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ABSTRACT

By statistical analysis of the text in a given language, it is possible to represent each
word in the vocabulary of the language as an m-dimensional word vector (also known
as a word embedding) such that this vector captures semantic and syntactic information.
Word embeddings derived from unannotated corpora can be divided into (1) counting
methods which perform factorization of the word-context cooccurrence matrix and (2)
predictive methods where neural networks are trained to predict word distributions given
a context, generally outperforming counting methods. In this thesis, we hypothesize that
the performance gap is due to how counting methods account for — or completely ig-
nore — negative information: word-context pairs where observing one is informative of
not observing the other, mathematically formulated as two events (words and contexts)
having negative Pointwise Mutual Information. We validate our hypothesis by creating
an efficient factorization algorithm, LexVec, scalable to web-size corpora, that accounts
for negative information in a principled way, closing the performance gap with predictive
methods. Additionally, we show that strategies for breaking up words into smaller units
(subwords) — an important technique in predictive methods for representing rare words
— can be successfully adapted to LexVec. We show that the explicit nature of LexVec
— having access to the underlying cooccurrence matrix — allows us to selectively filter
whether to account for negative information in the factorization and to what degree, and
use this filtering to isolate the impact that negative information has on embeddings. Word
and sentence-level evaluations show that only accounting for positive PMI in the factor-
ization strongly captures both semantics and syntax, whereas using only negative PMI
captures little of semantics but a surprising amount of syntactic information. Finally, we
perform an in-depth investigation of the effect that increasing the relative importance of
negative PMI compared to positive PMI has on the geometry of the vector space and its
representation of frequent and rare words. Results reveal two rank invariant geometric
properties — vector norms and direction — and improved rare word representation induced

by incorporating negative information.

Keywords: Word vectors. matrix factorization. natural language processing.



O Papel da Informaciao Negativa na Aprendizagem de Vetores Palavra Densos

RESUMO

Pela anélise estatistica de textos em uma dada linguagem, é possivel representar cada pala-
vra contida no vocabuldrio desta linguagem por meio de um vetor palavra m-dimensional
(também conhecido como embedding de palavra) de forma que esse vetor capture infor-
macodes semanticas e sintdticas. Embeddings de palavras podem ser derivados de corpora
nao-anotados por meio de (1) métodos de contagem onde é efetuada explicitamente a fato-
racdo da matriz de coocorréncia e (2) métodos preditivos onde redes neurais sdo treinadas
para predizer distribui¢des de palavras dado um contexto. Nesta tese, hipotetizamos que
essa diferenca de desempenho € devida a forma com que métodos baseados em conta-
gem levam em consideracdo — ou ignoram completamente — informagdo negativa: pares
palavra-contexto, nos quais o fato de observar um € informativo para a niao observacao
do outro, formulado matematicamente como dois eventos (palavra e contexto) possuindo
Pointwise Mutual Information negativa. Validamos nossa hipétese criando um novo mé-
todo e eficiente método de fatoragdo de matrizes, o LexVec, altamente escaldvel, limitado
apenas por espago em disco e nicleos computacionais, que leva em consideragdo a infor-
macao negativa de forma embasada, eliminando a diferenca de desempenho em relacao
a métodos preditivos. Adicionalmente, mostramos que estratégias para quebrar palavras
em unidades menores (subpalavras) — uma técnica importante em métodos preditivos para
a representacao de palavras infrequentes — podem ser adaptadas ao LexVec. Se aprovei-
tando do fato que o LexVec tem acesso a matriz de coocorréncia sendo fatorada, efetua-
mos fatoracdes que filtram seletivamente o uso ou nao de informagdo negativa, estudando
assim o impacto que a informagdo negativa tem nos embeddings de palavras. Avaliacdes
a nivel de palavra e de frases mostram que o uso exclusivo de PMI positivo na fatoragao
captura fortemente a semantica e sintaxe de palavras, enquanto que o uso exclusivo de
PMI negativo captura pouca informagdo semantica porém uma quantidade surpreendente
de informacao sintdtica. Finalmente, efetuamos uma investigac¢do profunda sobre o efeito
que o aumento do peso da informagdo negativa (em relacdo a informagdo positiva) tem
na geometria dos espagos vetoriais dos embeddings e nas representacdes de palavras fre-
quentes e infrequentes. Os resultados revelam duas invariantes geométricas — a norma e a
direcdo vetorial — e melhorias nas representagdes de palavras raras que sio induzidas pelo

uso aumentado da informag¢do negativa.



Palavras-chave: vetores palavra. fatoracdo de matriz. processamento de linguagem na-

tural.
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1 INTRODUCTION

One approach to represent words in a given language’s vocabulary is through low-
dimensional word vectors (also known as word embeddings) such that these vectors cap-
ture semantic and syntactic information. The similarity of two vectors serves as a proxy
for the similarity between the corresponding words. These low dimensional (dense) word
vectors have become a key component in modern NLP systems for information retrieval,
language modeling, parsing, sentiment classification, and many others (LEE; CHUANG;
SEAMONS, 1997; BENGIO et al., 2003; SOCHER et al., 2013a; TURNEY; LITTMAN,
2003; TURNEY; PANTEL, 2010). Figure 1.1 shows a 2-dimensional PCA projection
of a set of words vectors drawn from our LexVec Common Crawl vectors (the LexVec
model is presented in Chapter 3), illustrating how a vector space model represents mean-
ing. Words that are semantically similar cluster in space, and the relations “capital-of™
and “adverb-comparative-superlative” are represented by linear offsets in vector space.

These word vectors are usually created in an unsupervised manner from corpus
statistics by exploiting the distributional hypothesis: that similar words appear in simi-
lar contexts (HARRIS, 1954), paraphrased by Firth (1957) as “a word is characterized
by the company that it keeps”. A word-to-context cooccurrence matrix is constructed
by counting the number of times each word in the vocabulary is observed with a given
context. The context could be other words (SCHUTZE, 1992; LUND; BURGESS, 1996)
or documents (DEERWESTER et al., 1990). When considering words as context (the
focus of this thesis), two words are said to cooccur, and their count incremented, if they
appear within some given distance of each other. This distance is referred to as the context
window.

The rows of this highly sparse matrix can be used directly as word vectors, but this
is problematic from a computational standpoint, where even with efficient sparse matrix
methods, vector operations are costly and storing the matrix in memory is prohibitive for
commonly used vocabulary sizes.

Sparsity also poses an issue for measuring similarity between vectors: the com-
pression induced by techniques that perform matrix factorization such as latent semantic
analysis (DEERWESTER et al., 1990) unveil similarities in dense latent space which
might otherwise be missing in the surface/observed space of sparse vectors. Perform-
ing matrix factorization has become the norm for generating word vectors from cooccur-

rence counts (SCHUTZE, 1993; TURNEY; PANTEL, 2010; PENNINGTON; SOCHER;
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Figure 1.1 — 2-dimensional PCA projections of LexVec Common Crawl vectors: (a) Countries
(red) and capitals (blue) (b) Adverbs (red), comparatives (blue), superlatives (green). Note how
the geometry captures the semantic “capital-of” and syntactic “adverb-comparative-superlative”
relations through linear offsets between vectors.
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MANNING, 2014).

A parallel line of work uses neural networks to train dense word vectors, foregoing
the construction of a cooccurrence matrix. Bengio et al. (2003) train a language model
using trainable low-dimensional vectors as input, where each input word has its own
vector. This is in stark contrast to prior work that used static one-hot encoding vectors for
each word. The intuition is that the network will learn similar vectors for similar concepts,
and so learning to make predictions for one input word transfers to making predictions
about other words having similar vectors. This idea is the realization in NLP of distributed
representations (HINTON, 1986), which is why word vectors are commonly referred to
as distributed word representations.

Ten years later, word embeddings from the word2vec (MIKOLOV et al., 2013)
package took the NLP community by storm with a number of striking results. Its Skip-
gram (SG) model strips away the non-linearities of the Bengio et al. (2003) language
model, and rather than predicting the next token in a sequence, it predicts the surrounding
context words given a center word. Its other model, Continuous Bag-of-Words (CBOW),
instead predicts the center word given the sum of context words. From here onward we
focus on the SG model since it consistently outperforms CBOW (LEVY; GOLDBERG;
DAGAN, 2015) and has a nice mathematical equivalence (LEVY; GOLDBERG, 2014)
to implicit matrix factorization. This simpler model, combined with the introduction of
negative sampling in a followup paper (MIKOLOV et al., 2013), allowed word embed-
dings to be trained on corpora multiple orders larger than previous neural network models.
Evaluation on word similarity tasks and the jointly introduced (MIKOLOV et al., 2013)!
task of solving word analogies — such as “Paris is to France as Tokyo is to ?” — using
only vector arithmetic showed significant performance gains over older models based on
cooccurrence counting and matrix factorization. This gap in performance is highlighted
by Baroni, Dinu and Kruszewski (2014), which create the nomenclature we use in this
thesis for referring to models based on cooccurrence matrix construction and factoriza-
tion as counting, and methods such as those in word2vec that are trained to predict words
as predictive.

Among the most prominent counting methods were the truncated Singular Value
Decomposition of the Positive Pointwise Mutual Information (PPMI) matrix (NIWA;
NITTA, 1994; BULLINARIA; LEVY, 2007; LEVY; GOLDBERG; RAMAT-GAN, 2014),

'Often unreferenced, Rumelhart and Abrahamson (1973) proposed analogical reasoning over vectors
decades earlier, but using vectors derived from human word similarity judgements rather than corpus cooc-
currence.
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and the GloVe model (PENNINGTON; SOCHER; MANNING, 2014). We hypothesized
they lagged the word2vec predictive methods in performance because of incorrect weight-
ing of or totally discarding information contained in zero count cells of the cooccurrence
matrix.

Word-to-word cooccurrence matrices tend to be extremely sparse: most cells have
a count of 0. For example, the matrix used throughout this thesis, constructed from the
English Wikipedia, is 99.71% zeros. We believe a good matrix factorization should ap-
proximately recover these values when factor matrices are multiplied, as zero counts con-
tain information — in this case negative information — that a word and context tend to not
appear together.

In the work that follows, we make the following contributions:

1.1 Contributions

1.1.1 Reconstruction error weighting

Matrix factorization word embedding models differ in the way they prioritize in-
formation when compressing word representations into dense word vectors. Better un-
derstanding this prioritization or weighting of information can assist in designing better

models.

(Q1) What is a principled approach to account for negative information in explicit matrix

factorization, and how do existing models fail to account for it?

We motivate and define the set of principled reconstruction error properties that matrix
factorization models should respect and situate existing models within this framework

(Section 3.1).

(Q2) Can this principled approach be implemented efficiently?

We propose LexVec (SALLE; VILLAVICENCIO; IDIART, 2016), a new method for
generating word embeddings that uses low-rank, weighted factorization of the arbitrary
transformations of the word-context cooccurrence matrix via stochastic gradient descent,

respecting the full set of principled reconstruction error properties (Section 3.2). LexVec
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closes the performance gap in word similarity tasks between counting and predictive word
embedding models, creating both a state-of-the-art static word embedding model and a

more transparent alternative to Skip-gram due to its explicit nature (Section 4.1.2).

(Q3) How can this approach be scaled to web-sized corpora?

We propose an external memory variant of LexVec (SALLE; IDIART; VILLAVICEN-
CIO, 2016) that is based on MapReduce operations that is highly scalable (Section 3.5).
Results show its equivalence to the in-memory variant (Section 4.2). We showcase its

scalability by training it on the larger Common Crawl corpus (Section 4.4.2).

1.1.2 Positional contexts

The use of positional information is a recurring theme in NLP models, present
in foundational works through to modern Transformer models. For example, if position
(or ordering) is ignored and a bag-of-words approach is used, without additional context
it becomes impossible to determine the subject in sentences such as “John read Harry’s
PhD thesis”. Did John or Harry do the reading? Additional evidence of the importance
of positional contexts both strengthens this theme, and paves the way for improved model

performance.

(Q4) In counting cooccurrence, can we use the relative position of words and contexts

and does this improve word representations?

We augment the cooccurrence matrix with positional information and use this information
to learn position-dependent context vectors (Section 3.3) (SALLE; IDIART; VILLAVI-
CENCIO, 2016). We compare existing and novel ways of merging word and context

vectors to obtain single word vector representations (Section 3.3.1).

1.1.3 Subwords

As with positional contexts, breaking words into subwords permeates all areas of
NLP, from the study of morphology to optimization of softmax layers in large language

models.
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(Q5) Given that the cooccurrence matrix is word-to-word, how can we learn vectors for

subwords?

We represent word vectors by the sum of their subword vectors and successfully incorpo-

rate this into the LexVec model (Section 3.6).

(Q6) Are linguistically aware subwords better than naive character subwords?

We perform novel evaluation of the robustness of naive character n-grams versus mor-
phemes, with results showing that despite their simplicity, n-grams are an adequate alter-

native (Section 4.3.2).

1.1.4 Association measures

PMI is yet another staple of NLP with applications that extend beyond word em-
bedding. Though theoretically sound, alternatives are required to deal with pairs of events

that have O probability.

(Q7) How can we address computationally PMI going to —oo without discarding the

spectrum of negative values?

Since it is unclear what is lost by collapsing the spectrum of negative PMI (nPMI) values
to 0 when using PPMI, we look at alternative ways of dealing with nPMI by proposing two
new PMI variants (CPMI and NNEGPMI) which partially preserve the negative spectrum
(Section 3.4.1).

1.1.5 Downstream Performance

Pretrained and widely-distributed word embedding models sparked a revolution
in NLP. Despite the recent popularity of Transformer models, pretrained static word em-
beddings remain the state-of-the-art in lexical semantic tasks and remain competitive in
certain tasks that make use of sentence embeddings (LENCI et al., 2021; YANG; ZHU;
CHEN, 2019; WANG et al., 2020a).
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(Q8) When trained on similarly-sized corpora, how does LexVec compare to other popular

word embeddings in downstream tasks?

We train LexVec models on a 63B token dump of Common Crawl. LexVec’s average
downstream performance is (1) superior to a GloVe model trained on 840B tokens (13x
more data) in all evaluations (2) superior to Skip-gram’s trained on 100B tokens (1.3x
more data) in all evaluations excepting textual similarity (3) superior to the state-of-the-
art fastText subword model trained on 630B tokens (10x more data) in syntactic, natural

language inference, and facet ranking tasks.

(Q9) On what tasks are static word embeddings competitive with recent Transformer mod-

els?

In lexical semantic tasks, results show that static word embeddings remain the domi-
nant approach (Section 4.5.1). As universal sentence encoders (where rather than being
fine-tuned on a specific task, Transformer outputs are used as sentence embeddings for
arbitrary tasks), sentence embedding methods using as input static word embeddings (in-
cluding LexVec) are competitive in textual similarity tasks and are only marginally worst

in mean text classification accuracy (Section 4.5.2).

1.1.6 An Application in Information Retrieval

Conversational search is a rapidly growing field in IR and NLP. Human evaluation
of conversational search systems is expensive, and prohibitive as the number of systems

to be tested grows.

(Q10) Can word embeddings be used as a building block in such systems?

We propose and evaluate a user simulator for conversational search that enables scalable
evaluation of conversational search systems. One of the components of this simulator
is a facet ranker: given the current dialogue, rank what are the most likely intents (or
facets) of the user. Using as a starting point an existing dialogue dataset, we use heuris-
tics to automate the construction of a facet ranking dataset to enable the evaluation of

different facet rankers (Section 2.4.2.5). Results show that static word embeddings are an
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effective approach for facet ranking, competitive with Transformer models when used for
sentence embedding, with LexVec models outperforming other static word embeddings

(Section 4.4.8).

1.1.7 Information contained positive/negative PMI

The commonly used PPMI measure discards negative information by collapsing it
to 0, raising the question of exactly what information is being discarded. From a practical
point of view, understanding what can be learned from different spectrums of PMI can
further our understanding of word embedding models and assist in their design. On the
theoretical side, this same understanding helps better characterize distributional seman-

tics.

(Q11) Is it possible to isolate the effects of positive or negative PMI when learning dense

word vectors?

We show that thanks to LexVec’s explicit access to the PMI matrix being factorized, SGD
steps can be skipped for pairs containing positive or negative target values, achieving the
desired isolation and resulting in models that use only positive or negative information
(Section 5.1). We also observe that the negative sampling procedure used in both LexVec
and Skip-gram samples primarily negative PMI pairs, allowing the effects of negative
information to be amplified by increasing the number of negative samples used (Sec-

tion 6.1).

(Q12) Does positive/negative information encode semantic and/or syntactic properties of
words? What type of linguistic information is predominantly represented by which part

of the PMI spectrum?

Word and sentence-level evaluations show that only accounting for positive PMI (pPMI)
in the factorization strongly captures both semantics and syntax, whereas using only
nPMI captures little of semantics but a surprising amount of syntactic information (Sec-
tion 5.1.1). This deepens our understanding of distributional semantics and of computa-
tional linguistics by extending the distributional hypothesis to “a word is not only charac-

terized by the company that it keeps, but also by the company it rejects”. We hypothesize
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that grammar is systematically generating negative cooccurrence (equivalently evidence
not seen, negative evidence, or negative information), and from this negative evidence our

word embeddings capture significant syntactical information.

1.1.8 Vector space geometry

Vector normalization is known to improve word analogy performance. It would
be interesting to know under what conditions this geometry-altering heuristic becomes
unnecessary. In our work, we focus on how negative information impacts vector space

geometry.

(Q13) How is the geometry of the word vector space affected by negative information?

We perform an in-depth investigation of the effect that increasing the relative importance
of nPMI compared to pPMI has on the geometry of the vector space and its representation
of frequent and rare words. We find that increasing the relative importance of negative in-
formation strengthens geometric rank invariant properties — vector norms and direction —
of word vectors and improves the representation of rare words (Section 6.3). Experiments
reveal similar results for Skip-gram, GloVe, and SVD models, showing that the impor-
tant role played by negative information in LexVec transfers well to these other models
(Section 6.4).

Additionally, our analysis reveals that when word analogies are evaluated correctly
(without the use of heuristics), performance improves as more negative information is
used, suggesting that these geometric properties are connected to more strongly capturing

the linear vector offsets used in answering analogies (Section 6.3).

1.2 Relevant work during PhD

1.2.1 Publications

As of this publication, the following works have been cited 141 times:

e SALLE, A.; VILLAVICENCIO, A.; IDIART, M. Matrix factorization using win-

dow sampling and negative sampling for improved word representations. In: Pro-
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ceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Berlin, Germany: Association for Computa-
tional Linguistics, 2016. p.419-424. Available from Internet: <https://www.aclw
eb.org/anthology/P16-2068>. Quali: Al. Section 3.2.

SALLE, A.; IDIART, M.; VILLAVICENCIO, A. Enhancing the LexVec distributed
word representation model using positional contexts and external memory. CoRR,
abs/1606.01283, 2016. Available from Internet: <https://arxiv.org/abs/1606.012
83>. Sections 3.3 and 3.5.

SALLE, A.; VILLAVICENCIO, A. Incorporating subword information into matrix
factorization word embeddings. In: Proceedings of the Second Workshop on
Subword/Character LEvel Models. New Orleans: Association for Computational
Linguistics, 2018. p. 66—71. Available from Internet: <https://www.aclweb.org/ant
hology/W18-1209>. Section 3.6.

SALLE, A.; VILLAVICENCIO, A. Restricted recurrent neural tensor networks:
Exploiting word frequency and compositionality. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers). Melbourne, Australia: Association for Computational Linguistics,
2018. p. 8-13. Available from Internet: <https://www.aclweb.org/anthology/P18
-2002>. Quali: Al.

SALLE, A.; VILLAVICENCIO, A. Why so down? The role of negative (and posi-
tive)pointwise mutual information in distributional semantics. CoRR, abs/1908.06941,
2019. Available from Internet: <http://arxiv.org/abs/1908.06941>. Chapter 5.
SALLE, A.; VILLAVICENCIO, A. Understanding the Effects of Negative (and
Positive) Pointwise Mutual Information on Word Vectors. Under review, 2021.
Chapters 5 and 6.

SALLE, A.; MALMASI, S.; ROKHLENKO, O.; AGICHTEIN, E.; Studying the
effectiveness of conversational search refinement through user simulation. 43rd
European Conference On Information Retrieval. Lucca, Italy: Advances in In-
formation Retrieval, Springer International Publishing, 2021. p. 587-602. Avail-
able from Internet: <https://link.springer.com/chapter/10.1007%2F978-3-030-72
113-8_39>. Quali: A2. Sections 2.4.2.5 and 4.4.8.

SALLE, A.; MALMASI, S.; ROKHLENKO, O.; AGICHTEIN, E.; Studying the ef-

fectiveness of conversational search refinement and clarification through user sim-
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ulation. Under review, 2021. Chapters 5 and 6.

1.2.2 Software and Models

e LexVec: <https://github.com/alexandres/lexvec>

e terashuf: <https://github.com/alexandres/terashuf>

e Models (English):

LexVec-63B (Mean). Vectors: <https://www.dropbox.com/s/ztbj824y779w
385/lexvec.commoncrawl.300d.vectors.gz?dl=1>.

LexVec-63B (Concat). Vectors: <https://www.dropbox.com/s/a26u7j119459
b2w/lexvec.commoncrawl.1500d.vectors.gz?dl=1>.

SubLexVec-63B (Mean). Vectors: <https://www.dropbox.com/s/vwywt301
awOebxw/lexvec.commoncrawl.ngramsubwords.300d.vectors.gz?dl=1>.
SubLexVec-63B (Concat). Vectors: <https://www.dropbox.com/s/kkkbc695
j7dfs7y/lexvec.commoncrawl.ngramsubwords.1500d.vectors.gz?dl=1>.
SubLexVec-Crawl. Vectors: <https://www.dropbox.com/s/mrxn933chn5u
37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz?dl=1>.
Binary model: <https://www.dropbox.com/s/buixOdeqlks4312/lexvec.com
moncrawl.ngramsubwords.300d.W.pos.bin.gz?dl=1>.

LexVec Common Crawl. Word Vectors: <https://www.dropbox.com/s/flh1f
jyngvdsj4p/lexvec.commoncrawl.300d.W.pos.vectors.gz?dl=1>. Merged
Vectors: <https://www.dropbox.com/s/zkiajh6fj0hmOm7/lexvec.commoncra
wl.300d.-W%?2BC.pos.vectors.gz?dl=1>.

LexVec Wikipedia + NewsCrawl. Word Vectors: <https://www.dropbox.com/
s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?d
I=1>. Merged Vectors: <https://www.dropbox.com/s/u320t9bw6tzlwma/le
xvec.enwiki%2Bnewscrawl.300d.W %2BC.pos.vectors.gz?dl=1>.
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https://www.dropbox.com/s/flh1fjynqvdsj4p/lexvec.commoncrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/flh1fjynqvdsj4p/lexvec.commoncrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/zkiajh6fj0hm0m7/lexvec.commoncrawl.300d.W%2BC.pos.vectors.gz?dl=1
https://www.dropbox.com/s/zkiajh6fj0hm0m7/lexvec.commoncrawl.300d.W%2BC.pos.vectors.gz?dl=1
https://www.dropbox.com/s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/kguufyc2xcdi8yk/lexvec.enwiki%2Bnewscrawl.300d.W.pos.vectors.gz?dl=1
https://www.dropbox.com/s/u320t9bw6tzlwma/lexvec.enwiki%2Bnewscrawl.300d.W%2BC.pos.vectors.gz?dl=1
https://www.dropbox.com/s/u320t9bw6tzlwma/lexvec.enwiki%2Bnewscrawl.300d.W%2BC.pos.vectors.gz?dl=1

27

2 BACKGROUND

In this chapter, we present an overview of word embedding models, starting from
their building blocks — the cooccurrence matrix (Section 2.1) and its transformations (Sec-
tion 2.2) — through to related work in matrix transformations (Section 2.3.1), factorization
(Section 2.3.2), subword information (Section 2.3.3), analysis (Section 2.3.4) and contex-
tualized word embeddings (Section 2.3.5). We then describe the set of evaluations used in

testing their performance, both intrinsic (Section 2.4.1) and downstream (Section 2.4.2).

