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ABSTRACT

By statistical analysis of the text in a given language, it is possible to represent each

word in the vocabulary of the language as an m-dimensional word vector (also known

as a word embedding) such that this vector captures semantic and syntactic information.

Word embeddings derived from unannotated corpora can be divided into (1) counting

methods which perform factorization of the word-context cooccurrence matrix and (2)

predictive methods where neural networks are trained to predict word distributions given

a context, generally outperforming counting methods. In this thesis, we hypothesize that

the performance gap is due to how counting methods account for – or completely ig-

nore – negative information: word-context pairs where observing one is informative of

not observing the other, mathematically formulated as two events (words and contexts)

having negative Pointwise Mutual Information. We validate our hypothesis by creating

an efficient factorization algorithm, LexVec, scalable to web-size corpora, that accounts

for negative information in a principled way, closing the performance gap with predictive

methods. Additionally, we show that strategies for breaking up words into smaller units

(subwords) – an important technique in predictive methods for representing rare words

– can be successfully adapted to LexVec. We show that the explicit nature of LexVec

– having access to the underlying cooccurrence matrix – allows us to selectively filter

whether to account for negative information in the factorization and to what degree, and

use this filtering to isolate the impact that negative information has on embeddings. Word

and sentence-level evaluations show that only accounting for positive PMI in the factor-

ization strongly captures both semantics and syntax, whereas using only negative PMI

captures little of semantics but a surprising amount of syntactic information. Finally, we

perform an in-depth investigation of the effect that increasing the relative importance of

negative PMI compared to positive PMI has on the geometry of the vector space and its

representation of frequent and rare words. Results reveal two rank invariant geometric

properties – vector norms and direction – and improved rare word representation induced

by incorporating negative information.

Keywords: Word vectors. matrix factorization. natural language processing.



O Papel da Informação Negativa na Aprendizagem de Vetores Palavra Densos

RESUMO

Pela análise estatística de textos em uma dada linguagem, é possível representar cada pala-

vra contida no vocabulário desta linguagem por meio de um vetor palavram-dimensional

(também conhecido como embedding de palavra) de forma que esse vetor capture infor-

mações semânticas e sintáticas. Embeddings de palavras podem ser derivados de corpora

não-anotados por meio de (1) métodos de contagem onde é efetuada explicitamente a fato-

ração da matriz de coocorrência e (2) métodos preditivos onde redes neurais são treinadas

para predizer distribuições de palavras dado um contexto. Nesta tese, hipotetizamos que

essa diferença de desempenho é devida à forma com que métodos baseados em conta-

gem levam em consideração – ou ignoram completamente – informação negativa: pares

palavra-contexto, nos quais o fato de observar um é informativo para a não observação

do outro, formulado matematicamente como dois eventos (palavra e contexto) possuindo

Pointwise Mutual Information negativa. Validamos nossa hipótese criando um novo mé-

todo e eficiente método de fatoração de matrizes, o LexVec, altamente escalável, limitado

apenas por espaço em disco e núcleos computacionais, que leva em consideração a infor-

mação negativa de forma embasada, eliminando a diferença de desempenho em relação

a métodos preditivos. Adicionalmente, mostramos que estratégias para quebrar palavras

em unidades menores (subpalavras) – uma técnica importante em métodos preditivos para

a representação de palavras infrequentes – podem ser adaptadas ao LexVec. Se aprovei-

tando do fato que o LexVec tem acesso à matriz de coocorrência sendo fatorada, efetua-

mos fatorações que filtram seletivamente o uso ou não de informação negativa, estudando

assim o impacto que a informação negativa tem nos embeddings de palavras. Avaliações

a nível de palavra e de frases mostram que o uso exclusivo de PMI positivo na fatoração

captura fortemente a semântica e sintaxe de palavras, enquanto que o uso exclusivo de

PMI negativo captura pouca informação semântica porém uma quantidade surpreendente

de informação sintática. Finalmente, efetuamos uma investigação profunda sobre o efeito

que o aumento do peso da informação negativa (em relação a informação positiva) tem

na geometria dos espaços vetoriais dos embeddings e nas representações de palavras fre-

quentes e infrequentes. Os resultados revelam duas invariantes geométricas – a norma e a

direção vetorial – e melhorias nas representações de palavras raras que são induzidas pelo

uso aumentado da informação negativa.



Palavras-chave: vetores palavra. fatoração de matriz. processamento de linguagem na-

tural.
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1 INTRODUCTION

One approach to represent words in a given language’s vocabulary is through low-

dimensional word vectors (also known as word embeddings) such that these vectors cap-

ture semantic and syntactic information. The similarity of two vectors serves as a proxy

for the similarity between the corresponding words. These low dimensional (dense) word

vectors have become a key component in modern NLP systems for information retrieval,

language modeling, parsing, sentiment classification, and many others (LEE; CHUANG;

SEAMONS, 1997; BENGIO et al., 2003; SOCHER et al., 2013a; TURNEY; LITTMAN,

2003; TURNEY; PANTEL, 2010). Figure 1.1 shows a 2-dimensional PCA projection

of a set of words vectors drawn from our LexVec Common Crawl vectors (the LexVec

model is presented in Chapter 3), illustrating how a vector space model represents mean-

ing. Words that are semantically similar cluster in space, and the relations “capital-of”

and “adverb-comparative-superlative” are represented by linear offsets in vector space.

These word vectors are usually created in an unsupervised manner from corpus

statistics by exploiting the distributional hypothesis: that similar words appear in simi-

lar contexts (HARRIS, 1954), paraphrased by Firth (1957) as “a word is characterized

by the company that it keeps”. A word-to-context cooccurrence matrix is constructed

by counting the number of times each word in the vocabulary is observed with a given

context. The context could be other words (SCHUTZE, 1992; LUND; BURGESS, 1996)

or documents (DEERWESTER et al., 1990). When considering words as context (the

focus of this thesis), two words are said to cooccur, and their count incremented, if they

appear within some given distance of each other. This distance is referred to as the context

window.

The rows of this highly sparse matrix can be used directly as word vectors, but this

is problematic from a computational standpoint, where even with efficient sparse matrix

methods, vector operations are costly and storing the matrix in memory is prohibitive for

commonly used vocabulary sizes.

Sparsity also poses an issue for measuring similarity between vectors: the com-

pression induced by techniques that perform matrix factorization such as latent semantic

analysis (DEERWESTER et al., 1990) unveil similarities in dense latent space which

might otherwise be missing in the surface/observed space of sparse vectors. Perform-

ing matrix factorization has become the norm for generating word vectors from cooccur-

rence counts (SCHÜTZE, 1993; TURNEY; PANTEL, 2010; PENNINGTON; SOCHER;
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Figure 1.1 – 2-dimensional PCA projections of LexVec Common Crawl vectors: (a) Countries
(red) and capitals (blue) (b) Adverbs (red), comparatives (blue), superlatives (green). Note how
the geometry captures the semantic “capital-of” and syntactic “adverb-comparative-superlative”

relations through linear offsets between vectors.
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MANNING, 2014).

A parallel line of work uses neural networks to train dense word vectors, foregoing

the construction of a cooccurrence matrix. Bengio et al. (2003) train a language model

using trainable low-dimensional vectors as input, where each input word has its own

vector. This is in stark contrast to prior work that used static one-hot encoding vectors for

each word. The intuition is that the network will learn similar vectors for similar concepts,

and so learning to make predictions for one input word transfers to making predictions

about other words having similar vectors. This idea is the realization in NLP of distributed

representations (HINTON, 1986), which is why word vectors are commonly referred to

as distributed word representations.

Ten years later, word embeddings from the word2vec (MIKOLOV et al., 2013)

package took the NLP community by storm with a number of striking results. Its Skip-

gram (SG) model strips away the non-linearities of the Bengio et al. (2003) language

model, and rather than predicting the next token in a sequence, it predicts the surrounding

context words given a center word. Its other model, Continuous Bag-of-Words (CBOW),

instead predicts the center word given the sum of context words. From here onward we

focus on the SG model since it consistently outperforms CBOW (LEVY; GOLDBERG;

DAGAN, 2015) and has a nice mathematical equivalence (LEVY; GOLDBERG, 2014)

to implicit matrix factorization. This simpler model, combined with the introduction of

negative sampling in a followup paper (MIKOLOV et al., 2013), allowed word embed-

dings to be trained on corpora multiple orders larger than previous neural network models.

Evaluation on word similarity tasks and the jointly introduced (MIKOLOV et al., 2013)1

task of solving word analogies – such as “Paris is to France as Tokyo is to ?” – using

only vector arithmetic showed significant performance gains over older models based on

cooccurrence counting and matrix factorization. This gap in performance is highlighted

by Baroni, Dinu and Kruszewski (2014), which create the nomenclature we use in this

thesis for referring to models based on cooccurrence matrix construction and factoriza-

tion as counting, and methods such as those in word2vec that are trained to predict words

as predictive.

Among the most prominent counting methods were the truncated Singular Value

Decomposition of the Positive Pointwise Mutual Information (PPMI) matrix (NIWA;

NITTA, 1994; BULLINARIA; LEVY, 2007; LEVY; GOLDBERG; RAMAT-GAN, 2014),

1Often unreferenced, Rumelhart and Abrahamson (1973) proposed analogical reasoning over vectors
decades earlier, but using vectors derived from human word similarity judgements rather than corpus cooc-
currence.
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and the GloVe model (PENNINGTON; SOCHER; MANNING, 2014). We hypothesized

they lagged the word2vec predictive methods in performance because of incorrect weight-

ing of or totally discarding information contained in zero count cells of the cooccurrence

matrix.

Word-to-word cooccurrence matrices tend to be extremely sparse: most cells have

a count of 0. For example, the matrix used throughout this thesis, constructed from the

English Wikipedia, is 99.71% zeros. We believe a good matrix factorization should ap-

proximately recover these values when factor matrices are multiplied, as zero counts con-

tain information – in this case negative information – that a word and context tend to not

appear together.

In the work that follows, we make the following contributions:

1.1 Contributions

1.1.1 Reconstruction error weighting

Matrix factorization word embedding models differ in the way they prioritize in-

formation when compressing word representations into dense word vectors. Better un-

derstanding this prioritization or weighting of information can assist in designing better

models.

(Q1) What is a principled approach to account for negative information in explicit matrix

factorization, and how do existing models fail to account for it?

We motivate and define the set of principled reconstruction error properties that matrix

factorization models should respect and situate existing models within this framework

(Section 3.1).

(Q2) Can this principled approach be implemented efficiently?

We propose LexVec (SALLE; VILLAVICENCIO; IDIART, 2016), a new method for

generating word embeddings that uses low-rank, weighted factorization of the arbitrary

transformations of the word-context cooccurrence matrix via stochastic gradient descent,

respecting the full set of principled reconstruction error properties (Section 3.2). LexVec
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closes the performance gap in word similarity tasks between counting and predictive word

embedding models, creating both a state-of-the-art static word embedding model and a

more transparent alternative to Skip-gram due to its explicit nature (Section 4.1.2).

(Q3) How can this approach be scaled to web-sized corpora?

We propose an external memory variant of LexVec (SALLE; IDIART; VILLAVICEN-

CIO, 2016) that is based on MapReduce operations that is highly scalable (Section 3.5).

Results show its equivalence to the in-memory variant (Section 4.2). We showcase its

scalability by training it on the larger Common Crawl corpus (Section 4.4.2).

1.1.2 Positional contexts

The use of positional information is a recurring theme in NLP models, present

in foundational works through to modern Transformer models. For example, if position

(or ordering) is ignored and a bag-of-words approach is used, without additional context

it becomes impossible to determine the subject in sentences such as “John read Harry’s

PhD thesis”. Did John or Harry do the reading? Additional evidence of the importance

of positional contexts both strengthens this theme, and paves the way for improved model

performance.

(Q4) In counting cooccurrence, can we use the relative position of words and contexts

and does this improve word representations?

We augment the cooccurrence matrix with positional information and use this information

to learn position-dependent context vectors (Section 3.3) (SALLE; IDIART; VILLAVI-

CENCIO, 2016). We compare existing and novel ways of merging word and context

vectors to obtain single word vector representations (Section 3.3.1).

1.1.3 Subwords

As with positional contexts, breaking words into subwords permeates all areas of

NLP, from the study of morphology to optimization of softmax layers in large language

models.
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(Q5) Given that the cooccurrence matrix is word-to-word, how can we learn vectors for

subwords?

We represent word vectors by the sum of their subword vectors and successfully incorpo-

rate this into the LexVec model (Section 3.6).

(Q6) Are linguistically aware subwords better than naive character subwords?

We perform novel evaluation of the robustness of naive character n-grams versus mor-

phemes, with results showing that despite their simplicity, n-grams are an adequate alter-

native (Section 4.3.2).

1.1.4 Association measures

PMI is yet another staple of NLP with applications that extend beyond word em-

bedding. Though theoretically sound, alternatives are required to deal with pairs of events

that have 0 probability.

(Q7) How can we address computationally PMI going to −∞ without discarding the

spectrum of negative values?

Since it is unclear what is lost by collapsing the spectrum of negative PMI (nPMI) values

to 0 when using PPMI, we look at alternative ways of dealing with nPMI by proposing two

new PMI variants (CPMI and NNEGPMI) which partially preserve the negative spectrum

(Section 3.4.1).

1.1.5 Downstream Performance

Pretrained and widely-distributed word embedding models sparked a revolution

in NLP. Despite the recent popularity of Transformer models, pretrained static word em-

beddings remain the state-of-the-art in lexical semantic tasks and remain competitive in

certain tasks that make use of sentence embeddings (LENCI et al., 2021; YANG; ZHU;

CHEN, 2019; WANG et al., 2020a).
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(Q8) When trained on similarly-sized corpora, how does LexVec compare to other popular

word embeddings in downstream tasks?

We train LexVec models on a 63B token dump of Common Crawl. LexVec’s average

downstream performance is (1) superior to a GloVe model trained on 840B tokens (13x

more data) in all evaluations (2) superior to Skip-gram’s trained on 100B tokens (1.3x

more data) in all evaluations excepting textual similarity (3) superior to the state-of-the-

art fastText subword model trained on 630B tokens (10x more data) in syntactic, natural

language inference, and facet ranking tasks.

(Q9) On what tasks are static word embeddings competitive with recent Transformer mod-

els?

In lexical semantic tasks, results show that static word embeddings remain the domi-

nant approach (Section 4.5.1). As universal sentence encoders (where rather than being

fine-tuned on a specific task, Transformer outputs are used as sentence embeddings for

arbitrary tasks), sentence embedding methods using as input static word embeddings (in-

cluding LexVec) are competitive in textual similarity tasks and are only marginally worst

in mean text classification accuracy (Section 4.5.2).

1.1.6 An Application in Information Retrieval

Conversational search is a rapidly growing field in IR and NLP. Human evaluation

of conversational search systems is expensive, and prohibitive as the number of systems

to be tested grows.

(Q10) Can word embeddings be used as a building block in such systems?

We propose and evaluate a user simulator for conversational search that enables scalable

evaluation of conversational search systems. One of the components of this simulator

is a facet ranker: given the current dialogue, rank what are the most likely intents (or

facets) of the user. Using as a starting point an existing dialogue dataset, we use heuris-

tics to automate the construction of a facet ranking dataset to enable the evaluation of

different facet rankers (Section 2.4.2.5). Results show that static word embeddings are an
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effective approach for facet ranking, competitive with Transformer models when used for

sentence embedding, with LexVec models outperforming other static word embeddings

(Section 4.4.8).

1.1.7 Information contained positive/negative PMI

The commonly used PPMI measure discards negative information by collapsing it

to 0, raising the question of exactly what information is being discarded. From a practical

point of view, understanding what can be learned from different spectrums of PMI can

further our understanding of word embedding models and assist in their design. On the

theoretical side, this same understanding helps better characterize distributional seman-

tics.

(Q11) Is it possible to isolate the effects of positive or negative PMI when learning dense

word vectors?

We show that thanks to LexVec’s explicit access to the PMI matrix being factorized, SGD

steps can be skipped for pairs containing positive or negative target values, achieving the

desired isolation and resulting in models that use only positive or negative information

(Section 5.1). We also observe that the negative sampling procedure used in both LexVec

and Skip-gram samples primarily negative PMI pairs, allowing the effects of negative

information to be amplified by increasing the number of negative samples used (Sec-

tion 6.1).

(Q12) Does positive/negative information encode semantic and/or syntactic properties of

words? What type of linguistic information is predominantly represented by which part

of the PMI spectrum?

Word and sentence-level evaluations show that only accounting for positive PMI (pPMI)

in the factorization strongly captures both semantics and syntax, whereas using only

nPMI captures little of semantics but a surprising amount of syntactic information (Sec-

tion 5.1.1). This deepens our understanding of distributional semantics and of computa-

tional linguistics by extending the distributional hypothesis to “a word is not only charac-

terized by the company that it keeps, but also by the company it rejects”. We hypothesize
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that grammar is systematically generating negative cooccurrence (equivalently evidence

not seen, negative evidence, or negative information), and from this negative evidence our

word embeddings capture significant syntactical information.

1.1.8 Vector space geometry

Vector normalization is known to improve word analogy performance. It would

be interesting to know under what conditions this geometry-altering heuristic becomes

unnecessary. In our work, we focus on how negative information impacts vector space

geometry.

(Q13) How is the geometry of the word vector space affected by negative information?

We perform an in-depth investigation of the effect that increasing the relative importance

of nPMI compared to pPMI has on the geometry of the vector space and its representation

of frequent and rare words. We find that increasing the relative importance of negative in-

formation strengthens geometric rank invariant properties – vector norms and direction –

of word vectors and improves the representation of rare words (Section 6.3). Experiments

reveal similar results for Skip-gram, GloVe, and SVD models, showing that the impor-

tant role played by negative information in LexVec transfers well to these other models

(Section 6.4).

Additionally, our analysis reveals that when word analogies are evaluated correctly

(without the use of heuristics), performance improves as more negative information is

used, suggesting that these geometric properties are connected to more strongly capturing

the linear vector offsets used in answering analogies (Section 6.3).

1.2 Relevant work during PhD

1.2.1 Publications

As of this publication, the following works have been cited 141 times:

• SALLE, A.; VILLAVICENCIO, A.; IDIART, M. Matrix factorization using win-

dow sampling and negative sampling for improved word representations. In: Pro-
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ceedings of the 54th Annual Meeting of the Association for Computational Lin-

guistics (Volume 2: Short Papers). Berlin, Germany: Association for Computa-

tional Linguistics, 2016. p.419–424. Available from Internet: <https://www.aclw

eb.org/anthology/P16-2068>. Quali: A1. Section 3.2.

• SALLE, A.; IDIART, M.; VILLAVICENCIO, A. Enhancing the LexVec distributed

word representation model using positional contexts and external memory. CoRR,

abs/1606.01283, 2016. Available from Internet: <https://arxiv.org/abs/1606.012

83>. Sections 3.3 and 3.5.

• SALLE, A.; VILLAVICENCIO, A. Incorporating subword information into matrix

factorization word embeddings. In: Proceedings of the Second Workshop on

Subword/Character LEvel Models. New Orleans: Association for Computational

Linguistics, 2018. p. 66–71. Available from Internet: <https://www.aclweb.org/ant

hology/W18-1209>. Section 3.6.

• SALLE, A.; VILLAVICENCIO, A. Restricted recurrent neural tensor networks:

Exploiting word frequency and compositionality. In: Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers). Melbourne, Australia: Association for Computational Linguistics,

2018. p. 8–13. Available from Internet: <https://www.aclweb.org/anthology/P18

-2002>. Quali: A1.

• SALLE, A.; VILLAVICENCIO, A. Why so down? The role of negative (and posi-

tive)pointwise mutual information in distributional semantics. CoRR, abs/1908.06941,

2019. Available from Internet: <http://arxiv.org/abs/1908.06941>. Chapter 5.

• SALLE, A.; VILLAVICENCIO, A. Understanding the Effects of Negative (and

Positive) Pointwise Mutual Information on Word Vectors. Under review, 2021.

Chapters 5 and 6.

• SALLE, A.; MALMASI, S.; ROKHLENKO, O.; AGICHTEIN, E.; Studying the

effectiveness of conversational search refinement through user simulation. 43rd

European Conference On Information Retrieval. Lucca, Italy: Advances in In-

formation Retrieval, Springer International Publishing, 2021. p. 587–602. Avail-

able from Internet: <https://link.springer.com/chapter/10.1007%2F978-3-030-72

113-8_39>. Quali: A2. Sections 2.4.2.5 and 4.4.8.

• SALLE, A.; MALMASI, S.; ROKHLENKO, O.; AGICHTEIN, E.; Studying the ef-

fectiveness of conversational search refinement and clarification through user sim-

https://www.aclweb.org/anthology/P16-2068
https://www.aclweb.org/anthology/P16-2068
https://arxiv.org/abs/1606.01283
https://arxiv.org/abs/1606.01283
https://www.aclweb.org/anthology/W18-1209
https://www.aclweb.org/anthology/W18-1209
https://www.aclweb.org/anthology/P18-2002
https://www.aclweb.org/anthology/P18-2002
http://arxiv.org/abs/1908.06941
https://link.springer.com/chapter/10.1007%2F978-3-030-72113-8_39
https://link.springer.com/chapter/10.1007%2F978-3-030-72113-8_39
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ulation. Under review, 2021. Chapters 5 and 6.

1.2.2 Software and Models

• LexVec: <https://github.com/alexandres/lexvec>

• terashuf: <https://github.com/alexandres/terashuf>

• Models (English):

• LexVec-63B (Mean). Vectors: <https://www.dropbox.com/s/ztbj824y779w

385/lexvec.commoncrawl.300d.vectors.gz?dl=1>.

• LexVec-63B (Concat). Vectors: <https://www.dropbox.com/s/a26u7j1i9459

b2w/lexvec.commoncrawl.1500d.vectors.gz?dl=1>.

• SubLexVec-63B (Mean). Vectors: <https://www.dropbox.com/s/vwywt301

aw0ebxw/lexvec.commoncrawl.ngramsubwords.300d.vectors.gz?dl=1>.

• SubLexVec-63B (Concat). Vectors: <https://www.dropbox.com/s/kkkbc695

j7dfs7y/lexvec.commoncrawl.ngramsubwords.1500d.vectors.gz?dl=1>.

• SubLexVec-Crawl. Vectors: <https://www.dropbox.com/s/mrxn933chn5u

37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz?dl=1>.

Binary model: <https://www.dropbox.com/s/buix0deqlks4312/lexvec.com

moncrawl.ngramsubwords.300d.W.pos.bin.gz?dl=1>.

• LexVec Common Crawl. Word Vectors: <https://www.dropbox.com/s/flh1f

jynqvdsj4p/lexvec.commoncrawl.300d.W.pos.vectors.gz?dl=1>. Merged

Vectors: <https://www.dropbox.com/s/zkiajh6fj0hm0m7/lexvec.commoncra

wl.300d.W%2BC.pos.vectors.gz?dl=1>.

• LexVec Wikipedia + NewsCrawl. Word Vectors: <https://www.dropbox.com/

s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?d

l=1>. Merged Vectors: <https://www.dropbox.com/s/u320t9bw6tzlwma/le

xvec.enwiki%2Bnewscrawl.300d.W%2BC.pos.vectors.gz?dl=1>.

https://github.com/alexandres/lexvec
https://github.com/alexandres/terashuf
https://www.dropbox.com/s/ztbj824y779w385/lexvec.commoncrawl.300d.vectors.gz?dl=1
https://www.dropbox.com/s/ztbj824y779w385/lexvec.commoncrawl.300d.vectors.gz?dl=1
https://www.dropbox.com/s/a26u7j1i9459b2w/lexvec.commoncrawl.1500d.vectors.gz?dl=1
https://www.dropbox.com/s/a26u7j1i9459b2w/lexvec.commoncrawl.1500d.vectors.gz?dl=1
https://www.dropbox.com/s/vwywt301aw0ebxw/lexvec.commoncrawl.ngramsubwords.300d.vectors.gz?dl=1
https://www.dropbox.com/s/vwywt301aw0ebxw/lexvec.commoncrawl.ngramsubwords.300d.vectors.gz?dl=1
https://www.dropbox.com/s/kkkbc695j7dfs7y/lexvec.commoncrawl.ngramsubwords.1500d.vectors.gz?dl=1
https://www.dropbox.com/s/kkkbc695j7dfs7y/lexvec.commoncrawl.ngramsubwords.1500d.vectors.gz?dl=1
https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/buix0deqlks4312/lexvec.commoncrawl.ngramsubwords.300d.W.pos.bin.gz?dl=1
https://www.dropbox.com/s/buix0deqlks4312/lexvec.commoncrawl.ngramsubwords.300d.W.pos.bin.gz?dl=1
https://www.dropbox.com/s/flh1fjynqvdsj4p/lexvec.commoncrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/flh1fjynqvdsj4p/lexvec.commoncrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/zkiajh6fj0hm0m7/lexvec.commoncrawl.300d.W%2BC.pos.vectors.gz?dl=1
https://www.dropbox.com/s/zkiajh6fj0hm0m7/lexvec.commoncrawl.300d.W%2BC.pos.vectors.gz?dl=1
https://www.dropbox.com/s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/u320t9bw6tzlwma/lexvec.enwiki%2Bnewscrawl.300d.W%2BC.pos.vectors.gz?dl=1
https://www.dropbox.com/s/u320t9bw6tzlwma/lexvec.enwiki%2Bnewscrawl.300d.W%2BC.pos.vectors.gz?dl=1
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2 BACKGROUND

In this chapter, we present an overview of word embedding models, starting from

their building blocks – the cooccurrence matrix (Section 2.1) and its transformations (Sec-

tion 2.2) – through to related work in matrix transformations (Section 2.3.1), factorization

(Section 2.3.2), subword information (Section 2.3.3), analysis (Section 2.3.4) and contex-

tualized word embeddings (Section 2.3.5). We then describe the set of evaluations used in

testing their performance, both intrinsic (Section 2.4.1) and downstream (Section 2.4.2).

