occurs as a subject in p, or, as
Russell liked to put it “what p becomes when x is everywhere substituted for a in p”%. Impor-
tant details aside, the basic gist of the theory is the employment of what Russell calls a “matrix”

in place of functional and class expressions®®. At the basis of the Substitutional calculus, Rus-

sell introduces the primitive notation “p—!q” or “p/a; x!¢”, which stands for the assertion that ¢
is exactly like p except for containing OC(L:CUI‘I‘GHCGS of x wherever p contains occurrences of a.;
Russell then defined the symbol “pf” or “p/a; x” as “the g that is exactly like p except for contai-
ning occurrences of x wherever p cC(L)ntains occurrences of a7, i.e., it is the definite description
“(1q) (pg)”; he called the component “p/a” of this symbol the matrix of the substitution, which
is an expression that does not have any meaning by itself, but is in fact an incomplete symbol®.
Putting things very roughly and briefly, in the Substitutional Theory this symbol played the role
of a class expression?; Russell’s core idea was to emulate within his early quantificational cal-

culus of propositions what effectively amounted to a simple type-theory of classes, classes of

9% GRATTAN-GUINNESS, 1., 1977.

9" COCCHIARELLA, N., 1980.

92 HYLTON, P., 1980.

93 LANDINI, G., 1998.

94 Presented in sections %20 and %21 of Principia.

9 Cf., for instance, RUSSELL, B., 19054, p.93; also 1905b, p.98,

9 RUSSELL, B., 19064, p.246.

97 Cf. RUSSELL, B., 1905¢, p.93; also 19064, p.246.

98 This symbol stands for “the result of replacing a in p by” (cf. RUSSELL, B., 19064, p.246).
99 Cf. RUSSELL, B., 1905¢, p.93; and, again, 1906a, p.246.
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classes, classes of classes of classes, etc., and, similarly, definitions for relations-in-extension',

thus avoiding the set theoretical contradictions™

while also allowing the development of a lot
of Mathematics on the basis of this calculus without assuming any distinctions among types of

entities - thus reconciling the doctrine of the unrestricted variable with his logicist goals'®.

Grattan-Guinness’s book'** commented on and made available the correspondence between

Russell and the mathematician Philip Jourdain with whom Russell discussed constantly and in
great detail the development of his views on Logic between 1905 and 1910. Grattan-Guinness’s
work called attention for the first time to the major role played by the Substitutional Theory in
the development of Russell’s views. Cocchiarella’s and Hylton’s pioneer studies'* investigated
- for the first time in detail - Russell’s reasons for adopting and later abandoning the theory, by
attempting to reconstruct the tortuous path towards Principia’s Theory of Types'®. Landini’s
book was the culmination of extensive research™ in the Russell Archives of the manuscripts
that are now published in the fifth volume the Collected Papers'’. Landini made what is to this
day the most systematic and detailed reconstruction of the many versions of the Substitutional
Theory. Together, these studies showed that there is much more continuity in the development of
Russell’s views towards Principia than was previously thought and that any account of this de-

velopment must consider in detail (and take seriously) this important stage of Russell’s thought.

However, this (still ongoing) process of piecing together the details of Russell’s Subs-
titutional Theory and its role in the development of his views progressed in a gradual way and
Landini was the first'®® to challenge basic assumptions that prevented an adequate understanding
of Russell’s work in this intermediate period. In fact, for quite some time the role played by this
theory in the development of Russell’s views remained barely understood, in particular because
the details of the theory remained, as Landini noted'®, buried and forgotten in manuscripts for
almost seventy years, with Russell’s published works giving only bare hints as to why his views
eventually shifted from the method of Substitution.

Indeed, the Substitution was only discussed in three of Russell’s published writings. In

100

Cf., for instance, RUSSELL, B., 1905¢, pp.93-4; and, again, 1906a, p.246; Cf. LANDINI, G., 1998, pp.140-145
and chapter VI for details.

Russell’s paradox, for instance, is elegantly resolved in the following way: translating into the substitutional
theory, “a € &” becomes “p/a € p/a”, which is “p/a; p, alq”; this, however, is simply ungrammatical: the lan-

[P L}

guage of Substitution requires that only a genuine term like “q” or “a” may be substituted for another in a given
sentence “p” and “p/a” is not a term at all. Notice, also, that this restriction is philosophically well motivated:
such a grammatical rule is in accordance with Russell’s logical doctrine that all and only terms (not in the lin-
guistic sense that “a” is a (singular) term, but in the sense that « is an entity or being) can be logical subjects of
propositions.

o2 Cf. RUSSELL, B., 19064, p.261.

93 GRATTAN-GUINNES, L., 1977.

°4 CHOCCHIARELLA, N., 1980; HYLTON, P. 1980.

105 Other early (but posterior) studies attempting this include LANDINI, G., 1987 and 1989;

196 Cf. also LANDINI, G., 1987 and 1989 for some preliminary presentations of Landini’s book.

°7 MOORE, G. (ed.), 2014.

198 As we shall see, following a lead of Cocchiarella.

109 ANDINI, G. 1998, p.I.

101

32



his 1905 paper On Some Difficulties of Theory of Transfinite Numbers and Order Types'®, Russell
somewhat reluctantly considered the Substitutional Theory under the label of ‘No-Class Theory’
and claimed that it could “[...] be accepted as one way of avoiding contradictions, though not
necessarily the way”""". However, while the article was still in the press he added the following
note at the end of it:

From further investigation I now feel hardly any doubt that the no-classes the-
ory affords the complete solution of all the difficulties stated in the first section
of this paper."?

The next appearance of the ‘Substitutional’ or “No-Class’ theory in print was in Russell’s
paper Les Paradoxes de la Logique™ from 1906, in which he engaged in a polemic started by
Henri Poincaré"+ and Louis Couturat™. There, again, we find Russell confident in the Substitu-
tional Theory’s capacity to purge Set Theory of contradictions, claiming that “[...] there seems
reason to hope that the method proposed in [the] article avoids all the contradictions, and at the
same time preserves Cantor’s results™¢. This makes clear that at least until September of 1906
Russell was still convinced that the Substitutional Theory could work. However, the next men-
tion to the Substitutional Theory in print came only in 1908 in the seminal paper “Mathematical
Logic as Based on the Theory of Types”™, where Russell laconically indicated that the theory
can be understood as a philosophically plausible, albeit technically inconvenient, alternative to

the hierarchy of so-called ‘propositional functions’ that he meant to employ in practice.

But after Mathematical Logic Substitution vanished from Russell’s works: no explicit
mention to the theory appears in any of Russell’s subsequent publications in Mathematical Phi-
losophy. In particular, there is not a single explicit mention of it Principia, where the label of
a ‘No-Class Theory’ is dissociated from the method and notation of Substitution. Furthermore,
none of Russell’s published papers provide a satisfactory answer as to why he abandoned the
theory. In On Some Difficulties Russell mentions that there are challenges™ for the theory, but
these did not make his confidence in it waver, as the note added to the paper makes clear. Simi-

larly, in Les Paradoxes, Russell tempered his confidence in the theory only in observing that “a

o RUSSELL, B., 1905b.

" RUSSELL, B., 1905b, p.82.

"2 RUSSELL, B., 1905b, p.89. Russell submitted the paper on 24 November 1905; he read the paper on 14 December
and added the note on 5 February 1906 (MOORE, G., 2014, p.62). We will discuss the details of the timeline in
Chapter 3.

3 RUSSELL, B., 1906b. Russell intended the article to be entitled “Insolubilia and Their Solution Through Sym-
bolic Logic”, but was persuaded to the contrary by Couturat; the paper was translated by Couturat around the
end of June (cf. MOORE, G., 2014, pp.276-7).

4 Cf. POINCARE, H., 1905 and 1906.

5 Cf. COUTURAT, L., 1906.

6. RUSSELL, B., 1906, p.296.

7 RUSSELL, B., 1908.

8 Cf. RUSSELL, B., 1908, pp.603-4.

9 Cf. RUSSELL, B., 1905b, p.82.
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lengthy symbolic development’'*° was still necessary to establish that it was indeed adequate for
the development of Mathematics. But beyond that, Russell never published an inkling detailing

what led him to abandon Substitution.

This puzzling state of affairs left early interpreters with little to work with in reconstruc-
ting Russell’s reasons for abandoning his Substitutional or early ‘No-Class’ theory and made
them fail to appreciate its importance. Quine, for instance, viewed the theory as a typical pro-
duct of use-mention confusion and claimed that the note Russell added to On Some Difficulties

“[...] was the expression of renewed hope that [Russell] was shortly to abandon™"*'.

A fundamental piece of evidence suggesting that this view is mistaken was first pu-
blished in the early seventies: a paper* that Russell read to the London Mathematical Society
on April of 1906 which he ended up withdrawing from publication by october of the same year'3.
This paper, entitled “On the Substitutional Theory of Classes and Relations” was the closest to a
definite presentation of the Substitutional Theory that Russell ever made public™4, but it remai-
ned unpublished until 1973, when it came out in the volume Essays in Analysis'>. In this paper
Russell voiced again his concern that “the technical development of the principles of mathema-
tics is rendered [...] much more complicated by the Substitutional theory”'2°, but also observed
that :

The only serious danger, so far as appears, is lest some contradiction should be
found to result from the assumption that propositions are entities; but I have
not found any such contradiction, and it is very hard to believe that there are no
such things as propositions, or to see how, if there were no propositions, any
general reasoning would be possible. It would seem, therefore, that the chances
of any important lurking fallacy in the method are not great.””

This was the first substantial clue as to what led Russell to abandon substitution, for it
suggests that he did find out that some contradiction follows from the assumption of propositions

in the Substitutional calculus.

Thus, we have a first a plausible answer as to what led Russell to withdraw the paper and
abandon the Substitutional Theory, namely: a paradox (or set of paradoxes) which arises from

the assumption of propositions within his substitutional calculus. But which sort of paradox

2% RUSSELL, B., 19065, p.296. Indeed, in Les Paradoxes Russell also wrote the following, referring back to On
Some Difficulties: “In the above-mentioned article, the no-classes theory was merely sketched in the briefest
outline, nor did I then know how much of the theory of the transfinite it was possible to express in this language.
I have since come to the conclusion that, so far at least as I can yet discover, hardly anything is ruled out except
the paradoxes” (RUSSELL, B., 19065, p.287).

1 QUINE, W., 1967, p.151.

22 RUSSELL, B., 1906a.

23 Cf. MOORE, G., 2014, pp.236-9.

24 Cf. MOORE, G., 2014, p.173-4.

25 Cf. LACKEY, D., 1973, pp. 165-189.

126 RUSSELL, B., 19064, p.261.

7 RUSSELL, B., 1906a, p.261. My emphasis.
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or contradiction? Again, Russell never said anything in his published writings that afforded

anything close to a definitive answer.

Some further hints were uncovered by Ivor Grattan-Guinness in his research of Russell’s
correspondence with Jourdain. To begin with, we have a letter of 14 June of 1906, where Russell

wrote:

I feel more and more certain that this theory is right. In order, however, to solve
the Epimenides, it is necessary to extend it to general propositions, i.e., to such
as (z).¢x and (3z).¢x. This I shall explain in my answer to Poincare’s article
in the current Revue de Metaphysique.'*

The ‘answer to Poincaré’ refers to Les Paradoxes, and it requires some contextualiza-
tion. It is in Les Paradoxes that Russell acknowledges for the first time that the “paradoxes all
spring from some kind of vicious circle’’*® and admits that any account of the foundations of
Logic and Mathematics must embody the so-called Vicious Circle principle, which he there sta-
tes as “whatever involves an apparent variable must not be among the possible values of that
variable” and also “less exactly” as “whatever involves al// must not be one of the al// which it
involves'3°. Now, concerning the ‘vicious circles’ involved in the set-theoretical contradictions,
Russell claims that they are solved by treating matrices as incomplete symbols, thus blocking
problematic substitutions in the way indicated above'?'. But in Les Paradoxes, Russell appa-
rently became concerned for the first time with paradoxes of a different sort, like the so-called
‘Epimenides’, also known as the ‘liar paradox’. A solution of this paradox, Russell explained
in the paper, required an extension of the theory of incomplete symbols to statements contai-
ning variables bound by quantifiers'®*. The details of this proposal and how it was intended to
dissolve paradoxes need not detain us for now'33. What is relevant is that such claims made by
Russell in Les Paradoxes together with the letter quoted above may suggest that it was the liar
and related paradoxes that led Russell to withdraw his previous paper on Substitution. In fact,
a similar conclusion may also be extracted from another letter Russell wrote to Jourdain on 10
October of 1906, right after Les Paradoxes was published. Responding to Jourdain’s praise of
the Substitutional Theory, Russell wrote:

I am glad you feel attracted by the no-classes theory. I am engaged at present
in purging it of metaphysical elements as far as possible, with a view to getting
the bare residuum on which its success depends. I decided not to publish the

128 GRATTAN-GUINNESS, 1., 1977, p.89.

29 RUSSELL, B., 1906, p.278.

3¢ RUSSELL, B., 1906, p.289.

3T See previous footnote 101. These points will be discussed in more detail in chapter 3.

3> Cf. RUSSELL, B., 19065, p.289-292

33 Russell provides a bare outline of this approach in RUSSELL, B., 1906, pp.288-95. For an attempt at recons-
tructing this idea in detail cf. LANDINI, G., 1998, pp.216-3I.
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paper I read at the London Mathematical [Society] in May; there was much in
it that wanted correction, and I preferred to wait till I got things into more final
shape.’34

When viewed in light of Russell’s previous letter and of the discussion of the Epimenides
in Les Paradoxes, the ‘purging of metaphysical elements’ can very reasonably be interpreted
as meaning the elimination of propositions as entities' - or, at least just general propositions.
Similarly, Russell’s claim that the paper “wanted correction” may suggest that he thought that the
version of substitution he put forward in the abandoned paper was susceptible to some version
of the Epimenides. But the fact of the matter is that these statements are very vague3® and
they provide no detailed indication as to why Russell withdrew the paper much less to why he

abandoned substitution.

So commentators were still left in the dark and unable to satisfactorily put this puzzle
together. Despite having realized that “[...] the substitutional theory is the missing link between
Russell’s theory of denoting and Principia Mathematica”7, Grattan-Guinness concurred with
Quine and claimed that despite being “[...] an exceptionally ingenious construction even by Rus-
sell’s standards”, the substitutional theory “[...] fell soon after it rose” because it failed “[...] to
clarify the status of some of its components as linguistic or abstract objects”'3®. Thus, Grattan-
Guinness claimed, the withdrawal of Russell’s main paper on the Substitutional Theory ultima-
tely “[...] marked the demise of the theory itself”3°. Others were led to conclude that paradoxes
related to the Epimenides were the cause of the Substitutional Theory’s demise. Peter Hylton, for
instance, who also correctly recognized that “the substitutional theory is an indispensable part of
a general understanding of the philosophical context of Principia Mathematica’'4° argued that
the downfall of the theory was its susceptibility to “paradoxes” that ““[...] we would call semantic
rather than logical”'¥', calling attention, in particular, to a substitutional version of a paradox of
propositions'* that Russell had already considered in the Appendix B of the Principles of Mathe-

matics'B. It was such paradoxes, according to Hylton, that led Russell to abandon Substitution

34 GRATTAN-GUINNES, L., 1977, p.93.

35 Cf., for instance, POTTER, M., 2000, p.131.

136 As observed in LANDINI, G., 1998, p.200.

37 GRATTAN-GUINNES, 1., 1977, p.94.

138 GRATTAN-GUINNES, ., 1977, p.94. Similarly, Michael Potter claims that the Substitutional Theory was “[...]
extremely short-lived, even by Russell’s hectic standards of theory revision” (POTTER, M., 2000, p.131).

39 GRATTAN-GUINNES, ., 1977, p.94.

14 HYLTON, P., 1980, p.2.

4 HYLTON, P., 1980, p.23.

42 Cf. HYLTON, P, 1980, p. 24.

43 Cf. RUSSELL, B., 1903, p.527, §500. Russell had already communicated this paradox to Frege in a letter from
29 September of 1902 (cf. FREGE, G., 1980, p.147). The paradox in questions can be described in the following
general form: given a class m whose elements are all propositions, there is a proposition p,,, which asserts that
every element of m is true; this proposition may or may or may not belong to m; let p}, be such a proposition
pm Which does not belong to m and let w be the class of all such propositions p}, ; now, let p,, be the proposition
which asserts that every element of w is true; problem: p,, belongs to w if, and only if it does not belong to w -
contradiction.
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and accept a hierarchy of so-called ‘ramified types’ in Mathematical Logic and Principia'*.

Even in light of the evidence available at the time, however, both conclusions, are un-
satisfactory. Grattan-Guinness’s claim that Substitution was short lived flies in the face of the
fact that Russell still considered it as a viable alternative to a theory which embraced (at least
in practice'¥) a hierarchy of ‘propositional functions’ at least by June or July of 1907 when he
wrote Mathematical Logic as Based on the Theory of Types™®. On the other hand, Hylton’s claim
that semantic paradoxes brought the theory down is entangled in severe interpretative issues and
problematic assumptions. For one thing, there is the following straighforward historical issue:
Russell was aware of paradoxes of propositions long before coming up to the Substitutional
Theory - are we to say, then, that he simply forgot about them or ignored them when he was
confident in the theory'#’? The most notable and important issue, however, concerns a point that
Nino Cocchiarella was the first to emphasize, namely, that paradoxes akin to that of Appendix
B of the Principles which arise in the Substitutional Theory should not be viewed as ‘semantic’
paradoxes akin to the Epimenides but as results that demonstrate that there is a conflict between

148 The conflict - as Cocchiarella

Cantor’s ‘Power-Class Theorem’ and the Substitutional Theory
first pointed out - and as Landini later extensively investigated - does not depend on the intro-
duction of any semantic notion like ‘truth’ in the object-language of the Substitutional Theory,
but from the possibility of establishing, using the apparatus of the Substituitional Theory which
emulates sets of propositions, 1-I correspondences between propositions and sets of propositions,

thus directly violate Cantor’s Theorem.

This point first set forth by Cocchiarella is central for understanding Landini’s ‘revolu-

tionary’ interpretation and the development of Russell’s views.

1.2.2  Landini’s Discovery of the p,/a, Paradox and his ‘Revolutionary’ Inter-

pretation of Principia

Following Cocchiarella’s hint that the fundamental issue with Russell’s Substitutional
Theory was a conflict with Cantor’s theorem', Landini made several important discoveries
while investigating the manuscripts and documents on Substitution in the Russell Archives'°.
Perhaps the most striking of them was a letter Russell wrote to the mathematician Ralph Haw-

trey on 22 January 1907, where Russell described “the paradox which pilled the Substitutional

44 A similar conclusion is drawn by Michael Potter, who also assumes that a version of the Appendix B paradox
was responsible for the alleged ‘short life’ of Substitution (cf. POTTER, M., 2000, p.131-3).

45 Again, cf. RUSSELL, B., 1908, p.603.

146 Cf. MOORE, G., 2014, p.585.

47 Cf. GRATTAN-GUINNESS, 1., 2000, p.364.

48 Cf. COCCHIARELLA, N., 1980, pp.9o-I.

49 Michael Potter is also perceptive on this point, cf. POTTER, M., 2000, p.132.

5 Early reports of Landini’s investigations are given in LANDINI, G., 1987, 1989 and 1991.
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Theory”". Like the Appendix B paradox, this paradox was not semantic but a diagonal cons-
truction conflicting with Cantor’s power-class theorem. After sketching a derivation of this new

52 Russell informed Hawtrey that

contradiction that Landini first dubbed the “p,/a,” paradox
“In trying to avoid this paradox”, he “[...] modified the substitutional theory in various ways, but

the paradox always reappeared in more and more complicated forms™'33.

Landini’s meticulous studies of the manuscripts on Substitution that Russell produced
during 1906 showed that the “p,/a,” paradox and its variants were indeed the driving force
that led Russell to modify the Substitutional Theory several times'>4. And, indeed, a brief look
at the now published manuscripts that Russell produced after May of 1906 show that several
formulations of the “p,/a,” reappear not only across different texts but more than once in the

same manuscript's>,

Now, although the details which Landini provides in reconstructing the many twists and
turns that happen in Russell’s manuscripts on Substitution are certainly interesting and valuable
on their own's®, perhaps what is of greater importance (from a strictly historical point of view)
in his studies are the general conclusions to which his reconstructions point to. The main point is
that the p,/a, paradox which he uncovered is clearly not a semantic paradox: it does not rely at
all on the use of a truth-predicate applied to propositions or sentences and it does not employ any
extra-logical vocabulary for propositional attitudes'’. In the context of Russell’s Substitutional
Theory, it arises from assumptions of what may be called the ‘pure’ Substitutional Calculus of
propositions. This, in turn, strongly suggests that Russell was not led to ‘ramification’ and to
accept Poincaré’s ‘Vicious-Circle Principle’ in virtue of the semantic paradoxes's®. Furthermore,
it strongly suggests that the ramified theory of types of Mathematical Logic (which embraces or-
ders of propositions) is Russell’s last unavailing attempt at keeping Substitution alive, and thus,
that at least by the time he wrote Mathematical Logic, Russell still had hopes for the Substitu-
tional Theory as a theory which allowed for the elimination of both classes and propositional
functions (understood as properties and relations-in-intension stratified into types), a hope that
most likely wavered because Russell became convinced that the p,/a, paradox and its variants
could only be resolved by introducing hierarchy of orders of propositions'?. In a nutshell, this
is what led Landini to formulate a completely novel interpretation of the Theory of Types of

Principia Mathematica.

St RUSSELL, B., 1907¢, p.125.

52 Cf. LANDINI, G., 1989 and 1998.

53 RUSSELL, B., 1907¢, p.125.

54 Cf. LANDINI, G., 1998, in particular, pp.206-212, pp.216-220, pp.227-233, pp-235-246, and pp.251-254.

155 Besides the letter to Hawtrey, i.e., RUSSELL, B., 1907c, take, for instance, RUSSELL, B., 19064, p.131, pp.150-1
and p.166; see also RUSSELL, B., 1906f, p. 351.

156 In fact, Landini insists that modifications of Russell’s Substitutional Theory may result in a viable alternative
for sustaining Logicism (cf. LANDINI, G., 2004).

57 Cf. LANDINI, G., 1998, p.254.

158 Cf. LANDINI, G., 1998, pp.213-215 and pp.275-279.

59 Cf. LANDINI, G., 1998, p.254.



Putting things briefly and roughly, we may summarize Landini’s interpretation of Prin-
cipia as follows. According to Landini, the acceptance of orders of propositions understood as
entities proved philosophically intolerable to Russell, since it went against his most cherished
logico-metaphysical doctrine of the unrestricted variable and this reluctance to accept a hierarchy
of orders led to the demise of the system of Mathematical Logic, burying with it the Substitu-
tional Theory and its ontology of propositions'®. Russell then embraced the ‘multiple-relation
analysis of judgement’™®. Landini views the multiple-relation analysis of propositions as the

centerpiece of Russell’s attempt to preserve the doctrine of the unrestricted variable'®?

. Against
the orthodox interpretation, he argues that Principia’s predicate variables'® are to be read with
implicit simple type indices that match their arguments, as in “@(?x°”, ¢{(0)0)(¢)(9) 20)  etc'®4,
He also claims that the Axiom of Reducibility was meant as an impredicative comprehension
axiom for predicate variables'®s. In short, Landini argues that Principia’s official grammar'®
was meant to have the same structure of a simple (i.e., not ramified) theory of types of attri-
butes - just like Russell’s original Substitutional Theory™®’. According to Landini, however, in
Principia’s Introduction Russell meant to offer an informal justification for type-distinctions in

['% interpretation of quantified predicate variables®. Ac-

terms of a nominalistic substitutiona
cording to him, the notion of ‘order’ as explained in Principia’s Introduction was meant to be
justified by a recursive definition of senses of “truth” and “falsehood” applied to formulas of
Principia’s language'”°. At the base of this recursion was the multiple-relation analysis applied
to atomic sentences (which expressed atomic judgements)'”". On this interpretation, Russell’s
hierarchy of senses of “truth” and “falsehood” applying to ‘propositions’ of different orders was
meant to keep track of the complexity of the quantificational structure of formulas'”*. Predicate
variables, i.e., ‘predicative propositional functions’, are then interpreted nominalistically: their
occurrences can only be substituted (within a given formula) for formulas of the appropriate
order and distinguished from schemata standing for open formulas, i.e., ‘non-predicative pro-
positional functions’. Also, according to this interpretation a declarative sentence like “aRb”
functions like an incomplete symbol when flanked by “... is true” - it works like a definite des-

cription which purports to denote a fact that may or may not exist'73. The general gist of this,

1% Cf. LANDINI, G., 1998, p.254.

161 Again, cf. WHITEHEAD & RUSSELL, 1925, p.44 [1910, p.46].

162 Cf. LANDINI, G., 1998, pp.287-91.

193 I.e., ‘functional’ variables “$”, “1)” with the accompanying
tifiers.

164 Cf. LANDINI, G., 1998, pp.255-56.

165 Cf. LANDINI, G., 1998, pp.257.

166 T e., that which is assumed and employed in its numbered propositions.

167 Cf. LANDINI, G., 1998, pp.261-67.

198 In the modern sense one finds, for instance, in KRIPKE, S., 1976, which has nothing to do with the notion of
“substitution” of Russell’s Substitutional theory.

199 Cf. LANDINI, G., 1998, pp.279-8o0.

79 Cf. LANDINI, G., 1998, pp.281-86.

" Cf. LANDINI, G., 1998, pp.287-91.

72 Cf. LANDINI, G., 1998, pp.283-4.

73 LANDINI, G., 1998, p.287-91. It must be observed, however, that Landini does not regard the multiple-relation

cy

, 1.e., those variables that can be bound by quan-
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then, is that given the way Russell envisaged his nominalistic semantics, only individual varia-
bles are genuine variables ranging over entities, in accordance with the doctrine of the univocity

of being'74.

If correct, this interpreation dismantles almost all of the traditional objections or diffi-
culties raised by those who hold the ‘orthodox’ view on the development of Russell’s views and

Principia Mathematica.

To begin with, this interpretation counters Quine’s charge that there is a serious use-
mention confusion at the core of the No-Class Theory as presented both in Mathematical Logic
and Principia. With respect to Mathematical Logic, once one realizes that its type distinctions
are grounded on the realist view of propositions of the Substitutional Theory, there is no use-
mention confusion'”. With respect to Principia, once we accept that predicate variables (i.e.,
predicative propositional functions) are interpreted substitutionally and distinguished from ‘non-
predicative propositional functions’, i.e., placeholders for arbitrary open formulas, the charge of
serious confusion or deep incoherence can no longer be upheld'’®. The most one can say is that
Whitehead and Russell carelessly but deliberately subsumed two very different ideas under the
ambiguous notion of a ‘propositional function’ or ‘propositional functionality’; this, of course,
is indeed a serious problem, but it is not rooted in a deep or irredeemable confusion as Quine,

for instance, claimed time and again'77'78,

Similarly, the traditional objection against the ‘Vicious-circle Principle’ and the restric-
tions of orders is dissolved. If the notion of a ‘propositional functions’ is understood along the
lines indicated by Landini, Principia’s Introduction can no longer be seen as putting forward a
hierarchy of ramified types of entities and the Vicious-Circle Principle at once loses its proble-
matic status - either as a ‘constructivistic’ principle grounding type distinctions among mental
constructs, ideas, and so on, or as a ‘metaphysical’ principle grounding type distinctions among
mind-independent intensional entities, i.e., propositional functions, propositions, attributes, Fre-
gean concepts or what have you'”. Indeed, on Landini’s interpretation, the ‘Vicious-circle Prin-
ciple’ is nothing more than a heuristic principle or guideline that does not serve as a justification
for anything. Distinctions of type and order are to be justified in terms of Russell’s nominalis-
tic (substitutional) semantics for predicate variables™®°. Landini’s interpretation is also able to

make sense of several aspects of Principia’s official syntax and of its presentation of the theory

theory as part of Principia’s formal system but only part of an informal semantics that Russell envisaged for
justifying type distinctions; this point will be addressed in more detail in chapters 4 and 5.

74 Cf. LANDINI, G., 1998, pp.291-2.

75 Cf. LANDINI, G., 1998, pp.253.

176 Cf. LANDINI, G., 1998, pp.277-278.

77 More recently a criticism almost completely analogous to that of Quine was put forward by Scott Soames (cf.
SOAMES, S., 2008).

178 In fact, it must be observed at once that Whitehead and Russell did distinguish predicative ‘propositional functi-
ons’ that are bindable variables from non-predicative ones that on Landini’s interpretation are then accordingly
treated as schematic letters

79 Cf. LANDINI, G., 1998, pp.275-79.

180 Cf. LANDINI, G., 1998, pp.279-87.
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of types that on rival accounts are otherwise puzzling or even incoherent™. In this regard, the
following particular points are most pressing and salient, namely: (i) Principia’s requirement
that arguments of a predicate variables must match in both type and order®?; (ii) the abscence
of explicit concretion rules for Principia’s circumflex as a term-forming operator as well as the
abscence of explicit comprehension principles apart from axioms of reducibility™3; (iii) Whi-
tehead and Russell’s explicit practice/rule that so-called ‘non-predicative functional variables’
are not to be bound by quantifiers™®4; (iv) the role played by the notion of scope and the way in-
complete symbols are employed by Whitehead and Russell®s - in particular, the fact their order

of elimination is not irrelevant, as indicated by Carnap™® and Godel™?, for instance.

But perhaps what is most important is that Landini’s interpretation is able to make sense
of'the development of Russell’s views from the Principles to Principia in a much more charitable
way than the orthodox interpretation of Church, Hylton, Goldfarb and those who follow them.
Landini puts Russell’s doctrine of the unrestricted variable and of the univocity of being at
the center of his account of this development in a way that provides both an explanation as to
why Russell was attracted to the Substitutional version of the No-Class Theory and also why
Russell abandoned the Substitutional account in favor of Principia’s version of the No-Class
Theory. For if in Principia’s Introduction Russell intended a justification of type distinctions in
terms of a nominalistic semantics, then he was not after all abandoning (deliberately or without
acknowledging'®®) his most central logical doctrines but was, in fact, attempting to preserve

them.

But there is more.

1.2.3 The Axiom of Infinity, Again

Landini’s interpretation also provides us with a fresh perspective to evaluate the role
Russell (and, to some extent, Whitehead™?) intended the so-called Axiom of Infinity to play in
their attempt to develop Pure Mathematics on a logical basis. To appreciate this we must say a

little more about Principia’s treatment of classes and cardinal numbers.

As we briefly discussed above, in Principia all occurrences of class expressions are

81 Cf. LANDINI, G., 1998, pp.258-67.

182 Cf. LANDINI, G., 1998, pp.267.

183 Cf. LANDINI, G., 1998, pp.265-6.

184 Cf. LANDINI, G., 1998, pp.263-5.

185 Cf. LANDINI, G., 1998, pp.165-171.

186 CARNAP, R., 1947, p.147-50.

187 GODEL, K., 1944, p.120.

188 HYLTON, P., 2005, p.106.

189 Landini has recently argued convincingly that Whitehead had a somewhat different ‘semantic interpretation’
of Principia and that he also thought that the assumption that infinitely many universals exist in all types in-
cluding the lowest could be taken as a Jogical truth, albeit an epistemically inaccessible one (LANDINI, G.,
forthcoming).
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contextually eliminated in terms of the definitions of section %20. And as is well known, the
cardinal number of a given class « is defined by Russell as the class of all classes 3 that are
similar to « - i.e., the cardinal number of « is the class of all classes 3 whose elements can
be put in a one-one correspondence with the elements of . In symbols, we may reproduce

Principia’s definition (in a slightly briefer form™°) as follows:
Ne‘a =pr 3(8sma) (1.2.1)

Where sm stands for the relation of similarity or equinumerosity"', which for the present pur-
poses may be defined as the relation (in extension) which holds between two classes a and (8
whenever there is a one-one relation R whose domain is o and whose converse domain is 3.
Thus the symbol “B (Bsma)” is a class expression, an incomplete symbol whose occurrences
must be eliminated in accordance with the definitions of %20. That is how Principia avoids any
commitment to a specific ontology of numbers: by defining the concept of number in terms of
the more basic vocabulary of higher-order logic and reducing the ontological commitments of

Arithmetic to those of higher-order logic'3.

That is also why Whitehead and Russell need some assumption about the number of en-
tities of the lowest type (i.e., individuals) in order to secure several basic theorems of ordinary
Arithmetic. Skipping many (important) technicalities* and putting things very roughly, the dif-
ficulty is that the existence (i.e., non-emptiness) of a given number m (be it finite or not) depends
on the existence of some class which has exactly m many members. But if at the bottom of the
type hierarchy there are exactly » individuals, then there can be at most 2" classes of individuals,
22" classes of classes of individuals, and so on; thus, if the number of individuals is finite, then
the very series of natural numbers will be finite in all given types, for there will always be some

m which exceeds the number of elements of the universal class of the particular required type.

Now, the need for a so-called ‘axiom’ of infinity arises in Principia independently of

whether the notion of a ‘propositional function’ is interpreted in realist or nominalist terms: the

199 Principia introduces actually introduces the proposition in question as a theorem, since they first introduce “Nc”

as a relation-in-extension (cf. %100). The proper definition will be discussed and explained in chapter 5.

" For now we are employing a mix of modern notation and that of Principia. Our detailed discussion in chapter
6, however, will fully employ - and explain - Principia’s original notation.

192 Tt must be observed that in Principia this definition is framed is such a way that v and 5 may be classes of what
Whitehead and Russell call diferent relative type because R may be a heterogeneous relation with respect to the
types of its relata. This is a fundamentally important point because it gives rise to different notions of similarity
and consequently different notions of cardinal number (cf. WHITEHEAD & RUSSELL, 1912, pp.4-12). These
aspects of Principia’s theory of cardinal numbers will be discussed in detail in chapter 5.

193 This, of course, is not to say that Arithmetic remains with no substantial ontological commitments: settling
this question involves giving an account of the ontological commitments of higher-order logic. In any event,
even if higher-order is understood in terms of a simple type-theory of attributes (i.e., properties and relations-
in-intension) this reduction achieves something important: it dispenses with numbers as objects in the Fregean
sense (i.e., abstract particulars in a more Russellian terminology). For an excelent discussion of this issue cf.
KLEMENT, K., 2013. For another thorough discussion of this issue and for a defense of a strong eliminativistic
position of numbers, cf. LANDINI, G., 2011.

94 The issues related to the existence of cardinal numbers are discussed in Principia’s second volume. The issue
is discussed in general in the Prefatory Statement and in section A on the basic properties of cardinal numbers;
section x120 treats finite cardinal numbers. All of this will be discussed in chapter 5.
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need for some assumption about the number of individuals springs directly from the way Prin-
cipia emulates a theory of sets using a system of higher-order logic that has the same structure
of a simple type theory of attributes'®. There is no way around this ‘difficulty’ other than ad-
ding some axiom ensuring an infinite (i.e., non-inductive) universal class in some type or by

196 From a purely historical point of view, howe-

modifying fundamental aspects of Principia
ver, the most pressing question for scholars is this: does the use of the ‘axiom’ in Principia

compromises Russell s claim that Logic and Pure Mathematics are identical?

As is the case with many of the issues we considered so far, ‘orthodox’ interpreters
have sometimes answered by portraying Principia in poor lights because crucial aspects of the
development of Russell’s views were either unknown at the time or simply ignored - in particular

with respect to Russell’s views on the ontological commitments of Logic.

Logic in the Principles of Mathematics, is best understood as the general science of
propositions™’, a conception of Logic that Russell also took for granted when he was trying
to make the Substitutional Theory work. During this period Russell did assume that it was the
business of Logic to prove a theorem of infinity, and, in fact, one of the virtues of Substitutional
Theory was that it allowed Russell, as he put it, to “[...] manufacture X entities”™® from the basic

axioms and definitions of the theory. But Russell drastically changed his mind on this point™°.

As Landini first showed in his detailed analyses and reconstructions of the many versions
of the Substitutional Theory that appear in Russell’s mansucripts, there are even versions of the
theory with which Russelll experimented that embraced orders of propositions and were still
able to prove an infinity theorem®. This is an immensely important point to notice. In fact,
it is so important that it bears spelling out in more detail: Russell’s manuscripts show that at
some point in 1907 he had formulated a version of the Substitutional Theory that blocked the
contradictions - including the p, /a, paradox and its variants - and allowed a proof of a theorem
of infinity, a theory which he almost certainly abandoned because he could not accept orders of
propositions understood as entities - the same reason why he most likely abandoned the system

of Mathematical Logic!

In light of the orthodox interpretation, this change of heart on Russell’s part becomes

almost incomprehensible. If one accepts the view advocated by Church, Hylton, Goldfarb and

195 That is so whether one starts with a ramified structure and adds axioms of reducibility or assumes impredicative
comprehension axioms outright.

196 Recently two interesting suggestions have been made in this regard. On the one hand, Landini has proposed an
alternative axiom which entails the existence of infintely many natural numbers in a sufficiently high type while
dispensing the need for assuming infinitely many entities in the lowest type (LANDINI, G., forthcoming). On
the other hand, Landon Elkind has proposed a modification of Principia’s type-structure which allows for both
infinitely ascending and descending types. Elkind then introduces another alternative axiom which allows an
ingenious proof from Cantor’s power-class theorem that there are infinitely many entities in any type (ELKIND,
L., forthcoming). Both Landini and Elkind’s results employ relations of heterogeneous (simple) types.

97 Cf. RUSSELL, B., 1903, p.1. Cf. also LANDINI, G., 1998, chapter 2 and LANDINI, G., 2010, pp.136-7.

198 RUSSELL, B., 1906b, p.238. Cf. also GRATTAN-GUINNESS, 1., 1977, p.103.

99 Cf. GRATTAN-GUINNNES, 1., 1977, p.105-6.

200 Cf. RUSSELL, B., 1907¢, pp.515-6; RUSSELL, B., 1906f, pp.350-1; also LANDINI, G., 1998, pp.240-6.
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many others that Principia embraces a ramified hierarchy of propositional functions and propo-
sitions - and thus deliberately abandons Russell’s most central logical doctrine, i.e., that of the
unrestricted variable - how can one explain his reasons for not keeping Substitution (with orders
of propositions) which avoided the need for an axiom of infinity and was (as far as we know) as
consistent as Principia’s system? It seems that the only possible answer that the ‘orthodoxy’ can
provide is that technically substituition proved unmanageably complex*®'. But despite its plau-
sibility, this answer goes against established evidence. To begin with, the technical complexity
of Substitution did not stop Russell from defending it in Mathematical Logic. In fact, Russell
knew from the very beginning that from a technical point of view the Substitutional Theory was

quite severe**

, but considered writing Principia on its basis anyway>®. Furthermore, we now
know that Russell at some point planned to include an appendix in Principia explaining how
the Substitutional Theory could have served as a foundation for Mathematics**4 - and, in fact,
Russell considers this plan in the very manuscript where he claims that “[...] there is much to
be said for reviving substitution”%, precisely on the grounds that it “[...] will allow us to infer

Infin ax”>°%

Why then would Russell completely abandon Substitution with orders of propositions in
favor of a theory that also betrayed his most central logical doctrines and failed to yield desired

results? The orthodoxy seems unable to provide a satisfactory answer to this question.

In light of Landini’s interpretation, on the other hand, the shift makes sense: according
to Landini, Russell’s attempt to provide a nominalistic justification for the hierarchy of orders
grounded on the multiple relation theory of judgement shows that Russell no longer viewed
Logic as the science of propositions, a change that was prompted, first and foremost, by his
drive to preserve the doctrine of the unrestricted variable and the univocity of being. According
to Landini, then, Logic and Pure Mathematics are viewed in Principia as one and the same
science, namely, the general science of relational structure or of structure as such®*? without any

commitments to specific ontology of objects in the Fregean sense, i.e., Russell’s individuals or

2°1 As Russell himself suggests in Mathematical Logic (RUSSELL, B., 1908, pp.603).

202 In particular because of its notation.

293 Whitehead, however, was particularly dissatisfied with this idea (cf. LACKEY, D., 1973, pp.130-2), and he was
not alone in this (cf. CHURCH, A., 19765, p.702), perhaps with good reason; as Landini himself acknowledges,
following (let alone producing) complex proofs formulated in terms of the Substitutional Theory can be a
daunting task (cf. LANDINI, G., 1998, p.vi); but be that as it may, it is quite doubtful that this by itself would stop
Russell and Whitehead from presenting the Substitutional Theory in Principia if they were truly convinced that
it was right. Since we are talking about the authors of Principia Mathematica one can hardly appeal to prudery
about technicalities as the sole excuse for a change of mind.

204 Cf. RUSSELL, B., 1907e, p.516. As far as I know, Landini was the first to notice this (cf. LANDINI, G., 1998,
p-175)- We now also know that Whitehead was favourable the this idea (cf. MOORE, G., 2014, p.lii), despite
not being sympthetic to Substitution in general (cf., again, LACKEY, D., 1973, pp.130-2).

205 RUSSELL, B., 1907e, p.516.

206 RUSSELL, B., 1907¢, p.516.

207 Cf. LANDINI, G., 1998, p.294. Cf. also LANDINI, G., 2010, p.95. LANDINI, G., 2011, pp.173-4 and p.187;
this idea that Logic and Mathematics are concerned, in general, with relational structure appears more or less
explicitly, for instance, in RUSSELL, B., 1924, pp.176; RUSSELL, B., 1919, p.59-61 and RUSSELL, B., 1959,

pp.99-100.
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entities of the lowest type. In this light, the need for an explicit Axiom of Infinity as a hypothesis

or conjecture of applied Mathematics is a feature, not a fatal defect of Russell’s approach.

This move would also be in accordance with another trend or pattern in the development
of Russell’s thought that also seems difficult to reconcile with an interpretation that attributes to
(or requires of) him any bloated ontology in Principia, namely: his insistence on the substitution
of constructions for postulated entities whenever possible. This methodological or “heuristic
maxim”2°® of substituting “[...] constructions for inferences in Pure Mathematics™2, as Russell
would also later put it, was always a core element of his Logicism and there are many instances
of it even in Russell’s early work - most notably his definition of cardinal numbers as classes of

similar classes. As Russell explains in his in the Philosophy of Logical Atomism lectures:

I always wish to get on in philosophy with the smallest possible apparatus,
partly because it diminishes the risk of error, because it is not necessary to
deny the entities you do not assert, and therefore you run less risk of error the
fewer entities you assume. The other reason - perhaps a somewhat frivolous
one - is that every diminution in the number of entities increases the amount
of work for mathematical logic to do in building up things that look like the
entities you used to assume.>"

In fact, Russell claimed that his “philosophical development” since the beginning of the
twentieth century “[...] may be broadly described as a gradual retreat from Pythagoras™", in
the sense that he gradually drifted apart from a view of Mathematics that entailed eliminable
commitments to abstract particulars - most notably numbers. As Russell always made clear,
the paradoxes led him to further extend this eliminative “retreat” to classes and relations-in-
extension, and, as we saw, at some point to propositional functions and even propositions. And,
of course, the theory of incomplete symbols is a milestone in this respect - as Russell repeatedly
stated*” - and it was only after Russell discovered the theory that the ‘metaphysical purge’ really
took off*3.