2.1 Cooccurrence Matrix and Positional Contexts

The building block for counting word embedding methods is the cooccurrence
matrix. This matrix M is constructed by initializing it to 0 and sliding a symmetric win-
dow over the training corpus and for each center word w € V' (V is the word vocabulary)
and context word ¢ € V' within the window, incrementing M,, .. A row M, in this matrix
represents the raw count context distribution of the word w. Figure 2.1 gives an example

of a cooccurrence matrix constructed from two sentences.

Figure 2.1 — A cooccurrence matrix constructed from two sentences. When the window is
centered on “also”, the corresponding cells for “she”, “loves”, and “my” are incremented.

contexts

my Efriend Iovesg dogsé she also cats

my friend loves dogs

[she also loves my] cats

As observed by Ling et al. (2015b) and more recently Salle, Idiart and Villavi-
cencio (2016), Vaswani et al. (2017), Mikolov et al. (2018), Devlin et al. (2019), using
positional information (SCHUTZE, 1993) consistently improves word representations:
the positional contexts for the target word “dogs” in “My friend loves dogs and cats” for a
symmetric window of size [ = 2 (2 words to each side of the target word) are { friend _,,

loves_1, andy, catss}. This leads to a context vocabulary V. = UwEVw {w_y, ... w_q,
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wy, ..., w;} of size |V,,| x 2 x [. After sliding the symmetric window over the entire cor-
pus, the value M g4, cats,» fOr example, is the number of times “cats” appeared two words
to the right of “dogs”.

For concreteness throughout this thesis, we refer to the cooccurrence matrix M,
constructed from a lowercased, alphanumerical 2015 English Wikipedia dump with 3.8e9
tokens, discarding tokens with frequency < 100, window size [ = 2, positional contexts,
for a word vocabulary V,, of 303,517 words and context vocabulary of V, of 1,214,068
words.

Additionally, using this same configuration but without positional contexts, we
follow Mikolov et al. (2013) in using a symmetric window of size 5 drawn from U(1,5)
for each target word. We refer to this matrix as M ;5.

In constructing both M,;; and M,5, we use the additional heuristic of token
subsampling (MIKOLOV et al., 2013) the training corpus: tokens for word w are ran-
domly discarded with probability p,, = max(0,1 — \/¢/f,,), where ¢ is the subsampling
threshold (we follow Mikolov et al. (2013) and set t = 10~° throughout this paper) and f,,
is the unigram frequency (tokens of w divided by total number of tokens in training cor-
pus). For Skip-gram and LexVec, which perform factorization by sampling word-context
pairs from the training corpus, subsampling accelerates training significantly. Mikolov
et al. (2013) also observe empirically that it improves the representation of uncommon

words.

2.2 Pointwise Mutual Information (PMI)

Rather than using the raw frequency count matrix, it is common to reweight it
using PMI (FANO, 1961; CHURCH; HANKS, 1990). Table 2.1 illustrates the difference
between cooccurrence and PMI values by showing 10 context words with the highest
cooccurrences/PMI with a set of sample words. These context words correspond to peaks
in the context distributions of these sample words. We can interpret these peaks as the dis-
tributional features that should most strongly represent the semantics of the target word.
However, even with subsampling, raw cooccurrences lead to frequent features that have
little semantic information, such as “the”, “at”, “of”. In contrast, PMI downweights these

features and emphasizes features that have clear semantic relationship to the target words.

The PMI transformation (association measure) of the cooccurrence matrix is



Table 2.1 — Sample values from M, ;5 and corresponding PMI values.

Word Coocs PMI
time the, at, of, to, a, for, in, and, spend, spent, waste, spend-
same, that ing, heavyweight, periods,
trial, nepal, same, full
system system, operating, the, solar, operating, solar, nintendo,
of, a, pass, and, to, in transit, classification, system,
pass, navigation, linux, inte-
grated
early life, in, the, century, late, s, childhood, life, stages, late,
born, th, career, nine morning, centuries, career,
century, ages, medieval
member  of, parliament, a, the, board, founding, parliament, legisla-
committee, founding, mem- tive, honorary, board, elected,
ber, council, elected committee, assembly, repre-
sentatives, mp
original research, the, recording, holder, affect, poster, record-
holder, of, original, affect, ing, soundtrack, research,
resolution, to, copyright limit, resolution, sample,
copies
works works, published, of, the, works, literary, influenced,
and, in, his, art, novels, by novels, collections, collected,
shakespeare, published,
translated, fiction
strong keep, a, zero, utc, support, ties, oppose, keep, weak,
two, the, oppose, and, delete  strong, opinions, support, op-
position, influence, enough
hand hand, other, right, the, on, hand, luke, cool, combat,
left, a, to, and, of right, cards, holding, picked,
palm, arm
continued until, to, the, and, he, his, in, grow, operate, until, ex-
grow, of, as pand, decline, perform, serve,
struggle, throughout, retire-
ment
problem the, problem, is, a, that, solu- solution, fix, problem, seri-
tion, 1, with, this, to ous, solutions, biggest, fixed,
addressed, finding, isn
features the, and, features, of, a, interviews, bonus, features,
which, album, video, include, architectural, soundtrack,
also unique, guest, dvd, interface,
disc
outside the, of, inside, and, topic, to, inside, walls, topic, limits,

a, just, in, walls

dispute, scope, views, juris-
diction, outside, residents

29
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equal to:
P(w, c) - My, .M
w,C M « w, eV x
PMI, . =1 =1 ’ = log ——— 2.1
’ ©8 P(w)P(c) ©8 _Mw: _M:c o8 My My @D

where * denotes summation over the corresponding index. We refer to the set {(w, ¢) |
PMI,, . < 0} as negative pointwise mutual information (nPMI), the set {(w, ¢) | PMI,,
> 0} as positive pointwise mutual information (pPMI), and the set {(w, c) | M, = 0}

as maximally negative pointwise mutual information (mnPMI). Table 2.2 gives the sizes

Table 2.2 — Set sizes computed over 10° cells sampled randomly from PM I, such that
nPMI+pPMI sum to 100%.

Name Description Set Size (%)

nPMI Negative information {(w,c) | PMI,,. <0} 99.75

pPMI Positive information {(w,c) | PMI,,. > 0} 0.25

mnPMI Maximally-negative informa- {(w,c) | M, . = 0} 99.71
tion

{(w,e) |PMI,. <0

nPMI\mnPMI Collapsed negative informa-
AMy,.>0}

tion under PPMI

of these sets for PMI,,;;, the transformation of M, ;.

An issue with PMI is that rare words/contexts can lead to very high PMI, since
these terms lead to small denominators in Equation (2.1). A workaround proposed in
Levy, Goldberg and Dagan (2015) is to smooth the context distribution P(c) via an expo-
nential term « (this reassigns probability mass from frequent events to rare events, while
still preserving the ordering of probabilities, i.e., if P(¢;) > P(cy), after smoothing this
still holds), giving the context distribution smoothed (CDS) version of PMI:

P(w, c)
P(w)Peeas(c)

My,c
M*ﬁ*
«@
Mo, MG
M. Xeds
e Do M

PMIGe = log (2.2)

= log 2.3)

M,
= log + 2.4)
Even with smoothing, there is still an issue with unobserved word-context pair

cooccurrences, as PMI goes to negative infinity. This problem is aggravated by unreliable

statistics from finite corpora which lead to numerous such pairs. A common workaround
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is to clip all negative PMI values at 0, including those for cooccurring pairs; this is known

as Positive PMI (PPMI, not to be confused with the pPMI set defined above):

PPMI% = max(PMIS, 0) (2.5)

w,c )

This indiscriminate clipping of negative values motivated this thesis, making us
question what information it discards. Or in other words, what can we learn from negative

information?

2.3 Related Work
2.3.1 Cooccurrence Matrix Transformations

There is a long history of studying transformations (also known as association
measures) of cooccurrence matrices in general, not only of word-context pairs; see Schiitze
(1993), Manning, Manning and Schiitze (1999), Jurafsky (2000) for an overview and Cur-
ran and Moens (2002) for comparison of different transformations. One widely adopted
measure is PMI, and in fact, Bullinaria and Levy (2007) show that word vectors derived
from PPMI matrices perform better than alternative transformations for word-context
cooccurrence. Moreover, Levy and Goldberg (2014) show theoretically that the popu-
lar Skip-gram model (MIKOLOV et al., 2013) performs implicit factorization of shifted
PMI. Another PMI variant is normalized PMI, which Bouma (2009) proposed for dealing

with negative infinity (-o0), for collocation extraction.

2.3.2 Matrix Factorization

Low-rank word vectors obtained through the factorization of the PMI matrix are
advantageous computationally and arguably lead to better generalization than directly
using rows from PM]I as word vectors.

Although the SVD provably (ECKART; YOUNG, 1936) provides factorizations
with the lowest possible squared loss Ly(w,c) = 3Asvp(w, c)(Wy,C — f(M)y)? -
where Agyp(w,c) = 1 and f(-) is an arbitrary transformation — Salle, Villavicencio and

Idiart (2016) show that, in word embedding where f is some variant of PMI, uniform
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weights A significantly reduce the quality of the word vectors.
GloVe (PENNINGTON; SOCHER; MANNING, 2014) does perform weighting

but ignores values in the mnPMI set (where M, . = 0):

1 -
LGloVe (’LU, C) = éAGloVe (’LU, C)(WchT - log Mw,c + bw + bc>2 (26)

)\GloVe (U), C) = min(Mg,c/x?naz7 1) (27)

where « and z,,,, are constants, and b and b are bias terms.
Swivel (SHAZEER et al., 2016) adjusts the GloVe objective to account for values
in mnPMI:
SAswiver(w, ¢)(Wy,C] — PMI(w,c))?*  if (w,c) ¢ mnPMI

Lswiver(w, ¢) = (2.8)
1log(1 4 exp(W,,C — PMI*(w,c))) otherwise

Asuwiver (W, €) = M2 (2.9)

where PMI* is a Laplace smoothed PM I matrix (replacing zero coocurrences with
ones). Note that although accounting for values in mnPMI, Swivel does so by indis-
criminately assigning uniform weight to all negative cooccurrences, similar to the SVD.!

The Skip-gram (MIKOLOV et al., 2013) model performs implicit matrix factor-
ization by predicting contexts given target words. For each (w, ¢) pair observed in sliding
a window over the training corpus, k£ negative samples are drawn from the unigram con-

text distribution and the following objective function is maximized:

k
Jog(w,c) =1og o(WuC.) + > Eeop, (o) log o(—W,C.) (2.10)

i=1
where o(+) is the logistic function. Under the assumption that the embedding dimension
is high enough such that J(-) terms can be maximized independently for different word-
context pairs, Levy and Goldberg (2014) show that the matrix WC? = PMI — logk

maximizes .J. In other words, Skip-gram implicitly factorizes a shifted PMI matrix.

Swivel is not used in our evaluations because of its O(|V'|?) computational complexity from calculating
loss terms for every cell in the matrix being factorized, thus requiring a large distributed computing environ-
ment to be feasible: in our initial experiments |V'|? = 9.2¢10, and |V,,||V.| = 3.7e11 when using positional
contexts. In the downstream experiments in Section 4.4, this problem is aggravated as |V |> = 4e12.
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2.3.3 Subword information

Word embeddings that leverage subword information were first introduced by
Schiitze (1993) which represented a word as the sum of four-gram vectors obtained run-
ning an SVD of a four-gram to four-gram cooccurrence matrix. Our model differs by
learning the subword vectors and resulting representation jointly as weighted factoriza-
tion of a word-context cooccurrence matrix is performed.

There are many models that use character-level subword information to form word
representations (LING et al., 2015a; CAO; REI, 2016; KIM et al., 2016; WIETING et al.,
2016; VERWIMP et al., 2017), as well as fastText (the model on which we base our
work). Closely related are models that use morphological segmentation in learning word
representations (LUONG; SOCHER; MANNING, 2013; BOTHA; BLUNSOM, 2014;
QIU et al., 2014; MITCHELL; STEEDMAN, 2015; COTTERELL; SCHUTZE, 2015;
BHATIA; GUTHRIE; EISENSTEIN, 2016). Our model also uses n-grams and morpho-
logical segmentation, but it performs explicit matrix factorization to learn subword and
word representations, unlike these related models which mostly use neural networks.

Finally, Cotterell, Schiitze and Eisner (2016) and Vulic et al. (2017) retrofit mor-
phological information onto pre-trained models. These differ from our work in that we

incorporate morphological information at training time.

2.3.4 Analysis

The continued relevance of classic word embeddings has led to a number of re-
cent papers that aim to understand their properties. These include research on why word
analogies (“aisto b as cis to ?”’) hold (HASHIMOTO; ALVAREZ-MELIS; JAAKKOLA,
2016; ETHAYARAJH; DUVENAUD; HIRST, 2019; ALLEN; HOSPEDALES, 2019),
or conversely why they do not hold (SCHLUTER, 2018; LINZEN, 2016; ROGERS;
DROZD; LI, 2017); on their geometry (MIMNO; THOMPSON, 2017); and on possi-
ble biases they incorporate (BOLUKBASI et al., 2016; NISSIM; NOORD; GOQOT, 2019;
GONEN; GOLDBERG, 2019). This paper follows this line of research into understand-
ing the workings of these models.

Mimno and Thompson (2017) analyze the geometry of the Skip-gram model, con-
cluding that it is “strange”: word vectors occupy a narrow cone in space diametrically

opposed to context vectors. Our analysis of model geometry is directly inspired by their
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work, but rather than analyzing the implicit PMI factorization of Skip-gram, we look at
explicit factorizations, under which the “strange” geometry of Skip-gram can be explained
by looking at the underlying PMI counts.

Miaschi and Dell’ Orletta (2020) use a set of sentence representation probing tasks
to investigate the linguistic knowledge encoded in sentence embeddings obtained from
BERT and word2vec, observing comparable results for both models. Different from our
work, their focus is on evaluating sentence representations, and they do not isolate the
effects of negative information.

Schluter (2018) observed that in analogies of the form “a is to b as c is to ?” if
a,b,c are not excluded from the set of possible answers, performance of the Skip-gram
and GloVe models plummets. Linzen (2016), Rogers, Drozd and Li (2017) made simi-
lar observations that these models do not quite seem to capture the geometry necessary
to correctly answer analogies. However, none of these works simultaneously relate (a)
increasing negative information with (b) word vector geometry for different frequencies
and (c) analogy performance. Although Ethayarajh, Duvenaud and Hirst (2019), Allen
and Hospedales (2019) theoretically show that these linear analogies should hold in PMI
factorizations, there is no investigation into how the geometry of different factorizations

affects results.

2.3.5 Contextualized Word Embeddings and Language Models

The most significant performance jump in NLP tasks since word2vec has been
due to deep contextualized word embeddings (PETERS et al., 2018) — where rather than
having a single vector for a word as described in the factorization above, models use
neural networks to compute vectors for words in context. For instance, the computed
vector for the word “bank™ in “the river bank was teeming with frogs” is different from
the one in “I went to the bank to make a deposit”.

More recently, gains in performance have also been obtained due to language
model pre-training and fine-tuning (HOWARD; RUDER, 2018; RADFORD et al., 2019;
DEVLIN et al., 2019) — where a deep neural network language model is pre-trained on
very large corpora and the token-prediction output layer is replaced with an output layer
fine-tuned for the target task.

Task leaderboards such as SuperGLUE? are dominated by the latter, specifically

“https://super.gluebenchmark.com/leaderboard
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language models based on the Transformer (VASWANI et al., 2017) architecture.
Interestingly, there are ways in which our thesis work on static word embed-
dings complements that in contextualized word embeddings and language models: for
example, (LIU; MCCARTHY; KORHONEN, 2020) show how static word embeddings
can improve contextual word representations in lexical semantic tasks that are context-
dependent, and (HOOVER et al., 2021) use our result on the connection between negative
PMI and syntactic information to justify preserving the negative spectrum of PMI mea-

sures extracted from Transformer models.

2.4 Evaluation

If an evaluation serves only to evaluate the information contained in a vector space
model, it is said to be intrinsic. On the other hand, if the evaluation measures the utility
in some downstream task, it is said to be extrinsic or downstream. Clearly there is room
for debate as to which category an evaluation belongs to: for example, Part-of-Speech
(POS) tagging both serves to evaluate whether POS information is captured by a vector
space model, but it is also useful for downstream tasks such as separating object (Noun)
from attributes (Adjectives and adverbs) in an eCommerce search query. Nevertheless,
we follow the convention in the literature and leave discussions on taxonomy to future
debate.

Evaluations can be further categorized into whether they evaluate individual word
representations, or phrase/sentence representations where word vectors must be composed
to form a single vector representation. Commonly used intrinsic word-level evaluations
include word similarity, word analogy, and fMRI. For sentence-level evaluation, we look
at text classification, POS tagging, and sentence-level similarity, natural language infer-

ence, and various probing tasks from the SentEval (CONNEAU; KIELA, 2018) suite.

2.4.1 Intrinsic Evaluation

2.4.1.1 Word similarity

In the word similarity task, given a pair of words, human judges are tasked with
assigning a high score if the words are similar, and a low score if they are dissimilar,

creating a word similarity dataset. Table 2.3 gives examples of pairs and scores from the
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datasets used in this paper.

Word vectors are evaluated using such word similarity datasets by comparing the
agreement — using Spearman rank correlation — between its human assigned score and

some function of the two word vectors. We use the cosine function as the measure of

word similarity between word vectors u and v in vector space:

This discards vector norms, and considers only the angle between vectors.

Table 2.3 — Word similarity examples.

dataset  pairs word 1 word 2 judgement
black pigeon 13.00
bloom daisy 41.00
MEN 3000 fabric wool 43.00
held theatre 9.00
lamb sheep 40.00
coin awards 2.17
gambling money 3.75
MTurk 287  navy withdrawn 1.57
pacific ocean 4.27
reichstag germany 2.29
correspondence  write 7.83
engineering design 8.33
RW 2034 excitation exciting 8.20
leadership high 4.33
resigning office 5.43
bed hospital 0.92
bread flour 3.33
SimLex 999  butter potato 1.22
choose elect 7.62
diet apple 1.18
computer laboratory 6.78
cup food 5.00
WS-R 252 population development 3.75
practice institution 3.19
soap opera 7.94
journey voyage 9.29
music project 3.63
WS-S 203  peace insurance 2.94
stock egg 1.81
vodka gin 8.46
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2.4.1.2 Word analogy

Analogies of the form “a is to b as c is d” are evaluated by finding the word d*

such that:

d* = argmazyey, Cos(Wy,, W. + W, — W,) (2.12)
(2.13)

If d* = d, the analogy is said to hold in the vector space. Schluter (2018) points out
two flaws in the way this evaluation is conducted in works such as Mikolov et al. (2013),

Pennington, Socher and Manning (2014):

(1) Normalization (Norm): The vector space is distorted by normalizing all word vec-

tors to unit length before the term W, + W, — W, is calculated.

(2) Premise exclusion (Prem): The set {w € V,,} in Equation (2.12) is replaced by
{w € V,,\{a, b, c}} —the analogy’s premises are excluded from the set of candidate
answers. In practice this improves performance because it is often the case that
Wy, — W, = 0 and so dx = c if ¢ is not excluded from the candidates (LINZEN,
2016).

Although these heuristics work well in practice, significantly improving accuracy, they
mask whether the linear relationship W, — W}, ~ W, — W, is really present in the vector
space. This is particularly problematic as it may lead to wrong conclusions. For instance,
using the popular GoogleNews word2vec vectors, the answer to the analogy “man is
doctor as woman is to ?” was “nurse” (BOLUKBASI et al., 2016) if both Norm and
Prem are performed, when in fact, if analogies are evaluated correctly, the actual answer
is “doctor” as well (NISSIM; NOORD; GOQOT, 2019).

In this work, we perform incorrect evaluation where both heuristics are used (e.g.,
GSem, GSyn) partially correct evaluation where one heuristic is excluded (e.g., GSem-
Norm, GSem-Prem), and correct evaluation where both heuristics are excluded (e.g.,

GSem-Norm-Prem). Some example analogies from each dataset are shown in Table 2.4.

2.4.1.3 fMRI

Though there is no hard requirement that techniques in the field of AI mimic
human biology, it is of theoretical interest to know when such connections do exist. To

this end, Mitchell et al. (2008) evaluated how closely semantic representations from NLP



38

Table 2.4 — Word analogy samples, having the form “a is to b as cis d”.

dataset pairs a b c d
Dhaka Bangladesh ~ Madrid Spain
Fresno California Plano Texas
Helsinki Finland London England
GSem 8869 Moscow Russia Tirana Albania
Nigeria naira Argentina peso
dad mom he she
convenient inconvenient consistent inconsistent
deep deeper smart smarter
dollar dollars woman women
GSyn 10675 reasonable unreasonable possible  impossible
swimming swam paying paid
typical typically rare rarely
bright brighter strong stronger
closest closer earliest earlier
feel feels prove proves
MSR 8000 followed follow needed need
night’s night party’s party
schools school artists artist

predicted cortical activations in the human brain. Nine human subjects were primed with
target words and fMRI images taken of brain activation. The task is then, for each subject,
given two target words and the corresponding fMRI images, use a regressor that takes as
input a semantic representation of the target words and predicts voxel activations, then
match each predicted image to the correct labeled image. The regressor is trained on all
but the two target words, this repeated for every two-word combination from the dataset
of 60 words, also known as “leave-two-out” cross-validation. Matching is done using
cosine distance between the images represented as vectors. Accuracy is given by the
fraction of correct pair matchings over all two-word combinations. A random regressor
has expected accuracy of .5. Mitchell et al. (2008) showed that using human labeled
semantic features as a semantic representation performs significantly better than a random
baseline. Subsequent work (BRANCO et al., 2020) showed that the same holds true for
representations derived from semantic networks and distributional semantic models. We

use the evaluation setup as Abnar et al. (2018) and the corresponding software package®.

3https://github.com/samiraabnar/NeuroSemantics
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2.4.2 Downstream Evaluation

Although individual word representations are of theoretical interest, natural lan-
guage comes in sequences of words. Transforming a sequence of word vectors into a
fixed length vector representation is known as sentence embedding. Given a sequence
Wi, Way, ...W,, the simplest of these models is averaging word vectors, known as a mean

bag-of-vectors:

N
1
BoV (wy, ..., wy) = NZWW (2.14)
=1

where W,,,, 1s the word vector for w;. For most of our experiments, we use this simple sen-
tence embedding model since it is computationally efficient and remains a strong baseline

for unsupervised sentence representation.

2.4.2.1 Text Similarity

A desideratum of sentence representations is that two sentences with the same
meaning but differing surface form share a similar semantic representation. Agreement
between human judgements and computed scores (either cosine between sentence em-
beddings or a trained regressor) is measured using Pearson’s correlation coefficient. To
this end, we use the Semantic Textual Similarity (STS) datasets from years 2012-2017
(AGIRRE et al., 2012; AGIRRE et al., 2013; AGIRRE et al., 2014; AGIRRE et al., 2015;
AGIRRE et al., 2016; CER et al., 2017) referred to as STS12-16 (2012-2016) and STS-
B (STS-Benchmark, 2017), and the SICK relatedness (SICK-R, Marelli et al. (2014))
dataset. Table 2.5 gives some examples of sentence pairs and the associated human simi-

larity score.

