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Chloroplast genomes (plastomes) are frequently treated as highly conserved among
land plants. However, many lineages of vascular plants have experienced extensive
structural rearrangements, including inversions and modifications to the size and content
of genes. Cacti are one of these lineages, containing the smallest plastome known
for an obligately photosynthetic angiosperm, including the loss of one copy of the
inverted repeat (∼25 kb) and the ndh gene suite, but only a few cacti from the subfamily
Cactoideae have been sufficiently characterized. Here, we investigated the variation of
plastome sequences across the second-major lineage of the Cactaceae, the subfamily
Opuntioideae, to address (1) how variable is the content and arrangement of chloroplast
genome sequences across the subfamily, and (2) how phylogenetically informative
are the plastome sequences for resolving major relationships among the clades of
Opuntioideae. Our de novo assembly of the Opuntia quimilo plastome recovered an
organelle of 150,347 bp in length with both copies of the inverted repeat and the
presence of all the ndh gene suite. An expansion of the large single copy unit and
a reduction of the small single copy unit was observed, including translocations and
inversion of genes, as well as the putative pseudogenization of some loci. Comparative
analyses among all clades within Opuntioideae suggested that plastome structure
and content vary across taxa of this subfamily, with putative independent losses
of the ndh gene suite and pseudogenization of genes across disparate lineages,
further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome
dataset was robust in resolving three tribes with high support within Opuntioideae:
Cylindropuntieae, Tephrocacteae and Opuntieae. However, conflicting topologies were
recovered among major clades when exploring different assemblies of markers.
A plastome-wide survey for highly informative phylogenetic markers revealed previously
unused regions for future use in Sanger-based studies, presenting a valuable dataset
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with primers designed for continued evolutionary studies across Cactaceae. These
results bring new insights into the evolution of plastomes in cacti, suggesting that
further analyses should be carried out to address how ecological drivers, physiological
constraints and morphological traits of cacti may be related with the common
rearrangements in plastomes that have been reported across the family.

Keywords: cacti, de novo assembly, Opuntia, plastid structural rearrangements, plastome, pseudogenization,
reference-guided assembly

INTRODUCTION

Cacti comprise one of the most charismatic plant clades of
the world, exhibiting an enormous variety of growth forms,
morphology and intriguing niche occupancy across the Americas
(Britton and Rose, 1919; Anderson, 2001; Hunt et al., 2006;
Hernández-Hernández et al., 2011). This diversity is reflected
in a high number of species and heterogeneous diversification
rates across the clade (Arakaki et al., 2011; Hernández-Hernández
et al., 2014). Some uncommon features in most angiosperms,
such as succulent tissues, Crassulacean acid metabolism (CAM),
betalain pigments and the reduction of or absence of leaves are
typical characters of cacti that have long captured the attention
of plant biologists and have been suggested as adaptations to
allow survival in harsh environments (Mooney et al., 1977;
Mauseth, 1999; Landrum, 2002; Nobel, 2002). Indeed, members
of the family are conspicuous elements of the arid and semiarid
succulent biome of the New World, but they are also found in
subtropical and tropical forests, especially as epiphytes (Taylor
and Zappi, 2004; Hunt et al., 2006). Besides major morphological
and physiological adaptations, genetic and genomic-level changes
are also expected. For example, whole genome duplication events
have long been suggested to be associated with adaptations to
extreme environments (e.g., Stebbins, 1971; Soltis and Soltis,
2000; Brochmann et al., 2004), and significant gene family
expansion in genes related to stress adaptation, as well as more
restricted events of gene duplications were reported in lineages of
Caryophyllales adapted to severe environments including in cacti
(Wang et al., 2019).