Again, in light of ‘orthodox’ interpretations it is difficult to reconcile this emphasis on
the use of ‘Occam’s Razor’*# with the sort of ontology that the Churchian orthodoxy attributes

to Principia. Indeed, Landini’s view that Principia embraces a conception of Logic as a science

208 RUSSELL, B., 1924, p.164.

209 RUSSELL, B., 1924, p.166.

20 RUSSELL, B., 1918, p.195. Our emphasis. Of course, as Russell makes clear in this passage, he thought that the
application of this methodological maxim was welcome in Philosophy in general. In fact, in the context of this
very passage is Russell explaining that he is attracted to Neutral Monism “[...] because it exemplifies Occam’s
razor”.

21 RUSSELL, B., 1959, p.208. Cf. also RUSSELL, B., 1944, p.13-14.

22 Cf., for instance: RUSSELL, B., 1924, pp.165-6; 1944, pp.13-14; 1959, pp.83-5.

Indeed, as Kevin Klement points out, in light of what we now know about the development of Russell’s views,

we see that “the core of Russell’s solution to the paradoxes was not the theory of types [...] but rather the doctrine

of incomplete symbols, the standpoint that words or phrases that apparently stand for such problematic entities
as classes or propositions must not be taken at face-value” (KLEMENT, K., 2013, pp.204).

24 RUSSELL, B., 1944, p.13.
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of Structure without any commitments to mathematical objects in the Fregean sense - thus trea-
ting assumptions of infinite classes as conjectures that occur as an antecedent clauses in certain

existence theorems - is also in accordance with this trend of ontological parsimony.

1.3 Overview of the Goals and Content of Present Work

At this point it should be needless to say that Landini’s interpretation is very controver-
sial, in particular since it challenges long-standing assumptions that most interpreters viewed
(and which some still view) as unproblematic. Indeed, that is why Landini himself refers to his

own interpretation as ‘revolutionary’ as opposed to ‘orthodox’.

In the note preceding this Introduction it was observed that the present dissertation does
not present a radically novel interpretation of Russell’s works in Mathematical Philosophy, but
only aims at slightly expanding and discussing in some detail points already defended by Landini
and other authors who follow (at least the most central points of) his interpretation, like Kevin
Klement>'s and Graham Stevens®®. My goal here is to do this by considering three interrelated
topics that are of central importance in the development of Russell’s views from the Principles
to Principia, namely: his views on the nature of Logic as a science, his views on the ontologi-
cal commitments of Logic and his thesis that Pure Mathematics (for our purposes, Arithmetic,

specifically) is nothing but a development of Logic*".

As I attempted to indicate in the present Introduction, these three intertwined topics form
a unified thread that we can follow in order to assess which interpretation provides the best ac-
count of the available textual evidence. The thread, in a nutshell, can be explained as follows.
Russell struggled, from the Principles onwards, to formulate a logical theory which satisfied
the following requirements®®: (i) it should get rid of the contradictions; (ii) it should keep intact
what he thought to be philosphical ‘common-sense’ assumptions about Logic - most notably his
thesis of the unrestricted variable and univocity of being; and finally (iii) it should keep intact as
much as possible of the development of Pure Mathematics on the basis of this theory, with the
most crucial case being elementary Arithmetic. Russell’s whole logico-philosophical itinerary
from 1903 to 1910 consisted in attempts to balance these three goals, but as he explained on more
than one occasion, tasks (i), (ii) and (iii) were not on a par in terms of priorities. The first one was
the truly “imperative” one - in other words, solving the contradictions was the main driving task.
Reconciling this task with the sort of ‘naive’ ontological outlook of Russell’s early Logicism
proved impossible. So emerged Russell’s eliminative approaches towards classes, propositio-

nal functions and propositions on the heels of his theory of incomplete symbols. This made it

25 Cf., for instance, KLEMENT, K., 2010, 2013a, 2013b, 2014 and 2018.
216 Cf., for instance, STEVENS, G., 2003, 2004 and 2010.

27 Hence the title of the dissertation, “Logic, Ontology and Arithmetic”.
28 Cf., for instance, RUSSELL, B., 1959, pp.79-80.
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possible to satisfactorily reconcile (i) and (ii), with varying degrees of success with respect to
(111)*".

According to the ‘Orthodoxy’, Principia failed drastically in reconciling these three
tasks, achieving success only with respect to (i), as if Russell had simply given up fullfilling
(i1) and (ii1). Their conclusion is that the thread ended up in a loose end. This dissertation argues

that Landini’s interpretation provides a much better approach for untangling the thread.

The dissertation is roughly divided in two parts. The first part discusses the develop-
ment of Russell’s conception logic and of the logicist project from its genesis up to Principia
Mathematica. This first part sets the context for the second, which discusses Russellian Logic
and Logicism in their mature version as presented in Principia. Each part consists of two chap-
ters in addition to this Introduction®*°. The second chapter is concerned with the Logic and
Logicism of the Principles of Mathematics. Our starting point is a discussion of what Russell vi-
ewed as a fundamental deficiency in Peano’s logic: the absence of a treatment of relations. This
was, for Russell, the fundamental flaw that prevented Peano from offering nominal definitions
where the latter appealed to the so-called definitions by ‘abstraction’ and is what led Russell to
re-discover (and, to some extent reframe) Frege’s definition of cardinal numbers as classes of
equinumerous classes. We consider this genesis of the Russellian definition of cardinal numbers
and its place in the development of Russell’s early logicism. Some interpretative issues are also
considered and we side with Landini against the interpretation of Rodriguez-Consuegra. Also
following to a great extent Landini’s interpretation, we explain the conception of logic and the
formal system underlying the Principles of Mathematics. Our discussion focuses on contrasting
Russell’s Logic as presented (informally) in the Principles with the views of Peano and Frege.
Finally, we adress Russell’s conception of Logic and Logicism as presented in the Principles,
emphasizing that the work is tied to a conception of Logic according to which one may prove

on a purely logical basis that there are infinite classes.

The third chapter is about the development of Russell’s views on the ontological comitt-
ments of Logic and Mathematics in face of the contradictions. The chapter has two main general
goals. First, to articulate the basic problem that permeates Russell’s entire logical-philosophical
itinerary from 1903 to 1910, namely: attempting to reconcile the absolute conception of logical

generality and of the univocity of being of the Principles with a technically satisfactory resolu-

219 If we were to resume even more the already condensed story told in this Introduction, the situation would be
the following. The Principles failed with respect to (i). Given what little is understood of Russell’s attempts at
fulfilling this task between the Principles and On Denoting, it seems that the main difficulties lay in satisfying
(i1). Russell’s many versions of the Substitutional Theory were sort of a mixed bunch: the original ‘simple’
substitutional theory failed with respect to (i) since it was vulnerable to the p,/a, paradox; the ‘no-general-
propositions’ substituitional theory of Les Paradoxes fared somewhat worse: as far as the best conjecture can
lead us, the theory could deal with the contradictions in a philosophically sound way, but only at the cost of
developing Mathematics adequately - and Russell’s attempts at saving Mathematics within it re-introduced the
Do/ ao; then, there were versions of Substitution with orders of propositions that were successful in satisfying
(1) and (iii), but failed to satisfy (ii).

229 Given its extension, the Introduction is being counted as the first chapter.
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tion of the contradictions. Second: to discuss in detail why Russell came to think of his theory
of incomplete symbols as a means of solving the paradoxes. We begin by explaining the dif-
ficulties Russell faced early on in trying resolve the contradiction given his conception of the
nature of logic. To this end, we briefly consider the solutions to the contradictions that Russell
considered and rejected before the discovery of his theory of incomplete symbols, in particular
the type theory of Appendix B of the Principles. After that, we discuss Russell’s Substitutio-
nal Theory, taking Landini’s work as our main guide. Following Landini’s lead, our discussion
aims at refuting two groups of interpreters. The first consists of Quine and those who follow
him in interpreting Russell’s ideas with respect to his theory of incomplete symbols applied to
expressions of sets, functions, and so on as irreparably harmed by confusion between use and
mention of expressions. The second consists of those who hold what we are calling, following
Landini, an ‘orthodox’ interpretation of the development of Russell’s views**'. The discussion
seeks to consider in detail the arguments and the overwhelming evidence®** against the ‘ortho-
dox’ interpretation. At the end of the chapter we discuss some issues which arise in connection
with Landini’s account of why Russell abanoned the Substitutional Theory, noting where there
is still place for dispute among ‘revolutionaries’. Also, in an appendix to the chapter, we attempt

to chronologize the ‘rise and fall’ of Russell’s Substitutional Theory.

Chapter four is about the logic of Principia Mathematica. The main task of this chapter
is to argue in favor of Landini’s interpretation of Principia. The bulk of this discussion revolves
around Principia’s problematic use of the notions of a ‘propositional function’ and of a ‘pro-
position’. We begin by considering different interpretative approaches for integrating Russell’s
multiple-relation theory of judgement with Principia’s theory of types. We then consider the
fundamental technical issues that give rise to interpretative disputes about Principia’s hierachy
of types and we contrast different approaches to dealing with them. In both cases we contrast
the realist interpretations of Nino Cocchiarella and Bernarnd Linsky with the nominalist inter-
pretation of Landini. Our goal is to show that Landini’s interpretation has the upper hand in light

of the available evidence.

The fifth and final chapter is about the logicism of Principia Mathematica. This chap-
ter has three objectives. The first is to provide an exposition of Principia’s treatment of elemen-
tary Arithmetic, in particular the proofs of (the analogues of) Peano’s postulates. The second
objective is to discuss a variety of problems involved in the use of the notion of ‘typically ambi-

guous cardinal number’ in the second volume of Principia. As Landini showed, there are several

22 T e., authors who hold, for instance, that Russell assimilated Poincaré’s ‘vicious circle principle’ as a means
of justifying distinctions between types between entities (cf., for instance, HYLTON, P., 1990, pp.299-300;
GOLDFARB, W., 1989, pp.32-4; LINSKY, B., 1999, p.77); or that Russell was led to accept Poincaré’s principle
and to adopt a theory of types of entities in the 1908 article Mathematical Logic as Based on the Theory of Types
in virtue of paradoxes we now call “semantic”, which he did not distinguish at all from the set-theoretical
paradoxes (cf. HYLTON, P., 1980, pp.23-4 and GOLDFARB, W., 1989, p.35-6); or that the he type theory of
Mathematical Logic is essentially the same as that of Principia (cf. CHURCH, A., 1976, p.747; and again, cf.
HYLTON, P., 1980, p.1 and GOLDFARB, W., 1989, p.37-8).

222 First presented by Landini and now availabe in the fifth volume of Russell’s Collected Papers.
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pseudo-theorems in the opening sections of the second volume. We take heed of Landini’s detai-
led study?*3, and note the necessary corrections while fulfilling our first goal of discussing the
proof of the Peano’s postulates. The third objective is to discuss Whitehead and Russell’s use
the so-called ‘Axiom’ of Infinity to prove theorems about the existence of cardinal numbers**4,
in order to clarify the nature of Principia’s logicism. The goal is to argue that there is an internal
coherence between the Epistemology and the Metaphysics of Logic underlying the Russellian

logicist project as put forward in Principia’s own terms**.

*23 LANDINI, G., 2016.

224 Some observations and considerations on the use of the “Multiplicative Axiom” (Principia’s version of the
Axiom of Choice) are also made.

225 Before proceeding, it must be emphasized that there are important and relevant topics for discussing some of
the themes and issues of the present dissertation that won ¥ be addressed (either in detail or not at all) for reasons
of space and scope. One such theme that readers might expect to be discussed is the impact of Wittgenstein’s
ideas and criticism on Russell’s views. This expectative can certainly be justified. Wittgenstein was, after all,
extremely critical of the theory of types and of the multiple-relation analysis of judgement. While still a stu-
dent of Russell, Wittgenstein presented a criticism of the multiple-relation theory that famously left the former
“paralysed” and contributed in leading Russell to abandon his Theory of Knowledge manuscript. Wittgenstein’s
claim in the Tractatus that all and only logical laws are “tautologies” also had an impact on Russell who - at least
apparently or superficially - seems to have accepted this idea, against his fomer view that Logic is a synthetic
science whose laws have content and are informative. Wittgenstein also played a major role in leading Russell
to consider modifications of the theory of types in the Introduction to Principia’s second edition. These deve-
lopments will not be discussed in any capacity in the following pages, however, for a very simple reason: the
present work is concerned with Russell’s works on Mathematical Philosophy leading to and including the first
edition of Principia - the three volumes of which were completed long before Russell even knew of Wittgens-
tein’s existence. And of course, the subject of the impact of Wittgenstein’s ideas on Russell’s (and vice-versa)
involves so many controversial and delicate issues and so vast a literature that it simply could not be addressed
in the present dissertation without completely altering its scope.
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2 The Logic and Logicism of The Principles
of Mathematics

The Nineteenth Century, which prided itself upon the invention of steam and
evolution, might have derived a more legitimate title to fame from the discovery
of pure mathematics. [...]

What is now required is to give the greatest possible development to mathema-
tical logic, to allow to the full the importance of relations, and then to found
upon this secure basis a new philosophical logic, which may hope to borrow
some of the exactitude and certainty of its mathematical foundation. If this can
be successfully accomplished, there is every reason to hope that the near future
will be as great an epoch in pure philosophy as the immediate past has been in
the principles of mathematics. Great triumphs inspire great hopes; and pure
thought may achieve, within our generation, such results as will place our time,
in this respect, on a level with the greatest age of Greece.”

2.1 Russell’s First Steps Towards Logicism

2.1.1 The Impact of Moore and Peano

The logico-mathematical origins of Russell’s Logicism can be traced to the work of 19th
century mathematicians on four main trends of investigation in the Foundations of Mathematics.
The first was the process of ‘rigorization’ of Analysis. As is well known, despite the unpreceden-
ted scientific progress brought about by the discovery of Calculus by Newton and Leibniz, the
discipline lacked a rigorous foundation since fundamental concepts such as /imit and continuity
were not clearly understood. Despite the centrality of such notions, they were taken for granted
in terms of geometrical notions (e.g., defining a function as continuous if its graph has no ‘gaps’)
or by appeal to intuitions about continuous motion and dubious concepts such as that of infini-
tely small quantities. This situation changed drastically in the Nineteenth Century when many
major figures in the History of Mathematics like Augustin-Louis Cauchy (1789-1857), Bernard
Bolzano (1781-1848) and, perhaps, most importantly, Karl Weierstrass (1815-1897) worked on

providing a rigorous foundation for Analysis®.

The second was the culmination of the process of rigorization into what became known

' RUSSELL, B., 19014, pp.366 and 379.

2 Weierstrass made the most central contribution in this process of rigorization, namely: he showed how to elimi-
nate the appeal to infinitesimals in favor of a rigorously defined notion of a /imit that relied only upon algebraic
properties of real numbers. For an introductory survey of the issues, protagonists and the main works involved
in this fundamentally important chapter of the History of Mathematics and Mathematical Philosophy, the re-
ader is referred to GRATTAN-GUINNNES, 1. (ed.), 2000a; for a discussion which explicitly and thoroughly
contextualizes the developments in the foundations of Analysis aiming to discuss the developments of Russell’s
views, cf. GRATTAN-GUINNESS, 1., 20005, pp.14-74.
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as the ‘arithmetization’ of Analysis3. Since the efforts of Weierstrass and those before him
showed that an adequate definition of /imit presupposes only the theory of real numbers, the
need for a rigorous foundation for this theory became manifest. What Weierstrass showed in ef-
fect was that the problem of giving a rigorous, non-intuitive* foundation to Analysis was reduced
to problem of defining real numbers and proving the existence of limits without any recourse to
intuitions about the real line. Of course, the great revolution on the Foundations of Mathematics
that occurred in the 19th century was brought about by figures such as Georg Cantor (1945-1918)
and Richard Dedekind (1931-1916) who used the theory of sets as a means to do that and in doing
so solved a problem that perplexed mathematicians and philosophers since ancient times, na-
mely, that of giving precise definitions of irrational numbers>. What he and Cantor discovered
was that real numbers and operations with them could be defined and their properties proved in
a way that dispensed with geometrical intuitions about the real line, assuming only the algebraic
properties (and the existence) of the set of rational numbers. Since several means of defining ra-
tionals in terms of integers and these in terms of natural numbers were already known at the time,

this showed that the theory of natural numbers could provide a solid foundation for Analysis®.

The third was the development of the theory of cardinal and ordinal numbers by means
of set theory, most importantly of a theory of infinite numbers. While both Cantor and Dedekind
made contributions to the theory of finite cardinals and ordinals, it is in Cantor’s work” that we
find the most important results and generalizations: not only Cantor offered a set theoretical
formulation for the arithmetic of finite cardinals and ordinals, but he showed how to extend this
theory to infinite numbers in a way that entailed a hierarchy of different orders of infinity - his
transfinite numbers. Cantor’s taming of the notion of infinity brought it out of the swamps of phi-
losophical speculation and made it a fruitful mathematical concept. Cantor introduced the notion
of one-one correspondence as the standard of measure for sets, exorcising pseudo-problems that
haunted Philosophy of Mathematics for centuries®, introducing a clear-cut distinction between
the power or cardinality of a set, which was what Cantor explained in terms of the notion of

one-one correspondence, and its extension, that is the totality of its members or elements®.

3 Cf., for instance, KLEIN, F., 1896.

4 To be clear: non-intuitive in the sense of not relying on intuitions about the real line.

5 Perhaps the most famous construction is that of Dedekind, in terms of what nowadays we call “Dedekind Cuts”.
Cantor also provided a different, albeit equivalent, definition, given in terms of limits of some sequences of
rational numbers.

®  The reader is referred again to GRATTAN-GUINESS, I. (ed.), 2000a and 2000b.
7 His main results are presented in CANTOR, G., 1915, originally published in two parts in 1895 and 1897.
One of these was the allegedly ‘paradoxical’ fact that the natural numbers could be put in a one-one correspon-
dence with the even naturals, for instance. Once one distinguishes, however, between cardinality and extension,
there is no paradox: the set of naturals which contains the set of even naturals, is more extensive than the latter,
but both have the same cardinality - or number. Making a (merely) terminological concession to a surpassed
tradition, one could say that despite the fact that the set of even numbers is a part of greater whole, the set
natural numbers, it has the same number of terms as that whole.

9 The classical survey of the historical development of Cantor’s seminal work on set theory is JOURDAIN,
P., 1915; for an even more comprehensive survey of Cantor’s life and work cf. DAUBEN, J., 1979. Again,
for a discussion of Cantor’s works which puts it in the broad context of the developments in the foundations
of Analysis, cf., GRATTAN-GUINNESS, I. (ed.), 2000; for a thorough discussion of the impact of Cantor’s
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Finally, the fourth trend of investigation consisted in the attempts of mathematicians
like Augustus DeMorgan (1806-1971), George Boole (1815-1864), Ernst Schroder (1841-1902),
Gottlob Frege (1848-1925), Giuseppe Peano™ (1858-1932) and Alfred North Whitehead (1861-
1947) to make Logic a serious mathematical discipline instead of a mere scholastic curiosity".

For Russell the first two of these developments showed that the theory of natural numbers
could be used as the ultimate foundation upon which Real Analysis rested and indicated that
the whole of Pure Mathematics could be grounded on or reduced to Arithmetic, in the sense
that every theorem about higher forms of number (rationals and irrationals) which previously
seemed to depend on geometrical intuitions like that of points in a line could be ultimately
understood as a theorem about sets of natural numbers™. We find this idea clearly articulated in
Russell’s Principles of Mathematics and explicitly formulated as a definitive refutation of Kant’s

conception of Mathematical knowledge as knowledge grounded on forms of pure intuition:

[...] during the last thirty or forty years, a new subject, which has added quite
immeasurably to theoretical correctness, has been created, which may legiti-
mately be called Arithmetic; for, starting with integers, it succeeds in defining
whatever else it requires— rationals, limits, irrationals, continuity, and so on.
It results that, for all Algebra and Analysis, it is unnecessary to assume any
material beyond the integers, which, as we have seen, can themselves be defi-
ned in logical terms. It is this science, far more than non-Euclidean Geometry,
that is really fatal to the Kantian theory of a priori intuitions as the basis of
mathematics. Continuity and irrationals were formerly the strongholds of the
school who may be called intuitionists, but these strongholds are theirs no lon-
ger. Arithmetic has grown so as to include all that can strictly be called pure in
the traditional mathematics."

The Principles, of course, was the culmination of Russell’s efforts up to 1903 to contribute to
the entreprise of expelling the Kantian schools from the strongholds of Mathematics. But, iro-
nically, before 1900, were such philosophical assault to be effected, Russell would not be in the
vanguard storming the walls, but defending them. As he vividly describes in My Philosophical
Development, what led him first to the serious study of Philosophy was his dissatisfaction with

the teaching of mathematics to undergraduates at Cambridge:

works on the development of Russell’s views, cf. RODRIGUEZ-CONSUEGRA, F., 1991 and also GRATTAN-
GUINNESS, I., 2000b.

© With Peano we should also include authors who were part of his ‘school” of mathematicians like Cesare Burali-
Forti (1861-1931), Alessandro Padoa (1868-1937). For thorough and detailed discussions of Peano and his school
and their impact on Russell’s views, cf. RODRIGUEZ-CONSUEGRA, F., 1991 and, again, also GRATTAN-
GUINNESS, I., 2000b.

" Again, cf., GRATTAN-GUINNESS, 1., 20005 for a thorough and detailed historical discussion of these deve-
lopments.

> The sense and the extent to which Russell did accept arithmetization of all branches of Pure Mathematics
and also the extent to which Russell’s Logicism requires aritmetization is a controversial subject, however (cf.
GANDON, S., 2008; 2012). We provide some clarification on this matter in section 3 of this chapter, footnote
410.

3 RUSSELL, B., 1903, p.157-8 §149.
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The mathematical teaching at Cambridge when I was an undergraduate was
definitely bad. Its badness was partly due to the order of merit in the Tripos,
which was abolished not long afterwards. The necessity for nice discrimination
between the abilities of different examiners led to an emphasis on ‘problems’
as opposed to ‘book work’. The ‘proofs’ that were offered of mathematical
theorems were an insult to the logical intelligence. Indeed, the whole subject
of mathematics was presented as a set of clever tricks by which to pile up marks
in the Tripos. The effect of all this upon me was to make me think mathematics
disgusting. When I had finished my Tripos, I sold all my mathematical books
and made a vow that I would never look at a mathematical book again. And so,
in my fourth year, I plunged with wholehearted delight into the fantastic world
of philosophy.™

But back then Cambridge’s ‘fantastic world’ of Philosophy was dominated by the British
Idealism of authors like Thomas Hill Green (1836-1882), Francis Herbert Bradley (1846-1924)
and John Ellis McTaggart (1866-1925) who were greatly influenced by German Idealism, espe-
cially Kant and Hegel. As a young student immersed in this intellectual environment, Russell
became convinced that progress in Philosophy could only be achieved through improvements
of German Idealism®. So it was that, despite his alleged disappointment with Mathematics, he
wrote a dissertation on the foundations of Geometry discussing non-euclidean geometries within
a broadly Hegelian outlook'®. The starting point was the recognition that Kant’s (supposed) view
that Euclidean Geometry was - even in some subjective sense - the right geometry was irrede-
emable incorrect; Russell’s goal was to give a transcendental deduction of the axioms that are

necessary and sufficient for the development of any possible Geometry, Euclidean or not'’.

The main idea of the work was that there were inherent contradictions in the concept of
Space and, therefore, within Geometry (in fact, within every science) that could only be over-
come through a ‘dialectical transition’ to a new science™. In fact, after dealing with Geometry,
Russell hoped to give an account of the other mathematical sciences based on this so-called He-
gelian dialectic'. His ambition was to eventually construct a ‘Logic of the Sciences’ that would
recognize (only) the ‘inevitable’ contradictions inherent to them. Such a ‘logic’ was envisaged
to enable the ‘dialectical transition’ from one Science to the next, more abstract one in which the
former contradictions would then be (somehow!) resolved. As Hylton points out, this general

idea seems to be summed up in Russell’s unpublished Note on the Logic of the Sciences:

4 RUSSELL, B., 1959, p.37-8.

5 For a systematic study of this ‘idealist apprenticeship’, cf. GRIFFIN, N., 1991 and also the first part of HYLTON,

P., 1990.

The dissertation was presented for examination to George Frederick Stout (1860-1944) and Whitehead in 1895

and published in a revised form (which he had finished by 1896) as An Essay on The Foundations of Geometry

(RUSSELL, B., 1897). This was Russell’s first philosophical book.

7 GRIFFIN, N., 1991, p.129-130.

8 HYLTON, P, 1990, pp.84-89, pp.98-99; GRIFFIN, N., 1991, p.129-130.

9 AsRussell later said in recollection regarding Foundations of Geometry “there was worse to follow” (RUSSELL,
B., 1959, p.40).

2 HYLTON, P, 1990, p.98-9.
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What we have to do, therefore, in a logic of the sciences, is to construct, with the
appropriate set of ideas, a world containing no contradictions but those which
unavoidably result from the incompleteness of these ideas. Within any science,
all contradictions not thus unavoidable are logically condemnable; from the
stand point of a general theory of knowledge, the whole science, if taken as
a metaphysic [sic], i.e. as independent and self-subsistent knowledge, is con-
demnable. We have, therefore, first to arrange the postulates of the science so
as to leave the minimum of contradictions ; then to supply, to these postula-
tes or ideas, such supplement as will abolish the special contradictions of the
science in question, and thus pass outside to a new science, which may then
be similarly treated. Thus, e.g., number, the fundamental notion of arithmetic,
involves something numerable. [...] Hence geometry, since space is the only di-
rectly measurable element in sensation. Geometry, again, involves something
which can be located, and something which can move for a position, by defini-
tion, cannot move. Hence matter and physics.*"

In the case of Arithmetic, the alleged inherent contradiction was the fact that the funda-
mental notion of the science, namely, number could be used, as Nicholas Griffin puts it, “[...]
both for counting and for measuring”, so the fundamental question which Russell faced was
how could the transition be made from countable discrete quantities to continua®. Young Rus-
sell’s attempt to treat this problem was given in a paper entitled On the Relations of Number and
Quantity - which he later claimed to be “unadulterated Hegel”?3. Russell could also not decide
“[...] whether infinite collections have no number or an infinite number” - and in the first draft of
The Principles of Mathematics, finished around 1898, we still find him reluctant to fully accept
Cantor’s ideas:

Cantor has, I think, established a branch of mathematics logically prior to the
Calculus and even to irrationals, and has shown how it is presupposed in these.
But I cannot persuade myself that his theory solves any of the philosophical
difficulties of infinity, or renders the antinomy of infinite number one whit less
formidable.*

The mentioned difficult - what Russell called the ‘Antinomy of Infinite Number’ - was
still reminiscent of Kant’s mathematical antinomies, and ended up being considered “[...] irrele-
vant, except on the Kantian view that numbers must be schematized in time” in the Principles®.
So up until the turn of the century, Russell’s allegiance laid, at least in a broad sense, with the

‘Kantian theory’ against Weierstrass, Cantor and their followers.

What happened? There are two main factors to be considered, respectively, in the next

two sections.

2 RUSSELL, B.,1959, p.53.

?> GRIFFIN, N., 1991, P.234-5.

23 RUSSELL, B., 1959, p.40. As Russell described it, the basic claim concerning the concept of number was that
“extensions beyond the positive integers result from a gradual absorption of the properties of the unit, and give
a gradually diminishing information as to the whole” (RUSSELL, B., 1959, p.40). Those interested in the study
of logically alien thought can find similar patterns of reasoning in the following: “Quantity, as we saw, has
two sources: the exclusive unit, and the identification or equalization of these units. When we look, therefore,
at its immediate relation to self, or at the characteristic of selfsameness made explicit by abstraction, quantity
is Continuous magnitude; but when we look at the other characteristic, the One implied in it, it is Discrete
magnitude.” (HEGEL, G.W,, ...)

24 RUSSELL, B., 19004, p.119.

* RUSSELL, B., 1903, p.355, §337.
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2.1.1.1 Moore: The Rejection of Idealism and the Realist Conception of Relations and Propo-

sitions

Concerning Philosophical questions in general, the main factor was the influence of
Russell’s friend and colleague, George Edward Moore (1873-1958). Perhaps the best way to
describe the Philosophy put forward by Moore is as “atomist, direct-realist, and radically anti-
psychologistic™?. As Russell famously recounts in the preface to the first edition of The Prin-
ciples, his views were fundamentally those imposed by Moore’s revolt against the idealistic

doctrines of Kant, Hegel and his fellow Cambridge colleagues®’:

On fundamental questions of philosophy, my position, in all its chief features,
is derived from Mr. G. E. Moore. I have accepted from him the non-existential
nature of propositions (except such as happen to assert existence) and their
independence of any knowing mind; also the pluralism which regards the world,
both that of existents and that of entities, as composed of an infinite number
of mutually independent entities, with relations which are ultimate, and not

26 GRIFFIN, N., 2013, p.383.

27 This break with Idealism by Russell and Moore is, for good or bad, frequently considered as the inauguration
of Analytic Philosophy (See HYLTON, P., 1990. A dissenting view is proposed by BELL, D., 1999 and, in a
sense, by DUMMETT, M., 1973, pp.665-684 and DUMMETT, M., 1994.). The tale - which Russell depicts as
a ‘revolt’ - has been extensively discussed both in favor of its historical accuracy (HYLTON, P., 1990, pp.105-
116; HYLTON, P., 2004, pp.1-9.) and against it (GRIFFIIN, N., 1991; RODRIGUEZ-CONSUEGRA, F., 1991;
GRATTAN-GUINNESS, 1., 1993.). Russell himself contributed to the narrative of a sudden definitive break
in several occasions, for he characterized his conversion to Moore’s pluralist realism as an abrupt and radical
change. In his Autobiography, for instance we find him claiming that “There is one major division in my philo-
sophical work: in the years 1899-1900 I adopted the philosophy of logical atomism and the technique of Peano
in mathematical logic. This was so great a revolution as to make my previous work, except such as was purely
mathematical, irrelevant to everything that I did later. The change in these years was a revolution; subsequent
changes have been of the nature of an evolution” (RUSSELL, 1959, p.11). Although any historical account of
Russell’s and Moore’s ‘rebellion’ against the idealist tradition as a sudden break - including the one Russell
himself sometimes sketches - is indefensible, Russell’s retrospective that his change of philosophical perspec-
tive was a revolution should be taken very seriously and should not be overstated. There is a radical difference
in philosophical outlook in Russell’s writings from, say 1901 owards, and those from his ‘idealistic excursus’
- what Griffin and Rodriguez-Consuegra showed is that this Revolution was not effected with a sudden and
radical break. One indication of this is the fact that Russell was completely dismissive of his early idealistic
work. Commenting on the previously discussed paper described as “unadulterd Hegel” he observes that des-
pite Couturat - for whom Russell had much respect - having described the article as a “petit chef d’oeuvre de
dialectique subtile”, Russell simply dismissed the article as being “nothing but unmitigated rubbish”. In fact
most of Russell’s later recollections also display a similar dismissive and aggressive attitude towards Hegelia-
nism, as in Portraits from Memory: “My first serious contact with the German learned world consisted in the
reading of Kant, whom, while a student, I viewed with awed respect. My teachers told me to feel at least equal
respect for Hegel, and I accepted their judgment until I read him. But when I read him I found his remarks in
the philosophy of mathematics (which was the part of philosophy that most interested me) both ignorant and
stupid.” (RUSSELL, 1956, p.20). Such passages fit like a glove what Thomas Kuhn says about scientists who
reject their earlier work because they no longer find themselves practicing science in the same paradigm: “En-
try into a discoverer’s culture often proves acutely uncomfortable, especially for scientists, and sophisticated
resistance to such entry ordinarily begins with the discoverer’s own retrospects and continues in perpetuity. [...]
Systematic distortions of memory, both the discoverer’s memory and the memory of many of his contempora-
ries, are a first manifestation of resistance.”. As Paulo Faria - who called my attention to this observation of
Kuhn’s - puts it, the point is that “[...] a revolutionary scientist is unable to make sense of some of his own
earlier work through imposing upon it the new conceptual framework in which he has been working since the
heyday of the revolution” (FARIA, P., 2021, pp.61-2). It seems that this is precisely what we witness in Russell’s
reminiscences.
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reducible to adjectives of their terms or of the whole which these compose.
Before learning these views from him, I found myself completely unable to
construct any philosophy of arithmetic, whereas their acceptance brought about
an immediate liberation from a large number of difficulties which I believe to be
otherwise insuperable. The doctrines just mentioned are, in my opinion, quite
indispensable to any even tolerably satisfactory philosophy of mathematics, as
I hope the following pages will show.?®

Despite the fact that studies of Russell’s unpublished manuscripts which predate the
Principles of Mathematics established that this break was gradual, and thus, that Russell’s remi-
niscence is historically inaccurate*®, the main point which marked a departure from the Idealist
tradition is clear. Russell was mainly interested in two theses advocated by the Cambridge ide-
alists: (1) The idea that somehow features of our thoughts (be they disguised under the label of
concepts of understanding or what have you) are constitutive of the things about which we think;
and (2) That relations are analyzable in terms of properties or predicates, which for Russell was
to say that they were not real, independent entities.

In Portraits From Memory he goes into a little more detail about this story, explaining
that the denial of second of these theses was the one that most affected his views on Mathematical
Philosophy:

At Cambridge I was indoctrinated with the philosophies of Kant and Hegel, but
G. E. Moore and I together came to reject both these philosophies. I think that,
although we agreed in our revolt, we had important differences of emphasis.
What I think at first chiefly interested Moore was the independence of fact
from knowledge and the rejection of the whole Kantian apparatus of a priori
intuitions and categories, molding experience but not the outer world. I agreed
enthusiastically with him in this respect, but I was more concerned than he
was with certain purely logical matters. The most important of these, and the
one which has dominated all my subsequent philosophy, was what I called ‘the
doctrine of external relations’. Monists had maintained that a relation between
two terms is always, in reality, composed of properties of the two separate
terms and of the whole which they compose, or, in ultimate strictness, only of
this last. This view seemed to me to make mathematics inexplicable. I came to
the conclusion that relatedness does not imply any corresponding complexity
in the related terms and is, in general, not equivalent to any property of the
whole which they compose.3°

Russell also stresses this point in My Philosophical Development, explaining that “[...]
Moore was most concerned with the rejection of idealism” while himself “[...] was most inte-
rested in the rejection of monism’3'. Moore’s refusal of the idealistic doctrine (1) mentioned
above was given in terms of a general conception of judgment based on a - now famous - rea-
list conception of propositions. As Peter Hylton observes, fundamental to Moore’s rejection of
idealism was the idea that the truth of any judgment should be completely independent of acts
of judging3*. Moore and, following him, Russell, understood this idea in the most radical form,

28 RUSSELL, B., 1903, p.xviii.
29 See previous note.

3% RUSSELL, 1959, p.11-12.

3t RUSSELL, B., 1959, p.54.
3 HYLTON, P, 1990, p.109.
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claiming that all cognition consists in direct relation between a mind and the objects of thought.
Perhaps one of the best clear-cut explanation of their views is given by Russell in a letter which

he wrote to Frege on 12 December 1904:

I believe that in spite of all its snowfields Mont Blanc itself is a component part
of what is actually asserted in the proposition ‘Mont Blanc is more than 4000
meters high’. We do not assert the thought, for this is a private psychological
matter: we assert the object of the thought, and this is, to my mind, a certain
complex (an objective proposition, one might say) in which Mont Blanc is itself
a component part. If we do not admit this, then we get the conclusion that we
know nothing at all about Mont Blanc. This is why for me the meaning of a
proposition is not the true, but a certain complex which (in the given case) is
true.33

As Michael Potter puts it, what this “[...] exchange with Frege concerning Mont Blanc
demonstrates vividly is that Russell conceived of objects literally as constituents of propositi-
ons’34; propositions were viewed by Russell as complex entities whose constituents are the very

things which the proposition is about.

As Russell would later make explicit, the essence of the epistemological doctrine implicit
in the Principles is the idea that “[...] in every proposition that we can apprehend [...] all the
constituents are really entities with which we have immediate acquaintance3. Truth and falsity
of a proposition was also understood in terms of something (undefinable) which we recognize
some propositions as having and others as not having. As Russell puts it in the Principles, “True
and false propositions alike are in some sense entities [...] but when a proposition happens to be

true, it has a further quality, over and above that which it shares with false propositions”3®.

Now, from the point of view of the development of Russell’s views on Mathematical
Philosophy, Russell’s reasons for rejection of thesis (2) mentioned above are the most relevant.
Russell’s main target was Bradley’s view that all so-called ‘external’ relations can be analyzed in
terms of “identity and diversity of content”, which, themselves are not relations at all but intrinsic
properties - or, as Bradley called them, ‘internal’ relations. To make the point of disagreement as
simple as it can be made, take two objects a and b and some relation R which holds between them;
are we to say that the correctness of some judgment like a has R to b is grounded solely on the
monadic predicates which hold of each relata or also because of the nature of the relation itself,
which is ontologically independent from the terms it relates? The answer which Moore, and
following him, Russell, advocated was that ‘external’ relations are ultimate or non-analyzable
constituents of reality, that is, that there are relations that are ontologically independent from

their relata and not reducible to any intrinsic property or so-called ‘internal relation’ of these.

3 FREGE, G., 1980, p.169.

34 POTTER, M., 2000, p.121.

35 RUSSELL, B., 19054, p.415.
3 RUSSELL, B., 1903, p.49 §52.
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From a logical point of view, this amounted to nothing less than the rejection of the universal
analysability of propositions in terms of subject-predicate form, a thesis which Russell thought
had as its ultimate and unbearable consequence the disjunction between the two metaphysical

views he called ‘Monism’ and ‘Monadism’.

According to the first, the correct mode of analysis of aRb is to break it down into the
conjunction of two propositions concerning a and b, that is, a proposition which attributes a
property to a and another to b, while the second holds that aRb is to be analyzed as a proposition
that attributes a property to a “whole composed of a and b’. According to Russell, the first phi-
losopher ever to extract this fundamental consequence of the universal analysis of propositions
into subject-predicate form was Leibniz, who, Russell thought, stated the monadistic view with

“admirable lucidity’?7 in the following passage:

The ratio or proportion between two lines L and M may be conceived three
several ways; as a ratio of the greater L to the lesser M as a ratio of the lesser
M to the greater L; and lastly, as something abstracted from both, that is, as the
ratio between L and M, without considering which is the antecedent, or which
the consequent; which the subject, and which the object. [...] In the first way
of considering them, L the greater is the subject, in the second M the lesser is
the subject of that accident which philosophers call relation or ratio. But which
of them will be the subject, in the third way of considering, them? It cannot be
said that both of them, L and M together, are the subject of such an accident;
for if so, we should have an accident in two subjects, with one leg in one, and
the other in the other; which is contrary to the notion of accidents. Therefore
we must say that this relation, in this third way of considering it, is indeed out
of the subjects; but being neither a substance, nor an accident, it must be a mere
ideal thing, the consideration of which is nevertheless useful.3

As Russell read him, Leibniz was led, from the logical doctrine that every proposition has
the subject-predicate form, to the metaphysical consequence that “[...] relations [...] have only
a mental truth” and then to the ultimate conclusion that a “[...] true proposition is one ascribing
a predicate to God and to all others who perceive the relation”. The study of Leibniz shaped
Russell’s understanding of the idealistic doctrines of Bradley, who he thought implicitly accepted
the universality of the subject predicate form and due to this was led to the third alternative, the
one Leibniz discards, namely that the correct analysis of a relational proposition like L is greater
than M is not as an assertion about L or M, but about a “whole composed of them”, which is the

true subject of the proposition*°.

37 RUSSELL, B., 1903, p.222 §213.

3 GERHARDT, L(ed.).,1890, Vol. VII, p.4o1. The translation is Russell’s.

3 RUSSELL, 1900, p.16. At this point in the text, Russell is commenting specifically on the following passage from
the New Essays in Human Understanding: “The units are separate and the understanding takes them together,
however scattered they may be. However, although relations are the work of the understanding they are not
baseless and unreal. The primordial understanding is the source of things; and the very reality of all things other
than simple substances rests only on the foundation of the perceptions or phenomena of simple substances. ”
(LEIBNIZ, G., 1765, p.145, §5; this is not Russell’s translation).

4° Russell also thought that ultimately, it was this doctrine that led to the idea that every proposition is about the
the same unique object, namely, reality - hence, the idea of a monist metaphysics.
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The best way to understand why Russell thought that these views led to ‘insuperable’
difficulties in the Philosophy of Mathematics is by considering what he called the ‘problem of
asymmetrical relations’. If we follow the terminology of the Principles, symmetrical relations
are such that x Ry always implies y Rx; and a relation is not symmetrical if for some x and y, we
may have z Ry and ~ yRx and an asymmetrical* relation is one such that x Ry always implies
~ yRz. In symbols:

Symmetrical(R) = (z)(y) . 2Ry . D .yRx

Not — symmetrical(R) = ~ Symmetrical(R)
Asymmetrical(R) = (z)(y): 2Ry . D .~ yRx

Relations of the latter kind are fundamental to any attempt to characterize order among some
given set of terms, and thus, are very important for Mathematics: greater or less than are the
typical examples**. Now, at its core, Russell’s argument is very simple: both the monadistic
as well as the monistic theory claim that relations are unreal (i.e., not ultimate constituents of
reality) and this claim is grounded on the logical doctrine that every proposition can be analyzed
in terms of a subject and a predicate - so to show that it is impossible to analyze propositions in
which asymmetrical relations occurs in these terms is to show that the logical basis of monadistic
and monistic metaphysics must be rejected. In the case of the monadistic theory, Russell shows
that any attempt to analyze “... has R to z” as an adjective (where R is asymmetric) fails due
to the unavoidable complexity of the resulting adjective, which presupposes the relation it was

supposed to replace:

Let a and b have an asymmetrical relation R, so that aRb and bRa*. Let the
supposed adjectives (which, as we have seen, must each have a reference to
the other term) be denoted by 3 and « respectively. Thus our terms become a3
and ba. « involves a reference to a, and 3 to b; and « and S differ, since the
relation is asymmetrical. But a and b have no intrinsic difference corresponding
to the relation R, and prior to it; or, if they have, the points of difference must
themselves have a relation analogous to R, so that nothing is gained. Either
« or 3 expresses a difference between a and b, but one which, since either
or (3 involves reference to a term other than that whose adjective it is, so far
from being prior to R, is in fact the relation R itself. And since « and /3 both
presuppose R, the difference between « and  cannot be used to supply an
intrinsic difference between @ and b. Thus we have again a difference without
a prior point of difference. This shows that some asymmetrical relations must

4" The term “anti-symmetrical” is sometimes used in textbooks.