2.4.2.2 Text Classification

A common application in NLP is text classification: for example, identify if a
movie review is positive or negative, or classify an email as spam or not. There can be
more than two classes, such as classifying a sentence’s sentiment as positive, negative,
neutral, etc. In text classification, the sentence embedding is used as input to a classifi-
cation network (which can be a deep neural network or a simple logistic/softmax layer)

trained on labeled data. We use the SentEval suite for sentence classification evalua-
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Table 2.5 — Samples from textual similarity datasets used in our evaluations.

Name N Text1 Text 2 Judgement
STS12 3.1k ryan harvey , an out- ryan harvey , a high 4.2
fielder from dunedin school outfielder from
high school in florida florida , was chosen
, was selected with sixth by the cubs .
the sixth pick by the
chicago cubs .
STS13 1.5k germany dodges reces- eurozone avoids reces- 3.2
sion with growth in first sion in ql , thanks to
quarter germany
STS14 3.7k zimmerman replied , " martin said , " why are 0.9
what are you doing here  you following me ? "
9 n
STS15 8.5k the woman holding a a woman with a black 4.8
black purse is smoking bag is smoking a
a cigarette . cigarette"
STS16 9.2k how the dow jones how the dow jones in- 2
industrial average did dustrial average fared
wednesday on monday
STS-B 5.7k the man set up his cam- a man is taking pictures 2.2
era to take sunset pic- of alake .
tures at the beach .
SICK-R 4.5k Two dogs are fighting ~ Two dogs are wrestling 4

and hugging
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tion which comprises the following datasets: MR Pang and Lee (2005), CR (HU; LIU,
2004), SUBJ (PANG; LEE, 2004), MPQA (WIEBE; WILSON; CARDIE, 2005), SST2/5
(SOCHER et al., 2013b), and TREC (VOORHEES; TICE, 2000). Examples are given in
Table 2.6.

Table 2.6 — Text classification tasks.

Name  Task N examples label(s) classes

MR movie re- 11k “Too slow for a younger crowd , neg 2
view too shallow for an older one.”

CR product re- 4k “We tried it out christmas night pos 2
view and it worked great .”

SUBJ  subjectivity 10k “A movie that doesn’t aim too subj 2
status high , but doesn’t need to.”

MPQA opinion- 11k “don’t want”; “would like to  neg. pos 2
polarity tell”;

SST binary 67k “Audrey Tautou has a knack for pos 2
sentiment picking roles that magnify her
analysis [..]”

SST fine- 8.5k “nothing about this movie 0 5
grained works.”
sentiment
analysis

TREC question- 6k “What are the twin cities 7” LOC:city 6
type classi-
fication

2.4.2.3 Natural Language Inference

Natural language inference is the task of determining the logical relation between
a pair of sentences. This logical relation can be that of positive entailment (or simply
entailment), negative entailment (contradiction), or non-entailment. To evaluate perfor-
mance on this task, we use the SICK entailment (SICK-E, Marelli et al. (2014)) and
Standford Natural Language Inference (SNLI, Bowman et al. (2015)) datasets:

2.4.2.4 Syntactic Tasks

Previously described evaluation, except for syntactic analogies, focus on seman-
tics. As we will show, negative information mostly captures syntactic information, so we
need a set of evaluations focused on syntax. For word level evaluation, we use syntac-

tic analogies. For sentence-level evaluation, we train and test part-of-speech (POS) tag-
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Table 2.7 — Natural language inference (NLI) datasets.

Name N Premise Hypothesis Label Outputs

SNLI 560k “A small girl wear- “The carousel is entailment 3
ing a pink jacket moving.”
is riding on a

carousel.”

SICK-E 10k “A man is sitting on “There is no man sit- entailment 3
a chair and rub- bing ting on a chair and
his eyes” rubbing his eyes”

ging using data from the Penn Treebank (MARCUS; SANTORINI; MARCINKIEWICZ,
1994). We also run two syntactic probing tasks from the SentEval suite: given a sentence,
learn to classify the top constituents (TopC) and depth (Dep) of the constituency-based

parse tree using only the sentence’s embedding as input.

2.4.2.5 Facet Ranking

Often, a searcher (user) provides an under-specified query to the search system,
which may reflect multiple information needs, or different facets of the same intent. A
conversational search refinement system attempts to pinpoint the user’s search intent via
a series of clarification questions, which the searcher can choose to answer cooperatively
(by volunteering additional information about their intent), lazily (“‘yes/no”) or not re-
spond to the system at all, e.g., if the searcher ran out of time or patience. After each turn,
the search system may choose to ask additional clarification questions, or return search re-
sults, or both. In Salle et al. (2021), we develop a user simulator called COSEARCHER for
conversational search refinement and clarification. Figure 2.2 shows two example dialogs
between a search system (Bot) and COSEARCHER. The dialogue starts with the user in-
putting a topic (an underspecified search query). The system retrieves a set of candidate
facets for this topic. Although Salle et al. (2021) consider multiple types of candidate
facets, here we focus on the topic and set of human annotated facets from the TREC(09-12
diversity track (CLARKE; CRASWELL; SOBOROFF, 2009; CLARKE; CRASWELL;
VOORHEES, 2012). At every turn, the system maintains a set of candidate facets and
uses the dialogue context to rank them. It then proposes the top ranked facet to the user
simulator. The user simulator compares the question to the true intent (the target facet),
and responds with either a “Yes” or a “No”. In our work, we use as context any informa-
tion received through informative “No”’s, where in addition to responding in the negative,

the user simulator also supplies additional information to assist the search system, for ex-
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ample the user response “no i just want to know a few common korean phrases” from
Figure 2.2. If a user rejects a facet, it is removed from the set of candidate facets.

We perform facet ranking using a semantic similarity strategy, which assigns a
score for each candidate facet ¢ by computing the similarity between it and the conversa-

tion context:

score(c,db) = Z Cos(rep(c),rep(s))/|db| (2.15)

sedb
where db is the set of information “No’’s, and rep(s) is the embedding of sentence s. For
the purpose of evaluating facet rankers below, we consider only single contexts (|db| = 1).

Our evaluation dataset is derived from the Qulac dataset (ALIANNEJADI et al.,
2019), which was created by having humans generate clarification question-answer pairs
for each of the TREC09-12 topics and facets. For the topic “South Africa” and target facet
“Find pictures of South Africa”, an example human Qulac question-answer pair instance
is the question “would you like the history of south africa” and the answer “no i would
like pictures of south africa”. For every human answer containing the word “no” in its
first three words, we extract as the context every word after the “no”, in this case “1 would
like pictures of south africa”.

Candidate facets for the topic “South Africa” are (1) “Find pages that give the
history of South Africa.” (2) “Find maps of South Africa.” (3, the target facet) “Find
pictures of South Africa.”. The context, along with the target facet (3) and the neg-
ative candidate facets (1,2) represent one instance of our facet ranking dataset. The
goal is for score(“Find pictures of South Africa.”, “i would like pictures of south africa”)
to be higher than the score for the negative facets.

Evaluation metrics are Precision@1 (P@1, in what fraction of instances is the
target facet ranked first) and Mean Reciprocal Rank (MRR, the mean inverse rank of the
target facet). We split Qulac’s 198 topics (and corresponding context-facet pairs) into
100 training, 25 validation, and 73 test topics. This dataset can then be used to evaluate

sentence embeddings rep(-), be they supervised (use training data) or unsupervised.

2.5 Conclusion

In this chapter, we reviewed existing methods for word embedding, starting from

the fundamentals. We also presented the evaluations that will be used throughout the rest
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Figure 2.2 — Conversational search refinement using COSEARCHER.

(a)

(b)

USER: Korean language (the topic)

BOT: Are you looking to find resources
on translating Korean to other lan-
guages?

COSEARCHER: no

BOT: OK, are you looking to find re-
sources on learning and teaching
Korean?

COSEARCHER: no

BOT: OK, are you looking to find a Ko-
rean/English bilingual dictionary?

COSEARCHER: no i just want to know a
few common korean phrases

BOT: Are you looking for what are some
common Korean phrases?

COSEARCHER: YES

True intent: “What are some common
Korean phrases?”

USER: South Africa (the topic)

BOT: Are you looking to find pictures of
South Africa?

COSEARCHER: no but historical maps along
with current ones would be good

BOT: Are you looking to find pages that give
the history of South Africa?

COSEARCHER: no i want maps of south africa

BOT: Are you looking to find maps of South
Africa?

COSEARCHER: yes

True intent = “Find maps of South Africa”

of this thesis.
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3 THE LEXVEC MODEL

In this chapter, we present our LexVec word embedding model. We first define a
set of desiderata or principles that a word embedding model should satisfy (Section 3.1,
in answer to Q1). We then describe LexVec in detail, showing that it satisfies these prin-
ciples, while also drawing connections to other word embedding models (Section 3.2, in
answer to Q2). In the sections that follow, we describe a series of improvements to the
base model, namely the use of positional information (Section 3.3, in answer to Q4), im-
proved association measures (Section 3.4, in answer to Q7), scalability (Section 3.5, in

answer to Q3), and the incorporation of subword information (Section 3.6, in answer to

Q5).

3.1 Principled Reconstruction Error Weighting

As was shown in Section 2.3.2, different matrix factorization techniques assign
different loss weights \,, . to different word-context pairs (w, ¢). Consider the pair (reigning,
champion, ) — that is the expression “reigning champion” being observed in the training
corpus — and the arbitrary pair (that is, having no semantic/syntactic reason for cooccur-
ring) (cromford, deseronto,) — the phrase “cromford deseronto” for the small cities De-
seronto in Canada and Cromford in England. In our English Wikipedia corpus, PMI,,;,
PMI veigning,champion, = 6.497 and PMI compord,deseronto, = — 00, cooccurring more often than
by chance and not cooccurring at all respectively.

SVD assigns loss weights uniformly, SO Aeigning,champion, = Acromford,deseronto, - G1ven
that model capacity is limited — the multiplication of word and context matrices cannot
preserve all the information in the matrix being factorized — loss weights determine which
information should be better preserved. And it stands to reason that the cooccurrence of
(reigning, champion, ), a common expression in the English language, is more meaning-
ful than the non-cooccurrence of (deseronto, cromford,) for at least two reasons: (1) in
downstream applications, for example, having a better meaning representation of “reign-
ing” is more important than that of “deseronto” because it is much more likely to appear,
and so dedicating more model capacity to correctly recovering its context distribution is
more important (2) there is little information in the non-cooccurrence of two rare words
such as “deseronto” and ‘“cromford” — two random words of low frequency are almost

certain not to cooccur, so the model does not learn much from this observation, whereas
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observing “reigning champion” reveals an important expression in the English language.
In designing loss error weights, such frequent cooccurrences should be upweighted.

Let us now consider the pair (should, began,): observing the phrase “should be-
gan” in the corpus. This pair does not occur at all in the English Wikipedia, having
PMI ghoutd pegan, = —00. GloVe assigns a reconstruction error weight of zero, thus mak-
ing no use of this information when learning word and context embeddings. But there
is certainly valuable information here: the non-cooccurrence of “should began” tells us
that this construction is grammatically incorrect. It captures syntactic information about
the word “should”: that it cannot be followed by a certain verb in past tense, in this case
“began”. Therefore, the loss weight Aouid pegan, Should be greater than zero.

As a final example, consider the pair (should, deseronto;), which is also non-
cooccurring in the English Wikipedia. The phrase “should deseronto raise taxes?” is both
syntactically and semantically correct, so the non-cooccurrence can be attributed to the
limited size of the corpus and the infrequent word “deseronto”. Contrast this with “should
began”, where both words are very frequent: the phrase is unobserved because it is not
syntactically valid. We thus argue that the non-cooccurrence of a pair of frequent words is
more likely to carry information than the non-cooccurrence involving a rare word. Thus,
when designing loss weights, Agouid,pegan, should be greater than Agouia deseronto, - Neither
GloVe nor SVD have this property, since the former ignores non-cooccurrences, and the
later assigns uniform weights.

Drawing upon these observations, we argue that principled reconstruction error

weighting \,, . should have the following properties:

e Bigram Monotonic: ), . is a strictly monotonically increasing function of coocur-

rences M, ..
e Non-zero: \, . > 0.

e Unigram Monotonic: )\, . is a strictly monotonically increasing function of uni-

gram counts M, , and M, ..

We can also frame these same observations from the perspective of statistical reli-
ability of PMI estimates. That is, if we were to recompute PM values from a resampling
of a corpus, PMI,, . estimates for certain pairs (w, c) are likely to suffer less change (to be
more reliable or consistent) than for other pairs. The more frequent a word w and context
c are in the corpus, the more confident we can be about the corpus estimated PMI,, . (the

more reliable the estimate). Suppose both #(w) and #(c) are high, but PMI,, . is low.
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This is unequivocal evidence of negative correlation between them, and so we should put
more effort into approximating their PMI. The argument is analogous for high PMI. If
on the other hand #(w) and #(c) are low, we cannot be too confident about the corpus

estimated PMI,, ., and so less effort should be spent on its approximation.

3.2 LexVec

We now propose our matrix factorization model LexVec, then show that it per-
forms principled reconstruction error weighting.

LexVec performs matrix factorization by sliding a symmetric window over the
training corpus (window sampling), in the exact same way as when M was constructed
in Section 2.2, and performing one Stochastic Gradient Descent (SGD) step every time a

(w, ¢) pair is observed, minimizing
1
l(w,e) = S(WuCl = F(M)ue)* (3.1)

Additionally, negative sampling is performed, where for every center word w, k negative

samples (MIKOLOV et al., 2013) are drawn from the unigram context distribution:
Po(c) = (Mo o) ] Y (M) (3.2)

where o, 1s a smoothing factor (set to .75 in this thesis) and SGD steps are taken to

minimize
k
Ineg(W) = Beop, ol (w, ;) (3.3)
i=1

Figure 3.1 illustrates a step of LexVec over a single target word. Algorithm 1 describes
the entire algorithm, which has time complexity O(|corpus|(2] + k)d).

The expected loss for a pair (w, ¢) in a single pass over the training corpus is equal
to the pairwise loss [(w, ¢) (Equation (3.1)) multiplied by (1) the number of times the pair
is observed using window sampling ()M, .), and (2) the expected number of times the pair
is sampled using negative sampling, which is equal to the number of times w is a target

word (M, ./2(") multiplied by the number of negative samples per target word and the

'M,, . is incremented by 2[ every time w is a target word, thus the division by 2[ recovers the number
of times it is a target word.
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Algorithm 1 LexVec

1:

R

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

procedure LEXVEC(corpus,l,d, k, oo, iters, initial Lr, f) > [:
window size, d: embedding dimension, k: negative samples, c,,,: smoothing factor,
tters: training iterations, initial Lr: initial learning rate, f: matrix transformation

M <« ConstructCoocMatriz(corpus,l) 1> Construct cooccurrence matrix by
sliding symmetric window of size [ over corpus

T « f(M) > Transformed cooccurrence matrix
Py, (M, o)) > (M, ) for every context c > Negative sampling
distribution

W < Initialize (M.rows x d) matrix with values drawn from U(—55, 2)
C < Initialize (M.cols x d) matrix with values drawn from U(—z
for iter < 1,iters do
for w, contexts, progress < IterateOverWindows(corpus,l) do > Slide
symmetric window of size [ over corpus, yielding for each window: the target word
w, 21 surrounding contexts, and progress indicating relative corpus position from 0
to 1
Ir + (1 — der=liprogressy o jpjtial Ly > Linear learning rate decay
for c « contexts do > Window sampling
SGDStep(Ty.., W,C,w,c,lr)
end for
for c,, < Draw k samples from P, do > Negative sampling
SGDStep(Ty.c,, W,C,w, ¢y, 1)
end for
end for
end for
return W, C'
end procedure
procedure SGDSTEP(t, W, C, w, ¢, lr) > W, C passed by reference
err = W,CJ —t
AW, < err x C,
AC, < err x W,
Wy — Wy — lr « AW,
C.+ C.—lrxAC,
end procedure
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Figure 3.1 — LexVec running over a single target word “dogs”, window sampled words “friend”,
“loves”, “and”, “cats”, and negatively sampled words “the” and “computer”. Highlighted f (M)
squares on the right represent lookups to the transformed PMI values between target word and
every window sampled and negatively sampled contexts. Vectors being updated by SGD: (1) Red
row: target word vector. (2) Purple columns: window sampled context vectors. (3) Green
columns: negatively sampled context vectors. Equation (3.1) is minimized through SGD for each

lookup.

window sampling: “My [friend loves dogs and cats]”
negative sampling: the, computer

W o J(M)
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probability of ¢ being sampled:

My«
E[LLesvec(w, c)] = My, l(w,¢) + —= k P,(c) l(w, ¢) (3.4)
—— —— 21 P
My«
= (My.+ 21’ k P,(c)) l(w,c) (3.5)
My 1 T 2
= (Mw,c + 2—17 k Pn(c)> §(chc - f(M)w,c) (36)
1
= §>\LezVec(wa C)(WchT - f(M)w,c)Q (37)
My«
>\Le:1;Vec<w> C) = ch + — k Pn(c) (38)
NS
Mus(we) T

In Afesvee, the first term prioritizes the correct approximation of frequently cooc-
curring pairs (window sampling), and the second term of pairs where either word occurs
with high frequency (negative sampling). It is easy to see that Ar.,ve. is a principled

reconstruction error weighting:

e Bigram Monotonic: ).,y is a strictly monotonically increasing function of M, .
because of the term )\, by definition.
e Non-zero: \;.,v.. > 0 because of the term \,; which is strictly positive (all words

and contexts in the vocabulary appear at least once the training corpus).

e Unigram Monotonic: \;..y.. is a strictly monotonically increasing function of

M, . and M, . because of the term A, by definition.

Table 3.1 shows which of the above 3 properties are satisfied by explicit or implicit
matrix factorization models. The only explicit matrix factorization model that satisfies all
3 properties is LexVec.

Table 3.1 — Principled reconstruction error weighting and the models that respect them. Top row

contains the Skip-gram model that performs implicit matrix factorization, and the bottom rows
are models that perform explicit matrix factorization.

model Bigram Monotonic Non-zero Unigram Monotonic
Skip-gram v’ v’ v’

SVD v

GloVe v?

SwiVel v’ v’

LexVec v’ v’ v’

2GloVe is not strictly monotonic since error weights in Equation (2.7) are capped.
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Connection to Skip-gram: The Skip-gram loss function (Equation (2.10)) for a
single pass over the training corpus for a specific (w, ¢) is very similar to the LexVec loss
function (Equation (3.4)). Restating Equation (2.10) here and performing substitution

using LexVec’s A terms (Equation (3.8) we get:

E[Jy(w,c)] = My, logo(W,C)) + M. k P,(c) logo(=W,,C.") (3.9)
= Aus(w, ¢) log o (W,C) + 21 Mg (w, ¢) log o (=W, C.1) (3.10)

Skip-gram shares the same LexVec weight terms A, A5 in J. However, in contrast to
this apparent similarity, there is a subtle difference between the models in the way errors
are weighted. Suppose we have found parameters that perfectly factorize the PMI matri-
ces, such that for LexVec WCT = C'PMI(—2) and for Skip-gram WCT = PMI —log k
(we use the same W, C for notational convenience, but the factorizations are necessarily
different). We then introduce a small error ¢ into the dot product W,,CT so that for

LexVec:

e =W,CF — CPMI,.(—2) (3.11)
L peaveere(w, €) :%Amm(w, c) (W,CF —CPMI(—2))? (3.12)
=%<Aws(w, ¢) + Ans(w, ¢)) € (3.13)
(3.14)
and for Skip-gram:
e =W,CF — (PMI,. — logk) (3.15)
W,CF =e + (PM1I,,. — logk) (3.16)
Jgre(w, €) =Aus(w, ¢) log (W, C) + 21 Aps(w, ¢) log o (=W, C.) (3.17)
=Ays(w, ¢)logo(e + (PM1, . —logk)) (3.18)
+ 21 A\ps(w, ¢) logo(—(e+ (PM1, . —logk))) (3.19)

The LexVec loss deviation from 0 depends only on the weights A and the error e
introduced, whereas the Skip-gram deviation from the objective’s maximum depends on
the weights A, the error €, and the PMI value; because of the logistic function, recon-
struction errors for PMI values near zero affect the objective much more than for high and

low PMI values. If we re-word small reconstruction errors as sharp and large reconstruc-



52

tion errors as fuzzy, the fuzziness of LexVec approximations is entirely determined by
the weights. The Skip-gram objective, in contrast, has opposing forces, with these same
“sharpnesses” encouraged by A, and ), being opposed by the fuzziness of the logistic
function at extreme PMI values. Despite this subtle difference in error weightings, as we
will see in Chapter 6, the models behave very similarly empirically.

Connection to GloVe: GloVe factorizes the logarithm of the cooccurrence matrix
with added bias terms (Equation (2.7)). Although it is not clear what the optimal values
of these bias terms are, Shazeer et al. (2016) observe that these terms are highly corre-
lated to the respective word and context corpus frequencies, such that the matrix being
approximated could resemble PMI (Equation (2.1)). This, combined with the fact that
GloVe’s loss weighting resembles the window sampling weight A, suggests a connec-
tion between the LexVec model with no negative sampling and GloVe.

Connection to SVD: Since Asyp(w, ¢) = 1 is uniform for all word-context pairs,
the fraction of |[nPMI|/|nPMI U pPMI| gives the fraction of total loss weights assigned
to negative information, which in the case of PMI ;5 is equal to 99.27%. The SVD is

thus an extreme case of prioritizing negative information.

3.3 Positional Contexts

Positional contexts can be incorporated into LexVec with two minor modifica-
tions: 1) The context embedding C' takes on dimensions 2 x win  |V| x d, 2) Negative
sampling must now sample positional contexts rather than simple contexts. This latter

point requires that the distribution from which negative samples are drawn become:

P, (') = M2,/ Z M2, (3.20)

3.3.1 Combining Word and Context Vectors

Without positional contexts, either W or W+ ' can be used as embeddings. Since
positional contexts make the dimensions of both matrices incompatible, C' cannot be used

directly. We propose three ways to combine word and context embeddings for a word w:

Sum: W, + Z,wmgigwm,i;ﬁo Cu,
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Context-only: waingigwin,i £0 Cu,
. 1
Mean: Ww + 2win Z—wingigwm,i;ﬁO Owi

Concat: Concatenate (W,,,Cy,_. ..., Cy,..)-

Note that while Sum and Mean preserve the original dimensionality d of the word
embedding, Concat increases it to d(1 + 2win).

All three techniques can be used without positional contexts. In that case, Sum
and Mean are equivalent, and are identical to the way GloVe combines word and context

vectors.

3.4 Spectrum of PMI

To better understand the distribution of PMI, we plot in Figure 3.2 a histogram of
PMI ;5 values of 10° non-zero pairs randomly sampled from M,,;;5. We sample only
non-zero pairs because M, is sparse: only 0.93% of cells are non-zero.

To the left of the 0 line, we can clearly see the spectrum of nPMI that is col-
lapsed when using the PPMI measure, which maps these negative values — ~ 22.2% of

cooccurring pairs — to 0.

3.4.1 Preserving the spectrum of negative information

To deal with values in mnPMI, we propose clipped PMI,
CPMI, () = max(z, PM1, ) (3.21)

which is equivalent to PPMI when 2z = 0, and captures most of the nPMI spectrum when
z < 2.
We also experiment with normalized PMI (NPMI) (BOUMA, 2009):

NPMI,,. = PMI ./ — log(My./M..)

such that NPM I (w,c) = —1 when (w, ¢) € mnPMI (never cooccur), NPMI(w,c) =
0 when they are independent, and N PM I(w, ¢) = 1 when they always cooccur together.

