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RESUMO 

 

Este estudo examina a aplicabilidade do GARCH (1, 1) com inovações assimétricas com 

distribuição t para séries que buscam representar o mercado de criptomoedas. Com um conjunto 

de dados de dois anos para dez ativos, dois índices teóricos são criados, um ponderando os ativos 

selecionados pelas suas capitalizações de mercado e outro por meio da Análise de Componentes 

Principais, e são submetidos a uma análise de risco-retorno, feita utilizando um modelo GARCH, 

com suas estimativas comparadas às de uma medida de volatilidade realizada. Os modelos GARCH 

apresentaram majoritariamente coeficientes significativos, porém evidenciaram a presença de 

autocorrelação conjunta nos resíduos, de acordo com os testes de Ljung-Box realizados. 

 

Palavras-chave: Criptomoedas. Estimação de volatilidade. GARCH.  



 

ABSTRACT 

 

This study examines the applicability of GARCH (1, 1) with asymmetric t-distributed innovations 

to series that seek to represent the cryptocurrency market. With a two years data set of ten assets, 

two theoretical indices are created, one by weighting selected assets’ by market capitalization and 

the other one through Principal Components Analysis, and are subjected to a risk-return analysis, 

made by using a GARCH model, with its estimates compared to the ones from a realized volatility 

measure. The GARCH models presented mostly significant coefficients, but showed, however, 

evidence for the presence of joint autocorrelation in the residuals, according to the Ljung-Box tests 

that were ran. 

 

Keywords: Cryptocurrencies. Volatility estimation. GARCH.  



 

LIST OF FIGURES 

 

Figure 4.1 – Cryptocurrencies’ Cumulative Log-Returns from August 1, 2019 to July 31, 2021…20 

Figure 5.1 – Market Capitalization Realized Volatility and GARCH Conditional Volatility 

Estimates…..………………………………………………………………………...27 

Figure 5.2 – PCA Realized Volatility and GARCH Conditional Volatility Estimates…………….27 



 

LIST OF TABLES 

 

Table 4.1 – Series’ Sample Sizes………………………………………………………………….19 

Tabel 5.1 – Market Capitalization GARCH Volatility Estimates………….………...……………21 

Table 5.2 – Market Capitalization GARCH Volatility Estimates with Robust Standard Errors….22 

Table 5.3 – Ljung-Box Test for the Standardized Residuals of the Market Capitalization 

GARCH……….………………………………………………………………...……22 

Table 5.4 – Ljung-Box Test for the Standardized Squared Residuals of the Market Capitalization 

GARCH…….………………………………………………………………………...23 

Table 5.5 – PCA GARCH Volatility Estimates………………………………………….………..24 

Table 5.6 – PCA GARCH Volatility Estimates with Robust Standard Errors …………………….24 

Table 5.7 – Ljung-Box Test for the Standardized Residuals of the PCA GARCH………………...25 

Table 5.8 – Ljung-Box Test for the Standardized Squared Residuals of the PCA GARCH……….25 

 

 

  



 

LIST OF ABBREVIATIONS AND ACRONYMS 

 

ADA  Cardano 

ARCH  Autoregressive Conditional Heteroskedasticity 

ALGO  Algorand 

ANN  Artificial Neural Networks 

ATOM  Cosmos 

BTC  Bitcoin 

BNB  Binance Coin 

CAPM  Capital Asset Pricing Model 

CME  Chicago Mercantile Exchange 

DOGE  Dogecoin 

ETH  Ethereum 

GARCH Generalized Autoregressive Conditional Heteroskedasticity 

HAR-RV  Heterogeneous Autoregressive model of Realized Volatility 

LTC  Litecoin 

MATIC Polygon 

PCA  Principal Components Analysis 

PCC   Principal Components Combining 

XRP  XRP 

  



 

CONTENTS 
 

1  INTRODUCTION ............................................................................................................ 1 

2  LITERATURE REVIEW ................................................................................................ 3 

3  METHODOLOGY ........................................................................................................... 9 

3.1  REALIZED MEASURES ................................................................................................. 9 

3.2  SYNTHETIC MARKET ESTIMATES AND WEIGHTING METHODS .................... 10 

3.2.1 Estimation based on market capitalization ................................................................. 10 

3.2.2 Estimation based on principal component analysis ................................................... 12 

3.3  GARCH MODEL ............................................................................................................ 15 

4  DATA DESCRIPTION .................................................................................................. 17 

5  RESULTS ........................................................................................................................ 21 

5.1  GARCH MODEL ............................................................................................................ 21 

5.2  COMPARISON ............................................................................................................... 26 

6  CONCLUSION ............................................................................................................... 27 

7 BIBLIOGRAPHY .......................................................................................................... 29 

8 APPENDIX ..................................................................................................................... 32 



1 

 

1 INTRODUCTION 

 

The assertive allocation of investment portfolios can be a difficult task to carry out, as it 

invariably involves a plurality of risks. Market risk in particular can never be completely 

eliminated; however, much is discussed in terms of its control and minimization, mainly through 

diversification, which depends on the correct mapping of correlations between assets. In a 

securities selection process aimed at portfolio optimization, therefore, it becomes necessary having 

not only assertive estimates for the covariance matrix, but also precise volatility measures. 

A very common and popularized method in the literature dealing with volatility estimation 

is the Generalized Autoregressive Conditional Heteroskedasticity (GARCH), introduced by 

Bollerslev (1986), which employs daily returns in order to get a measure for the conditional 

variance of an asset. GARCH-type models, however, can overpredict volatility, as documented by 

Nomikos and Pouliasis (2011) when dealing with petroleum futures’ time series. These models, 

therefore, can present a slow response a volatility shock passes, taking time for the estimates to go 

down, which can incur in losses of forecasting performance as documented by Vortelinos (2017), 

in a study across multiple asset classes, further detailed in Section 2. 

With the growing amount, availability, and manageability of data at higher frequencies 

(intraday) than the daily one, a richer sample covariance matrix can be estimated, leading ultimately 

to the construction of a matrix based on realized measures. 

Few high-frequency studies have been performed, however, for cryptocurrencies. Since 

2008, cryptocurrencies have gained notoriety, especially because of the appreciation of Bitcoin, 

which had an incredible peak in 2018 that was only reached and surpassed by the end of 2020 (see 

Figures 4.1 and 7.3 for cumulative log-returns). These alternative assets are traded worldwide in 

various exchanges, private platforms that bare similarities to traditional stock and futures 

exchanges, like connecting buyers and sellers, but also some peculiarities, like unlimited trading 

24 hours a day every day of the year, which increases the amount of data per day, since negotiation 

is not limited to a specific time frame of each day. From 2018 many new digital currencies were 

introduced, each with a different purpose. These have also had noteworthy appreciation in general, 

with the total market cap of 50 most valued cryptocurrencies having reached over 1,9 trillion 

dollars, according to CoinMarketCap, a website that gathers and provides information on a number 
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of cryptocurrencies. These higher returns when compared to traditional assets, however, are 

attained only by the increased volatility that is underlying to this market. 

This study aims to verify the applicability of volatility estimators, namely the realized 

volatility and the GARCH, for cryptocurrencies’ time series.  

In Chapter 2, a literature review concerning this work is introduced, Chapter 3 presents the 

empirical methodology applied in this work, Chapter 4 briefly describes the data set, Chapter 5 

presents the obtained results and finally, Chapter 6 concludes.  
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2 LITERATURE REVIEW 

 

Measuring volatility is of great importance for building portfolios and controlling their risk. 

This measure, however, is not observable, but latent, and when considering daily returns, it is not 

capable of fully expressing the price variation that occurred during the day. Although unobservable, 

volatility is estimable, with several models with satisfactory predictive capacity, considering 

common characteristics of such series, including non-stationary mean, occurrence of volatility 

clusters, that is, high values tend to be followed by high values, which also ends up causing 

heteroscedasticity; divergent impacts between positive and negative innovations, causing 

asymmetry in the distribution, which deviates from normality also due to the occurrence of heavy 

tails. In order to deal with these characteristics of volatility, Engle (1982) introduced the 

Autoregressive Conditional Heteroskedasticity (ARCH) model, which allows for 

heteroskedasticity and captures the dependency found. In this model, the average-adjusted return 

(innovation) does not have serial correlation, but is dependent, and can be written as a function of 

previous values, so that the volatility in the present can be written as a function of innovations in 

the previous period. Not long after this model was proposed, Bollerslev (1986) presented a 

generalization of the ARCH, named Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH), in which the present volatility is given not only by previous innovations, but also by 

the volatility in the previous period, a method which became popular in volatility prediction and is 

still used on a large scale today, through the GARCH (1,1), which combines simplicity with 

accuracy in predictions. This model is widely applied to several asset classes and is hardly 

surpassed, as Hansen (2005) demonstrated through a comparison in which 330 distinct ARCH-type 

models were used. 

With the increasing digitization of financial markets in recent decades, it has become 

customary for stock exchanges to store all trades carried out (tick-by-tick) for listed assets. From 

the availability of this information, new possibilities for the computation of volatility arise since 

this becomes an increasingly observable phenomenon as the sampling frequency increases. In other 

words, as one moves from samples of daily returns to intraday returns, price fluctuations throughout 

the analyzed period are considered, making a discrete series (day by day, for example) increasingly 

closer to a continuous series. This gives rise to a new class of measures called realized measures, 

which seek to reflect the growing observability (realization) of the concept of volatility, the most 
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popular being the Realized Volatility, to be described in Subsection 3.1. Therefore, new estimators 

and models are needed in order to make the best use of all the available information. Corsi (2009) 

proposes the Heterogeneous Autoregressive model of Realized Volatility (HAR-RV), which 

consists of a linear regression in which a volatility measure in the present is dependent on the same 

measure for the day before, its average in the last 5 days (i.e., during the week) and its average over 

the last 22 days (i.e., during the month). The main argument behind the windows used by the author 

is that market agents have different horizons, contributing differently to volatility. With this 

specification, agents with short trading horizons react to short- and long-term volatility, while 

market participants with longer-term investments do not necessarily consider abrupt fluctuations 

in shorter periods. As for the volatility measure used in the model, there is a wide range of 

estimators that employ different computations on the data in order to make the most efficient use 

of them, some of which deal with the microstructure noise problem present and resulting from the 

increase of the sampling frequency.  

Studies on the application of measurements performed to time series are diverse when it 

comes to assets from developed markets. Liu, Patton and Sheppard (2015) compare more than 400 

estimators for volatility using measurements for 31 assets, from 5 different classes and 2 different 

countries. They concluded that there is great difficulty in overcoming the simple Realized Variance 

sampled every 5 minutes, given the presence of microstructure noise when the sampling frequency 

is increased. Microstructure noise is a recurrent problem in studies with high frequency data and 

can be attributed mainly to bid-ask spreads. Due to its presence, by increasing the sampling 

frequency it is common for measurements taken to tend to infinity, but at the same time, more of 

the available information is being used. This, therefore, generates a trade-off relationship between 

the use of data in a more complete way, at the cost of greater noise in the series, and vice versa. 