42 Of course, strictly speaking, what is required for a relation R to generate order among the members of some
set is the fact that given any two (different) terms x and y either xRy or yRx (R is connected), the fact that if
xRy and yRz, then xRz (R is transitive) and the fact no term has R to itself (R is irreflexive). Transitivity and
irreflexivity are sufficient to generate a partial order. But any relation that satisfies these conditions must be
asymmetric: assume that for some x and y, we have xRy. Assume also yRx. Given transitivity, it follows that
xRx, which contradicts irreflexivity. Thus, if R is transitive and irreflexive, it must be asymmetrical.

43 “R” is the notation borrowed from Schrdder for the inverse of R, that is, the relation which holds between y and
x when, and only when, xRy holds.
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be ultimate, and that at least one such ultimate asymmetrical relation must be
a component in any asymmetrical relation that may be suggested.**

In the case of the monistic theory, the fundamental problem Russell identifies its the
incapacity of the theory to explain what he calls difference of sense. If aRb is understood as a
proposition about a whole composed by a and b, asymmetrical relations again become a problem.
For a sentence like “a is greater than »” stands for a different proposition than the one which
is expressed by “b is greater than a” or “a is lesser than b”. But if lesser than is understood as
the converse of greater than, then the two propositions have the exact same constituents, and
so there must be something that explains the difference between them beyond the mere sum of

their parts:

The proposition “a is greater than b”, we are told, does not really say anything
about either @ or b, but about the two together. Denoting the whole which they
compose by (ab), it says, we will suppose, “(ab) contains diversity of magni-
tude”. Now to this statement—neglecting for the present all general arguments—
there is a special objection in the case of asymmetry. (ab) is symmetrical with
regard to a and b, and thus the property of the whole will be exactly the same
in the case where a is greater than b as in the case where b is greater than a.
[...] In order to distinguish a whole (ab) from a whole (ba), as we must do if
we are to explain asymmetry, we shall be forced back from the whole to the
parts and their relation. For (ab) and (ba) consist of precisely the same parts,
and differ in no respect whatever save the sense of the relation between a and
b. “a is greater than »” and “b is greater than a” are propositions containing
precisely the same constituents, and giving rise therefore to precisely the same
whole; their difference lies solely in the fact that greater is, in the first case, a
relation of a to b, in the second, a relation of b to a.45

As Peter Hylton observes the above argument for Russell “[...] is a paradigm case of the
interrelation of the philosophical and the technical™#®: any theory of judgment which purports to
be adequate for handling Mathematics must account for the difference between a is greater than
b and b is greater than a (and that which makes them mutually exclusive), i.e., the fact that an
asymmetrical relation has a sense or a direction. Russell is providing a decisive argument which
shows that the monistic analysis cannot explain the difference between propositions in which
the same constituents occur with the same relations differing in sense. As Hylton aptly puts it,
for Russell the above argument shows that “Mathematics requires the notion of order, which in
turn requires irreducible relations™’. This is what led Russell to follow Moore in concluding
that relations should thus be considered as “ultimate entities”, i.e., must be considered genuine

constituents of propositions that can be analyzed away in terms of predicates or properties.

As we shall see next, this view was decisive in leading Russell to his first major contri-
bution to Mathematical Philosophy.

44 RUSSELL, B., 1903, p.224, §214.
45 RUSSELL, B., 1903, p.225, §215.
46 HYLTON, P., 1990, p.184.
47 HYLTON, P., 1990, p.184.
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2.1.1.2 Peano: Mathematical Logic and Axiomatic Method

With respect to the development of Russell’s logico-mathematical ideas, the major influ-
ence on Russell was Peano. Despite the fact that Russell had already read and partially accepted
the ideas of Cantor and Dedekind*®, for instance, it was Peano who provided him with a big-
ger picture of how the works of these authors were truly revolutionary, mainly because Peano
showed how their results fitted into a unified conceptual whole tied up by the Logica Matematica

developed by him and his disciples*.

As Russell recounts in his Autobiography, the most crucial moment in the development

of his ideas concerning Mathematical Philosophy was the International Congress of Philosophy:

The Congress was a turning point in my intellectual life, because I there met
Peano. I already knew him by name and had seen some of his work, but had
not taken the trouble to master his notation. In discussions at the Congress I
observed that he was more precise than anyone else, and that he invariably
got the better of any argument upon which he embarked. As the days went by,
I decided that this must be owing to his mathematical logic. I therefore got
him to give me all his works, and as soon as the Congress was over I retired
to Fernhurst to study quietly every word written by him and his disciples. It
became clear to me that his notation afforded an instrument of logical analysis
such as I had been seeking for years, and that by studying him I was acquiring
anew powerful technique for the work that I had long wanted to do.>°

As he explains in My Philosophical Development, the ‘enlightenment’ received from

Peano came from “two purely technical advances™', namely:

1. The distinction between (a) the relation of membership which holds between an element
x and a class « and (b) the relation of inclusion between a class 5 and another class «,
which Russell would later symbolise respectively as zea and zef3 D, xea or 5 C a;

and
2. The distinction between the class ta containing a single entity a and a itself.>
Of course, the notations used here to express these distinctions are also taken from the works of

Peano, together with other important distinctions like the one between real (free) and apparent

(bound) variables. Important as these distinctions were, marking a break with the part-whole

4 A detailed discussion of Russsell’s gradual acceptance of their works, in which the manuscripts of previous
versions of the Principles are thoroughly discussed, can be found in RODRIGUEZ-CONSUEGRA, F., 1991.

49 For a study of Peano’s life and work which also discussed his ‘school’, see KENNEDY, H., 1980; again, for
details relating the works of Peano and his followers to the development of Russell’s views, cf. RODRIGUEZ-
CONSUEGRA, F., 1991 and also KENNEDY, J., 1973, 1974.

5 RUSSELL, B., 1967, p.218.

st RUSSELL, B., 1959, p.66.

52 Russell notes in the same passage that both distinctions were also emphasized by Frege, even before Peano.
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conception of a set or class and the acceptance of the superior Cantorian conception of set,

however, they barely scratch the surface of what Russell learned from Peano.

Against what was for some time the standard account of what Russell learned from Pe-
ano33, Francisco Rodriguez-Conseugra systematically showed>4 that Russell learned from Peano
(and also, almost just as importantly, from his followers) a method of analysis of mathematical
theories which, by the time of the congress, was presented to Russsell in its most optimized form
in Peano’s Formulario mathematico or Formulaire de Mathématiques, in the French version.
Inspired by the procedure adopted in Geometry of laying down primitive notions and axioms
which embody the fundamental properties of these notions, Peano developed axiomatizations
of several branches of pure Mathematics and also of a logical calculus of classes and proposi-
tions. Russell recognized Peano’s logic and notation as powerful philosophical tools - so much
so that at the time Russell saw in Peano’s works “[...] the realization of Leibniz’s great idea
that, if symbolic logic does really contain the essence of deductive reasoning, then all correct
deduction must be capable of exhibition as a calculation by its rules>. But Russell also lear-
ned from Peano a method of investigating formal theories®®. What most impressed Russell in
Peano’s techniques was their wide scope of applications: the method of laying down primitive
notions and axioms and then extracting the consequences within a precise calculus was applied
by Peano and his school not only to Arithmetic, but also to several branches of Analysis and

Geometry and, perhaps most importantly for Russell, even to Logic itself.

The primitive logical notions of the Formulario were>: 1. Class symbolized in some
editions by “K” and others by “Cls”; 2. Membership to a class, symbolized by “c”%; 3. Material
implication, always symbolized by the ‘horseshoe’, “D”; 4. Formal implication between two
propositions that is, the relation which holds between p and ¢ when “g can be deduced from p,
whatever z, ...z are”®°, symbolized as “p Da...»q"; 5. The conjunction or joint affirmation of two
propositions p and ¢, symbolized by “p ~ ¢” or “pgq” or yet “p . q”; 6. The notion of definition,

which was indicated by “Df” following the formula which defines some string of symbols; 7. The

53 Cf.,, for instance, KENNEDY, H., 1973. This, account, of course, was standard for good reason: Russell himself
suggested it many times, as the passages just quoted make clear.

54 RODRIGUEZ-CONSUEGRA, F., 1991, pp.91-134.

55 RUSSELL, B., 1901¢, p.353.

56 See, for instance Russell’s little known and even less discussed article Recent Italian Work on the Foundations
of Mathematics (RUSSELL, B., 1901¢); some points concerning this article will also be discussed in the present
chapter.

57 PEANO, G., 1897, pp.3-4. We shall follow Russell’s exposition of Peano’s logic in the Principles very clo-

sely, complementing with details from Peano’s own presentation. Russell thought Peano’s best expositon of his

Symbolic Logic to be the first part of the 1897 edition of the Formulario, the reason being that it is the most

clear in distinguishing in detail the primitive notions and propositions of Logic. The choice is clearly justified

if one looks at the comparative sheer volume of space dedicated to Logic in this edition: in the 1897 edition,

Mathematical Logic takes the first seventy pages, while in the 1901 edition this space is almost cut in half.

In the 1897 edition he used the letter “K”, changing it to “Cls” in the 1901 edition. For the sake of uniformity

we employ the latter.

59 Peano used “c”. For the sake of uniformity, we shall employ Principia’s counterpart of this symbol.

0 Peano, G., 1897, p.L.
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negation of a proposition, symbolized by “—%'. Peano’s notation and methodology drew heavily
upon the the algebraic tradition of Boole and Schroder. He followed them in not distinguishing
as clearly as he should the operations of the algebra of classes from the those of the propositional
calculus, employing, for instance, the same symbol for equality and material equivalence and
also the same symbol for class inclusion and material implication, despite the fact that the did

drew the distinction®?. Peano had®:
a,beCls. D:aDb.=:x€a.D,xeb Df

which, in fact, as Russell put it, defines “every a is b as “x is an @ implies that x is a b, whatever x
may be”, thatis: x € a formally implies x € b. Given Peano’s definition of formal implication, z € a
and x € b are understood as propositions containing real (free) variables, a notion which Russell
repudiates in favor of what he calls a propositional function®. Peano also had an analogous

definition for the product (intersection) of two classes®
a,beCls.Dianb=x3 (rea.xeb)Df

which employed a notion which Russell would later attach much weight to, namely that of such
that, defined as®®:
aeCls.D.xz> (vea)=a Df

This is an attempt to define “the x’s such that so-and so” or “the x’s that satisfiy the condition
x € a” as the class a. This was probably introduced due to the lack of (and distinction between)
a principle of class-abstraction and a principle of extensionality, since the definition seems like
a confused amalgam of both. This was later removed in the 1901 edition of Formulario after
the criticism of Peano’s disciple Alessandro Padoa®’, who Russell followed in the Principles
calling the definition “perfectly worthless” (as we shall see, however, he retained the notion as

primitive).

With the primitive notions and definitions described above, Peano assumed the following
group of primitive propositions, the formulation of which again, showcase the influence of the
algebraic tradition:

aeCls.D.aDa

' Peano used a slightly shorter, bold bar symbol.

% For more details, cf. GRATTAN-GUINNESS, 1., 20005, pp.225-7.

% PEANO, G., 1897, p.3.

% This notion had already appeared in a semi-articulate form (cf. GRATTAN-GUINNESS, 1., 20005, p.228) in Pe-
ano’s famous booklet on the principles of Arithmetic, in the following passage: “Let ¢ be a sign or an aggregate
of signs such that, if x is an object of the class s, the expression ¢x denotes a new object; we assume also that
equality is defined between the objects ¢x; further, if x and y are objects of the class s and if ¢ = y, we assume
it is possible to deduce ¢x = ¢y. Then the sign ¢ is said to be a function presign in the class s [...]” (PEANO,
G., 1889, p.91). This passage, as Grattan-Guinness observes is introducing a notion akin to that of Dedekind’s
‘transformations’ (cf. GRATTAN-GUINNESS, 20005, p.228).

5 With this he defined the sum (or union) of two classes was defined as a,beCls. D .a vb = —[(—a)(—b)] Df.

% In the 1897 edition of the Formulario, Peano used a variable with a bar over it to indicate the use of such that,
defining: a € Cls. D . Z €(z €a) = a Df. In the 1901 edition this was indicated by an inverted e. For the sake of
convenience and difficulties of typesetting this symbol, we shall employ its modern counterpart >.

67 RODRIGUEZ-CONSUEGRA, E., 1991, p.131-4.
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a,beCls.D.abeCls
a,beCls.D.abDa
a,beCls.D.abDb
a,b,ceCls.aDb.xea.D.xeb
a,b,ceCls.aDb.bDc.DaDc
a,b,ceCls.D:aDb.aDc.D.aDbe
a€eCls.D.—a€Cls
aeCls.D.—(—a)=a
a,b,ceCls.abDc.v€e€a.v—€c.x Dx—¢€b

Peano - as everyone else at this time with the exception of Frege®® - lacked a clear distinction
between axioms and rules of inference, with the latter being completely absent from the for-
mulation of his calculus. Despite its imprecision and shortcomings, though, the simple elegant
notation and axiomatic formulation of Logic was very effective for cataloging an enormous

number laws of propositional logic and the algebra of classes.

But despite the enormous positive impact that Peano’s works had on Russell, there emer-
ged a serious point of dispute between the two concerning the fundamental subject of definitions
in Mathematics. In the Formulario and other works®®, Peano employed three different methods
of definition beside the usual nominal, or so-called eliminative ones, namely inductive or recur-
sive definitions, definition by postulates and what Peano called definitions by abstraction. Each
of these sorts of definition was employed by Peano in important places in his Formulario. In
fact, his five primitive propositions for Arithmetic can be understood as an attempt to ‘define’
the primtive notions of number theory. His now famous axiomatization of Arithmetic assumed
as primitives the notions of zero, number and successor, which he symbolized in the Formulario
as’’:

0 =< zéro>
Ny =< nombre (entier, positif ounull) >
a € Ng. D .a+ =< lenombre qui vient apres a >, < le successif dea >, << aplus >

And had as axioms what we now call the five Peano postulates, more appropriately name the
Dedekind-Peano postulates':
Oe NO
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And a little later Russell, who embraced the distinction in the Principles, as we shall discuss.

An important example is Peano’s previous, but better known work Arithmetices Principia, partially translated
and republished in van Heijenoort’s famous collection (van HEIJENOORT, J., 1967, pp.83-97).

° PEANO, G., 1901, p.41.

7 Cf. PEANO, G., 1901, p.41-43. Dedekind had already made them the basis of Arithmetic in slightly different
form in his most famous article (DEDEKIND, R., 1888). Peano himself recognizes his debt to Dedekind in his
first exposition of an axiomatic formulation of arithmetic (PEANO, G., 1889). But the fact is that Peano had
offered an explicit axiomatic treatment of Arithmetic with these axioms, while Dedekind did not (POTTER, M.,
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a€Np.D.a+ €Ny
a,beNg.a+1=b+1.D.a=05b
a€Np.D.a+1#0

seCls.0es:zes.Dy.x7€s:D.NyD s

According to Peano, these propositions could legitimately be taken as defining the three pri-

mitive notions. A very important example of Peano’s use of inductive or recursive definition

occurs in his treatment of Arithmetic, where he introduces the usual basic equations of addition

and multiplication as defining such operations’*:

aeNg.D.a+0=a

a,beNg.D.a+ (b+)

(a+b)+
a.D.ax0=0

a,beNg.D.ax (b+1)=(axb)+a

The last kind - definition by abstraction - was employed by Peano at crucial points in his deve-

lopment of Arithmetic, Analysis and Geometry, respectively when defining Cardinal Numbers,

Real Numbers and Directions”. By a definition by abstraction, Peano meant the procedure of

defining the identity of a class of terms (directions of lines, for instance) by means of an equiva-

lence relation (parallelism) that defines and equivalence class. His most famous explanation of

definition by abstraction is the following:

Let u be an object; by abstraction, one deduces a new object ¢pu. We cannot
form an equality

¢u = known expression,

for ¢u is an object of a nature different from all those that we have considered
up to the present. Rather, we define the equality ¢pu = ¢v by setting

hu,u ) :d)u = d)’U = Pu,v
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2000, pp.81-6). Often forgotten is the fact that Peano’s also thought a sixth proposition was necessary, namely
Ny € Cls. Peano did not have a specific symbol for inequality, but we will use it for convenience. Also, Peano
sometimes denoted the successor of @ with “a+" as in the second postulate, and sometimes with “a 4+ 17, as in
the third postulate.

Peano, G., 1901, p.40, 51. In this respect, Peano’s axiomatic treatment was far inferior than that of Dedekind
who not only realized that such procedure presupposed a theorem of recursion, but proved the result (again, for
details we refer to POTTER, M., 2000, pp.81-6). As we nowadays know, this means that Dedekind was implicitly
working within a second-order logic. Although Peano, just like Dedekind (and everyone before the twenties) did
not distinguish between first and second order quantification (cf. GOLDFARB, W., 1979), we have every reason
to suppose that his logic was first order. Thus, Peano should have assumed a theorem of recursion as primitive
or added the recursive equations as additional axioms instead of definitions. An illuminating discussion of this
last point which connects it with Russell’s views can be found in LANDINI, G., 1998, pp.21-26.

Peano, .G, 1901 p.70, §32; p.122, §71; p.192-3, §91; for details see RODRIGUEZ-CONSUEGRA, F., 1987, p.143;
1991, p.124-5; GRATTAN-GUINNESS, 1., 2000b, pp.239-41.
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Where h,, , is the hypothesis on the objects u and v. Thus ¢pu = ¢v, being
the equality defined, means the same as p,, ,, which is a condition, or relation,
between u and v, having a previously known meaning. This relation must sa-
tisfy the three conditions of equality that follow. [...]74

As Rodriguez-Consuegra notes, although there are three points at which the ‘chain of
logical definitions’ is broken in Peano’s Formulario’, the most important case for the purpose
of understanding the development of Russell’ ideas is the definition of the notion of cardinal

number. In the 1901 edition of the Formulario, Peano had:
a,beCls D Numa = Numb =. g(bfa)rcp

He called this a definition “by abstraction of Numa” and explained it thus:

< Numa > signifie < le nombre (numerus) des a >>. [...] La définition -0

est exprimée par les seuls signes de logique. On peut commencer ici I’ Arithmétique:

nous définirons directemente les signes > 0 Ng + X [, sans passer par les idées
primitives du §20.

La définition -0 définit I’égalit¢ << Numa = Numb >, qui subsiste si 1’on peut
établir une correspondance réciproque entre a et b.7’

This is precisely the definition which Frege had already considered and rejected in his
Grundlagen der Arithmetik in 18847%; “3(bfa)rcp” is defined as the existence of a one-one func-
tion f between two classes a and b, and hence, what is proposed here is a definition of “the
number of the class a” via the symmetric, transitive and reflexive relation of similarity or equi-
numerosity: two classes have the same cardinal number if there exists a one-one function that
correlates their members. It is interesting to point out that this section explicitly refers to Can-
tor’s article of 1895 which introduces and works out his concept power or cardinal number of
a class or set [menge]. Taking a class as “[...] any collection into a whole M of definite and
separate objects m of our intuition or our thought”7®, Cantor understood the cardinal number
or power of a class M as something which we obtain by abstracting “[...] from the nature of its
various elements m and of the order in which they are given”°, where the elements m are the
objects which we “separate” in “our intuition or our thought” into a single collection or class

M, so that from this double process of abstraction a new, definite object was created. This new

74 KENNEDY, H., 1974, p-397; RODRIGUEZ-CONSUEGRA, F., 1991, p.124. The “three conditions” that follow
are, of course, reflexivity, transitivity and simmetry.

75 RODRIGUEZ-CONSUEGRA, E., 1991, p.125.

76 PEANO, G., 1901, p.70.

77 PEANO, G., 1901, p.70.

78 FREGE, 1884, p.73-79, §§62-68. To be sure, the passage continues: “Nous n’ecrivons pas une egalité de la forme
Numa = (expression composée par les symboles précédents). La P-0 est une Df par abstraction de Numa.”
(Peano, G., 1901, p.70) We shall have occasion to compare briefly Frege’s number theory with that of Russell
later.

79 CANTOR, G., 1895, p.85.

8 CANTOR, G., 1895, p.86.
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object he called the cardinal number of M and he denoted it by the expression “M”. According
to Cantor two sets have the same power if “[...] it is possible to put them, by some law, in such
a relation to one another that to every element of each one of them corresponds one and only
on element of the other”®" In other words, two sets have the same cardinal number when there
is one-one correlation between their elements. When such a condition is fulfilled Cantor called
the two sets M and N equivalent and abbreviated “M and N are equivalent” by “M~N”. Using
this relation of equivalence as a standard of measure for classes, Cantor defined the relations of
greater and less and also the operations of addition, multiplication and exponentiation of cardi-
nal numbers without any recourse to the notions of finitude or infinity and could do so in a way
that applied both to infinite and finite sets. Peano is following Cantor here in not properly or
strictly defining the notion of power or cardinal number, but defining them ‘by abstraction’ via
the equivalence relation. Moreover, Peano claimed that it is impossible to (nominally) define

the concept of cardinal number using only the logical notions of the Formulario.

Now, despite the high regards that Russell had for Peano’s formal development of Logic
and Arithmetic, he thought Peano’s Logic was not sufficiently developed due to the absence of a
formal apparatus able to deal with relations. Peano introduced functional and relational symbols

as definable (as a rule) in terms of formal implication and membership to a class, as follows:
a,beCls. Dunueafb.=:xea.Drueb

a,beCls.Dnueafb.=:x€a.D,.ureb

However, Peano conceived these defintions in a rather vague way, with “f”” meant to “[...] repré-
senter par les symboles idéographiques les idées de < fonction, correspondence, operation>>,
etc.”. Due to the influence of Moore and the recognition of the ultimate reality of relations,

this was a fundamental aspect of Peano’s Logic that Russell found unacceptable®.

8 CANTOR, G., 1895, p.86-7.

8 PEANO, G., 1901, p.33.

8 In Russell’s logicist manifesto, Recent Work on The Foundations of Mathematics, written, as Russell said to
Jourdain, “for filthy lucre” and later published as Mathematics and the Metaphysicians (RUSSELL, B., 1901c?),
we find: “The great master of the art of formal reasoning, among the men of our own day, is an Italian, Professor
Peano, of the University of Turin. He has reduced the greater part of mathematics (and he or his followers will, in
time, have reduced the whole) to strict symbolic form [...] if we wish to learn the whole of Arithmetic, Algebra,
the Calculus, and indeed all that is usually called pure mathematics (except Geometry), we must start with a
dictionary of three words. One symbol stands for zero, another for number, and a third for next after. What
these ideas mean, it is necessary to know if you wish to become an arithmetician. But after symbols have been
invented for these three ideas, not another word is required in the whole development. All future symbols are
symbolically explained by means of these three. Even these three can be explained by means of the notions of
relation and class; but this requires the Logic of Relations, which Professor Peano has never taken up”. In the
Principles, we find: “Peano’s logic proceeds by a smooth development. But in one respect it is still defective:
it does not recognize as ultimate relational propositions not asserting membership of a class. For this reason,
the definitions of a function and of other essentially relational notions are defective. But this defect is easily
remedied by applying, in the manner explained above, the principles of the Formulario to the logic of relations”
(RUSSELL, B., 1903, p.32 §36).
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So in 1901 Russell published his first major work in Symbolic Logic, the paper On The
Logic of Relations with Some Applications to the Theory of Series®. The goal of the paper
was to work within Peanese Logic in order to extend it with an explicit treatment of relations®.
This work was the culmination of the influence Moore and Peano had effected on Russell. His
goal was to show how the Logic of relations - based on the Moorean conception of these as
ontologically independent entities that were genuine constituents of propositions - allowed him
to provide nominal definitions in Mathematics, as Russell put it, “[..] wherever definition is

possible’®6.

It is at this point that Russell’s Logicism was born as a project, for it is here that he pro-
poses a nominal definition of cardinal number as an equivalence class, providing the most basic
groundwork for establishing that Logic - in his sense - is enough for defining the most basic
notions of Mathematics and for proving its most basic propositions. As we shall discuss in the
next section, however, there are serious controversies involving the article, concerning both its
place in the history of Logic in general, and its philosophical significance within the develop-
ment of Russell’s Mathematical Philosophy. We shall present Russell’s main achievement in the
article, comparing it with the more definitive claims made in the Principles in order to adress

the controversy.

2.1.2 Russell’s Logic of Relations, the Principle of Abstraction and the Defi-

nition of Cardinal Number

The first two sections of Russell’s article contain, respectively, his first (published) for-
mal presentation of his logic of relations and a theory of cardinal numbers based on his celebrated

definition of cardinals as classes of similar classes.

At the basis of Russell’s calculus he introduced the notion of relation as primitive in the
style of Peano®: this meant that under the condition of R belonging to the class of relations Rel,
“xRy” meant that “x has the relation R to y”. Russell then defined the domain of a relation R as
the class of all individuals which stand in the relation R to something and the converse domain

of R as the class of all individuals to which something has the relation R. In symbols, Russell

8 RUSSELL, B., 1901c. The paper was first published in French as Sur la logique des relations avec des applica-
tions a la théorie des séries in the journal Révue de Mathématiques, edited by Peano and dedicated exclusively
for the topics related to the Formulario.

Rodriguez-Consuegra claims that Peano and his followers had already several (more or less) implicit elements
of a theory of relations, and that Russell’s claim to have invented it should be weakened; for details, see
RODRIGUEZ-CONSUEGRA, F., 1991, pp.72-77; pp.103-105.

8 RUSSELL, B., 1901, p.3I5.

8 Cf. RUSSELL, B., 1901¢, pp.315.
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put®s:

ReRel.D.p=2x>{qy > (zRy)} Df
ReRel.D.p=2x3{qy > (yRx)} Df

Building upon Peano’s logic of classes and propositions, his calculus assumed a few additional
primitive propositions on the basis of which Russell then developed a logical theory of cardi-
nal numbers. He started by defining the relation of similarity, that is, the relation which holds
between two classes u and v whenever there exists a one-one relation R such that the domain of

R is u and its converse domain is v.

Building upon Peano’s notation Russell expressed this as®:
u,veCls. D:rusimv.=.gl > 1nR> (uDp.pu=0)
where many-one, one-many and one-one relations are respectively defined as®°:
Nc—-1=RelnR> {zRy.2Rz.D,.y =z} Df

1 +Nc=RelnR>{yRx.zRx.D,.y==z}Df
1—-1=(Nc—1)n(l - Nc)Df

The crucial point of the section on cardinal numbers is Russell’s demonstration of what he called
“the principle of abstraction™". This is the key theorem for understanding Russell’s reasons for

defining cardinal numbers as classes of similar classes. In symbols, Russell expressed it as?*:
ReRel . R®DR.R=R.qR:D.gNc =1~ S 3 (R=55)

As Russell put it, this asserts that “[...] all relations which are transitive, symmetrical, and non-
null can be analyzed as products of a many-one relation and its converse’3. In the article, Russell
defined R? as the relative product of R and itself, or R, so thatR? D R asserts that the relative
product of R and itself is contained in R, which is to say that zRy . yRz . D . xRz, that is, that
R is transitive; R is defined as the converse of R, so that R = R means xRy = yRx%, e.g. R
1s symmetrical; finally, to say 3R means that R is non-null which is to say that its domain and
converse domain are non-empty?S. Thus, it can be unpacked and translated into modern notation

as:

(x)(y)(z)(xRy NyRz.D .xRz) A

(2)(y)(2)(xSy AxSz.D.y=2)A
(R) (@)(y)(xRy = yRx) A D (as) ( D) 2Ry = (96) (2 .

8 Cf. RUSSELL, B., 1901c, pp.315, definition %1-21 and %1-22. Recall that € is being used for membership and >
for such that (for instance: “p = x 5 {Jy > (xRy)}” reads “p is the class of all x such that there is y such that
XRy”.

8 Cf. RUSSELL, B, 1901¢, pp.315, definition %1-1.

9 Cf. RUSSELL, B., 1901¢, p.319, definitions %51, %52 and %53, respectively.

9" RUSSELL., B, 1901¢, p.320.

92 Cf. RUSSELL, B., 1901¢, pp.320, theorem %6°2.

9 RUSSELL., B, 1901¢, p.320.

94 Russell used equality for material equivalence, from this point forward we shall not follow him in this.

95 See propositions %22, %172 and %1314 of section §1, respectively.

)
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This states that every equivalence relation implies the existence of a function® S that maps every
x and y such that xRy to some ¢ in the range of S. According to Russell, this theorem is “[...]
presupposed in the definitions by abstraction and it shows that in general these definitions do not

give a single individual but a class, since the class of relations S is not in general an element™’.

As Gregory Landini has urged, one must be careful in order to see the role this principle
plays in Russell’s definition of cardinal numbers®®. We may start by making clear how Russell
understood the idea of definition by abstraction in the Principles of Mathematics, where he
treats the subject at lenght. According to Russell, we may take the definition by abstraction
of the cardinal number of a class u as an attempt to define the “common property” possessed
by every class which is similar to u - namely its number or cardinality. The reason why this
theorem is presupposed in definitions by abstraction is the fact that for such definitions to be
legitimate, there must be, for every equivalence relation R, a function ¢ such that, for every x
and y, §(z) = d(y) if and only if xRy and there must be some unique entity to which x and y are
mapped by 0 if xRy, which is the entity (e.g., the property) supposedly defined by abstraction.
In the case of cardinal numbers, the attempt to define the cardinal number Nc(u) of a class u
by abstraction via the relation of similarity assumes that the function (or many-one relation) Nc
is such that Nc(u) = Nc(v) if and only if the classes u and v are similar and that  and v are
mapped to a unique entity Nc(u) which is the cardinal number of u. The problem, as Russell put
it, 1s that this sort of definition and “[...] generally the process employed in such definitions [...]
suffers from an absolutely fatal formal defect: it does not show that only one object satisfies the

definition”?. Russell continues:

[...] instead of obtaining one common property of similar classes, which is the
number of the classes in question, we obtain a class of such properties, with no
means of deciding how many terms this class contains. In order to make this
point clear, let us examine what is meant, in the present instance, by a common
property. What is meant is, that any class has to a certain entity, its number, a
relation which it has to nothing else, but which all similar classes (and no other
entities) have to the said number. That is, there is a many-one relation which
every class has to its number and to nothing else. Thus, so far as the definition
by abstraction can show, any set of entities to each of which some class has a
certain many-one relation, and to one and only one of which any given class
has this relation, and which are such that all classes similar to a given class have
this relation to one and the same entity of the set, appear as the set of numbers,
and any entity of this set is the number of some class. If, then, there are many
such sets of entities—and it is easy to prove that there are an infinite number
of them—every class will have many numbers, and the definition wholly fails
to define the number of a class. This argument is perfectly general, and shows
that definition by abstraction is never a logically valid process."

9 Or many-one relation.

97 RUSSELL., B, 1901¢, p.320.

9% LANDINI, G., 1998, p.2I. Since his discussion of the point is very clear and instructive, we follow it very closely.
99 RUSSELL, B., 1903, p.114-15 §§109-110.

190 RUSSELL, B., 1903, p.114-15 §§109-110.
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The attempt to define the property of a class u which we call the number of u or the
cardinality of u via the equivalence relation of similarity fails because it does not define a uni-
que entity that can be identified as the number of u but a whole class of such properties. For
suppose we attempt to define the number of u or the cardinality of via the equivalence relation
of similarity, defining o as the number of all classes similar to the empty set, 1 as the number
of all singletons, and so on. According to the principle of abstraction, there is a function S such
that (z)(y)(x simy = (9€) (£SE AySE)), which is supposed to map the empty set to the number
0, every singleton to the number 1, every couple to the number 2, and so on. But there may be
many (infinitely many, in fact) different functions S, each of which define different ‘numbers’;
thus, the method of abstraction does not define a unique property which is the cardinal number

or cardinality of u'™".

Russell’s solution in the Principles of Mathematics is to define the number of a class as
the class of all classes similar to this given class (and, in general, where an equivalence relation
holds, to define the ‘common property’ that arises from it as membership to an equivalence

class):

Membership of this class of classes (considered as a predicate) is a common
property of all the similar classes and of no others; moreover every class of
the set of similar classes has to the set a relation which it has to nothing else,
and which every class has to its own set. Thus the conditions are completely
fulfilled by this class of classes, and it has the merit of being determinate when
a class is given, and of being different for two classes which are not similar.
This, then, is an irreproachable definition of the number of a class in purely
logical terms.'?

Later in the book, he reiterates the point:

Since similarity is reflexive, transitive and symmetrical, it can be analyzed into
the product of a many-one relation and its converse, and indicates at least one
common property of similar classes. This property, or, if there be several, a
certain one of these properties, we may call the cardinal number of similar
classes, and the many-one relation is that of a class to the number of its terms.
In order to fix upon one definite entity as the cardinal number of a given class,
we decide to identify the number of a class with the whole class of classes
similar to the given class. This class, taken as a single entity, has, as the proof
of the principle of abstraction shows, all the properties required of a cardinal
number. [...] In this way we obtain a definition of the cardinal number of a
class.'?

10t T ANDINI, G., 1998, p.25.
2 RUSSELL, B., 1903, p.115 §§111.
03 RUSSELL, B., 1903, p.305 §§283.
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Now, at first sight, the role played by the principle of abstraction in the article is precisely
the same it plays in the Principles: it allows Russell to (nominally) define the cardinal number

of a class a as a class. Indeed, in the article we find:

If we wish to define cardinal number by abstraction, we can only define it as
a class of classes, of which each has a one-one correspondence with the class
“cardinal number” and to which belong every class that has such a correspon-
dence”™4

It is clear from the passage above that Russell’s complain that a definition by abstraction
does “[...] not give a single individual but a class’®” is about the fact that nothing can assure, in

general, that the entity defined by abstraction is unique'®.

If we look at the demonstration of the ‘Principle of Abstraction’ this is further corrobo-
rated. The proof is as follows: assume R is some non-empty, transitive, symmetric relation; let
S be the function that maps x to the class {z : xRz}. In the case of cardinal numbers, let R be
the relation of similarity; & will be the class of all classes similar to some given class z: if we
identify this £ as the number of «x it follows immediately that another number y of a class y is
equal to ¢ if, and only if x and y are similar: thus, the cardinal number of a class u is the class of
all classes similar to u; to say that a class has the same cardinality of u is to say that it belongs
to the class of all classes similar to u. The uniqueness of the & which the process of ‘definition
by abstraction’ assumes is guaranteed when ¢ is identified as the converse domain of R (this
is trivially entailed by the extensionality of classes: if R is a relation there is one and only one
converse domain of R). This, in fact, is surely the point Russell puts forward in the following

passage:

Meanwhile we can always take the class p, which appears in the demonstration
of Prop *6.2, as the individual indicated by the definition by abstraction; thus

for example the cardinal number of a class u will be the class of classes similar

to u”.1°7

So far, so good. Russell seems to have solved a fundamental problem Peano was unable
to solve: to define the cardinal number of a class using only logical notions and without relying

on definitions by abstraction'®®.

Some authors, however, have taken into account the fact that on the one hand, Russell

claims in the Principles that “[...] definition by abstraction is never a logically valid process’®

°¢ RUSSELL., B, 1901¢, p.321.

%5 RUSSELL., B, 1901¢, p.320.

196 See LANDINI, G., 1998, p.25 for a clear demonstration that it is never unique.

07 RUSSELL., B, 1901¢, p.320.

198 This was, for a long time, the received view, again, paradigmatically presented in KENNEDY, J., 1973.
199 RUSSELL, B., 1903, p.114-15 §§109-110.
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while he also claims, in the article, that the principle “[...] is presupposed in the definitions

by abstraction”"°

, something which may suggest that definitions by abstraction may, after all
be legitimate. Some have read him as if one could justify the definition of cardinal numbers by
abstraction via the principle. Also, the historical record shows that Russell’s (re)discovery of the

definition of cardinal number as an equivalence class is more complicated than usually thought.

Rodriguez-Consuegra'

points out that if we compare two of the manuscripts of Russell’s
1901 article written in French - a preliminary draft and the final published one - we see that
the earlier version does not contain the “Meanwhile...” passage quoted above, in which the
nominal definition is suggested"?. Thus, given that by the time his article was sent to Peano
to be published in the Revue, Russell had already seen the material Peano had prepared for
the 1901 edition of the Formulario and the “Meanwhile...” passage was added to the article in
proof, Rodriguez-Consuegra further concludes that Peano is to be credited with the definition
of number as an equivalence class, since, in the 1901 Formulario we also find the following

passage'3:

Etant donée une classe a, on peut considérer la classe de classes:
Clsnz > [d(xfa)rep];

I’égalité de ces Cls de Cls, calculées sur les classes a et b importe ’egalité
Numa = Numb; mais on ne peut pas identifier Numa avec la Cls de Cls consi-
dérée, car ces objets ont des propriétés différentes."4

There is no doubt that the definition being considered here is the same Russell considers
in his 1901 article and that Frege had already proposed in his Grundlagen by 1884: the notation
“Cls Nz > [I(xfa)rep]” is Peano’s equivalent of the class of all classes x that are similar to a
given class a - precisely the class that Russell identifies as the number of the class a. But there is
more: in the same section we find zero defined as the number of the null class, the number one

as the class of all singletons, of an infinite class as one which can be one-one correlated with

"o RUSSELL., B, 1901¢, p.320.

" Similar considerations of his were antecipated - albeit in much less depth and detail - in Vuillemin’s article Le
«platonisme» dans la premiere philosophie de Russell et le «principe d’abstraction»y (VUILLEMIN, J., 1975).

2. RUSSELL., B, 1901¢, p.320.

3 RODRIGUEZ-CONSUEGRA, F., 1987, p.148. Since Burali-Forti was also working with the possibility of tur-
ning definitions by abstraction into nominal ones, and Russell certainly knew about this becasuse Burali-Forti
discussed precisely this topic at the International Congress, Rodriguez-Consuegra also credits him with the joint
priority, claiming that “Burali-Forti completely anticipated the logicist idea” (RODRIGUEZ-CONSUEGRA,
F., 1991, p.34, footnote 1) of defining Peano’s primitive notions of Arithmetic. We concur with Landini, however,
in that the link between Burali-Forti’s views (which involve assuming a theorem of recursion and arithmetical
operations as primitive) is “tenuous” at best (LANDINI, G., 1992, p.608).

4 PEANO, G., 1901, p.70. In the Principles, Russell claims he fails to see which are these properties Peano thinks
cannot be attributed to cardinal numbers if they are understood as classes (RUSSELL, B., 1903, p.115 §111);
Peano was probably concerned with unexpected consequences of defining numbers as classes of similar classes
like the fact that any pair of entities {a, b} belongs, for instance, to the number 2. But from the mathematical
point of view these properties are completely irrelevant: they do not alter the formal development of Arithmetic
nor its applicability (e.g., as in counting).
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a proper subset of itself and the class of finite cardinal numbers as the class of all non-infinite
classes. Peano had's:
0 = NumA Df

1 =Num‘[a > (Ha:z,y€aDd,, .z =y) Df
infn = Num‘{a > [Felsnu > (v D a.u # a.Numu = Numa)] } Df
N, =(Num‘cls) — infn Df

Since we know that Russell saw the material for the 1901 edition of the Formulario before it
went to the press'® and that the ‘Meanwhile’ passage was added in print, Rodriguez-Consuegra
concludes Russell added it after seeing the definition above in the Formulario, where it was

rejected by Peano on rather flimsy grounds'”.

This suggestion, however, is implausible, for mainly two reasons. First, since we do not
have a complete historical record of the exchange between Peano and Russell that allows us to
settle the question of the priority of the definition, it is at least just as plausible to suppose that
Russell suggested the definition to Peano while he was preparing the 1901 edition of the For-
mulario, but Peano rejected it. The second, much less conjectural and more definitive reason is
the fact that Russell was, as Nicholas Griffin put it, “[...] remarkably untouchy about matters of

99118

priority”""®, which makes Rodriguez-Consuegra’s claim very much implausible, especially since
Frege is the indisputably author the one who truly deserves credit for the definition - something
Russell always promptly acknowledged. The fact that Russell never mentioned Peano’s name
in connection with the discovery of the definition makes Rodriguez-Consuegra’s conjecture im-
plausible, despite the fact he showed - indisputably - that the story of how (and when) Russell

arrived at the definition is more complicated than generally supposed.

Apart from the question of historical priority over the rediscovery of Frege’s definition,
Rodriguez-Consuegra’s reading of the role played by the Principle of Abstraction in the philo-
sophical justification of the definition deserves close attention. He points to the puzzling fact
that nowhere in the published text there occurs an explicit definition given by a formula of the
form “u € Cls D Nc‘u = ...” which nominally defines the cardinal number of a class u. Such a

definition would only appear almost a whole year after the 1901 article, in another article for the

S PEANO, G., 1901, p.71. Notice that Peano is following Dedekind’s definition of infinite classes here, something
that is far from a trivial decision: as Russell, Whitehead and Zermelo would soon find out, to show that this
definition coincides with the ‘ordinary’ definition of infinite classes as those that belong to every class s that
contains the empty set and « U {a} whenever x belongs to s requires the Axiom of Choice. Peano’s definition,
for instance, would only have its full intended strenght in the presence of the Axiom of (countable/denumerable)
Choice, since it would not exclude the possibility that some ordinarily infinite but Dedekind finite cardinal be
a natural number. We shall adress this point in more detail later, when discussing Principia’s theory of cardinal
numbers.

16 RODRIGUEZ-CONSUEGRA, F., 1987, p-156-7. This is absolutely indisputable since the references to the For-
mulario in the published article are to the 1901 edition.