This effectively captures the entire negative spectrum, but has the downside of normal-
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ization which discards scale information. In practice, we find this works poorly if done

symmetrically, so we introduce a variant called NNEGPMI which only normalizes nPMI:

NPMI,,, if PMI,. <0
NNEGPMI,, . =

PMI,, . otherwise

Figure 3.2 — Histogram (bin width equal to 0.2) of 10° values not in mnPMI sampled from
PMTI ;5. The negative spectrum of PMI are the values to the left of the dashed line (~ 22.2%
of sampled values), which are collapsed to 0 when using the popular PPMI association measure.
Note that we exclude mnPMI (sample only non-zero cooccurrences) otherwise the graph would
be a single vertical line at -2 (if graphing C PM I(—2)) since 99.07% of values in M ;5 are 0.
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We also experimented with Laplace smoothing as in Turney and Littman (2003)

for various pseudocounts but found it to work consistently worse than both CPMI and

NNEGPMI, so we omit further discussion in this thesis.

3.5 Scaling to Larger Corpora

As window sampling scans over the training corpus and negative sampling selects
random contexts, (w, ¢) pairs are generated and the corresponding PM I, . cell must be
accessed so that Equation (3.4) can be minimized. Unfortunately, this results in random
access to the PMI matrix which requires it to be kept in main memory. Pennington,
Socher and Manning (2014) show that the under certain assumptions, this sparse matrix
grows as O(|corpus|®®), which bounds the maximum corpus size that can be processed
by LexVec. To overcome this limitation, the PMI matrix must be represented in external
memory (such as a hard drive), where random access is prohibitive, and we must instead

use sequential access.
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Figure 3.3 — Example MapReduce steps used to construct the ' stream used by the external
memory variant of Lex Vec.

window sampling: “My [friend loves dogs and cats]”

negative sampling: the, computer

key: (dogs, friend) value: (cooc: 1, count: 1)
key: (dogs, cats) value: (cooc: 1, count: 1)
Map key: (dogs, the) value: (cooc: 0, count: 1)
key: (dogs, computer) value: (cooc: 0, count: 1)
key: (dogs, friend) value: (cooc: 412, count: 574)
Reduce key: (dogs, cats) value: (cooc: 561, count: 671)
S e ™ key: (dogs, the) value: (cooc: 2021, count: 3420)
key: (dogs, computer) value: (cooc: 0, count: 124)
Repeat 574 times map (dogs, friend, 412)
Map :

Repeat 124 times map (dogs, computer, 0)

Shuffle all (w, ¢, coocs) tuples
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We can derive an exact equivalent of LexVec that uses external memory rather
than main memory if we represent both matrix construction as matrix access through a
MapReduce paradigm (DEAN; GHEMAWAT, 2008). Doing so simultaneously enables
the use of external memory and the use of highly scalable MapReduce infrastructure.

We can obtain M, . through a map(key : w,value : 1) every time a window
sampling operation (w, c¢) is performed, followed by a sum reduction. Computing M, .
is analogous. We can store these values in-memory since the resulting arrays only have
length |V,,| and |V,|.

Computing M,, . is only marginally more complicated. We start by defining the
window sampling operation as map(key : (w, c),value : (cooc : 1,count : 1)). Like-
wise, we define the negative sampling operation as map(key : (w,c),value : (cooc :
0,count : 1)). We then reduce on the key with the function reduce((cooc,, count,),
(coocy, county)) — (cooc, + coocy, count, + county). The result is that for every pair
(w, ¢), we have (totalcoocs, totalcount). Note that totalcoocs = M, .. We then perform
totalcount operations of map(key : (w,c),value : totalcoocs). Finally, we perform a
shuffle operation, which is trivial under MapReduce. Let us refer to this stream of shuffled
values ((w, ¢), totalcoocs) as F. By construction, this stream is identical to the sequence
of random accesses LexVec would perform in a single iteration over the training corpus,
differing only in the order of the observed pairs. Having M,, ., M,, ., M *, ¢, we can com-
pute PMI,, . for each of these pairs in [, such that the resulting total loss function being
optimized in this external memory variant of LexVec is identical to Equation (3.4). Fig-
ure 3.3 gives an example of an external memory LexVec run. The SGD optimization that
uses [ to train W, C' can also be distributed using techniques such as Hogwild (RECHT
etal., 2011).

For reference, we present in Algorithm 2 a single machine version of this external
memory approach. F’s construction and storage requires O(|corpus|(2] + k)) disk space
and O(|corpus| (21 + k) log(|corpus|(2]+k))) time?, but only O(|V|) main memory, mak-
ing it scalable to large corpora. Otimization of W, C' has the same O(|corpus|(2l + k)d)

time complexity as Algorithm 1.

3Sorting and shuffling in external memory are O(N log N) (AGGARWAL; VITTER JEFFREY, 1988)
and O(N) (SANDERS, 1998) respectively.



57

Algorithm 2 External memory LexVec

1: procedure LEXVEC(corpus,l,d, k, apow, iters, initial Lr, f) >
window size, d: embedding dimension, k: negative samples, c,,,,: smoothing factor,
iters: training iterations, initial Lr: initial learning rate, f: matrix transformation

2: MW < zero vector of dimension equal to # of words
3: MC' < zero vector of dimension equal to # of contexts
4: for w, contexts, progress < IterateOverWindows(corpus,l) do > As in
Algorithm 1
5 for c < contexts do
6: MW w] < MW |w] +1
7: MClc] < MCle] + 1
8 end for
9: end for
10: totalCoocs <— Sum(MW)
11: P, < MC|c]* > MC|c]*for every context ¢ > Negative sampling
distribution
12: S <« empty file of (word, context, cooc, count) records
13: for w, contexts, progress < IterateOverWindows(corpus,l) do
14: for c < contexts do > Window sampling
15: Write (w,c,1,1) to S
16: end for
17: for c,, < Draw k samples from P, do > Negative sampling
18: Write (w, ¢,,0,1) to S
19: end for
20: end for
21: Sort S records lexicographically > merge sort using external memory
22: Collapse adjacent lines in S where (word, context) match, summing (cooc,count)
23: F < empty file of (word, context, cooc) records
24: for (w, ¢, cooc, count), progress < IterateOver Records(S) do
25: for i < 1, count do
26: Write (w, ¢, cooc) to F'
27: end for
28: end for
29: Shuffle I > Using external memory
30: W < Initialize (|]MW| x d) matrix with values drawn from U(—53, 55)
31 C < Initialize (|MC| x d) matrix with values drawn from U(—35, 37)
32: for iter < 1,iters do
33: for (w, ¢, cooc), progress < IterateOver Records(F') do
34: Ir+(1- %%) x initial Lr > Linear learning rate decay
35: t < f(cooc, MW [w], MC|c],totalCoocs) > Compute PMI transform;
note that cooc = M, ., MW |w] = My, ., MClc] = M, ., totalCoocs = M,
36: SGDStep(t, W, C,w,c,lr) > From Algorithm 1
37: end for

38: end for
39: return W, C'
40: end procedure
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3.6 Incorporating Subword Information

If our model contains an embedding for the word “true” but not for the word
“untrue”, how can we recover the meaning of the latter? The issue with learning word
vectors which do not account for subword information mirrors the problem with using
one-hot vectors to represent words: although we have distributed rather than symbolic
representations, we still use words as symbols to access distinct dense vectors.

We would like to instead break “untrue” into the constituents “un” (negation) and
“true” and somehow combine the two vectors to recover the meaning of the entire word
even if it was not seen at training time, resulting in semantics similar to the word “false”.
In other words, we would like our model to be aware of morphology: the study of com-

29 <e

bining subword units known as morphemes (“un”, “true”) to represent words. This would
not only solve the meaning-altering derivational morphology example given above — “un”
negates the meaning of “true” — but also of inflectional morphology such as recovering
the meaning of “presented” if the morphemes “present” and “ed” are in the model’s vo-
cabulary.

Another motivating example is representing new words arising from word for-
mation, such as “marvelicious”. Although never having seen the word before, a native
speaker is able to guess that the underlying meaning is related to that of “marvelous”
and perhaps “delicious”. Closely related is representing misspelled forms of words which
might be absent in training corpora such as Wikipedia but might be common in down-
stream applications such as sentiment classification on social media.

Finally, a model that is aware of subword information is not only able to repre-
sent words unseen at training time, but can potentially better represent rare words through
information sharing with more frequent words or forms, such as the rarer adjective “con-
stitutive” sharing information with the more frequent verb “constitutes”.

fastText (BOJANOWSKI et al., 2017) addresses these issues in the Skip-gram
word2vec model by representing a word by the sum of a unique vector and a set of shared
character n-grams (from hereon simply referred to as n-grams) vectors. This addresses
both issues above as learned information is shared through the n-gram vectors and from
these OOV word representations can be constructed.

The LexVec objective is modified such that a word’s vector is the sum of all its
subword vectors. We compare 1) the use of n-gram subwords, like fastText, and 2) unsu-

pervised morphemes identified using Morfessor (VIRPIOJA et al., 2013) to learn whether
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more linguistically motivated subwords offer any advantage over simple n-grams.
Given a set of subwords S, for a word w, we follow fastText and replace W,, in

Equation (3.1) by W} :

Ww W + Qhash(s (322)
1Su] +1 ] + 1 SEZS:

such that a word is the sum of its word vector and its d-dimensional subword vectors ¢,.

The number of possible subwords is very large so the function hash(s)* hashes a subword

to the interval [1, buckets|. For OOV words,
, 1
Wi =2 D Ghash(s) (3.23)

We compare two types of subwords: simple n-grams (like fastText) and unsu-
pervised morphemes. For example, given the word “cat”, we mark beginning and end
with angled brackets and use all n-grams of length 3 to 6 as subwords, yielding S.,, =
{(ca, at), cat}. Morfessor (VIRPIOJA et al., 2013) is used to probabilistically segment
words into morphemes. The Morfessor model is trained using raw text so it is entirely

unsupervised. For the word “subsequent”, we get Sgbsequent = { (Sub, sequent) }.

3.7 Conclusion

In this chapter, we defined the set of principled reconstruction error weighting
properties and used these to design the LexVec model, also showing how existing models
fit into this framework. We then made a series of refinements — positional information,
subwords, and scalability — to the LexVec model. With its explicit access to the underlying
PMI matrix being factorized, we have the necessary instrument for our investigation into

the role of negative information in word embedding models to follow in Chapters 5 and 6.

“http://www.isthe.com/chongo/tech/comp/fnv/
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4 EVALUATION

We study in this chapter whether LexVec, which follows the principled recon-
struction error weighting properties, closes the performance gap between counting and
predictive methods in intrinsic and downstream evaluations. In Section 4.1, we compare
the base LexVec model, with no positional or subword information and no hyperparam-
eter tuning, to Skip-gram, GloVe, and SVD models (in answer to Q2). We then look at
how positional information affects task performance Section 4.1.2.2 (in answer to Q4).
Next, in Section 4.2, we evaluate whether the highly-scalable external memory variant
does indeed approximate the standard in-memory model (in answer to Q3). Section 4.3
compares different types of subwords and their impact on task performance (in answer to
Q5 and Q6). In Section 4.4, we compare the downstream task performance of LexVec and
popular word embeddings models (in answer to QS8). Finally, in Section 4.5, we study in
what tasks static word embeddings remain competitive (or not) with Transformer models

(in answer to Q9 and Q10).

4.1 Base Model

4.1.1 Materials

Unless otherwise noted, all models were trained on a dump of Wikipedia from
June 2015, split into sentences, with punctuation removed, numbers converted to words,
and lower-cased. Words with less than 100 counts were removed, resulting in a vocabulary
of 303,517 words. All models generate embeddings of 300 dimensions.

The PPMI matrix used by both PPMI-SVD and LexVec was constructed using
smoothing of a.4s = .75 and a fixed window of size 2. Subsampling of the corpus
is adopted for PPMI and Skip-gram with threshold of ¢ = 107°. Additionally, Skip-
gram uses 5 negative samples, a window of size 10, for 5 iterations with initial learning
rate set to the default 0.025. We run LexVec and Skip-gram for 5 iterations over the
training corpus. Both LexVec and Skip-gram use «ay,,, = .75 for the negative sampling
distribution. GloVe is run with a window of size 10, x,,,, = 100, 8 = .75, for 50
iterations and initial learning rate of 0.05.

All methods generate both word and context matrices (W and C): W is used for
LexVec, Skip-gram, PPMI-SVD and W + C for GloVe.
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4.1.2 Results

Table 4.1 — Spearman rank correlation on word similarity tasks.

model SimLex RW WS-S WS-R MEN MTurk Mean
PPMI-SVD 30.3 42.7 72.9 61.2 73.1 627 572
GloVe 33.8 40.0 71.5 623 736 643 57.6
Skip-gram 33.9 46.5 77.1 65.7 763 67.5 61.2
LexVec 33.6 45.8 76.4 659 76.0 65.5 60.5

LexVec (Pos) 358 464 744 619 744 64.5 595

Table 4.2 — Results on word analogy tasks, given as percent accuracy.

model GSem GSyn MSR Mean
PPMI-SVD 46.0 445 303 402
GloVe 818 630 539 663
Skip-gram 773 642 48.1 632
LexVec 794 543 378 572

LexVec (Pos) 80.8 632 49.6 64.5

4.1.2.1 LexVec

Results for word similarity and for the analogy tasks are given in Tables 4.1
and 4.2, respectively. Compared with PPMI-SVD, LexVec performs better in all tasks.
As they factorize the same PPMI matrix, PPMI-SVD’s lower performance must be due
to uniform loss weights. LexVec is competitive with Skip-gram in several word simi-
larity tasks. It outperforms Skip-gram on the semantic analogy task, nearly approaching
GloVe’s performance. LexVec’s poor syntactic analogy performance is a result of the
PPMI transformation (PPMI-SVD also struggled with syntactic analogies more than any
other task), which is remedied in sections Sections 4.1.2.2 and 5.1.1 with the use of posi-
tional contexts and alternative PMI transformations.

LexVec outperforms GloVe on all but one word similarity task. Of particular note
is the large improvement on the RW dataset when compared to GloVe. As will be further
explored in Chapter 6, the incorporation of negative information is crucial to strong rare
word representations. Overall, LexVec closes the gap in word similarity performance
between GloVe and Skip-gram, or equivalently, between counting and predictive methods.

Results for the fMRI task are shown in Table 4.3. Although Skip-gram has the

highest mean accuracy, we observe that there is no best model for all subjects, which
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Table 4.3 — Leave-two out cross-validation results on the fMRI task. Numbers are percent

accuracy.
model 1 2 3 4 5 6 7 8 9 Mean
PPMI-SVD 88.5 76.0 76.1 91.2 780 747 768 688 76.7 718.5
GloVe 89.5 744 83.1 89.0 763 673 683 753 753 77.6
Skip-gram 904 769 80.9 906 74.1 72.1 80.7 660 777 789
LexVec 879 78.0 79.0 889 782 70.7 672 64.1 724 763

LexVec (Pos) 89.4 759 799 89.6 727 745 639 650 747 76.2

makes it hard to nominate a single best model. Similar non-unanimity was observed in
Abnar et al. (2018). Abnar et al. (2018) and Branco et al. (2020) report strong results
on this task with embeddings trained using syntactic dependencies as contexts. Training

LexVec using syntactic dependencies is an interesting experiment for future work.

4.1.2.2 Positional Contexts

Positional contexts improved performance in both similarity (Table 4.1) and anal-
ogy tasks (Table 4.2). Their use significantly improved LexVec’s performance on syntac-
tic analogies. This confirms the relevance of using positional contexts to capture syntactic

information.

4.2 Scaling using External Memory

4.2.1 Materials

We use the same setup and LexVec models as in Section 4.1, but now train external

memory (EM) variants.

4.2.2 Results

Results are shown in Tables 4.4 and 4.5. The external memory implementation
very closely approximates the standard variant (without the use of external memory),
which was expected given that they minimize the exact same loss function. There is,
however, a small gap in performance in favor of the standard variant. We attribute this

to the subsampling that the standard variant performs in each iteration: in each pass over
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Table 4.4 — Spearman rank correlation on word similarity tasks when using the external memory

LexVec.
model SimLex RW WS-S WS-R MEN MTurk
LexVec 33.6 45.8 76.4 659 76.0 65.5
LexVec EM 323 444 74.4 62.1 73.0 61.9
LexVec (Pos) 35.8 464 74.4 619 744 64.5

LexVec EM (Pos) 35.6 456 76.1 62.2 74.0 63.6

Table 4.5 — Results on word analogy tasks, given as percent accuracy when using the external
memory LexVec.

model GSem GSyn MSR
LexVec 794 543 378
LexVec EM 76.0 52.8 33.8
LexVec (Pos) 80.8 63.2 49.6

LexVec EM (Pos) 783 61.1 45.6

the training corpus, subsampling is performed, meaning that the (w, ¢) pairs seen over
each pass are likely to differ. The external memory variant sees the same (w, ¢) pairs in
each iteration as were seen during cooccurrence matrix construction, thus SGD steps are

performed on a smaller set of pairs than are performed by the standard variant.

4.3 Subwords

Our experiments aim to measure if the incorporation of subword information into
LexVec results in similar improvements as observed in moving from Skip-gram to fast-
Text, and whether unsupervised morphemes offer any advantage over n-grams. For IV
words, we perform intrinsic evaluation via word similarity and word analogy tasks. OOV

word representation is tested through qualitative nearest-neighbor analysis.

4.3.1 Materials

Model parameters are identical to those in Section 4.1, but use only LexVec with
positional contexts. Morfessor is trained on that same vocabulary of 303, 517 words.

Subword models include (1) LexVec using n-grams (LV-N) (2) LexVec using un-
supervised morphemes (LV-M) (3) fastText (FT) trained using the reference implementa-

tion! of fastText with the hyper-parameters given by Bojanowski et al. (2017) (window =

Thttps://github.com/facebookresearch/fastText
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5, initial learning rate = .025, subsampling = 10~*, negative samples = 5).

All five models are run for 5 iterations over the training corpus and generate 300
dimensional word representations. LV-N, LV-M, and FT use 2000000 buckets when hash-
ing subwords.

Finally, we use LV-N, LV-M, and FT to generate OOV word representations for
the following words: 1) “hellooo”: a greeting commonly used in instant messaging which
emphasizes a syllable. 2) “marvelicious”: a made-up word obtained by merging “mar-
velous” and “delicious”. 3) “louisana”: a misspelling of the proper name “Louisiana”. 4)

“rereread”: recursive use of prefix “re”. 5) “tuzread”: made-up prefix “tuz”.

4.3.2 Results

Table 4.6 — Spearman rank correlation on word similarity tasks when incorporating subword

information.
model SimLex RW WS-S WS-R MEN MTurk
FT 36.7 50.0 78.1 65.7 75.5 65.1
Skip-gram 37.1 48.1 788 66.8 76.0 66.7
LexVec 359 46.1 74.8 61.2 748 64.0

LexVec Morphs 36.6 479 746 61.2 74.6 62.8
LexVec n-gram 374 522 750 61.7 753 63.9

Table 4.7 — Results on word analogy tasks, given as percent accuracy when incorporating
subword information.

model GSem GSyn MSR
FT 770 711  59.6
Skip-gram 789 682 57.8
LexVec 80.7 62.8 49.6

LexVec Morphs 80.7 63.8 538
LexVec n-gram 73.8 68.6 55.0

Results for in-vocabulary evaluation are shown in Tables 4.6 and 4.7. Like in FT,
the use of subword information in both LV-N and LV-M results in 1) better representation
of rare words, as evidenced by the increase in RW correlation, and 2) significant improve-
ment on the GSyn and MSR tasks, in evidence of subwords encoding information about a
word’s syntactic function (the suffix “ly”, for example, suggests an adverb). There seems
to be a trade-off between capturing semantics and syntax as in both LV-N and FT there

is an accompanying decrease on the GSem tasks in exchange for gains on the GSyn and
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Table 4.8 — We generate vectors for OOV using subword information and search for the nearest
(cosine distance) words in the embedding space. The LV-M segmentation for each word is:
{(hell, o, 0, 0} }, {(marvel, i, cious) }, {(louis, ana) }, {(re, re, read) }, {( tu, z, read) }. We omit
the LV-N and FT n-grams as they are trivial and too numerous to list.

Word Model 5 Nearest Neighbors
LV-N hellogoodbye, hello, helloworld, helloween, helluva
“hellooo” LV-M Kkitsos, finos, neros, nonono, theodoroi

FT hello, helloworld, hellogoodbye, helloween, joegazz

LV-N delicious, marveled, marveling, licious, marvellous
“marvelicious” LV-M marveling, marvelously, marveled, marvelled, loquacious
FT delicious, deliciously, marveling, licious, marvelman

LV-N luisana, pisana, belisana, chiisana, rosana
“louisana” LV-M louisy, louises, louison, louiseville, louisiade
FT luisana, louisa, belisana, anabella, rosana

LV-N reread, rereading, read, writeread, rerecord
“rereread” LV-M alread, carreer, whiteread, unremarked, oread
FT reread, rereading, read, reiterate, writeread

LV-N tuzi, tuz, tuzla, prizren, momchilgrad, studenica
“tuzread” LV-M tuzluca, paczk, goldsztajn, belzberg, yizkor
FT  pazaryeri, tufanbeyli, yenipazar, leskovac, berovo

MSR tasks. Morphological segmentation in LV-M appears to favor syntax less strongly
than do simple n-grams.

In OOV representation (Table 4.8), LV-N and FT work almost identically, as is
to be expected. Both find highly coherent neighbors for the words “hellooo”, “marve-
licious”, and “rereread”. Interestingly, the misspelling of “louisana” leads to coherent
name-like neighbors, although none is the expected correct spelling “louisiana”. All mod-
els stumble on the made-up prefix “tuz”. A possible fix would be to downweight very rare
subwords in the vector summation. LV-M is less robust than LV-N and FT on this task as
it is highly sensitive to incorrect segmentation, exemplified in the “hellooo” example.

Finally, we see that nearest-neighbors are a mixture of similarly pre/suffixed words.
If these pre/suffixes are semantic, the neighbors are semantically related, else if syntactic
they have similar syntactic function. This suggests that it should be possible to get tunable
representations which are more driven by semantics or syntax by a weighted summation
of subword vectors, given we can identify whether a pre/suffix is semantic or syntactic in
nature and weight them accordingly. Such identification might be possible without super-
vision using corpus statistics as syntactic subwords are likely to be more frequent, and so

could be down-weighted for more semantic representations.
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In summary, like fastText, subword LexVec learns better representations for rare
words than its word-level counterpart. All models generated coherent representations

for OOV words, with simple n-grams demonstrating more robustness than unsupervised

morphemes.

4.4 Downstream Performance

4.4.1 Hyperparameter Selection

Table 4.9 — Hyperparameter search on the SSTS dev set. Unless otherwise specified, models use
PPMI, Ir = 2.5e-2, positional contexts and cv.qs = 1.

model SSTS5 Dev
LexVec arpgs = .75 40.9
LexVec 41.0
LexVec -Pos 40.6
LexVec NNEGPMI 40.5
LexVec NPMI 40.3
LexVec CPMI(-2) 41.3
LexVec CPMI(-2) Ir = 2e-4 40.0
LexVec CPMI(-2) Ir = 1e-3 41.0
LexVec CPMI(-2) Ir = be-3 41.6

Before performing evaluation on sequence tasks, we perform hyperparameter se-
lection using LexVec models trained on the same Wikipedia corpus as in Section 4.1.
We use this training corpus because training multiple models on the much larger corpus
(Common Crawl) used later in this section would be prohibitive. As the target task, we
select the most difficult classification task in the SentEval suite: SST-5.