When it comes to data for the Brazilian market, however, the scarcity of studies in this field 

of research is noticeable. Boff (2017), through the analysis of two time series of Brazilian stocks, 

points out that more sophisticated measures when compared to the realized variance present better 

performance in predicting volatility. Furthermore, regarding the sampling frequency, the author 

concludes that the liquidity of the asset in question plays an important role in the decision, with 

more liquid stocks indicating the use of higher sampling frequencies, and less traded assets 

requiring more sampling spread out in more time. In a multivariate analysis for the selection of 

minimum variance portfolios of 30 assets traded on the Brazilian stock exchange, B3, Borges, 
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Caldeira and Ziegelmann (2015) compare several performed measurements and intraday sampling 

frequencies, including an estimator that allows data sampling not synchronized. In this study, the 

sampling frequency of 5 minutes presents the lowest transaction costs, however, lower frequencies, 

such as 120 minutes and daily, present better results in terms of risk and return, respectively. The 

use of correlations from realized covariances (realized correlations) is not subject to the problem 

of overparameterization, like the GARCH-type models, in which the number of parameters 

increases as more assets are added, compromising the estimation necessary to carry out a 

multivariate analysis. Caldeira, Moura, Perlin and Santos (2017) employ different sampling 

frequencies and an algorithm for sampling unsynchronized data, along with estimators for the 

covariance matrix using intraday data, in addition to obtaining more dynamic versions of such 

correlations through multivariate GARCH structures. The sample consists of tick-by-tick data for 

the 30 most traded shares in the period analyzed (2009-2012) on B3. The authors conclude that 

portfolios built from realized covariance matrix generate better results in terms of risk and turnover 

(less financial volume traded in order to rebalance the portfolio) when compared to those built from 

covariance matrices based on low frequency data, in this case, daily. Portfolios built from 

conditional realized covariances – those that include a GARCH structure – also show better results 

in terms of risk when compared to their unconditional counterparts, but this comes at the cost of 

higher turnover, which can generate higher transaction costs and offset the lower risk. Furthermore, 

corroborating the study by De Pooter, Martens and Van Dijk (2008), the sampling frequency plays 

a fundamental role. The sampling frequency of 5 minutes generates the best results in terms of risk 

and turnover in the case of the Brazilian article, presenting robustness in a sub-sample of the same 

stocks with a lower level of liquidity. 

When comparing the volatility predictions of the HAR-RV, the GARCH (1, 1), the 

Artificial Neural Networks (ANN), and the Principal Components Combining (PCC) method for 7 

different asset classes, Vortelinos (2017) reveals that none of the models can surpass the HAR-RV, 

which is considered the best model in all the criteria used, closely followed by the model that 

employs the PCC. Results show the benefits that can be obtained when using high frequency data 

in detriment of daily data, as commonly used by financial market agents through the GARCH (1, 

1). 

The asset class of cryptocurrencies has been subject to few volatility measurement studies 

so far, although having over ten years of existence. Since 2008 these digital assets have become 



6 

 

popular, among which the most relevant in the current scenario is the Bitcoin, which has the main 

purpose of providing means of payment worldwide, with fast transfers, and has its issuance limited 

in nature and decentralized. Given this popularization of crypto assets in recent years, as well as 

the rise in prices that accompanied it, and since several important players in the world financial 

market have already shown interest or are already investing in such assets, it is relevant to extend 

the analysis of high-frequency data usage to stocks, commodities, interest rates, and currencies that 

have been tested in developed markets to digital asset markets. The application of an analysis 

similar to cryptocurrencies, however, is hampered by the fact that these assets are not centrally 

traded, as in most cases when dealing with stocks, commodities, interest rates and currencies, which 

are traded in stock exchanges. Crypto assets, however, are negotiated in a decentralized manner, 

with their trading taking place on several different platforms, called exchanges. This characteristic 

of cryptocurrencies opens the possibility for different prices for time series on different exchanges, 

generating arbitrage opportunities. The selection of a series of prices for the assets to be analyzed 

must, therefore, consider the relevance of the exchange from which the data were extracted, in 

order to preserve the applicability and relevance of the tested methods. Market movements, 

however, continue to be relatively synchronous and uniform across all trading platforms known to 

the author. The series of these assets also show significantly greater volatility when compared to 

other assets, with large price movements occurring almost daily. This adds to the motivation of the 

present work to test the significance of price variations in cryptocurrencies: since volatility is 

higher, the inherent risk deserves special attention by all market agents and finding accurate 

methods of measuring variance becomes essential to the prevention of relevant financial losses, as 

well as testing rather the increased volatility is reflected on cryptocurrencies’ returns. In addition, 

another factor that differentiates the assets in question from those traded traditional on the stock 

and mercantile exchanges is the trading hours, which are not limited, allowing trades to be carried 

out 24 hours a day, every day of the year. This affects even more the pricing of assets, as different 

agents may follow different trading hours, as several exchanges accept clients from other countries, 

creating a difference in time zones that can create imbalances in traded volumes, in addition to 

periods of volatility located in some time slots.  

Catania and Sandholdt (2019) apply the methods already disseminated in the literature for 

developed markets that deal with volatility prediction through high-frequency data to the Bitcoin 

price series. The authors obtain tick-by-tick prices for Bitcoin from the listings of this asset on 
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Coinbase and Bitstamp, two exchanges that rank among the 10 largest cryptocurrency trading 

platforms in the world, according to CoinMarketCap, which provides several classifications both 

between exchanges and between crypto assets. The series covers the period from September 13, 

2011, to March 18, 2018 for the Bitstamp price and, for Coinbase, from December 1, 2014 with 

the same end date as the other exchange. The period analyzed, therefore, includes the time when 

Bitcoin became popular, both in the media and in the investment world, due to the large price hike 

that occurred in early 2017. The study confirms the hypothesis of intraday seasonality, with notable 

occurrences of peaks and valleys in the average volume traded at different times of the day. 

Volatility also follows a similar pattern of intraday seasonality, with significant differences in the 

degree of price fluctuations depending on the time of day. These patterns are different for each of 

the trading platforms used in the study, and this difference can be explained by the location where 

each exchange is based, with Coinbase with headquarters in the United States, while Bitstamp is 

based in Europe. The authors note that seasonal patterns are present in terms of weekdays for both 

the average volume traded as well as for the realized volatility, with a clear weekend effect, which 

is more evident during what is called the “Hype” period, in which Bitcoin became extremely 

popular, leading to a sort of Dutch disease, defined as the period from 2017 onwards. Realized 

volatility also showed increasing intensity from Mondays onwards, reaching peaks on Thursdays 

and Fridays, a phenomenon that is notably not found in financial assets that are regularly traded on 

weekdays, such as stocks, commodities, interest rates and currencies. When analyzing the 

predictability of returns for Bitcoin, the result is negative for frequencies of 1 day or more. For 

sample frequencies of up to 6 hours, however, some predictability is found through a first-order 

autoregressive model of order one (i.e., an AR (1) model), although its statistical significance is 

limited. Furthermore, such predictability of returns varies over time, with periods of greater and 

lesser precision for the model used. When dealing with realized volatility, the study is able to find 

similarities to time series of regular financial assets, such as the long memory characteristic, that 

is, a slowly decreasing autocorrelation function, and the so-called leverage effect, which consists 

of asymmetry of contribution to realized volatility on the part of negative and positive returns, 

where lows usually present greater shocks in absolute values, having greater explanatory power on 

total realized volatility. In terms of predicting realized volatility, the authors conclude that 

estimates became more accurate after 2017, during the Hype period. These conclusions are reached 

from 5 specifications of HAR-RV models and their derivations, starting from the most basic, which 
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consists of a linear regression of past performed volatility, to more robust specifications, which 

have the inclusion of components to identify jumps in intraday returns, and, even more, a model 

capable of identifying and considering the presence of the leverage effect. By evaluating the 

predictions from such models, the authors are able to identify significant benefits arising from the 

inclusion of a component for the leverage effect. Finally, the accuracy of estimates for future 

realized volatility is also dependent on the forecast horizon, as found in time series of regular 

financial assets. The article has great relevance in terms of laying the foundations for modeling 

volatility through the use of high-frequency data, applying methods that are already widespread 

when dealing with assets commonly acquired by the main investment funds. With the beginning 

of trading of future contracts for Bitcoin in world stock exchanges, such as the Chicago Mercantile 

Exchange (CME), it is expected that market agents will migrate part of their investments to crypto 

assets, making it particularly significant for risk management that precise volatility measures are 

developed in order to avoid excessive losses that may result from the high volatility of such assets. 

Given the availability of data from two different exchanges, investigating the possibility of 

arbitration between them would be a relevant extension of the study. In addition, it would also be 

interesting to replicate the analysis to other cryptocurrencies, since Bitcoin is just one among many, 

despite still being the most relevant in terms of average volumes traded. Furthermore, adding more 

crypto creates the possibility of carrying out a multivariate analysis, in order to explore the 

construction and performance of minimum variance portfolios. 
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3 METHODOLOGY 

 

The methodology used in this study combines realized measures, which are presented in 

Section 3.1, applied to real series, i.e. the cryptocurrencies that make up the initial data set, but also 

to theoretical series, that are created through the assets’ weighting techniques described in Section 

3.2, constituting the final data set. At the same time, a GARCH volatility estimate is computed, 

according to what is depicted in Section 3.3. The entire analysis was conducted in the software R 

and the codes are accessible on GitHub (https://github.com/rcviale/tcc) and can also be found in 

Appendix 7.6. 

 

3.1 REALIZED MEASURES 

 

For the purposes of this study, individual asset log returns are computed from the sum of 

the 5-min log returns for each cryptocurrency 𝑖, according to equation (3.1). The sampling 

frequency choice follows the research from Liu et al. (2015), which concluded that it is very 

difficult to significantly beat a simple 5-minute realized variance (𝑅𝑉) when it comes to price 

variation estimators constructed from high-frequency data. This estimator for the time series 

variance consists of the sum of squared 5-minute returns for each day 𝑡 and asset 𝑖, as in equation 

(4.2). 

 

𝑟𝑖,𝑡 = ∑𝑟𝑖,𝑡−1+𝑗𝑛𝑚
𝑗=1   and  𝑅𝑖 = [𝑟𝑖, 1𝑟𝑖, 2. . .𝑟𝑖, 𝑇], 

 

where 𝑡 represents a day, 𝑛 is a fraction of a trading session associated with the sampling 

frequency (since 5-min returns are being used and there are 1440 minutes in one day, 𝑛 =1(1440/5) = 1288), 𝑚 represents the number of observations in on day (𝑚 =  1𝑛 = 288) and 𝑇 is the 

last observation day. 