7 PEANO, G., 1901, p.71.

8 GRIFFIN, N., 1993, p.218
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Revue des Mathématiques, entitled “On the General Theory of Well-Ordered Series”™ . There
we find the proper definition of the the cardinal number of a class u and of the relation of a class

to its cardinal number as folloows:
u€eCls DNc‘u =Clsnv > (usmo) Df

Nec =ClIs‘Cls nw 3 {gClsnu 3 (vew.=.usmv)Df

Furthermore, Rodriguez-Consuegra points to the fact that Russell had at some point toyed with

the idea of introducing the following definitions™°:
sim = S5 .ueCls. D .Nc = & Df

sim = S5 .ueCls. D . Ne‘u = wu, Df

But Russell gave them up, writing in the manuscript margin that “this Df won’t do. There may be
many such relations as S. Nc must be undefinable*". On this basis, together with Russell’s ap-
parent ambiguity concerning the legitimacy of definitions by abstraction, Rodriguez-Consuegra
claims not only that at some point the principle of abstraction was “thought to strengthen the
method of abstraction and not to eliminate it”'** but also that “the section on cardinals [of the
published article] was not conceived to give a nominal definition of cardinal numbers in terms
of classes of classes™*3. Thus, Rodriguez-Consuegra ends up claiming that in the paper On the
Logic of Relations:

[...] Russell was avoiding offering a definition of number, which can be inter-
preted, together with the former presentation of the principle of abstraction as a
justification of Peano’s methods based on abstraction, as an attempt to preserve
these methods through a definition by abstraction of cardinal number. In this
way the principle of abstraction would permit one all the necessary elements
to secure the existence of the entities defined by abstraction [...] and to avoid
any attempt to nominally define Nc."*4

This prompts him to distinguish three distinct ‘stages’ the principle went through in
the development of Russell’s ideas from 1901 through 1910. He points out - correctly - that the

origin of the principle was the Moorean idea of substituting predicates for relations whenever

19 RUSSELL, B., 1902. Like Russell’s previous paper for the journal, this was published in two installments in the
Revue; it continued Russell’s project of incorporating relations within Peano’s logic, this time with applications
to Cantor’s theory of ordinal numbers. A detailed discussion can be found in Gregory Moore’s introduction of
the article in the Collected Papers third volume (MOORE, G., 1993, pp.384-8).

20 RUSSELL, B., 1901¢, p.596. See the introduction to Appendix V of Russell’s Collected Papers volume 3 (MO-
ORE, G., 1993, pp.589) and the paper by Rodriguez-Consuegra (RODRIGUEZ-CONSUEGRA, F., 1987, pp.146-
150) for details of the manuscript history.

121 As quoted in RODRIGUEZ-CONSUEGRA, F., 1987, p.149.

122 RODRIGUEZ-CONSUEGRA, F., 1987, p.149.

123 RODRIGUEZ-CONSUEGRA, F., 1987, p.148.

124 RODRIGUEZ-CONSUEGRA, F., 1991, p.160.
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possible's, with the first stage being represented by the (allegedly unsuccessful) paper On the
Logic of Relations, and the second and third by the Principles and Principia, respectively. For
now we adress his reading of the principle of abstraction in the Principles. He takes it to be “[...]

the true philosophical axis™® of the work, where:

[...] the function of the principle consists in replacing the supposed common
property inferred from the equivalence relation for the class of terms having
the given relation to a given term. [...] Thus, the role of the principle is now
very different to that which it played in the first writings inspired by Peano,
where it seems to be destined to justify definitions by abstraction.'*’

Here we shall follow Landini’s contention that Rodriguez-Consuegra’s interpretation of

the role played by the principle of abstraction in the 1901 article is deeply flawed'®.

To see that Landini is correct, we must, as he showed, look at three theorems related to

the following definition in Russell’s paper'?:
S=Nc—1nS 3 (sim= SS)Df

This defines S as the class of many-one relations S such that the relative product S and its con-
verse is co-extensive with similarity. This is precisely the class of many-one relations such that
(2)(y)(zsimy = (3€)(zSE A £Sy)); using the terminology Russell employs in the Principles,
this would be the class of functions § that yield the (infinitely many) different notions of cardinal
numbers which we obtain for each different S’s in the attempt to define cardinality by abstrac-
tion via the relation of similarity™°. Since the proof of the principle of abstraction assures that &

can be identified with the converse domain of the relation of similarity'?', Russell can prove'3*:
dANc — 1~ S 3 (sim = S5)

which asserts that the class S of many-one relations co-extensive with similarity is non-empty.

Using this result and *6 - 2, Russell proves the following'33:
S, 8€S.D.5simo’

SeS.ksims.D.g5~5" 3 (k=0

125 RODRIGUEZ-CONSUEGRA, F., 1991, p.189.

126 RODRIGUEZ-CONSUEGRA, F., 1991, p.161.

127 RODRIGUEZ-CONSUEGRA, F., 1991, p.161. Our emphasis.

128 More generally we disagree with the picture Rodriguez-Consuegra paints of the principle’s role in the develop-
ment of Russell’s Mathematical Philosophy. In particular, the principle re-appears in Principia Mathematica
as a justificatory device for Russell’s definition of cardinal number; there are also good reasons to question
Rodriguez-Consuegra’s reading of the principle in that work cf. footnote 288 of chapter 5.

29 RUSSELL., B, 1901c, p.321, *1 - 4.

3¢ RUSSELL, B., 1903, p.114-15 §§109-110.

31 LANDINI, G., 1998, p.26.

32 RUSSELL., B, 1901¢, p.321 *1 - 3.

33 RUSSELL., B, 1901¢, p.321, *1 - 52 and %1 - 54.
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which can be translated as:

(S)(R)(S, ReS.D . A{xz: (ay)(xSy)}sim{z : (qy)(zRy)})

NS eSAk~A{z: (ay)(=Sy)}) D @R)(ReS A (k= A{z: (ay)(zRy)})]

The first theorem asserts that if two relations S and R are many-one (i.e., functions) such that
the relative product of themselves and their converse is co-extensive with similarity, then their
converse domains are identical; the second asserts that if the relative product of S and its con-
verse 1s co-extensive with similarity and £ is similar to the converse domain of S, then there is
a many-one relation (function) S’ (or R) the converse domain of which is identical with k. As
Landini puts it, theorems -52 and -54 above show that “[...] Russell provides grounds for clai-
ming his choice of S in § is not on a par with other possible choices”"4, and, in fact, provide the
philosophical justification for Russell’s definition.

Landini’s point is that “[...] the principle is important to Russell because it can be used
to demonstrate that the range of any S such that (2)(y)(z simy . = . #(S|S)y) will have all the
formal properties of the cardinal numbers”'35. Moreover, as Landini observes, when the range of
similarity is restricted to finite classes, Russell’s choice of S gives us Frege’s “[...] construction
of natural numbers as finite cardinals”'3®. This according to Landini is the point made by Russell
that when he observes the above theorems “[...] prove that all classes which form the converse
domains of different relations of the class S are similar, and that all classes similar to one of
them belong to this class of classes”7 and thus, that “[...] the arithmetic of cardinal numbers
applies in its entirety to each of these classes™®. Thus, on this basis Russell goes on to offer

definitions of zero and successor analogous to the Fregean ones':
0, = o ADf

rer.D.x+1l,=wnyd{uSr.z~€eu.D,,.uvezSy}Df

The proof of the principle of abstraction and the aforementioned comment on it'*° make clear
that Russell’s idea is to fix the meaning of “cardinality of a class #” in terms of the function (i.e.,
many-one relation) that maps u to the converse domain of similarity with respect to u. The role
of the principle of abstraction in the definition of cardinal number Nc(u) of a class u is to assure
the existence and uniqueness of such an entity when it is identified with the class of all classes

similar to u.

34 LANDINI, G., 1998, pp.28.

35 LANDINI, G., 1991, p.609.

13 LANDINI, G., 1991, p.609.

37 RUSSELL, B., 19014, p.322.

138 RUSSELL, B., 19014, p.322. Our emphasis.

39 Cf. RUSSELL, B., 19014, p.322, *2-4 and p. 324, *4- 1. The definition of successor is derived from the following

definitions: Russell also has (RUSSELL, B., 19014, p.322, *2 - 7):

l, =w Nz > (ueElm D, .uSz) Df
SeS. Duimmned. D m+n=wNed{uSmuSnuv =A. Dy, uUvSz} Df
where the second is a general definition of cardinal.

4% RUSSELL, B., 19014, p.322.
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This, in turn, allows for a nominal definition of cardinal number that dispenses with
the method of definition by abstraction and which allows the demonstration of the fundamental
properties of cardinal numbers. This is the same result that Russell would later announce in the

Principles as follows:

Mathematically, a number is nothing but a class of similar classes: this defini-
tion allows the deduction of all the usual properties of numbers, whether finite
or infinite, and is the only one (so far as | know) which is possible in terms of
the fundamental concepts of general logic. But philosophically we may admit
that every collection of similar classes has some common predicate applicable
to no entities except the classes in question, and if we can find, by inspection,
that there is a certain class of such common predicates, of which one and only
one applies to each collection of similar classes, then we may, if we see fit,
call this particular class of predicates the class of numbers. For my part, I do
not know whether there is any such class of predicates, and I do know that, if
there be such a class, it is wholly irrelevant to Mathematics. Wherever Mathe-
matics derives a common property from a reflexive, symmetrical and transitive
relation, all mathematical purposes of the supposed common property are com-
pletely served when it is replaced by the class of terms having the given relation
to a given term; and this is precisely the case presented by cardinal numbers.
For the future, therefore, I shall adhere to the above definition, since it is at
once precise and adequate to all mathematical uses.'#'

Thus what Russell accomplishes here is a solution to a problem Peano had failed to solve
adequately. In the 1901 edition of the Formulario, Peano recognized that the primitive notions of
zero, number and successor admitted an infinite number of different interpretations, all satisfying
the Peano postulates; thus he intended to introduce natural numbers as something ‘abstracted’
from these many different system which share certain structural properties encapsulated in the

five primitive propositions. Peano writes:

Ces Pp, dont nous avons vu la nécessité, sont suffisantes pour déduire toutes les
propriétés des nombres qu’on rencontrera dans la suite. Mais il y a une infinité
de systémes qui satisfont a toutes les Pp. P.ex. elles sont toutes verifiees si
I’on remplace N, et o par N; et 1. Tous les systemes qui satisfont aux Pp sont
en correspondance reciproque avec les nombres. Le nombre, N, est ce qu’on
obtient par abstraction de tous ces systemes; autrement dit, le nombre, N,, est
le systeme qui a toutes les proprietes enoncees par les P primitives, et celles-la
seulement.'4?

In the Principles Russell argues that this method suffered from two fundamental logical
flaws. First, it fails “[...] in indicating any constant meaning for o, number and succession'43; se-

cond, it fails “[...] in showing that any constant meaning is possible, since the existence-theorem

4t RUSSELL, B., 1903, p.116 §111.
42 PEANO, G., 1901, p.44.
43 RUSSELL, B., 1903, p.126 §122.
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is not proved’'44, that is, it fails in showing that there are objects that satisfy the arithmetical pos-
tulates. This is a point Russell would emphasize even more clearly Introduction to Mathematical

Philosophy in terms of applicability:

Such a procedure is not fallacious; indeed for certain purposes it represents a
valuable generalisation. But from two points of view it fails to give an adequate
basis for arithmetic. In the first place, it does not enable us to know whether
there are any sets of terms verifying Peano’s axioms; it does not even give
the faintest suggestion of any way of discovering whether there are such sets.
In the second place, as already observed, we want our numbers to be such as
can be used for counting common objects, and this requires that our numbers
should have a definite meaning, not merely that they should have certain formal
properties.'4

As Russell would later put it in the Introduction, what Peano’s method accomplishes is
a characterization of what Russell calls progressions®. And, indeed, in 1901 article contains a

definition of progressions as classes whose ordinal-type is w'7:
w=Clsnus3{gl > 1nR > (udp.pud.qu ~ pu:seCls.Isu ~ pu.p(su)Ds.Ds.uDs)} Df

Russell then introduces w,, as “the class of progressions of which R is the generating relation™4®.

Russell then defines induction generally for any class u that is a progression:
uew.D.ReRel,.=.1 > 1nR> (uew,)Df

Induct.=t.uew.ReRel,. D:seCls.Jsu ~ pu.p(su) Ds.Ds.uD sDf

And shows that Peano’s recursive equations for the basic arithmetical operations for sum and

multiplication can be proved. We find'+:
aeu.D.a+0,=a

a,breu.D:(r+a)+b=x+ (a+0b)
a0, = 0,

a,beu.D.alb+1,)=ab+a

44 RUSSELL, B., 1903, p.126 §122.

45 RUSSELL, B., 1919a, p.I0.

146 RUSSELL, B., 1919a, p.9.

47 Cf. RUSSELL, B., 1901, p.325, *1 - 1. This, as Russell puts it, “is the class of the classes u such that there is a
one-one relation R such that u is contained in the domain of R, and that the class of terms to which the different
u’s have the relation R is contained in u without being identical with u, and which, if s is any class whatsoever
to which belongs at least one of the terms of u to which any u does not have the relation R, and to which belongs
all terms of u to which a term of the common portion of u and s has the relation R, then the class u is contained
in the class s” (RUSSELL, B., 1901, p.325-6).

148 RUSSELL, B., 1901, p.325. Here “p” indicates the domain or R (cf. RUSSELL, B., 1901, p.315).

49 RUSSELL, B., 1901, p.330.



Thus what sets Russell’s account apart from Peano is that he can (i) fix a definite meaning to
Peano’s primitive notions and (ii) construct an actual class of terms which satisfy Peano’s axioms.
In a paper published shortly after Russell’s 1901 article (which is actually the first collaborative
work with Whitehead), Russell re-introduced his definitions of zero, number and successor in
the following terms'°:

Nc=cls’~nz 3> {gecls nu 3 (2 = pu)} Df

0 = (ADf
neNc.D.n+1l=clsnu>d (zeu.D.u~xen)Df

The above state, respectively, that: Nc is the relation between a class v and the class of all classes
similar to u""; that zero is the class of classes whose sole member is the empty class; stated
informally, the last definition asserts that the immediate successor n + 1 of a cardinal number »

is the class of all classes u such that if we take an element x from u, we get a member of n.

Using these definitions, Russell then introduced his version of Frege’s celebrated defini-
tion of finite cardinal numbers - and just as importantly - the principle of induction in their most

usual forms™?:
Ncfin=Ncnn > {seCls.0es:meNcns.D,m+1Ds:D.nes}Df

Induct.=:.seCls.0es.meNcns.D,;m+1les:D.Ncfin D sDf

On this basis he proved a version of the Dedekind-Peano postulates, with the exception of the

second (which is curiously omitted in the paper). We find"3:
0 € Nc fin

neNcfin. D .n+ 1eNcfin
neNcfin.D.n~=n-+1

From these Russell showed that no two numbers have the same successor, thus proving that there

are infinitely many natural numbers. He defined the immediate predecessor R as follows':
R=1—-1~nRN>{p =Ncfin:zRy.=.2+1=y}Df

Then, given the above and induction he showed that this relation is contained in diversity'>, i.e.,
that if xRy, then x # y, from which it immediately follows thatif a, b € N¢ fin, thenifa+1 = b+1,

5 WHITEHEAD & RUSSELL, 1902, p.425, defintions, %13, %14 and %1°5, respectively..

'S To make sense of %13, we need the previous definition “uecls . D . pu = clsnv > (usimo)}” (cf. WHI-
TEHEAD & RUSSELL, 1902, p.425, %1°2).

5> WHITEHEAD & RUSSELL, 1902, p.426, #1-6 and %161, respectively.

53 WHITEHEAD & RUSSELL, 1902, p.427

54 WHITEHEAD & RUSSELL, 1902, p.427

%5 cf. WHITEHEAD & RUSSELL, 1902, p.427-8
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then a = b. Thus, Russell’s definition of cardinal number dispenses the method of definition by
abstraction (both in the strict sense of ‘defining’ number directly in terms of similarity and in
the sense of ‘abstracting’ the structural properties of progressions given by Peano’s postulates);
the nominal definition of number in terms of number as a class of similar classes gives a definite
meaning together with his definition of zero and successor gives a definite meaning to Peano’s
primitive notions in a way that accounts for their applicability (e.g., counting) and allows for a

proof that there is a class of terms that satisfy the Peano postulates'.

At the heart of Russell’s definition of cardinal numbers - be it in the 1901 article or
in the Principles - is the belief that number is something we attribute to classes and that the
relation of similarity is the standard of numerical equality - something he shared with Cantor
and, most of all, Frege, who succeeded in finding a nominal definition long before him. This
idea is also the cornerstone behind the attempt to define the cardinal number of a class (or
concept) by abstraction via the relation of similarity. What Frege - perhaps with greater clarity
than anyone ever since - and later Russell realized was that a proper definition by abstraction
was impossible, for it does not tell what numbers are. Frege and Russell’s correspondence show
that they (unfortunately) talked past each other in many ways, but in one respect the two were
in complete agreement, and that is with respect to the idea that “to assign a number involves
an assertion about a concept’™’, so to say of " and G that they have the same number is to say
that there is a one-one correspondence between the things that fall under ' and the things that
fall under G. Frege rejected, however, a definition by abstraction via the following equivalence

which expresses this insight, called now, by default, ‘Hume’s Principle’'s:

(HP) Nc(F) = Ne(G) = (FM)[M el — 1. M(F,, Gy)]™

His reason for doing so was the now famous so-called ‘Julius Caesar Problem’: the above princi-
ple does not allow us to determine, in every possible context, the identy conditions for an object
indicated by the expression Nc(F'); taking Frege’s example, the above equivalence would tell

us nothing about the truth-value of the following':

156 The first interpreter to emphasize this point was Landini, see LANDINI, G., 1998, p.30.

57 FREGE, G., 1950 [1884], §46, §52.

158 This name has been made widespread by George Boolos (BOOLOS, G., 1987) and is now irreversibly standard.
Boolos followed Frege himself who quotes the following passage from David Hume’s Treatise: “When two
numbers are so combined as that the one has always an unit answering to every unit of the other, we pronounce
them equal” (HUME, D., 1960, p.71 [Book I, Part III, Chapter I]). As Michael Dummett emphatically observes,
the name is quite inadequate since “it credits Hume with an idea he probably did not have and certainly did not
state” (DUMMETT, M., 1998, p.x). If anyone at all deserves his name attached to the equivalence, it is Cantor.
Given its currency, however, we follow the usual terminology.

'59 We follow Frege here in the use of expressions of the form “Mg(Fjp,G)”. The use of subscripted variables

agrees with Frege’s in marking which are the argument values for the higher-order function.

Frege first raises the Julius Caesar problem for the attempt to define numbers by means of numerically definite

quantifiers claiming that “we can never - to take a crude example - decide by means of our definitions whether

any concept has the number Julius Caesar belonging to it, or whether that same familiar conqueror of Gaul is a

160
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(JO) Julius Caesar = Nc(F)

As Landini suggested in his recent work, Frege’s objection can be understood as parallel with

Russell’s argument against definitions by abstraction

11 The role played by the Principle of Abs-

traction in the 1901 article was in no way to justify definitions like the one considered and rejected

by Frege in Grundlagen §§63-68, namely of identity of cardinality by means of the existence

of a one-one correspondence between concepts. Rather, the role of the principle was in the phi-

161

number or is not” (FREGE, G., 1950 [1884], p.68 §56). He later raises the very same problem with the different
example for the equivalence the direction of a is equal to b if and only if a and b are parallel: “It will not, for
instance, decide for us whether England is the same as the direction of the Earth’s axis - if [ may be forgiven
an example which looks nonsensical” (FREGE, G., 1950 [1884], p.78 §67). Frege claims that “for the same
reasons” (FREGE, G., 1950 [1884], p.79 §68) the attempt to define numerical indentity by means of so-called
Hume’s Principle is bound to fail. An attempt to show that Hume’s Principle gives the correct explanation if not
definition of the concept of number is given in the modern classic Frege’s Conception of Numbers as Objects
(WRIGHT, C., 1983) by Crispin Wright. For a critical discussion of Frege’s argument see DUMMETT, M.,
pp-131-139. For more studies attempting to clarify and further develop Frege’s ideas, cf. HALE & WRIGHT,
2001, HECK, R., 2011 and EBERT & ROSSBERG (eds.), 2017.

As Landini observes, if we were to express the Principle of Abstraction within Frege’s theory of functions, we
would have something like the following:

Eq, , [r(z,y)].(3z, y)r(z,y) O Gk)[(z, y) (k(2,y). = k(z) = k(y)]

Which reads for any first-order non-empty equivalence function (or, for Russell, many-one relation) there is a
function & which “associates an object with each equivalence group generated by the equivalence function »”
(LANDINI, G., 2006, p.231) (Observe that the expression “k(x, y). = .k(x) = k(y)” asserts an identity between
the value of k(z,y) and k(x) = k(y), not a material equivalence. Recall also that identity - like every relation,
for that matter - is, for Frege, a function, namely a function of « and 8 which has as a value the true if a and
B are identical and the false otherwise). This however, is only one principle of abstraction one can formulate
within Frege’s conceptual-notation. Using higher-order functional variables in the style of Frege, Landini points
out that we can also have the following second-order counterpart of the above principle (LANDINI, G., 2006,

p.232):
Eq; ,[I5(f5,98)]-3f, 9) T s(f5,98) D GR)(f, 9)(LTs(f5,98)- = -k(Qsfs) = k(Qs95)]

Where “I's(fs, gp)” is as a scheme for a relation between functions f and g) If we instantiate this with similarity,
we get the following, since similarity is a non-empty equivalence function:

G, 9)(fr =ay fy). = k(Qsfs) = k(2s95)]

Using Frege’s \y function wich attached to function f gives us the unique y such that fy, we could then define:

Ne(zf2) = (\2)(k(Qsf3) = 2)

Landini’s point is that the problem here would then be the very same problem Russell raised in the Principles:
there may be many different £’s which give rise to different notions of cardinal number and thus, as with Rus-
sell’s many different S’s in S, Landini continues, “we don’t have the genuine cardinal numbers, but rather the
notion of “the cardinal numbers with respect to &, and “the cardinal numbers with respect to £*,” and so
forth”, and so he claims that the “[...] the issue underlying the Julius-Caesar Problem, then, is that ““definition”
by means of Hume’s technique amounts to working from (PAg;cg,)”. In parallel with the famous result redisco-
vered by Crispin Wright and baptized as Frege s Theorem by George Boolos that an extension of second-order
Logic with Hume’s Principle is strong enough to derive the Peano postulates, Landini further claims that “The
analog of Frege’s Theorem [...] is Russell’s Theorem — the proof in “On the Logic of Relations” that the range
of any function K [S] satisfying the Principle of Abstraction (when the equivalence relation is similarity over
attributes exemplified by finitely many entities) forms a progression, and that all progressions are isomorphic”.
Despite the fact that Landini’s reading of Frege’s Caesar Problem is very unorthodox and it help us to clarify
Russell’s position.
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losophical justification of Russell’s choice of one relation S in S - namely, similarity - which
could formally give a set of terms that satisfy the Peano postulates. This is the first fundamental
result Russell obtained in Mathematical Philosophy which found its way into the Principles of

Mathematics.

2.2 The Logic of the Principles of Mathematics

Russell presents the Principles as having two main goals. First, to show that “[...] all
pure mathematics deals exclusively with concepts definable in terms of a very small number of
fundamental logical concepts and that all its propositions are deducible from a very small number
of fundamental logical principles’'¢2. The second is to explain “the fundamental concepts which
mathematics accepts as undefinable™®3. As Russell understood these objectives, the first was a
purely mathematical matter that could be established with “all the certainty and precision of
which mathematical demonstrations are capable”'®4, while the second is a “purely philosophical

task’'%s,

The work divides into seven parts, namely (I) The undefinables of Mathematics; (II)
Number; (111) Quantity; (IV) Order; (V) Infinity and Continuity; (V1) Space; (VII) Matter and
Motion. Together, parts II-VII are supposed to accomplish Russell’s first main goal of mathe-
matical character, namely, that of defining the concepts of pure Mathematics in terms of logical
ones and proving its theorems solely from logical premises. Part II offers a programmatic treat-
ment of Cardinal Arithmetic based on Russell’s definition of the cardinal number of a class « as
the class of all classes similar to o; Russell also develops a treatment of basic arithmetical ope-
rations, the distinciton of finite and infinite classes and also ratios and fractions. Part III mainly
treats of the notions of continuity and infinitesimals based on Russell’s quite complex distinction
between the notions of number and quantity. Part IV is mainly concerned with a theory of series
and contains the development of a theory of progressions and ordinal numbers with discussions
of the works of Dedekind and Cantor. Part V basically builds upon Cantor’s work, developing
a theory of irrational numbers, limits and continuity of functions and also a theory of transfi-
nite cardinals and ordinals. Part VI is concerned with geometries, with extensive discussions of
metric and descriptive ones and the development of distinct conceptions of continuity for these
distinct conceptions of spaces. The final part VII is concerned with the foundations of dynamics

based on Russell’s logicist conception of pure Mathematics and Geometry's®.

Part I, The undefinables of Mathematics, is dedicated to Russell’s second, philosophical

goal - the analysis of the fundamental concepts of Logic upon which the developments of parts

162 RUSSELL, B., 1903, p.xv.

163 RUSSELL, B., 1903, p.XV-XVi.

164 RUSSELL, B., 1903, p.XV.

165 RUSSELL, B., 1903, p.XV-XVi.

196 For the history of the composition of the Principles, cf. the introduction and the first part of MOORE, 1993.
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II-VII should be grounded. The section divides into ten chapters, namely: (I) Definition of Pure
Mathematics; (11) Symbolic Logic; (II1) Implication and Formal Implication; (IV) Proper Na-
mes, Adjectives and Verbs; (V) Denoting; (V1) Classes; (VII) Propositional Functions; (VIII)
The Variable;, (1X) Relations; (X) The Contradiction. The purpose of part I is to enumerate and
explain the primitive notions of Mathematical Logic which, in the early chapters, Russell claims
to be the following six: '7: (1) “formal implication”; (2) “implication between propositions not
containing variables”; (3) “the relation of a term to a class of which it is a member” (4) “the
notion of such that”; (5) the notion of relation; and finally (6) “truth”; these, he also claims, are
sufficient to state “all the propositions of symbolic logic”. Later portions of the book, however,
present a corrected version that actually correspond to the notions discussed in chapters I1I-1X,
namely™®: (1°) implication; (2’) the relation of a term to a class of which it is a member i.e., mem-
bership; (3”) the notion of such that; (4’) the notion of relation; (5’) the notion of a propositional
function; (6”) the notion of class; (7) the notion of denoting; and finally (8”) the notions of any

or every term that are involved in the idea of variation™.

As we discussed, a crucial circumstance which contributed in shifting Russell’s interests
to Symbolic Logic was his contact with Peano and his school - and the Logic of the Principles
owes very much to their works, especially Peano’s Formulario. As we mentioned, Russell vi-
ewed Peano’s new symbolic logic as being primarily a tool which allowed for the resolution of
old (and intractable) philosophical problems because, as Russell saw the matter, it broke free
from the shackles of ‘traditional’ Logic by accounting for methods of deduction that were es-
sential and commonplace in mathematical reasoning. As Russell explains in the opening pages

of the Principles:

There was, until very lately, a special difficulty in the principles of mathematics.
It seemed plain that mathematics consists of deductions, and yet the orthodox
accounts of deduction were largely or wholly inapplicable to existing mathema-
tics. Not only the Aristotelian syllogistic theory, but also the modern doctrines
of Symbolic Logic, were either theoretically inadequate to mathematical reaso-
ning, or at any rate required such artificial forms of statement that they could
not be practically applied. In this fact lay the strength of the Kantian view,
which asserted that mathematical reasoning is not strictly formal, but always
uses intuitions, i.e. the a priori knowledge of space and time. Thanks to the pro-

167 RUSSELL, B., 1903, p.11 §12.

168 RUSSELL, B., 1903, p.106 §106.

199 The analysis of the notion of the variable occupies a large portion of the first part of the work. Indeed, according
to Russell himself, it was his puzzlement with respect to this last primitive notion which actually led him from
the Philosophy of Physics and Geometry to Symbolic Logic, as Russell explains in the preface: “About six
years ago, | began an investigation into the philosophy of Dynamics. I was met by the difficulty that, when a
particle is subject to several forces, no one of the component accelerations actually occurs, but only the resultant
acceleration, of which they are not parts; this fact rendered illusory such causation of particulars by particulars
as is affirmed, at first sight, by the law of gravitation. It appeared also that the difficulty in regard to absolute
motion is insoluble on a relational theory of space. From these two questions I was led to a re-examination
of the principles of Geometry, thence to the philosophy of continuity and infinity, and thence, with a view to
discovering the meaning of the word any, to Symbolic Logic.” (RUSSELL, B., 1903, p.xvi-xvii).
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gress of Symbolic Logic, especially as treated by Professor Peano, this part of
the Kantian philosophy is now capable of a final and irrevocable refutation."”®

In a letter to Jourdain from April 15, 1910, Russell further elaborates this same point,
emphasizing why he was also not satisfied with the works of the so-called “algebraic tradition

of symbolic logic” and where Peano’s own logic required supplementation:

Until I got hold of Peano, it had never struck me that Symbolic Logic would
be any use for the Principles of Mathematics, because I knew the Boolian stuff
and found it useless. It was Peano’s €, together with the discovery that relations
could be fitted into his system, that led me to adopt symbolic logic. I had already
discovered that relations which assigned formal properties (transitiveness etc.)
are the essential thing in Mathematics, and Moore’s philosophy led me to wish
to make relations explicit, instead of € and C. This hangs together with my
attack on subject-predicate logic in my book on Leibniz."”!

The fundamental issue was, of course, the handling of relations, which were an essential
component of Russell’s break from idealism and the doctrine that every judgment is ultimately
analyzable in terms of subject and predicate. Though Russell did partially recognize the merits
and importance of the works of the ‘algebraic’ tradition'’?, he still thought that “the subject
achieved almost nothing of utility either to philosophy or to other branches of mathematics,
until it was transformed by the new methods of Professor Peano™'73.

In a nutshell, the fundamental change brought about by Peano in his analysis of mathe-
matical reasoning was this: he broke with traditional logic by employing his primitive notions
of formal implication and of a Cantorian class'7# in analyzing mathematical statements; as we
discussed, to Russell this amounted to abandoning the limited subject-predicate analysis of pro-
positions and giving place to an analysis in terms of variables, constants and Russell’s new
notion of a ‘propositional function’'’>. As we discussed, though Peano himself had not done so

in any systematic or detailed way, Russell realized that the framework which was laid down by

7 RUSSELL, B., 1903, p.4. For similar remarks, cf. RUSSELL, B., 1959, pp.65-6.

" GRATTAN-GUINNESS, I., 1977, p.133.

72 Russell acknowledges the efforts and importance of George Boole towards the “the recognition of asyllogistic
inferences” (RUSSELL, B., 1903, p.10; Russell refers in particular to BOOLE, G., 1854; cf. also BOOLE, G.,
1847). Russell also explicitly recognizes (RUSSELL, B., 1903, pp.23-4, footnote*) the origins of the calculus
of relations in the works of Augustus De Morgan (cf. De MORGAN, A., 1864, 1847) and its systematic deve-
lopments in the works of Charles Sanders Peirce (Russell refers specifically to PEIRCE, C. S., 1880; cf. also
PEIRCE, C. S., 1870, 1885) and later by Ernst Schroder (cf. SCHRODER, E., 1895). Russell recognized Schro-
der’s three volume treatise (i.e., SCHRODER, E., 1890, 1891 and 1895) as the “the most complete account of the
non-Peanesque methods” (RUSSELL, B., 1903, p.10, footnote *). For a classic survey of the early developments
of algebraic logic, cf. LEWIS, C. 1., 1918; cf. also GRATTAN-GUINNESS, 1., 2000, chapter 2.

3 RUSSELL, B., 1903, p.I0.

74 l.e., a class viewed as an object as opposed to the part/whole conception which viewed a class as a mere aggre-
gate.

75 As Russell explained in My Philosophical Development, Peano’s analysis of general propositions, i.e., propositi-
ons containing variables, made him realize that “every statement containing the word all involves propositional
functions, but does not involve any particular value of these functions” (RUSSELL, B., 1959, p.66).
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the Italian mathematician provided a calculus which could be adequately expanded to include a

treatment of relations.

The Logic of the Principles is by and large Peano’s formal system plus Russell’s calculus
of relations embedded within the realistic Philosophy inherited from Moore'7®. The symbolic
logic which is presented in the work rather informally (since the work almost as a rule does
not rely on symbolism) was intended to be fully developed in a second volume co-authored
with Whitehead, starting from the basic primitives of logic and advancing all the way from
Arithmetic through Analysis and into Geometry'”’. So the presentation of logical grammar and of
the chain of deductions which is intended to demonstrate Russell’s claim that Pure Mathematics
is a development of Logic varies from informal to semi-formal. The logical calculus of the
Principles is divided into three separate branches, namely the calculus of propositions, of classes

and relations.

As it will become evident in the brief discussion of the Logic of the Principles which fol-
lows here, the system of logic that underlies the work looks quite antiquate from the perspective
of modern treatments of Logic. This, however, is due to the main logico-philosophical doctrines
which Russell holds in the work, not simply because it predates the results and standards of rigor

which one finds in modern textbooks.

2.2.1 A Brief Digression: Frege’s Begriffsschrift

Before discussing the Logic of Russell’s Principles of Mathematics which is heavily
influenced by Peano’s Formulario, we must make brief digression concerning Frege’s works
on logic. As is widely known, Frege had developed an analysis and notation for mathematical
statements that in many respects was far superior to that which Russell inherited from Peano and
which he modified to suit his technical goals and philosophical views. Indeed, by 1879 Frege
had published what may rightfully considered the most important work on Logic ever written'”8,
his Begriffsschrift '7°.

176 Although, of course, things are not so straightforward: Russell’s logic corrects a lot of imprecisions in Peano’s
systems and further adopts principles of comprehension. This will be addressed in detail below.

77 In the preface we find: “The second volume, in which I have had the great good fortune to secure the col-
laboration of Mr A. N. Whitehead, will be addressed exclusively to mathematicians; it will contain chains of
deductions, from the premises of symbolic logic through Arithmetic, finite and infinite, to Geometry, in an order
similar to that adopted in the present volume; it will also contain various original developments, in which the
method of Professor Peano, as supplemented by the Logic of Relations, has shown itself a powerful instrument
of mathematical investigation”. (RUSSELL, B., 1903, p.xvi) As is well known, such a volume never appeared
in the way they planned.

178 As noted in van HEIJENOORT, J., 1967, p.1. Some, like Quine and Michael Dummett claim that the book
actually marks the inauguration of modern Mathematical Logic (cf. QUINE, W., 1960, p.163; DUMMETT, M.,
1981, p.xxxv). Perhaps the more historically accurate statement would be that Frege was the first to articulate
(or at least to publish a work in which he articulates) the modern apparatus of quantificational logic, although
the term “quantifier” itself is due to Pierce (cf. CHURCH, A., 288).

79 FREGE, G., 1879. Following an usual convention among commentators of Frege, we shall use “ Begriffsschrift
” with a capital “B” to refer to Frege’s first booklet on Logic and “begriffsschrift ” to refer to his conceptual
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As is well known, Frege was inquiring (again, long before Russell and Peano) whether
the concept of number should be understood as a logical concept and whether the laws of Arith-
metic should be understood as logical principles. Frege’s initial goal, as he described in his first
logical booklet, was to analyze the concept of series or sequence and to prove fundamental the-
orems about this notion in a way that prevented “anything intuitive” to remain “unnoticed” in a
way that kept “the chain of inferences free of gaps™'®. In this respect, as he explained, natural
language became an insurmountable obstacle because “[...] no matter how unweldy the expres-
sions [he] was ready to accept” he “[...] was less and less able, as the relations became more
and more complex, to attain the precision that [his] purpose required”™®' - and this is what led
him to formulate his “ideography” or, as he more frequently said, his *“ Begriffsschrift ™, i.e.,

“concept-script”.

Frege’s Begriffsschrift contains the first formulation of our modern idea of a formal
system: a set of primitive symbols accompanied by rules for forming complex expressions from
simpler ones and a set of axioms and rules for manipulating symbols that allowed for a rigorously
defined notion of a demonstration or proof. Frege’s primitive notions were those of assertion'™?
(or jugement), conditionality' (i.e., the material implication), negation™*, of identity's, of func-
tionality®®, i.e., the notion of function (and so also that of an argument) and finally, and perhaps
most importantly, that of generaltity’®, i.e., the universal quantifier.

In Frege’s notation, the assertion of what he called a given ‘content 4’ and the assertion

of not-A are respectively symbolized as follows':

A4
F—A

In the second formula above, the short vertical stroke is the sign for the primitive notion of

negation. Also, the sign “t——""itself is also composed of two distinct symbols; Frege used the

expression A” to stand for “[...] @ mere combination of ideas, of which [he] does not state

whether he recognizes to be true or not”®9; the role of the bold vertical bar was to indicate that the

notation. As is well known, Frege modified the original formulation of his begriffsschrift throughout the years,
most notably in his Grundgesetze de Arithmetik (FREGE, G., 1893 and 1903). Some of these changes will be
briefly mentioned below. For systematic and in depth discussios of these changes, the reader is referred to
the following authoritative studies of the complex development of Frege’s ideas: DUMMETT, M., 1967, 19814,
19810, 1991; DUARTE, A., 2009; HECK, R., 2012; LANDINI, G., 2012; cf. also the third part of DEMOPOULOS,
W., 1995; a good survey of some issues is given in the Introduction of RICKETTS & POTTER, 2010; for a more
recent authoritative collection of essays on Frege’s Grundgesetze, cf. EBERT & ROSSBERG, 2019.

180 FREGE, G., 1879, p.5.

81 FREGE, G., 1879, p.6.

82 Cf. FREGE, G., 1879, p.11-2.

183 Cf. FREGE, G., 1879, p.13-14.

84 Cf. FREGE, G., 1879, p.17.

185 Cf. FREGE, G., 1879, p.20.

186 Cf. FREGE, G., 1879, p.2I-22.

187 Cf. FREGE, G., 1879, p.24.

88 Cf. FREGE, G., 1879, p.11 and 17-18.

89 FREGE, G., 1879, p.I1.
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content was not merely being considered but actually asserted'°. Frege’s sign for conditionality

or material implication gives rise to the famous bi-dimensional aspect of his notation. Frege

used the following™":

F—r—28
—A

The truth conditions of above are explicitly introduced as excluding the circumstance where 4
can be (truly) affirmed and B (truly) denied">.

It is in connection with the above notation for material implication that another of Frege’s

sharpest and most important insights also appear for the first time. As we remarked above,

190

9

192

Uncharacteristically, at this point of Frege’s explanation of his notation we find some unclear aspects of the
exposition of the Begriffschrift which give rise to many complex and important interpretative issues about the
development of Frege’s views. As Frege observes, not every ‘content’ can be asserted or, as Frege put it, not
every content is ‘judgeable’ or “[...] can become a judgment” (FREGE, G., 1879, p.12). To take an obvious
example, one cannot consider the expression “— 2”, where x is an individual variable as the expression of
a judgment. Frege requires that “[...] whatever follows the content stroke must have a content that can become
judgment” (FREGE, G., 1879, p.12). Still, Frege does not provide any clear-cut explanation as to what distin-
guishes a judgeable content from a non-judgeable content. Also, in the Begriffschrift Frege introduced the notion
of identity in a somewhat confused way. He put forward the following notation (which Russell would later use
for the material biconditional in Principia):

F—u=nB)

As he first explained it, the above was meant to express that “[...] two names have the same content” (FREGE,
G., 1879, p.20) and thus, that it differed from the other symbols like the conditional and negation because
“[...] it applies to names not to contents” (FREGE, G., 1879, p.20, our emphasis). Both of these imprecisions
were addressed by Frege and clarified in his later writings, most notably his papers On Function and Concept
(FREGE, G., 1891) and On Sense and Meaning (FREGE, G., 1892) which introduce what may perhaps be his
most famous ideas. In those papers Frege distinguishes a peculiar sort of function which he calls concepts.
Differently from functions in general, concepts always have as their values for any given argument (or number of
arguments) a particular sort of object that Frege called a ‘truth-value’ (see footnote below); Frege also introduced
his famous distinction between the sense of an expression - its mode of presentation - and its Bedeutung - its
reference or meaning.

Cf. FREGE, G., 1879, p.13-14. Other propositional connectives are very easily expressible; the expression

“l_V—E B”, for instance, asserts that A is true and B is true; while “|_|: B” asserts that A4 is true

A A
or B is true.
FREGE, G., 1879, p.13-14. Of course, complex implications are formed by nesting implications within others,
i.e, putting expressions with the form _|: B within other expressions of the same form. For instance, the
A

Peanesque formula p. D . ¢ D p is written as follows:
T
q

p

The above is actually the first numbered proposition in Frege’s booklet and one of his axioms ruling the material
conditional (cf. FREGE, G., 1879, p.29); the other axioms are (2), (8), (28), (31) and (41) - cf. FREGE, G., 1879,
p.31, p.36, p-44, p-45 and p.41, respectively; the last two axioms also rule the behavior of negation. As Alonzo
Church observes, this is “[...] the first formulation of the propositional calculus as a logistic system” (CHURCH,
A., 1956, p.155-6); the system was later simplified since some axioms are not independent, as showed in TARSKI
& LUKASIEWICZ, 1930.
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Frege’s initial goal with his work on Logic was to show that basic propositions concerning the

notion of a sequence have no intuitive presuppositions and he intended to show this by exhibiting

proofs in such a way that all chains of inferences result “free of gaps™'®3. What Frege realized

was that in order to truly fulfill this task, it was necessary to not only explicitly articulate within

his symbolism the axioms that are needed for proofs, but also the rules for manipulation of signs

that capture the modes of inference that are allowed in the construction of proofs. So in addition

to axioms that were assumed as basic logical principles, Frege also introduced a way of repre-

senting the inference of a judgment from other judgments, i.e., a mode of inference, in a way

that actually provides a rule for manipulating expressions of his begriffsschrift , i.e, a rule which

states what is admissible in the construction of proofs. As his first rule, Frege had™+:

F——25
—A

—A

H—nB

The above is intended to capture, in terms of a symbolic rule, the fact that, as Frege puts it,
“[....] from the two judgments ———— B and —— A, the new judgment — B follows™'%. The

—A

realization that the statement of such a rule is necessary marks a tremendously important advance

towards Frege’s goals and for Logic as a whole. As Michael Dummett vividly puts it:

What Frege wanted was a framework within which all mathematical proofs
might be presented and which would offer a guarantee against incorrect argu-
mentation: of proof so set out, it would be possible to be certain that it was
not erroneous, or valid only within certain restrictions not made explicit, or
dependent upon unstated assumptions. To achieve this purpose, it was neces-
sary to device a symbolic language within which any statement of any given
mathematical theory might be framed, as soon as the required additional voca-
bulary for that theory was specified'9®. This would be, in modern terminology,
a formalized language: that is, there would be an effective method of recog-
nizing, for any given collocation of symbols, whether or not it was a formula
of that symbolic language. Furthermore, in reference to this language, it was
necessary to stipulate formal rules of proof, rules, that is, which would specify
in a manner which provided a procedure for effective recognition which se-
quences of formulas of the language constituted a valid proof. [...] Frege was,

193
194

195
196

Cf. FREGE, G., 1879, p.s.

