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Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewing stem cells 
that have great potential as cell therapy for autoimmune and inflammatory 
disorders, as well as for other clinical conditions, due to their immunoregulatory 
and regenerative properties. MSCs modulate the inflammatory milieu by relea-
sing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the 
classical inflammatory status of monocytes and macrophages towards a non-
classical and anti-inflammatory phenotype. This is characterized by an increased 
secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory 
cytokines, and changes in the expression of cell membrane molecules and in 
metabolic pathways. The MSC modulation of monocyte and macrophage pheno-
types seems to be critical for therapy effectiveness in several disease models, since 
when these cells are depleted, no immunoregulatory effects are observed. Here, 
we review the effects of living MSCs (metabolically active cells) and metabolically 
inactive MSCs (dead cells that lost metabolic activity by induced inactivation) and 
their derivatives (extracellular vesicles, soluble factors, extracts, and micro-
particles) on the profile of macrophages and monocytes and the implications for 
immunoregulatory and reparative processes. This review includes mechanisms of 
action exhibited in these different therapeutic appro-aches, which induce the anti-
inflammatory properties of monocytes and macrophages. Finally, we overview 
several possibilities of therapeutic applications of these cells and their derivatives, 
with results regarding monocytes and macrophages in animal model studies and 
some clinical trials.
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Core Tip: Mesenchymal stromal cells (MSCs) and their derivatives possess immunoreg-
ulatory and regenerative properties that involve the classical activation of monocytes 
and macrophages towards an anti-inflammatory profile, marked by the secretion of 
anti-inflammatory and reparative factors that guide the inflammation resolution and 
healing processes. This review will comprise the effects of living and metabolically 
inactive MSCs, MSC extracellular vesicles, subcellular microparticles, and cell extracts 
on monocytes and macrophages, as well as several possibilities of therapeutic applic-
ations.
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INTRODUCTION
Mesenchymal stromal cells (MSCs) are multipotent, self-renewing stem cells with 
immunoregulatory and regenerative properties. Found in several tissues, these non-
hematopoietic progenitor cells have the ability to differentiate into cells of 
mesenchymal origin, such as chondrocytes, osteoblasts, and adipocytes, as well as 
muscle, tendon, endothelial, stromal, and neural cells[1,2]. This way, MSCs can be 
easily isolated from several sources such as the bone marrow, adipose and muscle 
tissues, the trabecular bone, articular cartilage, deciduous teeth, and the umbilical cord
[1,3]. In these tissues, MSCs maintain homeostasis by offering support to other 
resident cells[4].

MSCs have been targeted by several investigations due to their immunoregulatory 
and regenerative abilities. These cells secrete soluble factors including cytokines, 
chemokines, growth factors, and extracellular vesicles (including exosomes and 
microvesicles) that modulate immune cells such as T cells, B cells, and monocytic cells 
for orchestrating inflammatory resolution and regenerative processes[2,5-7]. Several 
published findings have also demonstrated that MSCs support immune suppression 
through cell-to-cell contact[8-11]. Moreover, MSCs express low levels of the class I 
major histocompatibility complex (MHC-I) and do not express MHC-II, which makes 
them cells with a low immunogenicity and hence low rejection risk[12].

Owing to these features, MSCs are great candidates for cell therapy in inflammatory 
and autoimmune disorders, as well as in other clinical conditions. The therapeutic 
potential of MSCs and their secreted extracellular vesicles has been demonstrated in 
several in vitro studies, animal models, and clinical trials[5,12]. Successful treatment 
with MSCs has been observed in experimental models of lupus[13], colitis[14], 
diabetes[15], graft-versus-host disease (GvHD)[16], cardiovascular malignancies[17], 
and pulmonary diseases[18].

Currently, there are many MSC clinical trials at different phases registered on US 
National Institutes of Health database (https://clinicaltrials.gov), demonstrating 
advances in MSC therapy for GvHD, amyotrophic lateral sclerosis, rheumatoid 
arthritis, liver cirrhosis, acute respiratory distress syndrome, diabetes, acute 
myocardial infarction, lupus erythematosus, Crohn’s disease, osteoarthritis, fibrosis, 
Parkinson’s disease, cystic fibrosis, multiple sclerosis, ulcerative colitis, organ 
transplant rejection, and the recent coronavirus disease 2019 (COVID-19) pandemic.

Since previous investigations have shown that MSCs are modulated by the inflam-
matory milieu and respond specifically to different stimuli, greater therapeutic 
potential is achieved through MSC priming[19]. MSC activation, for improving their 
anti-inflammatory capacities, happens through exposure to conditions that are com-
monly encountered in the inflammatory microenvironment, such as hypoxia, which 
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enhances the angiogenic properties of MSC extracellular vesicles[20]. Moreover, 
nutrient deprivation also improves MSCs’ immunoregulatory properties[21]. This 
MSC priming step can be performed in vitro before cell administration, with the 
inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF)-α or with 
Toll-like receptor 3 (TLR-3) agonists[19,22,23]. This stimulation enhances the secretion 
of bioactive factors tumor necrosis factor-inducible gene (TSG)-6, interleukin (IL)-6, 
and prostaglandin E2 (PGE2) by MSCs[23,24].