 

(3.1) 
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𝑅𝑉𝑖, 𝑡 = ∑𝑟𝑖, 𝑡−1+𝑗𝑛2𝑚
𝑗=1 , 

 

where 𝑛 is a fraction of a trading session associated with the sampling frequency (since 5-

min 𝑅𝑉 is being used and there are 1440 minutes in one day, 𝑛 = 1(1440/5) = 1288) and 𝑚 represents 

the number of observations in on day (𝑚 =  1𝑛 = 288). 

The volatility 𝑅𝑉𝑂𝐿𝑖, 𝑡 provided by this estimator is then simply the square root of each 𝑅𝑉𝑖, 𝑡. 
 𝑅𝑉𝑂𝐿𝑖, 𝑡 = √𝑅𝑉𝑖,𝑡 

 

It is noteworthy that by using these estimators, although the analysis employs high-

frequency data, this information is aggregated in daily series, enabling comparisons with models 

that make use of returns only in a daily scale, as the ones from the GARCH family. 

The next section describes the computation of measures that seek representing the 

movements in the whole cryptocurrency market in a general manner. 

 

3.2  SYNTHETIC MARKET ESTIMATES AND WEIGHTING METHODS 

 

In order to create synthetic indices that are able to represent the overall cryptocurrency 

market, it becomes necessary to weight the assets in order to create this index. Two methods, 

therefore, are employed as weighting factors: the daily market capitalization for each asset and the 

weights derived from the application of the Principal Component Analysis (PCA). 

 

3.2.1 Estimation based on market capitalization 

 

From the daily market capitalization series, weights 𝑤𝑖, 𝑡 are estimated such that  

 𝑤𝑖, 𝑡(𝑀𝐶) = 𝑀𝐶𝑖,𝑡∑ 𝑀𝐾𝑗=1 𝐶𝑗,𝑡 , 

(3.2) 

(3.3) 

(3.4) 
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𝑊𝑀𝐶, 𝑡 = [  
  𝑤1, 𝑡(𝑀𝐶)𝑤2, 𝑡(𝑀𝐶). . .𝑤𝐾, 𝑡(𝑀𝐶)]  

  , 
 

where 𝑀𝐶𝑖, 𝑡 is the market capitalization for asset 𝑖 in period 𝑡, and the superscript (𝑀𝐶) 

denotes the weight derived from market capitalization. 

These weights are then combined with the assets’ returns in equation (3.1), computed 

previously to obtain an estimate of market returns 𝑅𝑚, 𝑡(𝑀𝐶)
 such as 

 

𝑟𝑚, 𝑡(𝑀𝐶) = ∑(𝐾
𝑖=1 𝑟𝑖, 𝑡𝑤𝑖, 𝑡), 

 

𝑅𝑚(𝑀𝐶) = [  
  𝑟𝑚, 1(𝑀𝐶)𝑟𝑚, 2(𝑀𝐶). . .𝑟𝑚, 𝑇(𝑀𝐶)]  

  =
[  
   
   
 ∑(𝐾
𝑖=1 𝑟𝑖, 1𝑤𝑖, 1)
∑(𝐾
𝑖=1 𝑟𝑖, 2𝑤𝑖, 2). . .∑(𝐾
𝑖=1 𝑟𝑖, 𝑇𝑤𝑖, 𝑇)]  

   
   
 
. 

 

Testing the market’s volatility as a driver of returns is the main goal of this work, however, 

obtaining an estimate for the market’s volatility is not as simple as weighting and summing up 

different series. This happens not only because the covariance between assets must be considered,1 

but also, there is no 5-minute market returns series (only daily), where the sum of squared returns 

could be taken, similarly as to what was done with the individual cryptocurrencies. To obtain an 

estimate for the market’s 5-minute realized variance, therefore, firstly the 5-minute sample 

covariance matrix for each period must be estimated 

 

 

1 See Appendix 7.2 for the referred property of variance. 

(3.5) 

(3.6) 

(3.7) 
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𝑅𝐶𝑜𝑣𝑡 = [   
 𝑠11, 𝑡2 𝑠12, 𝑡2 . . . 𝑠1𝐾, 𝑡2𝑠21, 𝑡2 𝑠22, 𝑡2 . . . 𝑠2𝐾, 𝑡2. . . . . . . . . . . .𝑠𝐾1, 𝑡2 𝑠𝐾2, 𝑡2 . . . 𝑠𝐾𝐾, 𝑡2 ]   

 , 
 

where 𝑠𝑖𝑗, 𝑡2  denotes the 5-minute sample covariance between assets 𝑖 and 𝑗 in day 𝑡. This 

matrix can then be simply weighted by the 𝑊𝑀𝐶, 𝑡 vectors obtained from the assets’ market 

capitalization in equation (3.5) in the following way. 

 𝑅𝑉𝑚, 𝑡(𝑀𝐶) = 𝑊𝑀𝐶, 𝑡𝑇 × 𝑅𝐶𝑜𝑣𝑡 × 𝑊𝑀𝐶, 𝑡, 
 

where superscript 𝑇 denotes the transposed of the vector in question. The volatility 𝑅𝑉𝑂𝐿𝑀(𝑀𝐶)
 estimate derived from market capitalization weighting is then obtained simply by taking 

square root of the obtained realized variance estimate, similarly to the procedure in equation (3.3). 

 

𝑅𝑉𝑂𝐿𝑀(𝑀𝐶) =
[  
   
 √𝑅𝑉𝑀,1(𝑀𝐶)
√𝑅𝑉𝑀,2(𝑀𝐶). . .√𝑅𝑉𝑀,𝑇(𝑀𝐶)]  

   
 
. 

 

3.2.2 Estimation based on principal component analysis 

 

An alternative method used to obtain an estimate for the market’s returns and volatility is 

through Principal Component Analysis (PCA), introduced by Pearson (1901). In a context of 

closely related variables such as this data set (see the series’ correlation matrix in Appendix 7.3, 

Brooks (2019) noted that PCA can be particularly useful, because it can transform the 𝐾 series into 

a new set of 𝐾 uncorrelated variables, by taking linear combinations of the original data set. In 

other terms, the PCA can be written as 

 

(3.8) 

(3.9) 

(4.10) 
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 𝑝1,𝑡 = 𝛼11,𝑡𝑟1,𝑡 + 𝛼12,𝑡𝑟2,𝑡 + . . . + 𝛼1𝐾,𝑡𝑟𝐾,𝑡𝑝2,𝑡 = 𝛼21,𝑡𝑟1,𝑡 + 𝛼22,𝑡𝑟2,𝑡 + . . . + 𝛼2𝐾,𝑡𝑟𝐾,𝑡. . . = . . . + . . . + . . . + . . .𝑝𝐾,𝑡 = 𝛼𝐾1,𝑡𝑟1,𝑡 + 𝛼𝐾2,𝑡𝑟2,𝑡 + . . . + 𝛼𝐾𝐾,𝑡𝑟𝐾,𝑡, 
 

where 𝑝𝑖,𝑡 and 𝑟𝑖,𝑡, represent, respectively, the 𝑖 principal component and original variable 

(daily log-returns) in period 𝑡, and 𝛼𝑖𝑗,𝑡 denotes the coefficient for variable 𝑗 in the principal 

component 𝑖 in day 𝑡. The sum of the squared coefficients 𝛼2 that were estimated must be equal to 

one for each individual component, as in equation (3.12). James et al. (2014) noted that scaling of 

the variables is not necessary when they are measured in the same units, and since this is applicable 

to this study, as all variables are measured in the unit of log-returns, no scaling was performed. 

 

∑𝛼𝑖, 𝑗2𝐾
𝑗=1 = 1 ∀ 𝑖 = 1,  2,  . . . ,  𝐾. 

 

This procedure is, therefore, carried out for the daily log-returns series for each day 𝑡 in the 

analyzed period, and from the estimated principal components, the first one, which is able to 

explain the largest amount of the data set’s variance, approximately 57.4% during the sampled 

period, (see Appendix 7.4 for additional information on PCA’s application), is taken as the returns 

for an index to represent the cryptocurrencies market in the same fashion as the market cap 

weighted index constructed in Subsection 3.2.1. This first principal component being a weighted 

average of the analyzed assets is then set as an estimate for market returns derived from PCA, 𝑅𝑀(𝑃𝐶𝐴)
, defined as 

 

𝑅𝑀(𝑃𝐶𝐴) = [𝑝1,1𝑝1,2. . .𝑝1,𝑇]. 
 

Computing the realized volatility of the market, however, requires a weighting vector for 

each day to apply the same matrix multiplication as in Subsection 3.2.1. The PCA described 

immediately before provides only weights for the entire sample period and not daily as the 

weighting set used in the previous subsection. These vectors are obtained, therefore, by applying 

(3.13) 

(3.11) 

(3.12) 
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the same method, PCA, for the 5-minute returns series. In other words, instead of applying PCA to 

the daily returns’ series, the intraday ones are used, where there are 𝑚 = 288 returns per day, and 

the method is computed for each separate day, obtaining a vector of containing asset weights for 

each day in the sample, as in equation (3.14). 

 

𝑊𝑃𝐶𝐴,𝑡 = [  
  𝑤1, 𝑡(𝑃𝐶𝐴)𝑤2, 𝑡(𝑃𝐶𝐴). . .𝑤𝐾, 𝑡(𝑃𝐶𝐴)]  

  , 
 

The market realized variance is then obtained in the same fashion as in the market 

capitalization case presented in equation (3.9), that is, by multiplying the transposed PCA weights 

vector by the 5-minute sample covariance matrix and then the PCA weights vector, as showed in 

equation (3.15). Lastly, the realized volatility 𝑅𝑉𝑂𝐿𝑀(𝑃𝐶𝐴)
 is again computed by taking the square 

root of the realized variance, as defined in equation (3.3), and applied in equation (3.10). 

 𝑅𝑉𝑀,𝑡(𝑃𝐶𝐴) = 𝑊𝑃𝐶𝐴,𝑡𝑇 × 𝑅𝐶𝑜𝑣𝑡 × 𝑊𝑃𝐶𝐴,𝑡, 
 

𝑅𝑉𝑂𝐿𝑀(𝑃𝐶𝐴) =
[  
   
 √𝑅𝑉𝑀,1(𝑃𝐶𝐴)
√𝑅𝑉𝑀,2(𝑃𝐶𝐴). . .√𝑅𝑉𝑀,𝑇(𝑃𝐶𝐴)]  

   
 
. 

 

With these, there are two measures to represent the cryptocurrencies market derived from 

PCA and two derived from market capitalization of individual assets, with one in each case being 

for market returns and the other one for realized volatility. 