Cf. FREGE, G., 1879, p.16. This is the full statement of the rule, but Frege finds this “[...] awkward if long
expressions were to take the places of 4 and B” (FREGE, G., 1879, p.16) so he uses an abbreviated form.

FREGE, G., 1879, p.15-16.

This is the point which generally used to mark the contrast between Frege’s work with those of Boole and
Schréder, which Frege famously explained as follows: “My intention was not to represent an abstract logic in
formulas, but to express content through written signs in a more precise and clear way than it is possible to do
through words. In fact, what I wanted to create was not a mere calculus ratiocinator, but a lingua characterica
in Leibniz’s sense” (FREGE, G., 1882, pp.1-2, as quoted in van HEIJENOORT, J., 1967, p.2).
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thus, proposing to take the step from the axiomatization of mathematical the-
ories with which nineteenth-century mathematics had been deeply concerned,
to their actual formalization. While the axiomatic method strove to isolate the
basic notions of each mathematical theory, in terms of which the other notions
of the theory could be defined, and the underlying assumptions, from which all
the theorems could be made ultimately to derive, what Frege wanted to do was
to subject the process of proofitself to an equally exact analysis."7

But Frege went (and had to go) even further in order to achieve the kind of complete
analysis which he needed. For as Dummett further observes, “[...] before an analysis of proof is
possible, an analysis has first to be given of the structure of the statements which make up the
proof”%8 and that’s where the notion of functionality, i.e., of function and argument comes into
play.

The notions of function and argument and the role they play in Frege’s analysis of mathe-
matical judgments (and, in fact, judgments in general) present what is truly revolutionary in
Frege’s first work. The fundamental gist of Frege’s analysis of judgment is that the old dicho-
tomy of subject and predicate is supplanted by the dichotomy of argument and function. Gram-
matically speaking, Frege thought that statements like “a is a prime number” should not be
analyzed in terms of a subject and a predicate, but should be decomposed in the same way that
arithmetical expressions like “x>” or “x + 17 are - hence the subtitle of his booklet “a formula
language, modeled upon that of arithmetic, for pure thought”°. This idea sprang from a very
simple, yet also very deep insight that arose from observing what now seem as very common-
place facts, namely: the fact that functional expressions like v/ or“ 41" are incomplete, that
is, they have gaps; that the use of variables is one possible way of representing these gaps; and
that it is by filling such gaps with expressions which have a determinate meaning that the mea-
ning of complex expressions composed of simpler ones is determined, e.g., by filling the gap in
“+1” to obtain “0 + 1” or the gaps in Yy to obtain “v/8”.

Frege’s insight was that even sentences which grammatically appear to have the form
of subject and predicate like “2 is a prime number” or “o is less than 1”° can also be analyzed in
terms of function and argument. As Dummett observes, what Frege realized was that complex
expressions, in particular sentences containing multiple markers of generality are constructed
in stages and that by employing his analysis of judgments in terms of function and argument
instead of subject and predicate, he could formulate a completely perspicuous symbolic device
for representing the stages of construction of such sentences, making their internal structure

manifest?°°.

97 DUMMETT, M., 1981, p.1.

198 DUMMETT, M., 1981, p.2. It must be observed that one can accept this point of Dummett’s without fully
accepting his somewhat anachronistic claim that Frege was interested in formulating a theory of meaning.

99 FREGE, G., 1879, p.1. It must be observed, though, that the use of lower-case italic letters as variables which in-
dicate the “gaps” of an open sentence does not coincide with that of Frege, who employed different conventions
for the use of lower-case italics and also employed Gothic lower-case letters bound by quantifiers to represent
generality (cf. FREGE, G., 1879, p.24-6).

200 Cf. DUMMETT, M., 19814, pp.10-11. For what is surely one the most illuminating discussions of Frege’s insights
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It was building upon this analysis that in the Begriffsschrift Frege was able to present
for the first time a clear-cut explanation of the universal quantifier which may be, as Dummett
once put it, “[...] the deepest single technical advance ever made in logic’*°'. Frege employed

the following expression for representing generality*°*:
H—X(a)

Which, as he explains in the Begriffschrift, stands for “the judgment that, whatever we may take
for its argument, the function is a fact”*®. So, for instance, the following asserts, respectively,

that everything that is an Y is an X and that if everything is a X, then something is an X:
HT—X(a)
—Y(a)

¢+ X (a)

—>~X(a)
This simple and elegant notation is the very first formulation of a basic notation for what we

now know as ‘quantification theory’ or ‘quantificational logic’.

The above makes it clear how to construct complex statements from simpler ones in
stages, in particular those containing generality. If one intends to say, for instance, that every
number is odd, one starts from a simple statement like “2 is even”, or more shortly, “F(2)”; the
next stage is to replace “2” by a variable, to obtain a functional expression, i.e., “x is odd”, or
“FE(x)”; generality comes in asserting that, for every argument which can be assigned for x, the
resulting statement is true - or as Frege put it in Begriffschrift when he did not yet had a notion

of a truth-value - a statement of a fact.

which led to the ‘discovery’ of quantification theory - and how truly penetrating and far-sighted Frege was in

this regard - cf. DUMMETT, M., 19814, chapters 1 and 2.

DUMMETT, M., 1981, p.xxxiii..

292 Thus, to assert that there is an a such that X (a), one writes ‘e x (a)”.

203 FREGE, G., 1879, p.24. Though in his first presentation of his concept-script Frege does not discuss the issue
what a function is or what the values of a function may or may not be (As noted in van HEIJENOORT, J.,
p.2.), he elucidates his insight in posterior writings by explaining that a predicates like *“ is a prime number”
should be viewed as a particular case of functional expressions that stand for a particular sort of functions that
Frege called concepts. Functions are opposed to objects which are capable of, so to speak, fill the ‘gaps’ of the
function. Shortly after publishing his Begriffsschrift, Frege distinguishes between two kinds of functions. On
the one hand, there are functions like those of ordinary mathematics that are represented by gappy expressions
like “ +1; when their gaps are filled, such then stand for a definite object, like, say, the number 1 in case the gap
in the expression is filled by the number 0. Concepts, on the other hand, are, for Frege, functions whose values
are always another peculiar kind of objects, namely, truth-values. So, for Frege, filling the gap of an expression
like ““ is a prime number” may result in an expression which stands either for the value Truth or the value False,
depending on what object is assigned as the argument of the function - as Frege himself puts it “a concept is
a function whose value is always a truth-value”. Furthermore, the notion of an object, for Frege is incapable
of definition because “it is too simple to admit of logical analysis” (FREGE, G., 1891, p.147 [18]); similarly the
notion function can only be elucidated by observations that either pertain to expressions that represent functions
- for instance observing that such expressions ‘haves gaps’ or ‘are incomplete’ - or by the use of metaphors - for
instance, Frege’s favorite one, that a “a function is unsaturated” (cf. FREGE, G., 1891, p.140-1. [7]).

20
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What is truly revolutionary in Frege’s analysis and notation is that this construction in
stages can be carried on to arbitrary levels of complexity. It is a much more precise (and powerful
in terms of expressivenes) tool than anything formulated by Boole or those who build upon his
work, including Peano. His notation made it possible to sharply distinguish logical forms of
sentences that always eluded traditional (syllogistic) logic like “Everyone loves someone” and
“Someone is loved by all”. With Frege’s symbolism, the two forms can be clearly distinghished

as follows:

He—%r R(a, b)
Ie—2— R(a, b)

Indeed, long before Russell, Frege had provided means for handling relations*** within a lo-
gical calculus that allowed every desirable inference* to be represented and derived within
his system. Frege introduced two additional rules governing expressions containing generality,

namely>°%:

H—X(a)
H—X(a)

Which is exactly what we nowadays call the rule of ‘universal generalization’ and also the fol-
lowing third (and final rule)**7:

FT—X(a)
—A
T X(a)
—A

under the condition that “4 is an expression in which a does not occur and if a stands only in
the argument places of X (a)"2%,

In what is a crucial aspect of Frege’s systems, he allowed his quantifiers to bind functi-

204 Relations, for Frege, were a particular case of functions, namely concepts of multiple arguments.

205 More precisely: every inference that is correct from the point of view of classical Logic.

206 Cf. FREGE, G., 1879, p.25.

*°7 Cf. FREGE, G., 1879, p.26.

208 FREGE, G., 1879, p.25-26. Frege had only one axiom for quantification theory, namely (FREGE, G., 1879, p.51):

gL

which is what we now call the law of universal instantiation.
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onal variables. In his celebrated definition of the ancestral, for instance, Frege had:

S g b)
B

3(b)
Where the § above ranged over functions which take objects as arguments, not over objects
themselves. Frege’s begriffsschrift also had provisions for handling expressions for concepts in
both predicate and subject positions (or, more approppriately for concepts falling “within” as
arguments of higher-order concepts)*®, employing markers for the gaps of functions with subs-
cripted variables, as in ‘Mz(F}3)’. In fact, as many authors have pointed out, implicit in Frege’s
Begriffsschrift are rules of inference for concepts analogous to those considered above. Fol-

lowing a formulation suggested by Gregory Landini, Frege’s rule of generalization for concepts
could be expressed as follows:

1 My (Fp)
—A

15— M5 (F5)
— A

where F does not occur free in 4; similarly, Frege’s only axiom for quantification theory*™ has
the following analogue for concepts:

Mgs(Gp)

S
Mp(§s)
These axioms and rules, on their turn, have yet ‘higher-order’ analogues. The above, for instance

has the following analogue for concepts that apply to concepts of second order*":
| Qp(Ps(Fp))
Qp(Ms(Fp))
Thus, implicit in Frege’s Logic is an ever increasing hierarchy of rules and axioms ruling the

corresponding (ever increasing) hierarchy of functions. Indeed, also implicit in Frege’s Begriffs-

schrift is a family of axiom schemes of comprehension for functions, as in:

h@fﬁb—q}—u—ep—g(ab (g, .., 0p) = &

299 In fact, the quantifiers themselves can be seen as “higher-order concepts” that apply to concepts.
1% Cf. footnote 208.

2T That is, concepts that apply to concepts that apply to objects.
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where ¢ stands for some judgeable content not containing § free. And the same applies to func-
tions like Mg (Gg), Qp[Ps(F3)], and so on*'.

Now, at this point it must be clear that the contrast of Frege’s symbolic logic with that
of Peano’s is quite stark - and, in fact, this contrast was quite extensively discussed by the two
authors*3. For our present purposes, we must consider three fundamental aspects of Frege’s
notations and analysis of mathematical statements which are much sharper than Peano’s - and

similar points will apply with to some aspects of the logic of Russell’s Principles of Mathematics.

First there is Frege’s notation and analysis of general judgments. In his correspondence
with Peano, Frege praises the former’s departure from traditional logic, observing that “[his]
designation for generality remedies an essential defect of Boolean logic”; but Frege also surgi-
cally notes that Peano’s notation “[...] is perhaps less generally applicable than [his]” and that
he does “not know whether [Peano] will be able to set sure limits to the scope of generality in
all cases”*'; the latter point, in particular, is important. Peano’s notation was not as precise or
perspicuous as Frege’s. Frege’s notation was superior than that of Peano for distinguishing more
clearly the scope of quantified variables - in particular in contexts where multiple generality is

involved and by allowing relation-symbols*'>.

Second, there is Frege’s inclusion of rules of inference in his begriffschrift and his empha-
sis that the very notion of deduction or proof in mathematics should be subjected to analysis.
From Frege’s standard of what counts as a formal deduction or proof - i.e., a sequence of formu-
las manipulated according to a set of syntatical rules for forming expressions and for deducing
formulas from axioms or from formulas deducible from the axioms - there is not a single proof

in Peano’s Formulario, since there are no rules of inference explicitly articulated. Take, for ins-

22 Cf. LANDINI, G., 2012, p.52. As Landini points out, an important change that happens in Frege’s Grundgesetze
is that these implicit axiom schemes will be quite different there. In the Begriffsschrift (implicit schematic)
comprehension must be framed in terms of an ‘identity of content’ between an expression like ~*— F(a) or
=M 5(85) and some judgeable content 4; in Frege’s Grundgesetze, on the other hand, comprehension must
be framed in terms of genuine identity, as in (cf. LANDINI, G., 2012, p.57):

I S > o e ~ 3((11,&2,..,(171) =

where the schematic « stands for an arbitrary ferm. This is because in the Grundgesetze an expression like
“—~&— [(x)” is assigned a value when asserted (either the true or the false) according to whether all objects x
fall under F or not.

213 Frege and Peano exchanged a significant number of very illuminating of letters (cf. FREGE, G., 1980, pp.108-
129). Peano reviewed the first volume of Frege’s magnum opus, the Grundgesetze (FREGE, G., 1893) in the
Rivista di Mathematica (cf. PEANO, G., 1895b); Frege responded the review with a paper discussing the contrast
between his views and those of Peano (cf. FREGE, G., 1897) and also a letter from 29 September 1896 (cf.
FREGE, G., 1980, pp. 112-18) which Peano then published in the Rivista accompanied by his own counter-reply
(cf. PEANO, G., 1896, pp.295-296); for some details about these exchanges, cf. GRATTAN-GUINNESS, I.,
2000, pp.247-251.

*4 FREGE, G., 1980, p.109.

25 Which, again, for Frege, were a particular case of functional expressions.
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tance, the following demonstration from Peano’s Principles of Arithmetic*'®:

Proof :
P1.D. 1eN (1)
1[a)(P6) . D 1eN.D.1+1eN (2)
(1).(2).D. 1+ 1eN (3)
P10.D. 2=1+1 (4)
(4).(3).(2,1+1)[a,b](P4).D. 2eN (Theorem)

Peano presents the above as a proof in which “[...] we have written explicitly all the steps”;
but nowhere in his booklet Peano does introduce an explicit rule which justifies step three -
indeed, the very law “a . a D b . D . b” does not even appear in the initial catalog containing
around forty logical propositions®'7. This, of course, does not mean that Peano could not have
the rule in his system. Also, it must be observed, this does not mean necessarily that Peano did
not recognize - at least implicitly - the distinction between a rule which justifies inference of a
proposition from other propositions and an actual axiom or primitive proposition. In fact, the
best explanation for such a lacuna in Peano’s axiomatization is the confused way in which he
characterized his notation “a D 0”. In the Principles of Arithmetic, in particular, he introduced
it as meaning “a deducitur b>*®; in the French version of the Formulario he introduced it as “b
on déduit a”; these explanations suggest that his demonstrations employed an implicit rule but
also that his works were affected by a confusion between entailment and material implication;
this can explain the absence of an explicit rule of detachment: since he explained “a D b” as
“from a, one deduces b or “from a, b can be deduced”, he may just as well found unnecessary to
introduce an explicit rule (much less a theorem) which stated that from from @ and @ D b one may
deduce b. Similar remarks apply to Peano’s notion of formal implication - Peano’s constructions
of proofs implicitly employed generalization and instantiation in connection with it. Frege, of
course, knew better*® and, given all of his concerns with the rigorous constructions of proofs,
he formulated modus ponens as as an explicit symbolic rule and clearly distinguished between
implication and detachment**°. And even more importantly, Frege also formulated explicit rules

for quantification theory.

The points discussed above mark important contrasts in terms of procedures, goals and
clarity involved in their attempts at formalizing mathematical statements and show that - in

contrast to Frege - Peano was, after all, still tied to some aspects of the Boolean tradition that

216 PEANO, G., 1889, p.94.

27 cf. PEANO, G., 1889, p.87-8.

8 Cf. PEANO, G., 1889, p.

219 And as we shall see, so did Russell.

Still, it must be said that it is not clear whether Peano missed the distinction or whether he was just careless or
sloppy about it. As we shall see below, Russell himself clearly recognized the distinction in the Principles of
Mathematics.

2
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prevented substantial progress to be achieved in Logic. As we shall see next, Russell was caught

in the middle.?*!

2.2.2  Propositions and Russell’s Doctrine of the Unrestricted Variable

At the outset we must recall that the notion of a ‘proposition’ must be handled with care
in the Principles of Mathematics***. Russell was fully committed to Moore’s realist conception of
judgment according to which propositions are complex entities. As he put it: “[...] a proposition,
unless it happens to be linguistic, does not itself contain words: it contains the entities indicated
by words**3. Thus, when Russell speaks of propositions in the Principles he is not talking
about sentences, but about complex, mind-independent entities which have as constituents the
entities that are the subjects of the proposition. In other words, a ‘proposition’ in the sense
in which Russell employs the notion in Principles does not necessarily consists of words, but
of entities, namely, the entities which the proposition is about, i.e., the logical subjects of the
proposition in question®*4. This is one of the reasons why Russell’s calculus of propositions is
very different from Peano’s and, indeed, from any modern formulation of propositional logic.
Of course, the fundamental notions of Russell’s logic of propositions are implication and formal
implication, both inherited from Peano and also following Peano, Russell used “p D ¢” for
material implication. But given his understanding of propositions, he used the symbol “D” as a

name for an actual dyadic (indefinable) relation that holds between entities, not expressions.

Russell’s calculus of propositions also differed from Peano’s (and from modern formu-
lations of propositional logic) in virtue of one of the (if not the) most important and central doc-
trines of the Principles, namely Russell’s doctrine of the ‘univocity of being’ - a thesis which
we which shall discuss more extensively in the next chapter, but which we must also consider

from the outset in order to make sense of the Logic of the Principles.

The content of this doctrine of the ‘univocity of being’ is threefold. The doctrine consists
in the following metaphysical claim, as Russell puts it: “[...] there is only one kind of being,

namely being simpliciter’’**. This absolute sense of being, Russell elaborates:

[...] belongs to every conceivable term, to every possible object of thought—in
short to everything that can possibly occur in any proposition, true or false, and

221 Another important point which we may also briefly mention concerns the issue of definitions. Frege voiced to
Peano the same concerns that Russell had over definitions: like Russell - but again, before him - Frege criticized
Peano’s liberal use of non-nominal or non-eliminative definitions, in particular conditional definitions, which
formed the great majority of in Peano’s Formulario.

222 And, in fact, in all of Russell’s works on Logic.

223 RUSSELL, B., 1903, p.47 §51. Notice that when Russell asserts that “unless it [a proposition] happens to be
linguistic”, he means something like “unless the [a proposition] happens to be about words or phrases”.

*24 Cf. RUSSELL, B., 1903, p.47 §5I.

225 RUSSELL, B., 1903, p.449 §427.
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to all such propositions themselves. Being belongs to whatever can be counted.
[...] being is a general attribute of everything, and to mention anything is to
show that it is.>2

This doctrine was accompanied by a logical doctrine and also a ‘semantical’ thesis, for
lack of a better word. The logical doctrine was Russell’s doctrine of the ‘unlimited’ or ‘unres-
tricted variable’, i.e., the claim that strictly speaking, there are no variables, but only “the true
or formal variable” or “the variable**7 whose range is completely unrestricted: as Russell put
it, whenever the variable occurs, “the terms dealt with are always a// terms”?**. The semantic
doctrine is the claim that “[...] it is a characteristic of the terms of a proposition that any one of
them may be replaced by any other entity without our ceasing to have a proposition™**? - that
is, for every term b, whenever there is a proposition p whose subject is some term a, there is
a proposition p* which differs from p solely from the fact that its subject is b instead of a; in
effect, this doctrine boils down to the claim that every term can occur as the subject of every
predicate and as a related term of every relation in a way that results in a proposition - i.e., if
one can assert meaningfully (no matter if truly or falsely) that a number, say, one, is less than

three, one may also assert meaningfully that Alexander the Great is less than three.

In holding this threefold doctrine, Russell significatly reframed Peano’s calculus of pro-
positions and its (not explicitly articulated) syntax. Implication for Russell was viewed as a
relation that only actually holds between propositions but which can be meaningfully asserted

to hold between any entities whatsoever. In other words, for any terms*3°

x and y, one may me-
aningfully state that x implies y or that y implies x - even if they are not propositions - but this

can only be true if x and y are propositions>3'.

This gives rise to a fundamental feature of the Logic of the Principles that may seem
strange to the modern reader. One of the hallmarks of modern standard predicate or quantifi-
cational logic which was (at least partially***) shared by Frege, namely, the employment of a
formal language whose variables are ‘sorted out’ in the following sense: one distinguishes the

ranges of propositional, predicate and individual variables in some way or another and imposes

226 RUSSELL, B., 1903, p.449 §427.

*7 RUSSELL, B., 1903, p.91 §88

228 RUSSELL, B., 1903, p.o1 §88.

229 RUSSELL, B., 1903, p.45 §48.

23° The notion of ferm is used by Russell in the Principles as equivalent to entity. We shall discuss this notion at
lenght in the next chapter.

It is plausible to suppose that Russell thought this to be a self-evident truth, since he offers no justification for
it.

One sense that Frege’s logic is certainly many sorted is that his object variables are shar-
ply distinguished from functional variables. However, with respect to the propositional va-
riables things are more complicated. As Alessandro Duarte has pointed out (unpublished
manuscript, available here  http://www.alessandroduarte.com.br/?page id=454 and also  here
https://www.researchgate.net/publication/313524003 On_a Problem concerning the Rule of Substitution for Functions |
it seems that there is a problem with Frege’s rule of Substitution in the Begriffsschrift which allows substitu-
tions of non-judgeable contents for judgeable ones that result in ill-formed formulas. In case of Frege’s later
formulations of his begriffsschrift, things are also not straightforward given Frege’s introduction of truth-values
into the system. Thanks for Alessandro Duarte for calling these points to my attention.
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http://www.alessandroduarte.com.br/?page_id=454
https://www.researchgate.net/publication/313524003_On_a_Problem_concerning_the_Rule_of_Substitution_for_Functions_in_Begriffsschrift

grammatical limitations with respect to what sort of terms of the language®3 may or may not be
substituted within a given complex expression®. In contrast, the variables of Russell’s propo-
sitional calculus have an absolutely unrestricted range and in his axioms “[...] any conceivable
entity may be substituted for any one of our variables without impairing the truth of our pro-
position™*3. So, for instance, Russell could not have an axiom or theorem like “p D p” - for it
would result false for any value of “p” that is not a proposition. That is why he actually defined

a proposition as anything which implies itself23¢.

As Russell explains, every primitive proposition or axiom of his calculus of propositi-
ons is an implication which has as an antecedent a clause “equivalent to the assertion that the
letters which occur in the consequent are propositions”?37 and so “[...] all its propositions have
as hypothesis and as consequent the assertion of a material implication”?3®. In a footnote Russell
clarifies the status of his primitive propositions by explaining that “[...] the implications deno-
ted by if and then, in these axioms, are formal, while those denoted by implies are material>3°.
Recall that the notion of formal implication was Peano’s device for expressing generality, his
formal rendition of the universal quantifier. So, for instance, Russell’s first axiom of his calculus
of propositions, which he informally introduces as asserting that “if p implies g, then p implies g;
in other words, whatever p and g may be, “p implies ¢” is a proposition”?4° should be translated

into symbolic language as something along the following lines:

POq. Dpg-PDOgPp

where the variables p, g, etc., have an absolutely unrestricted range. Furthermore, it must be
noted that one cannot ‘fix’ this peculiarity of Russell’s Logic by saying that certain variables of
the axioms only range over propositions, since the point of having them in this conditional form
is to preserve the unrestricted character of the variables and to guarantee that the axioms are true
no matter what sort of entities are assigned the variables*'. This distinguishes Russell’s calculus
from modern formulations of propositional logic*#*: his axioms are quantified statements that

assert something about everything, given that the variables have an absolutely unrestricted range.

233 That is, linguistic terms in the modern sense, and not in Russell’s general sense of an entity.

234 Of course, the range of substitution of a given category of terms also determines whether such terms can occur
significantly in other ways in composing complex expressions other than sentences, for instance, as arguments
of certain functional expressions.

235 RUSSELL, B., 1903, p.7 §7.

236 RUSSELL, B., 1903, p.13 §14.

237 RUSSELL, B., 1903, p.13 §14. As we shall extensively discuss later, this is very misleading since, in the Princi-
ples, propositions are not letters, but are merely indicated by letters.

238 RUSSELL, B., 1903, p.13 §14.

239 RUSSELL, B., 1903, p.16 §18, footnote *.

24° RUSSELL, B., 1903, p.16 §18.

241 That is, in case they are not propositions the antecedents are false and thus the implications are true.

*4> 1n effect, the propositional logic of the Principles can be understood as a sort of unique variant of what Alonzo
Church calls the ‘extended propositional calculus’ which allows propositional variables to be bound by quanti-
fiers. For details, cf. CHURCH, A., 1956, p.151. The first formal treatment of such calculus was given by Russell
in his 1906 article On the Theory of Implication (RUSSELL, B., 1906¢); later investigations of such systems
were developed by Tarski and Lukasiewicz (cf. TARSKI & LUKASIEWICZ, 1930 and CHURCH, A., 1956,
p.151-2 for detailed historical information). This means, among other things, that the formal calculus implicit
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2.2.3 Quantification, the Notion of a Logical Subject and Denoting

Russell’s calculus for Logic is intended to have variables with an absolutely unrestricted
range: this applies not only to his calculus of propositions but also to his calculus of classes and
relations, and, in fact, to quantification in general. What, then, is the theory of quantifier of the

Principles?

As many authors have previously noted, the notion of formal implication is expected to
cover the legwork of the quantifiers in the Principles of Mathematics*®. As we discussed, Peano
understood formal implication as a relation that held between two propositions p and g contai-
ning real variables z, ..., 2 whenever “q can be deduced from p, no matter what x, ..., z are”*44,
Differently from Peano, who took this notion as a single primitive notion, Russell realized that

the notion is “complex” and “[...] should therefore be separated into its constituents’>4.

The first step of this analysis consisted in noting that to assert a formal implication is to
assert all the values (which are propositions) of what Russell called a propositional function, a
notion which is akin to Frege’s notion of a concept and which we’ll further discuss in more detail.
The relevant point, for now, is that Russell understood a formal implication in a very different
way from Peano. For Russell, in the notation “p D, . ¢”, where p and ¢ contaning real (free)
variables, “p D ¢” should not be viewed as a sentence expressing a complete proposition, but
as an expression that expresses a proposition when all its free variables x, ..., z are assigned
determined values or when it is formally asserted that is, when a// the propositions resulting
from assigning a value to , ..., z are asserted®4®. Thus, Russell analyzed a formal implication as

“[...] the assertion of a whole class of material implications*47. As Russell explains:

Given any proposition (not a propositional function), let a be one of its terms,
and let us call the proposition ¢(a). Then in virtue of the primitive idea of a
propositional function, if x be any term, we can consider the proposition ¢(z),
which arises from the substitution of x in place of . We thus arrive at the class
of all propositions ¢(x). If all are true, ¢(x) is asserted simply: ¢(x) may then
be called a formal truth. In a formal implication, ¢(x), for every value of x,
states an implication, and the assertion of ¢(x) is the assertion of a class of
implications, not of a single implication. If ¢(z) is sometimes true, the values
of x which make it true form a class, which is the class defined by ¢(z): the
class is said to exist in this case. If ¢() is false for all values of x, the class
defined by ¢ () is said not to exist [...]*#*

in the Principles would not admit a schematic formulation, but would have to have a finite set of axioms and a
rule of substitution. This is precisely the route Russell adopted in RUSSELL, B., 1906¢.

243 And, in fact, as we shall see in the next section of this chapter, Russell defines Pure Mathematics in the Principles
as the class of all (true) maximally general formal implications.

244 Peano, G., 1897, p.1.

245 RUSSELL, B., 1903, p.16 §18.

246 RUSSELL, B., 1903, p.38-9 §42. Of course, he had not yet fully realized (as Frege had) how to provide an
adequate treatment of the notions of all, any, etc.

247 RUSSELL, B., 1903, p.28 §33.

248 RUSSELL, B., 1903, p.28 §33.
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Russell went further, however, seeking an analysis of the very notion of variation or the
variable in the Principles which differs drastically with respect to modern approaches and also
with respect to Frege’s analysis of generality. The contrast with Frege here is illuminating, and

we shall use it to conduce our discussion

As we previously observed, following Dummett, we may understand the fundamental
insight behind Frege’s account of and notation for quantification theory as the idea that all com-
plex expressions are constructed in stages from simpler ones. Such a construction is able to be
carried out in several different ways. For example, in a standard language for predicate Logic,
we may distinguish two cases of complex expressions which form linguistic units generated in
stages from simpler expressions. First we have terms like “f(x)”, “f(a)” and so on, which are
formed by putting names or variables as arguments to functional expressions. These are contras-

€9

ted to basic linguistic units that are formed by placing a singular term or proper name “a” or a
variable “x” as an argument to a predicate “F”’, resulting in an atomic sentence like “F(a)” or
atomic open formula “F(x)”. The first case consists in the most basic kind of complex ferms and
the second the in the most basic kind of well-formed formulas**. Another different kind of com-
position comes from prefixing what we call open formulas with quantifiers in order to construct
sentences containing logical generality®°. The essential break with traditional logic that Frege
effected consisted in showing that this latter kind of composition was completely different than
assigning a predicate to a subject. The internal structure of general statements in Frege’s con-
ceptual notation is given by a grammar which has no counterparts for ordinary expressions like

“all F’s”, “some F’s” as subjects of a sentence.

Although there are important differences between Frege’s logic of functions and mo-
dern predicate calculi, we may call a language which, in some way or another, embraces such
structure a Fregean® Grammar®'. The Russellian grammar - as put forward in the Principles -
contrasts markedly with a Fregean* one. The contrast is best explained in terms of the logico-
metaphysical distinctions that give rise to it. The most fundamental category of the Russellian
grammar is that of a term in the sense of the Principles, i.e., an entity or being which can occur
as a logical subject of a proposition. Among terms Russell distinguishes between things and con-
cepts and roughly, the linguistic counterpart of these ontological categories are those of singular
terms and predicates; being terms, however, both things and concepts can be logical subjects
of propositions. In other words, from the perspective of Russellian grammar as presented in the
Principles what distinguishes “a is red” from “red is a color” is that the former sentence expres-

ses a proposition in which red occurs as concept - i.e., not as a the subject of the proposition -

249 And, of course, iterations or combined iterations of these stages result in expressions of the same kinds but of
increasing complexity, as in “f(f(x)” or “F(fa)”, etc.

259 Of course a different kind of composition of complex expressions in stages comes from taking sentences and
iterating what we now call propositional connectives or operators to form new formulas.

25" Frege’s Logic was not a predicate calculus, but a logic of terms, so such a generic ‘Fregean*®’ cannot strictly
be attributed to Frege himself (cf, previous footnote 232 of this chapter and footnote 7 of chapter 3). What we
are calling a Fregean* Grammar does, however, incorporate many of Frege’s most important and characteristic
loigical insights.
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while in the latter it does occur as a term, i.e., as the subject of the proposition.

The analysis of quantification of the Principles which arises from taking as fundamental
the notion of a term occurring as a logical subject of a proposition is drastically different from
that of Frege. As Hylton points out, Russell’s explanation of generality functions primarily in a
“non-linguistic level”?>*: the main problem of explaining generality in the Principles is not that
of providing an adequate symbolic apparatus for the quantifier, but rather that of reaching the
ultimate constituents of propositions involving generality. Russell referred to this problem as
‘The Problem of the Variable’. Upon his return from the Congress of Philosophy by 16 August
1900, Russell explained it to Moore as follows:

Have you ever considered the meaning of any? I find it to be the fundamental
problem of mathematical philosophy. E.g. “Any number is less by one than
another number.” Here any number cannot be a new concept, distinct from
the particular numbers, for only these fulfil the above proposition. But can
any number be an infinite disjunction? And if so, what is the ground for the
proposition? The problem is the general one as to what is meant by any member
of a defined class. I have tried many theories without success.*53

Russell was puzzled as to what sort of subject of a proposition would be indicated by
“Any number” or “All numbers’>3*. It cannot be the set of all numbers, for the proposition we are
considering is not about a certain class, which (so Russell though at the time) is a single entity,
but about each member of the class®%. For, whenever someone asserts “every natural number
is either odd or even”, this statement is not meant to assert something about the set containing
1,2, 3, ... nor about the concept of natural number but about the numbers themselves. As Russell
puts it, “[...] it is only particular numbers that are odd or even; there is not, in addition to these,
another entity, any number, which is either odd or even, and if there were, it is plain that it could

not be odd and could not be even”>.

In the Principles, the answer for this conundrum comes with Russell’s notion of denoting,

which is amusingly introduced in the following passage, where Russell writes:

A concept denotes when, if it occurs in a proposition, the proposition is not
about the concept, but about a term connected in a certain peculiar way with

252

Cf. HYLTON, P., 1990, p.213. This, of course, is not to say that Russell did not recognize the (important) issues

of concerning the rules and axioms of quantification theory or that he did not grasped the difference between

formulating an adequate formalism and that of providing an analysis of general propositions (in a non-linguistic

sense); Russell clearly grasped the difference between a formula or sentence and the proposition that sentence

stood for.

*53 MOORE, G., 1993, p.181.

254 As we shall discuss in some detail in the next chapter, Russell thought that each word of the sentence should
stand for a constituent of a proposition.

255 We are working, for the sake of discussion, with the naive assumption that there could be such a thing as the
class of all numbers.

256 RUSSELL, B., 1903, p.53 §56.
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the concept. If I say “I met a man”, the proposition is not about a man: this is a
concept which does not walk the streets, but lives in the shadowy limbo of the
logic-books. What I met was a thing, not a concept, an actual man with a tailor
and a bank-account or a public-house and a drunken wife.?57

It is important to notice, again, that Russell is not speaking of denoting in the usual
sense that words denote something, but he is talking about a relation which holds between the
concept C' and a term x when, whenever the concept occurs in a proposition, the logical subject
of the proposition is not the concept C but the term x. As Russell puts it, he is not worried
with ‘denoting’ in the sense that “we denote, when we point to or describe, or employ words as
symbols for concepts”5® but in ‘denoting’ as “[...] a logical relation between some concepts and

some terms, in virtue of which such concepts inherently and logically denote such terms”>.

Russell understood denoting concepts as derived from what he called ““class-concepts™2%°.

A class concept for Russell is a concept such that x is an a is a propositional function, i.e., when

€c_ 9

the result of the substitution of a term-name for “x” in “x is an a” results in a sentence that

expresses a proposition. So Russell understood all quantifier-like expressions attached to class

% ¢¢ 9% ¢

concept-words as standing for denoting concepts (as in “every number”, “any number”, “some
number”, etc.). Russell expressed this, again, with his usual carelessness about use and mention,

as follows:

When a class-concept, preceded by one of the six words all, every, any, a, some,
the, occurs in a proposition , the proposition is, as a rule, not about the concept
formed of the two words together, but about an object quite different from this,
in general not a concept at all, but a term or complex of terms.?"

Fortunately, he explains this more carefully (but still with his characteristic slips):

Consider again the proposition “I met @ man”. It is quite certain, and is implied
by this proposition, that what I met was an unambiguous perfectly definite man:
in the technical language which is here adopted, the proposition is expressed
by “I met some man”. But the actual man whom I met forms no part of the
proposition in question, and is not especially denoted by some man. Thus the
concrete event which happened is not asserted in the proposition. What is as-
serted is merely that some one of a class of concrete events took place. The

257 RUSSELL, B., 1903, p.53 §56.

258 RUSSELL, B., 1903, p.53 §56.

259 RUSSELL, B., 1903, p.53 §56. Another alternative would be to say that the proposition is about the class of
numbers as many but according to the doctrine of the univocity of being, there is no such entity: whatever is a
being or is a possible logical subject of a proposition must be a single entity.

260 RUSSELL, B., 1903, p.74 §73.

261 RUSSELL, B., 1903, p.64 §65. This passage could be fixed as follows: “When a class-concept [word], prece-
ded by one of the six words all, every, any, a, some, the, occurs in a propesition [sentence], the proposition
[indicated by the sentence] is, as a rule, not about the concept [denoted by the denoting-concept-expression]
formed of the two words together, but about an object quite different from this, in general not a concept at all,
but a term or complex of terms.”
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whole human race is involved in my assertion: if any man who ever existed or
will exist had not existed or been going to exist, the purport of my proposition
would have been different. 262

Thus, Russell thought that the constituent for which the expression “any number” stands
for is a peculiar kind of concept, namely a denoting concept (sometimes also called a denoting
complex). The peculiarity of a denoting concept is that despite being a constituent of a propo-
sition like Any number is less by one than another number, the proposition is not about the
denoting concept but about the totality (as many) of numbers2%3. This peculiarity, in turn, arises

from the undefinable nature of the relation of denoting.

The very notion of variation or the variable or yet “the true formal variable™*4, as Rus-
sell also referred to it sometimes, is then identified with the denoting concept any term®%S. This
analysis of generality amounts to introducing ‘the variable’ as a genuine constituent of propo-
sitions, namely, as Russell puts it, “the object denoted by any term”2¢, which has “a kind of

individuality”2¢7.

This individuality, according to Russell accounts for the apparently contradictory fact
that although “[...] different variables may occur in a proposition, yet the object denoted by
any term, one would suppose, is unique”; once the variable is viewed as this peculiar entity -
namely the denoting concept any term - this is supposedly resolved because such constituent
of a proposition “does not denote, properly speaking, an assemblage of terms, but denotes one

term, only not one particular definite term”; thus, Russell concludes:

[...] any term may denote different terms in different places. We may say: any
term has some relation to any term; and this is quite a different proposition
from: any term has some relation to itself.2%®

Appealing again to the notion of propositional function, Russell concluded:

The individuality of variables appears to be thus explained. A variable is not
any term simply, but any term as entering into a propositional function. We
may say, if ¢x be a propositional function, that x is the term in any proposition
of the class of propositions whose type is ¢x. It thus appears that, as regards
propositional functions, the notions of class, of denoting, and of any, are funda-
mental, being presupposed in the symbolism employed. With this conclusion,

262 RUSSELL, B., 1903, p.62 §62.

263 In fact, strictly speaking, the proposition is about anything whatsoever, given that Any number is less by one
than another number is asserting that for every value of x if x is a number then x is is less by one than another
number. The point is that what is asserted about something in the proposition, the concept of odd number, is
not being asserted of the denoting concept, but of the things denoted by the concept.

264 RUSSELL, B., 1903, p.91 §88.

265 Cf. RUSSELL, B., 1903, p.91 §88.

266 RUSSELL, B., 1903, p.94 §93.

267 RUSSELL, B., 1903, p.94 §93.

268 RUSSELL, B., 1903, p.94 §93.
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the analysis of formal implication, which has been one of the principal pro-
blems of Part I, is carried as far as I am able to carry it.%

As many authors have pointed out, this account of generality based on the theory of deno-
ting concepts is certainly rich®’° and interesting, but also full of puzzles and difficulties*”". From
a technical standpoint this account does not seem to provide a tenable theory of the quantifier
because it fails to provide an adequate account of denoting concepts that do not denote anything

and because it fails to account for subtleties of scope of quantifier expressions.

Important details apart, the fundamental subjacent issue here is that Russell still could
not let go - as Frege had already done - of ordinary grammar as a guide for analyzing generality
(and in fact, for analyzing the structure of propositions in general). As Landini points out, Frege’s
Begriffsschfrift, in contrast to the Principles, “[...] allots no logical significance to the fact that

‘all men’ is the grammatical subject of ‘All men are mortal” 27>

This is another important aspect in which a Fregean* Grammar differs radically from that
of Russell’s in the Principles. A Fregean* Grammar embraces what Michael Dummett called the
hierarchy of levels. Embracing this hierarchy of levels amounts to distinguishing sharply the syn-
tatical role which functional symbols and predicates play in contrast to the role of proper names
and singular terms. Indeed, if we follow Dummett, we may characterize a Fregean* Grammar,
as one in which proper names and singular terms in general are complete linguistic units which
may be used (within sentences) to refer to objects. Similarly, a sentence is a complete linguistic
unit that may be used to assert something of a particular object or about any number of objects.
These complete linguistic units contrast, however, with functional expressions, predicates and
also with quantifiers which are incomplete expressions. As we mentioned very briefly, Frege
elucidated this contrast in terms of the metaphor of ‘saturation’: a proper name or singular term,
as Frege puts it, is saturated whereas a functional symbol “f(...)” or a predicate or concept sym-
bol “F(...)” is unsaturated. The point of the metaphor is to convey what is the fundamental trait

of a Fregean* Grammar: in order to make a contribution to the truth-conditions or meaning in

269 RUSSELL, B., 1903, p.94 §93.

*7° For instance, Russell went to a great deal of effort in order to distinguish the workings of all, every, any, a, some
and especially the, all of which he understood as denoting concepts (cf. RUSSELL, B., 1903, p.56 §59).

27" An example appears in the following passage, where Russell writes: “Great difficulties are associated with the
null-class, and generally with the idea of nothing. It is plain that there is such a concept as nothing, and that in
some sense nothing is something. In fact, the proposition “nothing is not nothing” is undoubtedly capable of
an interpretation which makes it true [...]” (RUSSELL, B., 1903, p.73 §73). Indeed, nothing is more telling that
something is amiss in terms of logical correctness than the attempt to turn “nothing” into a substantive (although,
perhaps a case could be made for the attempt to turn “nothing” into a verb as a strong contender, but we shall not
address the issue). The underlying problem here becomes even more clear in the subsequent explanation of the

denoting concept nothing. Russell explains: “We may now reconsider the proposition “nothing is not nothing”—

aproposition plainly true, and yet, unless carefully handled, a source of apparently hopeless antinomies. Nothing
is a denoting concept, which denotes nothing. The concept which denotes is of course not nothing, i.e. it is not
denoted by itself. The proposition which looks so paradoxical means no more than this: Nothing, the denoting
concept, is not nothing, i.e. is not what itself denotes. But it by no means follows from this that there is an actual
null-class: only the null class-concept and the null concept of a class are to be admitted.” (RUSSELL, B., 1903,

p.75 §73).
272 LANDINI, G., 1998, p.63.
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a well-formed sentence, incomplete expressions must receive some supplementation or become
saturated. One such way is to put proper names or singular terms as arguments in them, resulting
in atomic sentences in the case of predicates or complex singular terms in the case of functional
symbols. Frege’s genius was to extend this idea of ‘completion’ or ‘saturation’ to the quantifier
which he viewed as a ‘higher-order’ incomplete expression that required a predicate or concept
expression in order to become saturated and to express a meaningful sentence. Frege’s account
of the quantifier and his analysis of generality relied on his modelling predication on functio-
nality. Just like a functional expression like “f(z)” is assigned to a value i.e., a specific object
according to which value is assigned to “x”, a sentence like “F(a)” is assigned a truth-value
(also an object) depending on whether the object a falls or not under the concept F. According
to Frege’s analysis as put forward in the Grundgesetze, the quantifier itself is also seen as an
incomplete symbol a kind modelled upon the idea of functionality: the expression “—°— X (a)”
is assigned to a truth-value according to what obtains: the True when every object falls under

the concept X(...) and to the False otherwise.