We first consider whether or not to use context distribution smoothing (CDS) of
the PPMI matrix. Results are marginally better without CDS. Throughout the rest of this
thesis, we do not use CDS. We then consider whether or not to use positional contexts.
There is a performance drop when not using positional contexts. Next we evaluate dif-
ferent PMI variants. C'PMI(—2) outperforms all other variants. Finally, we tune the
learning rate from values in {2e-4, le-3, be-3,2.5e-2}. Higher learning rates are not re-

ported since they caused SGD to diverge. 5e-3 is the top performer.
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4.4.2 Materials

We train two external memory Lex Vec models, with and without subwords, on the
publicly available Common Crawl? dump from 2016 published by the WMT group®. We
perform no preprocessing of any kind other than tokenization using the spaCy toolkit*.
The resulting corpus has a total of 65 billions tokens. We restrict the vocabulary to the
2 million most frequent words. Aside from the hyperparameters selected in the previous
section, we use the same configuration from Section 4.1, except for the number of negative
samples which is decreased to 3 to reduce training time. For subword LexVec, we had to
reduce the learning rate to le-3 to keep SGD from diverging. Character n-grams of size 3-
6 were used as subwords. Both models were trained for 5 iterations. We refer to the model
without subwords as LexVec-65B and to the model with subwords as SubLexVec-65B.

For comparison, we use publicly available word embeddings trained on similarly
large corpora: (1) GoogleNews>: Skip-gram embeddings trained on 100B word Google-
News corpus. (2) GloVe-840B®: GloVe embeddings trained on a 840B Common Crawl
dump. (3) fastText-630B’: fastText Continuous Bag of Words (CBOW) embeddings us-
ing positional embeddings, trained on a carefully preprocessed Common Crawl dump
containing 630B tokens. All vectors are 300-dimensional.

Our models are trained on a corpus are more than 10x smaller than the corpora on
which GloVe and fastText were trained. As evidenced in Mikolov et al. (2018), both in-
trinsic and downstream performance increase with training corpus size, making the com-
parison between these and our LexVec models trained on much smaller corpora unfair.
However, the LexVec results presented here serve as a lower bound on performance, and
as we will see, already show that Lex Vec outperforms the GoogleNews and GloVe vectors
on most tasks, and is competitive with the fastText vectors on many tasks.

Classifiers for all SentEval tasks are multilayer perceptrons with a single hidden
layer of 100 units and dropout of 0.1.

POS tagging is performed using FLAIR (AKBIK et al., 2019) with the same
BiLSTM-CREF setup as Huang, Xu and Yu (2015) but using only word embeddings (no

hand-engineered features) as input, trained on the WSJ section of the Penn Treebank

2https://commoncrawl.org/

Shttps://www.statmt.org/wmt18/translation-task.html

“https://spacy.io/

Shttps://code.google.com/archive/p/word2vec/
Ohttps://nlp.stanford.edu/projects/glove/
https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M-subword.zip
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(MARCUS; MARCINKIEWICZ; SANTORINI, 1993).

4.4.3 Merging

In this section, we compare the 5 merging strategies discussed in Section 3.3.1 on
word similarity, word analogy, text classification, NLI, and textual similarity. Results are

shown in Tables 4.10 to 4.14.

Table 4.10 — Comparing merging strategies on word similarity tasks. Numbers are Spearman’s
rank correlation x100.

model SimLex RW WS-S WS-R MEN MTurk Mean
LexVec-63B (Word) 454 49.6 80.9 70.1 79.7 70.8  66.1
LexVec-63B (Sum) 41.2 50.0 80.2 71.7  80.0 73.1 66.0
LexVec-63B (Context-only) 40.8 49.6 79.0 682 779 722  64.6
LexVec-63B (Mean) 42.8 50.5 81.5 73.7 814 733  67.2
LexVec-63B (Concat) 43.1 49.7 79.8 68.4 783 723 653

Table 4.11 — Comparing merging strategies on word analogy tasks. Numbers are percent

accuracy.
model GSem GSyn MSR Mean
LexVec-63B (Word) 742 733 715 73.0
LexVec-63B (Sum) 772 692 67.6 T1.3
LexVec-63B (Context-only) 69.0 67.8 678 68.2
LexVec-63B (Mean) 80,6 71.7 699 741
LexVec-63B (Concat) 726 722 T71.1 71.9

The Mean strategy has the highest mean score on word similarity and analogy
tasks, followed by Word. Preserving word vectors is important in these tasks: Context-

only merging has the lowest score of all strategies.

Table 4.12 — Comparing merging strategies on classification tasks. Numbers are percent accuracy.

model MR CR SUBJ MPQA TREC SST2 SST5 Mean
LexVec-63B (Word) 76.5 782  90.8 87.7 852 814 446 778
LexVec-63B (Sum) 77.0 782 91.6 88.0 83.0 81.7 44.6 717
LexVec-63B (Context-only) 76.9 79.2  91.0 87.8 812 814 438 773
LexVec-63B (Mean) 76.2 793  91.2 87.4 83.6 812 434 775
LexVec-63B (Concat) 771 798 918 88.4 86.6 813 438 784

In classification and NLI, concatenation has the highest scores in 5 of the 9 tasks,
and has the highest mean score. The lowest score comes from using only word vectors,

altogether ignoring values in context vectors.
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Table 4.13 — Comparing merging strategies on NLI tasks. Numbers are percent accuracy.

model SNLI SICK-E Mean
LexVec-63B (Word) 68.8 79.1  74.0
LexVec-63B (Sum) 72.8 77.8  75.3
LexVec-63B (Context-only)  73.5 77.8 757
LexVec-63B (Mean) 71.7 78.6  75.1
LexVec-63B (Concat) 73.0 811 771

Table 4.14 — Comparing merging strategies on textual similarity tasks. Numbers are Pearson’s
correlation coefficient.

model STS12 STS13 STS14 STS15 STS16 Mean
LexVec-63B (Word) 56.2 59.4 59.1 64.0 55.5 588
LexVec-63B (Sum) 58.2 62.0 61.4 64.5 56.5 60.6
LexVec-63B (Context-only) 57.7 61.4 60.3 63.6 552 59.6
LexVec-63B (Mean) 58.2 61.9 61.7 65.3 575 609
LexVec-63B (Concat) 56.9 59.9 59.3 63.5 553  59.0

Table 4.15 — Comparing merging strategies on textual similarity tasks using regression and cosine
(has suffix -Cos). Numbers are Pearson’s correlation coefficient.

model STS-B STS-B-Cos SICK-R SICK-R-Cos
LexVec-63B (Word) 64.0 50.0 79.3 65.8
LexVec-63B (Sum) 66.9 54.0 79.8 69.6
LexVec-63B (Context-only) 67.0 53.0 79.8 69.0
LexVec-63B (Mean) 65.5 53.8 79.7 68.9

LexVec-63B (Concat) 67.6 50.1 82.5 66.6
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In STS12-16, using only word vectors is again the weakest heuristic, and surpris-
ingly Concat is second worst. In these tasks, textual similarity is estimated using the
cosine between sentence embeddings. If we now look at STS-B and SICK-R scores in
Table 4.15, where a regressor is trained when given as input sentence embeddings, Con-
cat is the top scorer. In this same table we also include scores for STS-B and SICK-R
using cosine between sentence embeddings, and the results follow those from STS12-16.
The trend is that the higher dimensional Concat heuristic — 1500d vs. 300d for the other
strategies — should be used when training a classifier/regressor, and the other strategies
should be used otherwise.

Based on these results, we include only Mean and Concat in the evaluations that

follow in this chapter.

4.4.4 Text Classification

Table 4.16 — Percent accuracy on text classification tasks.

model MR CR SUBJ MPQA TREC SST2 SST5 Mean

LexVec-63B (Mean) 76.2 793 91.2 87.4 83.6 812 434 715
LexVec-63B (Concat) 77.1 79.8 91.8 88.4 86.6 81.3 438 78.4
SubLexVec-63B (Mean)  76.6 79.5 91.2 88.0 84.0 805 434 77.6
SubLexVec-63B (Concat) 76.7 79.1 91.9 88.5 894 820 442 788

GoogleNews-100B 77.1 79.1  90.8 88.0 834 803 435 775
GloVe-840B 77.6 79.1 915 87.7 834 817 449 78.0
fastText-630B 782 80.1 921 87.7 8.0 835 46.0 789

Despite being trained on much smaller corpora, results in Table 4.16 show that
both LexVec (Concat) models have higher mean scores than the GoogleNews and GloVe
vectors. The subword LexVec model outperforms fastText on MPQA and TREC tasks,
and has only marginally weaker mean performance. Given a greater computational bud-

get, it would be interesting to train LexVec on larger corpora to see if this gap disappears.

4.4.5 Text Similarity

On STS12-16 results in Table 4.17, the GoogleNews and fastText vectors have
a large advantage over LexVec and GloVe models. However, LexVec (Concat) strat-
egy overtakes GoogleNews on the STS-B and SICK-R tasks and outperforms fastText

on SICK-R when regressors are trained (results in Table 4.18). We conclude that while
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Table 4.17 — Performance on textual similarity tasks using cosine similarity. Numbers are
Pearson’s correlation coefficient x100.

model STS12 STS13 STS14 STS15 STS16 Mean
LexVec-63B (Mean) 58.2 61.9 61.7 65.3 57.5 609
LexVec-63B (Concat) 56.9 59.9 59.3 63.5 553 590

SubLexVec-63B (Mean) 56.1 59.4 57.9 63.0 533 58.0
SubLexVec-63B (Concat) 53.6 56.4 54.1 59.7 49.1 54.6

GoogleNews-100B 54.7 63.3 67.2 69.9 644 639
GloVe-840B 53.1 54.2 55.3 59.9 515 548
fastText-630B 59.1 64.0 66.1 69.8 64.1 64.6

Table 4.18 — Comparing merging strategies on textual similarity tasks using regression and cosine
(has suffix -Cos). Numbers are Pearson’s correlation coefficient x100.

model STS-B STS-B-Cos SICK-R SICK-R-Cos Mean
LexVec-63B (Mean) 65.5 53.8 79.7 689 67.0
LexVec-63B (Concat) 67.6 50.1 82.5 66.6 66.7
SubLexVec-63B (Mean) 64.9 49.8 79.8 67.0 654
SubLexVec-63B (Concat) 67.3 45.1 82.1 65.0 649
GoogleNews-100B 64.3 62.1 80.1 70.2 69.2
GloVe-840B 64.7 41.5 79.9 65.1 628
fastText-630B 70.2 58.1 82.0 69.8  70.0

the information necessary for this task is present to a higher degree in LexVec (Con-
cat) when compared to GoogleNews vectors, this information is better recovered with a
trained neural network, whereas recovery using sentence embedding cosine similarity is

less effective.

4.4.6 Syntactic Tasks

Table 4.19 — Results on POS tagging and syntactic probing tasks. All numbers represent percent

accuracy.
model POS Dep TopC Mean
LexVec-63B (Mean) 96.8 333 62.6 642

LexVec-63B (Concat) 969 36.1 73.6 689
SubLexVec-63B (Mean) 96.8 342 634 64.8
SubLexVec-63B (Concat) 96.8 36.0 72.3 68.3

GoogleNews-100B 92.1 27.0 612 60.1
GloVe-840B 969 356 653 659
fastText-630B 96.8 329 654 65.0

Results for syntactic sequence tasks are presented in Table 4.19. Both Concat
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LexVec models have the highest overall performance. In all these tasks, taggers (POS)
and classifiers (Dep, TopC) are trained. This reiterates the importance of the Concat
strategy, which preserves distinct representations in the input, rather than conflating all
representations in a single vector as with the Mean strategy. This holds for semantic tasks

(Table 4.18), and holds here for syntactic tasks as well.

4.4.7 Natural Language Inference

Table 4.20 — Results on natural language inference tasks. Numbers represent percent accuracy.

model SNLI SICK-E Mean
LexVec-63B (Mean) 71.7 78.6  75.1
LexVec-63B (Concat) 73.0 81.1 77.1

SubLexVec-63B (Mean) 72.0 784 752
SubLexVec-63B (Concat)  73.0 813 77.2

GoogleNews-100B 67.7 792 734
GloVe-840B 71.8 79.0 754
fastText-630B 71.2 79.1 75.2

NLI results are shown in Table 4.20. LexVec (Concat) models dominate these
two tasks by a large margin. Given that fastText achieves higher STS scores than LexVec
(Concat), we attribute LexVec’s leading NLI performance to its leading results in syntactic
tasks. This hypothesis is supported by improvements in SNLI results when incorporating
explicit syntactic information into more sophisticated compositional models (CHEN et

al., 2017).

4.4.8 Facet Ranking

In addition to the LexVec models used in previous sections which were not avail-
able at the time the COSEARCHER paper was published, we include here the SubLex Vec-
Crawl® model which was available and used in that work. SubLexVec-Crawl uses a PPMI
matrix with context distribution smoothing of .75, different preprocessing of the same
CommonCrawl corpus (naive punctuation removal and whitespace tokenization). Results

are shown in Table 4.21.

8<https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.
vectors.gz>


https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz
https://www.dropbox.com/s/mrxn933chn5u37z/lexvec.commoncrawl.ngramsubwords.300d.W.pos.vectors.gz

Table 4.21 — Facet ranking evaluation using precision-at-1 (P@1) and mean reciprocal rank
(MRR) using unsupervised mean bag-of-vectors.

model P@l1 MRR

Train Dev Test Train Dev Test
LexVec-63B (Mean) 79.7 804 765 88.1 882 86.0
LexVec-63B (Concat) 774 788 75.1 86.8 87.3 852

SubLexVec-63B (Mean) 77.0 79.0 73.8 86.5 87.3 84.6
SubLexVec-63B (Concat) 74.5 76.6 71.7 85.0 859 83.2

fastText-630B 81.4 833 80.6 89.2 90.0 88.5
GoogleNews-100B 81.3 80.0 78.7 892 882 874
GloVe-840B 69.8 75.0 682 81.7 849 80.7
SubLexVec-Crawl 83.3 833 80.7 903 89.9 88.6
SBERT-large 98.1 855 855 99.0 91.1 91.2
BERT-large CE 95.8 89.7 91.7 97.6 93.7 95.0

Table 4.22 — Facet ranking evaluation using precision-at-1 (P@1) and mean reciprocal rank
(MRR) using trained deep averaging network (DAN).

model P@1 MRR

Train Dev Test Train Dev Test
LexVec-63B (Mean) 91.2 849 862 950 912 O91.8
LexVec-63B (Concat) 96.7 864 88.7 983 92.1 93.2

SubLexVec-63B (Mean) 909 850 862 948 913 91.7
SubLexVec-63B (Concat) 95.7 86.6 87.7 97.7 922 928

fastText-630B 90.8 859 86.8 948 91.8 92.1
GoogleNews-100B 91.2 86.7 856 950 920 914
GloVe-840B 89.7 835 843 942 904 90.7
SubLex Vec-Crawl 89.8 845 851 942 91.0 91.1
SBERT-large 98.1 855 855 99.0 91.1 912

BERT-large CE 95.8 89.7 91.7 97.6 93.7 95.0
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The SubLexVec-Crawl embeddings outperform all other unsupervised embed-
dings. There is a small gap in performance between its P@1 and that of the SBERT
model, and yet smaller gap in MRR. As an upper bound, we also evaluate a supervised
cross encoder (CE) BERT model which does not generate sentence embeddings, but is
instead trained to calculate score(.) (Equation (2.15)) directly from an input context-facet
pair. This model has a larger performance gap compared to the BoV models.

If the computation cost of score(.) for a single context-facet pair is 7, the number
of turns in a dialogue is p, and the set of candidate facets is C', facet ranking over a whole
dialogue incurs cost O(rp|C|). This makes the CE model prohibitive since it requires
running the entire BERT model (high r) for every context-facet pair and performance
is a crucial aspect of simulation. In contrast, sentence embedding models perform only
O(r(p+ |C|)) computations to generate sentence embeddings for contexts and candidate
facets, making O(rp|C) at ranking time cheap since r is but a cosine between vectors.

In summary, SubLexVec-Crawl vectors were used as rep(.) in Salle et al. (2021)
because (1) the performance gap to the SBERT model is small, in particular for MRR
(2) we hypothesize that being unsupervised will help it generalize to other kinds of facets
(such as search engine keyword suggestions as used in Salle et al. (2021)) which look less
like natural language than do Qulac facets used in our training set.

The gap between the static word embedding models and the Transformer models
decreases further if we allow some supervision. Rather than computing the cosine be-
tween the BoV, we train a Deep Averaging Network (DAN) (IYYER et al., 2015) to com-
pute sentence embeddings which are then used in the cosine computation. A DAN is sim-
ply a sequence of two dimension-preserving tanh feed-forward layers which transform
the input BoV sentence embedding into an output sentence embedding. Results are shown
in Table 4.22. The same phenomenon occurs as in Table 4.15: learning a non-linear trans-
formation of the larger dimensional Concat vectors significantly improves performance.
The improvement is such that both LexVec-63B (Concat) and SubLexVec-63B(Concat)
outperform the SBERT trained using the same data. The BERT cross-encoder is still the
strongest performing model, but in scenarios where cross encoding is prohibitively ex-
pensive and sentence embedding is required, Concat models under a DAN transformation

are a competitive and cheap approach.
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4.5 Comparison to Transformers

Given the recent success of Transformer models in NLP, in this section we inves-
tigate whether static word embeddings (including LexVec) remain competitive in word-

level and sentence-level tasks.

4.5.1 Lexical Semantics

Table 4.23 — Comparing lexical semantic performance between static word embeddings and
contextualized word embeddings on word similarity tasks. Numbers are Spearman rank
correlation x100.

model SimLex RW WS-S WS-R MEN MTurk Mean
LexVec-63B (Mean) 42.8 50.5 81.5 737 814 733 67.2
LexVec-63B (Concat) 43.1 49.7 79.8 684 783 723 653
SubLexVec-63B (Mean) 433 522 81.2 70.8  81.1 71.6  66.7
SubLexVec-63B (Concat) 40.6 48.6 759 60.6 76.2 69.2 618
GoogleNews-100B 442 534 712 63.5 782 684 642
GloVe-840B 40.8 46.2 80.3 68.8 80.5 69.3 64.3
fastText-630B 50.3 59.5 84.0 73.7 84.6 726 70.8
BERT.F4 49.0 370 670 56.0 70.0 59.0 563
BERT.L4 55.0 480 70.0 51.0 69.0 56.0 582
BERT.L 50.0 36.0 63.0 47.0 64.0 520 520

Table 4.24 — Comparing lexical semantic performance between static word embeddings and
contextualized word embeddings on word analogy tasks. Numbers are percent accuracy. Missing
scores are due to Lenci et al. (2021) only reporting aggregate (GSem+GSyn) Google analogy
scores.

model GSem+GSyn GSem GSyn MSR Mean
LexVec-63B (Mean) 75.8 80.6 71.7 699 745
LexVec-63B (Concat) 72.4 726 722 71.1 720
SubLexVec-63B (Mean) 75.1 757 746 740 749
SubLexVec-63B (Concat) 73.3 71.9 745 732 732
GoogleNews-100B 72.8 723 732 725 727
GloVe-840B 76.0 788 737 73,5 755
fastText-630B 82.1 83.1 812 826 823
BERT.F4 38.0 - - 760 57.0
BERT.L4 66.0 550 710 69.0 652
BERT.L 64.0 - - 680 66.0

For lexical semantic tasks, we include BERT results from Lenci et al. (2021). To

compute a non-contextualized representation for BERT, they average the contextualized
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embeddings of a target word across ten or fewer sentences in which the word appears

within a Wikipedia corpus. They report results for 3 variants:

e BERT.F4: the sum of the embeddings from the first four layers;
e BERT.L4: the sum of the embeddings from the last four layers;
e BERT.L: the sum of the embeddings from the last layer;

Word similarity results are shown in Table 4.23. Except for the SimLex dataset, BERT
embeddings underperform static word embeddings in all other datasets by wide margin.
In word analogy evaluations reported in Table 4.24, BERT embeddings have the lowest
average performance.

Lenci et al. (2021) only report distinct semantic/syntactic Google analogy scores
for the BERT.L4 embeddings which has higher aggregate scores than both BERT.F4 and
BERT.L. Even though it is the best of the BERT embeddings on this task, its semantic
analogy score is far below those of the static word embeddings. Although the positive
SimLex and syntactic analogy scores are encouraging, lexical semantics are still domi-
nated by static word embeddings.

Finally, we note that LexVec models are trained on a far smaller training corpus
than the other static word embeddings. As stated in Section 4.4.2, we believe these results

serve as a lower-bound for its performance in lexical semantic tasks.

4.5.2 Sentence Embedding

Table 4.25 — Comparing text classification performance between unsupervised sentence
embeddings using static word embeddings and state-of-the-art sentence embeddings based on
Transformer models. Numbers are percent accuracy.

model MR CR SUBJ MPQA SST2 TREC MRPC Mean

LexVec-63B (Mean) 762 793 912 874 81.2 83.6 723  81.6
LexVec-63B (Concat) 77.1 798  91.8 884 813 86.6 73.5 827
SubLexVec-63B (Mean) 76.6 79.5 91.2 88.0 80.5 84.0 743  82.0
SubLexVec-63B (Concat) 76.7 79.1 91.9 88.5 82.0 89.4 733  83.0

fastText-630B 782 80.1 921 877 835 850 745 83.0
GEM (L.FP) 798 825 938 899 847 914 754 854
S3E (L.EP) 794 814 929 894 835 89.0 756 845
SBERT-large 848 90.5 947  90.6 91.0 882 769 88.1

SRoBERTa-WK-base 858 914 945 89.7 923 91.0 789 89.1

We compare recent state-of-the-art Transformer sentence encoders — Sentence-

BERT (SBERT, Reimers and Gurevych (2019)) and SRoBERTa-WK-base (WANG; KUO,
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Table 4.26 — Comparing textual similarity performance between unsupervised sentence
embeddings using static word embeddings and state-of-the-art sentence embeddings based on
Transformer models. Numbers are Pearson correlation coefficient x100.

model SICK-R STS-B Mean
LexVec-63B (Mean) 79.7 65.5 726
LexVec-63B (Concat) 82.5 67.6 750
SubLexVec-63B (Mean) 79.8 649 724
SubLexVec-63B (Concat) 82.1 67.3 747
fastText-630B 82.0 70.2  76.1
GEM (L.EP) 86.5 784 825
S3E (L.F.P) 84.7 78.6  81.7
SBERT-large 84.7 75.6  80.2
SRoBERTa-WK-base 87.6 80.7 84.2

2020) — to state-of-the-art sentence embeddings based on static word embeddings — GEM
(WANG et al., 2019) and S3E (WANG et al., 2020a) — on the same text classification, NLI,
and textual similarity tasks used previously. Both GEM and S3E use a concatenation of
LexVec, fastText, and PPDB (WIETING et al., 2015) (L.E.P.) as input. As a baseline, we
also include the mean bag of vector sentence embeddings used previously. GEM results
are from Wang et al. (2019), S3E results from Wang et al. (2020a), and SBERT-large and
SRoBERTa-WK-base results from Wang and Kuo (2020). Text classification results are
shown in Table 4.25. As expected, Transformer models dominate most tasks. However,
the gap in average performance is small when compared to GEM, and except for the MR
and CR tasks, the difference is marginal.