In the next Section, a GARCH model is presented as an alternative volatility estimator. 

 

 

(3.14) 

(3.15) 

(3.16) 
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3.3 GARCH MODEL 

 

According to empirical studies from Hansen and Lunde (2005), where the authors 

compared the forecast potential of a total of 330 ARCH-type models, there is “no evidence that a 

GARCH(1, 1) is outperformed by more sophisticated models” in their analysis of exchange rates, 

by evaluating out-of-sample predictions, although this model is found inferior to the ones that can 

accommodate a leverage effect when analyzing IBM stock returns. 

The GARCH(p, q) process models conditional variance 𝜎𝑡2, making it possible for the 

variance to be dependent on its own past lags. The letters p and q determine the order of the model, 

with q representing the number of past conditional variance lags directly influencing itself in period 

t and p, the number of past “innovations” that directly influence the conditional variance in time t, 

where an innovation is defined as the mean-corrected return, or in the case of this study, the mean-

corrected log return. As it is not the objective nor the focus of this work, GARCH of higher orders 

will not be presented here, only the specific case of interest, the GARCH(1, 1), but a detailed 

explanation can be found directly in Bollerslev (1986), or in Tsay (2005). 

The GARCH(1, 1), therefore, relies on past information to determine the present 

conditional volatility. Defining the innovations for asset i in period t as 𝑎𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝜇𝑖,𝑡, where 𝜇𝑖,𝑡 
is the mean of the returns, the model can be formalized as 

 𝑎𝑖,𝑡 = 𝜎𝑖,𝑡𝜖𝑖,𝑡 
 𝜎𝑖,𝑡2 = 𝛼0,𝑖 + 𝛼1,𝑖𝑎𝑖,𝑡−12 + 𝛽1,𝑖𝜎𝑖,𝑡−12 , 
 

where 𝜖𝑖,𝑡 is assumed, in this study, to be an i.i.d. random variable following a Student’s t-

distribution, 𝛼0,𝑖 > 0, 𝛼1,𝑖 ≥ 0 and 𝛽1,𝑖 ≥ 0. Finally, it is necessary that 𝛼0,𝑖 + 𝛽1,𝑖 < 1, to ensure 

the unconditional variance of 𝑎𝑡,𝑖 is finite while the conditional variance, 𝜎𝑖,𝑡2 , is allowed to change 

from period to period. 

It can be seen that in this model a spike in 𝑎𝑖,𝑡−12  or in 𝜎𝑖,𝑡−12  will impact 𝜎𝑖,𝑡2  positively, as 

long as 𝛽1,𝑖 has a positive sign, or, in other words, large innovations or conditional variance in time 

t - 1 tend to be followed by large innovations in time t, since an increase in 𝜎𝑖,𝑡2  leads to a higher 

(3.17) 

(3.18) 
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𝑎𝑖,𝑡, making it possible for volatility clusters to occur as they do in financial markets, more 

noticeably in crisis periods, such as the global financial crisis (2007-2008) and the more recent 

2020 stock market crash caused by the COVID-19 pandemic. 

For its reasonable forecasting power, allied with its simplicity and parsimony two 

GARCH(1, 1) models, with t-distributed innovations to account for heavier tails, are estimated for 

the market returns estimates derived from the market capitalization and from the PCA described in 

Subsections 3.2.1 and 3.2.2, respectively. In other words, two cases are computed, one where the 

market capitalization weighted theoretical index is modeled, providing a volatility estimate 𝜎𝑀𝐶  

for 𝑅𝑀(𝑀𝐶)
, and in the second one, the first principal component series is subjected to a GARCH(1, 

1) fitting, yielding volatility series 𝜎𝑃𝐶𝐴 for 𝑅𝑀(𝑃𝐶𝐴)
.  
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4 DATA DESCRIPTION 

 

The data used in this work consists of ten minute-by-minute cryptocurrency prices series 

obtained from Binance’s API and negotiated in this exchange, which is currently the largest one in 

the world in terms of daily trading volume of cryptocurrencies according to CoinMarketCap. It is 

also one of the world leaders in terms of number of “markets,” where a “market” is defined as the 

pair of currencies that are being traded. 

These cryptocurrencies were the top ten ranked by market capitalization in CoinMarketCap 

that are classified as “coins” (as opposed to “tokens”), had at least a 2 year span of observations 

and are not stable coins, which are coins backed by a reserve asset. A short description about each 

selected asset is provided below. 

 

a) Bitcoin (BTC): a peer-to-peer version of electronic cash that allows for online 

payments to be sent directly from one party to another without going through a 

financial institution (Nakamoto, 2008); 

b) Ethereum (ETH): “What Ethereum intends to provide is a blockchain with a 

built-in fully fledged Turing-complete programming language that can be used 

to create “contracts" that can be used to encode arbitrary state transition 

functions (…)" (Buterin, 2013); 

c) Binance Coin (BNB): Frankenfield (2021) pointed that Binance Coin was 

created as a provider of discount on Binance’s trading fees in 2017, it evolved 

and can now be used as payment of transaction fees on this exchange, travel 

bookings, entertainment, online services, and financial services; 

d) Litecoin (LTC): “Litecoin is a peer-to-peer Internet currency that enables 

instant, near-zero cost payments to anyone in the world. Litecoin is an open 

source, global payment network that is fully decentralized without any central 

authorities.” (Lee, 2011); 

e) Cardano (ADA): the Cardano Docs pointed that “Cardano is a decentralized 

third-generation proof-of-stake blockchain platform and home to the ada 

cryptocurrency. It is the first blockchain platform to evolve out of a scientific 

philosophy and a research-first driven approach”; 
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f) XRP (XRP): XRP is the native cryptocurrency of Ripple, a real-time gross 

settlement system which provides instant transactions that also accepts other 

currencies, according to CoinMarketCap; 

g) Cosmos (ATOM): according to Cosmos’ website, this cryptocurrency “(…) is 

a decentralized network of independent parallel blockchains” or, in other words, 

it “(…) is an ecosystem of blockchains that can scale and interoperate with each 

other.” Blockchain is a technology used by many other cryptocurrencies and is 

the digital equivalent of a ledger; 

h) Polygon (MATIC): CoinMarketCap states that it “is the first well-structured, 

easy-to-use platform for Ethereum scaling and infrastructure development. Its 

core component is Polygon SDK, a modular, flexible framework that supports 

building multiple types of applications.” 

i) Algorand (ALGO): this cryptocurrency is a self-sustaining, decentralized, 

blockchain-based network, and it was created with the purpose of providing 

shorter transaction time and lower fees than other blockchains, while avoiding 

mining; 

j) Dogecoin (DOGE): CoinMarketCap states that this cryptocurrency “(…) is 

based on the popular “doge” Internet meme and features a Shiba Inu on its logo.” 

It is an open-source digital currency that was forked (when a blockchain is 

separated in two different paths forward) from Litecoin in December 2013. 

According to CoinMarketCap, “Dogecoin’s creators envisaged it as a fun, light-

hearted cryptocurrency that would have greater appeal beyond the core Bitcoin 

audience, since it was based on a dog meme.”; 

 

This study’s sample was restricted to the period between August 1, 2019, to July 31, 2021 

(𝑇 = 731 days in total), because not all series were available from the source before these dates. 

Since cryptocurrencies trade 24 hours a day, every day of the year, all time references in this work 

are standardized to reflect the Coordinated Universal Time central time zone (UTC+0). The 

analyzed cryptocurrencies are listed in Table 4.1, along with each series’ number of missing and 

available observations during this sample period. There is a total of 1,051,640 time stamps 

(minutes) during this time window, with 0.25% of it being of missing data. Additional information 
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on the availability of the individual series, with each series’ initial dates on Binance’s API can be 

found in Appendix 7.6. 

 

Table 4.1 - Series’ Sample Sizes 
Name Acronym NAs N % NAs 

Bitcoin BTC 2598 1050042 0.25 

Ethereum ETH 2599 1050041 0.25 

Binance Coin BNB 2599 1050041 0.25 

Litecoin LTC 2598 1050042 0.25 

Cardano ADA 2599 1050041 0.25 

XRP XRP 2598 1050042 0.25 

Cosmos ATOM 2599 1050041 0.25 

Polygon MATIC 2599 1050041 0.25 

Algorand ALGO 2599 1050041 0.25 

Dogecoin DOGE 2599 1050041 0.25 

Source: Elaborated by the author.  

 

From this data set, the last price from each 5-minute interval was taken, constructing ten 

series with this frequency, which then amount to 210,528 and 𝑚 = 288 observations in total and 

per day, respectively, for each asset. This periodicity was chosen based on the empirical work from 

Liu, Patton, and Sheppard (2015), where the authors found it is very difficult to significantly beat 

5-minute realized variance when it comes to price variation estimators constructed from high-

frequency data, considering a span of five asset classes to reach this conclusion. Subsequently, to 

give proper treatment to the missing observations, Kalman’s filter was used, which is able to 

preserve the correlation structure of the assets and was introduced by Kalman (1960). 

These 5-minute closing prices series were then used to compute realized variances, 𝑅𝑉𝑖, 𝑡, 
and realized volatilities, 𝑅𝑉𝑂𝐿𝑖, 𝑡 for each asset, according to the formulas that presented in Section 

3.1. Daily log-returns, 𝑟𝑖, 𝑡, consisting of the sum of all 5-minute log-returns in a day, were also 

taken. Summary statistics for these measures for each series can be found in Appendix 7.1. The 

assets’ cumulative daily log-returns in the analyzed period are presented in Figure 4.1. 
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Figure 4.1 – Cryptocurrencies’ Cumulative Log-Returns from August 1, 2019 to July 31, 2021 

 
Source: Elaborated by the author.  

 

In order to weight the assets and create a theoretical index to represent the “crypto market”, 

the daily market capitalization of each cryptocurrency was obtained from CoinMarketCap, with 

the weighting procedures being described in Section 3.2. 
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5 RESULTS 

 

This section presents the results from the estimated volatility measures, comparing the 

results from the Realized Volatility estimator and the GARCH(1, 1) model. The properties of the 

GARCH are verified in Subsection 5.1, while the comparison between the two estimators is made 

on Subsection 5.2. The Realized Volatility estimator is not further analyzed due to it being a non-

parametric estimator, which makes it not liable of any verification on the assumptions area. 