Although gene content, structural organization and size of the
chloroplast genome (plastomes) of land plants is often considered
highly conserved (Raubeson and Jansen, 2005; Chumley et al.,
2006; Wicke et al., 2011), deviations have been increasingly
reported in some clades and have challenged the generality of
this phenomenon (Daniell et al., 2016; Mower and Vickrey,
2018; Ruhlman and Jansen, 2018). Astonishing variety of size
have been observed across land plants, from 19 kb in a non-
photosynthetic Epipogium roseum (D. Don) Lindl. (Orchidaceae)
to giant plastomes with 217 kb, as in Pelargonium × hortorum
L. H. Bailey (Geraniaceae) (Chumley et al., 2006; Schelkunov
et al., 2015), reflected by expansions or contraction of the
inverted repeat (IR), large single copy (LSC) or even small
single copy (SSC) units. Also, the independent losses of one
copy of the inverted repeat region (∼25 kb in size) have been
identified across disparate clades, such as Fabaceae, Geraniaceae,
Orobanchaceae, and Cactaceae (Cai et al., 2008; Ruhlman and
Jansen, 2014; Sanderson et al., 2015), and a variety of taxa have

lost particular genes (e.g., ndh genes in parasites, carnivorous
plants and xerophytes) (Braukmann et al., 2009; Wicke et al.,
2011; Iles et al., 2013; Peredo et al., 2013; Ruhlman et al., 2015;
Sanderson et al., 2015).

Members of Cactaceae also have experienced different
alterations in their chloroplast genome. A conserved inversion
of ∼6 kb on the large single copy unit comprising the trnM-
rbcL genes have long been suggested (Wallace, 1995) and more
recently confirmed (Sanderson et al., 2015; Majure et al., 2019;
Solórzano et al., 2019). Besides that, the first cactus plastome
assembled from the saguaro cactus [Carnegiea gigantea (Engelm.)
Britton & Rose] exhibited an exceptional reduction in size
(113 kb) and gene content, including the loss of one of the two
inverted repeat regions and nine of the 11 ndh genes (Sanderson
et al., 2015). More recently, newly assembled plastomes of
seven species of the short-globose cacti of Mammillaria Haw.
revealed three different plastome structures across the genus,
all with two copies of a divergent inverted repeat, including (i)
an extreme reduction in size of IRs [<1 kb, typically ranging
from 15 to 30 kb in land plants (Zhu et al., 2016)]; (ii) an
intermediate reduction of IR (∼7 kb) with translocation of
some typical LSC genes to the IR; and (iii) a structure with
a divergent IR structure and a surprisingly reduced plastome
(∼107 kb), being now the putative smallest plastome known
for an obligately photosynthetic angiosperm (Solórzano et al.,
2019). However, considering these dissimilar patterns between
the few described plastomes of cacti, a broad sampling including
other lineages may shed new insights into chloroplast genome
evolution across the family.

The classification of Cactaceae has been long proposed
based on morphological characters (Schumann, 1899; Britton
and Rose, 1919; Backeberg, 1958; Hunt et al., 2006), and
further tested with the aid of molecular phylogenies (Nyffeler,
2002; Bárcenas et al., 2011; Hernández-Hernández et al., 2011).
Three major well-supported clades are currently circumscribed
as subfamilies: Opuntioideae, Maihuenioideae and Cactoideae,
while the traditional “Pereskioideae” has been revealed as a
basal grade including the two leafy lineages of the cacti, which
are subsequent sisters to the rest, i.e., Leuenbergeria Lodé and
Pereskia Mill. (Edwards et al., 2005, reviewed in Guerrero
et al., 2019). Opuntioideae (∼350 spp.) is the most widespread
subfamily with members occurring from southern South America
(Argentina) to northern North America (Canada) (Britton and
Rose, 1919; Anderson, 2001; Hunt et al., 2006; Ritz et al.,
2012; Majure and Puente, 2014; Majure et al., 2019). The group
shows interesting morphological synapomorphies, such as the
small brushlike, barbed spines (i.e., glochids) and a bony aril
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surrounding a campylotropous ovule (Stuppy, 2002; Taylor et al.,
2002). However, the delimitation of taxa within Opuntioideae is
still not settled, and the controversy is observed across different
taxonomic levels, from species to tribes (Schumann, 1899; Britton
and Rose, 1919; Hunt, 2002; Stuppy, 2002; Taylor et al., 2002).
Traditional classifications based on general morphology – such
as growth form, stem and leaf morphology, as well as floral,
fruit, pollen, and seed characters – were used to divide the
subfamily from few to up to 20 smaller genera (Britton and
Rose, 1919; Stuppy, 2002; Hunt et al., 2006; Griffith and Porter,
2009). Nonetheless, molecular phylogenetic studies, mainly based
on chloroplast (rpl16 intron and trnL-trnF region) and nuclear
ribosomal ITS sequences, revealed that the most comprehensive
genus, Opuntia s.l. (L.) Mill., was paraphyletic, which reinforced
the recognition of numerous smaller genera corresponding to
well-supported clades (Stuppy, 2002; Taylor et al., 2002; Wallace
and Dickie, 2002; Griffith and Porter, 2009; Majure et al., 2012;
Ritz et al., 2012; Majure and Puente, 2014). Likewise, the tribal
classification of Opuntioideae has been controversial based on
different approaches, with up to six tribes proposed (Hunt, 2011).
While Doweld (1999) and Wallace and Dickie (2002) proposed
five tribes, with different circumscriptions from each other —
four were recognized as monophyletic in the last comprehensive
molecular study of Opuntioideae (Griffith and Porter, 2009).
Despite great improvement in our phylogenetic understanding in
Opuntioideae (Griffith and Porter, 2009; Ritz et al., 2012; Majure
et al., 2019), support for the relationships among those clades, as
well as a better taxon sampling with more molecular markers, still
needs to be strengthened.