Russell’s most central doctrines precluded him from accepting Frege’s explanation of
predication via the notion of functionality. For Frege, the notion of a function was more funda-
mental than that of a property or a relation-in-intension and, as Landini puts it, for Russell “[...]
to have a property or stand in a relation means to occur as a ‘term of a proposition’ predicating
the property or relation” and Russell could simply not accept “[...] the notion that some entities
are ‘unsaturated’ so that variables for them cannot occupy subject positions?73; thus he rejec-
ted Frege’s notion of a function. As Hylton also nicely puts it, “[...] the idea of an entity, or a
quasi-entity, which is not self-subsistent but is incomplete, is so alien to Russell’s metaphysics
at this time that he does not seem able to understand it, even as the idea of another”*74. The very
statement of Frege’s doctrine of ‘unsaturatedness’ was contradictory for Russell as he repeatedly
argues throughout the Principles®’s: Russell thought that any attempt to assert a sentence like
“F cannot be a logical subject” turns F into a logical subject and this lead him to conclude, as
Landini nicely puts it, that “its very statement is self-refuting”?7%. As Hylton rightfully claims,

“here, if anywhere, we reach bedrock™77.

Russell could not but analyze the notion of generality in terms of the fundamental idea
of a term occurring as the subject of a proposition. This created a problem for which Russell
could simply not provide an adequate solution: that of explaining what sort of subject we have
in case of general propositions, in particular formal implications. At the bottom, the problem
was that Russell could not accept anything like Frege’s doctrine of incomplete or unsaturated
entities and this precluded him from understanding quantifiers along the lines of a Fregean*

Grammar. Russell had no alternative analysis, however, except one guided by ordinary grammar.

213 LANDINI, G., 1998, p.64.

#74 HYLTON, P., 1990, p.220.

275 Cf. for instance, RUSSELL, B., 1903, pp.45-6 §49 or p.510 §483.
276 LANDINI, G., 1998, p.64.

*77 HYLTON, P., 1990.
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The solution of the Principles was given in terms of the notion of denoting concepts, in particular
that of any term, which he identified with the absolutely unrestricted variable of Logic and
Mathematics. A definite solution of the issue had to await Russell’s new theory of denoting and

of the variable, given in On Denoting.

2.2.4 Classes, Propositional Functions and Relations

Russell’s calculus of classes, which is build upon the logic of propositions, assumes
as primitive, besides the notion of variable that is presupposed in Logic as a whole, the three
primitive notions of membership of a term to a class, of propositional function and such that,
most of which are taken from Peano’s logic, with some modifications. As previously noted, one
of Russell’s debts to Peano is the distinction between membership and containment together

with the recognition of the conceptual priority of the former:

The insistence on the distinction between e and the relation of whole and part
between classes is due to Peano, and is of very great importance to the whole
technical development and the whole of the applications to mathematics. In
the scholastic doctrine of the syllogism, and in all previous symbolic logic, the
two relations are confounded, except in the work of Frege. The distinction is
the same as that between the relation of individual to species and that of species
to genus, between the relation of Socrates to the class of Greeks and the relation
of Greeks to men.?”8

In the Principles, Russell adheres to Cantor’s conception of a set as a “[...] collection
M into a whole of definite, well-distinguished objects m of our intuition or thought” short of
the apparent psychologism involved in it. Put in another formulation that Russell would fully
accept, a class or set - in the Cantorion sense - is a “[...] many, which can be thought of as one,
i.e., a totality of definite elements that can be combined into a whole by a law’?7. We find this

conception fully articulated in the Principles in the following passage:

A class, we have seen, is neither a predicate nor a class-concept®®°, for different
predicates and different class-concepts may correspond to the same class. A
class also, in one sense at least, is distinct from the whole composed of its
terms, for the latter is only and essentially one, while the former, where it has
many terms, is, as we shall see later, the very kind of object of which many
is to be asserted. The distinction of a class as many from a class as a whole is
often made by language: space and points, time and instants, the army and the

278 RUSSELL, B., 1903, p.20 §20.

279 CANTOR, G., We are borrowing Boolos’s translation (BOOLOS, G., 1971, p.215). Detailed discussions of Rus-
sell’s gradual acceptance of Cantor’s ideas are found in RODRIGUEZ-CONSUEGRA, F., 1991, GARCIADI-
EGO, A., 1992 and GRATTAN-GUINNESS, 1., 2000b.

28 This notion is a technical notion in the Principles, we explain it below.
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soldiers, the navy and the sailors, the Cabinet and the Cabinet Ministers, all
illustrate the distinction.?®"

So called ‘propositional functions’ were already considered in Russell’s aforementioned
analysis of formal implication as the assertion of a class of propositions. In place of Peano’s
notion of a proposition p containing a real variable x, Russell has a function ¢z, whose values
are propositions. Thus, in a proposition like Socrates is a man, if Socrates is replaced by a

variable, we get x is @ man, which is a propositional function?®?,

As in the case of Russell’s theory of generality, the notion of a propositional function
plays an explanatory role in Russell’s theory of classes, but it is important to observe, in conti-
nuity with our previous discussion of the notion of a logical subject and constituents of proposi-
tions, that Russell did not assume an ontology of propositional functions as he did an ontology
of classes. This role is that of indicating what Russell calls a “constancy of form” of certain clas-
ses of propositions which Russell assumes as more fundamental than the notion of a class itself.
This notion is derived, again, from the fundamental concept of a term occurring as a subject in

a proposition. In the chapter on the notion of variable, he writes:

When a term occurs as term in a proposition, that term may be replaced by any
other while the remaining terms are unchanged. The class of propositions so
obtained have what may be called constancy of form, and this constancy of
form must be taken as a primitive idea. The notion of a class of propositions
of a constant form is more fundamental than the general notion of a class, for
the latter can be denned in terms of the former, but not the former in terms of
the latter. Taking any term, a certain member of any class of propositions of
constant form will contain that term. %3

As Landini emphatically observes, however, there is no ontology of propositional func-
tions in the Principles. Russell recognizes this explicitly in the following - often neglected -

passage:

According to the theory of propositional functions here advocated, the ¢ in px
is not a separate and distinguishable entity: it lives in the propositions of the
form ¢z, and cannot survive analysis.>%

Russell recognizes that this view may be in tension with the very argument he raises
against Frege’s notion of functions as incomplete entities which cannot be genuine logical sub-
jects. But the reason for Russell’s doubts against the recognition of propositional functions as
entities is none other than the threat of contradiction:

281 RUSSELL, B., 1903, p.68 §70.

282 Again, observe that the expressions “occurring in a proposition”, “substituted by a variable”, etc., have no
linguistic connotations here.

283 RUSSELL, B., 1903, p.89, §86.

284 RUSSELL, B., 1903, p.88, §85.
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If ¢ were a distinguishable entity, there would be a proposition asserting ¢ of
itself, which we may denote by ¢(¢); there would also be a proposition not-
(), denying ¢(¢). In this proposition we may regard ¢ as variable; we thus
obtain a prop- ositional function. The question arises: Can the assertion in this
propositional function be asserted of itself? The assertion is non-assertibility
of self, hence if it can be asserted of itself, it cannot, and if it cannot, it can.
This contradiction is avoided by the recognition that the functional part of a
propositional function is not an independent entity.?35

As we shall also discuss in the next chapter, this difficulty - like those involved in Rus-
sell’s account of the quantifier and of the nature of classes - will only be resolved with the new

account of generality which he comes up in the article On Denoting.

The notion of such that is, Russell tells us “[...] roughly equivalent to who or which, and
represents the general notion of satisfying a propositional function?*. Russell’s reluctance to
accept such that as a definable notion - as Peano did - is in accordance with the idea that there
are propositions which are not reducible to subject-predicate form. And this, of course, is due
to his acceptance of the reality of relations. As he explains, given a class of propositions of the
form xRb: “We cannot reduce this [form of]**7 proposition to the form “x is an a ” without using
such that”**®. The point here is closely related to Russell’s rejection of Leibniz’s, and Bradley’s
theories of judgment: if a proposition is relational, as in bRa, any attempt to reduce R-fo-a to an
attribute of b or any other object would, in some cases**, presuppose the complexity involved
in what is indicated by the expression “has R to a”. This point re-appears with the definition of
such that: in cases where one would want to specify a class of all x such that xRa, it is pointless,
Russell tells us, to define the expression “all x such that xRa” in terms of membership to a class
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a’, as in “x is an a” because “a’ must be such that each of its terms, and no other terms, have

the relation R to a¢”*°°.

The notions of a propositional function and such that acquire their most basic signifi-
cance and importance in connection with the notions of class and class-concept. A class-concept
is a concept a such that “[...] ‘x is an @’ is a propositional function”; so a class-concept is just
a concept that, when asserted of an individual (or term), “asserts that an individual belongs [or
not] to a class”*'. Thus given that “¢x is a propositional function if, for every value of x, ¢x
is a proposition, determinate when x is given*?, a class can be conceived as the totality of en-
tities of which some given propositional function ¢z is true. In fact, Russell puts this forward

as a possible definition of the notion of class - as he put it, “[..] a class may be defined as all

285 RUSSELL, B., 1903, p.88, §85.

286 RUSSELL, B., 1903, p.83 §80.

287 This is surely a slip of Russell, since what contains a real variable cannot be a proposition, but a propositional
function. Russell is clearly concerned here with the specification of a class of propositions through a propositi-
onal function.

288 RUSSELL, B., 1903, p.82 §80.

289 Most notably in propositions which deal with asymmetrical relations.

290 RUSSELL, B., 1903, p.82 §80.

291 RUSSELL, B., 1903, p.54 §57.

292 RUSSELL, B., 1903, p.19 §22.
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the terms satisfying some propositional function”*?3. But of course, Russell does not accept this
definition in virtue of the contradictions inherent to the naive conception of set the most famous

of which he discovered himself.

As is well known, however, the suggestion as it stands is nothing but catastrophic, as
Russell knew very well. Since Russell embraces Cantor’s conception of set, the central tenet of
the class theory of the Principles is the idea that “[...] classes must in general be regarded as
objects denoted by concepts, and to this extent the point of view of intension is essential”**4. By
this, Russell means that despite the fact that “logically [...] extension and intension seem to be on
a par”, since an infinite mind could, in principle, determine an infinite class by enumeration of
its members, in our case “Death would cut short our laudable endeavour before it had attained its
goal”?%5. As Russell explains “[...] classes as many are the objects denoted by concepts of classes,
which are the plurals of class-concepts™?°®. But before his shocking discovery, now referred to
as ‘Russell’s Paradox’, he “took it as axiomatic that the class as one is to be found wherever

there is a class as many”’?%’. This is precisely what engenders what he called the Contradiction:

A class as one may be a term of itself as many. Thus the class of all classes is
a class; the class of all the terms that are not men is not a man, and so on. Do
all the classes that have this property form a class? If so, is it as one a member
of itself as many or not? If it is, then it is one of the classes which, as ones, are
not members of themselves as many, and vice-versa.??®

Russell clearly identified the source of the problem as the so-called ‘naive’ assumption

that one can speak of any propositional function as determining a class as one:

The reason that a contradiction emerges here is that we have taken it as an
axiom that any propositional function containing only one variable is equiva-
lent to asserting membership of a class defined by the propositional function.
Either this axiom, or the principle that every class can be taken as one term,
is plainly false, and there is no fundamental objection to dropping either. But
having dropped the former, the question arises: Which propositional functions
define classes which are single terms as well as many, and which do not??9°

This difficulty is not solved in the Principles. Far from a Cantorion Paradise, the set
theory of the work is more like Heaven during the Fall of Angels3*°. Nowhere in it we find a

definitive answer as to how we can determine which concepts (or propositional functions) define

293 RUSSELL, B., 1903, p.20 §23.

294 RUSSELL, B., 1903, p.66 §66.

295 RUSSELL, B., 1903, p.69 §71

296 RUSSELL, B., 1903, p.106 §106.
297 RUSSELL, B., 1903, p.104 §104.
298 RUSSELL, B., 1903, p.102 §101.
299 RUSSELL, B., 1903, p.102-3 §102.
3% Revelation 12 : 7-T10.
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a class and which ones do not. There is no axiom in the calculus of classes that can be identified
as what we nowadays call a comphrehension principle: a principle which tells what formulas of
a formal language determine a set and thus, what sets there are. The reasons why Russell failed
to find a solution will be discussed in the next chapter. For now we will review the main positive

aspects of the Principles theory of classes.

Russell assumed two specific primitive propositions for the calculus of classes, namely:

(Comp.*) If x belongs to the class of terms satisfying a propositional function ¢x, then ¢x is

true.3""

(Ext.) If px and x are equivalent propositions for all values of x, then the class of x’s

such that ¢z is true is identical with the class of x’s such that ¢x is true3°?

The first of these is clearly Russell’s attempt to keep a class as the extension of a propositional
function without saying anything as to which propositional functions determine the class: all
that is entailed by the axiom is that if" a class (as one) u is specified by a propositional function
oz, then ¢x is true of elements of u, but nothing is said as to what propositional functions
specify the class u (as one). So strictly speaking there is no actual axiom of comprehension for
classes assumed in the work. The second axiom is clearly a version of extensionality: given that
classes are the extensions of propositional functions (conceived, again, as one, not as many) the
axiom asserts that two classes v and v are identical if they are defined by materially equivalent
propositional functions. This axiom asserts that classes (as one) are identical when they have the
same elements. Class-concepts on the other hand can have the same extension and be distinct3®3,

since they are intensional entities.

Russell also did not identify relations with as classes of ordered pairs (or trios, and so on)
which was the approach taken not only by the Algebric tradition3°4, but also by Peano. Again,

Russell’s approach is grounded in his Philosophy of relations:

3t RUSSELL, B., 1903, p.20 §24.

32 RUSSELL, B., 1903, p.20 §24.

393 RUSSELL, B., 1903, p.20 §24.

3%4 Tt is well known that Peirce anticipated in many ways the modern treatment of quantification theory and his
‘calculus of relatives’ is no exception. Peirce’s method consisted in introducing relations as the sum of relatives,
that is, as classes of ordered pairs. As he put it: “A general relative may be conceived as a logical aggregate
of a number of such individual relatives. Let / denote “lover;” then we may write | = 3,;%;(1);,;(I : J) where
(1); is a numerical coefficient, whose value is I in case / is a lover of J, and o in the opposite case, and where
the sums are to be taken for all individuals in the universe.” (PEIRCE, C., 1883, p.187). It is not surprising
that almost halfway through the twentieth century we find Tarski claiming that “though the significance of the
theory of relations is universally recognized [...] the calculus of relations, is now in practically the same stage
of development as that in which it was forty-five years ago” (TARSKI, A., 1941, p.74), since the essence of
the modern treatment of a (first-order) relation as the set of n-uples of indivduals from a specified domain D is
already given in the above passage. And, in fact, a fundamental result in model theory, Lowenheim’s theorem,
which states that if a first-order formula is true in some infinite model, then it is true in a model of cardinality
Rg, was proved originally within the framework of the Peirce-Schrdder calculus of relatives (LOWENHEIM,
L., 1915, p.235, §2, theorem 2); as is well known Lowenheim’s result was further investigated and developed by
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Peirce and Schroder have realized the great importance of the subject, but un-
fortunately their methods, being based, not on Peano, but on the older Symbolic
Logic derived (with modifications) from Boole, are so cumbrous and difficult
that most of the applications which ought to be made are practically not feasi-
ble. In addition to the defects of the old Symbolic Logic, their method suffers
technically [...] from the fact that they regard a relation essentially as a class
of couples, thus requiring elaborate formulae of summation for dealing with
single relations. This view is derived, I think, probably unconsciously, from a
philosophical error: it has always been customary to suppose relational propo-
sitions less ultimate than class-propositions (or subject-predicate propositions,
with which class-propositions are habitually confounded), and this has led to a
desire to treat relations as a kind of class.3%

To be sure, Russell recognized that for the purposes of Mathematics (and its logicist
development) which only deals with extensions, nothing is required beyond the extensionality

of classes in order to handle a calculus of relations. Russell writes:

We may replace a relation R by the logical sum or product of the class of relati-
ons equivalent to R, i.e. by the assertion of some or of all such relations; and this
is identical with the logical sum or product of the class of relations equivalent
to R’, if R’ be equivalent to R. Here we use the identity of two classes, which
results from the primitive proposition as to identity of classes, to establish the
identity of two relations.3

As we saw in the discussion of Russell’s 1901 article, Sur la Logique des Relations,
among the most important definitions of the calculus of relations are those of the domain of
a relation, “the class of terms which have the relation R to some term or other”, named in the
Principles as the referents with respect to R and the converse-domain, “the class of terms to
which some term has the relation R3%7, referred to as the relata with respect to R. Despite the
fact that Russell repudiates the notion of an ordered couple as an entity, these two notions allow
him to speak of the extension of a relation. This, however applies only to the development of
Mathematics, for which only extensions matter. Russell assumes as more fundamental the in-
tensional character of relations and so co-extensiveness - in the sense specified - does not entail
identity:

The intensional view of relations here advocated leads to the result that two
relations may have the same extension without being identical. Two relations
R, R’ are said to be equal or equivalent, or to have the same extension, when
xRy implies and is implied by xR’y for all values of x and y.3°

Thoralf Skolem (cf. SKOLEM., T., 1920). For a historical study of this often neglected chapter of the history of
Logic which is the development of the ‘calculus of relatives’, cf. BRADY, G., 2000.

35 RUSSELL, B., 1903, p.24 §27.

36 RUSSELL, B., 1903, p.24-25 §28.

397 RUSSELL, B., 1903, p.24 §28.

38 RUSSELL, B., 1903, p.24-5 §28.
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From the point of view of philosophical analysis - that is, of determining what, after all,

a relation is, Russell explicitly denies that one may define relations as classes of couples.

The fundamental issue Russell had with the Peirce-Schroder approach was the appeal to
the notion of ordered couple in the characterization of relations: in a nutshell, Russell thought
that there could be no such thing conceived as an entity?*. As we had occasion to briefly con-
sider, relations, for Russell, must be taken, as he put it, as ultimate, non-analysable entities.
Russell’s point is quite simple, and again, it takes us back to the rejection of the logical doctrine
that every proposition could be analyzed as having the subject-predicate form or as asserting
membership to a class: Russell thought that if a relation R is identified as a class of couples,
the notion of couple should be either treated as a primitive idea or as a class - thus the sense
or ‘direction’ of R remains either unexplained or entirely lost. As Russell put it “it is necessary
to give sense to the couple, to distinguish the referent from the relatum: thus a couple beco-
mes essentially distinct from a class of two terms, and must itself be introduced as a primitive
idea™". Again, the point is established by considering propositions containing asymmetrical
relations which cannot be analyzed in terms of subject-predicate form. Thus, Russell claims
that the more correct procedure is “to take an intensional view of relations, and to identify them
rather with class-concepts than with classes’", so that whenever R is a relation, xRy “express

[...] the propositional function “x has the relation R to y*”?3".

2.2.5 Rules of Inference and the ‘Universality of Logic’

Before closing our discussion of the logic of the Principles we must consider how Rus-

sell’s handles rules of inference in the work.

The issue appears when Russell introduces the fourth axiom of his calculus of propo-
sitions, which is, in fact, the rule of modus ponens. Russell claims that it “[...] is a principle
incapable of formal symbolic statement” and that illustrates “the essential limitations of forma-
lism™33. This is a point which marks an important and fruitful break with Peano, since here

Russell is acknowledging - somewhat carelessly - two fundamental points:

1. The distinction between axioms and rules of inference;

3% He also thought his treatment was more convenient and more powerful as a purely mathematical oo/, that is,
independently of philosophical considerations (RUSSELL, B., 1903, p.24 §27).

319 RUSSELL, B., 1903, p.99 §98. Of course, around this time the Wiener-Kuratowski definition had not yet been
discovered. We’ll discuss it in connection with Principia’s theory of relations later on.

3 RUSSELL, B., 1903, p.99 §98.

32 RUSSELL, B., 1903, p.24 §27. This requires him to assume a primitive a proposition “to the effect that xRy is
a proposition for all values of x and y”. (RUSSELL, B., 1903, p.24 §27).

313 RUSSELL, B., 1903, p.16 §18.
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2. The indispensability of rules formulated as such - and not merely as another axiom of for-
mal law - for an adequate formulation of a formal system (and the possibility of providing

rules in general).

Now, since much has been made of the alleged ‘Universality’ of Russell’s Logic in the Principles,

the second point is worth close attention.

The status of so called ‘Axiom’ 4 is further explained in the discussion of Lewis Carroll’s
‘paradox’ as presented in What the Tortoise said to Achilles’4. Russell’s resolution of Carroll’s

puzzle is to distinguish the meaning of the two locutions “p implies q” and “p therefore g’

The principles of inference which we accepted lead to the proposition that, if
p and g be propositions, then p together with “p implies ¢ implies g. At first
sight, it might be thought that this would enable us to assert ¢ provided p is
true and implies g. But the puzzle in question shows that this is not the case,
and that, until we have some new principle, we shall only be led into an endless
regress of more and more complicated implications, without ever arriving at the
assertion of ¢g. We need, in fact, the notion of therefore, which is quite different
from the notion of implies, and holds between different entities.3"

We can understand Russell’s distinction here as one between implication and entailment,
the difference being that each of these relations hold between different sorts of entities. The
different entities in question are what Russell calls asserted and not-asserted propositions, where

the word “assertion” is taken in an (unexplained) “non-psychological sense”3'S.

Roughly, Russell’s point is the following. Take the following two assertions, where brac-
kets are inserted to distinguish different propositions which occur as constituents (i.e., terms

related by the relation of implication)3'7:

(Implies) {p implies ¢} and {p} implies q.

(Entails)  {p implies ¢} and {p} entails q.

Russell is claiming that the second has subordinate assertions while the first does not, and that

this is what differentiates the assertion of an implication from an inference. The point is that to

34 CARROLL., L., 1899. Recall that the problem was the following: Not-so-bright Achilles was attempting to
deduce B as a conclusion from A implies B and A; a witty tortoise with socratic mannerisms convinces him
that in order to obtain B from A implies B and A, he should add a premise to the effect that if 4 implies B and
A is true, one can deduce B, leading poor Achilles into an infinite regress.

35 RUSSELL, B., 1903, p.35 §38.

316 RUSSELL, B., 1903, p.35 §38.

37 QObserve that there is no use-mention confusion here. Since propositions are not expressions, the use of quota-
tion marks or even Quine’s corner quotation marks would give us what we need, which is a mere notational
indicator of individuating differently used (not mentioned) proposition-names or variables. We follow the no-
tation adopted by Landini, who was particularly worried with expressions of the form “{p D ¢} = ¢”, where
dots can become very inconvenient (LANDINI, G., 1998, p.44, in particular footnote 2).
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assert (Implies) is to assert that if {p implies ¢} and {p} are true, then q is true; while to assert
(Entails) one must assert {p implies q} is true and {p} is true, therefore q is true. The difference,

Russell as explains, is that:

When we say therefore, we state a relation which can only hold between asser-
ted propositions, and which thus differs from implication. Wherever therefore
occurs, the hypothesis may be dropped, and the conclusion asserted by itself.
This seems to be the first step in answering Lewis Carroll’s puzzle 3™

Landini claims that the above is “Russell’s way of saying that an inference rule is meta-
linguistic and not itself an axiom among others. Although there are certainly are hints of
such a view in Russell’s discussion, it may be considered implausible and anachronistic to fully
project this distinction in this clear-cut way into the logic of the Principles. This, however is
not to say, as several authors have, following an interpretative tradition started by Jean van

Heijenoort3*°, that the distinction is antithetical to Russell’s Logic.

In an excellent paper3*', lan Proops scrutinized how the general and somewhat vague
claim that “Russell’s logic is universal” is often brought up in secondary literature as some sort
of bundle of claims such as that Russell’s logic is a “universally applicable theory’3**; or that
Russell’s Logic is a “universal language™3?3; or Russell’s Logic consists of “maximally general
truths3*4; or yet that Russell’s Logic is “all-encompassing’3*>. More importantly, he sistemati-
cally showed how these claims are not always clearly distinguished and are sometimes entangled
with others such as that “the range of the quantified variables in the laws of logic is not subject
to change or restriction”3?® or that “Logic is not a system of signs that can be disinterpreted and
for which alternative interpretations may be investigated*”. The point is very relevant, since
from these vague characterizations, of course, many specific conclusions are drawn like the fact
that “the question of the completeness of a system simply could not arise for him”3?® or still that
“there is no room for what we would call metatheoretic considerations about logic’3*°. His syste-
matic critical discussion of the so-called ‘Universalist interpretation’ presents definitive textual

evidence, however, to the effect that many of these views cannot be attributed to Russell without

38 RUSSELL, B., 1903, p.35 §38.
39 LANDINI, G., 1998, p.45.

320 yvan HEIJENOORT, J., 19675.
32t PROOPS, 1., 2007.

322 URQUHART, A., 1988, p.83.
323 HYLTON, P., 1990, p.200.

34 RICKETTS, T., 1996, p.59.
35 GOLDFARB, W., 1989, p.27.
32 GOLDFARB. W., 1989, p.27
327 GOLDFARB. W.,, 1989, p.27
328 HYLTON, P, 1990, p.202.

329 GOLDFARB, W., 1989, p.27.
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some serious qualifications or simply cannot be attributed to him at all3*°. The general lesson lan
Proops gives is that this reading attributes “a general blindness on Russell’s part to the distinc-
tion between logic itself and one of the logical systems designed to capture it”3'; a distinction

which Russell was well aware that could be made, as Landini and Ian Proops showed.

Taking into consideration the particular case of Russell’s ‘axiom’ 4, the inference rule of
Modus Ponens, how does such ‘universalist’ reading fits with Russell’s discussion? Goldfarb’s
central claims are that Russell’s Logic consists of “all-encompassing principles of correct reaso-
ning” and that “anything that can be communicated must lie within it”33*. How does this fit with
Russell’s claim that the notion of entailment, generally marked by a “therefore” locution “is a
principle incapable of formal symbolic statement™333? When Russell asserts this, he seems to be,
if not plainly denying Goldfarb’s idea that for Russell Logic “is the framework inside of which
all rational discourse proceeds™34, at least saying that such a claim must be somewhat weakened.
Perhaps a “universalist’ could claim in response that the laws of Logic are not exhausted by what
can be expressed by the formalism of Logic; but that goes against some of the claims they accept
- for instance, that “Logic, for Russell, was a universal language, a Lingua characteristica that

1s “universal and all-inclusive’’335

Is that to say that there is a strict distinction between theory and meta-theory involved
in Russell’s discussion of modus ponens and Carroll’s puzzle? No. But it makes it plausible that
some embryonic form of the distinction was there mixed with some confused ideas of Russell,

despite the claims of van Heijenoort’s followers. This indicates that Russell accepted:

1. No formal symbolic expression of a given formal system can capture what is characteristic
of inference within that formal system, i.e., that which is described by Russell in terms of

therefore, or what we called entailment; and

2. That there are are propositions which can capture a rule of inference.

In fact, since Russell was obviously aware of the possibility of formulating different formal
systems with different primitive notions axioms and rules, it is absolutely plausible to suppose
that Russell thought that “the limitations of formalism™ are, in a sense relative to a given specific
formalism. Unless we are prone to admit an incoherence on Russell’s part or, worse yet, to project

some Tractarian doctrine that somethings can only be shown but not said into the Principles, it

3° The first systematic critique of the claim that Russell’s conception of Logic precludes the possibility of a meta-
theoretical considerations was presented by Landini in his book on Russell’s Substitutional Theory (LANDINI,
G., 1998, pp.30-41), and, in fact, many of his points are reiterated by Proops, albeit in more detail.

3 PROOPS, 1., 2007, p.19.

3> GOLDFARB, W., 1989, p.27.

33 RUSSELL, B., 1903, p.16 §18.

34 GOLDFARB., W., 1989, p.27.

35 HYLTON, P., 1990, p.200.
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seems that such general claims like those made by Hylton and Goldfarb should be mitigated in

the face of such difficulties33.

2.2.6  Summary of the Formal System Underlying the Principles of Mathema-
tics

In the Principles Russell assumes ten axioms for his calculus of propositions, as fol-
lows®7: (1) If p implies ¢, then p implies ¢; in other words, whatever p and ¢ may be, “p im-
plies g” is a proposition; (2) If p implies g, then p implies p; in other words, whatever implies
anything is a proposition; (3) If p implies g, then g implies ¢; in other words, whatever is implied
by anything is a proposition; (4) A true hypothesis in an implication may be dropped, and the
consequent asserted; (5) If p implies p and ¢ implies g, then pq implies p; (6) If p implies g and
q implies r, then p implies r; (7) If g implies ¢ and r implies 7, and if p implies that g implies 7,
then pq implies 7; (8) If p implies p and ¢ implies g, then, if pg implies 7, then p implies that g
implies 7; (9) If p implies g and p implies 7, then p implies gr; (10) If p implies p and g implies

336 1t is worth noting that Russell’s views on inference in the Principles (and elsewhere) are tied to his views on
assertion, which are somewhat problematic. There is, in particular, a lack of clarity concerning the notion of
assertion in the “non-psychological” - and unexplained - sense in which Russell employs the notion in the Prin-
ciples. Russell claims that: “It is plain that, if | may be allowed to use the word assertion, in a non-psychological
sense, the proposition ‘p implies ¢’ asserts an implication, though it does not assert p or ¢g. The p and the ¢ which
enter into this proposition are not strictly the same as the p or the ¢ which are separate propositions, at least,
if they are true.” (RUSSELL, B., 1903, p.35 §38). Naturally, Russell raises the question of what makes a pro-
position “differ by being actually true from what it would be as an entity if it were not true?” (RUSSELL, B.,
1903, p-35 §38 our emphasis) but he simply admits he does not have an answer. He explains that “[...] there are
grave difficulties in forming a consistent theory on this point, for if assertion in any way changed a proposition,
no proposition which can possibly in any context be unasserted could be true, since when asserted it would
become a different proposition. But this is plainly false; for in “p implies ¢, p and ¢ are not asserted, and yet
they may be true” (RUSSELL, B., 1903, p.35 §38). Yet, as we saw, the distinction is essential to his resolution
of Lewis Carroll’s paradox. The problem Russell is struggling with here is one Frege had already dealt with -
as Russell himself admits (RUSSELL, B., 1903, p.502 §477) - in a much more subtle way, namely that of ex-
plaining how the word “true” can be seemingly “devoid of content” yet it “cannot be dispensed with” (FREGE,
G., 1915, p.252). Frege’s irreproachable solution is to “distinguish the judgment from the thought” so that the
judgment is just “the acknowledgment of the truth of a thought” (FREGE, G., 1893, p.9). Frege, of course, intro-
duces a special symbol for this acknowledgment of the truth of a thought, his judgment-stroke “|”, which, when
combined with his horizontal bar, yields the now familiar “+”, that, when attached to a sentence, expresses the
acknowledgment that the thought expressed by it is true. As is well known, Russell later adopts this symbol.
Russell took issue with Frege’s view. According to to him: “[...] a difficulty arises owing to the apparent fact,
which may however be doubted, that an asserted proposition can never be part of another proposition: thus, if
this be a fact, where any statement is made about p asserted, it is not really about p asserted, but only about the
assertion of p. This difficulty becomes serious in the case of Frege’s one and only principle of inference (Bs.
p. 9): “p is true and p implies g; therefore g is true”. Here it is quite essential that there should be three actual
assertions, otherwise the assertion of propositions deduced from asserted premisses would be impossible; yet
the three assertions together form one proposition, whose unity is shown by the word therefore, without which
q would not have been deduced, but would have been asserted as a fresh premiss.” (RUSSELL, B., 1903, p.504
§478) Perhaps the root of all evil here is this: Russell is convinced that, despite the fact “that assertion does not
seem to be a constituent of an asserted proposition”, the assertoric force must be “in some sense, contained in
an asserted proposition” (RUSSELL, B., 1903, p.504 §478) and this is why Russell is reluctanct to, as he puts it,
“divorce assertion from truth, as Frege does” (RUSSELL, B., 1903, p.504 §478).

337 RUSSELL, B., 1903, p.16 §18.
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g, then ““p implies ¢’ implies p” implies p. In symbols, the can be put as follows33:

(1)
(2)
()
(4)
(5)
(6)
(7)
(8)
)

(10

PDOqDpq-D DY
POq.pg-POP

POG-pqg-q924q

POPwDpgnqdDq:D.pgDp
POq:iDpgriqOr.2D.pOTr

DPOG:DpgriP OTr.2D.pOQr

GO quDpgrur DraudupdiqOr.2.pgOr
POPEDpgrigDqadupgdriDip.D.qDT

) POPiDpgiqDqiDupDq.-Dp:Dp

Given Russell’s doctrine of the unrestricted variable, some interpretative issues arise in connec-

tion with respect to Russell’s definitions of the logical connectives®?, but we may charitably

read his definitions as follows:

PG=T2D7T % DpruD.D.q O, T:D:T

pVqg.=:pIDq.D.q

NPT DT D pOT

338
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This formulation is borrowed from LANDINI, G., 1998, p.44, except for the use of letters p, g, r, etc., to empha-
size that these are not special propositional variables that is, that they are unrestricted variables ranging over all
terms. Also Landini observes (LANDINI, G., 1998, p.44, footnote 2) modern reconstructions of the Russellian
propositional Logic of the Principles like those of Church (CHURCH, A., 1984) and Anderson (ANDERSON,
A., 1986 and 1989) generally introduce special propositional variables, something that not only goes against the
most distinctive feature of the Principles Logic, its unrestricted variables, but also demands the introduction
of a special notation for propositional identity. Landini has also recently shows that this system requires some
modifications in order to solve what he calls the “conjunction problem” (cf. LANDINI, G., 2020).

Cf. BYRD, M., 1989.
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None of the interpretative issues with the connectives is very serious3°, except one concerning

negation3#'. Be that as it may, what is of real importance is that the above axioms and definitions

must be read in accordance with Russell’s doctrine of propositions: every propositional variable

and expression is a term, or as Landini puts it, it is a “[...] grammatical rule that for any wft 4,

34% For instance, Russell defined conjunction (logical product) as follows: “If p implies p, then, if ¢ implies g, pq

34

(the logical product of p and ¢) means that if p implies that ¢ implies 7, then r is true. In other words, if p and
q are propositions, then their joint assertion is equivalent to saying that every proposition is true which is such
that the first implies that the second implies it.” (RUSSELL, B., 1903, p.16 §18). The problem is that his seems
to define conjunction only for propositions - having the look of a conditional definition in the sense of Peano.
Symbolically, Russell’s original definition seems to be the following:

POP.D.qDq:Dupqi=:p.D.qD, D1

But as Michael Byrd observed, this is at odds with Russell’s Simplification Axiom - that which asserts “If
p implies p and g implies ¢, then pq implies p” - for since p and g can be any terms, then “the component
“pq” must have an interpretation when p and ¢ are not propositions” (BYRD, M., 1989, p.351). Despite the
apparent nonsensicality of it, a definition of conjunction should not exclude a conjunction of two terms that
are not propositions like Russell and Whitehead: if one can speak (albeit always falsely) of Russell implying
Whitehead, why should the conjunction be considered nonsensical? The above also faces the following problem:
even if both p and ¢ are true propositions, pqg would be false if 7 is not a proposition, for in thatcase p O ¢. D .r
would be false! Byrd fixes the slip by adopting the same definition we are attributing to Russell above, since,
as Byrd claims, it the simplest solution, since it allows for the conjunction of non-propositional terms and
keeps pg vacuously true for non-propositional ’s. Landini observes that Russell’s Simplification Axiom avoids
the inconvenient question of whether one could derive p or g from pq in case either one of these is a non-
propositional term, since in order for pg to imply p or for pgq to imply g, p or ¢ must be propositions in each case
(LANDINI, G., 1998, p.49.). A similar issue arises with disjunction. Russell has: “[...] “p or q” is equivalent
to “‘p implies ¢’ implies ¢”. It is easy to persuade ourselves of this equivalence, by remembering that a false
proposition implies every other; for if p is false, p does imply ¢, and therefore, if “p implies ¢” implies g, it
follows that q is true.” (RUSSELL, B., 1903, p.17 §18). Byrd reads this (charitably) as:

pVq.=:1pDq.D.q

Which gives us a non-conditional definition where p and ¢ can be any terms. As Landini points out, however,
Russell’s subsequent remark suggests again a restriction to propositions and, again, we can take this as a slip.
We have, however, to live with an asymmetry pointed out by Byrd: if g is not a proposition then p V ¢ is false;
but if ¢ is a proposition and p is not, then p V ¢ may be a true proposition (BYRD, M., 1989, p.351).

Russell defines negation as follows: “[...] not-p is equivalent to the assertion that p implies all propositions, i.e.
that “r implies 7”” implies “p implies »” whatever » may be. (RUSSELL, B., 1903, p.18 §18)”. Once again, Landini
thinks that Russell intends a conditional definition since he comments on a footnote that “[...] the principle that
false propositions imply all propositions solves Lewis Carroll’s logical paradox”(RUSSELL, B., 1903, p.18).
Byrd, on the other hand, puts this as:

~ND=IT DT DpapOT

The serious point of dispute, however, is not about this which we may take as a minor slip on Russell’s part.
As Byrd observes, Russell’s definition of negation “depends on assumptions about existence” that require the
use of negation as a primitive notion to be stated: the definition presupposes that there are false propositions,
something which can only be expressed by asserting that there is a proposition p such that p is false, which
is the same as to say that p is not true or that p is not the case (BYRD, M., 1989, p.355). Landini claims that
if we accept that it is a rule of the grammar of logic that nominalized formulas are singular terms, then the
existence of propositions - false or not - would be “a logical assumption” (LANDINI, G., 1998, p.53, footnote
7). There are reasons to question Landini on this point, however. In The Theory of Implication, where Russell
offers systematic symbolic treatment of propositional logic and quantification theory, he drops the definition of
negation of the Principles and adopts it as primitive, but he also considers the definition of the Principles in the
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"{A}7is a singular term”34*.

As noted above, Russell did not have a clear account of the notion of class and so is
hesitant with respect to the assumption of primitive propositions, in particular a principle of
comprehension. Building up on the numbering of the axioms for propositional logic, Russell
further introduced: (11) If x belongs to the class of terms satisfying a propositional function ¢z,
then ¢x is true3®; and (12) If ¢x and Yz are equivalent propositions for all values of x, then the
class of x’s such that ¢x is true is identical with the class of x’s such that vz is true3*4. Which

we may put in symbols as follows:

(11) Or Dy T EZPz

(12) Or =, Yr iDL 20z = 2z

Both of these fail in characterizing an adequate concept of class, however, because at no point
Russell provides an adequate or precise account of what sort of conditions ¢ are admissible or

not.

The Calculus of relations further assumes the following propositions3#: (13) if R is a
relation, then xRy is a proposition for all values of x and y; (14) Every relation has a converse,
1.e. that, if R be any relation, there is a relation R’ such that xRy is equivalent to yR’x for all
values of x and y; (15) Between any two terms there is a relation not holding between any two
other terms; (16) The negation of a relation is a relation; (17) The logical product of a class of
relations (i.e. the assertion of all of them simultaneously) is a relation; (18) The relative product
of two relations must be a relation34°; (19) Material implication is a relation; (20) The relation of

a term to a class to which it belongs is a relation. Differently from the calculus of propositions

article. The reason why he drops the older definition, however, is “the fact that it never enables us to know that
anything whatever is false” (RUSSELL, B., 19064, pp.60). Similarly, in a letter to Couturat 23 July 1905, Russell
explains that “the reason that he abandoned ‘p.=:p. D . (r) . r’” was that he realized “one needs the idea of
falsehood, and as soon as one defines the negation of a proposition, one can well say that the negation of p is
true, but not that p is false” (MOORE, G., 2014, p.19). This seems precisely the point raised by Byrd. Landini
is clearly right about the logical status of the assumption of propositions (regarding both the Principles and the
Theory of Implication). But the above passages shows that despite the fact that the existence of propositions
(true or false) is a matter of Logic, the matter which seems to concern Russell here is iow one can construct a
logical vocabulary in which this (granted, logical) assumption can be stated. Perhaps we may say the following:
Russell did understand the existence of false propositions as a logical matter but still struggled over what is the
correct method of expressing that a proposition is false and to prove that there are false propositions. Russell
seems to have thought later on that the Principles’s system is inadequate regarding this latter task. This seems
in agreement with both Byrd’s point and Landini’s view, since the latter emphasizes in several occasions that
Russell did distinguish Logic as a science and the formal system that is supposed to capture it (LANDINI, G.,
1996, p.556; LANDINI, G., 1998, p.34).

342 LANDINI, G., 1998, p.53, footnote 7.

343 RUSSELL, B., 1903, p.20 §24.

344 RUSSELL, B., 1903, p.20 §24.

345 RUSSELL, B., 1903, p.25 §28.

346 Where the relative product of two relations R, S is the relation which holds between x and z whenever there is
a term y to which x has the relation R and which has to z the relation S

119



and that of classes for which, by the time of the Principles, Russell did not yet have a symbolic
treatment of his own to offer, his calculus of relations had already been presented in some detail
in his 1901 article, which was incorporated practically unaltered in the Principles. In the article
we find the following axioms 11, %1 -7, %1-18, %215, %1-194-195, %2 -1 - 11 and %3-1 which

correspond, respectively, to347:

(13) ReRelD : xRy .=. xhastherelation Rtoy

(14) ReRel.D.gReln R' 5 (zR'y .=.yRx)

(15) ARAR> (p=1x.p=1y)

(16) ~ ReRel

(17) KeCls'Rel.D.v‘K=tR>{zRy=9K ~R > (zR'y)}: D.v ‘K eRel
(18) R,SeRel.D:xRSz.=.qy > (xRy .yRz)D . xRSz eRel

(20) € €Rel

The only remaining axiom can be then put as:

(19) D €Rel

2.3 The Logicism of the Principles of Mathematics

2.3.1 Russell’s Definition of Pure Mathematics

In the very opening Principles, Russell puts forward the following famous - and, admit-

tedly, “somewhat unusual” - definition of Pure Mathematics:

Pure Mathematics is the class of all propositions of the form “p implies g7,
where p and g are propositions containing one or more variables, the same in
the two propositions, and neither p nor ¢ contains any constants except logical
constants. And logical constants are all notions definable in terms of the fol-
lowing: implication, the relation of a term to a class of which it is a member,
the notion of such that, the notion of relation and such further notions as may
be involved in the general notion of propositions of the above form.34®

347 RUSSELL, B., 1901¢, p.316-8.
8 RUSSELL, B., 1903, p.1 §1.
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What is most important in the above passage, of course, is the statement of Russell’s
logicist thesis: that the propositions of Pure Mathematics are propositions of Logic, with logical

propositions characterized as those which have as constituents only logical constants.