2.1 Cooccurrence Matrix and Positional Contexts

The building block for counting word embedding methods is the cooccurrence

matrix. This matrix M is constructed by initializing it to 0 and sliding a symmetric win-

dow over the training corpus and for each center word w ∈ V (V is the word vocabulary)

and context word c ∈ V within the window, incrementing Mw,c. A row Mw in this matrix

represents the raw count context distribution of the word w. Figure 2.1 gives an example

of a cooccurrence matrix constructed from two sentences.

Figure 2.1 – A cooccurrence matrix constructed from two sentences. When the window is
centered on “also”, the corresponding cells for “she”, “loves”, and “my” are incremented.

As observed by Ling et al. (2015b) and more recently Salle, Idiart and Villavi-

cencio (2016), Vaswani et al. (2017), Mikolov et al. (2018), Devlin et al. (2019), using

positional information (SCHÜTZE, 1993) consistently improves word representations:

the positional contexts for the target word “dogs” in “My friend loves dogs and cats” for a

symmetric window of size l = 2 (2 words to each side of the target word) are {friend−2,
loves−1, and1, cats2}. This leads to a context vocabulary Vc =

⋃
w∈Vw{w−l , . . . , w−1,
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w1, . . . , wl} of size |Vw| × 2× l . After sliding the symmetric window over the entire cor-

pus, the value Mdogs,cats2 , for example, is the number of times “cats” appeared two words

to the right of “dogs”.

For concreteness throughout this thesis, we refer to the cooccurrence matrixMwiki

constructed from a lowercased, alphanumerical 2015 English Wikipedia dump with 3.8e9

tokens, discarding tokens with frequency < 100, window size l = 2, positional contexts,

for a word vocabulary Vw of 303, 517 words and context vocabulary of Vc of 1, 214, 068

words.

Additionally, using this same configuration but without positional contexts, we

follow Mikolov et al. (2013) in using a symmetric window of size 5 drawn from U (1, 5)

for each target word. We refer to this matrix as Mwiki5 .

In constructing both Mwiki and Mwiki5 , we use the additional heuristic of token

subsampling (MIKOLOV et al., 2013) the training corpus: tokens for word w are ran-

domly discarded with probability pw = max(0, 1 −
√
t/fw), where t is the subsampling

threshold (we follow Mikolov et al. (2013) and set t = 10−5 throughout this paper) and fw

is the unigram frequency (tokens of w divided by total number of tokens in training cor-

pus). For Skip-gram and LexVec, which perform factorization by sampling word-context

pairs from the training corpus, subsampling accelerates training significantly. Mikolov

et al. (2013) also observe empirically that it improves the representation of uncommon

words.

2.2 Pointwise Mutual Information (PMI)

Rather than using the raw frequency count matrix, it is common to reweight it

using PMI (FANO, 1961; CHURCH; HANKS, 1990). Table 2.1 illustrates the difference

between cooccurrence and PMI values by showing 10 context words with the highest

cooccurrences/PMI with a set of sample words. These context words correspond to peaks

in the context distributions of these sample words. We can interpret these peaks as the dis-

tributional features that should most strongly represent the semantics of the target word.

However, even with subsampling, raw cooccurrences lead to frequent features that have

little semantic information, such as “the”, “at”, “of”. In contrast, PMI downweights these

features and emphasizes features that have clear semantic relationship to the target words.

The PMI transformation (association measure) of the cooccurrence matrix is
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Table 2.1 – Sample values from Mwiki5 and corresponding PMI values.

Word Coocs PMI

time the, at, of, to, a, for, in, and,
same, that

spend, spent, waste, spend-
ing, heavyweight, periods,
trial, nepal, same, full

system system, operating, the, solar,
of, a, pass, and, to, in

operating, solar, nintendo,
transit, classification, system,
pass, navigation, linux, inte-
grated

early life, in, the, century, late, s,
born, th, career, nine

childhood, life, stages, late,
morning, centuries, career,
century, ages, medieval

member of, parliament, a, the, board,
committee, founding, mem-
ber, council, elected

founding, parliament, legisla-
tive, honorary, board, elected,
committee, assembly, repre-
sentatives, mp

original research, the, recording,
holder, of, original, affect,
resolution, to, copyright

holder, affect, poster, record-
ing, soundtrack, research,
limit, resolution, sample,
copies

works works, published, of, the,
and, in, his, art, novels, by

works, literary, influenced,
novels, collections, collected,
shakespeare, published,
translated, fiction

strong keep, a, zero, utc, support,
two, the, oppose, and, delete

ties, oppose, keep, weak,
strong, opinions, support, op-
position, influence, enough

hand hand, other, right, the, on,
left, a, to, and, of

hand, luke, cool, combat,
right, cards, holding, picked,
palm, arm

continued until, to, the, and, he, his, in,
grow, of, as

grow, operate, until, ex-
pand, decline, perform, serve,
struggle, throughout, retire-
ment

problem the, problem, is, a, that, solu-
tion, i, with, this, to

solution, fix, problem, seri-
ous, solutions, biggest, fixed,
addressed, finding, isn

features the, and, features, of, a,
which, album, video, include,
also

interviews, bonus, features,
architectural, soundtrack,
unique, guest, dvd, interface,
disc

outside the, of, inside, and, topic, to,
a, just, in, walls

inside, walls, topic, limits,
dispute, scope, views, juris-
diction, outside, residents



30

equal to:

PMI w,c = log
P (w, c)

P (w)P (c)
= log

Mw,c

M∗,∗
Mw,∗
M∗,∗

M∗,c
M∗,∗

= log
Mw,cM∗,∗
Mw,∗M∗,c

(2.1)

where * denotes summation over the corresponding index. We refer to the set {(w, c) |
PMI w,c ≤ 0} as negative pointwise mutual information (nPMI), the set {(w, c) | PMI w,c

> 0} as positive pointwise mutual information (pPMI), and the set {(w, c) | Mw,c = 0}
as maximally negative pointwise mutual information (mnPMI). Table 2.2 gives the sizes

Table 2.2 – Set sizes computed over 105 cells sampled randomly from PMIwiki, such that
nPMI+pPMI sum to 100%.

Name Description Set Size (%)

nPMI Negative information {(w, c) | PMI w,c ≤ 0} 99.75
pPMI Positive information {(w, c) | PMI w,c > 0} 0.25

mnPMI Maximally-negative informa-
tion

{(w, c) | Mw,c = 0} 99.71

nPMI\mnPMI Collapsed negative informa-
tion under PPMI

{(w, c) |PMI w,c ≤ 0

∧Mw,c > 0} 0.04

of these sets for PMI wiki, the transformation of Mwiki.

An issue with PMI is that rare words/contexts can lead to very high PMI, since

these terms lead to small denominators in Equation (2.1). A workaround proposed in

Levy, Goldberg and Dagan (2015) is to smooth the context distribution P (c) via an expo-

nential term α (this reassigns probability mass from frequent events to rare events, while

still preserving the ordering of probabilities, i.e., if P (c1) > P (c2), after smoothing this

still holds), giving the context distribution smoothed (CDS) version of PMI:

PMI αcds
w,c = log

P (w, c)

P (w)Pαcds (c)
(2.2)

= log

Mw,c

M∗,∗

Mw,∗
M∗,∗

M
αcds
∗,c∑

c′M
αcds
c′,c

(2.3)

= log
Mw,c

Mw,∗
M
αcds
∗,c∑

c′M
αcds
∗,c′

(2.4)

Even with smoothing, there is still an issue with unobserved word-context pair

cooccurrences, as PMI goes to negative infinity. This problem is aggravated by unreliable

statistics from finite corpora which lead to numerous such pairs. A common workaround
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is to clip all negative PMI values at 0, including those for cooccurring pairs; this is known

as Positive PMI (PPMI, not to be confused with the pPMI set defined above):

PPMI αcds
w,c = max(PMI αcds

w,c , 0) (2.5)

This indiscriminate clipping of negative values motivated this thesis, making us

question what information it discards. Or in other words, what can we learn from negative

information?

2.3 Related Work

2.3.1 Cooccurrence Matrix Transformations

There is a long history of studying transformations (also known as association

measures) of cooccurrence matrices in general, not only of word-context pairs; see Schütze

(1993), Manning, Manning and Schütze (1999), Jurafsky (2000) for an overview and Cur-

ran and Moens (2002) for comparison of different transformations. One widely adopted

measure is PMI, and in fact, Bullinaria and Levy (2007) show that word vectors derived

from PPMI matrices perform better than alternative transformations for word-context

cooccurrence. Moreover, Levy and Goldberg (2014) show theoretically that the popu-

lar Skip-gram model (MIKOLOV et al., 2013) performs implicit factorization of shifted

PMI. Another PMI variant is normalized PMI, which Bouma (2009) proposed for dealing

with negative infinity (-∞), for collocation extraction.

2.3.2 Matrix Factorization

Low-rank word vectors obtained through the factorization of the PMI matrix are

advantageous computationally and arguably lead to better generalization than directly

using rows from PMI as word vectors.

Although the SVD provably (ECKART; YOUNG, 1936) provides factorizations

with the lowest possible squared loss L2(w, c) = 1
2
λSVD(w, c)(WwC

>
c − f(M)w,c)

2 –

where λSVD(w, c) = 1 and f(·) is an arbitrary transformation – Salle, Villavicencio and

Idiart (2016) show that, in word embedding where f is some variant of PMI , uniform
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weights λ significantly reduce the quality of the word vectors.

GloVe (PENNINGTON; SOCHER; MANNING, 2014) does perform weighting

but ignores values in the mnPMI set (where Mw,c = 0):

LGloVe(w, c) =
1

2
λGloVe(w, c)(WwC

>
c − logMw,c + bw + b̃c)

2 (2.6)

λGloVe(w, c) = min(Mα
w,c/x

α
max , 1) (2.7)

where α and xmax are constants, and b and b̃ are bias terms.

Swivel (SHAZEER et al., 2016) adjusts the GloVe objective to account for values

in mnPMI:

LSwivel(w, c) =


1
2
λSwivel(w, c)(WwC

>
c − PMI(w, c))2 if (w, c) /∈ mnPMI

1
2

log(1 + exp(WwC
>
c − PMI∗(w, c))) otherwise

(2.8)

λSwivel(w, c) = M1/2
w,c (2.9)

where PMI∗ is a Laplace smoothed PMI matrix (replacing zero coocurrences with

ones). Note that although accounting for values in mnPMI, Swivel does so by indis-

criminately assigning uniform weight to all negative cooccurrences, similar to the SVD.1

The Skip-gram (MIKOLOV et al., 2013) model performs implicit matrix factor-

ization by predicting contexts given target words. For each (w, c) pair observed in sliding

a window over the training corpus, k negative samples are drawn from the unigram con-

text distribution and the following objective function is maximized:

Jsg(w, c) = log σ(WwC
>
c ) +

k∑
i=1

Eci∼Pn(c) log σ(−WwC
>
ci

) (2.10)

where σ(·) is the logistic function. Under the assumption that the embedding dimension

is high enough such that J(·) terms can be maximized independently for different word-

context pairs, Levy and Goldberg (2014) show that the matrix WCT = PMI − log k

maximizes J . In other words, Skip-gram implicitly factorizes a shifted PMI matrix.

1Swivel is not used in our evaluations because of itsO(|V |2) computational complexity from calculating
loss terms for every cell in the matrix being factorized, thus requiring a large distributed computing environ-
ment to be feasible: in our initial experiments |V |2 = 9.2e10, and |Vw||Vc| = 3.7e11 when using positional
contexts. In the downstream experiments in Section 4.4, this problem is aggravated as |V |2 = 4e12.
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2.3.3 Subword information

Word embeddings that leverage subword information were first introduced by

Schütze (1993) which represented a word as the sum of four-gram vectors obtained run-

ning an SVD of a four-gram to four-gram cooccurrence matrix. Our model differs by

learning the subword vectors and resulting representation jointly as weighted factoriza-

tion of a word-context cooccurrence matrix is performed.

There are many models that use character-level subword information to form word

representations (LING et al., 2015a; CAO; REI, 2016; KIM et al., 2016; WIETING et al.,

2016; VERWIMP et al., 2017), as well as fastText (the model on which we base our

work). Closely related are models that use morphological segmentation in learning word

representations (LUONG; SOCHER; MANNING, 2013; BOTHA; BLUNSOM, 2014;

QIU et al., 2014; MITCHELL; STEEDMAN, 2015; COTTERELL; SCHÜTZE, 2015;

BHATIA; GUTHRIE; EISENSTEIN, 2016). Our model also uses n-grams and morpho-

logical segmentation, but it performs explicit matrix factorization to learn subword and

word representations, unlike these related models which mostly use neural networks.

Finally, Cotterell, Schütze and Eisner (2016) and Vúlic et al. (2017) retrofit mor-

phological information onto pre-trained models. These differ from our work in that we

incorporate morphological information at training time.

2.3.4 Analysis

The continued relevance of classic word embeddings has led to a number of re-

cent papers that aim to understand their properties. These include research on why word

analogies (“a is to b as c is to ?”) hold (HASHIMOTO; ALVAREZ-MELIS; JAAKKOLA,

2016; ETHAYARAJH; DUVENAUD; HIRST, 2019; ALLEN; HOSPEDALES, 2019),

or conversely why they do not hold (SCHLUTER, 2018; LINZEN, 2016; ROGERS;

DROZD; LI, 2017); on their geometry (MIMNO; THOMPSON, 2017); and on possi-

ble biases they incorporate (BOLUKBASI et al., 2016; NISSIM; NOORD; GOOT, 2019;

GONEN; GOLDBERG, 2019). This paper follows this line of research into understand-

ing the workings of these models.

Mimno and Thompson (2017) analyze the geometry of the Skip-gram model, con-

cluding that it is “strange”: word vectors occupy a narrow cone in space diametrically

opposed to context vectors. Our analysis of model geometry is directly inspired by their
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work, but rather than analyzing the implicit PMI factorization of Skip-gram, we look at

explicit factorizations, under which the “strange” geometry of Skip-gram can be explained

by looking at the underlying PMI counts.

Miaschi and Dell’Orletta (2020) use a set of sentence representation probing tasks

to investigate the linguistic knowledge encoded in sentence embeddings obtained from

BERT and word2vec, observing comparable results for both models. Different from our

work, their focus is on evaluating sentence representations, and they do not isolate the

effects of negative information.

Schluter (2018) observed that in analogies of the form “a is to b as c is to ?” if

a,b,c are not excluded from the set of possible answers, performance of the Skip-gram

and GloVe models plummets. Linzen (2016), Rogers, Drozd and Li (2017) made simi-

lar observations that these models do not quite seem to capture the geometry necessary

to correctly answer analogies. However, none of these works simultaneously relate (a)

increasing negative information with (b) word vector geometry for different frequencies

and (c) analogy performance. Although Ethayarajh, Duvenaud and Hirst (2019), Allen

and Hospedales (2019) theoretically show that these linear analogies should hold in PMI

factorizations, there is no investigation into how the geometry of different factorizations

affects results.

2.3.5 Contextualized Word Embeddings and Language Models

The most significant performance jump in NLP tasks since word2vec has been

due to deep contextualized word embeddings (PETERS et al., 2018) – where rather than

having a single vector for a word as described in the factorization above, models use

neural networks to compute vectors for words in context. For instance, the computed

vector for the word “bank” in “the river bank was teeming with frogs” is different from

the one in “I went to the bank to make a deposit”.

More recently, gains in performance have also been obtained due to language

model pre-training and fine-tuning (HOWARD; RUDER, 2018; RADFORD et al., 2019;

DEVLIN et al., 2019) – where a deep neural network language model is pre-trained on

very large corpora and the token-prediction output layer is replaced with an output layer

fine-tuned for the target task.

Task leaderboards such as SuperGLUE2 are dominated by the latter, specifically

2https://super.gluebenchmark.com/leaderboard
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language models based on the Transformer (VASWANI et al., 2017) architecture.

Interestingly, there are ways in which our thesis work on static word embed-

dings complements that in contextualized word embeddings and language models: for

example, (LIU; MCCARTHY; KORHONEN, 2020) show how static word embeddings

can improve contextual word representations in lexical semantic tasks that are context-

dependent, and (HOOVER et al., 2021) use our result on the connection between negative

PMI and syntactic information to justify preserving the negative spectrum of PMI mea-

sures extracted from Transformer models.

2.4 Evaluation

If an evaluation serves only to evaluate the information contained in a vector space

model, it is said to be intrinsic. On the other hand, if the evaluation measures the utility

in some downstream task, it is said to be extrinsic or downstream. Clearly there is room

for debate as to which category an evaluation belongs to: for example, Part-of-Speech

(POS) tagging both serves to evaluate whether POS information is captured by a vector

space model, but it is also useful for downstream tasks such as separating object (Noun)

from attributes (Adjectives and adverbs) in an eCommerce search query. Nevertheless,

we follow the convention in the literature and leave discussions on taxonomy to future

debate.

Evaluations can be further categorized into whether they evaluate individual word

representations, or phrase/sentence representations where word vectors must be composed

to form a single vector representation. Commonly used intrinsic word-level evaluations

include word similarity, word analogy, and fMRI. For sentence-level evaluation, we look

at text classification, POS tagging, and sentence-level similarity, natural language infer-

ence, and various probing tasks from the SentEval (CONNEAU; KIELA, 2018) suite.

2.4.1 Intrinsic Evaluation

2.4.1.1 Word similarity

In the word similarity task, given a pair of words, human judges are tasked with

assigning a high score if the words are similar, and a low score if they are dissimilar,

creating a word similarity dataset. Table 2.3 gives examples of pairs and scores from the
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datasets used in this paper.

Word vectors are evaluated using such word similarity datasets by comparing the

agreement – using Spearman rank correlation – between its human assigned score and

some function of the two word vectors. We use the cosine function as the measure of

word similarity between word vectors u and v in vector space:

Cos(u, v) =
u · v
|u||v| (2.11)

This discards vector norms, and considers only the angle between vectors.

Table 2.3 – Word similarity examples.

dataset pairs word 1 word 2 judgement

MEN 3000

black pigeon 13.00
bloom daisy 41.00
fabric wool 43.00
held theatre 9.00
lamb sheep 40.00

MTurk 287

coin awards 2.17
gambling money 3.75
navy withdrawn 1.57
pacific ocean 4.27
reichstag germany 2.29

RW 2034

correspondence write 7.83
engineering design 8.33
excitation exciting 8.20
leadership high 4.33
resigning office 5.43

SimLex 999

bed hospital 0.92
bread flour 3.33
butter potato 1.22
choose elect 7.62
diet apple 1.18

WS-R 252

computer laboratory 6.78
cup food 5.00
population development 3.75
practice institution 3.19
soap opera 7.94

WS-S 203

journey voyage 9.29
music project 3.63
peace insurance 2.94
stock egg 1.81
vodka gin 8.46
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2.4.1.2 Word analogy

Analogies of the form “a is to b as c is d” are evaluated by finding the word d∗

such that:

d∗ = argmaxw∈VwCos(Ww,Wc +Wb −Wa) (2.12)

(2.13)

If d∗ = d, the analogy is said to hold in the vector space. Schluter (2018) points out

two flaws in the way this evaluation is conducted in works such as Mikolov et al. (2013),

Pennington, Socher and Manning (2014):

(1) Normalization (Norm): The vector space is distorted by normalizing all word vec-

tors to unit length before the term Wc +Wb −Wa is calculated.

(2) Premise exclusion (Prem): The set {w ∈ Vw} in Equation (2.12) is replaced by

{w ∈ Vw\{a, b, c}} – the analogy’s premises are excluded from the set of candidate

answers. In practice this improves performance because it is often the case that

Wb −Wa ≈ 0 and so d∗ = c if c is not excluded from the candidates (LINZEN,

2016).

Although these heuristics work well in practice, significantly improving accuracy, they

mask whether the linear relationship Wa −Wb ≈ Wc −Wd is really present in the vector

space. This is particularly problematic as it may lead to wrong conclusions. For instance,

using the popular GoogleNews word2vec vectors, the answer to the analogy “man is

doctor as woman is to ?” was “nurse” (BOLUKBASI et al., 2016) if both Norm and

Prem are performed, when in fact, if analogies are evaluated correctly, the actual answer

is “doctor” as well (NISSIM; NOORD; GOOT, 2019).

In this work, we perform incorrect evaluation where both heuristics are used (e.g.,

GSem, GSyn) partially correct evaluation where one heuristic is excluded (e.g., GSem-

Norm, GSem-Prem), and correct evaluation where both heuristics are excluded (e.g.,

GSem-Norm-Prem). Some example analogies from each dataset are shown in Table 2.4.

2.4.1.3 fMRI

Though there is no hard requirement that techniques in the field of AI mimic

human biology, it is of theoretical interest to know when such connections do exist. To

this end, Mitchell et al. (2008) evaluated how closely semantic representations from NLP
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Table 2.4 – Word analogy samples, having the form “a is to b as c is d”.

dataset pairs a b c d

GSem 8869

Dhaka Bangladesh Madrid Spain
Fresno California Plano Texas
Helsinki Finland London England
Moscow Russia Tirana Albania
Nigeria naira Argentina peso
dad mom he she

GSyn 10675

convenient inconvenient consistent inconsistent
deep deeper smart smarter
dollar dollars woman women
reasonable unreasonable possible impossible
swimming swam paying paid
typical typically rare rarely

MSR 8000

bright brighter strong stronger
closest closer earliest earlier
feel feels prove proves
followed follow needed need
night’s night party’s party
schools school artists artist

predicted cortical activations in the human brain. Nine human subjects were primed with

target words and fMRI images taken of brain activation. The task is then, for each subject,

given two target words and the corresponding fMRI images, use a regressor that takes as

input a semantic representation of the target words and predicts voxel activations, then

match each predicted image to the correct labeled image. The regressor is trained on all

but the two target words, this repeated for every two-word combination from the dataset

of 60 words, also known as “leave-two-out” cross-validation. Matching is done using

cosine distance between the images represented as vectors. Accuracy is given by the

fraction of correct pair matchings over all two-word combinations. A random regressor

has expected accuracy of .5. Mitchell et al. (2008) showed that using human labeled

semantic features as a semantic representation performs significantly better than a random

baseline. Subsequent work (BRANCO et al., 2020) showed that the same holds true for

representations derived from semantic networks and distributional semantic models. We

use the evaluation setup as Abnar et al. (2018) and the corresponding software package3.

3https://github.com/samiraabnar/NeuroSemantics
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2.4.2 Downstream Evaluation

Although individual word representations are of theoretical interest, natural lan-

guage comes in sequences of words. Transforming a sequence of word vectors into a

fixed length vector representation is known as sentence embedding. Given a sequence

w1, w2, ...wn, the simplest of these models is averaging word vectors, known as a mean

bag-of-vectors:

BoV (w1, ..., wN) =
1

N

N∑
i=1

Wwi (2.14)

whereWwi is the word vector for wi. For most of our experiments, we use this simple sen-

tence embedding model since it is computationally efficient and remains a strong baseline

for unsupervised sentence representation.

2.4.2.1 Text Similarity

A desideratum of sentence representations is that two sentences with the same

meaning but differing surface form share a similar semantic representation. Agreement

between human judgements and computed scores (either cosine between sentence em-

beddings or a trained regressor) is measured using Pearson’s correlation coefficient. To

this end, we use the Semantic Textual Similarity (STS) datasets from years 2012-2017

(AGIRRE et al., 2012; AGIRRE et al., 2013; AGIRRE et al., 2014; AGIRRE et al., 2015;

AGIRRE et al., 2016; CER et al., 2017) referred to as STS12-16 (2012-2016) and STS-

B (STS-Benchmark, 2017), and the SICK relatedness (SICK-R, Marelli et al. (2014))

dataset. Table 2.5 gives some examples of sentence pairs and the associated human simi-

larity score.

2.4.2.2 Text Classification

A common application in NLP is text classification: for example, identify if a

movie review is positive or negative, or classify an email as spam or not. There can be

more than two classes, such as classifying a sentence’s sentiment as positive, negative,

neutral, etc. In text classification, the sentence embedding is used as input to a classifi-

cation network (which can be a deep neural network or a simple logistic/softmax layer)

trained on labeled data. We use the SentEval suite for sentence classification evalua-
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Table 2.5 – Samples from textual similarity datasets used in our evaluations.