Apart from the external and internal transcribed spacer (ETS
and ITS) of the nuclear ribosomal repeats (NRR) and ppc marker,
most molecular phylogenies of cacti have been historically based
on a few plastid markers (trnL-trnF, rpl16, trnK, and matK)
(Nyffeler, 2002; Edwards et al., 2005; Korotkova et al., 2010;
Arakaki et al., 2011; Bárcenas et al., 2011; Demaio et al.,
2011; Hernández-Hernández et al., 2011, 2014; Ritz et al., 2012;
Bárcenas, 2016; Vargas-Luna et al., 2018). While these markers
have shown to be potentially able to resolve some clades, some
relationships are still lacking support (Nyffeler, 2002; Griffith and
Porter, 2009; Bárcenas et al., 2011; Hernández-Hernández et al.,
2011). In this case, next-generation sequencing (NGS) could be
a useful tool, since it has transformed the study of non-model
plant taxa in phylogenetic inferences with high throughput data
allowing deep resolution across major plant clades (Xi et al.,
2012; Ma et al., 2014; Gardner et al., 2016; Zong et al., 2019).
NGS data are also showing to be extremely useful for discovering
informative regions across genomes, for marker development
(Wu et al., 2010; Dong et al., 2012; Ripma et al., 2014; Reginato
et al., 2016; Abdullah et al., 2019), as well as to investigate
chloroplast genome evolution (Dong et al., 2013; Mower and
Vickrey, 2018; Yao et al., 2019). Nevertheless, this approach is still
in its infancy across Cactaceae (Majure et al., 2019) and remains
a path to be explored.

Here, we investigate the use of next-generation sequencing
across Opuntioideae to address two major questions: (1) how
homogenous is the content and arrangement of chloroplast
genomes across the subfamily? and (2) how phylogenetically

informative are chloroplast genome sequences for resolving
major relationships among the clades of Opuntioideae?
We used a combination of de novo and reference-guided
assemblies to process genome skimming data: (i) assembling
and characterizing the first chloroplast genome of an Opuntia
species, O. quimilo K. Schum., (ii) investigating overall patterns
of reference-guided assemblies and comparative chloroplast
genome sequence analyses across the subfamily, (iii) inferring
phylogenetic relationships with assembled sequences and (iv)
surveying plastomes for highly informative phylogenetic markers
for Sanger-based studies for future use.