MSCs can also be activated by interaction with immune cells. The immunoregu-
latory potential of MSCs is enhanced in response to the macrophage secretome, which 
was demonstrated by an attenuation of macrophage pro-inflammatory activity[25,26]. 
In addition, since macrophages and monocytes are present at the inflammatory milieu 
and assume either a pro- or anti-inflammatory profile, thereby orchestrating inflam-
mation progression or resolution[27-29], studies investigating the crosstalk between 
these cells and MSCs are needed to elucidate the mechanisms of action of MSC 
therapy.

Indeed, macrophages and monocyte-derived macrophages show wide hetero-
geneity in their responses to the microenvironment. The range of microenvironment 
stimuli induces different functional states in macrophages, which are usually classified 
in 2 distinct groups: the classically activated (M1) and alternatively activated (M2) 
macrophages. M1 macrophages are characterized by a cytotoxic phenotype and by the 
production of reactive species and pro-inflammatory mediators such as IL-1, IL-6, IL-
12, IL-23 and TNF-α[27,30]. Meanwhile, M2 macrophages have a healing profile, pro-
nounced by production of anti-inflammatory and angiogenic molecules, such as 
transforming growth factor (TGF)-β, IL-10, vascular endothelial growth factor (VEGF) 
and EGF, which support reparative processes[27,30]. However, new investigations 
have demonstrated that macrophage activation is more complex than previously 
thought, and a spectrum of intermediate phenotypes is defined by different transcrip-
tional patterns. In this regard, M2 macrophages can be subdivided in different subsets: 
M2a, M2b, M2c, and M2d; these activation profiles are induced by distinct stimuli 
combinations[30]. Nonetheless, such classifications are still being elucidated, and this 
article will refer to M1 and M2 macrophages for simplification.

Furthermore, monocytes also present broad heterogeneity as recent investigations 
are uncovering different peripheral blood cell populations. In humans, these are 
represented by 3 subsets based on the expression of surface markers: classical 
monocytes are CD14+CD16- and account for almost 90% of the human monocyte 
population. The remaining cells are subdivided in 2 populations: intermediate (CD14+

CD16+) and non-classical (CD14lowCD16+) monocytes[28]. Classical and intermediate 
monocytes correspond to murine Ly6C+ inflammatory monocytes, whilst non-classical 
monocytes resemble Ly6C- or alternative monocytes[28,31]. The physiological role, as 
well as the origin and development of monocyte subsets, is still unclear; however, 
initial evidence in mice indicates that there is a sequential differentiation of classical 
monocytes into non-classical monocytes, and these might be considered blood-resident 
macrophages. Therefore, since monocytes can differentiate into macrophages in 
conditions of altered homeostasis when there is a need for effector cells, monocytes 
can be recruited to assume either a pro-inflammatory or anti-inflammatory functional 
phenotype depending on the microenvironment stimuli, which is similar to the 
concept of macrophage plasticity[31].

The interaction of macrophages and monocytes with MSCs occurs right after 
intravenous infusion. Németh et al[32] demonstrated that MSCs and macrophages 
colocalize in the lungs after 10 minutes of cell administration. Biodistribution data 
further showed that MSCs are cleared through phagocytosis by the host’s monocytes 
and macrophages[33,34]. However, the fact that a significant part of infused MSCs get 
trapped in the lungs raises concerns about the deleterious effects of obstructive events
[35-37]. In an attempt to improve therapy efficacy and safety, several studies have thus 
explored the immunoregulatory features of MSC-derived extracellular vesicles and 
microparticles, as well as metabolically inactive MSCs, as an alternative to living MSCs
[6,38-40]. Their results have demonstrated that these substitutes maintain the immu-
nomodulatory properties that induce a regulatory phenotype in monocytes and 
macrophages.

Therefore, this review will focus on the modulation of macrophages’ and mono-
cytes’ immunophenotypes, activation status, and migration by living and metabol-
ically inactive MSCs and their derivatives, as well as the implications on infla-mmation 
resolution and healing processes in different disease models. Furthermore, this paper 
will include the mechanisms of action exhibited in these different approaches for 
inducing anti-inflammatory properties in monocytes and macrophages (Figure 1) and 
results of therapeutic evidence presented in animal models and some clinical trials.
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Figure 1 Main effects of viable, inactivated, and apoptotic mesenchymal stromal cells and of mesenchymal stromal cells’ secretome and 
subcellular particles on monocytes and macrophages. MSC: Mesenchymal stromal cell; TSG-6: Tumor necrosis factor-inducible gene 6; PGE2: 
Prostaglandin E2; TGF-β: Transforming growth factor β; IL: Interleukin; HGF: Hepatocyte growth factor; TNF-α: tumor necrosis factor α; PD-L1: Programmed death-
ligand 1; IGF-1: Insulin-like growth factor 1; VEGF: Vascular endothelial growth factor; iNOS: Inducible nitric oxide synthase.

MODULATION OF MACROPHAGES AND MONOCYTES BY LIVING MSCS 
AND EXTRACELLULAR VESICLES
Cytokine profile in monocytes and macrophages
MSCs and their extracellular vesicles can induce classic inflammatory monocytes 
towards a non-classic anti-inflammatory profile, as well as classically activated or M1 
macrophages into alternatively activated or M2 macrophages[41-44]. This monocytic 
tolerogenic phenotype is characterized by changes in cytokine expression, represented 
by an increase in anti-inflammatory IL-10 and TGF-β in monocytes and macrophages
[45-47] and a decrease in levels of TNF-α, IL-1β, and IL-6 inflammatory cytokines in 
macrophages[43,44,47,48].