 

5.1 GARCH MODEL 

 

The estimates for the first GARCH(1, 1) model, with an asymmetric t-distribution for the 

index constructed from the assets’ market capitalization can be found in Table 5.1. It can be seen 

that the 𝜇𝑖,𝑡 parameter, giving the mean for the series is highly significant, given its p-value is 

below the 1% level of significance. The intercept for the conditional variance, 𝛼0,𝑖, however, is not 

significant at this level, but is at the conventional α = 0.05. The coefficient for the squared 

innovations, 𝛼1,𝑖, is also significant at the 1% significance level, and its interpretation implicates 

that a unit increase in the squared innovation in t - 1 causes the conditional variance in t to be 

increased by 0.08082. The last coefficient, 𝛽1,𝑖, is also significant at the 1% level, meaning a unit 

increase in the conditional variance in period t - 1 would cause a 0.89517 increase in the conditional 

variance in period t. Finally, the shape parameter defines the degrees of freedom of the Student’s t 

distribution, with the heaviness of its tails.  

 

Table 5.1 – Market Capitalization GARCH Volatility Estimates 
Coefficient Estimate Std. Error. t statistic p-value 𝜇𝑖,𝑡 0.00272 0.00102 2.66 0.01 𝛼0,𝑖 0.00006 0.00003 1.96 0.05 𝛼1,𝑖 0.08082 0.03102 2.60 0.01 𝛽1,𝑖 0.89517 0.03068 29.18 0.00 

Shape 3.24677 0.43559 7.45 0.00 

Source: Elaborated by the author. 
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It is noteworthy, also, as demonstrated in Table 5.2, that when using robust standard errors 

all the estimates are also significant at the 5% level, with the exception of the 𝛼0,𝑖 parameter. These 

standard errors are robust against violations of the distributional assumptions, by employing quasi 

maximum likelihood estimation (QMLE), introduced by White (1982). 

 

Table 5.2 – Market Capitalization GARCH Volatility Estimates with Robust Standard 
Errors 

Coefficient Estimate Std. Error. t statistic p-value 𝜇𝑖,𝑡 0.00272 0.00106 2.55 0.01 𝛼0,𝑖 0.00006 0.00003 1.82 0.07 𝛼1,𝑖 0.08082 0.03392 2.38 0.02 𝛽1,𝑖 0.89517 0.02717 32.94 0.00 

Shape 3.24677 0.46297 7.01 0.00 

Source: Elaborated by the author. 

 

Analyzing the standardized residuals for this model, in Table 5.3, the Ljung-Box test, 

introduced by Ljung and Box (1978), is presented for lags 1 to 20, significant evidence of joint 

autocorrelation is found, as all lags reject the null hypothesis of no joint autocorrelation at the 1% 

significance level, which compromises the inference. In Table 5.4, the same test is performed on 

the squared residuals for the same lags, where, no evidence of joint autocorrelation is indicated at 

the 5% level, except for the first lag. 

 

Table 5.3 – Ljung-Box Test for the Standardized Residuals of the Market Capitalization 
GARCH  

  (continues) 

Lag Statistic p-value 

1 11.82 0.00 

2 17.08 0.00 

3 19.68 0.00 

4 32.40 0.00 

5 34.96 0.00 

6 36.77 0.00 

7 37.55 0.00 

8 38.91 0.00 

9 38.91 0.00 
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  (conclusion) 

Lag Statistic p-value 

10 42.34 0.00 

11 42.58 0.00 

12 44.32 0.00 

13 45.21 0.00 

14 46.82 0.00 

15 49.90 0.00 

16 49.90 0.00 

17 52.25 0.00 

18 55.57 0.00 

19 55.70 0.00 

20 55.79 0.00 

Source: Elaborated by the author. 

 

Table 5.4 – Ljung-Box Test for the Standardized Squared Residuals of the Market 
Capitalization GARCH 

Lag Statistic p-value 

1 4.99 0.03 

2 5.17 0.08 

3 5.17 0.16 

4 8.21 0.08 

5 8.48 0.13 

6 8.48 0.20 

7 11.59 0.11 

8 11.61 0.17 

9 11.61 0.24 

10 11.65 0.31 

11 12.23 0.35 

12 12.23 0.43 

13 12.38 0.50 

14 12.38 0.58 

15 12.69 0.63 

16 12.70 0.69 

17 12.73 0.75 

18 12.94 0.80 

19 62.08 0.00 

20 62.17 0.00 

Source: Elaborated by the author. 
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The estimates for the second GARCH(1, 1) model, with aymmetric t-distribution, which 

derives from the cryptocurrency index constructed from the application of PCA, are presented in 

Table 5.5. In this model, 𝜇𝑖,𝑡, the mean coefficient, is insignificant, as is the intercept for the 

conditional volatility, 𝛼0,𝑖, even at the 10% significance level. The other coefficients,   𝛼1,𝑖 and 𝛽1,𝑖, however, are highly significant, as is the number of degrees of freedom of the 

Student’s t-distribution, even at the 1% significance level. The 𝛼1,𝑖 value indicates a unit increase 

in the squared innovation in period t - 1, 𝑎𝑖,𝑡−12 , should increase the volatility in period t by 0.05125. 

As for the 𝛽1,𝑖 coefficient, a unit increase in the conditional variance in t - 1, 𝜎𝑖,𝑡−12 , should cause 

an increase of approximately 0.90043 in the conditional variance in period t.  

 

Table 5.5 – PCA GARCH Volatility Estimates 
Coefficient Estimate Std. Error. t statistic p-value 𝜇𝑖,𝑡 0.00000 0.00406 0.00 1.00 𝛼0,𝑖 0.00003 0.00005 0.60 0.54 𝛼1,𝑖 0.05125 0.00440 11.65 0.00 𝛽1,𝑖 0.90043 0.01249 72.11 0.00 

Shape 4.02307 0.18921 21.26 0.00 

Source: Elaborated by the author. 

 

Using the same robust standard errors method as in the previous GARCH estimate, the 

results presented on Table 5.6 are obtained, with no difference in the significance of the parameters 

criteria.  

 

Table 5.6 – PCA GARCH Volatility Estimates with Robust Standard Errors 
Coefficient Estimate Std. Error. t statistic p-value 𝜇𝑖,𝑡 0.00000 0.00576 0.00 1.00 𝛼0,𝑖 0.00003 0.00007 0.38 0.70 𝛼1,𝑖 0.05125 0.00792 6.47 0.00 𝛽1,𝑖 0.90043 0.01556 57.85 0.00 

Shape 4.02307 0.14460 27.82 0.00 

Source: Elaborated by the author. 

 

 Performing the same tests as for the previous model, for joint autocorrelation of the 

residuals, the results are presented in Table 5.7 and Table 5.8, for the standardized residuals and 
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for the standardized squared residuals, respectively. Similar results are found, with significant joint 

autocorrelation in all lags for the standardized residuals, while for the squared values, only the first 

lag presents this characteristic at the 5% significance level.  

 

Table 5.7 – Ljung-Box Test for the Standardized Residuals of the PCA GARCH 
Lag Statistic p-value 

1 9.02 0.00 

2 16.96 0.00 

3 18.48 0.00 

4 31.09 0.00 

5 39.91 0.00 

6 40.99 0.00 

7 41.11 0.00 

8 42.03 0.00 

9 42.26 0.00 

10 45.40 0.00 

11 45.41 0.00 

12 45.83 0.00 

13 48.59 0.00 

14 54.15 0.00 

15 59.91 0.00 

16 59.92 0.00 

17 60.15 0.00 

18 61.66 0.00 

19 62.84 0.00 

20 62.93 0.00 

Source: Elaborated by the author. 

 

Table 5.8 – Ljung-Box Test for the Standardized Squared Residuals of the PCA GARCH 
  (continues) 

Lag Statistic p-value 
1 4.41 0.04 

2 5.27 0.07 

3 5.28 0.15 

4 12.09 0.02 

5 14.63 0.01 

6 14.67 0.02 
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  (conclusion) 

Lag Statistic p-value 

7 17.77 0.01 

8 17.77 0.02 

9 17.79 0.04 

10 18.06 0.05 

11 18.13 0.08 

12 18.13 0.11 

13 18.28 0.15 

14 18.50 0.19 

15 18.92 0.22 

16 19.02 0.27 

17 19.03 0.33 

18 19.03 0.39 

19 19.03 0.45 

20 19.22 0.51 

Source: Elaborated by the author. 

 

 

5.2 COMPARISON 

 

In Figures 5.1 and 5.2, a comparison between both volatility estimators can be found. The 

GARCH process is able to follow the realized volatility, demonstrating spikes in the series as the 

volatility increases. Another characteristic it is able to reproduce is the clustering of volatility, that 

is, when a spike occurs, it tends to be followed by another high value, which can be seen in the 

figures. This, however, also causes the volatility estimate to take longer to get lower, meaning that 

when using it as a forecasting tool it can overestimate the volatility for a few periods after a shock 

occurs, a known characteristic in this model. Still, as noted by Hansen and Lunde (2005), it is no 

ordinary task to beat a GARCH(1, 1) model, as it allies simplicity, parsimony and precision, while 

other more sophisticated models can be more complex while not improving forecasts in a 

satisfactory amount. 
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Figure 5.1 – Market Capitalization Realized Volatility and GARCH Conditional Volatility 

Estimates 

 
Source: Elaborated by the author. 

 

Figure 5.2 – PCA Realized Volatility and GARCH Conditional Volatility Estimates 

 
Source: Elaborated by the author 

 

Considering the results presented in this section, the GARCH(1, 1) with an asymmetric t-

distribution is verified to be have significant coefficients when modeling the constructed indices 

of cryptocurrencies. It presented, however, autocorrelation in the residuals, which compromises 
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any inference that might be done from such models. Still, it is a simple model, with known 

properties, widely explored in the literature.   
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6 CONCLUSION 

 

This study’s central purpose was to investigate the risk and return of two cryptocurrencies’ 

indices through a GARCH(1, 1) fit, with an asymmetric t-distribution. With the rising popularity 

of this asset class and considering its seemingly natural higher variation when compared to 

traditional assets, such as stocks, commodities, and foreign exchange, it becomes necessary to 

estimate if this asset class is compatible with this model, as it is widely used in the literature. 

Furthermore, assertive volatility estimation and measurement is a relevant for the risk management 

of market agents such as asset management firms and banks, possibly preventing excessive 

exposures and losses. Volatility is a latent variable, not an observable one, therefore, estimators are 

necessary to obtain a measure of it. By correctly estimating volatility, investors might change their 

business decisions based on these computations, avoiding unrewarded variation as well as 

developing trading strategies based on this measure. For the rational risk averse investor, additional 

volatility should only be accepted when the higher returns are possible to compensate for it.  

The investigation in this work was made by analyzing 10 different cryptocurrency 5-minute 

returns series during a 2-year period, obtaining estimates for the market returns and market 

volatility of this asset class derived from market capitalization weighting and PCA. Two 

GARCH(1, 1) with t-distributed innovations models were computed, and its estimates were 

analyzed and compared with the 5-minute realized volatility, checking for its capability of 

responding to volatility shocks and clusters in the cryptocurrency market. The models appeared to 

be well behaved, and decently described the volatility movements, but showed significant evidence 

of joint autocorrelation in the residuals. 