MATERIALS AND METHODS

Taxon Sampling, DNA Extraction, and
Sequencing
All currently recognized genera in Opuntioideae (sensu Hunt
et al., 2006, plus Majure et al., 2019 for Grusonia s.l.), with
the exception of Punotia (see Ritz et al., 2012), were sampled
with one accession per genus, resulting in a dataset of 17
taxa, which were sequenced via genome-skimming (Straub
et al., 2012; Majure et al., 2019). All seven genera of tribe
Opuntieae were included; five of the six genera in Tephrocacteae
were sampled, and all five genera in Cylindropuntieae were
included in our analyses. Three additional samples were selected
as outgroup taxa [Cactoideae: Parodia magnifica (F. Ritter)
F. H. Brandt and Coryphantha macromeris (Engelm.) Lem.;
and Pereskia: Pereskia sacharosa Griseb.] based on previous
studies (Arakaki et al., 2011; Hernández-Hernández et al.,
2014). Plant materials were from wild collections or from the
Desert Botanical Garden’s living collection (see Supplementary
Table S1 for details). DNA was extracted from silica-dried
or fresh epidermal tissues using a standard CTAB incubation
(Doyle and Doyle, 1987) followed by chloroform/isoamyl alcohol
precipitation and silica column-based purification steps, as
described in Neubig et al. (2014) and Majure et al. (2019).
Whole genomic DNAs were quantified using the Qubit dsDNA
BR Assay Kit and Qubit 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, United States); high-molecular-weight DNA
(>15 kb) samples showing no degradation were considered
suitable and sent to Rapid Genomics LLC1 (Gainesville, FL,
United States) for library preparation and high-throughput
sequencing using the Illumina HiSeq X platform with 150 bp
paired-end reads. A total of sixty samples were included per lane
for sequencing.

De novo Assembly and Data Processing
for Chloroplast Genome Sequences
Raw reads were imported into Geneious 11.1.5 (Biomatters,
Auckland, New Zealand), and paired reads were set with an
expected insert size of 300 bp calculated with BBMap using
default setting (Bushnell, 2016). Low quality bases (Q< 20) were
trimmed, and all reads shorter than 20 bp were discarded using

1http://rapid-genomics.com/home/
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BBDuk for quality control (Bushnell, 2016). Different methods
were employed to assemble the chloroplast genome of the diploid
Opuntia quimilo. First, a de novo assembly was performed
with 40% of the reads using the Geneious de novo assembler
(low/fast sensitivity option, plus default settings). A consensus
sequence (with a majority threshold for sequence matching –
fewest ambiguities) of each contig greater than 1,000 bp in
length was saved. Considering that the Cactaceae plastomes
already published have unusual rearrangements, we looked for
plastid contigs searching those saved contigs against the Portulaca
oleracea L. plastome (Portulacaceae, one of the closest relatives
of Cactaceae; see Walker et al., 2018) (GenBank accession
KY490694, Liu et al., 2017) using MegaBLAST (following
parameters proposed from Ripma et al., 2014). Additional
chloroplast genome de novo assemblies of O. quimilo were
performed using a set of different pipelines, such as GetOrganelle
(Jin et al., 2019) and NOVOPlasty (Dierckxsens et al., 2017) to
cross-validate and compare among the assemblies. After checking
convergence of the assemblies from the different pipelines and the
plastid contig recovered from the Geneious de novo assembly, we
used the NOVOPlasty circular contig for downstream analyses.
Annotations were performed with GeSeq (Tillich et al., 2017),
using default parameters to predict protein-coding genes by
HMMER profile search and ARAGORN v1.2.38 (Laslett and
Canback, 2004); tRNA genes were annotated with tRNAscan-
SE v2.0 (Lowe and Chan, 2016), and BLAST searches were used
to annotate ribosomal RNA (rRNA), tRNA, and DNA genes
conserved in embryophyte plastomes (Wommack et al., 2008).
All annotations were cross checked with the “Annotate from”
feature in Geneious, transferring annotations with a 50% or
greater similarity from the P. oleracea plastome, and eventual
start/stop codons were manually adjusted with the “Open Read
Frame (ORF)” feature from Geneious. The genes that had their
structures affected by the insertion of internal stop codons and/or
a small ORF, thus did not form their respective full coding
sequence (CDS), were annotated as putative pseudogenes. The
graphical representation of the O. quimilo circular annotated
plastome was created in OGDRAW (Lohse et al., 2013; Greiner
et al., 2019). To visualize changes in gene order and content, we
compared the O. quimilo assembly with the canonical gene order
of the P. oleracea plastome via multiple whole genome alignments
using MAUVE (default options, assuming colinearity; Darling
et al., 2004). Boundaries between the IRa, IRb, LSC, SSC and
putative inversions were visually checked in Geneious using an
in silico approach adapted from Oliver et al. (2010).