Name N Text 1 Text 2 Judgement

STS12 3.1k ryan harvey , an out-
fielder from dunedin
high school in florida
, was selected with
the sixth pick by the
chicago cubs .

ryan harvey , a high
school outfielder from
florida , was chosen
sixth by the cubs .

4.2

STS13 1.5k germany dodges reces-
sion with growth in first
quarter

eurozone avoids reces-
sion in q1 , thanks to
germany

3.2

STS14 3.7k zimmerman replied , "
what are you doing here
? "

martin said , " why are
you following me ? "

0.9

STS15 8.5k the woman holding a
black purse is smoking
a cigarette .

a woman with a black
bag is smoking a
cigarette"

4.8

STS16 9.2k how the dow jones
industrial average did
wednesday

how the dow jones in-
dustrial average fared
on monday

2

STS-B 5.7k the man set up his cam-
era to take sunset pic-
tures at the beach .

a man is taking pictures
of a lake .

2.2

SICK-R 4.5k Two dogs are fighting Two dogs are wrestling
and hugging

4
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tion which comprises the following datasets: MR Pang and Lee (2005), CR (HU; LIU,

2004), SUBJ (PANG; LEE, 2004), MPQA (WIEBE; WILSON; CARDIE, 2005), SST2/5

(SOCHER et al., 2013b), and TREC (VOORHEES; TICE, 2000). Examples are given in

Table 2.6.

Table 2.6 – Text classification tasks.

Name Task N examples label(s) classes

MR movie re-
view

11k “Too slow for a younger crowd ,
too shallow for an older one.”

neg 2

CR product re-
view

4k “We tried it out christmas night
and it worked great .”

pos 2

SUBJ subjectivity
status

10k “A movie that doesn’t aim too
high , but doesn’t need to.”

subj 2

MPQA opinion-
polarity

11k “don’t want”; “would like to
tell”;

neg. pos 2

SST binary
sentiment
analysis

67k “Audrey Tautou has a knack for
picking roles that magnify her
[..]”

pos 2

SST fine-
grained
sentiment
analysis

8.5k “nothing about this movie
works.”

0 5

TREC question-
type classi-
fication

6k “What are the twin cities ?” LOC:city 6

2.4.2.3 Natural Language Inference

Natural language inference is the task of determining the logical relation between

a pair of sentences. This logical relation can be that of positive entailment (or simply

entailment), negative entailment (contradiction), or non-entailment. To evaluate perfor-

mance on this task, we use the SICK entailment (SICK-E, Marelli et al. (2014)) and

Standford Natural Language Inference (SNLI, Bowman et al. (2015)) datasets:

2.4.2.4 Syntactic Tasks

Previously described evaluation, except for syntactic analogies, focus on seman-

tics. As we will show, negative information mostly captures syntactic information, so we

need a set of evaluations focused on syntax. For word level evaluation, we use syntac-

tic analogies. For sentence-level evaluation, we train and test part-of-speech (POS) tag-
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Table 2.7 – Natural language inference (NLI) datasets.

Name N Premise Hypothesis Label Outputs

SNLI 560k “A small girl wear-
ing a pink jacket
is riding on a
carousel.”

“The carousel is
moving.”

entailment 3

SICK-E 10k “A man is sitting on
a chair and rub- bing
his eyes”

“There is no man sit-
ting on a chair and
rubbing his eyes”

entailment 3

ging using data from the Penn Treebank (MARCUS; SANTORINI; MARCINKIEWICZ,

1994). We also run two syntactic probing tasks from the SentEval suite: given a sentence,

learn to classify the top constituents (TopC) and depth (Dep) of the constituency-based

parse tree using only the sentence’s embedding as input.

2.4.2.5 Facet Ranking

Often, a searcher (user) provides an under-specified query to the search system,

which may reflect multiple information needs, or different facets of the same intent. A

conversational search refinement system attempts to pinpoint the user’s search intent via

a series of clarification questions, which the searcher can choose to answer cooperatively

(by volunteering additional information about their intent), lazily (“yes/no”) or not re-

spond to the system at all, e.g., if the searcher ran out of time or patience. After each turn,

the search system may choose to ask additional clarification questions, or return search re-

sults, or both. In Salle et al. (2021), we develop a user simulator called COSEARCHER for

conversational search refinement and clarification. Figure 2.2 shows two example dialogs

between a search system (Bot) and COSEARCHER. The dialogue starts with the user in-

putting a topic (an underspecified search query). The system retrieves a set of candidate

facets for this topic. Although Salle et al. (2021) consider multiple types of candidate

facets, here we focus on the topic and set of human annotated facets from the TREC09-12

diversity track (CLARKE; CRASWELL; SOBOROFF, 2009; CLARKE; CRASWELL;

VOORHEES, 2012). At every turn, the system maintains a set of candidate facets and

uses the dialogue context to rank them. It then proposes the top ranked facet to the user

simulator. The user simulator compares the question to the true intent (the target facet),

and responds with either a “Yes” or a “No”. In our work, we use as context any informa-

tion received through informative “No”’s, where in addition to responding in the negative,

the user simulator also supplies additional information to assist the search system, for ex-
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ample the user response “no i just want to know a few common korean phrases” from

Figure 2.2. If a user rejects a facet, it is removed from the set of candidate facets.

We perform facet ranking using a semantic similarity strategy, which assigns a

score for each candidate facet c by computing the similarity between it and the conversa-

tion context:

score(c, db) =
∑
s∈db

Cos(rep(c), rep(s))/|db| (2.15)

where db is the set of information “No”’s, and rep(s) is the embedding of sentence s. For

the purpose of evaluating facet rankers below, we consider only single contexts (|db| = 1).

Our evaluation dataset is derived from the Qulac dataset (ALIANNEJADI et al.,

2019), which was created by having humans generate clarification question-answer pairs

for each of the TREC09-12 topics and facets. For the topic “South Africa” and target facet

“Find pictures of South Africa”, an example human Qulac question-answer pair instance

is the question “would you like the history of south africa” and the answer “no i would

like pictures of south africa”. For every human answer containing the word “no” in its

first three words, we extract as the context every word after the “no”, in this case “i would

like pictures of south africa”.

Candidate facets for the topic “South Africa” are (1) “Find pages that give the

history of South Africa.” (2) “Find maps of South Africa.” (3, the target facet) “Find

pictures of South Africa.”. The context, along with the target facet (3) and the neg-

ative candidate facets (1,2) represent one instance of our facet ranking dataset. The

goal is for score(“Find pictures of South Africa.”, “i would like pictures of south africa”)

to be higher than the score for the negative facets.

Evaluation metrics are Precision@1 (P@1, in what fraction of instances is the

target facet ranked first) and Mean Reciprocal Rank (MRR, the mean inverse rank of the

target facet). We split Qulac’s 198 topics (and corresponding context-facet pairs) into

100 training, 25 validation, and 73 test topics. This dataset can then be used to evaluate

sentence embeddings rep(·), be they supervised (use training data) or unsupervised.

2.5 Conclusion

In this chapter, we reviewed existing methods for word embedding, starting from

the fundamentals. We also presented the evaluations that will be used throughout the rest
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Figure 2.2 – Conversational search refinement using COSEARCHER.
(a)
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USER: Korean language (the topic)

BOT: Are you looking to find resources
on translating Korean to other lan-
guages?

COSEARCHER: no
BOT: Ok, are you looking to find re-

sources on learning and teaching
Korean?

COSEARCHER: no
BOT: Ok, are you looking to find a Ko-

rean/English bilingual dictionary?
COSEARCHER: no i just want to know a

few common korean phrases
BOT: Are you looking for what are some

common Korean phrases?
COSEARCHER: YES

True intent: “What are some common
Korean phrases?”

(b)

Fig. 1: (a)System overview, illustrating COSEARCHER instantiated with (topic, intent
facet), and a Facet Provider, which provides candidate facets that the search refine-
ment system uses to converse with the COSEARCHER to identify the intended facet;
(b): An actual simulated conversation with a partially cooperative COSEARCHER in-
stance.

with a sequence of clarification questions to generate the result ranking using the
expanded/refined query.

Formally, we assume that the searcher has an information need (topic) t (i.e., the
initial search query), and a true information need facet or aspect ft, which the system
has to infer to properly rank the search results. We also assume that candidate facets
C for the topic t is either known (e.g., from a knowledge base if the query is an
entity), or can be dynamically generated (e.g., from query refinement logs of a search
engine, or from popular entity attributes). The goal of the search system, then, is to
identify the intended topic facet ft by asking clarification questions, and return a list
of results relevant to ft. Specifically, the search system picks the first candidate facet
c 2 C and asks a clarification question: “Are you looking for c?”.

The user can respond with either “Yes” or “No”. If the answer is “Yes”, the agent
stops, accepting c as its best guess for the searcher’s true information need. If the
answer is “No”, the agent pops c from the list of candidate facets and adds c to the
list of dead facets DBdead. If the user’s “No” is informative, we add the answer to the
Informative No list DBinfo. Candidates facets are then re-ranked, as described below,
and this process repeated until either there are no more candidate facets or the user’s
patience runs out.

Note that in our setup, we choose to model neutral responses (when the proposed
facet is related to intended facet but not quite the same) as “No”, since the intended
facet has not yet been identified.

(b)Conversational Search Refinement through User Simulation 19

USER: South Africa (the topic)

BOT: Are you looking to find pictures of
South Africa?

COSEARCHER: no but historical maps along
with current ones would be good

BOT: Are you looking to find pages that give
the history of South Africa?

COSEARCHER: no i want maps of south africa
BOT: Are you looking to find maps of South

Africa?
COSEARCHER: yes

True intent = “Find maps of South Africa”

(a)

USER: Quit Smoking (the topic)

BOT: Are you looking for quit smoking
withdrawal symptoms?

COSEARCHER: no i am interested if it is pos-
sible to quit smoking cold turkey

BOT: Are you looking for quit smoking cold
turkey?

COSEARCHER: yes specifically the cold
turkey method

True intent: “Can you quit smoking using
the cold turkey method?”

(b)

Fig. 6: (a) an example of a successful conversation (cooperativeness=1, Qulac facets);
(b) an example of a successful conversation (cooperativeness=1, Bing facets).

user “personas” with varying degrees of cooperativeness. First, we consider an ex-
ample of a cooperative user interacting with a system using the Qulac (static) topic
facets, shown in Figs. 1b and 6a. Recall that for high value of cooperativeness, the
user (and the simulator) often volunteer information to the search system, even if the
initial response or guess was not correct, i.e., provide “informative no” responses.
As a result, we observe the search system quickly converging on the true searcher
intent. Another successful example using the Bing query suggestion facets is shown
in Fig. 6b. Given the large number of relevant facets available via the external search
provider, the system is able to match the Qulac facet within 2 turns.

The example in Figure 6b highlights the importance of realistically modeling “in-
formative rejection” via our proposed cooperativeness parameter. In this example, a
cooperative user volunteers her intent immediately, as soon as the system asks a clar-
ification question. This is a known limitation of the Qulac dataset (which is crowd-
sourced with highly cooperative “users”), but may not be realistic. A more common
scenario is that a user may not be able to fully specify her intent (hence the vague
original query), but can easily recognize the topic facets she is, or is not interested
in when prompted. The COSEARCHER framework explicitly models and allows to
automatically identify such cases. Consider a failed conversation (Fig. 7a), also with
a cooperative user, using the Bing query suggestions (dynamic facets) as candidate
facets. In the simulated conversation example below, the search system continues to
ignore the search intent refinements volunteered by the cooperative COSEARCHER
user model, until the user simulator finally accepts the (incorrect) intent suggestion,
likely resulting in non-relevant results. Finally, in Fig. 7b we present an example of
a similarly uncooperative user, but where the conversation ends before a match is
found.

These examples provide additional intuition about the challenges in conversa-
tional search refinement, and illustrate the range of conversations and interactions
that COSEARCHER can support to simulate different types of users and search tasks.

of this thesis.



45

3 THE LEXVEC MODEL

In this chapter, we present our LexVec word embedding model. We first define a

set of desiderata or principles that a word embedding model should satisfy (Section 3.1,

in answer to Q1). We then describe LexVec in detail, showing that it satisfies these prin-

ciples, while also drawing connections to other word embedding models (Section 3.2, in

answer to Q2). In the sections that follow, we describe a series of improvements to the

base model, namely the use of positional information (Section 3.3, in answer to Q4), im-

proved association measures (Section 3.4, in answer to Q7), scalability (Section 3.5, in

answer to Q3), and the incorporation of subword information (Section 3.6, in answer to

Q5).

3.1 Principled Reconstruction Error Weighting

As was shown in Section 2.3.2, different matrix factorization techniques assign

different loss weights λw,c to different word-context pairs (w, c). Consider the pair (reigning,

champion1) – that is the expression “reigning champion” being observed in the training

corpus – and the arbitrary pair (that is, having no semantic/syntactic reason for cooccur-

ring) (cromford, deseronto1) – the phrase “cromford deseronto” for the small cities De-

seronto in Canada and Cromford in England. In our English Wikipedia corpus, PMI wiki,

PMI reigning,champion1 = 6.497 and PMI cromford,deseronto1 = −∞, cooccurring more often than

by chance and not cooccurring at all respectively.

SVD assigns loss weights uniformly, so λreigning,champion1 = λcromford,deseronto1 . Given

that model capacity is limited – the multiplication of word and context matrices cannot

preserve all the information in the matrix being factorized – loss weights determine which

information should be better preserved. And it stands to reason that the cooccurrence of

(reigning, champion1), a common expression in the English language, is more meaning-

ful than the non-cooccurrence of (deseronto, cromford1) for at least two reasons: (1) in

downstream applications, for example, having a better meaning representation of “reign-

ing” is more important than that of “deseronto” because it is much more likely to appear,

and so dedicating more model capacity to correctly recovering its context distribution is

more important (2) there is little information in the non-cooccurrence of two rare words

such as “deseronto” and “cromford” – two random words of low frequency are almost

certain not to cooccur, so the model does not learn much from this observation, whereas
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observing “reigning champion” reveals an important expression in the English language.

In designing loss error weights, such frequent cooccurrences should be upweighted.

Let us now consider the pair (should, began1): observing the phrase “should be-

gan” in the corpus. This pair does not occur at all in the English Wikipedia, having

PMI should,began1 = −∞. GloVe assigns a reconstruction error weight of zero, thus mak-

ing no use of this information when learning word and context embeddings. But there

is certainly valuable information here: the non-cooccurrence of “should began” tells us

that this construction is grammatically incorrect. It captures syntactic information about

the word “should”: that it cannot be followed by a certain verb in past tense, in this case

“began”. Therefore, the loss weight λshould,began1 should be greater than zero.

As a final example, consider the pair (should, deseronto1), which is also non-

cooccurring in the English Wikipedia. The phrase “should deseronto raise taxes?” is both

syntactically and semantically correct, so the non-cooccurrence can be attributed to the

limited size of the corpus and the infrequent word “deseronto”. Contrast this with “should

began”, where both words are very frequent: the phrase is unobserved because it is not

syntactically valid. We thus argue that the non-cooccurrence of a pair of frequent words is

more likely to carry information than the non-cooccurrence involving a rare word. Thus,

when designing loss weights, λshould,began1 should be greater than λshould,deseronto1 . Neither

GloVe nor SVD have this property, since the former ignores non-cooccurrences, and the

later assigns uniform weights.

Drawing upon these observations, we argue that principled reconstruction error

weighting λw,c should have the following properties:

• Bigram Monotonic: λw,c is a strictly monotonically increasing function of coocur-

rences Mw,c.

• Non-zero: λw,c > 0.

• Unigram Monotonic: λw,c is a strictly monotonically increasing function of uni-

gram counts Mw,∗ and M∗,c.

We can also frame these same observations from the perspective of statistical reli-

ability of PMI estimates. That is, if we were to recompute PMI values from a resampling

of a corpus, PMI w,c estimates for certain pairs (w, c) are likely to suffer less change (to be

more reliable or consistent) than for other pairs. The more frequent a word w and context

c are in the corpus, the more confident we can be about the corpus estimated PMI w,c (the

more reliable the estimate). Suppose both #(w) and #(c) are high, but PMI w,c is low.
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This is unequivocal evidence of negative correlation between them, and so we should put

more effort into approximating their PMI . The argument is analogous for high PMI . If

on the other hand #(w) and #(c) are low, we cannot be too confident about the corpus

estimated PMI w,c, and so less effort should be spent on its approximation.

3.2 LexVec

We now propose our matrix factorization model LexVec, then show that it per-

forms principled reconstruction error weighting.

LexVec performs matrix factorization by sliding a symmetric window over the

training corpus (window sampling), in the exact same way as when M was constructed

in Section 2.2, and performing one Stochastic Gradient Descent (SGD) step every time a

(w, c) pair is observed, minimizing

l(w, c) =
1

2
(WwC

>
c − f(M)w,c)

2 (3.1)

Additionally, negative sampling is performed, where for every center word w, k negative

samples (MIKOLOV et al., 2013) are drawn from the unigram context distribution:

Pn(c) = (M∗,c)
αpow/

∑
c

(M∗,c)
αpow (3.2)

where αpow is a smoothing factor (set to .75 in this thesis) and SGD steps are taken to

minimize

lneg(w) =
k∑
i=1

Eci∼Pn(c)l(w, ci) (3.3)

Figure 3.1 illustrates a step of LexVec over a single target word. Algorithm 1 describes

the entire algorithm, which has time complexity O(|corpus|(2l + k)d).

The expected loss for a pair (w, c) in a single pass over the training corpus is equal

to the pairwise loss l(w, c) (Equation (3.1)) multiplied by (1) the number of times the pair

is observed using window sampling (Mw,c), and (2) the expected number of times the pair

is sampled using negative sampling, which is equal to the number of times w is a target

word (Mw,∗/2l
1) multiplied by the number of negative samples per target word and the

1Mw,∗ is incremented by 2l every time w is a target word, thus the division by 2l recovers the number
of times it is a target word.



48

Algorithm 1 LexVec
1: procedure LEXVEC(corpus, l, d, k, αpow, iters, initialLr, f ) . l:

window size, d: embedding dimension, k: negative samples, αpow : smoothing factor,
iters: training iterations, initialLr: initial learning rate, f : matrix transformation

2: M ← ConstructCoocMatrix(corpus, l) . Construct cooccurrence matrix by
sliding symmetric window of size l over corpus

3: T ← f(M) . Transformed cooccurrence matrix
4: Pn ← (M∗,c)

αpow/
∑

c(M∗,c)
αpow for every context c . Negative sampling

distribution
5: W ← Initialize (M.rows× d) matrix with values drawn from U (− 1

2d
, 1
2d

)
6: C ← Initialize (M.cols× d) matrix with values drawn from U (− 1

2d
, 1
2d

)
7: for iter ← 1, iters do
8: for w, contexts, progress← IterateOverWindows(corpus, l) do . Slide

symmetric window of size l over corpus, yielding for each window: the target word
w, 2l surrounding contexts, and progress indicating relative corpus position from 0
to 1

9: lr ← (1− iter−1+progress
iters

) ∗ initialLr . Linear learning rate decay
10: for c← contexts do . Window sampling
11: SGDStep(Tw,c,W,C,w, c, lr)
12: end for
13: for cn ← Draw k samples from Pn do . Negative sampling
14: SGDStep(Tw,cn ,W,C,w, cn, lr)
15: end for
16: end for
17: end for
18: return W,C
19: end procedure
20: procedure SGDSTEP(t,W,C,w, c, lr) . W,C passed by reference
21: err = WwC

>
c − t

22: ∆Ww ← err ∗ Cc
23: ∆Cc ← err ∗Ww

24: Ww ← Ww − lr ∗∆Ww

25: Cc ← Cc − lr ∗∆Cc
26: end procedure
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Figure 3.1 – LexVec running over a single target word “dogs”, window sampled words “friend”,
“loves”, “and”, “cats”, and negatively sampled words “the” and “computer”. Highlighted f(M)
squares on the right represent lookups to the transformed PMI values between target word and

every window sampled and negatively sampled contexts. Vectors being updated by SGD: (1) Red
row: target word vector. (2) Purple columns: window sampled context vectors. (3) Green

columns: negatively sampled context vectors. Equation (3.1) is minimized through SGD for each
lookup.
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probability of c being sampled:

E[LLexVec(w, c)] = Mw,cl(w, c)︸ ︷︷ ︸
ws

+
Mw,∗

2l
k Pn(c) l(w, c)︸ ︷︷ ︸

ns

(3.4)

= (Mw,c +
Mw,∗

2l
k Pn(c)) l(w, c) (3.5)

= (Mw,c +
Mw,∗

2l
k Pn(c))

1

2
(WwC

>
c − f(M)w,c)

2 (3.6)

=
1

2
λLexVec(w, c)(WwC

>
c − f(M)w,c)

2 (3.7)

λLexVec(w, c) = Mw,c︸︷︷︸
λws(w,c)

+
Mw,∗

2l
k Pn(c)︸ ︷︷ ︸

λns(w,c)

(3.8)

In λLexVec , the first term prioritizes the correct approximation of frequently cooc-

curring pairs (window sampling), and the second term of pairs where either word occurs

with high frequency (negative sampling). It is easy to see that λLexVec is a principled

reconstruction error weighting:

• Bigram Monotonic: λLexVec is a strictly monotonically increasing function ofMw,c

because of the term λws , by definition.

• Non-zero: λLexVec > 0 because of the term λns which is strictly positive (all words

and contexts in the vocabulary appear at least once the training corpus).

• Unigram Monotonic: λLexVec is a strictly monotonically increasing function of

Mw,∗ and M∗,c because of the term λns , by definition.

Table 3.1 shows which of the above 3 properties are satisfied by explicit or implicit

matrix factorization models. The only explicit matrix factorization model that satisfies all

3 properties is LexVec.

Table 3.1 – Principled reconstruction error weighting and the models that respect them. Top row
contains the Skip-gram model that performs implicit matrix factorization, and the bottom rows

are models that perform explicit matrix factorization.

model Bigram Monotonic Non-zero Unigram Monotonic

Skip-gram

SVD
GloVe 2

SwiVel
LexVec

2GloVe is not strictly monotonic since error weights in Equation (2.7) are capped.
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Connection to Skip-gram: The Skip-gram loss function (Equation (2.10)) for a

single pass over the training corpus for a specific (w, c) is very similar to the LexVec loss

function (Equation (3.4)). Restating Equation (2.10) here and performing substitution

using LexVec’s λ terms (Equation (3.8) we get:

E[Jsg(w, c)] = Mw,c log σ(WwC
>
c ) +Mw,∗ k Pn(c) log σ(−WwC

>
c ) (3.9)

= λws(w, c) log σ(WwC
>
c ) + 2l λns(w, c) log σ(−WwC

>
c ) (3.10)

Skip-gram shares the same LexVec weight terms λws , λns in J . However, in contrast to

this apparent similarity, there is a subtle difference between the models in the way errors

are weighted. Suppose we have found parameters that perfectly factorize the PMI matri-

ces, such that for LexVecWCT = CPMI(−2) and for Skip-gramWCT = PMI−log k

(we use the same W,C for notational convenience, but the factorizations are necessarily

different). We then introduce a small error ε into the dot product WwC
T
c so that for

LexVec:

ε =WwC
T
c − CPMIw,c(−2) (3.11)

LLexVec+ε(w, c) =
1

2
λLexVec(w, c) (WwC

T
c − CPMI(−2))2 (3.12)

=
1

2
(λws(w, c) + λns(w, c)) ε

2 (3.13)

(3.14)

and for Skip-gram:

ε =WwC
T
c − (PMIw,c − log k) (3.15)

WwC
T
c =ε+ (PMIw,c − log k) (3.16)

Jsg+ε(w, c) =λws(w, c) log σ(WwC
>
c ) + 2l λns(w, c) log σ(−WwC

>
c ) (3.17)

=λws(w, c) log σ(ε+ (PMIw,c − log k)) (3.18)

+ 2l λns(w, c) log σ(−(ε+ (PMIw,c − log k))) (3.19)

The LexVec loss deviation from 0 depends only on the weights λ and the error ε

introduced, whereas the Skip-gram deviation from the objective’s maximum depends on

the weights λ, the error ε, and the PMI value; because of the logistic function, recon-

struction errors for PMI values near zero affect the objective much more than for high and

low PMI values. If we re-word small reconstruction errors as sharp and large reconstruc-
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tion errors as fuzzy, the fuzziness of LexVec approximations is entirely determined by

the weights. The Skip-gram objective, in contrast, has opposing forces, with these same

“sharpnesses” encouraged by λws and λns being opposed by the fuzziness of the logistic

function at extreme PMI values. Despite this subtle difference in error weightings, as we

will see in Chapter 6, the models behave very similarly empirically.

Connection to GloVe: GloVe factorizes the logarithm of the cooccurrence matrix

with added bias terms (Equation (2.7)). Although it is not clear what the optimal values

of these bias terms are, Shazeer et al. (2016) observe that these terms are highly corre-

lated to the respective word and context corpus frequencies, such that the matrix being

approximated could resemble PMI (Equation (2.1)). This, combined with the fact that

GloVe’s loss weighting resembles the window sampling weight λws , suggests a connec-

tion between the LexVec model with no negative sampling and GloVe.