This study aims to serve as an introductory application to the cryptocurrency market of 

traditional methods widely disseminated and used in the literature when analyzing asset pricing 

and the risk-return relation of regular assets. Further studies can better develop the ideas that were 

presented here in diverse research paths, such as:  

1) expanding the data set to include more cryptocurrencies, and altering the period 

of time analyzed; 

2) performing out-of-sample forecasts and evaluating these instead of the 

significance of models’ coefficients; 
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3) using a robust covariance matrix to correct for autocorrelation and 

heteroskedasticity in the data set, such as the one introduced by Newey and West 

(1987), instead of sample covariance; 

4) testing more sophisticated models from the GARCH framework, such as the 

EGARCH, presented by Nelson (1991), which is able to account for asymmetry 

often observed in financial markets, where negative shocks tend to be more 

intense than positive ones, presenting higher values for the returns’ modules; 

5) testing other volatility models, such as the HAR-RV, from Corsi (2009). 
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8 APPENDIX 

 

 

8.1 SERIES’ SUMMARY STATISTICS 

 

Table 7.1: 𝒓𝒊,𝒕 summary statistics 
Asset Min. Median Mean Max. Std. Dev. 25% 75% 

BTC -0.5212 0.0020 0.0019 0.1734 0.0419 -0.0158 0.0191 

ETH -0.5809 0.0030 0.0034 0.2367 0.0544 -0.0197 0.0306 

BNB -0.5947 0.0018 0.0034 0.5256 0.0633 -0.0205 0.0298 

LTC -0.4722 0.0006 0.0005 0.2422 0.0568 -0.0248 0.0272 

ADA -0.5444 0.0045 0.0042 0.2726 0.0620 -0.0262 0.0311 

XRP -0.5564 0.0010 0.0012 0.4348 0.0684 -0.0208 0.0225 

ATOM -0.6220 0.0003 0.0017 0.2820 0.0707 -0.0329 0.0367 

MATIC -0.7494 0.0023 0.0062 0.4556 0.0914 -0.0356 0.0411 

ALGO -0.6976 0.0000 0.0005 0.3606 0.0735 -0.0381 0.0377 

DOGE -0.4924 -0.0001 0.0059 1.4953 0.0976 -0.0198 0.0159 

Source: Elaborated by the author. 

 

Table 7.2: 𝑹𝑽𝒊,𝒕 summary statistics 

Asset Min. Median Mean Max. Std. Dev. 25% 75% 

BTC 0.0001 0.0010 0.0020 0.0870 0.0000 0.0049 0.0005 

ETH 0.0002 0.0015 0.0031 0.1034 0.0000 0.0069 0.0009 

BNB 0.0002 0.0017 0.0038 0.1427 0.0001 0.0091 0.0009 

LTC 0.0002 0.0020 0.0040 0.1449 0.0001 0.0083 0.0011 

ADA 0.0003 0.0023 0.0048 0.1828 0.0001 0.0099 0.0013 

XRP 0.0001 0.0016 0.0055 0.1792 0.0002 0.0136 0.0008 

ATOM 0.0005 0.0038 0.0063 0.2953 0.0002 0.0139 0.0022 

MATIC 0.0005 0.0046 0.0102 0.4483 0.0006 0.0243 0.0025 

ALGO 0.0005 0.0047 0.0073 0.2033 0.0001 0.0107 0.0027 

DOGE 0.0002 0.0021 0.0097 0.7651 0.0015 0.0385 0.0012 

Source: Elaborated by the author. 

 

Table 7.3: 𝑹𝑽𝑶𝑳𝒊,𝒕 summary statistics 
      (continues) 

Asset Min. Median Mean Max. Std. Dev. 25% 75% 

BTC 0.0077 0.0316 0.0374 0.2949 0.0007 0.0255 0.0225 

ETH 0.0129 0.0392 0.0469 0.3215 0.0009 0.0301 0.0295 
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      (conclusion) 

Asset Min. Median Mean Max. Std. Dev. 25% 75% 

BNB 0.0150 0.0411 0.0506 0.3778 0.0012 0.0352 0.0303 

LTC 0.0136 0.0443 0.0539 0.3806 0.0011 0.0337 0.0336 

ADA 0.0186 0.0480 0.0587 0.4275 0.0013 0.0367 0.0367 

XRP 0.0096 0.0394 0.0562 0.4234 0.0024 0.0486 0.0279 

ATOM 0.0220 0.0613 0.0697 0.5434 0.0015 0.0384 0.0468 

MATIC 0.0224 0.0680 0.0834 0.6695 0.0032 0.0569 0.0500 

ALGO 0.0228 0.0683 0.0764 0.4509 0.0014 0.0380 0.0522 

DOGE 0.0142 0.0453 0.0684 0.8747 0.0051 0.0711 0.0352 

Source: Elaborated by the author. 

 

8.2 SUM AND MULTIPLICATION OF VARIANCE PROPERTIES 

 

To obtain the variance of a variable 𝑍, that is constructed as a weighted average of two 

random correlated variables 𝑋 and 𝑌, the covariance must be considered. This can be achieved by 

computing: 

 𝑉𝑎𝑟(𝑎𝑋 +  𝑏𝑌) = 𝑎2 𝑉𝑎𝑟(𝑋) + 𝑏2 𝑉𝑎𝑟(𝑌) + 2𝑎𝑏 𝐶𝑜𝑣(𝑋, 𝑌), 
 

where 𝑎 and 𝑏 are constants. This case is extendable for a linear combination of 𝐾 random 

variables {𝑋1, 𝑋2, … , 𝑋𝐾}, where the variance can be written as: 

 

𝑉𝑎𝑟(∑𝑎𝑖𝐾
𝑖=1 𝑋𝑖) = ∑ 𝑎𝑖𝐾

𝑖,𝑗=1 𝑎𝑗𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)
= ∑𝑎𝑖2𝐾

𝑖=1 𝑉𝑎𝑟(𝑋𝑖) + ∑𝑎𝑖𝑖≠𝑗 𝑎𝑗𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)
= ∑𝑎𝑖2𝐾

𝑖=1 𝑉𝑎𝑟(𝑥𝑖) + 2 ∑ 𝑎𝑖1≤𝑖<𝑗≤𝐾 𝑎𝑗𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)
 (7.2) 

(7.1) 
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8.3 SERIES’ CORRELATION MATRIX 

 

Table 7.4: Full sample 5-minute correlation matrix 
 BTC ETH BNB LTC ADA XRP ATOM MATIC ALGO DOGE 

BTC 1.00 0.83 0.70 0.77 0.67 0.61 0.59 0.52 0.52 0.41 

ETH 0.83 1.00 0.71 0.79 0.70 0.64 0.62 0.52 0.54 0.39 

BNB 0.70 0.71 1.00 0.67 0.64 0.57 0.59 0.51 0.52 0.36 

LTC 0.77 0.79 0.67 1.00 0.68 0.65 0.60 0.49 0.52 0.37 

ADA 0.67 0.70 0.64 0.68 1.00 0.59 0.59 0.49 0.52 0.36 

XRP 0.61 0.64 0.57 0.65 0.59 1.00 0.51 0.43 0.45 0.33 

ATOM 0.59 0.62 0.59 0.60 0.59 0.51 1.00 0.46 0.51 0.33 

MATIC 0.52 0.52 0.51 0.49 0.49 0.43 0.46 1.00 0.41 0.28 

ALGO 0.52 0.54 0.52 0.52 0.52 0.45 0.51 0.41 1.00 0.30 

DOGE 0.41 0.39 0.36 0.37 0.36 0.33 0.33 0.28 0.30 1.00 
Source: Elaborated by the author. 

 

8.4 SUMMARY STATISTICS FOR ASSETS’ WEIGHTS COMPUTED THROUGH PCA 

 

Table 7.5: Summary Statistics for Assets’ Weights Computed Through PCA 
Acronym T Min. Median Mean Max. Var. Std. Dev. 25% 75% 
BTC 731 0 0.0360 0.0416 0.2830 0.0012 0.0341 0.0149 0.0605 

ETH 731 0 0.0652 0.0670 0.7511 0.0027 0.0524 0.0319 0.0931 

BNB 731 0 0.0558 0.0633 0.8850 0.0034 0.0586 0.0304 0.0870 

LTC 731 0 0.0749 0.0830 0.4446 0.0045 0.0669 0.0427 0.1047 

ADA 731 0 0.0835 0.0919 0.4933 0.0049 0.0703 0.0519 0.1213 

XRP 731 0 0.0553 0.0833 0.9844 0.0130 0.1140 0.0297 0.0890 

ATOM 731 0 0.1045 0.1297 0.9912 0.0169 0.1300 0.0622 0.1617 

MATIC 731 0 0.1191 0.1881 0.9992 0.0501 0.2239 0.0624 0.2019 

ALGO 731 0 0.1039 0.1684 0.9982 0.0391 0.1978 0.0603 0.1852 

DOGE 731 0 0.0333 0.0837 0.9988 0.0327 0.1810 0.0128 0.0639 
Source: Elaborated by the author. 
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8.5 SERIES’ DATA AVAILABILITY INFORMATION 

 

Table 7.6: Series’ Initial Dates and Total Available Observations 
Name Acronym Initial Date NAs N % NAs 

Bitcoin BTC 2017-09-01 8122 2051078 0.40 

Ethereum ETH 2017-09-01 8123 2051077 0.40 

Binance Coin BNB 2018-05-01 7703 1920457 0.40 

Litecoin LTC 2017-12-01 7598 1875922 0.41 

Cardano ADA 2018-06-01 5412 1705308 0.32 

Ripple XRP 2019-08-01 5411 1660669 0.33 

Cosmos ATOM 2018-01-01 3260 1183300 0.28 

Polygon MATIC 2019-07-01 3260 1181860 0.28 

Algorand ALGO 2019-05-01 2599 1096121 0.24 

Dogecoin DOGE 2019-05-01 2599 1050041 0.25 

 Source: Elaborated by the author. 