Comparative Chloroplast Genome
Sequence Analyses Across Opuntioideae
The newly annotated plastome of Opuntia quimilo, with one
of the inverted repeats (IRa) manually stripped to avoid data
duplication, was then used for a reference guided assembly
on the trimmed reads from all other taxa using Geneious
mapper with a medium-low sensitivity iterating up to five times
(adapted from Ripma et al., 2014). Each of the assemblies
mapped had a majority threshold consensus sequence generated
and annotations transferred from the O. quimilo reference, and

manually adjusted. To identify highly variable regions across the
subfamily, the 17 assembled Opuntioideae chloroplast genome
sequences were compared using mVista (Frazer et al., 2004) in
Shuffle-LAGAN alignment mode (Brudno et al., 2003) using the
annotated plastome of O. quimilo as a reference. We also used
the full chloroplast genome sequence alignment (see below) to
calculate nucleotide diversity values (π) to detect highly variable
sites among Opuntioideae chloroplast genome sequences. DNA
polymorphism analysis was performed on DnaSP v.6.10 (Rozas
et al., 2017) using the sliding window analysis with a step
size of 200 bp and window length of 800 bp. Assembly maps
of raw read coverages from Geneious mapper of each taxon
to the O. quimilo plastome were also used to visualize and
compare the gene content of the chloroplast genome sequences
across the subfamily.

Phylogenetic Analyses and Informative
Regions
The assembled chloroplast genome sequences, obtained as
described in the previous section, were aligned using MAFFT
v. 7 with an automatic strategy search for algorithm selection
(Katoh and Standley, 2013), using 200PAM scoring matrix
and an open gap penalty of 1.53 (offset value 0.123). The
alignment was manually examined for misaligned areas following
a similarity criterion (Simmons, 2004). Sequence portions that
contained gaps and/or ambiguities across more than 80% of
the taxa were stripped using the “Mask Alignments” feature
in Geneious. Phylogenetic inference was performed using
Maximum Likelihood implemented in RAxML 8.2.4 (Stamatakis,
2014) in the CIPRES Portal (Miller et al., 2010). As RAxML
is mainly designed to implement generalized time-reversible
molecular models (GTR), we employed the GTR + G model for
the entire sequence, which have been suggested for topological
reconstruction skipping model selection (Abadi et al., 2019), and
GTR + I + G is not recommended by Stamatakis (see RAxML
v8.2 manual) given the potential interaction between the I and G
parameters. Support values were estimated implementing 1,000
bootstrap pseudoreplicates.

To identify and rank highly phylogenetically informative
regions in the Opuntioideae plastomes, we split the full plastome
alignment into protein coding sequences (cpCDS – pseudogenes
were included here), non-coding sequences (cpNCDS) and
intergenic spacers (cpIGS) using the annotated O. quimilo
plastome. Each individual marker (cpCDS, cpNCDS, cpIGS) was
extracted from the above-mentioned alignment, and a Maximum
Likelihood tree was inferred with RAxML using GTR + G
model (see reasons above) and 100 bootstrap replicates. For
each marker, we report the number of variable sites, number
of parsimony informative sites (PIS), mean sequence distance
(under K80 model), alignment length, mean sequence length,
mean bootstrap support and distance to the full chloroplast
genome sequence tree (RF distance; Robinson and Foulds, 1981).
The metrics were retrieved using functions of the R packages
ape and phangorn (Paradis et al., 2004; Schliep, 2011). Markers
were ranked by phylogenetic information using a weighted mean
of relative values of the following metrics: number of variable
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sites (weight = 1), mean bootstrap (weight = 2) and distance to
the full plastid tree (weight = 3). We designed primer pairs for
the top five markers identified in the previous step with suitable
size for PCR amplification (< ∼900 bp). Primers flanking the
target regions were designed with Primer3, using the default
settings (Rozen and Skaletsky, 2000). All metrics reported, as
well as primer design, were considered only for the ingroup
(the 17 Opuntioideae chloroplast genome sequences). Further
phylogenetic inferences (RAxML, GTR + G, 1000 bootstrap),
were performed for a dataset concatenating: (1) the top five
markers, (2) the top 10 markers, and (3) the five markers which
have primers designed.