This shift in the cytokine production pattern of macrophages and monocytes, 
mainly marked by regulatory IL-10 upregulation, drives inflammation resolution and 
alleviates injury in experimental models of allergic processes[49], colitis[47], and eye 
autoimmune and inflammatory disorders[45,50]. Indeed, the IL-10 derived from 
macrophages preconditioned with MSC exosomes has an inhibitory effect on the 
proliferation of CD4+ T cells, indicating different ways in which MSCs exert immu-
nosuppressive effects that include macrophage functions[49].

Furthermore, reducing the production of inflammatory mediators like TNF-α and 
IL-1β has beneficial effects, since these cytokines promote inflammation maintenance. 
These bioactive factors are involved in the recruitment of inflammatory cells, apoptosis 
induction, and release of destructive enzymes (such as metalloproteinases) that lead to 
tissue degeneration. In addition, TNF-α facilitates autoimmunity by inhibiting T 
regulatory cells[51,52]. Therefore, the immunoregulatory action of MSCs on monocytic 
cells contributes to the resolution of inflammatory processes and reduction of tissue 
damage.

Expression of membrane molecules in monocytes and macrophages
The immunoregulatory effect of MSCs on macrophages is also demonstrated by the 
modulation of membrane protein expression. Murine and human macrophages in co-
culture with MSCs were able to reduce the expression of the co-stimulatory molecule 
CD86 and increase that of mannose receptor CD206, which are well-known markers of 
M1 and M2 polarization, respectively[53,54]. These changes were also observed in in 
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vivo mouse models of cutaneous wound healing, myocardial infarction, and diabetic 
cornea, since MSC transplantation decreased the number of CD86+ macrophages while 
increasing CD163+ and CD206+ anti-inflammatory macrophages[43,55,56]. Similarly, 
MSC exosomes and extracellular vesicles induce the same marker expression pattern 
of the M2 phenotype, both in vitro and in vivo[20,43,47,57].

M1 activated macrophages cultured with MSCs decreased the expression of CD80, 
CD86, CD50, CD54, HLA-DR, and HLA-ABC cell surface molecules. This indicates 
that MSC-conditioned macrophages acquire an immunosuppressive profile through 
the reduction of their antigen presentation functions, since these membrane proteins 
are involved in this process[58].

Regarding monocytes, de Witte et al[33] cultured human monocytes with MSCs and 
demonstrated that the predominant population of CD14++CD16- classical monocytes 
shifted to CD14++CD16+ regulatory intermediate monocytes. Moreover, co-cultured 
monocytes increased CD163, CD206, and programmed death-ligand 1 (PD-L1) 
expression.

It is also noteworthy that the co-culture of MSCs with the 3 human monocyte 
subsets (classical, non-classical, and intermediate) reduced the expression of the class 
II antigen presentation complex (HLA-DR) while upregulating MRC1, CD163, 
CD163L1, CD226, CD93, LILRB1 and PTGER2 membrane receptor genes[42]. MRC1 
encodes CD206, which, along with CD163 and CD163L1, belongs to the scavenger 
receptors family, which mediates the remodeling function after tissue damage[42]. 
CD93 is important to phagocytosis and clearance of apoptotic cells, while CD226 is 
involved in monocyte migration[59,60]. Further, LILRB1 is an immunoglobulin-like 
receptor involved in MHC-I mediated immunosuppression[61]. PTGER2 encodes the 
EP2 receptor, which is activated through PGE2, one of MSCs’ bioactive factors. 
Meanwhile, researchers observed an upregulation of monocyte cytokines and growth 
factor genes, such as IL-10, IGF1, and VEGF-A[42]. Not coincidentally, IL-10 produ-
ction is induced through MSC-derived PGE2, which results in reduced inflammation
[32]. This expression profile, along with the CD14 upregulation, shows that MSCs 
altered the maturation of these monocyte subsets towards an M2 macrophage anti-
inflammatory phenotype[42].

Metabolic changes
The MSC-induced M1-M2 phenotype switch is also accompanied by metabolic 
alterations. MSCs impair monocyte differentiation into antigen-presenting dendritic 
cells through metabolic reprogramming. Monocytes, instead of assuming an antigen 
presentation profile, show a transcriptional and phenotypic profile of M2 
macrophages that induces a Th2 regulatory cytokine pattern in CD4+ T cells. In 
addition, these cells acquire higher spare respiratory capacity and more polarized 
mitochondrial membrane potential, resulting in a better capacity of stimuli response in 
case of high energy demand[41]. In the same way, monocyte-derived macrophages co-
cultured with MSCs had increased mitochondrial function and ATP turnover, which 
resulted in greater macrophage phagocytosis and antimicrobial ability. These results 
were demonstrated both in vitro and in vivo[18].