As is well known, Russell would later repudiate this definition in the preface to the
Principles’s second edition on the grounds that there seem to be propositions that satisfy it and
“[...] yet may be incapable of logical or mathematical proof or disproof’34°. His examples include
his Multiplicative Axiom, which is perhaps the most famous equivalent of Zermelo’s Axiom of
Choice and the so-called Axiom of Infinity of Principia Mathematica. As Russell explains, his
later position is that “[...] the absence of non-logical constants, though a necessary condition for

the mathematical character of a proposition, is not a sufficient condition’35°.

Russell also later repudiated the emphasis on conditional propositions in the Principles’s
definition of Pure Mathematics, i.e., the idea that every proposition of Pure Mathematics could
be analyzed as an implication. As Russell himself observes, he was “[...] originally led to empha-
size this form by the consideration of Geometry”3'. The point in question was precisely the
problem which led Russell to write the Essay on The Foundations of Geometry, namely how to
account for the existence of both Euclidean and non-Euclidean geometries as branches of pure
Mathematics. After he abandoned his project of elaborating a ‘complete dialectic’ of the sci-
ences as conceived in the Essay, Russell accepted as completely unproblematic the possibility
of formulating different and incompatible geometries based on different conceptions of space:
to put it simply, after Russell abandoned the Kantian conception of Geometry as grounded on
some form of pure intuition of space, the question of which sort of Geometry is the ‘correct’ one
acquired the status of an empirical problem. In his entry for non-Euclidean Geometry for the

Encyclopedia Britannica, Russell explained the point very clearly:

[...] there are a number of possible Geometries, each of which may be deve-
loped deductively with no appeal to actual facts. But no one of them, per se,
throws any light on the nature of our space. Thus geometrical reasoning is assi-
milated to the reasoning of pure mathematics, while the investigation of actual
space, on the contrary, is found to resemble all other empirical investigations
as to what exists. There is thus a complete divorce between Geometry and the
study of actual space. Geometry does not give us certain knowledge as to what
exists. That peculiar position which Geometry formerly appeared to occupy,
as an a priori science giving knowledge of something actual, now appears to
have been erroneous. It points out a whole series of possibilities, each of which
contains a whole system of connected propositions; but it throws no more light
upon the nature of our space than arithmetic throws upon the population of
Great Britain.35?

349 RUSSELL, B., 1937, p.viii.

350 RUSSELL, B., 1903, p.vii. Explaining in some detail how this change came about will be the task of the next
two chapters, where we’ll adress in some detail Russell’s discovery of the Contradiction, the Theory of Definite
Descriptions and the several versions of the Theory of Types which he developed over a whole decade.

35t RUSSELL, B., 1937, p.vii.

352 RUSSELL, B., 1902, p.503.
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Geometry - be it Euclidean or not - is a branch of Pure Mathematics inasmuch as it
consists in implications between an axiom or set of axioms which describe some consistent con-
ception of space and some of its logical consequences. The inquiry concerning which consistent
conception of space is the correct one, or, equivalently, the problem of determining which set
of geometrical axioms is the one that describes the properties of actual space does not belong
to pure Mathematics, but to applied Mathematics. This point, Russell later claimed, made him
“[...] lay undue stress on implication, which is only one among truth-functions, and no more

important than the others’353.

Another issue with the opening definition of the Principles which Russell himself calls
attention to at some points is that it is inadequate to say that he takes the propositions of Geometry
(and pure Mathematics in general) to assert implications between two propositions p and g. Since
he claims that a distinctive characteristic of logical (and mathematical) propositions is that they
contain variables, what Russell intends is to define propositions of pure Mathematics as formal
implications. So the assertion that “Pure Mathematics is the class of all propositions of the form
“p implies ¢, where p and ¢ are propositions”354 should be read as something along the following

lines:

(Lponr) “Pure Mathematics is the class of all propositions 7 of the form “p implies ¢”, where
p and g are propositional functions containing any number of variables z, ..., z and

2

r asserts that p implies ¢ is true for all the values of x, ..., 2”.

Russell corrects this in the preface to the second edition of the Principles, observing that “[...]
when it is said that ‘p and q are propositions containing one or more variables’, it would, of

course, be more correct to say that they are propositional functions’3%.

Indeed, this conception of logical propositions was already present in the 1901 popular
article on the Foundations of Mathematics which Rodriguez-Consuegra rightly called Russell’s

logicist manifesto. We find it in the following famous passage:

Pure mathematics consists entirely of assertions to the effect that, if such and
such a proposition is true of anything, then such and such another proposition
is true of that thing. It is essential not to discuss whether the first proposition
is really true, and not to mention what the anything is, of which it is supposed
to be true. Both these points would belong to applied mathematics. We start,
in pure mathematics, from certain rules of inference, by which we can infer
that if one proposition is true, then so is some other proposition. These rules of
inference constitute the major part of the principles of formal logic. We then

353 RUSSELL, B., 1937, p.vii.

354 RUSSELL, B., 1903, p.1 §1.

355 RUSSELL, B., 1937, p.vii. He rightfully observes, however, that the slip should “may be excused on the ground
that propositional functions had not yet been defined, and were not yet familiar to logicians or mathematicians”.
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take any hypothesis that seems amusing, and deduce its consequences. If our
hypothesis is about anything, and not about some one or more particular things,
then our deductions constitute mathematics. Thus mathematics may be defined
as the subject in which we never know what we are talking about, nor whether
what we are saying is true.3%

And, in fact, Russell also fully articulated it in the Principles:

We assert always in mathematics that if a certain assertion p is true of any entity
x, or of any set of entities x, y, z, . . ., then some other assertion ¢ is true of those
entities; but we do not assert either p or ¢ separately of our entities. We assert a
relation between the assertions p and ¢, which I shall call formal implication.357

The typical proposition of mathematics is of the form “ ¢(z, vy, z, ...) implies
Y(x,y, 2, ...), whatever values z, y, z, ... may have”; where ¢(z, vy, 2, ...) and
Y(x,y, z,...), for every set of values of z,y, z, ..., are propositions. It is not
asserted that ¢ is always true, nor yet that v is always true, but merely that, in
all cases, when ¢ is false as much as when ¢ is true, ¢ follows from it.35®

These passages are also relevant in connection with the frequently made claim that for
Russell, Logic is the body of “[...] maximally general truths’35°. To be sure, some version of this
view must be attributed to Russell, since he claims, for instance that “[...] so long as any term
in our proposition can be turned into a variable, our proposition can be generalized [...] and so
long as this is possible, it is the business of mathematics to do it”3%. But as Ian Proops urges,
Russell should not be read as defending that “[...] logic counts as a body of maximally general

truths because its propositions are in some sense maximally generalized %',

Rather, the point should be understood in the light of the idea that there can’t be any
constants beyond logical ones in the propositions of Logic. This is clearly illustrated by one of
Russell’s favorite examples which also appears in his posterior discussions about the nature of

logical truths and logical constants3®?, Take the following:

(Syl) If every man is mortal and Socrates is a man, then Socrates is mortal.

As Russell understood the idea of “[...] turning its terms into variables”, in this particular case

what we would get is the following3%3:

3% RUSSELL, B., 1901, p.366.

357 RUSSELL, B., 1903, p.5 §5.

338 RUSSELL, B., 1903, p.6 §6.

39 RICKETTS, T., 1996, p.59. This is also emphasized in GOLDFARB, W., 1989; HYLTON, P., 1990 and many
other works.

3% RUSSELL, B., 1903, p.7 §8.

3 PROOPS, 1., 2009, p.10.

32 As in the Theory of Knowledge Manuscript, for instance RUSSELL, B., 1913 [1984]. These views will be dis-
cussed in connection with the views Russell held around the time of Principia Mathematica.

33 RUSSELL, B., 1903, p.7 §8.
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(Syl*) For all x, y and z, if x and y are classes such that z belongs to y whenever it belongs

to x and z belongs to x, then z belongs to y.

Russell thought that this process of generalization gave the “[...] formal essence of a proposi-
tion3%, The variables here are completely unrestricted and, most importantly, no mention is
made concerning any particular class or object: only variables and logical constants occur in it;
this 1s what Russell thought was characterstic of logical truths. As Proops put it, “[...] in urging
that it is the business of mathematics to generalize propositions, Russell is urging only that the
propositions of pure mathematics should be free of non-logical constants”3®S. Landini had alre-
ady made a very similar point, commenting that Russell’s intention is to characterize the laws
of Pure Mathematics as “[...] true universal generalizations all of whose constants are logical

constants”3%°,

Unfortunately, Russell’s definition of Pure Mathematics has also been widely read as a
defense of the so called ‘If-thenist’ position in the Philosophy of Mathematics3%7. The traditional
formulation of this view characterizes a proposition of pure mathematics as asserting that “[...]
if anything is a model for a certain system of axioms, then it has certain properties”3%®. The pro-
blem, of course, is that according to this view, to establish any branch of knowledge as a logical
theory all one needs is to specify a vocabulary and set of logical axioms - one can be a Logicist
about Chemistry, Sociology or what have you. One can only say that Russell defended this view,
however, if one ignores his explicit claim that the logical vocabulary of Pure Mathematics must
be a purely logical vocabulary. For Russell, however, a proposition of Logic can only have as
constituents logical constants: as we shall discuss below, that is the essence of his definition of

Pure Mathematics and of the Logicist thesis of the Principles.

Russell intended his characterization to encompass all propositions of pure Mathematics
including elementary Arithmetic. But as Ian Proops3% aptly observes, Russell also thought that
the propositions of Arithmetic have a different status than those of Geometry: as we saw, he
thought that a particular set of axioms for geometry cannot be adopted, much less proved on
a logical basis, while he firmly believed his logical theory provided a logical foundation for a
proof of the Peano axioms. In fact, as we shall discuss below, what characterizes one of the
central traits of logicism of the Principles is the idea that the ultimate analysis of a proposition
of elementary Arithmetic is not something like “Peano Postulates imply p” much less “If so and
so is the case, then the Peano postulates are true”, for Russell thought that all of Peano’s axioms

could be proved by purely logical methods.

3%4 RUSSELL, B., 1903, p.7 §8.

35 PROOPS, 1., 2009, p.12.

366 LANDINLG., 1998, p.16.

37 See, for instance, COFFA, A., 1981.
38 PUTNAM, H., 1975, p.32.

3% PROOPS, 1., 2006, p.270.
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Before discussing this central point, however, we must discuss whether a substantial

distinction can be traced between Logic and Pure Mathematics as sciences in the Principles.

2.3.2 The Relation Between Logic and Mathematics in the Principles

Grattan-Guinness observes that there seems to be two distinct formulations of the Logi-
cist thesis in Russell’s writings and that Russell himself confused them at some points. On the
one hand, the thesis can be understood as an inclusion thesis, which asserts that Pure Mathema-
tics is part of Logic, that is, that every proposition of Pure Mathematics is a proposition of Logic.
In other words, this version of Logicism is the view that all propositions of pure Mathematics
are propositions of Logic, with the inverse not holding. On the other hand, Logicism can also be
understood as an identity thesis which asserts that Pure Mathematics is Logic, that is, that Logic
and Pure Mathematics are just the same thing. Grattan-Guinness claims that in the opening of
the Principles “Russell clearly stated logicism [...] as an inclusion thesis” and holds that the

second stronger claim is untenable37°.

In the second edition of the Principles, however, Russell stated that “[...] the thesis of the
following pages, that mathematics and logic are identical, is one which I have never since seen
any reason to modify”37". Grattan-Guinness takes the latter view to be an indefensible position
since “logic can be used in many contexts where mathematics is absent, for instance, in an

inference like ‘I am hungry’, and ‘if [ am hungry, then I will eat’; hence ‘I will eat’’37>.

To be sure, there is a sense in which Grattan-Guinness’s point is indisputable. Russell
would not admit that the conjunction of the aforementioned propositions is a logical truth. For
they involve notions like hunger and whatever is denoted by the indexical “I”’. What is a logical

truth for Russell in the Principles is something like this:

If p is a proposition and g is a proposition, then, if p implies g and p is true, then ¢

1S true.

According to the conception of Logic which Russell holds in the Principles, the above state-
ment stands for a logical truth because it expresses a proposition which is a completely gene-
ral one and which contains only variables and logical constants. Grattan-Guinness’s absolutely
unquestionable point is that a logical principle like the above may be employed in apparently

non-mathematical contexts.

The claim that Logicism must be viewed as an “inclusion” thesis on the face of this,
however, does not stand scrutiny. Russell would surely agree that Logic is applied in non-

37 GRATTAN-GUINNESS, 1., 2000b, p.317.
37" RUSSELL, B., 1903, p.xxxii.
372 GRATTAN-GUINNESS, 1., 2000b, p.317-18.
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mathematical contexts. So are mathematical laws: Arithmetic is surely employed when one
deduces from the fact that two cows and one sheep are in a field that there are three animals
in the field, but again, a statement like “if there two sheep and two cows in a field, then there
are four animals in that field” surely does not express a proposition of Mathematics according
to the definition of the Principles. The relevant point here is this: according to the definition of
Pure Mathematics of the Principles, a principle of deduction like “If p is a proposition and ¢ is
a proposition, then, if p implies ¢ and p, then g ” is just as mathematical a statement as “two
plus two equals four” because according to the Logicism of the Principles both of them express
propositions that contain only variables and logical constants. Thus Russell’s later statement that
Logic and Pure Mathematics are identical can and should be charitably interpreted as the claim
that the principles of deduction should be viewed among the principles of Mathematics. In this
light, whether Logicism should be viewed as an inclusion or identity thesis actually becomes

merely verbal.

This reading fits, for instance, some of the things Russell says in his Introduction to
Mathematical Philosophy where he states that “[...] logic has become more mathematical and
mathematics has become more logical” and that “[...] they differ as boy and man: logic is the
youth of mathematics and mathematics is the manhood of logic373. Russell quite clearly makes

a very similar point in the Principles:

The distinction of mathematics from logic is very arbitrary, but if a distinc-
tion is desired, it may be made as follows. Logic consists of the premisses of
mathematics, together with all other propositions which are concerned exclu-
sively with logical constants and with variables but do not fulfill the above
definition of mathematics (§1). Mathematics consists of all the consequences
of the above premisses which assert formal implications containing variables,
together with such of the premisses themselves as have these marks. Thus some
of the premisses of mathematics, e.g. the principle of the syllogism, “if p im-
plies ¢ and ¢ implies 7, then p implies »”, will belong to mathematics, while
others, such as “implication is a relation”, will belong to logic but not to mathe-
matics. But for the desire to adhere to usage, we might identify mathematics
and logic, and define either as the class of propositions containing only varia-
bles and logical constants; but respect for tradition leads me rather to adhere
to the above distinction, while recognizing that certain propositions belong to
both sciences.374

The point is that for Russell - in the Principles and elsewhere - the attempt to draw a ge-
nuine distinction between pure Mathematics and Logic will fail, both because Mathematics can
be developed using only logical notions and primitive propositions and because Logic itself can
be reasonably understood as a branch of Mathematics. The fact that Logic can also be employed

in reasoning about extra-logical notions and propositions does nothing to impugn this claim.

373 RUSSELL, B, 1919a, p.194.
374 RUSSELL, B., 1903, p.9 §10.
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This discussion, however, leads us to a substantial issue. The claim that the propositi-
ons of Logic are premises of Mathematics has been widely read in association with the claim
that there must be a recursively characterization of set of axioms strong enough to derive every
proposition of Mathematics. Since Gédel showed that we cannot even formulate a (consistent)
axiomatic calculus that entails the consequences of Peano Arithmetic, Russell has been widely
read as defending a claim that is ultimately refutable by a technical result. This understanding of
Logicism, not only of Russell’s version, but also in general, was already present in Carnap’s arti-
cle where the thesis which asserts that Mathematics is part of Logic was dubbed “Logicism”373.
There, of course, the thesis is explicitly tied to the idea that there must be a formal calculus
which is strong enough to prove every proposition of Arithmetic, since Carnap understands the
thesis as the twofold claim that mathematical concepts are definable in terms of logical concepts

and mathematical theorems are provable by means of purely logical methods37°.

Following Landini, however, we can distinguish the two following theses377:

(L) There is a consistent, recursively axiomatizable and semantically complete theory

of logic with all mathematical truths among its theorems.

(L*) Mathematical truths are logical truths.

Although it is out of question that Russell endorsed both of these theses in the Principles (and
- arguably - also in Principia) the question about their independence is quite another matter.
The first is a mathematical conjecture that is demonstrably false; the second can be understood
either as a metaphysical claim about the nature of mathematical entities or about the meaning
of mathematical statements - or both378. In fact, the counterpart of (L*) in the Principles is the

following:

(RL*) All true propositions of Pure Mathematics are fully general and have only logical

constants as constituents.

There remains the question, however, of whether Russell had a clear understanding of the notion
of logical truth that did not rely on the notions of provability or deductive closure under the

axioms of his calculus for Logic.

Landini, for instance, observes that for Russell “[...] the purpose of deduction of mathe-

matical formulas within the formal calculus for logic is to demonstrate that intuitions which

375 CARNAP, 1983 [1931].

376 CARNAP, 1983 [1931], p.31.

377 LANDINI, G., 2011, p.167-8.

37 Cf. for instance, LANDINI, G., 2011 and KLEMENT, K., 2013.
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were thought to be uniquely mathematical are, in fact, logical’37® - and so he claims that Rus-
sell’s committment to (L) “[...] is incidental”3*°. Landini’s point is that for Russell the role played

by rigorous proofs within a logical calculus is to demonstrate the following epistemic thesis:

(LT) The only form of intuition required for understanding and recognizing the truth of

pure Mathematics is /ogical intuition.

This reading is supported, for instance, by the fact that Russell frames his opposition to Kant
not in stating that (pure) Geometry and Arithmetic are analytic but in claiming that Logic is

synthetic:

The question of the nature of mathematical reasoning was obscured in Kant’s
day by several causes. In the first place, Kant never doubted for a moment that
the propositions of logic are analytic, whereas he rightly perceived that those
of mathematics are synthetic. It has since appeared that logic is just as synthetic
as all other kinds of truth;3®'

If Landini is correct - and the passage above about the synthetic character of Logic
strongly corroborates his reading - then, the fact that (L) is false becomes less problematic. For
in crucial cases over which the truth of (LI) can be disputed - as in the case of the principle
of mathematical induction - Russell provides proofs that employ only purely logical methods

where non-logical intuition was thought necessary3®2.

But still the central question remains unanswered: does Russell provide an account of
logical truth independently of deductive closure under his logical axioms? IL.e., does Russell
provide an account of Logical necessity in the Principles? Landini thinks the answer is given by
the idea that logical propositions are fully general in the sense which we previously discussed,
that is: the idea that logical truths are “[...] true universal generalizations all of whose constants

are logical constants™3®3. Landini boldly claims that:

Russell’s notion of logical necessity is similar, in one way, to the Tarski se-
mantic notion of “invariant truth in all interpretations.” But instead of inter-
pretations of linguistic syntactic structure in different domains, Russell has the
notion of propositional structure or “logical form” and the approximation of
the original proposition to a fully general proposition which is true. The full
generality captures the idea of different interpretations in different domains.
Russell’s approach, however, reaches a limit with fully general propositions.

79 LANDINI, G., 1998, p.16.
3% LANDINI, G., 1998, p.I6.
31 RUSSELL, B., 1903, p.457 §434.
3% LANDINI, G., 1998, p.I6.
3 LANDINLG., 1998, p.I6.
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For Russell, full generality and truth has to be sufficient for logical necessity
(logical truth).3%

This account draws on an unpublished article Russell read to the Oxford Philosophical
Society on 22 October 1905 entitled Necessity and Possibility3®S. There Russell considers the pos-
sibility of giving an anti-Kantian account of the notion of analytic judgments as those judgments
that “[...] are necessary with respect to all their constituents except [...] logical constants”3%6,
Here the main contention is still that logical laws have only logical constants and variables as
constituents. Landini takes Russell to be defending something like Tarki’s conception of logical

truth explained in terms of logical structure.

Those who advocate the van Heijenoort interpretation would probably reject this pro-
posal on the grounds that Russell’s views were supposedly antithetical to the idea of varying
interpretations of the non-logical constants (in the linguistic sense). As the argument usually
goes, this is because Russell did not understood his Logic as a mere uninterpreted formalism
that could be interpreted differently for varying universes of discourses, but rather as a univer-
sal language whose universe of discourse - like that of Frege’s Logic - is the Universe, which
“[...] consists of all that there is, and it is fixed”3*7. The latter point is indisputable: Russell’s
idea that Logic must embrace an unrestricted variable which ranges over every possible ferm
requires that the universe of variation be unique and exhaustive. This is the very core of the
doctrine of the unrestricted variable, no question about it. However, this does not preclude an
attempt to approximate Russell’s ideas to those of later logicians as it is frequently claimed3®®,
The point to be emphasized is that Russell (and Frege) did not need to speak of different inter-
pretations. In the case of Frege he explicitly introduced his begriffsschrift as a basic framework
upon which any topic specific science could be developed axiomatically once a specific voca-
bulary was added to it. Speaking in somewhat anachronistic terms, restrictions of “universe of
discourse” were to be drawn by introducing non-logical vocabulary into the object language, not

by actually specifying a restricted domain in the metalanguage. The same applies to Russell.

Be that as it may, Russell does explain his conception of analyticity in terms of closure

under logical axioms. He first puts forward a purely syntactic account of deducibility:

The laws of deduction tell us that two propositions having certain relations of
form (e.g. that one is the negation of the negation of the other) are such that
one of them implies the other. Thus q is deducible from p if p and q either have
one of the relations contemplated by the laws of deduction, or are connected
by any (finite) number of intermediaries each having one of these relations to
its successor. This meaning of deducible is purely logical, and covers, I think,

3% LANDINI, G., 1998, p.4I.

3¥5 RUSSELL, B., 1905d, Collected papers p.507.

3% RUSSELL, B., 1905d, Collected papers p.507.

3%7 yvan HEIJENOORT, 1., 1967, p.325.

388 Again, cf. van HEJENOORT, J., 1967; RICKETTS, T., 1985; GOLDFARB, W., 1989; HYLTON, P., 1990.
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exactly the cases in which, in practice, we can deduce a proposition ¢ from a
proposition p without assuming either that p is false or that q is true.3%

Russell then defines analytic propositions as those which are deducible from the “[...]
small number of general logical premises” and concludes that the notion of a proposition that
“[...] can be deduced from the laws of logic” gives us “the class of analytic propositions™°. He

continues:

A certain large body of propositions, namely (approximately) those constitu-
ting formal logic and pure mathematics, all have some very important logical
characteristics in common and are all deducible from a small number of gene-
ral logical premises, among which are included the laws of deduction already
spoken of3". These general logical premisses fulfill the functions formerly sup-
posed to be fulfilled by the so-called “laws of thought”: they may be called the
“laws of logic”. From the laws of logic all the propositions of formal logic and
pure mathematics will be deducible. We may, then, usefully define as analytic
those propositions which are deducible from the laws of logic; and this defi-
nition is conformable in the spirit, though not in the letter, to the pre-Kantian
usage.3%*

Given the way Russell understands the notion of deducibility, this passage shows that
not only he was committed to Logicism in the sense that Godel showed to be an untenable thesis
(namely (L) discussed above), but that he also wavers between accounts of logical necessity that

relies upon the idea of deductive closure under some set of axioms.

So, the appeal to the notion of analyticity defined in the paper on logical necessity does
not seem to settle the question of whether Russell embraced a definite account of logical neces-
sity independent of the notion of provability or deductive closure as Landini argues. Still, the
paper definitely establishes that we should follow Landini in dissociating logicism (RL*) from
(L), for there Russell explicitly draws a line between the idea of a proposition implying another,
in the sense of a relation which holds between propositions (thus, between ontologically inde-
pendent entities), and a proposition being deducible from another, making clear that the former

1s the more fundamental:

It is to be observed that, although deducible from (as just defined) is a different
notion from implied by, it cannot be made to replace the notion of implied by.
For deducible from is defined by means of the laws of deduction, and these laws
employ the notion of implication. Hence we cannot substitute deducible from

39 RUSSELL, B., 1905d, Collected papers p.515. Our emphasis.

39° RUSSELL, B., 1905d, Collected papers p.521.

39" The laws in question were the “laws of identity, contradiction and excluded middle” which have been tradi-
tionally understood as having some privileged logical status. As Russell observes, these can be obtained as
consequences of his primitive proposisitions, so to some extent he thinks it is arbitrary to treat them as having
some privileged position as more fundamental than other logical laws. (RUSSELL, 1905x, p.516)

392 RUSSELL, B., 1905d, Collected papers p.516.
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for implied by in the laws of deduction, without incurring a vicious circle. The
notion of implication thus remains fundamental, and the notion of deducibility
is derivative from it.393

Also, we cannot be mislead into supposing, from Russell’s revised terminology of logical
laws as analytic - in contrast to where they were viewed as synthetic - that Russell changed
his views on the nature of Mathematical reasoning. The change is merely terminological. The
fundamental issue is, for Russell, the same as it was for Frege: the claim that Logic is a science

that ampliates or extends our knowledge.

Frege framed his disagreement with Kant in terms of the scope of analyticity. He thought
that Kant’s conception of analytic propositions as founded on the Principle of Contradiction
characterized them “too narrowly” and so he claimed his “[...] the division of judgments into
analytic and synthetic is not exhaustive’%4, Russell and Frege are in complete agreement in this.
In The Philosophy of Leibniz, we find:

We may argue generally, from the mere statement of the Law of Contradic-
tion, that no proposition can follow from it alone, except the proposition that
there is truth, or that some proposition is true. For the law states simply that
any proposition must be true or false, but cannot be both. It gives no indication
as to the alternative to be chosen, and cannot of itself decide that any propo-
sition is true. It cannot even, of itself, yield the conclusion that such and such
a proposition is true or false, for this involves the premise “such and such is
a proposition,” which does not follow from the law of contradiction. Thus the
doctrine of analytic propositions seems wholly mistaken.39

The agreement with Frege’s standpoint here is complete; so much so that in a footnote,
Frege observes that Kant himself anticipated “an inkling” of his view for, Frege claims, “[...]
he says that a synthetic proposition can only be seen to be true by the law of contradiction, if
another synthetic proposition is presupposed’3% - and this is precisely the point raised by Rus-
sell. Thus, we disagree with Ian Proops, who claims that Frege read Kant more charitably than
Russell did*7. According to him, in the Principles “Russell is working with an extremely narrow
conception of analyticity that derives from his literal-minded construal of (what is standardly
taken to be) Kant’s most adequate formulation of an analyticity criterion”3%®, That criterion, of
course, is that the judgment “[...] can be cognized sufficiently in accordance with the principle
of contradiction”°. But Frege’s observation shows that he is also attributing to Kant the same

notion of analyticity. The change in terminology which Russell effected was nothing more than

393 RUSSELL, B., 1905d, Collected papers p.515.
394 FREGE, G., 1950 [1884], pp.99-100 §87.

395 RUSSELL, B., 1900, p.25-6 §11

396 FREGE, G., 1950 [1884], p.100, footnote 1.
397 PROOPS, 1., 2006, p.286.

398 PROOPS, 1., 2006, p.286.

399 KANT, 1., 1998, p.279, A151/B190.
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that: a mere change of terminology (perhaps to avoid association with Kant’s views on the Phi-
losophy of Mathematics). In fact, as Michael Potter notes, in order for Frege to have claimed
that Arithmetic is fully analytic in his sense, “[...] he had to make the further claim that polya-
dic logic, despite being ampliative, is nevertheless analytic, by which he meant independent of
intuition”#. In the Principles, Russell is simply biting the bullet: he seems to be committed to
the idea that there is such a thing as logical intuition and these ground both our knowledge of
Logic and Mathematics. Both sciences are synthetic because the truth of their propositions is

not grounded in the ‘Principle of Contradiction’ alone.

Landini further elaborates this by noting that the crucial claim is not that polyadic logic
is informative, but that what we call higher-order polyadic logic that embraces some form of
impredicative comprehension principle is informative. That is, claims that according to Frege
and Russell “[...] logic is informative and extends knowledge” because “[...] it embraces com-
prehension axioms”°'. For Landini, Frege’s logic is informative because it is committed to a
hierarchy of levels of functions akin to that of simple type theory. Mutatis mutandis, the logic of
Russell’s Principles - just like his intermediate versions of the No-Class theory - is committed to
comprehension principles for propositions as abstract entities*°*. It must be said, however, that
perhaps the strongest case to be made in favor of this interpretation is grounded in knowledge
we now possess about the meta-theory of predicate logic. With his completeness theorem for
first-order logic, Godel showed that given some adequate set of axioms, every valid first-order
formula is a theorem, or, equivalently, that every consistent set A; of first-order formulas has
a model*®3. When working with second and higher-order logic, we must distinguish between
so-called primary and secondary interpretations and models, and if we frame completeness in
terms of primary models, then the result does not hold for second-order logic. Henkin, showed,
however, that for models in general - primary and secondary - it can be proved that every con-
sistent set A, of second-order formulas has a model#®4. And the result can be generalized for
the type hierarchy in general. Also, Turing and Church showed, building upon Godel’s work,
that the class of theorems of both first-order and higher-order logic cannot be effectively cha-

4 POTTER, M., 2000, p.65. Potter further claims that “The keystone, then, is Frege’s claim that even polyadic

logic does not depend on intuition” (POTTER, M., 2000, p.65). The basis for his reading is Frege’s claim, in

connection with his definition of the ancestral of a relation in the Begriffsschrift, that “pure thought (regardless

of any content given through the senses or even given a priori through an intuition) is able, all by itself, to

produce from the content which arises from its own nature judgments which at first glance seem to be possible

only on the grounds of some intuition” (FREGE, G., 1879, p.55). Since Frege does not discuss in substantitve

detail how we apprehend logical laws, it seems hasty to conclude that he would not concur with Russell in

claiming that there can be such a thing as logical intuition. Ian Proops conjectures that “Russell arrived at this

more inclusive conception of analyticity as a result of reading Frege’s Grundlagen” (PROOPS, 1., 2006, p.287)

and it is indeed plausible to suppose that he adopted this terminology to agree with Frege’s use rather than with

Kant’s.

LANDINI, G., 2011, pp.169-170.

492 And similarly, Russell’s mature theory of types can be understood in terms of a hierarchy of attributes.

493 CHURCH, A., 1956, p.233, §44; p.239-245.

494 This was proved by Leon Henkin in his doctoral dissertation and the proof was later published as HENKIN, L.,
1950. A textbook discussion can be found in CHURCH, A., 1956, pp.307-15, ROBBIN, J., 1969, pp.140-1 and
also MENDELSON, E., 2015, pp.389-393; a brief presentation can be found in ROGERS, R., 1971, p.92-4.
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racterized*®. This makes a strong case in favor Landini’s view, in particular because it ties the
idea that Logic is informative with the idea that Logic has - in some way or another - ontologi-
cal commitments which, as we’ll see next, was central to Russell’s conception of Logic in the

Principles.

2.3.3 The Existence of Classes and The Epistemology of Logicism in the Prin-
ciples

The fact that Russell opens the Principles with his definition of Pure Mathematics may
be misleading, for some may take Russell to be arbitrarily choosing his definition. This, of
course, would be a gross misrepresentation of the work, since the book as a whole is an attempt
to justify the definition*®®. Russell’s goal with the logical analysis of mathematics is to reach
the claim that Pure Mathematics and Logic are identical as a conclusion, as he unequivocally

explains:

It will be shown that whatever has, in the past, been regarded as pure mathema-
tics, is included in our definition, and that whatever else is included possesses
those marks by which mathematics is commonly though vaguely distinguished
from other studies. The definition professes to be, not an arbitrary decision to
use a common word in an uncommon signification, but rather a precise analy-
sis of the ideas which, more or less unconsciously, are implied in the ordinary
employment of the term. Our method will therefore be one of analysis, and our
problem may be called philosophical—in the sense, that is to say, that we seek
to pass from the complex to the simple, from the demonstrable to its indemons-
trable premisses.4°7

The crucial case for demonstrating Russell’s view of the nature of Pure Mathematics
is, of course, that of elementary Arithmetic: since Russell accepts the arithmetization of all
branches of Pure Mathematics by means of set theoretical methods discovered by him and his
predecessors, the most central case for determining whether his conception of Pure Mathematics

stands or falls is that of Arithmetic.

In the Principles, as elsewhere, Russell reduces this task to that of defining the concept
of natural number, zero and successor and demonstrating the Dedekind-Peano postulates on a
purely logical basis. Russell explicitly frames his position - again, as elsewhere - in opposition
to Peano’s procedure of charaterizing these fundamental notions by assuming the Dedekind-

Peano postulates as primitives (i.e., by appealing to what Peano and Russell called “definition

495 Tt must also be recognized, however, that neither Frege nor Russell caught a whiff of this and that any interpre-
tation which relies on the distinction between first and second-order quantification theory must be held with a
grain of salt, since it appeals to our present knowledge of the meta-theory of predicate Logic.

496 Indeed, despite being the first claim of the book, were the Principles to be arranged from assumptions to con-
clusions, the definition of Pure Mathematics should be the last.

497 RUSSELL, B., 1903, p.1 §2.

133



by postulates™). Russell observes that this method just like that of taking the fundamental notions
of zero, number and successor as primitive “[...] yields what mathematicians call the existence-
theorem, i.e. it assures us that there really are numbers”, but also that “[...] leaves it doubtful
whether numbers are logical constants or not, and therefore makes Arithmetic [...] a branch of

Applied Mathematics™4°8,

As we already discussed, Russell avoided Peano’s method appealing to his set theoretical
construction of cardinal numbers in general as classes of similar classes, showing how starting
from this definition he could then develop the basic notions of elementary Arithmetic and prove
the Dedekind-Peano postulates*®. In a nutshell, given Russell’s acceptance of the Arithmetiza-
tion*° of all branches of pure Mathematics, it is this accomplishement - (I) the definition of
Peano’s primitive notions together with (II) the proof that there is a set of objects, i.e., natural
numbers, which satisfy Peano’s axioms - that gives Russell the needed justification for his claim

that the propositions of Pure Mathematics are propositions of Logic.

Indeed, in a sense the whole project of Principles is tied to the ‘logicization’ of Arith-
metic. In a beautiful passage from the Principles’s very last page*"’, Russell summarizes how,
starting from the theory of natural numbers, he can demonstrate not only the existence of ratio-
nal, real and complex numbers, but also of Cantor’s transfinite numbers and the mathematical

entities required by several branches of Pure Geometry and Mathematical Physics:

The existence-theorems of mathematics - i.e. the proofs that the various clas-
ses defined are not null—are almost all obtained from Arithmetic. [...] from
the class of the finite cardinal numbers themselves, follows the existence of
agli.e. Ng], the smallest of the infinite cardinal numbers; from the series of fi-

408 RUSSELL, B., 1903, p.126 §122. That is, of course, in light of Russell’s own definition of Pure Mathematics
which he puts forward in the Principles.

499 Of course, a previous - even more basic step - towards this goal was showing that the general concept of cardinal
number (not specifically natural numbers) could defined in purely logical terms, a task which, as we discussed,
was accomplished in Russell’s paper of 1901 On The Logic of Relations.

41° Sebastian Gandon argues that Russell’s Logicism as put forward in both The Principles of Mathematics and
Principia Mathematica does not require arithmetization of all branches of Pure Mathematics in the sense that
one must reduce the branches of Mathematics to Arithmetic beforehand in order to establish them as a branches
of Logic; on the contrary, according to Gandon, Russell intended Logicism to be established in a “topic-specific”
manner (cf. GANDON, S., 2008; 2012). Gandon bases this view on his detailed studies of the often neglected
logicist treatment of Geometry that Russell provides in the Principles (cf. RUSSELL, B., 1903 part III) and of
the theory of quantity presented in part VI of Principia (cf. WHITEHEAD & RUSSELL 1927b). At any event,
concerning much of the development of Mathematics as given in the Principles and Principia - in particular the
theory of transfinite numbers and some important parts of the theory of real numbers - it is on the basis of the
most basic existence-theorems of Arithmetic (e.g., that every finite cardinal » has a successor n + 1 such that
n # n+ 1) that Russell establishes the existence theorems for higher forms of number, as he makes clear in the
very closing paragraph of the Principles (cf. RUSSELL, B., 1903, p.497-8, §474). So at least in a weak sense
there is in Russell’s thought an unquestionable link between arithmetization and his Logicism, namely: Russell
fully accepted that one can prove existential theorems concerning all higher forms of number without assuming
any sort of specific ontology of numbers beyond that of the finite or inductive cardinals whose theory, in turn,
can (at least to some extent) be constructed on a purely logical basis. It is merely this weaker relation between
arithmetization and Russell’s Logicism that we shall assume in the present work.

41 If we exclude the appendices.
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nite cardinals in order of magnitude follows the existence of w, the smallest of
infinite ordinals. From the definition of the rational numbers and of their order
of magnitude follows the existence of 7, the type of endless compact denume-
rable series; thence, from the segments of the series of rationals, the existence
of the real numbers, and of 6, the type of continuous series. The terms of the
series of well-ordered types are proved to exist from the two facts: (1) that the
number of well-ordered types from o to o is & + 1, (2) that if u be a class of
well-ordered types having no maximum, the series of all types not greater than
every u is itself of a type greater than every u. From the existence of 6, by the
definition of complex numbers (Chapter 44) [Dimension and Complex Num-
bers] , we prove the existence of the class of Euclidean spaces of any number
of dimensions; thence, by the process of Chapter 46 [Descriptive Geometry],
we prove the existence of the class of projective spaces, and thence, by remo-
ving the points outside a closed quadric, we prove the existence of the class
of non-Euclidean descriptive (hyperbolic) spaces. By the methods of Chapter
48 [Relation of Metrical to Projective and Descrivitive Geometry], we prove
the existence of spaces with various metrical properties. Lastly, by correLating
some of the points of a space with all the terms of a continuous series in the
ways explained in Chapter 56 [Definition of a Dynamical World] , we prove
the existence of the class of dynamical worlds.4"

But, of course, in order for all of that to work as a vindication of Russell’s claim in the

beginning of the Principles, the following most crucial step of his argument must work:

The existence of zero is derived from the fact that the null-class is a member
of it; the existence of 1 from the fact that zero is a unit-class (for the null-class
is its only member). Hence, from the fact that, if n be a finite number, n + 1
is the number of numbers from o to n (both inclusive), the existence-theorem
follows for all finite numbers.4'3

It is this step that is the most central for Russell to conclude that “[...] throughout this

process, no entities are employed but such as are definable in terms of the fundamental logical

constants” and so, that “[...] the chain of definitions and existence-theorems is complete, and the

purely logical nature of mathematics is established throughout™+'4.

If intended at establishing the triumph of Logicism, however, the above sketch of the

proof that there are infinitely many natural numbers is inseparable from the idea that the exis-

tence of infinite classes can be proved from logical principles alone. And indeed, while writing

most of the Principles, Russell was convinced beyond any reasonable doubt that there is no

problem with this view:

That there are infinite classes is so evident that it will scarcely be denied. Since,
however, it is capable of formal proof, it may be as well to prove it.#"

412
413

RUSSELL, B., 1903, pp.497-8 §474.
RUSSELL, B., 1903, pp.497 §474.

#14 RUSSELL, B., 1903, pp.497 §474-

415

RUSSELL, B., 1903, p.357 §339.
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Russell accepted several different alleged demonstrations of the existence of infinite

classes. One such ‘proof” is the following:

A very simple proof is that suggested in the Parmenides, which is as follows.
Let it be granted that there is a number 1. Then 1 is, or has Being, and therefore
there is Being. But 1 and Being are two: hence there is a number 2; and so on.
Formally, we have proved that 1 is not the number of numbers; we prove that
n is the number of numbers from I to #, and that these numbers together with
Being form a class which has a new finite number, so that n is not the number
of finite numbers. Thus 1 is not the number of finite numbers; and if n — 1 is
not the number of finite numbers, no more is n. Hence the finite numbers, by
mathematical induction, are all contained in the class of things which are not
the number of finite numbers. Since the relation of similarity is reflexive for
classes, every class has a number; therefore the class of finite numbers has a
number which, not being finite, is infinite.4'¢

The above ‘proof” which Russell attributes to Plato (in Parmenides) is regarded by him
as analogous to Frege’s proof, sketched in the Grundlagen and fully developed in the Grund-
gesetze, that the number of the class of numbers which are less than or equal to n is equal to
n—+ 1:

A better proof, analogous to the above, is derived from the fact that, if # be any
finite number, the number of numbers from o up to and including n is n + 1,
whence it follows that z is not the number of numbers.4'7

This is Frege’s famous proof, which employed a definition of cardinal number which
essentially coincided with that of Russell. The gist of it is to show that each finite cardinal
number n + 1 is the cardinal number of the class of all finite cardinal numbers less than or
equal to n; thus n + 1 is shown to be the class that contains the class {0, 1, ..., n} as an element
(since the cardinal number of a class a is the class of all classes similar to a): 1 is the cardinal
number of the class {0} whose sole member is 0, so {0} € 14%, also 2 is the cardinal number of
the class {0, 1},s0 {1, 2} €2, and so on... In this way, starting from o and 1 and then proceeding
by induction, it can be shown that each finite cardinal is a non-empty set, i.e., that each finite
cardinality n + 1 is instantiated by at least the set {0, 1,...,n}.

Russell also considered a famous ‘proof” which purports to derive the existence of a
Dedekind infinite - or, as Russell called them later - reflexive class from the impossibility of

establishing a one-one correspondence between things and ideas of things:

416 RUSSELL, B., 1903, p.357 §339.

47 RUSSELL, B., 1903, p.357 §339. Surely, Russell would not endorse such a comparison after the Principles.
Frege’s proof is a legitimate piece of Mathematics which was unfortunately carried out within an inconsistent
theory; the attempt to show that the number 2 exists by treatint ‘being’ as something is just a blatant example
of the kind of nonsense which can be produced without a proper understanding of the existential quantifier.

48 Tncidentally, since {A} = 0 by definition, o itself is also a member of 1.
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Again, it may be proved directly, by the correlation of whole and part, that the
number of propositions or concepts is infinite. For of every term or concept
there is an idea, different from that of which it is the idea, but again a term
or concept. On the other hand, not every term or concept is an idea. There are
tables, and ideas of tables; numbers, and ideas of numbers; and so on. Thus
there is a one-one relation between terms and ideas, but ideas are only some
among terms. Hence there is an infinite number of terms and of ideas.4"

As Russell acknowledges in a footnote, this proof can be traced to the works of Bol-
zano**° and was famously put forward by Dedekind in his seminal paper on natural numbers+*'.

Russell’s remarks make it clear that he was convinced of the soundness of such demonstrations.