RESULTS

DNA Sequencing
Runs on Illumina HiSeq X resulted in 227,003,814 reads from
20 samples (17 Opuntioideae and three outgroups), between
5,624,110 and 20,219,350 reads per sample, for a mean read
number of 11,350,190 sequences. Reads per sample following
quality control were between 5,360,990 and 19,863,298 with a
mean post-quality control read pool number of 11,084,834. The
GC content of the raw reads ranged from 37.4 to 40.6% with a
mean of 38.45% and following quality control were between 36.9
and 40% with a mean of 38%. Detailed results with the number
of raw reads, post-quality control and %GC content per taxa are
presented in Supplementary Table S1.

Opuntia quimilo Plastome
The complete chloroplast genome of Opuntia quimilo was
sequenced, assembled, annotated and deposited in GenBank
(accession number MN114084). The length of the Opuntia
quimilo plastome is 150,374 bp, including a 101,475 bp LSC
region, a 4,115 bp SSC region and 22,392 bp of two IR (IRa and
IRb) regions (Figure 1 and Table 1). A total of 701,318 reads
were assembled, with an average organelle depth of 844x. The GC
content varies from 33% in the SSC, to 35.5% in LSC and 39.6%
in the IR regions, while 38% in coding regions (CDS) and 35.6%
in non-coding regions (Table 1).

The de novo assembly of the Geneious assembler produced
1,000 contigs; of these, 988 were higher than 1,000 bp in length
from a minimum length of 1,026 bp to a maximum of 283,150 bp.
MegaBLAST search found one consensus plastid contig of
128,909 bp that included the full chloroplast sequence with two
putative inverted repeats assembled as a single IR unit (∼22 kb).
The GetOrganele and NOVOPlasty pipelines both yielded one
plastid contig of 150,374 bp with the same gene content, order,
and structure as the plastid contig of the Geneious assembler,
except for the two inverted repeats that were interleaved by the
LSC and SSC on the first ones, while in Geneious these were
merged as one IR.

The Opuntia quimilo plastome encodes 87 protein-coding
genes (CDS), 35 transfer RNA genes (tRNA) and eight ribosomal
RNA (rRNA) genes, totaling 130 genes (Tables 1, 2). Three
canonical CDS from angiosperm chloroplast genomes were
annotated as putative pseudogenes (9) based on their structure:

accD, ycf1, and ycf2. Two of them (accD and ycf2) are in the
LSC, and ycf1 in the IRs. Duplicated CDS in the IRs included
ndhA, ndhF, ndhG, ndhH, ndhI, rpl32, ycf1(9), and rps15; and
all four rRNA genes and five of the 35 tRNAs were duplicated
in the IR regions. The O. quimilo plastome includes 16 intron-
containing genes, of which 15 contain one intron (atpF, ndhA,
ndhB, petB, petD, rpl16, rpoC1, rps12, rps16, trnAUGC, trnGUCC,
trnIGAU , trnKUUU , trnLUAA, trnVUAC), while one gene contains
two introns (ycf3), and the clpP gene has lost its two introns,
reduced to an exon of 609 bp.

The LSC of the Opuntia quimilo plastome appears to have
experienced an expansion, with surprisingly 101 kb, while the
SSC was shown to have exceptional reduction (4 kb). The LSC
contains 24 tRNA genes and 67 CDS, and the SSC contains a
unique tRNA gene (trnLUAG), and four CDS: ccsA, ndhE, ndhD
and psaC (Figures 1, 2 and Tables 1, 2). A total of eight genes
(ndhB, rpl2, rpl23, rps7, rps19, trnICAU , trnLCAA, and ycf2) that
are usually reported occurring in the IR regions of canonical
angiosperm plastomes are apparently present as unique genes –
not repeated – in the LSC region of the O. quimilo plastome
(Figure 2, region V). On the contrary, seven genes (ndhA, ndhF,
ndhG, ndhH, ndhI, rpl32, and rps15), usually from the SSC,
are duplicated into the IR regions of the O. quimilo plastome
(Figure 2, orange genes).