Importantly, macrophages conditioned with MSCs or MSC exosomes increased 
their oxygen consumption rate while decreasing proton leak, indicating enhanced 
bioenergetics and mitochondrial coupling efficiency. In the same work, macrophages 
challenged with silica particles demonstrated homeostasis alterations highlighted by 
the mitochondrial production of reactive oxygen species, which was reverted by MSC 
exosomes[62]. On the other hand, Salmonella-infected macrophages co-cultured with 
MSCs had respiratory burst improvements. This was demonstrated by the enhanced 
expression of NADPH oxidase subunits, concomitantly with the activation of anti-
oxidant protection mechanisms such as superoxide dismutase 2 (SOD2). These data, 
along with faster microbial clearance by macrophages promoted in the MSC co-
culture, indicate that these metabolic changes enhance the macrophages’ ability to 
respond to pathogens[58].

In addition to improving the antimicrobial ability of macrophages and monocytes, 
MSC-induced metabolic changes modify macrophage energy generation pathways 
while promoting their transition towards the M2 phenotype. Since M1 activated 
macrophages have a high energy demand, they have an augmented expression of 
glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and mTOR, which are proteins 
needed in the glycolytic pathway[58]. On the other hand, M2 macrophages exhibit a 
preference for mitochondrial fatty acid β-oxidation, demonstrated by a higher 
expression of carnitine palmitoyl trasferase 1α (CPT1α) and phosphorylated AMPKα 
(p-AMPKα)[58]. This way, the co-culture of M1 macrophages and MSCs reduced 
GLUT1 and HK2 expression and p-mTOR levels while increasing CPT1α expression 
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and p-AMPKα levels; this indicated changes in energy metabolism underlying the 
MSC-induced M2 phenotype[58].

Regarding the amino acid metabolism, macrophages presented an augmented 
expression of arginase-1 and reduced expression of inducible nitric oxide (NO) 
synthase (iNOS) in response to MSCs or MSC exosomes[43,56,63,64]. These enzymes 
are responsible for the L-arginine metabolism, with arginase and iNOS enzymes 
competing for this substrate to convert it into urea and ornithine or NO, respectively. 
NO participates in the macrophage microbicidal and effector functions, while 
ornithine is a polyamine that is necessary for the cell proliferation and tissue 
remodeling functions of M2 macrophages[27]. The balance between their activities 
indicates M1 or M2 polarization, and macrophages co-cultured with MSCs exhibit 
decreased NO production in addition to increased urea levels, which indicates the 
regenerative and resolutive phenotype typical of M2 polarization[64].

Migration and recruitment
MSCs also modulate the migratory behavior of macrophages and monocytes. In vitro, 
macrophages and monocytes actively migrate towards MSCs[33]; in vivo, they are 
recruited to the lungs where they encounter MSCs after intravenous infusion[65]. In a 
murine model of myocarditis, MSCs recruited anti-inflammatory LyC6low monocytes to 
the inflammation site whilst decreasing pro-inflammatory LyC6high and LyC6middle 
monocyte levels. This regulation occurred through the modulation of local 
chemokines, reducing levels of MCP-1 (CCL2), MCP-3 (CCL7), and CCL5; abrogating 
the expression of ICAM-1 and VCAM-1 adhesion molecules; and increasing SDF-1α 
and CX3CL1 Levels. The migration of the anti-inflammatory monocyte subset helped 
with tissue repair and led to a reduction in myocarditis severity[66]. Notably, the 
intravenous infusion of MSC exosomes in experimental mouse models of pulmonary 
fibrosis also diminished the recruitment of pro-inflammatory Ly6Chigh monocytes 
whereas it increased the alveolar macrophages and the infiltration of anti-inflam-
matory monocytes. These changes were accompanied by a reduction in fibrosis 
measurements, in agreement with the monocyte reparative profile[62,67].

Moreover, the administration of MSCs and MSC-conditioned medium in mice with 
angiotensin II-induced aortic aneurysm increased CD206+ M2 macrophage infiltration 
and diminished iNOS+ M1 cells at the injured site, which was concomitant with 
decreased levels of CCL5, CCL2, CCL3, and CXCL10[48].

On the other hand, previous reports showed that MSC administration in mice in-
creased MCP-1 (CCL2) levels, which recruited monocytic cells to the lungs via the 
CCL2-CCR2 axis. After migration, monocytes and macrophages were consistently 
modulated by MSCs and assumed an IL-10-producing phenotype[49,50]. Similarly, in 
a model of skeletal muscle injury, treatment with hypoxia-subjected MSC extracellular 
vesicles increased the expression of MCP-1 (CCL2) and the CD206/Ly6c cell ratio 
when compared to normoxia-derived extracellular vesicles and control groups, 
indicating M2 polarization[20].

Furthermore, type 2 diabetic mice showed augmented M2 macrophage counts in the 
liver, adipose tissue, skeletal muscle, pancreatic islands, and spleen after the intra-
venous infusion of MSCs. Concomitantly with a greater engraftment of administered 
MSCs in the spleen, this brings up the possibility that MSCs may directly modulate 
macrophage and monocyte populations in immune organs, which could lead to 
systemic effects[68]. In fact, mice with myocarditis treated with MSCs retained more 
pro-inflammatory monocytes in the spleen when compared to the control group, and 
recruited more anti-inflammatory monocytes to the heart, which improved healing 
processes and reduced inflammation[66].

In summary, despite the different triggered pathways and chemokine regulation 
involved in monocyte and macrophage recruitment, several investigations indicate 
that MSC treatment induces monocyte and macrophage migration to the inflammation 
site or to immune organs. Once at these sites, MSCs modulate the cell activation status 
and profile, promoting a monocytic anti-inflammatory phenotype and hence a 
reparative milieu.