Connection to SVD: Since λSV D(w, c) = 1 is uniform for all word-context pairs,

the fraction of |nPMI |/|nPMI ∪ pPMI | gives the fraction of total loss weights assigned

to negative information, which in the case of PMI wiki5 is equal to 99.27%. The SVD is

thus an extreme case of prioritizing negative information.

3.3 Positional Contexts

Positional contexts can be incorporated into LexVec with two minor modifica-

tions: 1) The context embedding C takes on dimensions 2 ∗ win ∗ |V | × d, 2) Negative

sampling must now sample positional contexts rather than simple contexts. This latter

point requires that the distribution from which negative samples are drawn become:

Pn(c
i) =Mα

∗ci/
∑
ci

Mα
∗ci (3.20)

3.3.1 Combining Word and Context Vectors

Without positional contexts, eitherW orW+C can be used as embeddings. Since

positional contexts make the dimensions of both matrices incompatible, C cannot be used

directly. We propose three ways to combine word and context embeddings for a word w:

Sum: Ww +
∑
−win≤i≤win,i6=0Cwi
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Context-only:
∑
−win≤i≤win,i 6=0Cwi

Mean: Ww + 1
2win

∑
−win≤i≤win,i6=0Cwi

Concat: Concatenate (Ww, Cw−win , ..., Cwwin).

Note that while Sum and Mean preserve the original dimensionality d of the word

embedding, Concat increases it to d(1 + 2win).

All three techniques can be used without positional contexts. In that case, Sum

and Mean are equivalent, and are identical to the way GloVe combines word and context

vectors.

3.4 Spectrum of PMI

To better understand the distribution of PMI, we plot in Figure 3.2 a histogram of

PMI wiki5 values of 105 non-zero pairs randomly sampled from Mwiki5 . We sample only

non-zero pairs because Mwiki5 is sparse: only 0.93% of cells are non-zero.

To the left of the 0 line, we can clearly see the spectrum of nPMI that is col-

lapsed when using the PPMI measure, which maps these negative values – ∼ 22.2% of

cooccurring pairs – to 0.

3.4.1 Preserving the spectrum of negative information

To deal with values in mnPMI, we propose clipped PMI,

CPMI w,c(z) = max(z, PMIw,c) (3.21)

which is equivalent to PPMI when z = 0, and captures most of the nPMI spectrum when

z ≤ 2.

We also experiment with normalized PMI (NPMI ) (BOUMA, 2009):

NPMI w,c = PMI w,c/− log(Mw,c/M∗∗)

such that NPMI(w, c) = −1 when (w, c) ∈ mnPMI (never cooccur), NPMI(w, c) =

0 when they are independent, and NPMI(w, c) = 1 when they always cooccur together.

This effectively captures the entire negative spectrum, but has the downside of normal-
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ization which discards scale information. In practice, we find this works poorly if done

symmetrically, so we introduce a variant called NNEGPMI which only normalizes nPMI:

NNEGPMI w,c =

NPMI w,c if PMI w,c < 0

PMI w,c otherwise

Figure 3.2 – Histogram (bin width equal to 0.2) of 105 values not in mnPMI sampled from
PMI wiki5 . The negative spectrum of PMI are the values to the left of the dashed line (∼ 22.2%
of sampled values), which are collapsed to 0 when using the popular PPMI association measure.
Note that we exclude mnPMI (sample only non-zero cooccurrences) otherwise the graph would
be a single vertical line at -2 (if graphing CPMI(−2)) since 99.07% of values in Mwiki5 are 0.
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We also experimented with Laplace smoothing as in Turney and Littman (2003)

for various pseudocounts but found it to work consistently worse than both CPMI and

NNEGPMI , so we omit further discussion in this thesis.

3.5 Scaling to Larger Corpora

As window sampling scans over the training corpus and negative sampling selects

random contexts, (w, c) pairs are generated and the corresponding PMIw,c cell must be

accessed so that Equation (3.4) can be minimized. Unfortunately, this results in random

access to the PMI matrix which requires it to be kept in main memory. Pennington,

Socher and Manning (2014) show that the under certain assumptions, this sparse matrix

grows as O(|corpus|0.8), which bounds the maximum corpus size that can be processed

by LexVec. To overcome this limitation, the PMI matrix must be represented in external

memory (such as a hard drive), where random access is prohibitive, and we must instead

use sequential access.
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Figure 3.3 – Example MapReduce steps used to construct the F stream used by the external
memory variant of LexVec.
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We can derive an exact equivalent of LexVec that uses external memory rather

than main memory if we represent both matrix construction as matrix access through a

MapReduce paradigm (DEAN; GHEMAWAT, 2008). Doing so simultaneously enables

the use of external memory and the use of highly scalable MapReduce infrastructure.

We can obtain Mw,∗ through a map(key : w, value : 1) every time a window

sampling operation (w, c) is performed, followed by a sum reduction. Computing M∗,c

is analogous. We can store these values in-memory since the resulting arrays only have

length |Vw| and |Vc|.
Computing Mw,c is only marginally more complicated. We start by defining the

window sampling operation as map(key : (w, c), value : (cooc : 1, count : 1)). Like-

wise, we define the negative sampling operation as map(key : (w, c), value : (cooc :

0, count : 1)). We then reduce on the key with the function reduce((cooca, counta),

(coocb, countb)) → (cooca + coocb, counta + countb). The result is that for every pair

(w, c), we have (totalcoocs, totalcount). Note that totalcoocs = Mw,c. We then perform

totalcount operations of map(key : (w, c), value : totalcoocs). Finally, we perform a

shuffle operation, which is trivial under MapReduce. Let us refer to this stream of shuffled

values ((w, c), totalcoocs) as F . By construction, this stream is identical to the sequence

of random accesses LexVec would perform in a single iteration over the training corpus,

differing only in the order of the observed pairs. Having Mw,c,Mw,∗,M∗, c, we can com-

pute PMI w,c for each of these pairs in F , such that the resulting total loss function being

optimized in this external memory variant of LexVec is identical to Equation (3.4). Fig-

ure 3.3 gives an example of an external memory LexVec run. The SGD optimization that

uses F to train W,C can also be distributed using techniques such as Hogwild (RECHT

et al., 2011).

For reference, we present in Algorithm 2 a single machine version of this external

memory approach. F ’s construction and storage requires O(|corpus|(2l + k)) disk space

andO(|corpus|(2l+k) log(|corpus|(2l+k))) time3, but onlyO(|V |) main memory, mak-

ing it scalable to large corpora. Otimization of W,C has the same O(|corpus|(2l + k)d)

time complexity as Algorithm 1.

3Sorting and shuffling in external memory are O(N logN) (AGGARWAL; VITTER JEFFREY, 1988)
and O(N) (SANDERS, 1998) respectively.
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Algorithm 2 External memory LexVec
1: procedure LEXVEC(corpus, l, d, k, αpow, iters, initialLr, f ) . l:

window size, d: embedding dimension, k: negative samples, αpow : smoothing factor,
iters: training iterations, initialLr: initial learning rate, f : matrix transformation

2: MW ← zero vector of dimension equal to # of words
3: MC ← zero vector of dimension equal to # of contexts
4: for w, contexts, progress← IterateOverWindows(corpus, l) do . As in

Algorithm 1
5: for c← contexts do
6: MW [w]←MW [w] + 1
7: MC[c]←MC[c] + 1
8: end for
9: end for

10: totalCoocs← Sum(MW )
11: Pn ←MC[c]αpow/

∑
cMC[c]αpow for every context c . Negative sampling

distribution
12: S ← empty file of (word, context, cooc, count) records
13: for w, contexts, progress← IterateOverWindows(corpus, l) do
14: for c← contexts do . Window sampling
15: Write (w, c, 1, 1) to S
16: end for
17: for cn ← Draw k samples from Pn do . Negative sampling
18: Write (w, cn, 0, 1) to S
19: end for
20: end for
21: Sort S records lexicographically . merge sort using external memory
22: Collapse adjacent lines in S where (word, context) match, summing (cooc,count)
23: F ← empty file of (word, context, cooc) records
24: for (w, c, cooc, count), progress← IterateOverRecords(S) do
25: for i← 1, count do
26: Write (w, c, cooc) to F
27: end for
28: end for
29: Shuffle F . Using external memory
30: W ← Initialize (|MW | × d) matrix with values drawn from U (− 1

2d
, 1
2d

)
31: C ← Initialize (|MC| × d) matrix with values drawn from U (− 1

2d
, 1
2d

)
32: for iter ← 1, iters do
33: for (w, c, cooc), progress← IterateOverRecords(F ) do
34: lr ← (1− iter−1+progress

iters
) ∗ initialLr . Linear learning rate decay

35: t← f(cooc,MW [w],MC[c], totalCoocs) . Compute PMI transform;
note that cooc = Mw,c,MW [w] = Mw,∗,MC[c] = M∗,c, totalCoocs = M∗,∗

36: SGDStep(t,W,C,w, c, lr) . From Algorithm 1
37: end for
38: end for
39: return W,C
40: end procedure
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3.6 Incorporating Subword Information

If our model contains an embedding for the word “true” but not for the word

“untrue”, how can we recover the meaning of the latter? The issue with learning word

vectors which do not account for subword information mirrors the problem with using

one-hot vectors to represent words: although we have distributed rather than symbolic

representations, we still use words as symbols to access distinct dense vectors.

We would like to instead break “untrue” into the constituents “un” (negation) and

“true” and somehow combine the two vectors to recover the meaning of the entire word

even if it was not seen at training time, resulting in semantics similar to the word “false”.

In other words, we would like our model to be aware of morphology: the study of com-

bining subword units known as morphemes (“un”, “true”) to represent words. This would

not only solve the meaning-altering derivational morphology example given above – “un”

negates the meaning of “true” – but also of inflectional morphology such as recovering

the meaning of “presented” if the morphemes “present” and “ed” are in the model’s vo-

cabulary.

Another motivating example is representing new words arising from word for-

mation, such as “marvelicious”. Although never having seen the word before, a native

speaker is able to guess that the underlying meaning is related to that of “marvelous”

and perhaps “delicious”. Closely related is representing misspelled forms of words which

might be absent in training corpora such as Wikipedia but might be common in down-

stream applications such as sentiment classification on social media.

Finally, a model that is aware of subword information is not only able to repre-

sent words unseen at training time, but can potentially better represent rare words through

information sharing with more frequent words or forms, such as the rarer adjective “con-

stitutive” sharing information with the more frequent verb “constitutes”.

fastText (BOJANOWSKI et al., 2017) addresses these issues in the Skip-gram

word2vec model by representing a word by the sum of a unique vector and a set of shared

character n-grams (from hereon simply referred to as n-grams) vectors. This addresses

both issues above as learned information is shared through the n-gram vectors and from

these OOV word representations can be constructed.

The LexVec objective is modified such that a word’s vector is the sum of all its

subword vectors. We compare 1) the use of n-gram subwords, like fastText, and 2) unsu-

pervised morphemes identified using Morfessor (VIRPIOJA et al., 2013) to learn whether
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more linguistically motivated subwords offer any advantage over simple n-grams.

Given a set of subwords Sw for a word w, we follow fastText and replace Ww in

Equation (3.1) by W ′
w:

W ′
w =

1

|Sw|+ 1
(Ww +

∑
s∈Sw

qhash(s)) (3.22)

such that a word is the sum of its word vector and its d-dimensional subword vectors qx.

The number of possible subwords is very large so the function hash(s)4 hashes a subword

to the interval [1, buckets]. For OOV words,

W ′
w =

1

|Sw|
∑
s∈Sw

qhash(s) (3.23)

We compare two types of subwords: simple n-grams (like fastText) and unsu-

pervised morphemes. For example, given the word “cat”, we mark beginning and end

with angled brackets and use all n-grams of length 3 to 6 as subwords, yielding Scat =

{〈ca, at〉, cat}. Morfessor (VIRPIOJA et al., 2013) is used to probabilistically segment

words into morphemes. The Morfessor model is trained using raw text so it is entirely

unsupervised. For the word “subsequent”, we get Ssubsequent = {〈sub, sequent〉}.

3.7 Conclusion

In this chapter, we defined the set of principled reconstruction error weighting

properties and used these to design the LexVec model, also showing how existing models

fit into this framework. We then made a series of refinements – positional information,

subwords, and scalability – to the LexVec model. With its explicit access to the underlying

PMI matrix being factorized, we have the necessary instrument for our investigation into

the role of negative information in word embedding models to follow in Chapters 5 and 6.

4http://www.isthe.com/chongo/tech/comp/fnv/
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4 EVALUATION

We study in this chapter whether LexVec, which follows the principled recon-

struction error weighting properties, closes the performance gap between counting and

predictive methods in intrinsic and downstream evaluations. In Section 4.1, we compare

the base LexVec model, with no positional or subword information and no hyperparam-

eter tuning, to Skip-gram, GloVe, and SVD models (in answer to Q2). We then look at

how positional information affects task performance Section 4.1.2.2 (in answer to Q4).

Next, in Section 4.2, we evaluate whether the highly-scalable external memory variant

does indeed approximate the standard in-memory model (in answer to Q3). Section 4.3

compares different types of subwords and their impact on task performance (in answer to

Q5 and Q6). In Section 4.4, we compare the downstream task performance of LexVec and

popular word embeddings models (in answer to Q8). Finally, in Section 4.5, we study in

what tasks static word embeddings remain competitive (or not) with Transformer models

(in answer to Q9 and Q10).

4.1 Base Model

4.1.1 Materials

Unless otherwise noted, all models were trained on a dump of Wikipedia from

June 2015, split into sentences, with punctuation removed, numbers converted to words,

and lower-cased. Words with less than 100 counts were removed, resulting in a vocabulary

of 303,517 words. All models generate embeddings of 300 dimensions.

The PPMI matrix used by both PPMI-SVD and LexVec was constructed using

smoothing of αcds = .75 and a fixed window of size 2. Subsampling of the corpus

is adopted for PPMI and Skip-gram with threshold of t = 10−5. Additionally, Skip-

gram uses 5 negative samples, a window of size 10, for 5 iterations with initial learning

rate set to the default 0.025. We run LexVec and Skip-gram for 5 iterations over the

training corpus. Both LexVec and Skip-gram use αpow = .75 for the negative sampling

distribution. GloVe is run with a window of size 10, xmax = 100, β = .75, for 50

iterations and initial learning rate of 0.05.

All methods generate both word and context matrices (W and C): W is used for

LexVec, Skip-gram, PPMI-SVD and W + C for GloVe.
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4.1.2 Results

Table 4.1 – Spearman rank correlation on word similarity tasks.

model SimLex RW WS-S WS-R MEN MTurk Mean

PPMI-SVD 30.3 42.7 72.9 61.2 73.1 62.7 57.2
GloVe 33.8 40.0 71.5 62.3 73.6 64.3 57.6
Skip-gram 33.9 46.5 77.1 65.7 76.3 67.5 61.2
LexVec 33.6 45.8 76.4 65.9 76.0 65.5 60.5
LexVec (Pos) 35.8 46.4 74.4 61.9 74.4 64.5 59.5

Table 4.2 – Results on word analogy tasks, given as percent accuracy.

model GSem GSyn MSR Mean

PPMI-SVD 46.0 44.5 30.3 40.2
GloVe 81.8 63.0 53.9 66.3
Skip-gram 77.3 64.2 48.1 63.2
LexVec 79.4 54.3 37.8 57.2
LexVec (Pos) 80.8 63.2 49.6 64.5

4.1.2.1 LexVec

Results for word similarity and for the analogy tasks are given in Tables 4.1

and 4.2, respectively. Compared with PPMI-SVD, LexVec performs better in all tasks.

As they factorize the same PPMI matrix, PPMI-SVD’s lower performance must be due

to uniform loss weights. LexVec is competitive with Skip-gram in several word simi-

larity tasks. It outperforms Skip-gram on the semantic analogy task, nearly approaching

GloVe’s performance. LexVec’s poor syntactic analogy performance is a result of the

PPMI transformation (PPMI-SVD also struggled with syntactic analogies more than any

other task), which is remedied in sections Sections 4.1.2.2 and 5.1.1 with the use of posi-

tional contexts and alternative PMI transformations.

LexVec outperforms GloVe on all but one word similarity task. Of particular note

is the large improvement on the RW dataset when compared to GloVe. As will be further

explored in Chapter 6, the incorporation of negative information is crucial to strong rare

word representations. Overall, LexVec closes the gap in word similarity performance

between GloVe and Skip-gram, or equivalently, between counting and predictive methods.

Results for the fMRI task are shown in Table 4.3. Although Skip-gram has the

highest mean accuracy, we observe that there is no best model for all subjects, which
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Table 4.3 – Leave-two out cross-validation results on the fMRI task. Numbers are percent
accuracy.

model 1 2 3 4 5 6 7 8 9 Mean

PPMI-SVD 88.5 76.0 76.1 91.2 78.0 74.7 76.8 68.8 76.7 78.5
GloVe 89.5 74.4 83.1 89.0 76.3 67.3 68.3 75.3 75.3 77.6
Skip-gram 90.4 76.9 80.9 90.6 74.1 72.1 80.7 66.0 77.7 78.9
LexVec 87.9 78.0 79.0 88.9 78.2 70.7 67.2 64.1 72.4 76.3
LexVec (Pos) 89.4 75.9 79.9 89.6 72.7 74.5 63.9 65.0 74.7 76.2

makes it hard to nominate a single best model. Similar non-unanimity was observed in

Abnar et al. (2018). Abnar et al. (2018) and Branco et al. (2020) report strong results

on this task with embeddings trained using syntactic dependencies as contexts. Training

LexVec using syntactic dependencies is an interesting experiment for future work.

4.1.2.2 Positional Contexts

Positional contexts improved performance in both similarity (Table 4.1) and anal-

ogy tasks (Table 4.2). Their use significantly improved LexVec’s performance on syntac-

tic analogies. This confirms the relevance of using positional contexts to capture syntactic

information.

4.2 Scaling using External Memory

4.2.1 Materials

We use the same setup and LexVec models as in Section 4.1, but now train external

memory (EM) variants.

4.2.2 Results

Results are shown in Tables 4.4 and 4.5. The external memory implementation

very closely approximates the standard variant (without the use of external memory),

which was expected given that they minimize the exact same loss function. There is,

however, a small gap in performance in favor of the standard variant. We attribute this

to the subsampling that the standard variant performs in each iteration: in each pass over
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Table 4.4 – Spearman rank correlation on word similarity tasks when using the external memory
LexVec.

model SimLex RW WS-S WS-R MEN MTurk

LexVec 33.6 45.8 76.4 65.9 76.0 65.5
LexVec EM 32.3 44.4 74.4 62.1 73.0 61.9
LexVec (Pos) 35.8 46.4 74.4 61.9 74.4 64.5
LexVec EM (Pos) 35.6 45.6 76.1 62.2 74.0 63.6

Table 4.5 – Results on word analogy tasks, given as percent accuracy when using the external
memory LexVec.

model GSem GSyn MSR

LexVec 79.4 54.3 37.8
LexVec EM 76.0 52.8 33.8
LexVec (Pos) 80.8 63.2 49.6
LexVec EM (Pos) 78.3 61.1 45.6

the training corpus, subsampling is performed, meaning that the (w, c) pairs seen over

each pass are likely to differ. The external memory variant sees the same (w, c) pairs in

each iteration as were seen during cooccurrence matrix construction, thus SGD steps are

performed on a smaller set of pairs than are performed by the standard variant.

4.3 Subwords

Our experiments aim to measure if the incorporation of subword information into

LexVec results in similar improvements as observed in moving from Skip-gram to fast-

Text, and whether unsupervised morphemes offer any advantage over n-grams. For IV

words, we perform intrinsic evaluation via word similarity and word analogy tasks. OOV

word representation is tested through qualitative nearest-neighbor analysis.

4.3.1 Materials

Model parameters are identical to those in Section 4.1, but use only LexVec with

positional contexts. Morfessor is trained on that same vocabulary of 303, 517 words.

Subword models include (1) LexVec using n-grams (LV-N) (2) LexVec using un-

supervised morphemes (LV-M) (3) fastText (FT) trained using the reference implementa-

tion1 of fastText with the hyper-parameters given by Bojanowski et al. (2017) (window =

1https://github.com/facebookresearch/fastText
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5, initial learning rate = .025, subsampling = 10−4, negative samples = 5).

All five models are run for 5 iterations over the training corpus and generate 300

dimensional word representations. LV-N, LV-M, and FT use 2000000 buckets when hash-

ing subwords.

Finally, we use LV-N, LV-M, and FT to generate OOV word representations for

the following words: 1) “hellooo”: a greeting commonly used in instant messaging which

emphasizes a syllable. 2) “marvelicious”: a made-up word obtained by merging “mar-

velous” and “delicious”. 3) “louisana”: a misspelling of the proper name “Louisiana”. 4)

“rereread”: recursive use of prefix “re”. 5) “tuzread”: made-up prefix “tuz”.

4.3.2 Results

Table 4.6 – Spearman rank correlation on word similarity tasks when incorporating subword
information.

model SimLex RW WS-S WS-R MEN MTurk

FT 36.7 50.0 78.1 65.7 75.5 65.1
Skip-gram 37.1 48.1 78.8 66.8 76.0 66.7
LexVec 35.9 46.1 74.8 61.2 74.8 64.0
LexVec Morphs 36.6 47.9 74.6 61.2 74.6 62.8
LexVec n-gram 37.4 52.2 75.0 61.7 75.3 63.9

Table 4.7 – Results on word analogy tasks, given as percent accuracy when incorporating
subword information.

model GSem GSyn MSR

FT 77.0 71.1 59.6
Skip-gram 78.9 68.2 57.8
LexVec 80.7 62.8 49.6
LexVec Morphs 80.7 63.8 53.8
LexVec n-gram 73.8 68.6 55.0

Results for in-vocabulary evaluation are shown in Tables 4.6 and 4.7. Like in FT,

the use of subword information in both LV-N and LV-M results in 1) better representation

of rare words, as evidenced by the increase in RW correlation, and 2) significant improve-

ment on the GSyn and MSR tasks, in evidence of subwords encoding information about a

word’s syntactic function (the suffix “ly”, for example, suggests an adverb). There seems

to be a trade-off between capturing semantics and syntax as in both LV-N and FT there

is an accompanying decrease on the GSem tasks in exchange for gains on the GSyn and
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Table 4.8 – We generate vectors for OOV using subword information and search for the nearest
(cosine distance) words in the embedding space. The LV-M segmentation for each word is:
{〈hell, o, o, o〉}, {〈marvel, i, cious〉}, {〈louis, ana〉}, {〈re, re, read〉}, {〈 tu, z, read〉}. We omit

the LV-N and FT n-grams as they are trivial and too numerous to list.

Word Model 5 Nearest Neighbors

“hellooo”
LV-N hellogoodbye, hello, helloworld, helloween, helluva
LV-M kitsos, finos, neros, nonono, theodoroi

FT hello, helloworld, hellogoodbye, helloween, joegazz

“marvelicious”
LV-N delicious, marveled, marveling, licious, marvellous
LV-M marveling, marvelously, marveled, marvelled, loquacious

FT delicious, deliciously, marveling, licious, marvelman

“louisana”
LV-N luisana, pisana, belisana, chiisana, rosana
LV-M louisy, louises, louison, louiseville, louisiade

FT luisana, louisa, belisana, anabella, rosana

“rereread”
LV-N reread, rereading, read, writeread, rerecord
LV-M alread, carreer, whiteread, unremarked, oread

FT reread, rereading, read, reiterate, writeread

“tuzread”
LV-N tuzi, tuz, tuzla, prizren, momchilgrad, studenica
LV-M tuzluca, paczk, goldsztajn, belzberg, yizkor

FT pazaryeri, tufanbeyli, yenipazar, leskovac, berovo

MSR tasks. Morphological segmentation in LV-M appears to favor syntax less strongly

than do simple n-grams.

In OOV representation (Table 4.8), LV-N and FT work almost identically, as is

to be expected. Both find highly coherent neighbors for the words “hellooo”, “marve-

licious”, and “rereread”. Interestingly, the misspelling of “louisana” leads to coherent

name-like neighbors, although none is the expected correct spelling “louisiana”. All mod-

els stumble on the made-up prefix “tuz”. A possible fix would be to downweight very rare

subwords in the vector summation. LV-M is less robust than LV-N and FT on this task as

it is highly sensitive to incorrect segmentation, exemplified in the “hellooo” example.

Finally, we see that nearest-neighbors are a mixture of similarly pre/suffixed words.

If these pre/suffixes are semantic, the neighbors are semantically related, else if syntactic

they have similar syntactic function. This suggests that it should be possible to get tunable

representations which are more driven by semantics or syntax by a weighted summation

of subword vectors, given we can identify whether a pre/suffix is semantic or syntactic in

nature and weight them accordingly. Such identification might be possible without super-

vision using corpus statistics as syntactic subwords are likely to be more frequent, and so

could be down-weighted for more semantic representations.
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In summary, like fastText, subword LexVec learns better representations for rare

words than its word-level counterpart. All models generated coherent representations

for OOV words, with simple n-grams demonstrating more robustness than unsupervised

morphemes.