When compared to the canonical angiosperm chloroplast
genome of Portulaca oleracea, two block translocations in the LSC
are present in the O. quimilo plastome: the first (Figure 2, region
II) is a simple colinear translocation of nine genes (Figure 2,
region II); while the second one is a big block inversion and
translocation comprising 50 genes within the trnGUCC-psbE
region (Figure 2, region III). Inside that block (region III), the
putative synapomorphic inversion of cacti encompassing the
trnM-rbcL genes is confirmed for Cactaceae, but in the O. quimilo
plastome this inversion also encompassed the trnVUAC gene
(Figure 2, green bars). Further gene order is mainly colinear
(Figure 2, regions I, IV, V, VI, VII), except for the rearrangement
comprising the SSC genes that were transferred to the IR regions,
including a double inversion on the ycf1-rpl32 region, placing ycf1
gene adjacent to rpl32 (Figure 2, orange genes).

Reference-Guided Assemblies and
Comparative Chloroplast Sequence
Analyses
The reference-guided assembles of the remaining Opuntioideae
and outgroup taxa to the Opuntia quimilo plastome (one inverted
repeat stripped) mapped an average of 616,615 reads with a mean
genome depth of 721x (Supplementary Table S2). The consensus
sequence length varied between 126,925 bp [Pereskiopsis diguetii
(F.A.C. Weber) Britton & Rose] to 129,181 bp [Tacinga
palmadora (Britton & Rose) N.P. Taylor & Stuppy] and the
GC content between 35.8% (Pterocactus gonjianii R. Kiesling)
to 36.3% [Austrocylindropuntia cylindrica (Lam.) Backeb. and
Cylindropuntia bigelovii] (Supplementary Table S2).

Pairwise comparison of divergent regions within the
Opuntioideae chloroplast genome sequences using mVISTA with
O. quimilo as a reference revealed both strikingly conserved and
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FIGURE 1 | Circular map of chloroplast genome of Opuntia quimilo with annotated genes. The genes transcribed clockwise are shown inside of the circle, whereas
genes transcribed counter clockwise are shown outside of the circle. The borders of chloroplast genome are defined with LSC, SSC, IRa, and IRb. The dashed gray
color of inner circle shows the GC content.

divergent regions across the chloroplast genome sequences
(Figure 3). Overall, the alignment uncovered sequence
divergence across assemblies, suggesting that chloroplast
genome sequences are not conserved. Divergences were observed
both in non-coding regions and coding regions. Among coding
regions (CDS), non-conserved regions were frequent on genes
of the ndh gene suite (i.e., ndhA, ndhD, ndhE, ndhF, ndhG,
ndhH, ndhI, ndhJ) as well clpP, ycf3 and particularly highlighted
on ycf1, ycf2, and accD genes (Figure 3). Ten non-coding

regions show substantial divergence, being all intergenic
spacers: ndhE-psaC, rpl32-ndhF, trnVGAC-rps12, psbB-clpP,
rpoB-trnCGCA, psbM-trnDGUC, trnTGGU -psbD, psbE-rpl20,
ndhC-rbcL (Figure 3).

The nucleotide diversity values (π) within the 17
Opuntioideae chloroplast genome sequences ranged from
0.00191 to 0.18551, with a mean value of 0.02201, indicating the
sequences as highly variable. Three major regions were identified
as hypervariable (π> 0.1), which comprises ycf1 and accD genes
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TABLE 1 | Chloroplast genome composition of Opuntia quimilo.

Region Size (bp) GC (%) Genes CDS tRNA rRNA

Genome 150.374 36.6 130 (3) 87 (3) 35 8

LSC 101.475 35.5 91 (2) 67 (2) 24 0

SSC 4.115 33 5 4 1 0

IRa 22.392 39.6 17 (1) 8 (1) 5 4

IRb 22.392 39.6 17 (1) 8 (1) 5 4

The number in parentheses indicates pseudogenes (ψ ) identified.

and an intergenic spacer rpl32-ndhF (Figure 4); while six regions
were observed as moderately-variable (π > 0.05), those being
four genes: ycf2, ccsA, clpP and trnLUAA; and two intergenic
spacers rps18-rpl33 and trnFGAA-ndhJ (Figure 4).

Reference-guided assembled maps of Opuntioideae and
outgroups to the Opuntia quimilo chloroplast genome as a
reference revealed regions with extremely low coverage or even
gaps across different taxa (Figure 5). The regions highlighted
with this feature are related with genes of the ndh suite,
ycf1, ycf2 and accD, suggesting gene loss, transfer to nuclear
genomes and/or pseudogenization (Figure 5). Several members
of Opuntioideae appear to have missing ndh genes in their
chloroplast genome (Micropuntia, Maihueniopsis, Pterocactus,
Tephrocactus), especially in the Tephrocacteae clade, but without
a clear pattern across lineages.