 

Figure 8.3: Cryptocurrencies’ cumulative log-returns from September 1, 2017, to July 31, 2021 

 
          Source: Elaborated by the author. 
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8.6 R CODES 

 

#### Import raw data matrix and unify all series ##### 
library(tidyverse) 
 
ini_crypto <- readxl::read_excel(paste0('new_initial_dates.xlsx')) 
 
# Function to unify all the series' closing prices in one tibble sorted by 
time 
source('R/unify.R') 
all_data <- unify(files = as.matrix(ini_crypto[, 2]), directory = 'Data/', col 
= 'open_time') 
colnames(all_data) <- c("open_time", as.matrix(ini_crypto[, 2])) 
all_data <- all_data %>% arrange(open_time) #FIXME 
all_data %>% slice_tail(n = 10) 
 
# Save RDS 
readr::write_rds(all_data, file = 'Data/new_all_data.rds') 
 
#### Raw data analysis and summary statistics #### 
all_data <- readr::read_rds("Data/new_all_data.rds") 
 
# Summary Timestamps Statistics 
stats <- list( 
  obs  = ~length(.x), 
  min  = ~min(.x, na.rm = T), 
  med  = ~median(.x, na.rm = T), 
  mean = ~round(mean(.x, na.rm = T), digits = 2), 
  max  = ~max(.x, na.rm = T), 
  var  = ~round(var(.x, na.rm = T), digits = 2), 
  sd   = ~round(sd(.x, na.rm = T), digits = 2), 
  q1   = ~quantile(t(.x), na.rm = T)[2], 
  q3   = ~quantile(t(.x), na.rm = T)[4] 
) 
 
difs <- all_data$open_time %>%  
  diff() - 1 #%>% e 
difs <- difs %>%  
  as_tibble() %>%  
  filter(value != 0) %>%  
  summarise(across(everything(), stats, .names = "{.fn}")) %>%  
  t() 
 
hole_summ_table <- tibble(Metric = c("Ocurrences", "Minimum", "Median", 
"Mean", "Maximum", "Variance", "Standard Deviation", "1st Quantile", "3rd 
Quantile"), 
                          Value  = as.vector(difs)) 
 
readr::write_rds(hole_summ_table, "Print/hole_summ_table.rds") 
 
rm(stats, difs, hole_summ_table) 
 
# Complete implicitly missing observations 
cdata <- all_data %>% 
  tidyr::separate(col = open_time, into = c('date', 'time'), sep = ' ') %>% 
  tidyr::separate(col = date, into = c("year", "month", "day"), sep = "-") %>% 
  tidyr::separate(col = time, into = c("hour", "minute", "second"), sep = ":") 
%>% 
  tidyr::complete(year, month, day, hour, minute, second) %>%  
  mutate(datetime = lubridate::make_datetime(year = as.numeric(year),  
                                             month = as.numeric(month),  
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                                             day = as.numeric(day),  
                                             hour = as.numeric(hour),  
                                             min = as.numeric(minute))) %>%  
  select(-year, -month, -day, -hour, -minute, -second) %>% 
  select(datetime, everything()) %>%  
  arrange(datetime) %>% 
  dplyr::filter(datetime >= as.Date('2017-09-01'), datetime < as.Date('2021-
08-01')) %>%  
  arrange(datetime, BTC) %>%  
  distinct(datetime, .keep_all = TRUE) 
 
rm(all_data) 
 
# Save RDS 
readr::write_rds(cdata, file = "Data/cdata.rds") 
 
# Fill data and save 
cdata %>% fill(2:11, .direction = "down") %>%  
  readr::write_rds("Data/fdata.rds") 
 
# Take last observation of filled data before working sample starts 
readr::read_rds("Data/fdata.rds") %>%  
  filter(datetime >= as.Date("2019-07-31"), datetime < as.Date("2019-08-01")) 
%>%  
  slice_tail(n = 5) -> last 
 
# Restrict data, fill and save 
readr::read_rds("Data/cdata.rds") %>% 
  filter(datetime >= as.Date("2019-08-01"), datetime < as.Date("2021-08-01")) 
%>%  
  fill(2:11, .direction = "down") %>% 
  rbind(last) %>%  
  arrange(datetime) %>%  
  readr::write_rds("Data/rest_fdata.rds") 
 
rm(list = ls()) 
 
 
 
# Load complete data 
cdata <- readr::read_rds("Data/cdata.rds") 
ini_crypto <- readxl::read_excel(paste0('new_initial_dates.xlsx')) 
 
# Summary table of original sample 
full_summ_table <- ini_crypto %>%  
  mutate(nas      = as.vector(t(cdata %>% summarise_if(is.numeric, 
~sum(is.na(.x)))) -  
                                (t(cdata %>% summarise_if(is.numeric, 
~which(is.na(.x) == FALSE)[1])) - 1)), 
         nobs     = cdata %>% summarise_if(is.numeric, ~sum(is.na(.x) == 
FALSE)) %>% t() %>% as.vector(), 
         perc_nas = round(nas / nobs * 100, digits = 2), 
         Name     = c("Bitcoin", "Ethereum", "Binance Coin", "Litecoin", 
"Cardano", 
                      "Ripple", "Cosmos", "Polygon", "Algorand", "Dogecoin"), 
         `start date` = lubridate::as_date(`start date`)) %>% 
  rename(Acronym = coin, N = nobs, NAs = nas, `% NAs` = perc_nas, 
         `Initial Date` = `start date`) %>%  
  select(-market) %>%  
  select(Name, everything()) 
 
readr::write_rds(full_summ_table, file = "Print/full_summ_table.rds") 
 
rm(full_summ_table) 
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# Summary table of restricted completed sample 
cdata <- cdata %>%  
  filter(datetime >= as.Date("2019-08-01"), datetime < as.Date("2021-08-01")) 
 
rest_summ_table <- ini_crypto %>%  
  mutate(nas      = as.vector(t(cdata %>% summarise_if(is.numeric, 
~sum(is.na(.x)))) -  
                                (t(cdata %>% summarise_if(is.numeric, 
~which(is.na(.x) == FALSE)[1])) - 1)), 
         nobs     = cdata %>% summarise_if(is.numeric, ~sum(is.na(.x) == 
FALSE)) %>% t() %>% as.vector(), 
         perc_nas = round(nas / nobs * 100, digits = 2), 
         Name     = c("Bitcoin", "Ethereum", "Binance Coin", "Litecoin", 
"Cardano", 
                      "Ripple", "Cosmos", "Polygon", "Algorand", "Dogecoin")) 
%>% 
  rename(Acronym = coin, `Initial Date` = `start date`, 
         N = nobs, NAs = nas, `% NAs` = perc_nas) %>%  
  select(-c(market, `Initial Date`)) %>%  
  select(Name, everything()) 
 
readr::write_rds(rest_summ_table, file = "Print/rest_summ_table.rds") 
 
rm(list = ls()) 
 
 
 
#### Computation of Returns and Realized Volatility Matrices #### 
# Functions to collapse series in chosen frequency, take log returns, take RV, 
and collapse in day 
source('R/collapse_time.R') 
source('R/lrets.R') 
source('R/rv.R') 
source('R/collapse_date.R') 
 
# Load and restrict data set 
all_data <- readr::read_rds("Data/cdata.rds") %>%  
  slice_tail(n = 731 * 1440) 
 
# Convert series to different time frequency 
all_data %>% 
  collapse_time(datetime, 5, tail, 1) %>% # 5min, tail = closing 
  slice_head(n = nrow(.) - 1) %>%  
  readr::write_rds(file = "Data/cdata5.rds") 
 
rm(collapse_time) 
 
 
cdata <- readr::read_rds("Data/cdata5.rds") 
 
# 5min series, replace NAs by Kalman filter values 
cdata %>%  
  select(-datetime) %>%  
  as.matrix() %>%  
  imputeTS::na_kalman() %>%  
  as_tibble() %>%  
  mutate(datetime = cdata$datetime) %>%  
  select(datetime, everything()) %>%  
  readr::write_rds("Data/kdata5.rds") 
 
 
 
# Load specific data set 
all_data <- readr::read_rds("Data/kdata5.rds") 
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# Cumulative log returns 
cum_rets <- all_data %>%  
  lrets() %>%  
  slice_tail(n = nrow(.) - 1) %>% 
  collapse_date(datetime, "day", sum, na.rm = TRUE) %>%  
  modify_if(is.numeric, .f = ~cumsum(.x) * 100) 
 
cum_rets[cum_rets == 0] <- NA 
 
# Full sample cumulative log returns 
cum_rets %>%  
  reshape2::melt(id = "datetime") %>%  
  rename(Asset = variable) %>%  
  ggplot(aes(x = datetime, y = value, colour = Asset, group = Asset)) +  
  geom_line() +  
  labs(x = "Days", 
       y = "Cumulative Log-Return") + 
  theme_bw() +  
  theme(plot.title = element_text(hjust = 0.5)) 
 
# Actual sample cumulative log returns 
cum_rets %>%  
  filter(datetime >= as.Date("2019-08-01")) %>%  
  reshape2::melt(id = "datetime") %>%  
  rename(Asset = variable) %>%  
  ggplot(aes(x = datetime, y = value, colour = Asset, group = Asset)) +  
  geom_line() +  
  labs(x = "Days", 
       y = "Cumulative Log-Return") + 
  theme_bw() +  
  theme(plot.title = element_text(hjust = 0.5)) 
 
# Tibble with daily returns 
rets <- all_data %>%  
  lrets() %>%  
  slice_tail(n = nrow(.) - 1) %>% 
  collapse_date(datetime, "day", sum, na.rm = TRUE) %>%  
  rename(date = datetime) 
 
rets[rets == 0] <- NA 
 
# Save returns RDS 
readr::write_rds(rets, file = 'Data/rets.rds') 
 
# Read RDS 
rets <- readr::read_rds(file = 'Data/rets.rds') 
 
stats <- list( 
  min  = ~min(.x, na.rm = T), 
  med  = ~median(.x, na.rm = T), 
  mean = ~mean(.x, na.rm = T), 
  max  = ~max(.x, na.rm = T), 
  var  = ~var(.x, na.rm = T), 
  sd   = ~sd(.x, na.rm = T), 
  q1   = ~quantile(t(.x), na.rm = T)[2], 
  q3   = ~quantile(t(.x), na.rm = T)[4] 
) 
 
# Summary stats for returns 
rets %>% 
  select(-date) %>%  
  summarise(across(everything(), stats, .names = "{.fn}_{.col}")) %>%  
  pivot_longer(cols = everything(), values_to = "value") %>%  
  separate(col = name, into = c("m", "cur"), sep = "_") %>%  
  pivot_wider(names_from = m, values_from = value) %>%  
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  select(cur, min, med, mean, max, var, sd, q1, q3) %>%  
  readr::write_rds(file = "Print/tablea13.rds") 
 
rm(rets, lrets) 
 
 
 