Mechanisms of action
The mechanisms underlying MSC immunoregulatory capacities are still under invest-
igation, but one of the most well-known processes for inducing a suppressive and anti-
inflammatory phenotype in monocytes and macrophages is the secretion of soluble 
factors such as TSG-6, TGF-β, HGF (hepatocyte growth factor), IL-6, and the IL-1 
receptor antagonist[45,53,69,70]. Moreover, lactate and PGE2 were also shown to 
reprogram macrophage metabolism to promote an M2 profile[41,58]. The abrogation 
of several of these bioactive factors prevented MSC-induced M2 macrophage 
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polarization and immunoregulatory effects[24,25,41,58].
In addition to their paracrine action, MSCs are phagocytized by monocytic cells in 

an active process. After in vitro phagocytosis, monocytes acquire phenotypic and 
functional changes of CD14++CD116+ immune regulatory intermediate monocytes, 
such as upregulated expression of PD-L1 and CD90 surface molecules and IL-1b, IL-6, 
IL-8, IL-10, and TGF-β cytokines, whilst expression of pro-inflammatory TNF-α 
decreases[33]. In vivo, monocytes which phagocytized MSCs assume the same anti-
inflammatory profile and migrate to other body sites, mainly to the liver, carrying the 
regulatory properties of MSCs[33]. Further, macrophages also phagocyte MSCs and 
acquire an anti-inflammatory M2 phenotype, characterized by increased IL-10 and 
TGF-β expression[33,34].

Organelle transfer is another mechanism triggered by MSCs that enhances 
macrophage functions. In vitro and in vivo assays have evidenced that MSCs transfer 
mitochondria to macrophages through exosomes and cytoplasmic bridges named 
tunneling nanotubes, which improves the macrophages’ phagocytic ability and 
bioenergetics[18,62]. Min et al[71] reported that monocytes and macrophages engulfed 
MSCs’ cytoplasmic processing bodies, which are membrane less organelles that store 
mRNA, miRNA, and proteins. This mechanism was mediated by lipoprotein receptor-
related proteins (LPRs) and was critical to the reprogramming of monocytes and 
macrophages towards a transcriptional profile of reduced antigen presentation, as well 
as for the inhibition of T cell activation. Moreover, MSC processing bodies were 
required to prevent the infiltration of CD11b+ inflam-matory monocytes and 
macrophages in lung tissue in a mouse model of lung inflammation[71].

Furthermore, MSCs can exert immunomodulatory effects through microRNA 
transfer[62]. The M2 macrophage phenotype promoted by treatment with MSC 
exosomes is, at least in part, dependent on the post transcriptional control (by miR-182 
and miR-181) of TLR-4 and the subsequent downregulation of its downstream nuclear 
factor-κB (NF-κB) inflammatory pathway[43,72]. The inhibition of TLR-4/NF-κB 
activation is also triggered by the let-7b miRNA from MSC exosomes while this 
molecule induces signal transducer and activator of transcription 3 (STAT3) signaling, 
which in turn participates in M2 conversion[73]. The reduced expression of TLR-4 and 
enhanced levels of p-STAT3 in the healing wound site demonstrates that the 
regulation of these signaling pathways in macrophages promotes the M2 phenotype, 
with reparative properties[74].

miR147, derived from MSC extracellular vesicles, was also found to decrease 
macrophage activation via diminishing HMBG-1 secretion[75]. Moreover, He et al[76] 
reported that M2 macrophage polarization was associated with MSC exosome-derived 
miR-223 and a consequent decrease in Pknox1 levels, a homeobox protein associated 
with the regulation of M1 macrophage polarization[77,78]. Interestingly, miR-223 was 
also shown to reduce NLRP3 Levels; this is a protein of the inflammasome complex 
whose activation leads to inflammatory cytokine release and to the exacerbation of 
inflammation in cases of inflammatory bowel disease[79].

Similarly, MSCs induce the association of the yes-associated protein (YAP) and β-
catenin in the macrophage nucleus. These are components of protein kinase cascades 
in the Hippo and Wnt signaling pathways, respectively, and the assembled protein 
complex operates to negatively control the target gene XBP1, which mediates NLRP3 
activation. Data demonstrate that MSCs also regulate M2 polarization through Hippo 
signaling and subsequent repression of inflammasome activation[63]. Finally, MSCs 
suppress NLRP3 inflammasome-mediated IL-1β production by macrophages through 
a feedback mechanism where IL-1β may induce COX-2 signaling in MSCs[54].

MODULATION OF MACROPHAGES AND MONOCYTES BY METABOLI-
CALLY INACTIVE, APOPTOTIC MSCS AND SUBCELLULAR PARTICLES
The modulation of macrophages and monocytes by non-viable MSCs or MSC 
subcellular particles is an emerging issue of interest in research, since investigations 
can contribute to understanding the immunomodulatory mechanisms of MSCs 
independently of their soluble secreted factors. In addition, although some studies 
have shown that MSCs display homing to the injured site[68,80], other experimental 
models of MSC infusion demonstrate that a great portion of these cells get trapped in 
the lung capillaries and lose viability after 24 h[35,36,80]. Nevertheless, the immunore-
gulatory effect of MSCs is maintained, raising questions on how these cells are still 
able to reduce local and systemic inflammation.
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These questions bring up the hypothesis that MSCs transfer their immunomodu-
latory properties to other host cells, which can then act to decrease inflammatory 
parameters. In addition, tracking studies have demonstrated that the MSC signal 
found in the inflammation site, organs, and blood after intravenous administration 
derived from MSC debris phagocytized by immune cells (such as monocytes) instead 
of viable MSCs[33,36]. Therefore, inactivated and dead MSCs or even MSC extracts 
could trigger this immunoregulation without the need for metabolically active cells.