But of course, proofs of the kind considered above were formulated by Bolzano, Can-
tor, Dedekind, Frege and Russell by employing the notion of class in a disastrously liberalized
manner. All the works mentioned by Russell - most explicitly, importantly and famously, those
of Frege - assumed either formally or informally some form of naive comprehension for sets,
much like Russell did in the Principles. And as Russell found out around 1901 the laws governing
the ‘unrestricted’ conception of set employed by Cantor and his followers led to contradictions
which cast a shadow of doubt on the logico-mathematical results and set-theoretical definitions
that ground Russell’s claim that the laws of Pure Mathematics are logical truths as put forward
in the Principles. This calls for a discussion of how Russell understood what grounds his be-
lief that his chosen primitive propositions are t7ue. And again, here it becomes somewhat more
doubtful that Russell had a tenable account or criterion for determining what should or should

count as a logical truth.

Russell speaks loosely in terms of varying degrees of self-evidence**?, but does not deve-
lop his views on the epistemology of Logic and Mathematics in any detail. There is, however, an
implicit general epistemology of Logic and Mathematics behind the Principles. As Peter Hylton
puts it, despite the fact that the doctrines of the Principles “say little or nothing” about the nature
of mathematical knowledge (and knowledge in general), “[...] a view of knowledge is none the

less implicit in those doctrines™+*3,

419 RUSSELL, B., 1903, p.357 §339.

420 BOLZANO, B., 1851.

42 DEDEKIND, R., 1888, p.64. There, we find the following proof of theorem 66 which asserts that “there exist
infinite systems”; Following Boolos’s translation, we have: “The world of my thoughts, i. e., the totality S of all
things that can be objects of my thought, is infinite. For if s signifies an element of S, then the thought s, that s
can be object of my thought, is itself an element of S. If s is regarded as the image ¢(s) of the element s, then
the mapping ¢ determined thereby has the property that its image S’ is a part of S; and indeed S’ is a proper part
of S, because there are elements in S (e.g., my own ego), which are different from every such thought s’ and
are therefore not contained in S’. Finally, it is clear that if ¢ and b are different elements of S, then their images
a’, b’, are also different, so that the mapping is distinct (similar). Consequently, S is infinite, q.e.d. (BOOLOS,
G., 1998, pp.202-3; DEDEKIND, R., 1888, p.64). Both Dedekind and Russell refer to this result as originally
proved by Bolzano. Rightfully, George Boolos refers to Dedekind’s ‘proof” as “[...] one the strangest pieces of
argumentation in the history of logic” (BOOLOS, G., 1998, p.202) - although the proof Russell draws from the
Parmenides mentioned above is a very strong contender.

422 RUSSELL, B., 1903, p.17 §18.

423 HYLTON, P., 1990, p.II1.
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The cornerstone of that view, of course, is Russell’s notion of acquaintance. This notion
is introduced in order to account for the sort of direct or immediate relation that is required by
the pluralistic realism Russell inherited from Moore. Thus, in the Preface of the Principles we

find the following striking passage:

The discussion of undefinables—which forms the chief part of philosophical
logic—is the endeavour to see clearly, and to make others see clearly, the enti-
ties concerned, in order that the mind may have that kind of acquaintance with
them which it has with redness or the taste of a pineapple. Where, as in the pre-
sent case, the undefinables are obtained primarily as the necessary residue in
a process of analysis, it is often easier to know that there must be such entities
than actually to perceive them; there is a process analogous to that which resul-
ted in the discovery of Neptune, with the difference that the final stage—the
search with a mental telescope for the entity which has been inferred—is often
the most difficult part of the undertaking.4*4

This paragraph gives a rough - and somewhat fantastic - picture of how Russell unders-
tood the process of arriving at the primitive notions of Logic. This picture indicates that the
epistemological grounds for accepting the axioms for the calculus of Logic is our capacity to
apprehend with clarity and distinction - to borrow a Cartesian mode of expression - the most
basic entities of Logic and Mathematics, as if these could be perceived through some ‘mental
telescope’; or, if we are to take the pineapple metaphor seriously - as it should - through some

sort of logical palate.

Fortunately, Russell had already put forward - albeit in a very rough and schematic form
- elements of a much more interesting epistemology for Logicism. In 1901 Russell wrote a paper
that never saw print in his lifetime entitled Recent Italian Work on The Foundations of Mathe-
matics**3, where he discussed and praised in detail the merits of Peano’s symbolic logic and

methodology. Concerning what he called Peano’s ‘logistic method’, Russell claims that:

Its aims is [sic] to discover the necessary and sufficient premisses of the vari-
ous branches of mathematics, and to deduce results (mostly known already) by
a rigid formalism which leaves no opening for the sinister influence of obvi-
ousness. Thus the interest of the work lies (I) in the discovery of the premisses
and (2) in the absolute correcteness of the deduction. Both these points are (or
rather should be) of great interest to the philosopher.4*

Anyone familiar with Russell’s posterior discussions of his ‘regressive method’ of dis-
covering premises in mathematics (in which mathematical logic plays a prominent role) should

recognize here the roots of Russell’s later, more sophisticated ideas*”. It is very plausible to

424 RUSSELL, B., 1903, p.xv.

45 RUSSELL, B., 1901c.

46 RUSSELL, B., 1901c, p.352.

427 RUSSELL, B., 1907; RUSSELL, B., 1919a; RUSSELL, B., 1924; WHITEHEAD & RUSSELL, 1910; These
views will be discussed in detail in chapter five.
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suppose then, that by the time of the Principles Russell had realized that one way to justify the
choice of axioms of Logic was in in virtue of their consequences. So we have reason to believe
that Russell would endorse the idea that propositions of Pure Mathematics - which we have,
prima-facie, every reason to believe - can be derived from the axioms of Logic lends these very
axioms epistemic support. This point is important, because there is a fly in the ointment in the
attempt of justifying the choice of primitive notions and axioms through the postulation of some
sort of direct relation like acquaintance: Russell’s Paradox. The discovery of the contradiction
showed that the notion of class could not be taken for granted as transparent notion; as Quine
once observed, the discovery of the contradictions shows that the most basic and at first sight
self-evident ‘intuitions’ about the notion of set are, in fact, “bankrupt”#*%. But given the centra-
lity of the notion of class in the Logicist development of Mathematics in the Principles, this

means that Russell’s entire epistemology of Logic and Mathematics is jeopardized.

Indeed, it is no coincidence that in later writings Russell emphasizes the regressive
method as a way of not only discovering but justifying the premises of Mathematics: once ap-
parently self-evident principles and highly abstract concepts of Logic - in the sense in which
Russell understood this science - are shown to lead to contradiction, self-evidence loses what
little justificatory weight it had to begin with. Russell was, of course, the first to be shocked
by his discovery precisely because of this. Concerning the calculus of classes, Russell gave the

following warning in the preface of the Principles:

In the case of classes, I must confess, I have failed to perceive any concept
fulfilling the conditions requisite for the notion of class. And the contradiction
discussed in Chapter x. proves that something is amiss, but what this is I have
hitherto failed to discover.+*®

The analogy with perceptual experience cannot be overstated here: Russell is claiming
that he had failed to become acquainted with any sort of entity which satisfies the conditions
which pure Mathematics requires of classes. This is Russell’s first acknowledgment in print of
the damage done by Russell’s discovery to his conception of classes conceived as entities. But

this puts the very conception of Logic which Russell held in the Principles in check.

One of the central tasks of the next chapter is to discuss in more detail how this very
difficulty led Russell to reformulate the Logic of the Principles and eventually to retreat from a

conception of Logicism which embraced the existence of classes as a logical matter.

428 QUINE, W., 1969, p.X.
429 RUSSELL, B., 1903, p.xv. Our emphasis.

139



3 Russell’s Ontological Development

I finished this first draft of The Principles of Mathematics on the last day of the
nineteenth century i.e. December 31, 1900. The months since the previous July
had been an intellectual honeymoon such as I have never experienced before
or since. Every day I found myself understanding something that I had not
understood on the previous day. I thought all difficulties were solved and all
problems were at an end. But the honeymoon could not last, and early in the
following year intellectual sorrow descended upon me in full measure.’

3.1 The Collapse of Russell’s Early Logicism

3.1.1 The Contradiction and the Notion of a Logical Subject in the Principles

As we discussed in the previous chapter, one of main goals Russell set out in the Prin-
ciples was to “[...] the endeavor to see clearly, and to make others see clearly” the entities with
which Mathematical Logic is concerned, so that “the mind may have that kind of acquaintance

992

with them which it has with redness or the taste of a pineapple”?. Unfortunately, in the course

of this endeavor Russell made a bitter discovery.

The tale of this discovery is familiar: Cantor famously proved that there cannot be a
greatest cardinal number and on the face of such result Russell was led to question if this could
be reconciled with the existence of the class of all things or terms or entities, the existence of
which, at the time, he thought plausible, if not inevitable to be admitted by any correct logical
theory. The question of whether phrases like “the greatest cardinal number” or “the class of
all entities” stood for genuine logical subjects, in turn, led Russell to consider other sorts of

problematic cases. As Russell vividly recounts this in My Philosophical Development:

I thought, in my innocence, that the number of all the things there are in the
world must be the greatest possible number, and I applied his proof to this
number to see what would happen. This process led me to the consideration
of a very peculiar class. Thinking along the lines which had hitherto seemed
adequate, it seemed to me that a class sometimes is, and sometimes is not, a
member of itself. The application of Cantor’s argument led me to consider the
classes that are not members of themselves; and these, it seemed, must form a
class. I asked myself whether this class is a member of itself or not.3

The outcome of this is now recounted in almost every textbook of Mathematical Logic

and Set Theory as a tale of legend. By June 16 1902, almost a year after the discovery, Russell

' RUSSELL, B., 1959, p.73.
> RUSSELL, B., 1903, p.xv.
3 RUSSELL, B., 1959, pp.75-6. Compare also RUSSELL, B., 1903, p.101/§100.
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wrote a letter to Frege in which he reports “[...] a difficulty only on one point™, namely with

Frege’s Basic Law V. In Frege’s Grundgesetze this law appears as follows>:
F—(3fz = 2g2) ==~ f(a) = g(a)

Frege described the content of this law in terms of the “[...] transformation of the generalization

of an equality into an equality of course of values”®

. Courses of values were Frege’s extensions
of functions, of which first-order concepts were treated as a particular case that took objects as

arguments and had truth-values as values. For our purposes, Frege’s Law V can be stated as:
(F)(G)(2Fz = 2Gz = (z)(Fx = Gx))

The above can be read as: for every concept /' and every concept G, the extension of F' is identical
to the extension of G if, and only if for every object x, x falls under the concept F' if, and only
if x falls under G7. Framed in these terms, this axiom entails that every concept F' has a unique
object associated with it, namely, its extension: the set of all things that fall under . This is easily
demonstrated: instantiate Basic Law V as 2F'z = 2Fz = (x)(Fx = Fx); since the right side of
the bi-conditional is a logical truth, we have 2F'z = ZF'z; by existential generalization we have
(dz)(z = ZFz) and by universal second-order generalization we have (F)(gz)(x = 2Fz); it
must be observed that one does not need Law V to show this; alternatively, since in Frege’s
system “Z[F2” is a genuine term, ZF'z =ZF'z holds and one gets (F')(qz)(x = 2Fz) from the

laws of predicate logic alone®.

The one difficulty which Russell found was the result of instantiating F* as the concept
“[...] not a member of its own extension’, the extension of that concept, however, is a member
of itself if and only if it does not belong to itself. Since Frege’s Law was his fundamental axiom
assuring the existence of value-ranges, Russell took that this as a general difficulty of charac-
terizing correctly comprehension or abstraction axioms for classes. As we already remarked,
the naive or intuitive assumption that Russell made regarding classes was that the following

principle had unrestricted validity regarding the condition or concept F:
(F)(3y)(z):xey.=. Fx

Russell took as unproblematic that if classes are extensions of concepts or so-called propositional

functions, i.e, functions whose values are propositions, the class {z : Fz} must contain as

4 In: FREGE, G. 1980, p.131.

5 FREGE, G., 1893, p.61, §47. It must be observed that in Frege’s original system the conflict with Cantor’s power-
class theorem comes from the ‘implication’ from left to right, i.e., Law Vb (cf. LANDINI, G., 2017, in particular
pp-11-12), something one misses when on Frege’s notations are translated to the notation of modern predicate
logic. Thanks for Landini for calling my attention to this point.

¢ FREGE, G., 1980, p.132.

7 This, of course, is not true to Frege’s own formulation, since Frege’s Logic is best interpreted as a Logic of

terms, not as a predicate calculus in the modern sense. For details, cf. DUARTE, A., 2009 and LANDINI, G.,

2012.

Thanks to Gregory Landini for calling my attention to this point.

9 This was, in fact, Frege’s correction: Russell spoke of a concept not applying to itself, but this violates Frege’s
hierarchy of levels (cf. FREGE, G., 1980, pp.132-3).
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members all, and only those objects x for which the propositional function Fx has as a value a
true proposition. The contradiction was forthcoming when it was supposed that the propositional
function /' would result in a significant proposition for every possible value of x - even if x
was the the class {z : F'x} itself; this let the way open for the possibility of the following line
of reasoning: Let I be the condition = ¢ =z, that is, x is not a member of x, then, there is a set
w = &(x ~ ex);itimmediately follows thatx e w . =, .~ (rez),andthuswew .= .~ (wew).

This is the difficulty which became widely known as ‘Russell’s Paradox’.

Frege responded to Russell’s discovery on June 22 “[...] surprised [...] beyond words
and [...] thunderstruck, because it rocked the ground on which [he] meant to build Arithmetic™™°.
By 1903, Russell had published his discovery within his Principles of Mathematics as an open
problem to which he had, at best, a sketch of solution and Frege discussed it in and Appendix
added in print to the second volume of his Basic Laws of arithmetic, where we witness the last

breath of his logicist project".

Mathematicians and logicians - including Russell himself - were by no means unaware
of difficulties similar to Russell’s paradox at the time it was discovered. By 1897, one of Peano’s
followers, Cesare Burali-Forti", had established the following: Let O be the class of all ordinal
numbers and assume that it can be well-ordered'3; it follows that O has an ordinal number - call

it 2; presumably €2 is the greatest ordinal number, since it is the number of the series of a//

° FREGE, G. 1980, p.132. The letter was published for the first time in van HEIJENOORT, J., 1967, p.124-5.

Tt is there that we find Frege’s haunting words: “Hardly anything more unfortunate can befall a scientific writer
than to have one of the foundations of his edifice shaken after the work is finished” (FREGE, G., 1997 [1903],
p-279 [253]) which constrast drastically with his enthusiastic remarks in the first volume of Basic Laws: “[...]
I will only be able to accept a refutation if someone shows, by actually doing it, that a better more durable
edifice can be erected on different fundamental convictions, or if someone proves to me that my principles lead
to obviously false conclusions. But no one will succeed in this.” (FREGE, G., 1997 [1893], p.207-8 [XXVI]).
Frege attempted to solve Russell’s contradiction in the Appendix, proposing a mitigated version of (V), namely:

(V)2Fz=2Gz.=:(x)(x £ 2Fz.x # 2Fz:D: Fx = Gzx)
Although Frege recognized that this modification would certainly demand revision of several proofs, he

claimed that “we need scarcely fear that this sill raise essential difficulties for the course of the proofs” (FREGE,
G., 1997 [1903], p.289 [265]). But he ended up giving up the thesis that arithmetic can be grounded in Logic
and concluded that the truths of number theory are grounded on Geometry: “[...] arithmetic cannot be based
on sense perception; [...] So an a priori mode of cognition must be involved here. But this cognition does not
have to flow from purely logical principles, as I originally assumed. There is the further possibility that it has
a geometrical source. [...] Only on this view does mathematics present itself as completely homogeneous in
nature.” (FREGE, G., 1925, pp.276-7). There is no conclusive textual evidence as to what led Frege to abandon
his amended system, but some later developments led to several conjectures. Sobocinski published a proof of
Lesniewski (from 1938) that the amended version of Basic Law V is also inconsistent (SOBOCINSKI, B., 1949),
while Quine and Geach generalized his result (QUINE, W.0., 1955; GEACH, P., 1956). Dummett claimed that
even if Frege did not know of the inconsistency of (V?), he must have known that several arithmetical theorems
could not be proved in the revised system, including the theorem that asserts the infinity of the natural number-
series (DUMMETT, M., 1967, p.225). Recently, Landini claimed that, although the reconstructions of Quine and
Geach do not make historical justice to Frege’s formal system, the best conjecture is that Frege himself realized
the amended system to be inconsistent (LANDINI, G., 2006, pp.18-19). And, of course, the works of George
Boolos, Crispin Wright, Richard Heck and Bob Hale show that there is a viable to revive Frege’s Logicism from
his works (WRIGHT, C., 1983; BOOLOS, G., 1987; 1992; HECK, R., 1993; WRIGHT & HALE, 2001.).

? van HEIJENOORT, J., 1967, p.104-5.

3 Aset M is well-ordered by a relation R if and only if every non-empty subset of M has a minimal element with
respect to R.
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ordinals; but since it is known that the class all ordinals up to some ordinal can be well-ordered,
it follows that ordinal number €' of all ordinals O including 2 should be such that ' > Q.
Similarly, Cantor himself discovered arount 1899 the following: Let X be the cardinal number
of a set X, let < and < have their usual meaning, let p(X) be the power set of X and, finally,
let U be the set of all sets; since U is the set of all sets, it follows that o(U) is a subset of U, and
thus, that (U) < U; but Cantor’s power-class theorem states that for every set X, X < p(X).
But the fact of the matter is that neither Burali-Forti nor Cantor nor anyone else thought of these
results as paradoxes until Russell stated his discovery as a contradiction in the Principles of
Mathematics'. Russell himself would later observe that he thought “[...] that there was some

unimportant error in the reasoning”" with Burali-Forti’s result™.

Leaving aside the details of how Russell came to actually recognize that he discovered a
genuine contradiction in the foundations of Set Theory'7, it is clear that the fundamental question
which was brought up by the discovery was this: how should the ontology of classes be handled
once the general naive assumption that every propositional function defines a class is shown
to be contradictory? Resolving this problem was, of course, nothing less than a monumental
task since it was basically the search for a satisfactory logical theory which could (a) serve as
a foundation for Mathematics and (b) solve the contradictions while (c) being well motivated

from a philosophical point of view.

The problem was particularly pressing in the Principles of Mathematics given Russell’s
radical response to the ontological question about what is or has being. For, in the Principles,
Russell was committed to the doctrine of the unrestricted variable and of the univocity of being,
which, as we previously discussed, is encapsulated in the claims that “[...] there is only one
kind of being, namely being simpliciter”*® and that “Being is what belongs to every conceivable
term, to every possible object of thought - in short to everything that can possibly occur in any

proposition, true or false, and to all such propositions themselves™. As we briefly discussed,

4 Burali-Forti was explicitly stating his result as a proof by reductio that there cannnot be a greatest ordinal
number; the same was the case with Cantor, but dealing with cardinals. See MOORE & GARCIADIEGO, 1981;
GARCIADIEGO, A., 1992.

5 RUSSELL, B., 1957, p.77.

16 By 1905, however, Russell had found a common source in all of these set-theoretical paradoxes. In On Some
Difficulties, Russell makes the following claim: “Burali-Forti’s contradiction is a particular case of the following:
‘Given a property ¢ and a function f, such that, if ¢ belongs to all the members of u, f‘u always exists, has the
property ¢, and is not a member of u; then the supposition that there is a class w of all terms having the property
¢ and that f‘w exists leads to the conclusion that f‘w both has and has not the property ¢.” This generalization
is important, because it covers all the contradictions that have hitherto emerged in this subject.” (RUSSELL,
B., 1905b, p.71). This, as Landini observes, suggests that here Russell is sketching a the following theorem or
result about what sort of classes should be admissible or not (LANDINI, G., 2013a, pp.182-3):

(1) (@)@ eu. Dpw: D (Ay) - fou =y frume: d(fu)) - ~(aw)(2) i ew. = pa]

In case of Russell’s own paradox, as he explain “we put ‘x is not a member of x* for ¢!z, and u itself for f*u.
In this case, owing to the fact that f‘u is u itself, we have only one possibility: namely that ‘x is not a member
of x” is non- predicative” (RUSSELL, B., 1905b, p.71-2), where by “non-predicative” Russell means that it does
not determine a class.

7" For these, cf. MOORE, G., 1988 and GARCIADIEGO, A., 1992.

8 RUSSELL, B., 1903, p.449 §427.

19 RUSSELL, B., 1903, p.449 §427.

143



“Term” is Russell’s technical expression for entity in the most general sense. In the Principles,

the notion is introduced in the following famous passage:

Whatever may be an object of thought, or may occur in any true proposition,
or can be counted as one, I call a term. This the, is the widest word in the
philosophical vocabulary. I shall use as synonymous with it the words unit,
individual, entity. The first two emphasize the fact that every term is one, while
the third is derived from the fact that every term has being, i.e is in some sense.
A man, a moment, a number, a class, a relation, a chimera, or anything else can
be mentioned, is sure to be a term; and to deny that such and such a thing is a
term must always be false. *°

Russell’s introduction of the notion brings about several important points about his on-
tology around the time of the publication of the Principles. For one thing, it is clear that in
introducing the notion, Russell is introducing an ontological category into his philosophical vo-
cabulary, not a merely linguistic one: when he asserts that men, moments, numbers and classes
are terms, he is not interested in categorizing the sortal concept-words “man”, “moment”, etc
as falling under the category of term, but is making a claim about ontology, namely that men,
moments, relations and even chimeras are entities, or have being. This is made clearer by the

following subsequent passage:

A term is, in fact, possessed of all the properties commonly assigned to subs-
tances or substantives. Every term, to begin with, is a logical subject: it is, for
example, the subject of the proposition that itself is one.*!

It also shows that in the Principles Russell was committed to a distinction between being
and existence. Everything that is an entity has being, but “[...] existence, on the contrary, is the
prerogative of only some amongst beings”, since, as Russell puts it, “[...] to exist is to have a
specific relation to existence—a relation, by the way, which existence itself does not have”*.

Differently from existence which, one can deny of some entities, being (allegedly) cannot:

[...] this distinction is essential, if we are ever to deny the existence of anything.
For what does not exist must be something, or it would be meaningless to deny
its existence; and hence we need the concept of being, as that which belongs
even to the non-existent”.>3

This point of fundamental importance is echoed when Russell asserts that “[....] to deny

such and such a thing is a term must always be false”*4. And the reason why “[...] it must always

*¢ RUSSELL, B., 1903, p.43 §47.
21 RUSSELL, B., 1903, p.44 §47.
22 RUSSELL, B., 1903, p.449 §427.
23 RUSSELL, B., 1903, p.450 §427.
24 RUSSELL, B., 1903, p.43 §47.
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be false” is this: in order for a sentence like “so-and-so does not have being” to be meaningful,
there must be something for which the phrase “the so-and-so” stands; but to say that so-and-so

is something is to say it has being, so it must be a term.

As we also discussed, Russell was led to this conclusion because the radical metaphysical
thesis of the univocity of being came hand in hand in the Principles with the idea that in a

sentence, every word must stand for a constituent of the proposition expressed by the sentence?>:

I shall speak of the terms of a proposition as those terms, however numerous,
which occur in a proposition and may be regarded as subjects about which the
proposition is.?°

[...] it must be admitted, I think, that every word occurring in a sentence must
have some meaning: a perfectly meaningless sound could not be employed in
the more or less fixed way in which language employs words. The correctness
of our philosophical analysis of a proposition may therefore be usefully chec-
ked by the exercise of assigning the meaning of each word in the sentence
expressing the proposition.*’

Words all have meaning, in the simple sense that they are symbols which stand
for something other than temselves. But a proposition, unless it happens to be
linguistic, does not itself contain words: it contains the entities indicated by
words.?

According to such passages, propositions are complex entities which contain the terms
about which the proposition is (and the proposition itself is a term) and sentences are complex
linguistic items which denote the complex entities that are propositions. The complexity of a
sentence reflects the complexity of the proposition it denotes in such a way that to every expres-
sion in the sentence there will be a ferm to which the expression refers that is a constituent of

the proposition that the whole sentence denotes.

However, there are further taxonomic distinctions that must be observed, which is not
something particularly easy to do given Russell’s characteristic use-mention carelessness. Rus-
sell claims that words, in general, denote terms; proper names denote things, while all other
words denote concepts; among concepts, he distinguishes those that are denoted by adjectives,

which he calls class-concepts and those that are denoted by verbs, which are relations*. Rus-

25 Recalling that a proposition is understood as a sort of entity which has also entities as constituents, not neces-
sarily linguistic

26 RUSSELL, B., 1903, p.45 §48.

*7 RUSSELL, B., 1903, p.42 §46.

28 RUSSELL, B., 1903, p.47 §51. Famously, Russell made similar considerations when discussing with Frege
whether “Mont Blanc with its snowfields” is or is not part of the thought that “Mont Blanc is more than 4000
metres high” in their correspondence. (Frege to Russell November 13 1904. In: FREGE, G., 1980, p.163). As Rus-
sell saw the matter the “[...] Mont Blanc itself is a component part of what is actually asserted in the proposition
‘Mont Blanc is more than 4000 metres high.” We do not assert the thought, for this is a private psychological
matter: we assert the object of the thought, and this is, to my mind, a certain complex (an objective proposition,
one might say) in which Mont Blanc is itself a component part. If we do not admit this, then we get the conclu-
sion that we know nothing at all about Mont Blanc.” (Russell to Frege 12 December 1904. In: FREGE, G., 1980,

p.169)
29 RUSSELL, B., 1903, p.44 §48.
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sell’s distinctions are not clear enough mainly due to his selection of terminology. On the one
hand, when he makes a distinction among terms between things and concepts, it is clear that he
cannot be making a linguistic distinction: it is a distinction among sorts of entities. On the other
hand, the introduction of the further distinction among concepts is not that clear cut, for when
he speaks of those concepts indicated by adjectives and those indicated by verbs he asserts that
“[...] the former kind will often be called predicates or class-concepts; the latter are always or
almost always relations™°. Here, one must not be misled by Russell’s use of “predicate” as equi-
valent to “class-concept”; “attribute” would be a more appropriate choice. For when speaking
of relations as a sort of concept, it is clear what the point is: a relation is a sort of entity (term)
generally indicated in sentences by the occurrence of verb-words, and the same must be the case

for ajdective-words.

If we take as examples (p) “Brutus killed Caesar” and (g) “Caesar is human”, the first
sentence as a whole indicates a complex entity which consists of Brutus in a certain relation
to Caesar, namely that of being the agent of his death; this relation which is a sort of concept
(therefore a sort of ferm) is indicated by the verb “killed”, and the things (terms) which are
the relata of the relation are denoted by the proper names “Brutus” and “Caesar”. Similarly
the second indicates a complex which consists in Caesar and the concept humanity. Russell
introduces his taxonomy in order to introduce a further distinction between a term occurring as
a term and a term occurring as a concept’'. Take as examples the two sentences (p) “Socrates is
human” and (p’) “Humanity belongs to Socrates”, both of which Russell thought to be names of
propositions (in the ontological sense). According to Russell, despite being equivalent?®, these
propositions are distinct in the sense that in (p) “[...] the notion expressed by human occurs in
a different way from that in which it occurs when it is called humanity, the difference being
that in the latter case, but not in the former, the proposition is about this notion™33. Russell’s
point is that in (p) the logical subject of the proposition is Socrates whereas in (p’) the logical
subject is humanity. As he further explains “[...] the terms of a proposition” are “[...] those terms,
however numerous, which occur in a proposition and may be regarded as subjects about which

the proposition is’’34

As Nino Cocchiarella showed long ago, the notion of a logical subject is central for
understanding the tension which the contradiction generates within the philosophical framework
of the Principles3. The main reason for this is that the notion is the key for understanding Rus-

sell’s unrestricted conception of variation held in the work. It is Russell’s notion of a logical

3% RUSSELL, B., 1903, p.44 §48.

31 COCCHIARELLA, N., 1980, pp.72-3.

3 RUSSELL, B., 1903, p.45 §48. Presumably, when he speaks of equivalence, he is talking about material equi-
valence.

3 RUSSELL, B., 1903, p.45 §48.

34 RUSSELL, B., 1903, p.45 §48.

35 COCCHIARELLA, N., 1980.

3% COCCHIARELLA, N, 1980, pp.72-7.
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subject that entails what Cocchiarella dubbed the thesis of “univocity of being”¥. In the Prin-
ciples, Russell summarizes this thesis with the claim that “[...] there is only one kind of being,
namely being simpliciter”®. As we discussed in the previous chapter, the most important con-
sequence of this thesis is that general statements, that is, statements involving al/l and any - i.e.,
statements involving variables - have an absolutely general character. As Russell explains, in a
statement like “Every x is so-and-so” we can make “[...] our x always an unrestricted variable”,
in the sense that “[...] we can speak of the variable, which is conceptually identical in Logic,
Arithmetic, Geometry, and all other formal subjects”®, that is: “[....] the terms dealt with are
always all terms”#°, so there is no intrinsic restrictions upon the range of the variable. Accor-
ding to Russell, one can only ‘restrict’ a variable by explicitly stating antecedents in a formal
implication, as in “(z)(¢x D 1x)”, but this can only be understood as an artificial ‘restriction’
or as no restriction at all for this in fact asserts of every term x that if x is a ¢ it is also a . This
is Russell’s famous thesis of the unrestricted variable, the fundamental logical doctrine of the

Principles of Mathematics.

Concerning the terms of a proposition, that is, its logical subjects, Russell asserts that “It
1s a characteristic [of them] that any one of them may be replaced by any other entity without our
ceasing to have a proposition.”#'. This means that a term can only be considered a logical subject
of'a proposition if it occurs as a term and not as a concept and points to a fundamental difference
between things and concepts with respect to them as possible logical subjects of propositions: a
thing can only occur as a term, that is, as a logical subject. If “is a man” is substituted for “So-
crates”, we get the sentence: (p*) “Socrates is a Socrates” which is nonsensical, for two reasons.
First, there is nothing occurring as a term corresponding to “is aman” in (p*) to be substituted in
the proposition for Socrates, since the only expression which denotes a term occurring as a term
in (p*) is “Socrates”. Second, things like Socrates (not to be confused with the name “Socrates™)
can only occur in a propositions as terms, that is, as logical subjects. A concept, however, can
occur as a logical subject but also as a concept (or, in Russell’s more misleading terminology,
as a predicate). If we take the proposition (p) and substitute Socrates for a (or, better yet, the)
variable, we obtain what Russell calls a propositional function or propositional form, namely x
is a man. Given that the concept is a man 1is a term, there must be a proposition which results
from taking this concept itself as a value x. But this proposition is not expressed by the sentence
(p**) “Is a man is a man” which is also nonsense, but by (p***) Mankind is a man. And in this

proposition, the concept does not occur as a concept, but as a term. As Russell further explains:

Predicates, then, are concepts, other than verbs, which occur in propositions
having only one term or subject. Socrates is a thing, because Socrates can

37 COCCHIARELLA, N., 1980, p.72.

3% RUSSELL, B., 1903, p.449 §427.

3 RUSSELL, B., 1903, p.45 §48.

4© RUSSELL, B., 1903, p.45 §48. Our emphasis.
4 RUSSELL, B., 1903, p.45 §48.
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never occur otherwise than as a term in a proposition: Socrates is not capable
of that curious twofold use which is involved in human and humanity. %

Thus, up to this point, what the doctrine of the unrestricted variable states once put in
the context of Russell’s realist theory of propositions and of his views on the nature of terms can

be summarized as follows:

1. Although propositions have many terms as their constituents, not every term that occurs

in a proposition occurs as a term, that is, as a logical subject.

2. The logical subject of a proposition expressed by a sentence that contains an adjective is
the entity denoted by the grammatical subject to which the adjective is attributed and in

this proposition the term denoted by the adjective occurs as a concept, not as a subject.

3. The logical subjects of a proposition expressed by a sentence that contains a verb are the
relata of the relation denoted by the verb and in this proposition the relation occurs as a

concept not as a subject.

Now, Russell must answer a question that complicates this: given this “curious twofold use” of
predicates [concepts indicated by adjectives] which allows them to occur as ferms, that is, as
logical subjects, and as concepts, does this mean that they occur as different sorts of entities?
To put it more specifically, given the two propositions (p) and (p’) of our previous example, we
have the occurrence of two different terms occurring in each, in one case a concept and in the
other a thing?43

These questions are particularly pressing in connection with class-concepts like x is a
class that does not belong to itself and they cast a shadow on the whole philosophical outlook
of the Principles, for they threaten Russell’s most fundamental theses: that whatever can be
mentioned is an entity or a has being; that whatever is is a term; and that “[...] any one of them
may be replaced by any other entity without our ceasing to have a proposition”#4. As we shall see,
Russell’s philosophical development (regarding Mathematical Philosophy) from 1903 through

1910 can be seen as an attempt to reconcile these views with a solution of the contradiction.

3.1.2 Russell’s Failed Early Attempts at Solving the Contradiction

Russell’s first “tentative” attempt at a solution of the contradiction was his initial for-
mulation of the theory of types presented in the Appendix B of the Principles and in his corres-

pondence with Frege. The basic idea of that version of the theory was that “every propositional

42 RUSSELL, B., 1903, p.45 §48. Our emphasis.
43 RUSSELL, B., 1903, p.45 §48.
44 RUSSELL, B., 1903, p.45 §48.
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function ¢(x) [...] has, in addition to its range of truth, a range of significance, i.e. a range within

which x must lie if ¢(x) is to be a proposition at all, whether true or false#5.”

Thus, the cornerstone of that theory is that there are values of x for which “¢(z)” is me-
aningless. In this theory ‘types’ are defined as ranges of significance of propositional functions

forming a hierarchy:

A term or individual is any object which is not a range. This is the lowest type of
object. If such an object - say a certain point in space - occurs in a proposition,
any other individual may always be substituted without loss of significance.
[...] The next type consists of ranges or classes of individuals. [...] The next
type after classes of individuals consists of classes of classes of individuals4®.

So Russell’s schematic response to the contradiction in the Appendix B of Principles was
to somehow weaken the doctrine of the unrestricted variable, admitting that variables could be
restricted when quantification over propositional functions and/or classes could lead to contra-
dictions. This however, threatened Frege’s and Russell’s early conception of Logic as a whole -

as Frege himself pointed out to Russell in a letter from 29 June 1902 correspondence:

[...] if you admit a sign for the extension of a concept (a class) as a meaningful
proper name and hence recognize a class as an object, then the class itself must
either fall under the concept or not; tertium non datur. 47

Russell’s correspondence with Frege shows that the former had envisaged a way out the
difficulty by denying that classes such as the class of all classes that do not belong to themselves
were genuine entities, via his distinction of a class as one vs class as many. On 10 July 1902,

Russell wrote:

Concerning the contradiction, I did not express myself clearly enough. I believe
that classes cannot always be admitted as proper names. A class consisting of
more than one object is in the first place not one object, but many*3.

Frege saw that this also would not do, pointing out that this was to ground Arithmetic
(for Russell, Pure Mathematics in general) on a theory of aggregates or systems (what today
we would call fusions*?), thus failing to provide Arithmetic with objects. On 28 July 1902 Frege
replied the following:

45 RUSSELL, B., 1903, p.523 §497.

46 RUSSELL, B., 1903, p.523 §497.

47 FREGE, G. 1980, p.135.

4 FREGE, G. 1980, p.137.

49 As Michael Potter puts it “[...] a fusion is conceived of as being nothing over and above its members” a plurality,
“whereas a set is thought of as distinct from that plurality” (POTTER, M., 1999, p.98).
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It seems to me that you want to admit only systems and not classes. I myself was
reluctant to recognize ranges of values and hence classes; but I saw no other
possibility of placing arithmetic on a logical foundation. But the question is:
How do we apprehend logical objects? And I have found no other answer to it
than this: We apprehend them as extensions of concepts, or more generally, as
ranges of values of functions. I have always been aware that there are difficul-
ties connected with this, and your discovery of the contradiction has added to
them; but what other way is there?>°

Frege had good reasons to see no way around this difficulty - reasons that were parti-
ally shared by Russell (at that time). Despite their famous and severe divergences on topics of
Philosophy of Language, Frege and Russell could not admit that something other than an object
(Frege’s term) or individual (Russell’s) could be the logical subject of a singular proposition -
and if set theory was to serve as a genuine foundation for Mathematics, classes should be thus
taken as objects and class expressions as singular terms. Frege made the point with his usual

lucidity in a letter from 28 July 1902:

If a class name is not meaningless, then, in my opinion, it means an object. In
saying something about a manifold or set, we treat it as an object. A class name
can appear as the subject of a singular proposition and therefore has the cha-
racter of a proper name, e.g., 'the class of prime numbers comprises infinitely
many objects’>'.

As long as Russell shared Frege’s view that every class-expression should be treated as
a proper name there was no way around this difficulty: either this or the unrestricted variable

had to go.

So it was that shortly after the publication of the Principles, Russell told Jourdain on 19
January 1906 he thought “[...] had solved the whole thing by denying classes altogether” while
keeping propositional functions as entities>*. In fact, he wrote to Frege by 24 May 1903, just days
after publishing the book33, asserting that he ““[...] discovered that classes are entirely superfluous.
Your designation £¢(¢) can be used for ¢ itself, and x —~ £¢(e) for ¢(z)”5*. But, again, at the

time this was another a dead-end.

It took Frege almost a year and a half to answer Russell’s letter and by the time he
did, Russell had already given up the strategy. As Frege pointed out to Russell, the short lived
solution was spurious since the the letters “¢”, “y”, etc., were “[...] no longer used as function
letters but as object letters™. Frege’s sound criticism relied on his conception of functions as

‘unsaturated’ entities, as he explained in a letter to to Russell from 13 November 1904:

52 FREGE, G. 1980, p.140-1.

5" FREGE, G. 1980, p.140.

5> GRATTAN-GUINNESS, 1., 1977, p78.

3 GRATTAN-GUINNESS, I., 2000b, p.328-9.

54 FREGE, G. 1980, p.159.

5% FREGE, G. 1980, p.162. Russell seems to have partially accepted Frege’s contention, for in his reply from 12
December 1904 he asserts: “I have known already for about a year that my attempt to make classes entirely dis-
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To use a function sign in isolation is to contradict the nature of a function,
which consists in its unsaturatedness. For this is how a function differs from
an object. This is also why function names must differ essentially from proper
names, the difference being that they can carry with them at least one empty
place - an argument place. And these argument places must always be preserved
in a function name and be recognizable as such; otherwise the function name
becomes a meaningless proper name. The same must hold for function letters,
at least wherever they are to be replaceable by function names.®

Russell’s reply shows how deep their disagreement on these matters was. He referred
back to the criticism he had already made in the Appendix B of the Principles to the consequen-
ces Frege extracted from his distinction between functions and objects, pointing specifically to
paragraph §483, in which he made the two following points37: 1. If one tries to claim that it is not
the concept, but the name that is involved, one is already making the concept a logical subject;
2. It is always legitimate to ask what entity a name names and if there is a positive answer (that
is, if it is a meaningful name), then, in the case of the symbol for a concept, the symbol must

name the concept, which is then a possible logical subject of a proposition.

Frege would accept neither of these points, for regarding both of them he would claim
that whenever we try to make a concept the subject of a possible judgment, we are not asserting
something about a concept, but about an object (hence his notorious assertion that “the concept
horse is not a concept™s®). It is puzzling, then, that before making this point Russell asserts in
the same letter from 12 December 1904 that he “[...] knew, for about a year that [his] attempt to
make classes entirely dispensable was a failure, for essentially the same reasons as you give”.
Probably by “essentially the same reasons” he means the fact the his strategy could not avoid
the use of function symbols as names of objects, for as Russell later explained in the letter from
19 January 1906 to Jourdain about his work on this period, he “treated ¢ as entity” and this was
precisely the reason the strategy “brought back the contradiction”®. Given that, according to his
unrestricted conception of variation, if a functional variable “¢” is treated as an entity variable,

one can define a function W as follows:

(W) W(¢) =~ ¢(¢) DI

pensable was a failure, for essentially the same reasons as you give.” However, he still refrained from accepting
Frege’s views on functions: “But it is not yet clear to me that it is never permissible to use a function letter in iso-
lation. On this point I do not quite share your view, for reasons you will find in my book, sects 480ff, especially
sect.483. My present belief is roughly as follows. In the case of a particular function, e.g., (§ — 1) - (£ +1),what
arises through the mere omission of £ can certainly not be regarded as an object. But I believe that if we use
the notation ¢z, the letter ¢ must designate something that remains the same when y is substituted for x. This
something is, I believe, what is designated by ¢¢” (FREGE, G. 1980, p.166-7).

¢ FREGE, G. 1980, p.160-1.

57 RUSSELL, B., 1903, p.504 §483.

% FREGE, G., 1892b, pp.192-3.

5% FREGE, G. 1980, p.160-T1.

% GRATTAN-GUINNESS, 1., 1977, p78.
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Which is a function that applies to every function that does not apply to itself. Then, we have®':

" (@) (W (@) .=~ 6(0))

The question that can obviously be introduced then is this: Does this W apply to itself or not?

In exactly the same way the paradox of the class of all classes emerged, we have:

(W) W(W).=.~ W(W)

Thus, the same problem remained and, as Russell put, he “[...] gained nothing by rejecting clas-

ses”0?

In reminiscence, Russell regarded his work along the period of 1903-1904 as being com-
pletely unsuccessful toward the goal of resolving the contradiction, with a breakthrough coming
with his discovery of the theory of descriptions®3 first presented in On Denoting. In what follows

we discuss why that was the case.

3.2 The ‘Rise’ of Russell’s Substitutional Theory of Classes and

Relations

3.2.1 Russell’s Reception of Frege and the Renewed Theory of the Variable

As noted in the previous chapter, the Logic of the Principles had significant improve-
ments with respect to Peano’s, but in many respects it also kept some of its shortcomings®. The
most notable of these are salient in Russell’s account of quantification: as in the case of Peano’s

works, there is no explanation of generality in the Principles as clear and precise as that of Frege

o GRATTAN-GUINNESS, 1., 1977, p78.

% GRATTAN-GUINNESS, 1., 1977, p78. What is even more puzzling however, is the fact that Russell himself
antecipated this outcome already in the Principles of Mathematics! For there, he had already claimed that “the
¢ in ¢x is not a separate and distinguishable entity: it lives in the propositions of the form ¢z, and cannot
survive analysis”, precisely for the reasons discussed above: “If ¢ were a distinguishable entity, there would
be a proposition asserting ¢ of itself, which we may denote by ¢(¢); there would also be a proposition ~
o(¢), denying ¢(¢). In this proposition we may regard ¢ as variable; we thus obtain a propositional function.
The question arises: Can the assertion in this propositional function be asserted of itself? The assertion is non-
assertibility of self, hence if it can