4.4 Downstream Performance

4.4.1 Hyperparameter Selection

Table 4.9 – Hyperparameter search on the SST5 dev set. Unless otherwise specified, models use
PPMI, lr = 2.5e-2, positional contexts and αcds = 1.

model SST5 Dev

LexVec αcds = .75 40.9
LexVec 41.0
LexVec -Pos 40.6
LexVec NNEGPMI 40.5
LexVec NPMI 40.3
LexVec CPMI(-2) 41.3
LexVec CPMI(-2) lr = 2e-4 40.0
LexVec CPMI(-2) lr = 1e-3 41.0
LexVec CPMI(-2) lr = 5e-3 41.6

Before performing evaluation on sequence tasks, we perform hyperparameter se-

lection using LexVec models trained on the same Wikipedia corpus as in Section 4.1.

We use this training corpus because training multiple models on the much larger corpus

(Common Crawl) used later in this section would be prohibitive. As the target task, we

select the most difficult classification task in the SentEval suite: SST-5.

We first consider whether or not to use context distribution smoothing (CDS) of

the PPMI matrix. Results are marginally better without CDS. Throughout the rest of this

thesis, we do not use CDS. We then consider whether or not to use positional contexts.

There is a performance drop when not using positional contexts. Next we evaluate dif-

ferent PMI variants. CPMI(−2) outperforms all other variants. Finally, we tune the

learning rate from values in {2e-4, 1e-3, 5e-3, 2.5e-2}. Higher learning rates are not re-

ported since they caused SGD to diverge. 5e-3 is the top performer.
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4.4.2 Materials

We train two external memory LexVec models, with and without subwords, on the

publicly available Common Crawl2 dump from 2016 published by the WMT group3. We

perform no preprocessing of any kind other than tokenization using the spaCy toolkit4.

The resulting corpus has a total of 65 billions tokens. We restrict the vocabulary to the

2 million most frequent words. Aside from the hyperparameters selected in the previous

section, we use the same configuration from Section 4.1, except for the number of negative

samples which is decreased to 3 to reduce training time. For subword LexVec, we had to

reduce the learning rate to 1e-3 to keep SGD from diverging. Character n-grams of size 3-

6 were used as subwords. Both models were trained for 5 iterations. We refer to the model

without subwords as LexVec-65B and to the model with subwords as SubLexVec-65B.

For comparison, we use publicly available word embeddings trained on similarly

large corpora: (1) GoogleNews5: Skip-gram embeddings trained on 100B word Google-

News corpus. (2) GloVe-840B6: GloVe embeddings trained on a 840B Common Crawl

dump. (3) fastText-630B7: fastText Continuous Bag of Words (CBOW) embeddings us-

ing positional embeddings, trained on a carefully preprocessed Common Crawl dump

containing 630B tokens. All vectors are 300-dimensional.

Our models are trained on a corpus are more than 10x smaller than the corpora on

which GloVe and fastText were trained. As evidenced in Mikolov et al. (2018), both in-

trinsic and downstream performance increase with training corpus size, making the com-

parison between these and our LexVec models trained on much smaller corpora unfair.

However, the LexVec results presented here serve as a lower bound on performance, and

as we will see, already show that LexVec outperforms the GoogleNews and GloVe vectors

on most tasks, and is competitive with the fastText vectors on many tasks.

Classifiers for all SentEval tasks are multilayer perceptrons with a single hidden

layer of 100 units and dropout of 0.1.

POS tagging is performed using FLAIR (AKBIK et al., 2019) with the same

BiLSTM-CRF setup as Huang, Xu and Yu (2015) but using only word embeddings (no

hand-engineered features) as input, trained on the WSJ section of the Penn Treebank

2https://commoncrawl.org/
3https://www.statmt.org/wmt18/translation-task.html
4https://spacy.io/
5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/projects/glove/
7https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M-subword.zip
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(MARCUS; MARCINKIEWICZ; SANTORINI, 1993).

4.4.3 Merging

In this section, we compare the 5 merging strategies discussed in Section 3.3.1 on

word similarity, word analogy, text classification, NLI, and textual similarity. Results are

shown in Tables 4.10 to 4.14.

Table 4.10 – Comparing merging strategies on word similarity tasks. Numbers are Spearman’s
rank correlation x100.

model SimLex RW WS-S WS-R MEN MTurk Mean

LexVec-63B (Word) 45.4 49.6 80.9 70.1 79.7 70.8 66.1
LexVec-63B (Sum) 41.2 50.0 80.2 71.7 80.0 73.1 66.0
LexVec-63B (Context-only) 40.8 49.6 79.0 68.2 77.9 72.2 64.6
LexVec-63B (Mean) 42.8 50.5 81.5 73.7 81.4 73.3 67.2
LexVec-63B (Concat) 43.1 49.7 79.8 68.4 78.3 72.3 65.3

Table 4.11 – Comparing merging strategies on word analogy tasks. Numbers are percent
accuracy.

model GSem GSyn MSR Mean

LexVec-63B (Word) 74.2 73.3 71.5 73.0
LexVec-63B (Sum) 77.2 69.2 67.6 71.3
LexVec-63B (Context-only) 69.0 67.8 67.8 68.2
LexVec-63B (Mean) 80.6 71.7 69.9 74.1
LexVec-63B (Concat) 72.6 72.2 71.1 71.9

The Mean strategy has the highest mean score on word similarity and analogy

tasks, followed by Word. Preserving word vectors is important in these tasks: Context-

only merging has the lowest score of all strategies.

Table 4.12 – Comparing merging strategies on classification tasks. Numbers are percent accuracy.

model MR CR SUBJ MPQA TREC SST2 SST5 Mean

LexVec-63B (Word) 76.5 78.2 90.8 87.7 85.2 81.4 44.6 77.8
LexVec-63B (Sum) 77.0 78.2 91.6 88.0 83.0 81.7 44.6 77.7
LexVec-63B (Context-only) 76.9 79.2 91.0 87.8 81.2 81.4 43.8 77.3
LexVec-63B (Mean) 76.2 79.3 91.2 87.4 83.6 81.2 43.4 77.5
LexVec-63B (Concat) 77.1 79.8 91.8 88.4 86.6 81.3 43.8 78.4

In classification and NLI, concatenation has the highest scores in 5 of the 9 tasks,

and has the highest mean score. The lowest score comes from using only word vectors,

altogether ignoring values in context vectors.



69

Table 4.13 – Comparing merging strategies on NLI tasks. Numbers are percent accuracy.

model SNLI SICK-E Mean

LexVec-63B (Word) 68.8 79.1 74.0
LexVec-63B (Sum) 72.8 77.8 75.3
LexVec-63B (Context-only) 73.5 77.8 75.7
LexVec-63B (Mean) 71.7 78.6 75.1
LexVec-63B (Concat) 73.0 81.1 77.1

Table 4.14 – Comparing merging strategies on textual similarity tasks. Numbers are Pearson’s
correlation coefficient.

model STS12 STS13 STS14 STS15 STS16 Mean

LexVec-63B (Word) 56.2 59.4 59.1 64.0 55.5 58.8
LexVec-63B (Sum) 58.2 62.0 61.4 64.5 56.5 60.6
LexVec-63B (Context-only) 57.7 61.4 60.3 63.6 55.2 59.6
LexVec-63B (Mean) 58.2 61.9 61.7 65.3 57.5 60.9
LexVec-63B (Concat) 56.9 59.9 59.3 63.5 55.3 59.0

Table 4.15 – Comparing merging strategies on textual similarity tasks using regression and cosine
(has suffix -Cos). Numbers are Pearson’s correlation coefficient.

model STS-B STS-B-Cos SICK-R SICK-R-Cos

LexVec-63B (Word) 64.0 50.0 79.3 65.8
LexVec-63B (Sum) 66.9 54.0 79.8 69.6
LexVec-63B (Context-only) 67.0 53.0 79.8 69.0
LexVec-63B (Mean) 65.5 53.8 79.7 68.9
LexVec-63B (Concat) 67.6 50.1 82.5 66.6
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In STS12-16, using only word vectors is again the weakest heuristic, and surpris-

ingly Concat is second worst. In these tasks, textual similarity is estimated using the

cosine between sentence embeddings. If we now look at STS-B and SICK-R scores in

Table 4.15, where a regressor is trained when given as input sentence embeddings, Con-

cat is the top scorer. In this same table we also include scores for STS-B and SICK-R

using cosine between sentence embeddings, and the results follow those from STS12-16.

The trend is that the higher dimensional Concat heuristic – 1500d vs. 300d for the other

strategies – should be used when training a classifier/regressor, and the other strategies

should be used otherwise.

Based on these results, we include only Mean and Concat in the evaluations that

follow in this chapter.

4.4.4 Text Classification

Table 4.16 – Percent accuracy on text classification tasks.

model MR CR SUBJ MPQA TREC SST2 SST5 Mean

LexVec-63B (Mean) 76.2 79.3 91.2 87.4 83.6 81.2 43.4 77.5
LexVec-63B (Concat) 77.1 79.8 91.8 88.4 86.6 81.3 43.8 78.4
SubLexVec-63B (Mean) 76.6 79.5 91.2 88.0 84.0 80.5 43.4 77.6
SubLexVec-63B (Concat) 76.7 79.1 91.9 88.5 89.4 82.0 44.2 78.8
GoogleNews-100B 77.1 79.1 90.8 88.0 83.4 80.3 43.5 77.5
GloVe-840B 77.6 79.1 91.5 87.7 83.4 81.7 44.9 78.0
fastText-630B 78.2 80.1 92.1 87.7 85.0 83.5 46.0 78.9

Despite being trained on much smaller corpora, results in Table 4.16 show that

both LexVec (Concat) models have higher mean scores than the GoogleNews and GloVe

vectors. The subword LexVec model outperforms fastText on MPQA and TREC tasks,

and has only marginally weaker mean performance. Given a greater computational bud-

get, it would be interesting to train LexVec on larger corpora to see if this gap disappears.

4.4.5 Text Similarity

On STS12-16 results in Table 4.17, the GoogleNews and fastText vectors have

a large advantage over LexVec and GloVe models. However, LexVec (Concat) strat-

egy overtakes GoogleNews on the STS-B and SICK-R tasks and outperforms fastText

on SICK-R when regressors are trained (results in Table 4.18). We conclude that while
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Table 4.17 – Performance on textual similarity tasks using cosine similarity. Numbers are
Pearson’s correlation coefficient x100.

model STS12 STS13 STS14 STS15 STS16 Mean

LexVec-63B (Mean) 58.2 61.9 61.7 65.3 57.5 60.9
LexVec-63B (Concat) 56.9 59.9 59.3 63.5 55.3 59.0
SubLexVec-63B (Mean) 56.1 59.4 57.9 63.0 53.3 58.0
SubLexVec-63B (Concat) 53.6 56.4 54.1 59.7 49.1 54.6
GoogleNews-100B 54.7 63.3 67.2 69.9 64.4 63.9
GloVe-840B 53.1 54.2 55.3 59.9 51.5 54.8
fastText-630B 59.1 64.0 66.1 69.8 64.1 64.6

Table 4.18 – Comparing merging strategies on textual similarity tasks using regression and cosine
(has suffix -Cos). Numbers are Pearson’s correlation coefficient x100.

model STS-B STS-B-Cos SICK-R SICK-R-Cos Mean

LexVec-63B (Mean) 65.5 53.8 79.7 68.9 67.0
LexVec-63B (Concat) 67.6 50.1 82.5 66.6 66.7
SubLexVec-63B (Mean) 64.9 49.8 79.8 67.0 65.4
SubLexVec-63B (Concat) 67.3 45.1 82.1 65.0 64.9
GoogleNews-100B 64.3 62.1 80.1 70.2 69.2
GloVe-840B 64.7 41.5 79.9 65.1 62.8
fastText-630B 70.2 58.1 82.0 69.8 70.0

the information necessary for this task is present to a higher degree in LexVec (Con-

cat) when compared to GoogleNews vectors, this information is better recovered with a

trained neural network, whereas recovery using sentence embedding cosine similarity is

less effective.

4.4.6 Syntactic Tasks

Table 4.19 – Results on POS tagging and syntactic probing tasks. All numbers represent percent
accuracy.

model POS Dep TopC Mean

LexVec-63B (Mean) 96.8 33.3 62.6 64.2
LexVec-63B (Concat) 96.9 36.1 73.6 68.9
SubLexVec-63B (Mean) 96.8 34.2 63.4 64.8
SubLexVec-63B (Concat) 96.8 36.0 72.3 68.3
GoogleNews-100B 92.1 27.0 61.2 60.1
GloVe-840B 96.9 35.6 65.3 65.9
fastText-630B 96.8 32.9 65.4 65.0

Results for syntactic sequence tasks are presented in Table 4.19. Both Concat
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LexVec models have the highest overall performance. In all these tasks, taggers (POS)

and classifiers (Dep, TopC) are trained. This reiterates the importance of the Concat

strategy, which preserves distinct representations in the input, rather than conflating all

representations in a single vector as with the Mean strategy. This holds for semantic tasks

(Table 4.18), and holds here for syntactic tasks as well.

4.4.7 Natural Language Inference

Table 4.20 – Results on natural language inference tasks. Numbers represent percent accuracy.

model SNLI SICK-E Mean

LexVec-63B (Mean) 71.7 78.6 75.1
LexVec-63B (Concat) 73.0 81.1 77.1
SubLexVec-63B (Mean) 72.0 78.4 75.2
SubLexVec-63B (Concat) 73.0 81.3 77.2
GoogleNews-100B 67.7 79.2 73.4
GloVe-840B 71.8 79.0 75.4
fastText-630B 71.2 79.1 75.2

NLI results are shown in Table 4.20. LexVec (Concat) models dominate these

two tasks by a large margin. Given that fastText achieves higher STS scores than LexVec

(Concat), we attribute LexVec’s leading NLI performance to its leading results in syntactic

tasks. This hypothesis is supported by improvements in SNLI results when incorporating

explicit syntactic information into more sophisticated compositional models (CHEN et

al., 2017).

4.4.8 Facet Ranking

In addition to the LexVec models used in previous sections which were not avail-

able at the time the COSEARCHER paper was published, we include here the SubLexVec-

Crawl8 model which was available and used in that work. SubLexVec-Crawl uses a PPMI

matrix with context distribution smoothing of .75, different preprocessing of the same

CommonCrawl corpus (naive punctuation removal and whitespace tokenization). Results

are shown in Table 4.21.

8<https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.
vectors.gz>

https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz
https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz
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Table 4.21 – Facet ranking evaluation using precision-at-1 (P@1) and mean reciprocal rank
(MRR) using unsupervised mean bag-of-vectors.

model P@1 MRR
Train Dev Test Train Dev Test

LexVec-63B (Mean) 79.7 80.4 76.5 88.1 88.2 86.0
LexVec-63B (Concat) 77.4 78.8 75.1 86.8 87.3 85.2
SubLexVec-63B (Mean) 77.0 79.0 73.8 86.5 87.3 84.6
SubLexVec-63B (Concat) 74.5 76.6 71.7 85.0 85.9 83.2
fastText-630B 81.4 83.3 80.6 89.2 90.0 88.5
GoogleNews-100B 81.3 80.0 78.7 89.2 88.2 87.4
GloVe-840B 69.8 75.0 68.2 81.7 84.9 80.7
SubLexVec-Crawl 83.3 83.3 80.7 90.3 89.9 88.6
SBERT-large 98.1 85.5 85.5 99.0 91.1 91.2
BERT-large CE 95.8 89.7 91.7 97.6 93.7 95.0

Table 4.22 – Facet ranking evaluation using precision-at-1 (P@1) and mean reciprocal rank
(MRR) using trained deep averaging network (DAN).

model P@1 MRR
Train Dev Test Train Dev Test

LexVec-63B (Mean) 91.2 84.9 86.2 95.0 91.2 91.8
LexVec-63B (Concat) 96.7 86.4 88.7 98.3 92.1 93.2
SubLexVec-63B (Mean) 90.9 85.0 86.2 94.8 91.3 91.7
SubLexVec-63B (Concat) 95.7 86.6 87.7 97.7 92.2 92.8
fastText-630B 90.8 85.9 86.8 94.8 91.8 92.1
GoogleNews-100B 91.2 86.7 85.6 95.0 92.0 91.4
GloVe-840B 89.7 83.5 84.3 94.2 90.4 90.7
SubLexVec-Crawl 89.8 84.5 85.1 94.2 91.0 91.1
SBERT-large 98.1 85.5 85.5 99.0 91.1 91.2
BERT-large CE 95.8 89.7 91.7 97.6 93.7 95.0
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The SubLexVec-Crawl embeddings outperform all other unsupervised embed-

dings. There is a small gap in performance between its P@1 and that of the SBERT

model, and yet smaller gap in MRR. As an upper bound, we also evaluate a supervised

cross encoder (CE) BERT model which does not generate sentence embeddings, but is

instead trained to calculate score(.) (Equation (2.15)) directly from an input context-facet

pair. This model has a larger performance gap compared to the BoV models.

If the computation cost of score(.) for a single context-facet pair is r, the number

of turns in a dialogue is p, and the set of candidate facets is C, facet ranking over a whole

dialogue incurs cost O(rp|C|). This makes the CE model prohibitive since it requires

running the entire BERT model (high r) for every context-facet pair and performance

is a crucial aspect of simulation. In contrast, sentence embedding models perform only

O(r(p+ |C|)) computations to generate sentence embeddings for contexts and candidate

facets, making O(rp|C|) at ranking time cheap since r is but a cosine between vectors.

In summary, SubLexVec-Crawl vectors were used as rep(.) in Salle et al. (2021)

because (1) the performance gap to the SBERT model is small, in particular for MRR

(2) we hypothesize that being unsupervised will help it generalize to other kinds of facets

(such as search engine keyword suggestions as used in Salle et al. (2021)) which look less

like natural language than do Qulac facets used in our training set.

The gap between the static word embedding models and the Transformer models

decreases further if we allow some supervision. Rather than computing the cosine be-

tween the BoV, we train a Deep Averaging Network (DAN) (IYYER et al., 2015) to com-

pute sentence embeddings which are then used in the cosine computation. A DAN is sim-

ply a sequence of two dimension-preserving tanh feed-forward layers which transform

the input BoV sentence embedding into an output sentence embedding. Results are shown

in Table 4.22. The same phenomenon occurs as in Table 4.15: learning a non-linear trans-

formation of the larger dimensional Concat vectors significantly improves performance.

The improvement is such that both LexVec-63B (Concat) and SubLexVec-63B(Concat)

outperform the SBERT trained using the same data. The BERT cross-encoder is still the

strongest performing model, but in scenarios where cross encoding is prohibitively ex-

pensive and sentence embedding is required, Concat models under a DAN transformation

are a competitive and cheap approach.
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4.5 Comparison to Transformers

Given the recent success of Transformer models in NLP, in this section we inves-

tigate whether static word embeddings (including LexVec) remain competitive in word-

level and sentence-level tasks.

4.5.1 Lexical Semantics

Table 4.23 – Comparing lexical semantic performance between static word embeddings and
contextualized word embeddings on word similarity tasks. Numbers are Spearman rank

correlation x100.

model SimLex RW WS-S WS-R MEN MTurk Mean

LexVec-63B (Mean) 42.8 50.5 81.5 73.7 81.4 73.3 67.2
LexVec-63B (Concat) 43.1 49.7 79.8 68.4 78.3 72.3 65.3
SubLexVec-63B (Mean) 43.3 52.2 81.2 70.8 81.1 71.6 66.7
SubLexVec-63B (Concat) 40.6 48.6 75.9 60.6 76.2 69.2 61.8
GoogleNews-100B 44.2 53.4 77.2 63.5 78.2 68.4 64.2
GloVe-840B 40.8 46.2 80.3 68.8 80.5 69.3 64.3
fastText-630B 50.3 59.5 84.0 73.7 84.6 72.6 70.8
BERT.F4 49.0 37.0 67.0 56.0 70.0 59.0 56.3
BERT.L4 55.0 48.0 70.0 51.0 69.0 56.0 58.2
BERT.L 50.0 36.0 63.0 47.0 64.0 52.0 52.0

Table 4.24 – Comparing lexical semantic performance between static word embeddings and
contextualized word embeddings on word analogy tasks. Numbers are percent accuracy. Missing

scores are due to Lenci et al. (2021) only reporting aggregate (GSem+GSyn) Google analogy
scores.

model GSem+GSyn GSem GSyn MSR Mean

LexVec-63B (Mean) 75.8 80.6 71.7 69.9 74.5
LexVec-63B (Concat) 72.4 72.6 72.2 71.1 72.0
SubLexVec-63B (Mean) 75.1 75.7 74.6 74.0 74.9
SubLexVec-63B (Concat) 73.3 71.9 74.5 73.2 73.2
GoogleNews-100B 72.8 72.3 73.2 72.5 72.7
GloVe-840B 76.0 78.8 73.7 73.5 75.5
fastText-630B 82.1 83.1 81.2 82.6 82.3
BERT.F4 38.0 – – 76.0 57.0
BERT.L4 66.0 55.0 71.0 69.0 65.2
BERT.L 64.0 – – 68.0 66.0

For lexical semantic tasks, we include BERT results from Lenci et al. (2021). To

compute a non-contextualized representation for BERT, they average the contextualized
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embeddings of a target word across ten or fewer sentences in which the word appears

within a Wikipedia corpus. They report results for 3 variants:

• BERT.F4: the sum of the embeddings from the first four layers;

• BERT.L4: the sum of the embeddings from the last four layers;

• BERT.L: the sum of the embeddings from the last layer;

Word similarity results are shown in Table 4.23. Except for the SimLex dataset, BERT

embeddings underperform static word embeddings in all other datasets by wide margin.

In word analogy evaluations reported in Table 4.24, BERT embeddings have the lowest

average performance.

Lenci et al. (2021) only report distinct semantic/syntactic Google analogy scores

for the BERT.L4 embeddings which has higher aggregate scores than both BERT.F4 and

BERT.L. Even though it is the best of the BERT embeddings on this task, its semantic

analogy score is far below those of the static word embeddings. Although the positive

SimLex and syntactic analogy scores are encouraging, lexical semantics are still domi-

nated by static word embeddings.

Finally, we note that LexVec models are trained on a far smaller training corpus

than the other static word embeddings. As stated in Section 4.4.2, we believe these results

serve as a lower-bound for its performance in lexical semantic tasks.

4.5.2 Sentence Embedding

Table 4.25 – Comparing text classification performance between unsupervised sentence
embeddings using static word embeddings and state-of-the-art sentence embeddings based on

Transformer models. Numbers are percent accuracy.

model MR CR SUBJ MPQA SST2 TREC MRPC Mean

LexVec-63B (Mean) 76.2 79.3 91.2 87.4 81.2 83.6 72.3 81.6
LexVec-63B (Concat) 77.1 79.8 91.8 88.4 81.3 86.6 73.5 82.7
SubLexVec-63B (Mean) 76.6 79.5 91.2 88.0 80.5 84.0 74.3 82.0
SubLexVec-63B (Concat) 76.7 79.1 91.9 88.5 82.0 89.4 73.3 83.0
fastText-630B 78.2 80.1 92.1 87.7 83.5 85.0 74.5 83.0
GEM (L.F.P.) 79.8 82.5 93.8 89.9 84.7 91.4 75.4 85.4
S3E (L.F.P.) 79.4 81.4 92.9 89.4 83.5 89.0 75.6 84.5
SBERT-large 84.8 90.5 94.7 90.6 91.0 88.2 76.9 88.1
SRoBERTa-WK-base 85.8 91.4 94.5 89.7 92.3 91.0 78.9 89.1

We compare recent state-of-the-art Transformer sentence encoders – Sentence-

BERT (SBERT, Reimers and Gurevych (2019)) and SRoBERTa-WK-base (WANG; KUO,
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Table 4.26 – Comparing textual similarity performance between unsupervised sentence
embeddings using static word embeddings and state-of-the-art sentence embeddings based on

Transformer models. Numbers are Pearson correlation coefficient x100.

model SICK-R STS-B Mean

LexVec-63B (Mean) 79.7 65.5 72.6
LexVec-63B (Concat) 82.5 67.6 75.0
SubLexVec-63B (Mean) 79.8 64.9 72.4
SubLexVec-63B (Concat) 82.1 67.3 74.7
fastText-630B 82.0 70.2 76.1
GEM (L.F.P.) 86.5 78.4 82.5
S3E (L.F.P.) 84.7 78.6 81.7
SBERT-large 84.7 75.6 80.2
SRoBERTa-WK-base 87.6 80.7 84.2

2020) – to state-of-the-art sentence embeddings based on static word embeddings – GEM

(WANG et al., 2019) and S3E (WANG et al., 2020a) – on the same text classification, NLI,

and textual similarity tasks used previously. Both GEM and S3E use a concatenation of

LexVec, fastText, and PPDB (WIETING et al., 2015) (L.F.P.) as input. As a baseline, we

also include the mean bag of vector sentence embeddings used previously. GEM results

are from Wang et al. (2019), S3E results from Wang et al. (2020a), and SBERT-large and

SRoBERTa-WK-base results from Wang and Kuo (2020). Text classification results are

shown in Table 4.25. As expected, Transformer models dominate most tasks. However,

the gap in average performance is small when compared to GEM, and except for the MR

and CR tasks, the difference is marginal.