# Tibble with Realized Variances 
rvs <- all_data %>% 
  rv() %>% 
  slice_tail(n = nrow(.) - 1) %>%  
  collapse_date(datetime, 'day', sum, na.rm = TRUE) %>%  
  rename(date = datetime) 
 
rvs[rvs == 0] <- NA 
 
# Save RVs RDS 
readr::write_rds(rvs, file = 'Data/rvs.rds') 
 
# Read RDS 
rvs <- readr::read_rds(file = 'Data/rvs.rds') 
 
rvs %>% 
  select(-date) %>%  
  summarise(across(everything(), stats, .names = "{.fn}_{.col}")) %>%  
  pivot_longer(cols = everything(), values_to = "value") %>%  
  separate(col = name, into = c("m", "cur"), sep = "_") %>%  
  pivot_wider(names_from = m, values_from = value) %>%  
  select(cur, min, med, mean, max, var, sd, q1, q3) %>%  
  readr::write_rds(file = "Print/tablea11.rds") 
 
# Tibble with Realized Volatilities 
rvols <- rvs %>%  
  modify_if(is.numeric, ~sqrt(.x)) 
 
# Save Rvols RDS 
readr::write_rds(rvols, file = 'Data/rvols.rds') 
 
# Read RDS 
rvols <- readr::read_rds(file = 'Data/rvols.rds') 
 
rvols %>% 
  select(-date) %>%  
  summarise(across(everything(), stats, .names = "{.fn}_{.col}")) %>%  
  pivot_longer(cols = everything(), values_to = "value") %>%  
  separate(col = name, into = c("m", "cur"), sep = "_") %>%  
  pivot_wider(names_from = m, values_from = value) %>%  
  select(cur, min, med, mean, max, var, sd, q1, q3) %>%  
  readr::write_rds(file = "Print/tablea12.rds") 
 
rm(list = ls()) 
 
 
 
#### Covariance Matrix and PCA Market Estimates ##### 
# Load RDS with specific time frequency 
all_data <- readr::read_rds("Data/fdata5.rds") 
source('R/lrets.R') 
 
# Take log returns, compute PCA weights and 1st component series 
covs_pca <- all_data %>% 
  lrets() %>% # Take log rets 
  slice_tail(n = nrow(.) - 1) %>% # Take out first row 
  mutate(date = lubridate::as_date(datetime)) %>% # Only day column 
  select(-datetime) %>% 
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  select(date, everything()) %>%  
  nest(data = -date) %>% # Nest according to day 
  mutate(covs    = map(.x = data, .f = ~ cov(.x, use = 
"pairwise.complete.obs")), 
         layout  = map_dbl(.x = covs, .f = ~ sqrt(nrow(.x)^2 - 
sum(is.na(.x)))), 
         pca     = map2(.x = data, .y = layout, .f = ~princomp(na.omit(.x[, 1 
: .y]))), 
         mkt_ret = map_dbl(.x = pca, .f = ~ mean(.x$scores[1:288])), # First 
day of full sample is wrong (should be 287) 
         weights = map2(.x = pca, .y = layout,  
                        .f = ~ tibble(asset = colnames(all_data)[2 : (.y + 
1)], 
                                      weight = .x$loadings[1 : .y]^2))) %>% 
  select(-data) %>%  
  unnest(weights) %>%  
  pivot_wider(names_from = asset, values_from = weight) %>%  
  nest(data = -c(date, covs, mkt_ret, layout, pca)) %>%  
  mutate(act_cov  = map2(.x = covs, .y = layout, .f = ~ as.matrix(.x[1:.y, 
1:.y])), 
         act_wts  = map2(.x = data, .y = layout, .f = ~ as.matrix(.x[1:.y])), 
         mkt_rv   = map2_dbl(.x = act_cov, .y = act_wts, .f = ~ .y %*% .x %*% 
t(.y)), 
         mkt_rvol = sqrt(mkt_rv)) %>%  
  select(-c(layout, data, act_cov)) 
 
# Select covariance matrices only and save RDS 
covs_pca %>%  
  select(date, covs) %>%  
  readr::write_rds(file = "Data/covs.rds") 
 
# Select the PCA market computations and save RDS 
covs_pca %>%  
  select(-c(covs, pca)) %>%  
  readr::write_rds(file = "Data/pca_mkt.rds") 
 
# Select the PCA weights and save RDS 
all_data %>% 
  lrets() %>% # Take log rets 
  slice_tail(n = nrow(.) - 1) %>% # Take out first row 
  mutate(date = lubridate::as_date(datetime)) %>% # Only day column 
  select(-datetime) %>% 
  select(date, everything()) %>%  
  nest(data = -date) %>% # Nest according to day 
  mutate(covs    = map(.x = data, .f = ~ cov(.x, use = 
"pairwise.complete.obs")), 
         layout  = map_dbl(.x = covs, .f = ~ sqrt(nrow(.x)^2 - 
sum(is.na(.x)))), 
         pca     = map2(.x = data, .y = layout, .f = ~princomp(na.omit(.x[, 1 
: .y]))), 
         weights = map2(.x = pca, .y = layout,  
                        .f = ~ tibble(asset = colnames(all_data)[2 : (.y + 
1)], 
                                      weight = .x$loadings[1 : .y]^2))) %>% 
  select(-data) %>%  
  unnest(weights) %>%  
  pivot_wider(names_from = asset, values_from = weight) %>%  
  select(-c(covs, layout, pca)) %>%  
  readr::write_rds(file = "Data/pca_wts.rds") 
 
# Select PCA market Rvol 
# covs_pca %>%  
#   select(date, mkt_rvol) %>%  
#   readr::write_rds("Data/pca_rvol.rds") 
 



42 

 

# pca_rvol <- readr::read_rds("Data/pca_rvol.rds") 
rets <- readr::read_rds("Data/rets.rds") 
 
# Daily PCA 
dpca <- rets %>% 
  na.omit() %>%  
  select(-date) %>%  
  princomp() 
 
summary(dpca) 
 
tibble(date = rets$date, 
       mkt_ret = c(rep(NA, 699), as.matrix(dpca$scores)[, 1]), 
       mkt_rvol = pca_rvol$mkt_rvol) %>%  
  readr::write_rds("Data/dpca.rds") 
 
# Difference in scalings 
w1 <- dpca$loadings[1:10]^2 
w2 <- rets %>% 
  na.omit() %>%  
  select(-date) %>%  
  prcomp(scale. = TRUE) 
w2 <- w2$rotation[1:10]^2 
 
cbind(w1, w2) %>%  
  as_tibble %>%  
  mutate(dd = w1 - w2) %>%  
  select(dd) %>%  
  t.test 
 
# Summary statistics for PC1 
# covs_pca %>%  
#   select(pca) %>%  
#   slice_tail(n = 731) %>%  
#   mutate(pc1 = map_dbl(.x = pca, .f = 
~factoextra::get_eig(.x)$variance.percent[1])) %>%  
#   summarise(across(pc1, stats)) 
 
# Full period covariance matrix 
full_cor <- all_data %>% 
  slice_tail(n = 210528) %>%  
  lrets() %>%  
  select(-datetime) %>%  
  cor(use = "pairwise.complete.obs") 
 
readr::write_rds(full_cor, "Print/full_cor.rds")   
 
rm(list = ls()) 
 
#### Create Market Cap based Market Measures #### 
# Load returns, realized volatilities and market cap based weights 
rets <- readr::read_rds("Data/rets.rds") 
rvols <- readr::read_rds("Data/rvols.rds") 
weights <- readxl::read_excel(paste0('Data/weights.xlsx')) 
covs <- readr::read_rds("Data/covs.rds") 
pca_wts <- readr::read_rds("Data/pca_wts.rds") 
 
# Pivot all longer 
rets_long <- rets %>%  
  pivot_longer(-date, values_to = "ret") 
weights_long <- weights %>%  
  pivot_longer(-date, values_to = "weights") 
pcawts_long <- pca_wts %>%  
  pivot_longer(-date, values_to = "weights") 
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rm(rets) 
 
# Load mkt_est function 
source("R/mkt_est.R") 
 
### Market Cap based Market Estimates ### 
# Market Cap based RVol 
mkt_rvol <- covs %>% 
  left_join(weights, by = "date") %>%  
  mutate(layout = map_dbl(.x = covs, .f = ~ sqrt(nrow(.x)^2 - 
sum(is.na(.x))))) %>% 
  nest(weights = -c(date, covs, layout)) %>%  
  mutate(act_covs = map2(.x = covs, .y = layout, .f = ~ .x[1:.y, 1:.y]), 
         act_wts  = map2(.x = weights, .y = layout, .f = ~ .x[1:.y]), 
         mkt_rvol = map2_dbl(.x = act_covs, .y = act_wts, 
                             .f = ~ as.matrix(.y) %*% .x %*% t(.y))) %>%  
  select(-c(layout, covs, weights, act_covs, act_wts)) 
 
# Save Market Cap based RVol RDS 
readr::write_rds(mkt_rvol, "Data/mkt_rvol.rds") 
 
# Create Market Cap based Market Returns 
mkt_ret <- mkt_est(rets_long, weights_long, ret) %>%  
  rename(mkt_ret = mkt_est) 
 
# Save Market Cap based Returns RDS 
readr::write_rds(mkt_ret, "Data/mkt_ret.rds") 
 
# PCA RVol 
covs %>% 
  left_join(pca_wts, by = "date") %>%  
  mutate(layout = map_dbl(.x = covs, .f = ~ sqrt(nrow(.x)^2 - 
sum(is.na(.x))))) %>% 
  nest(weights = -c(date, covs, layout)) %>%  
  mutate(act_covs = map2(.x = covs, .y = layout, .f = ~ .x[1:.y, 1:.y]), 
         act_wts  = map2(.x = weights, .y = layout, .f = ~ .x[1:.y]), 
         mkt_rvol = map2_dbl(.x = act_covs, .y = act_wts, 
                             .f = ~ as.matrix(.y) %*% .x %*% t(.y))) %>%  
  select(-c(layout, covs, weights, act_covs, act_wts)) %>%  
  readr::write_rds("Data/pca_rvol.rds") 
 
rm(list = ls()) 
 
#### Create daily data tibbles #### 
# Load Assets' Returns and Market estimates 
mkt_ret <- readr::read_rds("Data/mkt_ret.rds") 
mkt_rvol <- readr::read_rds("Data/mkt_rvol.rds") 
pca_rvol <- readr::read_rds("Data/pca_rvol.rds") 
dpca <- readr::read_rds("Data/dpca.rds") 
 
# GARCH fit for Market estimates 
gspec <- rugarch::ugarchspec(distribution.model = "sstd", mean.model = 
list(armaOrder = c(0, 0)), 
                             variance.model = list(model = "sGARCH", 
garchOrder = c(1, 1))) 
cap_garch <- rugarch::ugarchfit(gspec, mkt_ret$mkt_ret) 
# pca_garch <- rugarch::ugarchfit(gspec, pca_mkt$mkt_ret, solver = 
"hybrid")@fit$sigma 
pca_garch <- rugarch::ugarchfit(gspec, na.omit(dpca$mkt_ret)) 
 
rm(gspec) 
 
cap_garch 
 
pca_garch 
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rm(list = ls()) 