This same trend repeats in textual similarity results in Table 4.26, but here the gap
is even smaller. Sentence embedding is more important in these tasks than in text classi-
fication: a common use case for sentence embeddings is dense retrieval where given an
input item (query, passage, etc.) a set of output items (documents, passages, etc.) must be
ranked using some similarity function. Computing an expensive similarity function (such
as a full run of BERT) for every candidate input-output item can be prohibitive when the
number of possible input-output combinations is large. A cheap similarity function such
as the cosine function alleviates this problem. This is the reason the BERT Cross Encoder
(an expensive similarity function) was not used for facet ranking in Section 4.4.8. Ad-
ditionally, embedding inputs and outputs in a common vector space allows for efficient
approximate nearest-neighbors methods (GIONIS et al., 1999; BOHM; BERCHTOLD;
KEIM, 2001; DONG; MOSES; LI, 2011) such that not all output items have to be con-

sidered when searching for most similar results.
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4.6 Conclusion

We performed extensive evaluation of our proposed LexVec model. Results show
that LexVec closes the gap between counting and predictive methods. LexVec is compet-
itive with the state-of-the-art fastText model despite being trained on 13x less data. Ad-
ditionally, we observe that static word embeddings remain competitive with Transformer

models in many tasks, notably outperforming the latter in lexical semantic tasks.
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S SEMANTICS/SYNTAX IN NEGATIVE/POSITIVE INFORMATION

In this chapter, we investigate what kind of information is captured in word vectors
if we exclusively consider nPMI or pPMI values when performing matrix factorization (in
answer to Q11 and Q12). In other words, if all we know is that “word w tends not to occur
with words ¢;, . . ., ¢;” (nPMI, remove “not” for similar statement about pPMI), what can
we learn about w? This can help us train better models, but perhaps more importantly,

improve our understanding of natural language.

5.1 Materials

Models: In order to identify the role that nPMI and pPMI play in distributional

semantics, we train two LexVec models:

e one that only considers negative information, nPMI, i.e., any pair in pPMI is skipped
during factorization, or equivalently, Arc,ve. = 0 if (w, c) € pPMI, and
e one model that only considers positive information, pPMI, i.e., any pair in nPMI is

skipped during factorization, or equivalently Aj..ve. = 0 if (w,c) € nPMI.

We compare these to models that include both negative and positive information (nPMI U
pPMTI) to see how the two interact. To account for values in mnPMI, we use the four PMI
variants described in Section 2.2: PPMI, CPMI(-2), NPMI, NNEGPMI.

We use the following LexVec configuration for all PMI variants: window size
[ = 5, embedding dimension of 300, 5 negative samples, no positional contexts, learning
rate of 0.025, no subword information, no context distribution smoothing, and negative
distribution power p,,, = 0.75.

For all experiments, we use the English Wikipedia corpus described in Section 2.2,
resulting in the same underlying M ;5 matrix for all models.

For comparison, we include results for a randomly initialized, untrained embed-
ding to establish task baselines.

Semantic tasks: To evaluate word-level semantics, we use the SimLex and Rare
Word (RW) word similarity datasets. To evaluate word analogies, we use the Google
Semantic (GSem) analogies. We evaluate sentence-level semantics on STS Benchmark.

Syntactic tasks: Similarly, we use the Google Syntactic analogies (GSyn) and

MRS syntactic analogies to evaluate word-level syntactic information. Google Syntactic
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analogies are in fact morphological but many categories test for POS relations and are
therefore syntactic in nature. We employ the Depth (Dep) and Top Constituents (TopC)
(of the input sentence’s constituent parse tree) probing tasks from SentEval to evaluate

sentence-level syntax. Our final syntactic task is part-of-speech (POS) tagging.

5.1.1 Results

Table 5.1 — Performance on tasks focused on semantics or syntax by models that use only
positive information (p*), negative information (n*), or both (no prefix), and the random baseline.
Using negative information alone performs far better than the random baseline, especially on the
syntactic tasks. Metrics: Spearman rank correlation (x100) for SimLex and RW word similarity;
Pearson correlation for STS-B; % accuracy for GSem/GSyn/MSR word analogies, POS tagging
and WC, Dep, TopC probing tasks. Best result for each column in bold, second best underlined.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC
pPPMI 37.0 40.1 588 654 527 351 920 27.1 304
nPPMI 40 1.8 0.0 48.6 0.0 0.0 163 179 5.0
nCPMI(-2) 226 252 183 414 245 183 90.6 329 33.7
nNPMI 9.9 21.8 82 383 9.6 5.8 89.0 31.1 323
PPMI 340 453 765 61.6 551 367 91.7 255 26.6
CPMI(-2) 340 418 784 619 58.7 42.6 922 273 284
NPMI 2600 394 600 60.6 444 302 914 263 279
NNEGPMI 340 430 783 61.7 563 39.8 92.0 25.1 263
Random 40 1.9 0.0 453 0.0 0.0 59.1 17.9 5.0

The results shown in Table 5.1 provide insights into the role of negative and posi-
tive PMI for capturing semantic and syntactic information.

Negative PMI: The nPPMI model is almost identical to the random baseline;
this is to be expected as random initialization gives in expectation perpendicular vectors
or equivalently dot products equal to zero, and if the only learning signal is to make
dot products equal to zero nothing changes. The other nPMI models (nCPMI(—2) and
nPMI) exhibit more interesting behavior. They perform similarly to all others in POS
tagging and both syntactic probing tasks (Dep and TopC), but very poorly on all semantic
tasks, suggesting that nPMI mostly encodes syntactic information. Our hypothesis to
explain this phenomenon is that the grammar that generates language implicitly creates
negative cooccurrence and so nPMI encodes this syntactic information. Interestingly, this
idea creates a bridge between distributional semantics and the argument by Regier and

Gahl (2004), Foraker et al. (2009) that indirect negative evidence might play an important
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role in human language acquisition of grammar.

Positive PMI: The pPPMI model which accounts for only values in pPMI per-
forms similarly to the full spectrum models on most tasks, clearly indicating that pPMI
encodes both semantic and syntactic information.

Why incorporate nPMI? pPPM]I falters on the RW and analogy tasks, and ac-
counting for nPMI significantly improves performance on both tasks. Section 6.3 explores
how increasing the relative importance of negative information increases rank invariance
in the word vectors and improves results on both these tasks relative to using only pPMI.

Full spectrum models: Of the models which account for all PMI values (nPMI U
pPMTI), the PPMI, CPMI_,, and NNEGPMI models perform similarly, whereas the
NPMI model is significantly worse on nearly all tasks. We thus conclude that accounting
for scale in the positive spectrum is more important than in the negative spectrum.

Collapsing the negative spectrum: The PPMI model, which collapses the nega-
tive spectrum to zero, performs almost identically to the CPMI_, and NNEGPMI mod-
els that account for the range of negative values. We believe this is because the set
nPMI \ mnPMI, which contains the collapsed values, is much smaller than nPMI (in
PMTI 15, 483 times smaller) because of the sparsity of the underlying cooccurrence ma-

trix, thus almost all negative information is in mnPMI: nPMI ~ mnNPMI.

5.2 Conclusion

In this chapter, we isolated the effects of negative and positive information on
word embeddings. Results show that only accounting for positive information strongly
captures both semantics and syntax, whereas using only negative information captures

little of semantics but a surprising amount of syntactic information.
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6 NEGATIVE INFORMATION AND GEOMETRY

One hypothesis related to negative information is that it helps to “scatter’” unre-
lated words in the vector space (SALLE; VILLAVICENCIO; IDIART, 2016). As we will
show, this scattering does indeed happen between words and contexts, but surprisingly
the opposite happens between words since they are pulled together in space. In this chap-
ter, we first study whether increasing the number of negative samples in the LexVec and
Skip-gram models does indeed increase the relative importance of negative information
(Section 6.1). Confirming this to be true, we investigate the effect of increasing nega-
tive information on the geometry of LexVec (Section 6.3) and of other word embedding

models (Section 6.4), in answer to Q13.

6.1 Increasing relative weight of negative information

In our study, we need a way to gradually increase the loss weights in the negative
spectrum of PMI, Are,ve. for (w,c) € nPMI, relative to pairs in the positive spectrum,
(w,c) € pPMI, to identify how increasing the relative importance of negative informa-
tion affects the geometry of word vector spaces. Window sampling weights A\, are fixed
given the data, so the only control we have over Ar.,ve. is k, the number of negative
samples. We need to show that increasing the number of negative samples in the LexVec
factorization increases the relative weight of negative information.

To show this, we sample 10° values from C'PMI(—2),i5 using window sam-
pling and negative sampling and plot the distribution of these values in Figure 6.1. This
plot shows the reconstruction error weights A, different sampling regimes assign to dif-
ferent PMI values. For example, the peak at —2 tells us that negative sampling weights
Ans Will be higher for (w, ¢) pairs in nPMI than for (w, ¢) pairs in pPMI. The opposite
is observed for window sampling weights, which assign more weight to values in pPMI.
Table 6.1 shows this same result by aggregating values in Figure 6.1.

These results confirm that, as the number of negative samples is increased, so is
the relative weight of negative information in the factorization. This enables us to use the
LexVec model to investigate the impact of increasing negative information on resulting

word vector geometry.
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Figure 6.1 — The distribution (bin width equal to 0.2) of sampled CPMI ;5 (—2) values when
using window sampling and negative sampling. Histogram from Figure 3.2 included for
comparison. These window sampling and negative sampling distributions of PMI values

correspond to the reconstruction error weights Ay s, Ans in Equation (3.8) as a function of PMI.

Negative sampling assigns high weights to values in nPMI, and window sampling to values in
pPML
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Table 6.1 — Set (rows) membership of samples for various sampling methods (columns). Cell
values are the percentage of samples for a given method that fall within a set, such that
nPMI+pPMI sum to 100. Full: computed over all cells in PM I,,;x;5. Hist: computed over the
same 10° sampled pairs plotted in Figure 3.2. WS and NS: computed over the same 10° sampled
pairs used in Figure 6.1 using window sampling (ws) and negative sampling (ns). Observe that
window sampling is heavily skewed towards pairs in pPMI, and negative sampling heavily
skewed towards pairs in nPMI.

Name Set Full Hist WS NS

nPMI: Negative {(w,c) | PMI,.<0} 9927 2224 1935 81.75
information
pPMI:  Positive {(w,c) | PMI,.>0} 0.73 77.76 80.65 18.25
information

mnPMI: {(w,c) | My, =0} 99.07 0.00 0.00 51.33
Maximally-

negative informa-

tion

{(w,e) |PMI,. <0

0.21 2224 1935 30.42
A Mye.>0}

nPMI\mnPMI:
Collapsed nega-
tive information

under PPMI
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6.2 Materials

Here we describe the LexVec models and tasks used in our investigations into
vector space geometry.

Increasing negative samples: As shown in Section 6.1, when using both window
sampling and negative sampling, increasing the number of negative samples effectively
increases the relative importance of negative information. We use the default LexVec
setting in which both nPMI and pPMI are used (no steps are skipped), and increase the
number of negative samples from O to 1, 2, 4, 5, 10, 15, and 20. We focus on CPMI(—2)
since as described in Section 2.2 it closely mimics the measure of ultimate interest which
is PMI.

Geometry x frequency: To understand how increased negative sampling affects
the geometry of words of different frequencies, we evaluate performance using SimLex
(which consists of frequent words) and RW (which consists of frequent-rare word) word
similarity datasets. To perform the same frequency analysis on analogies, we order the
analogies in the analogy datasets by the highest rank of any of the words in each analogy.
We take the first 10% and last 10% analogies to create frequent (GSemF, GSynF, MSRF)
and rare (GSemR, GSynR, MSRR) word analogy datasets, respectively, with * and **
variants when heuristics are excluded as described above. Table B.1 in the Appendix

gives percentile rank statistics for all datasets we use in this chapter.

6.3 Results

Norms: In Figure 6.2, we plot the distribution of vector Ly norms for 100 words
sampled from different frequency buckets for LexVec models using 0, 5, and 20 negative
samples (LV-k denote the model with k negative samples). We use the same buckets as
Mimno and Thompson (2017), indexing words by inverse frequency (most frequent first),
0-100, 100-500, 500-5000, 5000-70000, and defining an additional bucket 70000-300000
for extremely rare words. With an increasing number of negative samples, the relative
weight of negative information is increased, and vectors norms become rank invariant;
the means of the different buckets becomes increasingly closer and variance decreases as
negative samples are increased.

Direction: In Figure 6.3, we perform the experiment of Mimno and Thompson

(2017), where using the same sampled words and frequency buckets as in Figure 6.2, we
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Figure 6.2 — The distribution of vector Lo norms for 100 words sampled from various frequency

buckets for LexVec models using 0, 5, and 20 negative samples (LV-0, LV-5, LV-20). As the

number of negative samples increases, the norms become more rank invariant, with means of the
different buckets becoming increasingly closer and variance decreasing. The norm distributions
for Skip-gram, GloVe, and SVD are shown for comparison.
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Figure 6.3 — In solid lines, the distributions of cosines (Equation (2.11)) of word vectors from
different frequency buckets with the mean vector of word vectors from all buckets, and in dashed
lines the distributions of cosines of context vectors from different frequency buckets with this
same mean word vector. As the number of negative samples increases, word vectors increasingly
point in the same direction and word-context vectors point in the opposite direction.
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calculate the mean vector of all sampled words from all buckets, and plot the distribution
of the cosine (Equation (2.11)) of sampled word vectors (solid line) and corresponding
context vectors (dashed lines) with this mean vector. Here we observe that as the number
of negative samples increases, word vectors increasingly point in the same direction, and
context vectors point in opposite directions. As a preface to Section 6.4.2, these are the
same effects observed by Mimno and Thompson (2017) for the Skip-gram model.

Nearest neighbors: We perform qualitative analysis of nearest neighbors of words
sampled from SimLex in Table 6.2 and RW in Table 6.3, where neighbors are ordered by
descending cosine similarity (Equation (2.11)) — similarity decreases from left to right —
and subscripts denote the percentile rank of a word (0.0 is most frequent word, 100.0 is
rarest).

In both the LV-0 and LV-20 model, frequent words have semantically related, fre-
quent word neighbors, showing that increasing negative information has no effect on se-
mantic similarity of frequent words. Results change completely with rare words, where
LV-0 neighbors are rare words and — barring a few exceptions — have no obvious seman-

299

tic connection to the target word, e.g., “monocultures’™’s (an agricultural practice) nearest
neighbor is “fieldensis” (a species of arthropod). With the LV-20 model, on the other hand,
the neighbors of target rare words are generally of higher frequency than the targets, and
have clear semantic relations, as with “monocultures” and “monoculture” (singular) or
“seedlings” (young plants). Qualitatively, and as we will see in the next section, quanti-
tatively, increasing the importance of negative information has a very positive impact on
the representation of rare words.

Word similarity tasks: Shown in Figure 6.4a, results on RW improve consis-
tently as the number of negative samples is increased. There is a small but consistent drop
in performance on SimlLex when increasing the number of negative samples. Looking
at the SimLex nearest neighbor examples in Table 6.2, the semantic similarities are in-
distinguishable between the LV-0 and LV-20 models, even though the LV-0 model has a
marginally higher SimLex score. We tested the WS353 word similarity dataset (FINKEL-
STEIN et al., 2001), split into relatedness (WSRel) and similarity (WSSim), to see if this
drop on SimLex scores, which measures similarity, is due to an increase in relatedness;
that is, if related pairs such as (psychology,Freud) are being drawn closer together in
space to the detriment of semantically similar pairs such as (psychology,psychiatry). We
observe in Figure 6.4a that relatedness scores in WSRel do indeed increase, and that there

is a small drop in similarity scores in WSSim. This suggests that as relatedness increases
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Table 6.2 — Nearest neighbors of words sampled from SimLex. Subscripts denote the percentile
rank of a word (0.0 is most frequent word, 100.0 is rarest). All models exhibit semantically
coherent neighbors, with the exception of the SG model which has some unrelated intruders,
notably for the word “interest”.

word model neighbors

interest g3 LV-0 interests 1,9, conflict ¢ 5, interested ¢ 7, scientific ¢ s, partic-
ular ¢ 3, expertise 3.3, reason ¢, wizardimps 7.2, attention
0.5, desire 13

LV-20 interests 1.9, interested o7, scientific ¢, attention g5, par-
ticular ¢3, conflict ¢ 5, focus g5, concerned 1, nature ¢4,
piqued 26.1

SG bshsu gg.2, conflict ¢ 5, btheeuropeanlibrary g7.6, bwral 5.5,

bepochtimes 41 4, richarddawkins 74,5, thegauntlet 73, in-
terested ¢.7, wizardimps 7.2, towsonedu 95,1

GloVe interests 1, interested ¢7, concern g9, attention ¢ s, focus
0.5, knowledge 5, conflict ¢ 5, influence ¢, involvement
1.2, subject g.2

SVD interests 1, interested (7, attention g5, substantial 1,
share 7, own ¢, credit ¢g, benefit 19, debt 1, financial

0.5

cup ¢.1 LV-0  champions ¢ 5, uefa 1.3, championship ¢, cups 2.7, league
0.1, finals ¢7, trophy 1.1, tournament ¢4, fifa 11, champi-
onships g3

LV-20 champions ¢ 5, cups 2.7, championship ¢ 2, trophy 1.1, finals
0.7, league .1, competitions g9, runners j.s, SCOrer ., tour-
nament (4
SG cups 2.7, champions ¢ 5, championship g3, finals ¢ 7, trophy
1.1, league o1, supercup gs, uefa 1.3, scorers 47, intertoto
12.4
GloVe championship g2, cups 2.7, champions ¢ 5, tournament ¢4,
league ¢.1, uefa 1 3, finals 7, championships g3, trophy 1.1,
matches ¢4
SVD  runners 1.5, nextseason 49, champions g5, prevseason 4.9,
cups 2.7, SCOrers 47, competitions g9, scorer 22, fifa 11,
matches ¢4

soul g9 LV-0 love g2, blues ¢g, heaven 1.5, funk 57, album ¢ 1, mind ¢,
spirit ¢.g, souls 3,9, god ¢.4, gospel 1.6
LV-20 heaven 15, funk 57, love (2, essence 3,9, souls 3,9, mind o5,
eternal 5 5, forever 1.7, spirit o8, dreams 1.6
SG soulful 11,9, funk 57, love (2, heaven 5, blues (g, essence
3.0, funky .1, souls 3,9, temptations ¢ 3, changeless g9 4
GloVe blues g8, funk 57, mind ¢.5, hop 1.1, hip 1.0, love 9.2, rap 2.1,
spirit o.8, pop ¢.4, heaven 15

SVD  heaven 15, forever 17, dreams 14, eternal 55, dream g9,
love ¢.2, souls 3,9, funk 57, spirit o8, destiny 39
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Table 6.3 — Same as Table 6.2, but with words sampled from RW. LV-0 neighbors have no clear
semantic connection to the target word. In the LV-20 model, have clear semantic relations to the
targets. GloVe behaves like LV-0, and Skip-gram and SVD like LV-20.

word

model

neighbors

rooters 77

LV-0

LV-20

SG

GloVe

SVD

sonorella ¢g, bhavas g7, recreative g5, wwwjskscoin og,
wwwlegion ¢s, damsels 44, hassane 72, maniraptorans g9,
abolboda 5, sympycnus 47

cheered 15, cheering 11, howled 73, jubilant ¢, hissed 7s,
bosox g1, mcgreevy s3, rogell g3, jeers 43, mobbed 33
nuxhall 73, sparky 11, yanks 15, strupper g7, whitey 13,
chisox g3, schoendienst s¢, altrock ¢¢, clendenon gs, cam-
paneris g2

paiks 93, trashmen ¢g, wampanoags ¢3, mycenaeans 7o,
highnesses g9, perseids g9, clubmen ¢y, thalians ¢g, guelf
99, housecarls o3

ballplayers 31, shibe 31, semipro g9, ebbets 29, phanatic 71,
kekiongas g9, mudville 73, comiskey 1g, mutuals 33, nabbp
48

monocultures 7¢

LV-0

LV-20

SG

GloVe

SVD

pegomya o4, atara gy, shebang 49, subsidization g9, kiy-
omori 38, lucullus 3, intercal 74, paaerduag g9, dagbon g,
voluntas gg

monoculture 35, crops 3, agroforestry 34, replanting 3s, sil-
viculture 45, replanted 7, overgrazing ¢, clearcutting 47,
rainfed g5, seedlings 13

monoculture 35, overgrazed gy, polyculture gg, silvicultural
84, Crops 2, woodlots 73, intercropping 99, Overstory oy, al-
lelopathic g3, croplands g

chlamydospores gg, microbubbles 94, renunciations g, in-
sectoids 91, monoculture 35, plasmodesmata g7, relaxations
79, contactors gg, UrOCystis s7, vortexes g

monoculture 35, polyculture gg, dryland 33, silviculture 4s,
fuelwood g3, clearcutting 47, replanting 35, agroforestry 34,
seedlings 11, swidden 59

flighted g3

LV-0

LV-20

SG

GloVe

SVD

ablabesmyia 31, hydroptila 49, sphex g9, semiotus g,
sympycnus 47, coelichneumon ¢, prajapati 3, diorhabda
98, qUiZZer 73, WWWLsUru g¢

ratite ¢3, ratites 35, dromaeosaurids s¢, flightless 14, tina-
mous 3g, raptorial go, parrots g, psittaciformes 41, manirap-
torans g9, psittacidae 3

raptorial gp, flightlessness o3, tibiotarsus gg, dro-
maeosaurids sg, zygodactyl s7, maniraptorans g9, apomor-
phic o3, ratite g3, rectrices gs, hindlimbs 39

sunbathe 93, hypnotise 99, maniraptorans gy, illidan gy, lan-
guorous og, githyanki ¢5, dichotomius 73, tmesisternus sg,
chloroceryle g9, quadroon 7,

zygodactyl s7, raptorial go, beaks 13, flightless 14, avians
73, opposable 45, featherless g9, ratite g3, forelimbs 17,
pronated 9
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Figure 6.4 — (a) Word similarity results: RW improves as the number of negative samples
increases. There is a small but consistent drop in performance on SimLex when increasing the
number of negative samples. Scores in WSRel do indeed increase, but there is no clear drop in

similarity scores in WSSim. (b) GSem/GSyn/MSR: Performance increases as the number of

negative samples increases. Normalization has a minor effect, whereas premise exclusion is

critical to performance. (c) GSem/GSyn/MSR Rare words: Consistent improvements in all
conditions because rare words are better represented. (d) GSem/GSyn Frequent words: With both

heuristics or only the normalization heuristic performance is nearly constant. For conditions
without premise exclusion heuristic, there is remarkable improvement in analogy performance as

negative samples increase, especially for semantic analogies. Metrics: for (a) Spearman rank
correlation (x100), for (b,c,d), Accuracy.
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— which happens as the relative importance of negative information is increased — true
similarity drops.

Word analogies: Figure 6.4b shows how analogy performance varies as the num-
ber of negative samples is increased. Clearly performance increases as the number of
negative samples increases, in particular for the semantic analogies. Removing the nor-
malization heuristic has a minor effect on task performance. Removing the premise ex-
clusion heuristic, however, leads to a tremendous drop in performance. This is why it is
crucial to perform correct evaluation of word analogies without additional heuristics, for
an accurate assessment of the semantic and syntactic information represented by the word
embeddings.

The strong results with the premise exclusion heuristic might lead one to believe
that the linear offsets corresponding to the analogies are straightforwardly accessible in
the vector space when they clearly are not. However, if the number of negative samples is
increased, we see a stark improvement under the correct evaluation, suggesting that these
linear offsets/regularities manifest more clearly in the vector space.

To determine if this improvement is not merely due to better representations of
rare words induced by increased negative sampling, as discussed previously, we look at
the (GSem/GSyn/MSR)F/R datasets which contain the analogies with most/least frequent
words. For (GSem/GSyn/MSR)R, we see the expected results in Figure 6.4c: consistent
improvements with and without heuristics because rare words are better represented. The
surprising result is for (GSem/GSyn/MSR)F in Figure 6.4d: with both heuristics or only
the normalization heuristic performance is nearly constant. Without the premise exclusion
heuristic, however, there is a remarkable improvement in analogy performance, especially
for semantic analogies. This suggests that negative sampling is altering the geometry of
the vector space in such a way that the linear offsets used to solve analogies hold more

strongly, without heuristics.