To overcome the low homing efficiency of systemically administered MSCs, studies 
have demonstrated the therapeutic potential of MSC extract instead of whole cells[81-
83]. Song et al[81] infused the MSC extract in a chemically induced mouse model of 
colitis. They found that the extract inhibited inflammatory cytokines, recovered the 
damaged epithelial barrier, and polarized the macrophages’ functional phenotyping 
from M1 to M2 by reducing the expression of genes encoding for MCP1, CXCL9, and 
iNOS (M1 markers) and increasing that of genes corresponding to IL-10, LIGHT, 
CCL1, and Arg-1 (M2 markers).

Studies observed that MSC membrane nanoparticles without any cargo and heat-
inactivated MSCs decreased the proportion of pro-inflammatory CD16+ monocytes by 
inducing apoptosis[40,84]. The MSC membrane nanoparticles were generated from 
unstimulated and IFN-γ-stimulated MSCs, and this difference seems to be important 
for the ultimate purpose. For instance, unstimulated and IFN-γ-stimulated 
nanoparticles were capable of increasing CD90+ monocyte population, (a natural MSC 
marker), but only IFN-γ-stimulated nanoparticles augmented the PD-L1+ monocyte 
subset[40]. Moreover, monocytes conditioned with IFN-γ-stimulated nanoparticles, 
but not with the unstimulated type, had enhanced indoleamine 2,3-dioxygenase (IDO) 
expression[40]. The possibility of changing stimuli to generate nanoparticles with 
different features and membrane compositions provides the opportunity of creating 
specific therapies according to distinct inflammatory disorders[40]. Importantly, PD-
L1 is an immune checkpoint protein that inhibits the activation and function of its 
target PD-1-expressing immune cells, suppressing immune reactivity[85]. In addition, 
IDO is an enzyme that depletes the essential amino acid tryptophan and generates 
kynurenine pathway metabolites; these metabolic changes thus contribute to immune 
regulation[86]. Therefore, IFN-γ-stimulated MSC membrane particles with the ability 
to induce PD-L1 and IDO expression could be used in the treatment of severe inflam-
matory conditions that present inflammatory monocytes[40]. These studies also 
observed that MSC membrane nanoparticles bind and fuse to the monocyte 
membrane, demonstrating that physical interaction between cell surfaces is important 
for MSC-induced immunosuppression[40]. Furthermore, MSC membrane nano-
particles maintain ATPase and CD73 enzymatic activities at their surface, converting 
ATP to ADP and AMP to adenosine, respectively[40]. Adenosine, the last molecule of 
these reactions, has immunoregulatory functions via P1 receptor activation[87]. It is 
important to note that the activation of monocyte P1 receptors such as A2A and A2B 
inhibited TNF-α production[87].

Additionally, just as living cells, secretome-deficient heat-inactivated MSCs also 
disappear after 24 h of infusion in healthy mice and in an experimental model of 
kidney ischemia/reperfusion injury[39]. Despite their fast clearance, the adminis-
tration of heat-inactivated MSCs still altered the expression levels of several cytokines 
and chemokines in the serum and lung tissue and reduced LPS-induced sepsis[39]. In 
vitro assays demonstrated that secretome-deficient heat-inactivated MSCs modulate 
monocytes through reducing TNF-α production[39,84]. This modulation occurs 
through phagocytosis of heat-inactivated MSCs, and the recognition of heat-
inactivated MSCs by monocytes was even more efficient than that of intact MSCs[84]. 
Moreover, the supernatant of LPS-stimulated macrophages that phagocytized dead 
MSCs improved the survival of hypoxic cardiomyocytes[88]. After phagocytosis, 
macrophages augmented the production of PGE2, VEGF-α, KGF, IGF-1, and PDGF-BB 
reparative molecules while decreasing that of TNF-α, IFN-γ, IL-12, and IL-6[88]. 
Together, these data suggest that, at least in some sepsis models, monocytes that had 
phagocytized inactivated MSCs acquired their immunoregulatory properties and 
reduced inflammation[39,84].

Another therapeutic approach consists in the administration of apoptotic MSCs. 
Galleu et al[89] demonstrated that mice with GvHD lacking the cytotoxic activity of 
GvHD effector cells did not respond to MSC therapy due to the need for inducing 
MSC apoptosis. Therefore, the administration of in vitro-produced apoptotic MSCs in 
GvHD mice eliminated the requirement for promoting MSC apoptosis in vivo and 
induced IDO expression in recipient mice macrophages that had phagocytized the 
infused cells, which incited immunosuppression[89].
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These new MSC-derived alternative therapies bring some advantages. Using non-
viable MSCs ensures that the administered product is not altered after infusion, since 
once inside the target organism, they do not proliferate or secrete any molecules in 
response to nonspecific host signals. Owing to their small size, MSC membrane nano-
particles could pass through the lung capillaries and reach other areas of the body, 
avoiding problems such as emboli formation induced by the administration of intact 
MSCs[40,90].