This same trend repeats in textual similarity results in Table 4.26, but here the gap

is even smaller. Sentence embedding is more important in these tasks than in text classi-

fication: a common use case for sentence embeddings is dense retrieval where given an

input item (query, passage, etc.) a set of output items (documents, passages, etc.) must be

ranked using some similarity function. Computing an expensive similarity function (such

as a full run of BERT) for every candidate input-output item can be prohibitive when the

number of possible input-output combinations is large. A cheap similarity function such

as the cosine function alleviates this problem. This is the reason the BERT Cross Encoder

(an expensive similarity function) was not used for facet ranking in Section 4.4.8. Ad-

ditionally, embedding inputs and outputs in a common vector space allows for efficient

approximate nearest-neighbors methods (GIONIS et al., 1999; BÖHM; BERCHTOLD;

KEIM, 2001; DONG; MOSES; LI, 2011) such that not all output items have to be con-

sidered when searching for most similar results.
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4.6 Conclusion

We performed extensive evaluation of our proposed LexVec model. Results show

that LexVec closes the gap between counting and predictive methods. LexVec is compet-

itive with the state-of-the-art fastText model despite being trained on 13x less data. Ad-

ditionally, we observe that static word embeddings remain competitive with Transformer

models in many tasks, notably outperforming the latter in lexical semantic tasks.
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5 SEMANTICS/SYNTAX IN NEGATIVE/POSITIVE INFORMATION

In this chapter, we investigate what kind of information is captured in word vectors

if we exclusively consider nPMI or pPMI values when performing matrix factorization (in

answer to Q11 and Q12). In other words, if all we know is that “word w tends not to occur

with words ci, . . . , cj” (nPMI, remove “not” for similar statement about pPMI), what can

we learn about w? This can help us train better models, but perhaps more importantly,

improve our understanding of natural language.

5.1 Materials

Models: In order to identify the role that nPMI and pPMI play in distributional

semantics, we train two LexVec models:

• one that only considers negative information, nPMI, i.e., any pair in pPMI is skipped

during factorization, or equivalently, λLexVec = 0 if (w, c) ∈ pPMI , and

• one model that only considers positive information, pPMI, i.e., any pair in nPMI is

skipped during factorization, or equivalently λLexVec = 0 if (w, c) ∈ nPMI .

We compare these to models that include both negative and positive information (nPMI ∪
pPMI ) to see how the two interact. To account for values in mnPMI, we use the four PMI

variants described in Section 2.2: PPMI, CPMI(-2), NPMI, NNEGPMI.

We use the following LexVec configuration for all PMI variants: window size

l = 5, embedding dimension of 300, 5 negative samples, no positional contexts, learning

rate of 0.025, no subword information, no context distribution smoothing, and negative

distribution power αpow = 0.75.

For all experiments, we use the English Wikipedia corpus described in Section 2.2,

resulting in the same underlying Mwiki5 matrix for all models.

For comparison, we include results for a randomly initialized, untrained embed-

ding to establish task baselines.

Semantic tasks: To evaluate word-level semantics, we use the SimLex and Rare

Word (RW) word similarity datasets. To evaluate word analogies, we use the Google

Semantic (GSem) analogies. We evaluate sentence-level semantics on STS Benchmark.

Syntactic tasks: Similarly, we use the Google Syntactic analogies (GSyn) and

MRS syntactic analogies to evaluate word-level syntactic information. Google Syntactic
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analogies are in fact morphological but many categories test for POS relations and are

therefore syntactic in nature. We employ the Depth (Dep) and Top Constituents (TopC)

(of the input sentence’s constituent parse tree) probing tasks from SentEval to evaluate

sentence-level syntax. Our final syntactic task is part-of-speech (POS) tagging.

5.1.1 Results

Table 5.1 – Performance on tasks focused on semantics or syntax by models that use only
positive information (p*), negative information (n*), or both (no prefix), and the random baseline.
Using negative information alone performs far better than the random baseline, especially on the
syntactic tasks. Metrics: Spearman rank correlation (×100) for SimLex and RW word similarity;
Pearson correlation for STS-B; % accuracy for GSem/GSyn/MSR word analogies, POS tagging
and WC, Dep, TopC probing tasks. Best result for each column in bold, second best underlined.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC

pPPMI 37.0 40.1 58.8 65.4 52.7 35.1 92.0 27.1 30.4

nPPMI 4.0 1.8 0.0 48.6 0.0 0.0 16.3 17.9 5.0
nCPMI(-2) 22.6 25.2 18.3 41.4 24.5 18.3 90.6 32.9 33.7
nNPMI 9.9 21.8 8.2 38.3 9.6 5.8 89.0 31.1 32.3

PPMI 34.0 45.3 76.5 61.6 55.1 36.7 91.7 25.5 26.6
CPMI(-2) 34.0 41.8 78.4 61.9 58.7 42.6 92.2 27.3 28.4
NPMI 26.0 39.4 60.0 60.6 44.4 30.2 91.4 26.3 27.9
NNEGPMI 34.0 43.0 78.3 61.7 56.3 39.8 92.0 25.1 26.3

Random 4.0 1.9 0.0 45.3 0.0 0.0 59.1 17.9 5.0

The results shown in Table 5.1 provide insights into the role of negative and posi-

tive PMI for capturing semantic and syntactic information.

Negative PMI: The nPPMI model is almost identical to the random baseline;

this is to be expected as random initialization gives in expectation perpendicular vectors

or equivalently dot products equal to zero, and if the only learning signal is to make

dot products equal to zero nothing changes. The other nPMI models (nCPMI (−2) and

nPMI ) exhibit more interesting behavior. They perform similarly to all others in POS

tagging and both syntactic probing tasks (Dep and TopC), but very poorly on all semantic

tasks, suggesting that nPMI mostly encodes syntactic information. Our hypothesis to

explain this phenomenon is that the grammar that generates language implicitly creates

negative cooccurrence and so nPMI encodes this syntactic information. Interestingly, this

idea creates a bridge between distributional semantics and the argument by Regier and

Gahl (2004), Foraker et al. (2009) that indirect negative evidence might play an important
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role in human language acquisition of grammar.

Positive PMI: The pPPMI model which accounts for only values in pPMI per-

forms similarly to the full spectrum models on most tasks, clearly indicating that pPMI

encodes both semantic and syntactic information.

Why incorporate nPMI? pPPMI falters on the RW and analogy tasks, and ac-

counting for nPMI significantly improves performance on both tasks. Section 6.3 explores

how increasing the relative importance of negative information increases rank invariance

in the word vectors and improves results on both these tasks relative to using only pPMI.

Full spectrum models: Of the models which account for all PMI values (nPMI ∪
pPMI ), the PPMI, CPMI-2 , and NNEGPMI models perform similarly, whereas the

NPMI model is significantly worse on nearly all tasks. We thus conclude that accounting

for scale in the positive spectrum is more important than in the negative spectrum.

Collapsing the negative spectrum: The PPMI model, which collapses the nega-

tive spectrum to zero, performs almost identically to the CPMI-2 and NNEGPMI mod-

els that account for the range of negative values. We believe this is because the set

nPMI \ mnPMI , which contains the collapsed values, is much smaller than nPMI (in

PMI wiki5 , 483 times smaller) because of the sparsity of the underlying cooccurrence ma-

trix, thus almost all negative information is in mnPMI: nPMI ≈ mnNPMI .

5.2 Conclusion

In this chapter, we isolated the effects of negative and positive information on

word embeddings. Results show that only accounting for positive information strongly

captures both semantics and syntax, whereas using only negative information captures

little of semantics but a surprising amount of syntactic information.
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6 NEGATIVE INFORMATION AND GEOMETRY

One hypothesis related to negative information is that it helps to “scatter” unre-

lated words in the vector space (SALLE; VILLAVICENCIO; IDIART, 2016). As we will

show, this scattering does indeed happen between words and contexts, but surprisingly

the opposite happens between words since they are pulled together in space. In this chap-

ter, we first study whether increasing the number of negative samples in the LexVec and

Skip-gram models does indeed increase the relative importance of negative information

(Section 6.1). Confirming this to be true, we investigate the effect of increasing nega-

tive information on the geometry of LexVec (Section 6.3) and of other word embedding

models (Section 6.4), in answer to Q13.

6.1 Increasing relative weight of negative information

In our study, we need a way to gradually increase the loss weights in the negative

spectrum of PMI, λLexVec for (w, c) ∈ nPMI , relative to pairs in the positive spectrum,

(w, c) ∈ pPMI , to identify how increasing the relative importance of negative informa-

tion affects the geometry of word vector spaces. Window sampling weights λws are fixed

given the data, so the only control we have over λLexVec is k, the number of negative

samples. We need to show that increasing the number of negative samples in the LexVec

factorization increases the relative weight of negative information.

To show this, we sample 105 values from CPMI(−2)wiki5 using window sam-

pling and negative sampling and plot the distribution of these values in Figure 6.1. This

plot shows the reconstruction error weights λ∗ different sampling regimes assign to dif-

ferent PMI values. For example, the peak at −2 tells us that negative sampling weights

λns will be higher for (w, c) pairs in nPMI than for (w, c) pairs in pPMI. The opposite

is observed for window sampling weights, which assign more weight to values in pPMI.

Table 6.1 shows this same result by aggregating values in Figure 6.1.

These results confirm that, as the number of negative samples is increased, so is

the relative weight of negative information in the factorization. This enables us to use the

LexVec model to investigate the impact of increasing negative information on resulting

word vector geometry.
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Figure 6.1 – The distribution (bin width equal to 0.2) of sampled CPMI wiki5 (−2) values when
using window sampling and negative sampling. Histogram from Figure 3.2 included for
comparison. These window sampling and negative sampling distributions of PMI values

correspond to the reconstruction error weights λws, λns in Equation (3.8) as a function of PMI.
Negative sampling assigns high weights to values in nPMI, and window sampling to values in

pPMI.
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Table 6.1 – Set (rows) membership of samples for various sampling methods (columns). Cell
values are the percentage of samples for a given method that fall within a set, such that

nPMI+pPMI sum to 100. Full: computed over all cells in PMIwiki5. Hist: computed over the
same 105 sampled pairs plotted in Figure 3.2. WS and NS: computed over the same 105 sampled
pairs used in Figure 6.1 using window sampling (ws) and negative sampling (ns). Observe that

window sampling is heavily skewed towards pairs in pPMI, and negative sampling heavily
skewed towards pairs in nPMI.

Name Set Full Hist WS NS

nPMI: Negative
information

{(w, c) | PMI w,c ≤ 0} 99.27 22.24 19.35 81.75

pPMI: Positive
information

{(w, c) | PMI w,c > 0} 0.73 77.76 80.65 18.25

mnPMI:
Maximally-
negative informa-
tion

{(w, c) | Mw,c = 0} 99.07 0.00 0.00 51.33

nPMI\mnPMI:
Collapsed nega-
tive information
under PPMI

{(w, c) |PMI w,c ≤ 0

∧Mw,c > 0} 0.21 22.24 19.35 30.42
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6.2 Materials

Here we describe the LexVec models and tasks used in our investigations into

vector space geometry.

Increasing negative samples: As shown in Section 6.1, when using both window

sampling and negative sampling, increasing the number of negative samples effectively

increases the relative importance of negative information. We use the default LexVec

setting in which both nPMI and pPMI are used (no steps are skipped), and increase the

number of negative samples from 0 to 1, 2, 4, 5, 10, 15, and 20. We focus on CPMI (−2)

since as described in Section 2.2 it closely mimics the measure of ultimate interest which

is PMI .

Geometry × frequency: To understand how increased negative sampling affects

the geometry of words of different frequencies, we evaluate performance using SimLex

(which consists of frequent words) and RW (which consists of frequent-rare word) word

similarity datasets. To perform the same frequency analysis on analogies, we order the

analogies in the analogy datasets by the highest rank of any of the words in each analogy.

We take the first 10% and last 10% analogies to create frequent (GSemF, GSynF, MSRF)

and rare (GSemR, GSynR, MSRR) word analogy datasets, respectively, with * and **

variants when heuristics are excluded as described above. Table B.1 in the Appendix

gives percentile rank statistics for all datasets we use in this chapter.

6.3 Results

Norms: In Figure 6.2, we plot the distribution of vector L2 norms for 100 words

sampled from different frequency buckets for LexVec models using 0, 5, and 20 negative

samples (LV-k denote the model with k negative samples). We use the same buckets as

Mimno and Thompson (2017), indexing words by inverse frequency (most frequent first),

0-100, 100-500, 500-5000, 5000-70000, and defining an additional bucket 70000-300000

for extremely rare words. With an increasing number of negative samples, the relative

weight of negative information is increased, and vectors norms become rank invariant;

the means of the different buckets becomes increasingly closer and variance decreases as

negative samples are increased.

Direction: In Figure 6.3, we perform the experiment of Mimno and Thompson

(2017), where using the same sampled words and frequency buckets as in Figure 6.2, we
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Figure 6.2 – The distribution of vector L2 norms for 100 words sampled from various frequency
buckets for LexVec models using 0, 5, and 20 negative samples (LV-0, LV-5, LV-20). As the

number of negative samples increases, the norms become more rank invariant, with means of the
different buckets becoming increasingly closer and variance decreasing. The norm distributions

for Skip-gram, GloVe, and SVD are shown for comparison.
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Figure 6.3 – In solid lines, the distributions of cosines (Equation (2.11)) of word vectors from
different frequency buckets with the mean vector of word vectors from all buckets, and in dashed

lines the distributions of cosines of context vectors from different frequency buckets with this
same mean word vector. As the number of negative samples increases, word vectors increasingly

point in the same direction and word-context vectors point in the opposite direction.
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calculate the mean vector of all sampled words from all buckets, and plot the distribution

of the cosine (Equation (2.11)) of sampled word vectors (solid line) and corresponding

context vectors (dashed lines) with this mean vector. Here we observe that as the number

of negative samples increases, word vectors increasingly point in the same direction, and

context vectors point in opposite directions. As a preface to Section 6.4.2, these are the

same effects observed by Mimno and Thompson (2017) for the Skip-gram model.

Nearest neighbors: We perform qualitative analysis of nearest neighbors of words

sampled from SimLex in Table 6.2 and RW in Table 6.3, where neighbors are ordered by

descending cosine similarity (Equation (2.11)) – similarity decreases from left to right –

and subscripts denote the percentile rank of a word (0.0 is most frequent word, 100.0 is

rarest).

In both the LV-0 and LV-20 model, frequent words have semantically related, fre-

quent word neighbors, showing that increasing negative information has no effect on se-

mantic similarity of frequent words. Results change completely with rare words, where

LV-0 neighbors are rare words and – barring a few exceptions – have no obvious seman-

tic connection to the target word, e.g., “monocultures”’s (an agricultural practice) nearest

neighbor is “fieldensis” (a species of arthropod). With the LV-20 model, on the other hand,

the neighbors of target rare words are generally of higher frequency than the targets, and

have clear semantic relations, as with “monocultures” and “monoculture” (singular) or

“seedlings” (young plants). Qualitatively, and as we will see in the next section, quanti-

tatively, increasing the importance of negative information has a very positive impact on

the representation of rare words.

Word similarity tasks: Shown in Figure 6.4a, results on RW improve consis-

tently as the number of negative samples is increased. There is a small but consistent drop

in performance on SimLex when increasing the number of negative samples. Looking

at the SimLex nearest neighbor examples in Table 6.2, the semantic similarities are in-

distinguishable between the LV-0 and LV-20 models, even though the LV-0 model has a

marginally higher SimLex score. We tested the WS353 word similarity dataset (FINKEL-

STEIN et al., 2001), split into relatedness (WSRel) and similarity (WSSim), to see if this

drop on SimLex scores, which measures similarity, is due to an increase in relatedness;

that is, if related pairs such as (psychology,Freud) are being drawn closer together in

space to the detriment of semantically similar pairs such as (psychology,psychiatry). We

observe in Figure 6.4a that relatedness scores in WSRel do indeed increase, and that there

is a small drop in similarity scores in WSSim. This suggests that as relatedness increases
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Table 6.2 – Nearest neighbors of words sampled from SimLex. Subscripts denote the percentile
rank of a word (0.0 is most frequent word, 100.0 is rarest). All models exhibit semantically

coherent neighbors, with the exception of the SG model which has some unrelated intruders,
notably for the word “interest”.

word model neighbors

interest 0.3 LV-0 interests 1.0, conflict 0.5, interested 0.7, scientific 0.5, partic-
ular 0.3, expertise 2.3, reason 0.2, wizardimps 67.2, attention
0.5, desire 1.3

LV-20 interests 1.0, interested 0.7, scientific 0.5, attention 0.5, par-
ticular 0.3, conflict 0.5, focus 0.5, concerned 1.0, nature 0.4,
piqued 26.1

SG bshsu 90.2, conflict 0.5, btheeuropeanlibrary 87.6, bwral 65.5,
bepochtimes 41.4, richarddawkins 74.5, thegauntlet 78.0, in-
terested 0.7, wizardimps 67.2, towsonedu 95.1

GloVe interests 1.0, interested 0.7, concern 0.9, attention 0.5, focus
0.5, knowledge 0.5, conflict 0.5, influence 0.6, involvement
1.2, subject 0.2

SVD interests 1.0, interested 0.7, attention 0.5, substantial 1.1,
share 0.7, own 0.1, credit 0.8, benefit 1.0, debt 1.6, financial
0.5

cup 0.1 LV-0 champions 0.5, uefa 1.3, championship 0.2, cups 2.7, league
0.1, finals 0.7, trophy 1.1, tournament 0.4, fifa 1.1, champi-
onships 0.3

LV-20 champions 0.5, cups 2.7, championship 0.2, trophy 1.1, finals
0.7, league 0.1, competitions 0.9, runners 1.5, scorer 2.2, tour-
nament 0.4

SG cups 2.7, champions 0.5, championship 0.2, finals 0.7, trophy
1.1, league 0.1, supercup 8.5, uefa 1.3, scorers 4.7, intertoto
12.4

GloVe championship 0.2, cups 2.7, champions 0.5, tournament 0.4,
league 0.1, uefa 1.3, finals 0.7, championships 0.3, trophy 1.1,
matches 0.4

SVD runners 1.5, nextseason 4.9, champions 0.5, prevseason 4.9,
cups 2.7, scorers 4.7, competitions 0.9, scorer 2.2, fifa 1.1,
matches 0.4

soul 0.9 LV-0 love 0.2, blues 0.8, heaven 1.5, funk 2.7, album 0.1, mind 0.5,
spirit 0.8, souls 3.0, god 0.4, gospel 1.6

LV-20 heaven 1.5, funk 2.7, love 0.2, essence 3.0, souls 3.0, mind 0.5,
eternal 2.5, forever 1.7, spirit 0.8, dreams 1.6

SG soulful 11.0, funk 2.7, love 0.2, heaven 1.5, blues 0.8, essence
3.0, funky 6.1, souls 3.0, temptations 9.3, changeless 89.4

GloVe blues 0.8, funk 2.7, mind 0.5, hop 1.1, hip 1.0, love 0.2, rap 2.1,
spirit 0.8, pop 0.4, heaven 1.5

SVD heaven 1.5, forever 1.7, dreams 1.6, eternal 2.5, dream 0.9,
love 0.2, souls 3.0, funk 2.7, spirit 0.8, destiny 3.0
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Table 6.3 – Same as Table 6.2, but with words sampled from RW. LV-0 neighbors have no clear
semantic connection to the target word. In the LV-20 model, have clear semantic relations to the

targets. GloVe behaves like LV-0, and Skip-gram and SVD like LV-20.

word model neighbors

rooters 77 LV-0 sonorella 98, bhavas 67, recreative 86, wwwjskscoin 98,
wwwlegion 95, damsels 44, hassane 72, maniraptorans 99,
abolboda 52, sympycnus 47

LV-20 cheered 15, cheering 11, howled 73, jubilant 26, hissed 75,
bosox 81, mcgreevy 53, rogell 62, jeers 43, mobbed 33

SG nuxhall 73, sparky 11, yanks 15, strupper 87, whitey 12,
chisox 83, schoendienst 56, altrock 96, clendenon 85, cam-
paneris 62

GloVe paiks 93, trashmen 96, wampanoags 93, mycenaeans 79,
highnesses 60, perseids 89, clubmen 92, thalians 98, guelf
99, housecarls 93

SVD ballplayers 31, shibe 31, semipro 60, ebbets 29, phanatic 71,
kekiongas 80, mudville 73, comiskey 18, mutuals 33, nabbp
48

monocultures 76 LV-0 pegomya 94, atara 81, shebang 40, subsidization 69, kiy-
omori 38, lucullus 23, intercal 76, paaerduag 99, dagbon 80,
voluntas 89

LV-20 monoculture 35, crops 2, agroforestry 34, replanting 35, sil-
viculture 45, replanted 27, overgrazing 26, clearcutting 47,
rainfed 65, seedlings 11

SG monoculture 35, overgrazed 81, polyculture 88, silvicultural
84, crops 2, woodlots 73, intercropping 90, overstory 91, al-
lelopathic 83, croplands 60

GloVe chlamydospores 88, microbubbles 94, renunciations 92, in-
sectoids 91, monoculture 35, plasmodesmata 87, relaxations
79, contactors 66, urocystis 57, vortexes 90

SVD monoculture 35, polyculture 88, dryland 33, silviculture 45,
fuelwood 62, clearcutting 47, replanting 35, agroforestry 34,
seedlings 11, swidden 59

flighted 83 LV-0 ablabesmyia 31, hydroptila 40, sphex 69, semiotus 82,
sympycnus 47, coelichneumon 60, prajapati 32, diorhabda
98, quizzer 73, wwwtsuru 96

LV-20 ratite 63, ratites 35, dromaeosaurids 50, flightless 14, tina-
mous 38, raptorial 60, parrots 8, psittaciformes 41, manirap-
torans 99, psittacidae 32

SG raptorial 60, flightlessness 92, tibiotarsus 88, dro-
maeosaurids 50, zygodactyl 57, maniraptorans 99, apomor-
phic 93, ratite 63, rectrices 65, hindlimbs 39

GloVe sunbathe 92, hypnotise 99, maniraptorans 99, illidan 80, lan-
guorous 98, githyanki 95, dichotomius 73, tmesisternus 54,
chloroceryle 89, quadroon 72

SVD zygodactyl 57, raptorial 60, beaks 13, flightless 14, avians
73, opposable 42, featherless 60, ratite 63, forelimbs 17,
pronated 92
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Figure 6.4 – (a) Word similarity results: RW improves as the number of negative samples
increases. There is a small but consistent drop in performance on SimLex when increasing the
number of negative samples. Scores in WSRel do indeed increase, but there is no clear drop in
similarity scores in WSSim. (b) GSem/GSyn/MSR: Performance increases as the number of
negative samples increases. Normalization has a minor effect, whereas premise exclusion is
critical to performance. (c) GSem/GSyn/MSR Rare words: Consistent improvements in all

conditions because rare words are better represented. (d) GSem/GSyn Frequent words: With both
heuristics or only the normalization heuristic performance is nearly constant. For conditions

without premise exclusion heuristic, there is remarkable improvement in analogy performance as
negative samples increase, especially for semantic analogies. Metrics: for (a) Spearman rank

correlation (×100), for (b,c,d), Accuracy.
(a) Word similarity

0 1 2 3 4 5 10 15 20
neg

40

50

60

70

Sp
ea

rm
an

 ra
nk

 c
or

re
la

tio
n

variable
SimLex
RW
WSRel
WSSim

(b) Analogies

0 1 2 3 4 5 10 15 20
neg

0

10

20

30

40

50

60

70

80

%
 a

cc
ur

ac
y

strategies excluded
None
-Norm
-Prem
-Norm-Prem

dataset
GSem
GSyn
MSR

(c) Analogies, rare words

0 1 2 3 4 5 10 15 20
neg

0

10

20

30

40

50

60

70

%
 a

cc
ur

ac
y

strategies excluded
None
-Norm
-Prem
-Norm-Prem

dataset
GSemR
GSynR
MSRR

(d) Analogies, frequent words

0 1 2 3 4 5 10 15 20
neg

0

20

40

60

80

%
 a

cc
ur

ac
y

strategies excluded
None
-Norm
-Prem
-Norm-Prem

dataset
GSemF
GSynF
MSRF



91

– which happens as the relative importance of negative information is increased – true

similarity drops.

Word analogies: Figure 6.4b shows how analogy performance varies as the num-

ber of negative samples is increased. Clearly performance increases as the number of

negative samples increases, in particular for the semantic analogies. Removing the nor-

malization heuristic has a minor effect on task performance. Removing the premise ex-

clusion heuristic, however, leads to a tremendous drop in performance. This is why it is

crucial to perform correct evaluation of word analogies without additional heuristics, for

an accurate assessment of the semantic and syntactic information represented by the word

embeddings.