6.4 Connection to other models

In this section, we study whether similar effects observed for our LexVec models

are present in the popular Skip-gram, GloVe, and SVD models.
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6.4.1 Materials

Given that Skip-gram implicitly factorizes a shifted PMI matrix, GloVe’s factor-
ization is related to a PMI factorization, and SVD performs optimal unweighted factor-
ization, we investigate how these factorizations compare to the explicit PMI factorization
performed by LexVec as regards increasing negative information. In particular, we are
interested in the (dis)similarities of the geometry of the resulting word vector spaces.

Skip-gram: We train a Skip-gram model using the same parameters from the
original paper (MIKOLOV et al., 2013), with window size [ = 5 and number of negative
samples in {1,2,5} (we refer to these models as SG-1, SG-2 and SG-5). Note that Skip-
gram with 5 negative samples performs the same amount of computation as the LexVec
model with 20 negative samples: Skip-gram draws 5 negative samples per target-context
pair (2 x 2 x 5 = 20 for each window), whereas LexVec draws 20 negative samples
per window. Analogous parameters have the same values as the LexVec models: embed-
ding dimension of size 300, learning rate of 0.025, negative distribution power of 0.75,
subsampling threshold of 1e — 5.

GloVe: The GloVe configuration follows the configuration of the original paper
(PENNINGTON; SOCHER; MANNING, 2014), but with three changes to make the re-
sults directly comparable to LexVec: (1) unlike in the original paper, the corpus is sub-
sampled using a threshold of 1e — 5 before constructing the cooccurrence matrix. (2)
Window size [ = 5 to match LexVec and Skip-gram models. (3) Word vectors are output
without averaging with context vectors, so that word vectors and context vectors can be
analyzed separately. All other parameters are kept: embeddings of size 300, 100 training
epochs, and learning rate of 0.05.

SVD: A limitation of the truncated SVD is that its computational efficiency is
contingent on the sparsity of the input matrix. This sparsity is lost when using the
CPMI(—2), so we must use the zero-preserving transform PMI. Given the truncated
SVD, PPMI = UdZdVdT, which discards all but the top d singular values, we follow
Levy, Goldberg and Dagan (2015) and set word and context matrices to W = Uy/X,
C = Vy/3, respectively. We factorize the PPMI transform of M5, setting d = 300.
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Table 6.4 — Comparing task performance of LexVec, Skip-gram, GloVe, and SVD models in
Word similarity and analogy tasks (-: no heuristics excluded, -N: norm heuristic excluded, -P:
premise heuristic excluded, -N-P: both heuristics excluded). The LV-0 model is similar to the

GloVe model: strong SimLex results, weaker RW results, and similar across all analogy
evaluations, barring MSR where GloVe is considerably stronger than all other models.
Analogously, the LV-20 model is similar to the Skip-gram and models: strong SimLex and RW
results, and consistently strong performance on all analogy evaluations. SVD has the lowest
performance, but note that it suffers the smallest drop when the -P heuristic is excluded. Metrics:
Spearman rank correlation (x100) for SimLex and RW, Accuracy for analogies.

model SimLex RW GSem GSem™ GSem® GSem™N?

LV-0 353 426 76.0 76.1 0.9 1.3
LV-5 340 415 78.9 78.2 7.6 7.2
LV-20 323 44.1 77.7 77.1 24.0 20.7
SG-1 36.0 455 75.3 75.3 11.2 10.5
SG-2 364 465 774 76.9 11.7 10.6
SG-5 359 469 789 78.4 11.2 10.1
GloVe 354 406 744 74.3 5.6 6.0
SVD 28.6 419 439 41.7 20.5 20.6

model GSyn GSyn™ GSyn? GSyn™ MSR MSRN MSRP? MSRN?

LV-0 56.2 55.6 6.5 7.1 40.1 394 1.7 2.0
LV-5 59.1 58.5 11.2 11.8 43.0 42.4 4.4 4.5
LV-20  58.1 57.2 13.7 14.7 425 41.1 5.8 5.9
SG-1 61.9 60.4 11.4 122 456 44.8 3.7 3.7
SG-2 63.3 61.8 11.3 124 47.3 46.6 4.0 4.1
SG-5 63.0 61.1 10.9 11.8 463 45.2 3.1 3.7
GloVe 64.5 64.0 133 14.0 58.1 57.6 7.9 8.5

SVD 42.0 40.8 9.2 89 269 23.1 4.8 3.9
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6.4.2 Results

Given the similarities in loss functions presented in Section 3.2 — that LexVec and
Skip-gram both contains loss weights \,,s and )\, while GloVe also contains loss weight
Aws — We expect the Skip-gram model trained using 5 negative samples to resemble the
LexVec LV-20 model that draws 20 negative samples (since, as stated in Section 6.4.1,
this leads to the same number of total negative samples) and the GloVe model to resemble
the LV-0 which uses only window sampling. We expect the patterns that emerge as the
number of negative samples increase to manifest clearly in the SVD model, which assigns
the vast majority of its loss weights to negative values. Table 6.4 shows task results for all

compared models.

6.4.2.1 Skip-gram

e Norms: Figures 6.5a to 6.5¢ show the word vector norm distributions for the Skip-
gram models. In contrast to the same figures for the LexVec models (Figures 6.2a
to 6.2¢), for Skip-gram it is not clear if increasing the number of negative samples
increases the rank invariance of vector norms. Delving deeper, we plot a simple
moving average of period 100 (SM Ay(i) = S oy |[Wi_|/100) of vector norms
as a function of word rank in Figures 6.5d and 6.5e. Although the shape of both
functions is different, it is clear for both Skip-gram and LexVec that as the number
of negative samples increases the functions become flatter, indicating the increase

in rank invariance of vector norms.

e Directions: In Figures 6.5f to 6.5h, we plot the distribution of cosines between
words of different frequency buckets with the mean vector of all buckets for the
SG models, as was drawn in Figures 6.3a to 6.3c for the LexVec models. Just as
with the LexVec models, word vectors point in the same direction and word vectors
point away from context vectors as the number of negative samples increases. This
is precisely what was observed as the “strange” geometry of Skip-gram in Mimno
and Thompson (2017), here explained by increasing importance of negative infor-

mation.
e Word similarity and analogies: Overall SG results in Table 6.4 are similar to the
LV-20 models, which is to be expected given the similarity in loss functions. All

SG models achieve similar results, with the only clear trend being marginal im-
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Figure 6.5 — (a, b, ¢): Word vector norm distributions for Skip-gram models with 1, 2 and 5
negative samples (SG-1, SG-2, SG-5). In contrast to the same figures for the Lex Vec models
(Figures 6.2a to 6.2¢), it is not clear if increasing the number of negative samples increases the
rank invariance of vector norms. (d, e): Simple moving average of period 100 (with
accompanying scatter plot of points used in calculating this average) of word vector norms as a
function of word rank. We include additional SG-k and LV-k models for various k& to make the
trend clear. Although the shape of (d) and (e) is different, it is evident for both Skip-gram and
LexVec that as the number of negative samples increases the functions become flatter, indicating
the increase in rank invariance of vector norms. SVD displays the extreme case where nearly all
loss weight is assigned to negative information, leading to ideal rank invariance. (f, g, h): Solid
lines show distribution of cosines between vectors of words of different frequency buckets with
the mean vector of all buckets, and dashed lines the of cosines of context vectors of these same
words with the mean word vector, as in Figures 6.3a to 6.3c. Word vectors increasingly point in
the same direction and word vectors point away from context vectors as the number of negative
samples increases.
(b) SG-2 norms
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provements in RW performance as the number of negative samples increases. Thus
increasing negative information has little effect on task results. We attribute this to
the fact that even with the minimum number of negative samples (k = 1), there is
one negative sample per observed word-context pair, in contrast to LexVec where
with k£ = 1 there are 2/ observed pairs. In other words, the minimum relative impor-
tance of negative information within the Skip-gram model is sufficiently high so as
not to observe the poor rare word representations observed in the LV-0 and GloVe
models. Note that setting £ = 0 makes the Skip-gram objective (Equation (3.9))
ill-defined since it can be made arbitrarily high by aligning all word vectors and
increasing their norms.

Nearest neighbors: We performed qualitative analysis of word neighbors in Ta-
bles 6.2 and 6.3 as was done with the LexVec models. Skip-gram neighbors are se-
mantically related for both frequent and rare words, as is the case with other models
that use negative information (LV-20 and SVD). The exception is the frequent word
“interest” which has some incoherent neighbors. This irregularity deserves future
investigation, but we suspect it is due to a weakness in the local nature of the Skip-
gram model where, independent of the global PMI value for an observed pair (even
if it is negative), a single step of optimization draws together the corresponding
vectors. We omit results for SG-1,2 for there is no qualitative difference between
the SG models as negative samples increase (our hypothesis for this is described

above).

6.4.2.2 GloVe and SVD

e GloVe: In Figures 6.3a and 6.3e, LV-0 and GloVe behave similarly: vectors do not

have a directional preference in respect to the mean vector and to context vectors.
The similarity breaks in the distribution of vector norms in Figure 6.3e, which in
LV-0 are far less rank invariant than in GloVe. We hypothesize that GloVe’s vector
norm rank invariance is due to bias terms which are responsible for scaling word-
context dot products to approximate log cooccurrence count, allowing word/context
vectors to have a similar norm.

Word similarity and analogy results are given in Table 6.4. The LV-0 model is sim-
ilar to the GloVe model: good SimLex results, weak RW results, and consistently
similar across all analogy evaluations, except for MSR where the GloVe model out-

performs all other models by a wide margin. The similarity is even clearer in the



97

nearest neighbor samples in Tables 6.2 and 6.3. For both models, frequent words
have semantically related neighbors, and rare words have incoherent neighbors.
Overall, despite minor differences in their objectives, the GloVe and LV-0 models —

which perform only window sampling — behave similarly.

SVD: As can be seen in Figure 6.2f, the SVD vector norms are invariant to rank. As
seen in moving from the LV-0 to LV-20 model, increasing the relative importance of
negative information increases rank invariance of vector norms, and the SVD model
which weighs negative information more heavily than any other model shows this
effect to the extreme.

Figure 6.3f shows less separation of word and context vectors than seen in the LV-
20 and SG models. However, there is a clear separation in modes, with all word
vector buckets having positive modes and all context vector buckets nearing zero.
This is explained by the SVD model using the PPM]I transform, which drives dot
products of negative cooccurring pairs to 0 rather than to negative values as with
the CPMI(—2) transform. Cosines of context vectors and the mean word vector
are thus distributed near zero, rather than at negative values.

Looking at Table 6.4, the SVD model is significantly weaker on the SimLex task
than all other models. We attribute this to its uniform weighting of reconstruction
errors. Weak results on RW are similarly attributed. Note that one might suspect
the PPMI transform to be at fault, but observe that in Table 5.1 the PPM]I variant
of LexVec is on par with the other transforms that do not collapse the negative
spectrum of PMI.

Under incorrect evaluation — which includes norm and premise exclusion heuristics
— SVD has the weakest performance on analogies of all models tested. However,
if both heuristics are excluded, it performs nearly as well as the LV-20 model on
GSem™P, and marginally worse on GSyn™* and MSR™NF. We attribute the weaker
performance on syntactic analogies to the PPMI metric (in Table 5.1, PPMI un-
derperforms both CPMI(—2) and NNEGPMI on GSyn and MSR), and the strong
performance with heuristic exclusion to the majority weighting of negative infor-
mation in the loss function.

Under qualitative analysis of nearest neighbors in Tables 6.2 and 6.3, the SVD
model returns semantically related words for both frequent and rare words, similar

to the LV-20 model.



98

6.5 Conclusion

In this chapter, we showed that increasing the number of negative samples in the
LexVec and Skip-gram models increases the relative importance of negative information.
This increase has a direct impact on the geometry of the resulting word vector spaces, in-
creasing the rank invariance of vector norms and directions. Additionally, we observe that
accounting for negative information significantly improves the rare word representations.
Results also suggest the changes in geometry induced by increased negative information
positively impact word analogy performance under correct evaluation (when no heuristics

are used).
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7 CONCLUSIONS AND FUTURE WORK

This thesis showed the important role of negative information in word vector rep-
resentations. To do so, we first designed a word embedding model that explicitly accesses
the PMI matrix, then exploited its explicit nature to isolate the effects of positive and
negative information and the resulting impact on word vector geometry.

To design our model, we started by defining the set of principled reconstruction
error properties that matrix factorization models should respect and situated existing mod-
els within this framework (in answer to Q1). Guided by these properties, we proposed
LexVec, a new, highly-scalable method for generating word embeddings that uses low-
rank, weighted factorization of the arbitrary transformations of the word-context cooc-
currence matrix (in answer to Q2 and Q3). We incorporated positional information into
our model, and compared existing and novel ways of merging word and context vectors
to obtain better single word vector representations (in answer to Q4). By adding subword
information into LexVec, we showed that naive character n-grams are a robust alternative
to linguistically-motivated morphemes (in answer to Q5 and Q6).

LexVec effectively closes the performance gap between counting and predictive
word embedding models, creating both a state-of-the-art static word embedding model
while being a more transparent alternative to Skip-gram thanks to its explicit nature.
LexVec’s average downstream performance is (1) superior to a GloVe model trained on
13x more data in all evaluations (2) superior to Skip-gram’s trained on 1.3x more data in
all evaluations excepting textual similarity (3) superior to the state-of-the-art fastText sub-
word model trained on 10x more data in syntactic, natural language inference, and facet
ranking tasks (in answer to Q8). Sentence embedding methods using LexVec and other
static word embeddings are competitive in textual similarity tasks and are only marginally
worse in mean text classification accuracy. In our proposed facet ranking task, results
show that static word embeddings are an effective approach for our proposed facet rank-
ing task, and are competitive with Transformer models when used as sentence encoders,
with LexVec models outperforming other static word embeddings (in answer to Q9 and
Q10).

We looked at alternatives to collapsing the spectrum of negative PMI values to 0
by proposing two new PMI variants which partially preserve the negative spectrum (in
answer to Q7). We obtained models that use only positive or negative information by

exploiting LexVec’s explicit access to the underlying PMI matrix being factorized (in an-
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swer to Q11). Word and sentence-level evaluations show that only accounting for positive
PMI the factorization strongly captures both semantics and syntax, whereas using only
nPMI captures little of semantics but a surprising amount of syntactic information. Our
work deepens our understanding of distributional semantics and of computational linguis-
tics by extending the distributional hypothesis to “a word is not only characterized by the
company that it keeps, but also by the company it rejects” (in answer to Q12). We hypoth-
esize that grammar is systematically generating negative cooccurrence (or information),
and by encoding negative information our models are indirectly encoding grammatical
information.

Finally, we investigated the effects on word vector space geometry of increasing
the relative importance of negative information. Increasing the relative importance of
negative information strengthens geometric rank invariant properties — vector norms and
direction — of word vectors and improves the representation of rare words (in answer
to Q13). Experiments reveal similar results for Skip-gram, GloVe, and SVD models,
showing that the important role played by negative information in LexVec is present in
these other models as well.

Over the course of this PhD, the most significant performance jump in NLP tasks
since word2vec has been due to deep contextualized word embeddings (in particular
Transformer models) — where rather than having a single vector for a word as described in
the factorization above, models use neural networks to compute vectors for words in con-
text. However, static word embeddings still dominate most lexical semantic tasks (such as
word synonymy, similarity, relatedness, categorization, and analogy completion) (LENCI
et al., 2021) where words are given out-of-context, making static word embeddings the
appropriate choice. From an application point of view, although consistently inferior to
the deep neural network models above, classic word embeddings still serve as very strong
baselines with significantly lower computational cost, for both training and inference, and
there is ongoing research into making them stronger (KIELA; WANG; CHO, 2018; WI-
ETING; KIELA, 2019; YANG; ZHU; CHEN, 2019; WANG et al., 2020b). Given the
continued importance of static word embeddings, this thesis contributes to the line of
work that aims to understand what leads to the strong performance of these models in

lexical semantic tasks.
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7.1 Future Work

We believe some interesting directions for future work are:

e In the same way that combining vectors using concatenation rather than summing
improved downstream task performance, explore similarly concatenating LexVec
models that incorporate only positive or negative information, thus reducing the
conflation between semantic and syntactic information in the vector representations.
This might allow trained neural networks to better probe the semantic or syntactic

information separately in a way that optimizes for downstream tasks.

e Train LexVec on larger corpora to see whether downstream performance — which
is already comparable to a fastText model trained on 10x more data — can further

push the state-of-the-art for static word embeddings.

e The increase in word analogy performance under correct evaluation, as the relative
importance of negative information increases, warrants further investigation. Our
results lead us to hypothesize that this is due to the change in the vector space
geometry, with words of all ranks clustering in a small region of space where linear
offsets used to solve analogies are more likely to hold.

e Explore the connection between our results in distributional semantics that nega-
tive information strongly captures syntactic information and the role that indirect

evidence plays in language acquisition.
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APPENDIX A — EXTENDED ABSTRACT IN PORTUGUESE

Vetores palavra sao um componente vital de sistemas modernos de processamento
de linguagem natural (PLN). Uma abordagem para a obtencao de tais vetores se da através
da andlise estatistica de textos ndo anotados. Esta andlise leva a uma matriz de coocor-
réncia, onde linhas representam palavras, e colunas representam contextos (geralmente
também palavras) com as quais as palavras coocorrem, e o valor corresponde ao nimero
de coocorréncias: o nimero de vezes em que se observa juntos uma palavra e um contexto
dentro de uma distancia (ou janela) de um ao outro. Para uma linha da matriz (o vetor de
uma palavra), os contextos e seus valores descrevem a distribui¢ao de contextos. Dada a
hipdtese cldssica da linguistica de que palavras com significado semelhante possuem dis-
tribuicdo de contextos também semelhantes, podemos computar a semelhanca de vetores
de palavras para comparar os significados dessas mesmas — dai o nome para esta drea de
estudo de semdntica distribucional.

Usar valores de coocorréncias diretamente em computacdes nao funciona bem
empiricamente, e de um ponto de vista tedrico também se avista problemas, pois palavras
frequentes como “a” e “um” passam a dominar as distribui¢des de contextos. Uma técnica
comumente usada € a de aplicar a transformacdo de Pointwise Mutual Information (PMI)
a matriz de coocorréncia. O valor de PMI para dois eventos (aqui a observacdo de uma
palavra e um contexto dentro de a mesma janela) indica a tendéncia de se observar um
dos eventos, dado que se observou o outro, e vice-versa. Entdo, por exemplo, o par “Porto
Alegre” possui PMI elevado, enquanto o par “Porto Teutonia” possui um PMI baixo. PMI
trata o problema de palavras frequentes dominarem a distribuicdo de contextos ja que
palavras como “a” e um “um” coocorrem de forma ndo-discriminativa com um ndmero
muito grande de palavras, portanto observar uma destas palavras ndo restringe possiveis
contextos (matematicamente, a probabilidade de observar um contexto ndo ¢ alterada ao
observar uma destas palavras frequentes). Neste caso, o PMI tende a zero.

No caso contrdrio, quando uma palavra rejeita um contexto, PMI assume valores
negativos proporcional a rejeicdo. Ao longo desta tese, nos referimos a este fendmeno
como informagdo negativa. Se ao construir a matriz de coocorréncia ndo se observar
nenhuma vez um dado par palavra-contexto, tem-se o caso extremo de rejeicao total e
PMI tende a menos infinito. Esta ndo-coocorréncia € muito frequente, ainda mais se o
vocabulério for grande e o corpus pequeno. Por este motivo, na pratica, PMI € restrito

a nameros positivos: qualquer valor menor do que zero (incluindo infinito negativo) €
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setado a zero. Restringir PMI desta maneira gera a medida chamada Positive Pointwise
Mutual Information (PPMI). Embora funcione bem empiricamente, esta restricdo leva
ao tema de nossa tese: que informacao sobre palavras sdo capturadas pelo espectro de
informacao negativa, e o que perdemos ao restringi-lo?

Para tornar a questdo mais relevante, a abordamos no contexto de word embed-
dings: vetores palavra densos, ao contrério dos vetores altamente esparsos quando se usa
linhas da matriz de coocorréncia. Do ponto de vista computacional, vetores densos sao
muito mais praticos do que vetores esparsos, em particular para uso junto a redes neu-
rais. E do ponto de vista tedrico, a compressao de vetores esparsos em vetores densos
leva a fatores latentes que reduzem o ruido nas representagdes, melhorando o poder de
generalizagdo. Métodos para a obtencdo de vetores densos podem ser divididos em duas
familias: (1) métodos de contagem, onde € construida a matriz de coocorréncia, apli-
cada alguma transformacdo como PPMI, e feita uma fatoracdo desta matriz resultante
em produto de matrizes esquerda e direita menores e densas onde as linhas da matriz es-
querda representam os word embeddings; (2) métodos preditivos, onde se treina alguma
arquitetura de redes neurais para predizer a distribui¢do de contextos dado como entrada
um word embedding. GloVe e word2vec sdo os métodos mais populares de contagem e
predi¢do, respectivamente. Empiricamente, word2vec (em particular o seu modelo Skip-
gram) obtém resultados melhores em diversas avaliagdes quando comparado a métodos
de contagem. Seguindo o tema da nossa tese, hipotetizamos que essa desvantagem de
métodos de contagem € devida a forma como esses ndo consideram de forma embasada
a informagdo negativa.

Dado que a compressao em vetores densos leva a uma perda de informacao, defin-
imos 3 critérios de prioriza¢do de informacgdo respondendo a pergunta: na reconstru¢ao
de matriz a partir da fatoracdo, quais células (ou pares) sdo mais informativas e devem
ser melhor aproximadas? Os critérios sao (1) a informatividade de um par cresce mono-
tonicamente com o numero de coocorréncias (2) a ndo-coocorréncia de um par nao deve
ser ignorada (3) a informatividade de um par cresce monotonicamente com a frequéncia
de cada um de seus constituintes (palavra e contexto). A partir destes critérios, criamos
um método de contagem e fatoracdo chamado LexVec. Através de avaliacdes ao nivel de
palavra (lexicais) e ao nivel de frase, mostramos que o LexVec tem desempenho supe-
rior a outros métodos de contagem e semelhante a métodos preditivos, confirmando nossa
hipétese de que a desvantagem de métodos de contagem era devida a consideracao inade-

quada da informacdo negativa. Além do modelo base, fazemos uma série de melhorias ao
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LexVec. A posi¢do relativa de um contexto em relacdo a uma palavra contém informacao
que € descartada se esta posi¢cao € desconsiderada. Mostramos como preservar esta infor-
macao, usando representacdes distintas para contextos para cada posi¢ao possivel, como
também diferentes formas de juntar vetores palavras e contexto para melhorar o desem-
penho. Incorporamos informacao sub-palavra, quebrando palavras em unidades menores
(com duas abordagens diferentes), permitindo assim que palavras que ndo foram vis-
tas no treinamento sejam representadas através de sub-palavras conhecidas. Finalmente,
elaboramos uma versido do LexVec que usa memoria externa (disco em vez de memoria
principal), permitindo escald-lo a vocabuldrios e corpora de escala web. Com a série
de melhorias e treinando com um corpus de 63B de palavras, o desempenho médio do
LexVec supera o do GloVe treinado com 840B (13x mais) em todas avaliagdes aplicadas,
do Skip-gram treinado usando 100B de tokens em todas as avaliages aplicadas exceto
a de similaridade textual, e do modelo de sub-palavras estado-da-arte fastText treinado
usando 630B de palavras (10 vezes mais do que o LexVec) em tarefas sintéticas, de in-
feréncia textual, e de ordenamento de facetas. Dado que o desempenho € geralmente
proporcional ao tamanho do corpus de treinamento, obter recursos computacionais para
treinar o LexVec num corpus de grandeza semelhante aos usados nestes outros modelos é
uma direcao promissora.