The effects of non-viable and apoptotic MSCs on macrophages and monocytes are 
still under investigation. The mechanisms of action exhibited by these cells are still not 
fully understood, but MSC phagocytosis by monocytes and macrophages seems to be 
essential for the systemic effects of inactivated and apoptotic MSC therapy[89]. The 
interaction between cell membranes may also have an important role[40]. Future 
studies will be necessary to reveal the possible interactions between non-viable MSCs 
and macrophages or monocytes in vivo, as well as their implications in treatment 
results.

THERAPEUTIC APPLICATION POSSIBILITIES — IN VIVO STUDIES
The use of MSCs with the proven participation of monocytes and macrophages has 
been described as having therapeutic potential in several local and systemic disorders 
studied in animal models. Regarding lung injuries, MSC extracellular vesicles were 
able to alleviate induced acute lung injury in a murine model: researchers observed 
alterations in macrophage phenotypes and a decrease in macrophage recruitment[91]. 
In addition, preconditioned MSC exosomes prevented and reverted experimental 
pulmonary fibrosis and lung inflammation through the modulation of monocyte 
phenotypes in adult C57BL/6 mice[67]. Through the modulation of lung macrophage 
phenotypes, treatment using MSC exosomes alleviated bronchopulmonary dysplasia 
in a mouse model, resulting in improvement of lung function, decreased fibrosis, 
remodeling of pulmonary vasculature, and amelioration of pulmonary hypertension
[92]. In a mouse model of acute respiratory distress syndrome, an improvement of 
lung injury was observed when using murine alveolar macrophages previously 
cultured with MSC extracellular vesicles and through the transference of MSC 
mitochondria to macrophages, resulting in an enhancement of macrophage phago-
cytosis. The enhanced host macrophage phagocytosis could promote a clearance of 
invading microorganism, which, combined with suppressive pro-inflammatory 
cytokine secretion, may improve clinical outcomes, since lung injury is associated with 
high inflammatory response and bacterial burden[18,93]. Moreover, the administration 
of MSCs increased CCL2 expression and monocyte recruitment in the lungs, 
suppressing allergic airway inflammation[49].

In relation to cardiac disorders, MSC application in Coxsackievirus B3-induced 
myocarditis in mice attenuated myocardial inflammation by suppressing the cardiac 
infiltration of pro-inflammatory monocytes while promoting the cardiac influx of anti-
inflammatory monocytes, representing a promising strategy for the resolution of 
cardiac inflammation and prevention of disease progression[66]. MSC exosomes 
attenuate myocardial ischemia/reperfusion injury in mice via shuttling miR-182, 
which modifies the macrophages’ polarization status[43]. MSCs and their exosomes 
may also mediate the decrease in pro-inflammatory and increase in anti-inflammatory 
monocytes/macrophages after acute myocardial infarction[94,95]. Furthermore, a 
mouse model of dilated cardiomyopathy that received MSC exosomes showed cardiac 
function improvement, cardiac dilation attenuation, and cardiomyocyte apoptosis 
reduction due to the decrease in pro-inflammatory macrophages in both the blood and 
heart[57].

The use of MSCs and their derivatives can also be considered for other organ 
injuries. The injection of MSCs or their exosomes ameliorated dextran sulfate sodium-
induced colitis in mice, and part of the associated mechanism includes a macrophage-
dependent phenomenon[47,96]. Previous coculture of MSCs and macrophages 
induced the M2 phenotype, which combined with host cells, improved liver fibrosis in 
mice[97]. The internalization of MSC extracellular vesicles by macrophages, with an 
increasing number of reparative macrophages, was accompanied by a reduction in 
renal inflammation in a porcine model, suggesting that anti-inflammatory properties 
underpin the protective effects of MSC extracellular vesicles on the stenotic kidney
[98]. In mice secondary lupus disease, MSCs ameliorated lupus nephritis, preventing 
podocyte injury, possibly through a reduction in macrophage infiltration and 
polarization into an anti-inflammatory phenotype[13]. MSC exosomes prevented 
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cerebral injury in rat acute ischemic stroke by inhibiting autophagy-mediated 
microglial polarization to M1[99]. Therapy with MSC exosomes promoted M2 macro-
phage polarization and accelerated cutaneous wound healing in skin-defective mice
[76]. Mice were protected against a subsequent immune challenge in corneal allotrans-
plantation and experimental autoimmune uveitis after the intravenous infusion of 
MSC-preconditioned lung monocytes/macrophages[45]. The local administration of 
MSCs promoted diabetic corneal wound healing by modulating the immune response, 
inducing alternative activation of infiltrating macrophages towards M2 polarization
[56].