The strong results with the premise exclusion heuristic might lead one to believe

that the linear offsets corresponding to the analogies are straightforwardly accessible in

the vector space when they clearly are not. However, if the number of negative samples is

increased, we see a stark improvement under the correct evaluation, suggesting that these

linear offsets/regularities manifest more clearly in the vector space.

To determine if this improvement is not merely due to better representations of

rare words induced by increased negative sampling, as discussed previously, we look at

the (GSem/GSyn/MSR)F/R datasets which contain the analogies with most/least frequent

words. For (GSem/GSyn/MSR)R, we see the expected results in Figure 6.4c: consistent

improvements with and without heuristics because rare words are better represented. The

surprising result is for (GSem/GSyn/MSR)F in Figure 6.4d: with both heuristics or only

the normalization heuristic performance is nearly constant. Without the premise exclusion

heuristic, however, there is a remarkable improvement in analogy performance, especially

for semantic analogies. This suggests that negative sampling is altering the geometry of

the vector space in such a way that the linear offsets used to solve analogies hold more

strongly, without heuristics.

6.4 Connection to other models

In this section, we study whether similar effects observed for our LexVec models

are present in the popular Skip-gram, GloVe, and SVD models.
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6.4.1 Materials

Given that Skip-gram implicitly factorizes a shifted PMI matrix, GloVe’s factor-

ization is related to a PMI factorization, and SVD performs optimal unweighted factor-

ization, we investigate how these factorizations compare to the explicit PMI factorization

performed by LexVec as regards increasing negative information. In particular, we are

interested in the (dis)similarities of the geometry of the resulting word vector spaces.

Skip-gram: We train a Skip-gram model using the same parameters from the

original paper (MIKOLOV et al., 2013), with window size l = 5 and number of negative

samples in {1, 2, 5} (we refer to these models as SG-1, SG-2 and SG-5). Note that Skip-

gram with 5 negative samples performs the same amount of computation as the LexVec

model with 20 negative samples: Skip-gram draws 5 negative samples per target-context

pair (2 × 2 × 5 = 20 for each window), whereas LexVec draws 20 negative samples

per window. Analogous parameters have the same values as the LexVec models: embed-

ding dimension of size 300, learning rate of 0.025, negative distribution power of 0.75,

subsampling threshold of 1e− 5.

GloVe: The GloVe configuration follows the configuration of the original paper

(PENNINGTON; SOCHER; MANNING, 2014), but with three changes to make the re-

sults directly comparable to LexVec: (1) unlike in the original paper, the corpus is sub-

sampled using a threshold of 1e − 5 before constructing the cooccurrence matrix. (2)

Window size l = 5 to match LexVec and Skip-gram models. (3) Word vectors are output

without averaging with context vectors, so that word vectors and context vectors can be

analyzed separately. All other parameters are kept: embeddings of size 300, 100 training

epochs, and learning rate of 0.05.

SVD: A limitation of the truncated SVD is that its computational efficiency is

contingent on the sparsity of the input matrix. This sparsity is lost when using the

CPMI (−2), so we must use the zero-preserving transform PMI . Given the truncated

SVD, PPMI = UdΣdV
T
d , which discards all but the top d singular values, we follow

Levy, Goldberg and Dagan (2015) and set word and context matrices to W = Ud
√

Σd,

C = Vd
√

Σd respectively. We factorize the PPMI transform of Mwiki5 , setting d = 300.
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Table 6.4 – Comparing task performance of LexVec, Skip-gram, GloVe, and SVD models in
Word similarity and analogy tasks (-: no heuristics excluded, -N: norm heuristic excluded, -P:
premise heuristic excluded, -N-P: both heuristics excluded). The LV-0 model is similar to the

GloVe model: strong SimLex results, weaker RW results, and similar across all analogy
evaluations, barring MSR where GloVe is considerably stronger than all other models.

Analogously, the LV-20 model is similar to the Skip-gram and models: strong SimLex and RW
results, and consistently strong performance on all analogy evaluations. SVD has the lowest

performance, but note that it suffers the smallest drop when the -P heuristic is excluded. Metrics:
Spearman rank correlation (×100) for SimLex and RW, Accuracy for analogies.

model SimLex RW GSem GSem-N GSem-P GSem-N-P

LV-0 35.3 42.6 76.0 76.1 0.9 1.3
LV-5 34.0 41.5 78.9 78.2 7.6 7.2
LV-20 32.3 44.1 77.7 77.1 24.0 20.7

SG-1 36.0 45.5 75.3 75.3 11.2 10.5
SG-2 36.4 46.5 77.4 76.9 11.7 10.6
SG-5 35.9 46.9 78.9 78.4 11.2 10.1

GloVe 35.4 40.6 74.4 74.3 5.6 6.0
SVD 28.6 41.9 43.9 41.7 20.5 20.6

model GSyn GSyn-N GSyn-P GSyn-N-P MSR MSR-N MSR-P MSR-N-P

LV-0 56.2 55.6 6.5 7.1 40.1 39.4 1.7 2.0
LV-5 59.1 58.5 11.2 11.8 43.0 42.4 4.4 4.5
LV-20 58.1 57.2 13.7 14.7 42.5 41.1 5.8 5.9

SG-1 61.9 60.4 11.4 12.2 45.6 44.8 3.7 3.7
SG-2 63.3 61.8 11.3 12.4 47.3 46.6 4.0 4.1
SG-5 63.0 61.1 10.9 11.8 46.3 45.2 3.1 3.7

GloVe 64.5 64.0 13.3 14.0 58.1 57.6 7.9 8.5
SVD 42.0 40.8 9.2 8.9 26.9 23.1 4.8 3.9
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6.4.2 Results

Given the similarities in loss functions presented in Section 3.2 – that LexVec and

Skip-gram both contains loss weights λws and λns , while GloVe also contains loss weight

λws – we expect the Skip-gram model trained using 5 negative samples to resemble the

LexVec LV-20 model that draws 20 negative samples (since, as stated in Section 6.4.1,

this leads to the same number of total negative samples) and the GloVe model to resemble

the LV-0 which uses only window sampling. We expect the patterns that emerge as the

number of negative samples increase to manifest clearly in the SVD model, which assigns

the vast majority of its loss weights to negative values. Table 6.4 shows task results for all

compared models.

6.4.2.1 Skip-gram

• Norms: Figures 6.5a to 6.5c show the word vector norm distributions for the Skip-

gram models. In contrast to the same figures for the LexVec models (Figures 6.2a

to 6.2c), for Skip-gram it is not clear if increasing the number of negative samples

increases the rank invariance of vector norms. Delving deeper, we plot a simple

moving average of period 100 (SMA100(i) =
∑99

t=0 |Wi−t|/100) of vector norms

as a function of word rank in Figures 6.5d and 6.5e. Although the shape of both

functions is different, it is clear for both Skip-gram and LexVec that as the number

of negative samples increases the functions become flatter, indicating the increase

in rank invariance of vector norms.

• Directions: In Figures 6.5f to 6.5h, we plot the distribution of cosines between

words of different frequency buckets with the mean vector of all buckets for the

SG models, as was drawn in Figures 6.3a to 6.3c for the LexVec models. Just as

with the LexVec models, word vectors point in the same direction and word vectors

point away from context vectors as the number of negative samples increases. This

is precisely what was observed as the “strange” geometry of Skip-gram in Mimno

and Thompson (2017), here explained by increasing importance of negative infor-

mation.

• Word similarity and analogies: Overall SG results in Table 6.4 are similar to the

LV-20 models, which is to be expected given the similarity in loss functions. All

SG models achieve similar results, with the only clear trend being marginal im-
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Figure 6.5 – (a, b, c): Word vector norm distributions for Skip-gram models with 1, 2 and 5
negative samples (SG-1, SG-2, SG-5). In contrast to the same figures for the LexVec models

(Figures 6.2a to 6.2c), it is not clear if increasing the number of negative samples increases the
rank invariance of vector norms. (d, e): Simple moving average of period 100 (with

accompanying scatter plot of points used in calculating this average) of word vector norms as a
function of word rank. We include additional SG-k and LV-k models for various k to make the
trend clear. Although the shape of (d) and (e) is different, it is evident for both Skip-gram and

LexVec that as the number of negative samples increases the functions become flatter, indicating
the increase in rank invariance of vector norms. SVD displays the extreme case where nearly all
loss weight is assigned to negative information, leading to ideal rank invariance. (f, g, h): Solid
lines show distribution of cosines between vectors of words of different frequency buckets with
the mean vector of all buckets, and dashed lines the of cosines of context vectors of these same
words with the mean word vector, as in Figures 6.3a to 6.3c. Word vectors increasingly point in
the same direction and word vectors point away from context vectors as the number of negative

samples increases.
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provements in RW performance as the number of negative samples increases. Thus

increasing negative information has little effect on task results. We attribute this to

the fact that even with the minimum number of negative samples (k = 1), there is

one negative sample per observed word-context pair, in contrast to LexVec where

with k = 1 there are 2l observed pairs. In other words, the minimum relative impor-

tance of negative information within the Skip-gram model is sufficiently high so as

not to observe the poor rare word representations observed in the LV-0 and GloVe

models. Note that setting k = 0 makes the Skip-gram objective (Equation (3.9))

ill-defined since it can be made arbitrarily high by aligning all word vectors and

increasing their norms.

• Nearest neighbors: We performed qualitative analysis of word neighbors in Ta-

bles 6.2 and 6.3 as was done with the LexVec models. Skip-gram neighbors are se-

mantically related for both frequent and rare words, as is the case with other models

that use negative information (LV-20 and SVD). The exception is the frequent word

“interest” which has some incoherent neighbors. This irregularity deserves future

investigation, but we suspect it is due to a weakness in the local nature of the Skip-

gram model where, independent of the global PMI value for an observed pair (even

if it is negative), a single step of optimization draws together the corresponding

vectors. We omit results for SG-1,2 for there is no qualitative difference between

the SG models as negative samples increase (our hypothesis for this is described

above).

6.4.2.2 GloVe and SVD

• GloVe: In Figures 6.3a and 6.3e, LV-0 and GloVe behave similarly: vectors do not

have a directional preference in respect to the mean vector and to context vectors.

The similarity breaks in the distribution of vector norms in Figure 6.3e, which in

LV-0 are far less rank invariant than in GloVe. We hypothesize that GloVe’s vector

norm rank invariance is due to bias terms which are responsible for scaling word-

context dot products to approximate log cooccurrence count, allowing word/context

vectors to have a similar norm.

Word similarity and analogy results are given in Table 6.4. The LV-0 model is sim-

ilar to the GloVe model: good SimLex results, weak RW results, and consistently

similar across all analogy evaluations, except for MSR where the GloVe model out-

performs all other models by a wide margin. The similarity is even clearer in the
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nearest neighbor samples in Tables 6.2 and 6.3. For both models, frequent words

have semantically related neighbors, and rare words have incoherent neighbors.

Overall, despite minor differences in their objectives, the GloVe and LV-0 models –

which perform only window sampling – behave similarly.

• SVD: As can be seen in Figure 6.2f, the SVD vector norms are invariant to rank. As

seen in moving from the LV-0 to LV-20 model, increasing the relative importance of

negative information increases rank invariance of vector norms, and the SVD model

which weighs negative information more heavily than any other model shows this

effect to the extreme.

Figure 6.3f shows less separation of word and context vectors than seen in the LV-

20 and SG models. However, there is a clear separation in modes, with all word

vector buckets having positive modes and all context vector buckets nearing zero.

This is explained by the SVD model using the PPMI transform, which drives dot

products of negative cooccurring pairs to 0 rather than to negative values as with

the CPMI (−2) transform. Cosines of context vectors and the mean word vector

are thus distributed near zero, rather than at negative values.

Looking at Table 6.4, the SVD model is significantly weaker on the SimLex task

than all other models. We attribute this to its uniform weighting of reconstruction

errors. Weak results on RW are similarly attributed. Note that one might suspect

the PPMI transform to be at fault, but observe that in Table 5.1 the PPMI variant

of LexVec is on par with the other transforms that do not collapse the negative

spectrum of PMI .

Under incorrect evaluation – which includes norm and premise exclusion heuristics

– SVD has the weakest performance on analogies of all models tested. However,

if both heuristics are excluded, it performs nearly as well as the LV-20 model on

GSem-N-P, and marginally worse on GSyn-N-P and MSR-N-P. We attribute the weaker

performance on syntactic analogies to the PPMI metric (in Table 5.1, PPMI un-

derperforms both CPMI (−2) and NNEGPMI on GSyn and MSR), and the strong

performance with heuristic exclusion to the majority weighting of negative infor-

mation in the loss function.

Under qualitative analysis of nearest neighbors in Tables 6.2 and 6.3, the SVD

model returns semantically related words for both frequent and rare words, similar

to the LV-20 model.
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6.5 Conclusion

In this chapter, we showed that increasing the number of negative samples in the

LexVec and Skip-gram models increases the relative importance of negative information.

This increase has a direct impact on the geometry of the resulting word vector spaces, in-

creasing the rank invariance of vector norms and directions. Additionally, we observe that

accounting for negative information significantly improves the rare word representations.

Results also suggest the changes in geometry induced by increased negative information

positively impact word analogy performance under correct evaluation (when no heuristics

are used).
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7 CONCLUSIONS AND FUTURE WORK

This thesis showed the important role of negative information in word vector rep-

resentations. To do so, we first designed a word embedding model that explicitly accesses

the PMI matrix, then exploited its explicit nature to isolate the effects of positive and

negative information and the resulting impact on word vector geometry.

To design our model, we started by defining the set of principled reconstruction

error properties that matrix factorization models should respect and situated existing mod-

els within this framework (in answer to Q1). Guided by these properties, we proposed

LexVec, a new, highly-scalable method for generating word embeddings that uses low-

rank, weighted factorization of the arbitrary transformations of the word-context cooc-

currence matrix (in answer to Q2 and Q3). We incorporated positional information into

our model, and compared existing and novel ways of merging word and context vectors

to obtain better single word vector representations (in answer to Q4). By adding subword

information into LexVec, we showed that naive character n-grams are a robust alternative

to linguistically-motivated morphemes (in answer to Q5 and Q6).

LexVec effectively closes the performance gap between counting and predictive

word embedding models, creating both a state-of-the-art static word embedding model

while being a more transparent alternative to Skip-gram thanks to its explicit nature.

LexVec’s average downstream performance is (1) superior to a GloVe model trained on

13x more data in all evaluations (2) superior to Skip-gram’s trained on 1.3x more data in

all evaluations excepting textual similarity (3) superior to the state-of-the-art fastText sub-

word model trained on 10x more data in syntactic, natural language inference, and facet

ranking tasks (in answer to Q8). Sentence embedding methods using LexVec and other

static word embeddings are competitive in textual similarity tasks and are only marginally

worse in mean text classification accuracy. In our proposed facet ranking task, results

show that static word embeddings are an effective approach for our proposed facet rank-

ing task, and are competitive with Transformer models when used as sentence encoders,

with LexVec models outperforming other static word embeddings (in answer to Q9 and

Q10).

We looked at alternatives to collapsing the spectrum of negative PMI values to 0

by proposing two new PMI variants which partially preserve the negative spectrum (in

answer to Q7). We obtained models that use only positive or negative information by

exploiting LexVec’s explicit access to the underlying PMI matrix being factorized (in an-
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swer to Q11). Word and sentence-level evaluations show that only accounting for positive

PMI the factorization strongly captures both semantics and syntax, whereas using only

nPMI captures little of semantics but a surprising amount of syntactic information. Our

work deepens our understanding of distributional semantics and of computational linguis-

tics by extending the distributional hypothesis to “a word is not only characterized by the

company that it keeps, but also by the company it rejects” (in answer to Q12). We hypoth-

esize that grammar is systematically generating negative cooccurrence (or information),

and by encoding negative information our models are indirectly encoding grammatical

information.

Finally, we investigated the effects on word vector space geometry of increasing

the relative importance of negative information. Increasing the relative importance of

negative information strengthens geometric rank invariant properties – vector norms and

direction – of word vectors and improves the representation of rare words (in answer

to Q13). Experiments reveal similar results for Skip-gram, GloVe, and SVD models,

showing that the important role played by negative information in LexVec is present in

these other models as well.

Over the course of this PhD, the most significant performance jump in NLP tasks

since word2vec has been due to deep contextualized word embeddings (in particular

Transformer models) – where rather than having a single vector for a word as described in

the factorization above, models use neural networks to compute vectors for words in con-

text. However, static word embeddings still dominate most lexical semantic tasks (such as

word synonymy, similarity, relatedness, categorization, and analogy completion) (LENCI

et al., 2021) where words are given out-of-context, making static word embeddings the

appropriate choice. From an application point of view, although consistently inferior to

the deep neural network models above, classic word embeddings still serve as very strong

baselines with significantly lower computational cost, for both training and inference, and

there is ongoing research into making them stronger (KIELA; WANG; CHO, 2018; WI-

ETING; KIELA, 2019; YANG; ZHU; CHEN, 2019; WANG et al., 2020b). Given the

continued importance of static word embeddings, this thesis contributes to the line of

work that aims to understand what leads to the strong performance of these models in

lexical semantic tasks.
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7.1 Future Work

We believe some interesting directions for future work are:

• In the same way that combining vectors using concatenation rather than summing

improved downstream task performance, explore similarly concatenating LexVec

models that incorporate only positive or negative information, thus reducing the

conflation between semantic and syntactic information in the vector representations.

This might allow trained neural networks to better probe the semantic or syntactic

information separately in a way that optimizes for downstream tasks.

• Train LexVec on larger corpora to see whether downstream performance – which

is already comparable to a fastText model trained on 10x more data – can further

push the state-of-the-art for static word embeddings.

• The increase in word analogy performance under correct evaluation, as the relative

importance of negative information increases, warrants further investigation. Our

results lead us to hypothesize that this is due to the change in the vector space

geometry, with words of all ranks clustering in a small region of space where linear

offsets used to solve analogies are more likely to hold.

• Explore the connection between our results in distributional semantics that nega-

tive information strongly captures syntactic information and the role that indirect

evidence plays in language acquisition.
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APPENDIX A — EXTENDED ABSTRACT IN PORTUGUESE

Vetores palavra são um componente vital de sistemas modernos de processamento

de linguagem natural (PLN). Uma abordagem para a obtenção de tais vetores se dá através

da análise estatística de textos não anotados. Esta análise leva a uma matriz de coocor-

rência, onde linhas representam palavras, e colunas representam contextos (geralmente

também palavras) com as quais as palavras coocorrem, e o valor corresponde ao número

de coocorrências: o número de vezes em que se observa juntos uma palavra e um contexto

dentro de uma distância (ou janela) de um ao outro. Para uma linha da matriz (o vetor de

uma palavra), os contextos e seus valores descrevem a distribuição de contextos. Dada a

hipótese clássica da linguística de que palavras com significado semelhante possuem dis-

tribuição de contextos também semelhantes, podemos computar a semelhança de vetores

de palavras para comparar os significados dessas mesmas – daí o nome para esta área de

estudo de semântica distribucional.

Usar valores de coocorrências diretamente em computações não funciona bem

empiricamente, e de um ponto de vista teórico também se avista problemas, pois palavras

frequentes como “a” e “um” passam a dominar as distribuições de contextos. Uma técnica

comumente usada é a de aplicar a transformação de Pointwise Mutual Information (PMI)

à matriz de coocorrência. O valor de PMI para dois eventos (aqui a observação de uma

palavra e um contexto dentro de a mesma janela) indica a tendência de se observar um

dos eventos, dado que se observou o outro, e vice-versa. Então, por exemplo, o par “Porto

Alegre” possui PMI elevado, enquanto o par “Porto Teutônia” possui um PMI baixo. PMI

trata o problema de palavras frequentes dominarem a distribuição de contextos já que

palavras como “a” e um “um” coocorrem de forma não-discriminativa com um número

muito grande de palavras, portanto observar uma destas palavras não restringe possíveis

contextos (matematicamente, a probabilidade de observar um contexto não é alterada ao

observar uma destas palavras frequentes). Neste caso, o PMI tende a zero.

No caso contrário, quando uma palavra rejeita um contexto, PMI assume valores

negativos proporcional à rejeição. Ao longo desta tese, nos referimos a este fenômeno

como informação negativa. Se ao construir a matriz de coocorrência não se observar

nenhuma vez um dado par palavra-contexto, tem-se o caso extremo de rejeição total e

PMI tende a menos infinito. Esta não-coocorrência é muito frequente, ainda mais se o

vocabulário for grande e o corpus pequeno. Por este motivo, na prática, PMI é restrito

a números positivos: qualquer valor menor do que zero (incluindo infinito negativo) é
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setado a zero. Restringir PMI desta maneira gera a medida chamada Positive Pointwise

Mutual Information (PPMI). Embora funcione bem empiricamente, esta restrição leva

ao tema de nossa tese: que informação sobre palavras são capturadas pelo espectro de

informação negativa, e o que perdemos ao restringi-lo?

Para tornar a questão mais relevante, a abordamos no contexto de word embed-

dings: vetores palavra densos, ao contrário dos vetores altamente esparsos quando se usa

linhas da matriz de coocorrência. Do ponto de vista computacional, vetores densos são

muito mais práticos do que vetores esparsos, em particular para uso junto a redes neu-

rais. E do ponto de vista teórico, a compressão de vetores esparsos em vetores densos

leva a fatores latentes que reduzem o ruído nas representações, melhorando o poder de

generalização. Métodos para a obtenção de vetores densos podem ser divididos em duas

famílias: (1) métodos de contagem, onde é construída a matriz de coocorrência, apli-

cada alguma transformação como PPMI, e feita uma fatoração desta matriz resultante

em produto de matrizes esquerda e direita menores e densas onde as linhas da matriz es-

querda representam os word embeddings; (2) métodos preditivos, onde se treina alguma

arquitetura de redes neurais para predizer a distribuição de contextos dado como entrada

um word embedding. GloVe e word2vec são os métodos mais populares de contagem e

predição, respectivamente. Empiricamente, word2vec (em particular o seu modelo Skip-

gram) obtém resultados melhores em diversas avaliações quando comparado a métodos

de contagem. Seguindo o tema da nossa tese, hipotetizamos que essa desvantagem de

métodos de contagem é devida a forma como esses não consideram de forma embasada

a informação negativa.

Dado que a compressão em vetores densos leva a uma perda de informação, defin-

imos 3 critérios de priorização de informação respondendo à pergunta: na reconstrução

de matriz a partir da fatoração, quais células (ou pares) são mais informativas e devem

ser melhor aproximadas? Os critérios são (1) a informatividade de um par cresce mono-

tonicamente com o número de coocorrências (2) a não-coocorrência de um par não deve

ser ignorada (3) a informatividade de um par cresce monotonicamente com a frequência

de cada um de seus constituintes (palavra e contexto). A partir destes critérios, criamos

um método de contagem e fatoração chamado LexVec. Através de avaliações ao nível de

palavra (lexicais) e ao nível de frase, mostramos que o LexVec tem desempenho supe-

rior a outros métodos de contagem e semelhante a métodos preditivos, confirmando nossa

hipótese de que a desvantagem de métodos de contagem era devida à consideração inade-

quada da informação negativa. Além do modelo base, fazemos uma série de melhorias ao
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LexVec. A posição relativa de um contexto em relação a uma palavra contém informação

que é descartada se esta posição é desconsiderada. Mostramos como preservar esta infor-

mação, usando representações distintas para contextos para cada posição possível, como

também diferentes formas de juntar vetores palavras e contexto para melhorar o desem-

penho. Incorporamos informação sub-palavra, quebrando palavras em unidades menores

(com duas abordagens diferentes), permitindo assim que palavras que não foram vis-

tas no treinamento sejam representadas através de sub-palavras conhecidas. Finalmente,

elaboramos uma versão do LexVec que usa memória externa (disco em vez de memória

principal), permitindo escalá-lo a vocabulários e corpora de escala web. Com a série

de melhorias e treinando com um corpus de 63B de palavras, o desempenho médio do

LexVec supera o do GloVe treinado com 840B (13x mais) em todas avaliações aplicadas,

do Skip-gram treinado usando 100B de tokens em todas as avaliações aplicadas exceto

a de similaridade textual, e do modelo de sub-palavras estado-da-arte fastText treinado

usando 630B de palavras (10 vezes mais do que o LexVec) em tarefas sintáticas, de in-

ferência textual, e de ordenamento de facetas. Dado que o desempenho é geralmente

proporcional ao tamanho do corpus de treinamento, obter recursos computacionais para

treinar o LexVec num corpus de grandeza semelhante aos usados nestes outros modelos é

uma direção promissora.