Em seguida, usando o LexVec como ferramenta experimental, retomamos a questao
motivadora da tese sobre o papel da informacdo negativa, isolando os efeitos de infor-
macao positiva e negativa. Isto é feito considerando exclusivamente informagao positiva
ou negativa ao efetuar a fatoracdo. Tal isolamento demonstra uma vantagem (e necessi-
dade no caso do nosso estudo) de métodos de contagem em relacao a métodos de predigao:
s6 € possivel gracas ao acesso explicito a matriz sendo fatorada. Definimos duas variantes
de PMI que ao contrario de PPMI, preservam (em parte ou integralmente) o espectro de
valores negativos, possibilitando assim o estudo sobre informagdo negativa. Dividimos o
estudo dos vetores palavra resultantes em avaliagdes semanticas e sintaticas. Resultados
mostram que o uso exclusivo de informacao positiva captura ambas informacdes seman-
ticas e sintdticas. Quando se considera apenas a informagdo negativa, capta-se pouca
informacao semantica, mas surpreendentemente muita informacao sintitica, ao ponto de
superar em algumas tarefas sintdticas modelos que usam ambas informacao negativa e
positiva em suas fatoracoes.

Finalmente, estudamos o impacto que a informa¢ao negativa tem na geometria

do espaco vetorial gerado pelo LexVec, Skip-gram, GloVe, e da Decomposi¢cdo em Val-
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ores Singulares (SVD). Se aproveitando da natureza explicita do LexVec, comprovamos
experimentalmente a intuicao de que a amostragem negativa usada em ambos LexVec e
Skip-gram seleciona principalmente pares com PMI negativo. Assim, através do aumento
da amostragem negativa, podemos aumentar o peso de informac¢do negativa na fatoragao
e observar o impacto deste aumento na geometria resultante. Os resultados revelam duas
invariantes geométricas — a norma e direcdo vetorial — e melhorias nas representagcdes
de palavras raras que sdo induzidas pelo uso aumentado da informacdo negativa. Além
disto, observa-se uma melhora surpreendente na capacidade de resolucdo de analogias sob
avaliagdo correta (quando ndo sdo usadas heuristicas para aumentar o desempenho nesta
tarefa), sugerindo que as alteragdes induzidas pela informacao negativa na geometria sao

uma peca chave nesta tarefa que € tida como porta-voz da capacidade de modelos de PLN.
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B.1 Dataset Rank Statistics
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Table B.1 — Percentile rank statistics for words in the datasets used Chapters 5 and 6. Note: y-

mean, o- standard deviation, Qk- k-th quartile.

dataset L o min Ql median Q3 max
Rare Words (RW) 193 244 0.0 1.8 7.9 27.8 100.0
SimLex 23 3.1 00 06 1.5 3.0 464
WordSim-Relatedness (WSRel) 1.6 23 00 03 08 19 224
WordSim-Similarity (WSSim) 20 29 00 03 0.7 23 218
MSR Syntactic Analogies (MSR) 52 132 00 03 0.7 25 970
Google Semantic ~ Analogies 10.4 153 0.0 0.5 28 135 69.2
(GSem)

Google Syntactic ~ Analogies 3.7 5.2 0.0 0.7 1.8 4.6 384
(GSyn)

Google Semantic Analogies, Fre- 0.9 06 0.0 0.3 0.7 1.3 23
quent Split (GSemF)

Google Syntactic Analogies, Fre- 04 03 0.0 0.2 03 0.6 1.0
quent Split (GSynF)

Google Semantic Analogies, Rare 6.1 93 00 1.1 27 6.1 69.2
Split (GSemR)

Google Syntactic Analogies, Rare 3.5 53 0.0 0.5 1.5 3.6 384
Split(GSynR)

Penn Treebank (POS) 123 165 00 22 6.1 150 99.8
Tree Depth (Dep) 144 17.5 0.0 2.8 7.8 18.8 99.6
Top Constituent (TopC) 141 172 0.0 2.8 7.6 182 999
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APPENDIX C — COMPLEMENTARY EXPERIMENTS

C.1 Fixed Window Size | = 2 and Positional Contexts

We performed identical experiments to those in Chapters 5 and 6, but using po-
sitional contexts and fixed window size of 2. Results lead to matching conclusions as
those for the larger randomized windows used in the main chapters, and further highlight
the role negative information: accounting for the zero cooccurrence (pairs in mnPMI) is
even more important when using this smaller window size and positional contexts, which
increase the sparsity of the cooccurrence matrix. Under this increased sparsity, models
which ignore pairs in mnPMI (such as GloVe and LexVec with no negative sampling) see

severe degradation in rare word representations.

Table C.1 — Same as Table 6.1, but using positional contexts and symmetric context window of

fixed size 2.

Name Set Full Hist WS NS
nPMI:  Negative {(w,c)| PMI,.<0} 99.75 14.53 12.44 85.42
information
pPMI:  Positive {(w,c) | PMI,.>0} 025 8547 8756 14.58
information
mnPMI: {(w,c) | My. =0} 99.71 0.00 0.00 69.08
Maximally-
negative informa-
tion

{(w,¢) |PMI,. <0
nPMI\mnPMI: ’ 0.04 1453 12.44 16.34

Collapsed nega- A My, > 0}

tive information
under PPMI

C.2 Subword Information

Here we repeat the experiments from Appendix C.1, but incorporate subword in-
formation into LexVec (Subword LexVec; SLV) and Skip-gram (fastText; FT). Results
follow the same trend of Chapters 5 and 6, leading to matching conclusions. However,
note that whereas in the main chapters and Appendix C.1 we are able to isolate the effects

of negative information on words of different frequencies, using subword information
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Figure C.1 — Same as Figure 3.2, but using positional contexts and symmetric context window
of fixed size 2.
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Figure C.2 — Same as Figure 6.1, but using positional contexts and symmetric context window
of fixed size 2.
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Table C.2 — Same as Table 5.1, but using positional contexts and symmetric context window of

fixed size 2.
model SimLex RW GSem STSB GSyn MSR POS Dep TopC
pPPMI 369 34.1 52.8 633 474 340 923 31.7 337
nPPMI 1.2 -1.2 0.0 48.1 0.0 0.0 163 179 5.0
nCPMI(-2) 183 24.0 64 41.0 139 139 90.8 328 353
nNPMI 13.7 239 45 40.1 8.9 7.8 89.8 31.7 34.0
PPMI 366 451 795 634 613 456 924 275 30.1
CPMI(-2) 35.8 43.1 804  63.0 652 51.8 925 280 313
NPMI 325 436 624 571 574 448 924 294 31.7

NNEGPMI 36.2 435 80.7 633 63.6 495 924 278 30.1
Random 1.2 -1.2 0.0 453 0.0 00 163 179 5.0
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Figure C.3 — Same as Figure 6.2, but using positional contexts and symmetric context window
of fixed size 2.
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Figure C.4 — Same as Figure 6.3, but using positional contexts and symmetric context window
of fixed size 2.
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Figure C.5 — Same as Figure 6.4, but using positional contexts and symmetric context window

704

of fixed size 2.
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Table C.3 — Same as Table 6.2, but using positional contexts and symmetric context window of
fixed size 2.

word model neighbors

interest g3 LV-0 interests 1,9, conflict g5, coi 15, interested ¢7, thegauntlet
78.0, scientific (s, passion j¢, attention ¢ s, concern g9, ac-
tivity ¢.¢
LV-20 interests 1,9, interested ¢ 7, conflict ¢ 5, attention ¢ s, enthusi-
asm 39, expertise .3, concern g9, appreciation 3 s, scientific
0.5, involvement 1

SG interests 1., intrest sg9, wizardimps g7, interested g7,

richarddawkins 745, thegauntlet 789, interst 774, bluntsde
91.6> conflict g 5, bizjournals 43 g

GloVe interests 1, interested o7, conflict 5, attention ¢, influ-
ence (., concern g9, expertise .3, involvement 13, popu-
larity 1.2, passion 7

SVD interests 19, attention gs, interested g7, importance g4,
profits 9, debt 14, expertise .3, benefit 1, contributions
0.5, contribution 1

cup o.1 LV-0  championship g2, league ¢.1, champions ¢ 5, cups 3.7, finals
0.7, trophy 1.1, uefa 13, final ¢, tournament ¢4, champi-
onships o3
LV-20 champions 5, cups 2.7, championship ¢ 3, finals ¢ 7, trophy
1.1, league ¢, competitions g9, uefa 13, tournament g4,
runners 1.5
SG cups 3.7, trophy 1.1, championship g2, champions ¢, fi-
nals g7, supercup g5, pokal 94, championships ¢ .3, uhren-
cup 9.3, uefa 1.3
GloVe championship ¢, champions g5, finals o7, cups 2.7, league
Y Y Y Y g
0.1> trophy 1.1, uefa 13, tournament .4, final .1, fifa 11
SVD  runners 5, nextseason 49, champions ¢ 5, cups ».7, trophy
1.1, SCOTers 47, competitions ¢.9, matches ¢4, squad g7, fifa
11

soul ¢.9 LV-0 souls 34, blues g8, funk 57, gospel 1.6, hop 1.1, mind s,
spirit o.g, reggae 3.4, jazz .6, 1ap 2.1
LV-20 funk 57, blues ¢g, heaven 15, essence 3, souls 3¢, mind
0.5, SPirit .8, love o2, dreams 1.6, jazz .6
SG funk ,7, souls 34, blues ¢g, soulful 119, seekerz g3,
changeless g94, makossa sgg, spirit ¢g, essence 3,
jazzmatazz og.9
GloVe blues gg, funk 57, souls 3¢, spirit ¢.g, mind o5, gospel 1.6,
hop 1.1, pop 0.4, jazz .6, love .2
SVD  heaven 3, eternal 55, forever 17, dreams 1, dream g9,
funk 57, love ¢, souls 3¢, spirit ¢.g, blues g
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Table C.4 — Same as Table 6.3, but using positional contexts and symmetric context window of
fixed size 2.

word model neighbors

rooters 77 LV-0  bajir ¢¢, ravimy g7, hamerkop g3, argyrodes ¢g, thaumasia
99, brooklin 43, karuma g9, sorlle g¢, valise g9, roaring 7

LV-20 howled 73, cheering 11, roars 27, bosox g, monumentals gg,
cheered 15, nuxhall 73, booing 3¢, phillie s¢, atlantics 34

SG cheering 11, bosox g;, howled 73, fans ¢, lynah gg, cheered
15, landrith 57, clendenon gs, phillie 56, semipro o

GloVe specifc g4, unserious g9, cusumano g7, whch gs, uninviting
91, overexcited g9, imnsho go, preffered o1, alread 94, untyp-
ical 94

SVD ebbets 29, comiskey 13, ballplayers 33, batboy ¢z, crawfords
37, chisox g3, bosox gy, gothams s9, semipro ¢g, krichell 79

monocultures 74 LV-0 fieldensis g7, cantillans g7, berbers 13, ritsema 57, boutonii
76, tmutarakan 74, shuhada g7, chisocheton 74, poepp 77,
approvals 12

LV-20 monoculture 35, seedlings 11, saplings 24, conifers 13, hard-
woods 19, crops j, agroforestry 34, cultivations g4, under-
story 14, broadleaved 47

SG monoculture 35, polyculture gg, overgrazed g, fuelwood g3,
intercropping o9, rainfed g5, overharvesting g3, cucurbits gj,
croplands gy, silvicultural g4

GloVe hereabouts 74, upend o7, controvertial g7, enlivening 79, plu-
ralisation ¢y, selfsame g, herrod g5, overspend g3, unseri-
ous 99, liquify g9

SVD  monoculture 35, cropland 7, windbreaks g, replanted 37,
orchards g, silviculture 45, plantations 3, intercropping g¢,
cultivations g4, seedlings 11

flighted g3 LV-0  uproot 34, okumoto ¢¢, ratcheted o4, revealer 79, pandey 19,
flagpole 15, halvard g6, bersetzungsstufen 74, swiftest g4,
stairlift gg

LV-20 feathered 11, flightless 14, quadrupedal 3¢, ratites 35, bipedal
16, raptorial g9, necked g, beak g, beaks 13, prehensile 26

SG  digitigrade g4, plantigrade g4, zygodactyl 57, raptorial g,
woodcreepers o4, chelae gy, pronated o, forelegs 39, apo-
morphic g3, stockier g

GloVe wikispeak g7, similary g, vandelism o7, specifc g4, valida-
tions 7¢, demagogic 77, imnsho gg, incentivise 199, smidge
97, geneological ¢g

SVD flightless 14, shoebill 71, tinamous 3g, corvid 76, curassows
78, pratincoles 45, toucans 49, turacos s¢, hoatzin ¢s, anseri-
formes 34
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Figure C.6 — Same as Figure 6.5, but using positional contexts and symmetric context window
of fixed size 2.
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Table C.5 — Same as Table 6.4, but using positional contexts and symmetric context window of

fixed size 2.
model SimLex RW GSem GSem™ GSem® GSem™NP
LV-0 372 37.8 68.7 70.4 0.9 1.3
LV-5 36.0 43.1 80.1 79.6 15.7 15.5
LV-20 3477 44.6 79.6 78.9 399 35.0
SG-1 38.5 464 74.7 74.3 18.0 17.8
SG-2 39.0 47.7 77.5 77.5 19.3 18.6
SG-5 394 48.8 79.8 79.9 18.9 18.2
GloVe 35.2 36.1 74.8 73.0 3.0 3.5
SVD 31.6 44.0 48.5 41.1 30.9 26.8

model GSyn GSyn™ GSyn? GSyn™ MSR MSRN MSR? MSRNP

LV-0 576 573 9.2 9.6 440 435 2.0 2.3
LV-5 649 644 156 161 513 510 7.0 73
LV-20 628 621  18.3 187 512 505  10.6 10.3
SG-1 677 668  14.6 152 537 524 6.1 6.4
SG2 687 678 148 156 548  53.5 6.0 6.7
SG-5 682 676 149 157 560 547 6.2 6.7
GloVe 592 582 9.7 9.7 475 457 2.8 3.2
SVD 493 465 171 158 373 315 9.9 8.5

breaks this isolation by sharing information between frequent and rare word forms. Nev-

ertheless, despite this confounding factor, results follow a remarkably similar trend.

Table C.6 — Same as Table 6.1, but using subword information, positional contexts and
symmetric context window of fixed size 2.

Name Set Full Hist WS NS

nPMI: Negative {(w,c)|PMI, <0} 99.75 14.53 1244 8542
information
pPMI:  Positive {(w,c) | PMI,.>0} 025 8547 8756 14.58
information

mnPMI: {(w,c) | My, =0} 99.71 0.00 0.00 69.08
Maximally-

negative informa-

tion

{(w,c) |PMI,.<0

nPMI\mnPMI:
A My >0}

Collapsed nega-
tive information
under PPMI

0.04 1453 1244 16.34
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Figure C.7 — Same as Figure 3.2, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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Figure C.8 — Same as Figure 6.1, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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Table C.7 — Same as Table 5.1, but using subword information, positional contexts and
symmetric context window of fixed size 2.

model SimLex RW GSem STSB GSyn MSR POS Dep TopC
pPPMI 339 373 219 643 514 41.1 925 30.6 342
nPPMI 2.8 135 02 308 261 241 163 179 5.0
nCPMI(-2) 182 25.6 29 399 143 135 91.1 33.0 355
nNPMI 13.8 265 1.2 388 215 242 909 324 345
PPMI 381 514 722 635 675 527 925 279 31.1
CPMI(-2) 37.1 496 773 641 717 59.5 928 29.0 326
NPMI 328 46.6 328 541 740 625 924 315 324
NNEGPMI 372 496 765 640 705 573 92.6 285 315
Random 29 135 02 301 266 246 163 179 5.0
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Figure C.9 — Same as Figure 6.2, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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Figure C.10 — Same as Figure 6.3, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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Figure C.11 — Same as Figure 6.4, but using subword information, positional contexts and

symmetric context window of fixed size 2.
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Table C.8 — Same as Table 6.2, but using subword information, positional contexts and

symmetric context window of fixed size 2.

word

model

neighbors

interest ¢ 3

SLV-0

SLV-20

FT

GloVe

SVD

pinterest 39, interests 1, interested g7, disinterest 3.1,
conflict ¢ 5, stuffofinterest »5.¢, interesse ¢¢.5, bitterest s1.3,
merest ¢35, chemicalinterest 33

interests 1, interested g7, conflict o5, attention g5, ex-
pertise 2.3, involvement 1, enthusiasm 3.9, disinterest 26,1,
concern (.9, appreciation 3 5

interests 1.9, disinterest 4.1, interested ¢ 7, pinterest 39 3, en-
thusiasm 39, fascination 7, attention ¢ s, enthusiasms s¢.1,
disinterestedness gg 5, intrest 5.

interests 1.9, interested (7, conflict ¢ 5, attention ¢ s, influ-
ence ¢.6, concern g9, expertise 3.3, involvement 13, popu-
larity 1., passion 7,

interests 1,9, attention ¢s, interested o7, importance g4,
profits 59, debt 1, expertise 5.3, benefit 1,9, contributions
0.5, contribution 1

cup o.1

SLV-0

SLV-20

FT

GloVe

SVD

cups 2.7, championship g2, champions g5, cupfb ¢4.7, tro-
phy 1.1, cupen 17,1, cupa 237, uefa 13, league o1, champi-
onships ¢.3

cups 2.7, champions ¢ 5, championship ¢, finals ¢ 7, trophy
1.1, league ¢.1, competitions g9, qualifiers 47, tournament
0.4, Tunners 1.5

cups 2.7, championship 2, supercups 4s.3, supercup g s, tro-
phy 1.1, champions ¢ s, finals ¢ 7, supercupen ss.g, uhrencup
90.3, pokal 9.4

championship ¢.2, champions ¢ s, finals .7, cups 2.7, league
0.1, trophy 11, uefa 1 3, tournament ¢4, final ¢ 3, fifa 11
runners 1.5, nextseason 49, champions ¢, cups 2.7, trophy
1.1, SCOrers 4.7, competitions g.9, matches ¢4, squad o7, fifa
1.1

soul ¢.9

SLV-0

SLV-20

FT

GloVe

SVD

souls 3, soule 14.8, souli 454, nsoul 53 5, sould 49,9, souled
37.4, soulchild 51.7, soulive 72.5, soulful 11.0» soult 18.6

funk ,7, blues (g, souls 39, heaven 15, essence 3, spirit
0.8 mind g5, love g2, jazz g6, reggae 34

souls 3.0> funk 2.7, soulchild 51.7, soulful 11.0» blues 0.8
temptations ¢ 3, soulfulness 97,6, salsoul 42,7, soulmates 43.9,
reggae 34

blues ¢, funk 57, souls 3, spirit ¢.g, mind g5, gospel 1.6,
hop 1.1, Pop 0.4, jazz g6, love .2

heaven 15, eternal , 5, forever 17, dreams 14, dream g9,
funk 57, love ¢, souls 3, spirit ¢.g, blues ¢.g
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Table C.9 — Same as Table 6.3, but using subword information, positional contexts and
symmetric context window of fixed size 2.

word model neighbors

rooters 77 SLV-0 cooters 97, looters 31, booters 75, rooter 1, hooters
18, footers 35, scooters 15, freebooters 74, rootes »4,
troubleshooters 55

SLV-20 rooter g1, cooters g7, booters 75, looters 21, truckers
16, revellers 44, stoners 46, greasers g3, tuckers 72,
stokers 49

FT rooter g1, cooters 97, hooters 1g, booters 75, looters
21, footers »5, rootes 24, crosscutters g3, roaders o1,
freebooters 74

GloVe specifc g4, unserious g9, cusumano gy, whch gs, un-
inviting ¢1, overexcited 99, imnsho gg, preffered o1,
alread o4, untypical 94

SVD  ebbets 9, comiskey 13, ballplayers 31, batboy g3,
crawfords 37, chisox g3, bosox g1, gothams s,
semipro ¢, krichell 79

monocultures 76  SLV-0  monoculture 35, monocular 3g, protoculture g1, un-
cultured 51, ethnocultural s9, monocarpic ¢7, mono-
coupe 73, cultureel g9, culturing 34, polyculture gg

SLV-20 monoculture 35, polyculture gg, cultivations g4, crops
2, intercropping ¢, agroforestry 34, cultivation 3, sil-
viculture 45, seedlings 11, clearcutting 47

FT monoculture 35, polyculture gg, ethnocultural s9, sil-
viculture 45, cultivations g4, Crops 2, ecotypes sg, in-
tercropping o9, cultures 1, overgrazing »¢

GloVe hereabouts 74, upend 97, controvertial g7, enlivening
79, pluralisation ¢, selfsame ¢g, herrod g5, overspend
83, unserious g9, liquify go

SVD  monoculture 35, cropland 7, windbreaks g, re-
planted 37, orchards g, silviculture 45, plantations 3,
intercropping g¢, cultivations g4, seedlings 11

flighted g3 SLV-0 alighted s, flighty 43, lighted 9, slighted 5, flight-
plan 93, unlighted g3, benighted 57, flightaware gg,
flightdeck g, blighted 2

SLV-20 flightdeck g¢, flights ;, flight ¢, flighty 43, flight-
less 14, taxiing 19, taxied g1, flightaware g4, flown
2, flightline 55
FT flight ¢, flights 1, flighty 43, flightdeck gy, flightless
14, flightpath ¢7, flown ,, taxiing 19, alighted s, tax-
ied 61
GloVe wikispeak g7, similary g, vandelism o7, specifc gq4,
validations 74, demagogic 77, imnsho g9, incentivise
100> smidge 97, geneological 98
SVD  flightless 14, shoebill 71, tinamous 3g, corvid 7,

curassows 7g, pratincoles 45, toucans 49, turacos sg,
hoatzin g5, anseriformes 34




133

Table C.10 — Same as Table 6.4, but using subword information, positional contexts and
symmetric context window of fixed size 2.

model SimLex RW GSem GSem™ GSem® GSem™P

SLV-0 38.8 47.7 40.2 39.7 0.4 0.7

SLV-5 37.3 49.8 77.1 75.9 9.7 9.6

SLV-20 35.1 48.3 79.5 78.8 40.2 35.7

FT-1 38.7 51.2 70.4 70.1 18.8 18.7

FT-2 394 51.7 74.3 741 21.3 21.4

FT-5 40.3 52.1 78.8 78.5 22.1 21.2

GloVe 35.2 36.1 74.8 73.0 3.0 3.5

SVD 31.6 44.0 48.5 41.1 30.9 26.8
model GSyn GSyn™ GSyn® GSyn™* MSR MSRN MSR? MSRNF
SLV-0 70.1 68.4 9.8 10.7 60.9 59.5 5.5 5.9
SLV-5 71.7 70.6 16.4 17.8 599 58.7 9.1 9.3
SLV-20 66.3 65.6 18.8 19.8 555 54.7 11.7 11.6
FT-1 74.5 74.0 17.8 193 61.2 60.2 12.6 12.9
FT-2 74.0 73.6 17.6 19.1 61.6 60.6 11.5 12.1
FT-5 74.2 73.6 17.4 19.0 62.2 61.3 11.2 11.7
GloVe 59.2 58.2 9.7 97 47.5 45.7 2.8 3.2
SVD 493 46.5 17.1 15.8 373 31.5 9.9 8.5

Figure C.12 — Same as Figure 6.5, but using subword information, positional contexts and
symmetric context window of fixed size 2.
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