In some other conditions, the study of the effects of MSCs on monocytes and 
macrophages is useful for future therapeutic applications. Regarding sepsis reports, 
the intravenous infusion of MSCs reduced mortality and bacteremia in gram-negative 
peritoneal sepsis in mice, partially by enhancing the phagocytic activity of blood 
monocytes[100]. MSC nanovesicles had protective immunomodulatory effects in a 
mouse model of sepsis owing to the reduction of pro-inflammatory cytokine 
production by macrophages and of monocyte infiltration in the peritoneum[101]. 
Exosomes of pretreated MSCs induced M2 macrophage polarization, increased 
survival, and effectively ameliorated symptoms in a mouse model of sepsis[102]. 
Apoptotic MSCs induced immunosuppression in a murine model of GvHD, engulfing 
recipient phagocytes[89]. MSC treatment prevented and alleviated atherosclerosis in 
mice, partly by decreasing monocytosis and modulating macrophage activation and 
differentiation. Plaque size and lipidic deposition in mice that received MSCs in both 
prevention and treatment groups were significantly smaller than those in the control 
group[103]. MSC exosomes repaired and regenerated critical osteochondral defects in 
a rat model of osteoarthritis through coordinated mobilization of multiple cell types 
and activation of several cellular processes, such as a regenerative immune phenotype 
characterized by a higher infiltration of CD163+ regenerative M2 macrophages over 
CD86+ M1 macrophages[104]. M2 macrophage polarization was also the target of the 
intravenous MSC exosomes studied in rats’ spinal cord injury recovery[105,106]. MSC 
infusion exerted anti-diabetic effects and significantly promoted islet repair in a type 2 
diabetes mouse model, and this effect was partially attributed to a suppression of 
inflammation and induction of M2 macrophage polarization[25]. In diabetes complic-
ations, MSC exosomes alleviated neurovascular dysfunction and improved functional 
recovery in mice with diabetic peripheral neuropathy, including a mechanism of 
macrophage M1 decrease and M2 increase[107].

In clinical trials, performing some cellular analysis is difficult and may not be 
possible. Moreover, clinical improvements are the main evaluated outcomes. We will 
briefly introduce some reports that showed descriptions of clinical improvement using 
MSCs with a possible involvement of monocytes and macrophages.

MSC infusion in treatment of patients with knee osteoarthritis resulted in overall 
improvement of pain and symptoms and reduced synovial inflammation. Scores of 
clinical outcomes showed clinical efficacy and decreased levels of pro-inflammatory 
monocytes, macrophages, and IL-12 in the synovial fluid after MSC injection. Taken 
together, the decreases in IL-12 Levels along with pro-inflammatory mono-
cytes/macrophages after MSC injection are supportive of an anti-inflammatory and 
immunomodulatory mechanism of action of MSCs, which is clinical evidence of the 
mechanism of these cells in osteoarthritis[108].

Regarding the use of MSCs for immunomodulation after solid organ transplan-
tation, a phase I trial has demonstrated the downregulation of HLA-DR ex-pression by 
CD14+ monocytes relative to pre liver transplant levels, which can be associated with a 
decrease in immunological reactivity[109]. MSCs can modulate the maturation and 
function of monocyte-derived dendritic cells via soluble factors, contributing to the 
improvement of liver allograft histology and suppression of acute rejection in liver 
transplant recipients[110].

Biopsies of ulcerative colitis showed improved histological results after MSC 
treatment. Inflammatory cell infiltration at histological evaluation showed that the 
score of the MSC-treated group was significantly lower when compared to the 
untreated group[111].

Considering the treatment of infectious diseases, authors have described that the 
intravenous injection of MSCs significantly improved the inflammation situation in 
COVID-19; serum levels of pro-inflammatory cytokines and chemokines were dramat-
ically reduced, which attracted less mononuclear cells/macrophages to the fragile lung
[112]. Several studies focused on the reduction of the general inflammatory cytokine 
profile after MSC infusion, and some of them included the specific macrophage 
inflammatory protein-1 alpha (MIP-1)[113]. Still considering the cytokine profile, the 
reduction of systemic immune activation after MSC treatment contra-dictorily 
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improved immune reconstitution in HIV-1-infected immunological nonresponders 
and decreased specific cytokines such as MCP-1 and MIP-1β[114].

CONCLUSION
The interaction of macrophages and monocytes with either viable or non-viable MSCs 
seems to be critical for therapy effectiveness, since when these cells are depleted in 
several models of inflammatory diseases or are prevented from migrating to the 
inflammation site, no immunoregulatory effects or benefits occur[43,49,50,89,94]. As 
discussed, these immunoregulatory effects are mainly due to the induced shift 
towards the anti-inflammatory phenotype of monocytes and macrophages, induced by 
viable, non-viable, and apoptotic MSCs, as well as their subcellular particles.

This modulation of monocytes and macrophages by MSCs occurs through different 
complex mechanisms such as secreted soluble factors, mitochondria and micro-RNA 
transfer, and phagocytosis of MSCs. In addition, the emergence of different thera-
peutic approaches using non-viable MSCs and MSC membrane particles brings up the 
need for investigating their immunomodulatory mechanisms. The phagocytosis of 
MSCs by monocytes and macrophages was also observed, and the interaction between 
surface molecules of MSC membrane particles and these monocytic cells seems to be 
important.

Here, we discussed the effects of viable, non-viable, and apoptotic MSCs, as well as 
their secretome and subcellular particles on monocytes and macrophages (Figure 1). In 
summary, monocytes and macrophages can acquire the immunomodulatory features 
of MSCs, and this regulatory action seems to be crucial for therapy success in several 
clinical conditions.
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