Em seguida, usando o LexVec como ferramenta experimental, retomamos a questão

motivadora da tese sobre o papel da informação negativa, isolando os efeitos de infor-

mação positiva e negativa. Isto é feito considerando exclusivamente informação positiva

ou negativa ao efetuar a fatoração. Tal isolamento demonstra uma vantagem (e necessi-

dade no caso do nosso estudo) de métodos de contagem em relação a métodos de predição:

só é possível graças ao acesso explícito à matriz sendo fatorada. Definimos duas variantes

de PMI que ao contrário de PPMI, preservam (em parte ou integralmente) o espectro de

valores negativos, possibilitando assim o estudo sobre informação negativa. Dividimos o

estudo dos vetores palavra resultantes em avaliações semânticas e sintáticas. Resultados

mostram que o uso exclusivo de informação positiva captura ambas informações semân-

ticas e sintáticas. Quando se considera apenas a informação negativa, capta-se pouca

informação semântica, mas surpreendentemente muita informação sintática, ao ponto de

superar em algumas tarefas sintáticas modelos que usam ambas informação negativa e

positiva em suas fatorações.

Finalmente, estudamos o impacto que a informação negativa tem na geometria

do espaço vetorial gerado pelo LexVec, Skip-gram, GloVe, e da Decomposição em Val-
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ores Singulares (SVD). Se aproveitando da natureza explícita do LexVec, comprovamos

experimentalmente a intuição de que a amostragem negativa usada em ambos LexVec e

Skip-gram seleciona principalmente pares com PMI negativo. Assim, através do aumento

da amostragem negativa, podemos aumentar o peso de informação negativa na fatoração

e observar o impacto deste aumento na geometria resultante. Os resultados revelam duas

invariantes geométricas – a norma e direção vetorial – e melhorias nas representações

de palavras raras que são induzidas pelo uso aumentado da informação negativa. Além

disto, observa-se uma melhora surpreendente na capacidade de resolução de analogias sob

avaliação correta (quando não são usadas heurísticas para aumentar o desempenho nesta

tarefa), sugerindo que as alterações induzidas pela informação negativa na geometria são

uma peça chave nesta tarefa que é tida como porta-voz da capacidade de modelos de PLN.
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APPENDIX B — RANK STATISTICS

B.1 Dataset Rank Statistics

Table B.1 – Percentile rank statistics for words in the datasets used Chapters 5 and 6. Note: µ-
mean, σ- standard deviation, Qk- k-th quartile.

dataset µ σ min Q1 median Q3 max

Rare Words (RW) 19.3 24.4 0.0 1.8 7.9 27.8 100.0
SimLex 2.3 3.1 0.0 0.6 1.5 3.0 46.4
WordSim-Relatedness (WSRel) 1.6 2.3 0.0 0.3 0.8 1.9 22.4
WordSim-Similarity (WSSim) 2.0 2.9 0.0 0.3 0.7 2.3 21.8
MSR Syntactic Analogies (MSR) 5.2 13.2 0.0 0.3 0.7 2.5 97.0
Google Semantic Analogies
(GSem)

10.4 15.3 0.0 0.5 2.8 13.5 69.2

Google Syntactic Analogies
(GSyn)

3.7 5.2 0.0 0.7 1.8 4.6 38.4

Google Semantic Analogies, Fre-
quent Split (GSemF)

0.9 0.6 0.0 0.3 0.7 1.3 2.3

Google Syntactic Analogies, Fre-
quent Split (GSynF)

0.4 0.3 0.0 0.2 0.3 0.6 1.0

Google Semantic Analogies, Rare
Split (GSemR)

6.1 9.3 0.0 1.1 2.7 6.1 69.2

Google Syntactic Analogies, Rare
Split(GSynR)

3.5 5.3 0.0 0.5 1.5 3.6 38.4

Penn Treebank (POS) 12.3 16.5 0.0 2.2 6.1 15.0 99.8
Tree Depth (Dep) 14.4 17.5 0.0 2.8 7.8 18.8 99.6
Top Constituent (TopC) 14.1 17.2 0.0 2.8 7.6 18.2 99.9
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APPENDIX C — COMPLEMENTARY EXPERIMENTS

C.1 Fixed Window Size l = 2 and Positional Contexts

We performed identical experiments to those in Chapters 5 and 6, but using po-

sitional contexts and fixed window size of 2. Results lead to matching conclusions as

those for the larger randomized windows used in the main chapters, and further highlight

the role negative information: accounting for the zero cooccurrence (pairs in mnPMI) is

even more important when using this smaller window size and positional contexts, which

increase the sparsity of the cooccurrence matrix. Under this increased sparsity, models

which ignore pairs in mnPMI (such as GloVe and LexVec with no negative sampling) see

severe degradation in rare word representations.

Table C.1 – Same as Table 6.1, but using positional contexts and symmetric context window of
fixed size 2.

Name Set Full Hist WS NS

nPMI: Negative
information

{(w, c) | PMI w,c ≤ 0} 99.75 14.53 12.44 85.42

pPMI: Positive
information

{(w, c) | PMI w,c > 0} 0.25 85.47 87.56 14.58

mnPMI:
Maximally-
negative informa-
tion

{(w, c) | Mw,c = 0} 99.71 0.00 0.00 69.08

nPMI\mnPMI:
Collapsed nega-
tive information
under PPMI

{(w, c) |PMI w,c ≤ 0

∧Mw,c > 0} 0.04 14.53 12.44 16.34

C.2 Subword Information

Here we repeat the experiments from Appendix C.1, but incorporate subword in-

formation into LexVec (Subword LexVec; SLV) and Skip-gram (fastText; FT). Results

follow the same trend of Chapters 5 and 6, leading to matching conclusions. However,

note that whereas in the main chapters and Appendix C.1 we are able to isolate the effects

of negative information on words of different frequencies, using subword information
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Figure C.1 – Same as Figure 3.2, but using positional contexts and symmetric context window
of fixed size 2.
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Figure C.2 – Same as Figure 6.1, but using positional contexts and symmetric context window
of fixed size 2.
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Table C.2 – Same as Table 5.1, but using positional contexts and symmetric context window of
fixed size 2.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC

pPPMI 36.9 34.1 52.8 63.3 47.4 34.0 92.3 31.7 33.7

nPPMI 1.2 -1.2 0.0 48.1 0.0 0.0 16.3 17.9 5.0
nCPMI(-2) 18.3 24.0 6.4 41.0 13.9 13.9 90.8 32.8 35.3
nNPMI 13.7 23.9 4.5 40.1 8.9 7.8 89.8 31.7 34.0

PPMI 36.6 45.1 79.5 63.4 61.3 45.6 92.4 27.5 30.1
CPMI(-2) 35.8 43.1 80.4 63.0 65.2 51.8 92.5 28.0 31.3
NPMI 32.5 43.6 62.4 57.1 57.4 44.8 92.4 29.4 31.7
NNEGPMI 36.2 43.5 80.7 63.3 63.6 49.5 92.4 27.8 30.1

Random 1.2 -1.2 0.0 45.3 0.0 0.0 16.3 17.9 5.0
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Figure C.3 – Same as Figure 6.2, but using positional contexts and symmetric context window
of fixed size 2.

(a) LV-0

0 2 4 6 8 10
norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

de
ns

ity

0-100
100-500
500-5000
5000-70000
70000-300000

(b) LV-5
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(c) LV-20
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(d) Skip-gram
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(e) GloVe
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(f) SVD
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Figure C.4 – Same as Figure 6.3, but using positional contexts and symmetric context window
of fixed size 2.
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(b) LV-5
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(c) LV-20
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(d) Skip-gram
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(e) GloVe
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(f) SVD
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Figure C.5 – Same as Figure 6.4, but using positional contexts and symmetric context window
of fixed size 2.
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(c) Analogies, rare words
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Table C.3 – Same as Table 6.2, but using positional contexts and symmetric context window of
fixed size 2.

word model neighbors

interest 0.3 LV-0 interests 1.0, conflict 0.5, coi 1.2, interested 0.7, thegauntlet
78.0, scientific 0.5, passion 2.0, attention 0.5, concern 0.9, ac-
tivity 0.6

LV-20 interests 1.0, interested 0.7, conflict 0.5, attention 0.5, enthusi-
asm 3.9, expertise 2.3, concern 0.9, appreciation 3.5, scientific
0.5, involvement 1.2

SG interests 1.0, intrest 50.0, wizardimps 67.2, interested 0.7,
richarddawkins 74.5, thegauntlet 78.0, interst 77.4, bluntsde
91.6, conflict 0.5, bizjournals 42.8

GloVe interests 1.0, interested 0.7, conflict 0.5, attention 0.5, influ-
ence 0.6, concern 0.9, expertise 2.3, involvement 1.2, popu-
larity 1.2, passion 2.0

SVD interests 1.0, attention 0.5, interested 0.7, importance 0.4,
profits 2.9, debt 1.6, expertise 2.3, benefit 1.0, contributions
0.5, contribution 1.0

cup 0.1 LV-0 championship 0.2, league 0.1, champions 0.5, cups 2.7, finals
0.7, trophy 1.1, uefa 1.3, final 0.1, tournament 0.4, champi-
onships 0.3

LV-20 champions 0.5, cups 2.7, championship 0.2, finals 0.7, trophy
1.1, league 0.1, competitions 0.9, uefa 1.3, tournament 0.4,
runners 1.5

SG cups 2.7, trophy 1.1, championship 0.2, champions 0.5, fi-
nals 0.7, supercup 8.5, pokal 9.4, championships 0.3, uhren-
cup 90.3, uefa 1.3

GloVe championship 0.2, champions 0.5, finals 0.7, cups 2.7, league
0.1, trophy 1.1, uefa 1.3, tournament 0.4, final 0.1, fifa 1.1

SVD runners 1.5, nextseason 4.9, champions 0.5, cups 2.7, trophy
1.1, scorers 4.7, competitions 0.9, matches 0.4, squad 0.7, fifa
1.1

soul 0.9 LV-0 souls 3.0, blues 0.8, funk 2.7, gospel 1.6, hop 1.1, mind 0.5,
spirit 0.8, reggae 3.4, jazz 0.6, rap 2.1

LV-20 funk 2.7, blues 0.8, heaven 1.5, essence 3.0, souls 3.0, mind
0.5, spirit 0.8, love 0.2, dreams 1.6, jazz 0.6

SG funk 2.7, souls 3.0, blues 0.8, soulful 11.0, seekerz 81.3,
changeless 89.4, makossa 58.0, spirit 0.8, essence 3.0,
jazzmatazz 98.9

GloVe blues 0.8, funk 2.7, souls 3.0, spirit 0.8, mind 0.5, gospel 1.6,
hop 1.1, pop 0.4, jazz 0.6, love 0.2

SVD heaven 1.5, eternal 2.5, forever 1.7, dreams 1.6, dream 0.9,
funk 2.7, love 0.2, souls 3.0, spirit 0.8, blues 0.8
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Table C.4 – Same as Table 6.3, but using positional contexts and symmetric context window of
fixed size 2.

word model neighbors

rooters 77 LV-0 bajir 66, ravimy 87, hamerkop 83, argyrodes 68, thaumasia
90, brooklin 43, karuma 99, sorlle 86, valise 69, roaring 7

LV-20 howled 73, cheering 11, roars 27, bosox 81, monumentals 68,
cheered 15, nuxhall 73, booing 30, phillie 56, atlantics 26

SG cheering 11, bosox 81, howled 73, fans 0, lynah 86, cheered
15, landrith 57, clendenon 85, phillie 56, semipro 60

GloVe specifc 84, unserious 99, cusumano 87, whch 65, uninviting
91, overexcited 99, imnsho 89, preffered 91, alread 94, untyp-
ical 94

SVD ebbets 29, comiskey 18, ballplayers 31, batboy 62, crawfords
37, chisox 83, bosox 81, gothams 59, semipro 60, krichell 79

monocultures 76 LV-0 fieldensis 87, cantillans 87, berbers 13, ritsema 57, boutonii
76, tmutarakan 74, shuhada 67, chisocheton 74, poepp 77,
approvals 12

LV-20 monoculture 35, seedlings 11, saplings 24, conifers 13, hard-
woods 19, crops 2, agroforestry 34, cultivations 64, under-
story 16, broadleaved 47

SG monoculture 35, polyculture 88, overgrazed 81, fuelwood 62,
intercropping 90, rainfed 65, overharvesting 83, cucurbits 81,
croplands 60, silvicultural 84

GloVe hereabouts 74, upend 97, controvertial 87, enlivening 79, plu-
ralisation 92, selfsame 98, herrod 85, overspend 83, unseri-
ous 99, liquify 89

SVD monoculture 35, cropland 27, windbreaks 68, replanted 27,
orchards 6, silviculture 45, plantations 3, intercropping 90,
cultivations 64, seedlings 11

flighted 83 LV-0 uproot 34, okumoto 96, ratcheted 94, revealer 79, pandey 10,
flagpole 15, halvard 66, bersetzungsstufen 74, swiftest 84,
stairlift 86

LV-20 feathered 11, flightless 14, quadrupedal 30, ratites 35, bipedal
16, raptorial 60, necked 6, beak 6, beaks 13, prehensile 26

SG digitigrade 84, plantigrade 84, zygodactyl 57, raptorial 60,
woodcreepers 94, chelae 81, pronated 92, forelegs 30, apo-
morphic 93, stockier 86

GloVe wikispeak 87, similary 82, vandelism 97, specifc 84, valida-
tions 76, demagogic 77, imnsho 89, incentivise 100, smidge
97, geneological 98

SVD flightless 14, shoebill 71, tinamous 38, corvid 76, curassows
78, pratincoles 45, toucans 40, turacos 56, hoatzin 65, anseri-
formes 34
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Figure C.6 – Same as Figure 6.5, but using positional contexts and symmetric context window
of fixed size 2.
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(b) SG-2 norms
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(c) SG-5 norms
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(d) Skip-gram norms SMA
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Table C.5 – Same as Table 6.4, but using positional contexts and symmetric context window of
fixed size 2.

model SimLex RW GSem GSem-N GSem-P GSem-N-P

LV-0 37.2 37.8 68.7 70.4 0.9 1.3
LV-5 36.0 43.1 80.1 79.6 15.7 15.5
LV-20 34.7 44.6 79.6 78.9 39.9 35.0

SG-1 38.5 46.4 74.7 74.3 18.0 17.8
SG-2 39.0 47.7 77.5 77.5 19.3 18.6
SG-5 39.4 48.8 79.8 79.9 18.9 18.2

GloVe 35.2 36.1 74.8 73.0 3.0 3.5
SVD 31.6 44.0 48.5 41.1 30.9 26.8

model GSyn GSyn-N GSyn-P GSyn-N-P MSR MSR-N MSR-P MSR-N-P

LV-0 57.6 57.3 9.2 9.6 44.0 43.5 2.0 2.3
LV-5 64.9 64.4 15.6 16.1 51.3 51.0 7.0 7.3
LV-20 62.8 62.1 18.3 18.7 51.2 50.5 10.6 10.3

SG-1 67.7 66.8 14.6 15.2 53.7 52.4 6.1 6.4
SG-2 68.7 67.8 14.8 15.6 54.8 53.5 6.0 6.7
SG-5 68.2 67.6 14.9 15.7 56.0 54.7 6.2 6.7

GloVe 59.2 58.2 9.7 9.7 47.5 45.7 2.8 3.2
SVD 49.3 46.5 17.1 15.8 37.3 31.5 9.9 8.5

breaks this isolation by sharing information between frequent and rare word forms. Nev-

ertheless, despite this confounding factor, results follow a remarkably similar trend.

Table C.6 – Same as Table 6.1, but using subword information, positional contexts and
symmetric context window of fixed size 2.

Name Set Full Hist WS NS

nPMI: Negative
information

{(w, c) | PMI w,c ≤ 0} 99.75 14.53 12.44 85.42

pPMI: Positive
information

{(w, c) | PMI w,c > 0} 0.25 85.47 87.56 14.58

mnPMI:
Maximally-
negative informa-
tion

{(w, c) | Mw,c = 0} 99.71 0.00 0.00 69.08

nPMI\mnPMI:
Collapsed nega-
tive information
under PPMI

{(w, c) |PMI w,c ≤ 0

∧Mw,c > 0} 0.04 14.53 12.44 16.34
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Figure C.7 – Same as Figure 3.2, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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Figure C.8 – Same as Figure 6.1, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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Table C.7 – Same as Table 5.1, but using subword information, positional contexts and
symmetric context window of fixed size 2.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC

pPPMI 33.9 37.3 21.9 64.3 51.4 41.1 92.5 30.6 34.2

nPPMI 2.8 13.5 0.2 30.8 26.1 24.1 16.3 17.9 5.0
nCPMI(-2) 18.2 25.6 2.9 39.9 14.3 13.5 91.1 33.0 35.5
nNPMI 13.8 26.5 1.2 38.8 21.5 24.2 90.9 32.4 34.5

PPMI 38.1 51.4 72.2 63.5 67.5 52.7 92.5 27.9 31.1
CPMI(-2) 37.1 49.6 77.3 64.1 71.7 59.5 92.8 29.0 32.6
NPMI 32.8 46.6 32.8 54.1 74.0 62.5 92.4 31.5 32.4
NNEGPMI 37.2 49.6 76.5 64.0 70.5 57.3 92.6 28.5 31.5

Random 2.9 13.5 0.2 30.1 26.6 24.6 16.3 17.9 5.0
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Figure C.9 – Same as Figure 6.2, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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(b) SLV-5
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(c) SLV-20
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(d) fastText
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(e) GloVe
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(f) SVD
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Figure C.10 – Same as Figure 6.3, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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(b) SLV-5
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(c) SLV-20
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(f) SVD
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Figure C.11 – Same as Figure 6.4, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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Table C.8 – Same as Table 6.2, but using subword information, positional contexts and
symmetric context window of fixed size 2.

word model neighbors

interest 0.3 SLV-0 pinterest 29.2, interests 1.0, interested 0.7, disinterest 26.1,
conflict 0.5, stuffofinterest 25.6, interesse 66.5, bitterest 51.3,
merest 63.5, chemicalinterest 23.2

SLV-20 interests 1.0, interested 0.7, conflict 0.5, attention 0.5, ex-
pertise 2.3, involvement 1.2, enthusiasm 3.9, disinterest 26.1,
concern 0.9, appreciation 3.5

FT interests 1.0, disinterest 26.1, interested 0.7, pinterest 29.2, en-
thusiasm 3.9, fascination 7.0, attention 0.5, enthusiasms 56.1,
disinterestedness 98.5, intrest 50.0

GloVe interests 1.0, interested 0.7, conflict 0.5, attention 0.5, influ-
ence 0.6, concern 0.9, expertise 2.3, involvement 1.2, popu-
larity 1.2, passion 2.0

SVD interests 1.0, attention 0.5, interested 0.7, importance 0.4,
profits 2.9, debt 1.6, expertise 2.3, benefit 1.0, contributions
0.5, contribution 1.0

cup 0.1 SLV-0 cups 2.7, championship 0.2, champions 0.5, cupfb 64.7, tro-
phy 1.1, cupen 17.1, cupa 23.7, uefa 1.3, league 0.1, champi-
onships 0.3

SLV-20 cups 2.7, champions 0.5, championship 0.2, finals 0.7, trophy
1.1, league 0.1, competitions 0.9, qualifiers 4.7, tournament
0.4, runners 1.5

FT cups 2.7, championship 0.2, supercups 45.3, supercup 8.5, tro-
phy 1.1, champions 0.5, finals 0.7, supercupen 55.0, uhrencup
90.3, pokal 9.4

GloVe championship 0.2, champions 0.5, finals 0.7, cups 2.7, league
0.1, trophy 1.1, uefa 1.3, tournament 0.4, final 0.1, fifa 1.1

SVD runners 1.5, nextseason 4.9, champions 0.5, cups 2.7, trophy
1.1, scorers 4.7, competitions 0.9, matches 0.4, squad 0.7, fifa
1.1

soul 0.9 SLV-0 souls 3.0, soule 16.8, souli 48.4, nsoul 52.5, sould 40.0, souled
37.4, soulchild 51.7, soulive 72.5, soulful 11.0, soult 18.6

SLV-20 funk 2.7, blues 0.8, souls 3.0, heaven 1.5, essence 3.0, spirit
0.8, mind 0.5, love 0.2, jazz 0.6, reggae 3.4

FT souls 3.0, funk 2.7, soulchild 51.7, soulful 11.0, blues 0.8,
temptations 9.3, soulfulness 97.6, salsoul 42.7, soulmates 48.9,
reggae 3.4

GloVe blues 0.8, funk 2.7, souls 3.0, spirit 0.8, mind 0.5, gospel 1.6,
hop 1.1, pop 0.4, jazz 0.6, love 0.2

SVD heaven 1.5, eternal 2.5, forever 1.7, dreams 1.6, dream 0.9,
funk 2.7, love 0.2, souls 3.0, spirit 0.8, blues 0.8
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Table C.9 – Same as Table 6.3, but using subword information, positional contexts and
symmetric context window of fixed size 2.

word model neighbors

rooters 77 SLV-0 cooters 97, looters 21, booters 75, rooter 61, hooters
18, footers 25, scooters 15, freebooters 74, rootes 24,
troubleshooters 55

SLV-20 rooter 61, cooters 97, booters 75, looters 21, truckers
16, revellers 44, stoners 46, greasers 63, tuckers 72,
stokers 40

FT rooter 61, cooters 97, hooters 18, booters 75, looters
21, footers 25, rootes 24, crosscutters 63, roaders 91,
freebooters 74

GloVe specifc 84, unserious 99, cusumano 87, whch 65, un-
inviting 91, overexcited 99, imnsho 89, preffered 91,
alread 94, untypical 94

SVD ebbets 29, comiskey 18, ballplayers 31, batboy 62,
crawfords 37, chisox 83, bosox 81, gothams 59,
semipro 60, krichell 79

monocultures 76 SLV-0 monoculture 35, monocular 38, protoculture 61, un-
cultured 51, ethnocultural 59, monocarpic 97, mono-
coupe 73, cultureel 99, culturing 34, polyculture 88

SLV-20 monoculture 35, polyculture 88, cultivations 64, crops
2, intercropping 90, agroforestry 34, cultivation 3, sil-
viculture 45, seedlings 11, clearcutting 47

FT monoculture 35, polyculture 88, ethnocultural 59, sil-
viculture 45, cultivations 64, crops 2, ecotypes 58, in-
tercropping 90, cultures 1, overgrazing 26

GloVe hereabouts 74, upend 97, controvertial 87, enlivening
79, pluralisation 92, selfsame 98, herrod 85, overspend
83, unserious 99, liquify 89

SVD monoculture 35, cropland 27, windbreaks 68, re-
planted 27, orchards 6, silviculture 45, plantations 3,
intercropping 90, cultivations 64, seedlings 11

flighted 83 SLV-0 alighted 52, flighty 43, lighted 9, slighted 25, flight-
plan 93, unlighted 83, benighted 57, flightaware 86,
flightdeck 80, blighted 20

SLV-20 flightdeck 80, flights 1, flight 0, flighty 43, flight-
less 14, taxiing 19, taxied 61, flightaware 86, flown
2, flightline 55

FT flight 0, flights 1, flighty 43, flightdeck 80, flightless
14, flightpath 67, flown 2, taxiing 19, alighted 52, tax-
ied 61

GloVe wikispeak 87, similary 82, vandelism 97, specifc 84,
validations 76, demagogic 77, imnsho 89, incentivise
100, smidge 97, geneological 98

SVD flightless 14, shoebill 71, tinamous 38, corvid 76,
curassows 78, pratincoles 45, toucans 40, turacos 56,
hoatzin 65, anseriformes 34
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Table C.10 – Same as Table 6.4, but using subword information, positional contexts and
symmetric context window of fixed size 2.

model SimLex RW GSem GSem-N GSem-P GSem-N-P

SLV-0 38.8 47.7 40.2 39.7 0.4 0.7
SLV-5 37.3 49.8 77.1 75.9 9.7 9.6
SLV-20 35.1 48.3 79.5 78.8 40.2 35.7

FT-1 38.7 51.2 70.4 70.1 18.8 18.7
FT-2 39.4 51.7 74.3 74.1 21.3 21.4
FT-5 40.3 52.1 78.8 78.5 22.1 21.2
GloVe 35.2 36.1 74.8 73.0 3.0 3.5
SVD 31.6 44.0 48.5 41.1 30.9 26.8

model GSyn GSyn-N GSyn-P GSyn-N-P MSR MSR-N MSR-P MSR-N-P

SLV-0 70.1 68.4 9.8 10.7 60.9 59.5 5.5 5.9
SLV-5 71.7 70.6 16.4 17.8 59.9 58.7 9.1 9.3
SLV-20 66.3 65.6 18.8 19.8 55.5 54.7 11.7 11.6

FT-1 74.5 74.0 17.8 19.3 61.2 60.2 12.6 12.9
FT-2 74.0 73.6 17.6 19.1 61.6 60.6 11.5 12.1
FT-5 74.2 73.6 17.4 19.0 62.2 61.3 11.2 11.7
GloVe 59.2 58.2 9.7 9.7 47.5 45.7 2.8 3.2
SVD 49.3 46.5 17.1 15.8 37.3 31.5 9.9 8.5

Figure C.12 – Same as Figure 6.5, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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(b) FT-2 norms
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(c) FT-5 norms
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(d) fastText norms SMA
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(e) Subword LexVec norms SMA
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