Phylogenetic Analyses and Informative
Regions
The full chloroplast genome sequences resulted in an alignment
of 118,930 bp with 86,484 identical sites (72.7%), a pairwise
identity of 94.5% and 8,694 distinct alignment patterns.
There were 8,922 parsimony informative sites (PIS) and
11,509 sites with gaps. Maximum Likelihood analyses
resolved a well-supported Opuntioideae (bs = 100), with
three major subclades (those currently circumscribed as
tribes), Opuntieae, Cylindropuntieae and Tephrocacteae
(Figure 6A). Opuntieae, consisting of the seven genera Consolea,
Brasiliopuntia, Tacinga, Opuntia, Miqueliopuntia, Salmonopuntia
and Tunilla, was resolved as sister to a Tephrocacteae
(Tephrocactus, Maihueniopsis, Pterocactus, Cumulopuntia,
and Austrocylindropuntia) + Cylindropuntieae (Quiabentia,
Pereskiopsis, Micropuntia, Grusonia, and Cylindropuntia) clade.
All nodes had full bootstrap support values (bs = 100), except at
two nodes, which were still higher than 90% (Figure 6A).

The summary statistics for all markers (cpCDS, cpNCDS,
cpIGS) are presented in Supplementary Table S3. A list of the
top 10 markers ranked by phylogenetic information considering
topological distance to the plastome tree, mean bootstrap support
and number of parsimony informative sites is given in Table 3.
All single marker phylogenies presented some disagreement to
the plastome tree (RF tree distance ranging from 6 to 28), with
bootstrap support ranging from 0 to 89 (mean = 37), and number
of PIS from 0 to 619 (mean = 25), revealing many markers as
not useful for phylogenetic inference (Supplementary Table S3).
Phylogenetic trees of the top 10 individual markers are shown
in Supplementary Figures S1, S2, and all trees are available

TABLE 2 | Structural and functional gene composition of Opuntia quimilo
chloroplast genome.

Gene type Region Genes

(1) Ribosomal RNA (rrn) IRa & IRb rrn4.5, rrn5, rrn16, rrn23

(2) Transfer RNA (trn) LSC trnCGCA, trnDGUC, trnEUUC, trnFGAA,
trnfMCAU, trnGGCC, trnGUCC*, trnHGUG,
trnICAU, trnKUUU*, trnLCAA, trnLUAA*,
trnMCAU, trnPUGG, trnQUUG, trnRUCU,
trnSGCU, trnSGGA, trnSUGA, trnTGGU,
trnTUGU, trnVUAC*, trnWCCA, trnYGUA

SSC trnLUAG

IRa & IRb trnAUGC*, trnIGAU*, trnNGUU, trnRACG,
trnVGAC

(3) Proteins of small
subunits of the ribosome
(rps)

LSC rps2, 3, 4, 7, 8, 11, 12*, 14, 16*, 18, 19

IRa & IRb rps15

(4) Proteins of large
subunits of the ribosome
(rpl)

LSC rpl2, 14, 16*, 20, 22, 23, 33, 36

IRa & IRb rpl32

(5) DNA dependente RNA
polymerase (rpo)

LSC rpoA, B, C1*, C2

(6) NADH dehydrogenase
(ndh)

LSC ndhB*, C, J, K

SSC ndhD, E

IRa & IRb ndhA*, F, G, H, I

(7) Photosystem I (psa) LSC psaA, B, I, J

SSC psaC

(8) Photosystem II (psb) LSC psbA, B, C, D, E, F, H, I, J, K, L, M, N, T,
Z

(9) Cytochrome b/f
complex (pet)

LSC petA, B*, D*, G, L, N

(10) ATP synthase (atp) LSC atpA, B, E, F*, H, I

(11) Rubisco (rbc) LSC rbcL

(12) Maturase K LSC matK

(13) Protease (clp) LSC clpP

(14) Envelope membrane
protein (cem)

LSC cemA

(15) Subunit of
acetil-CoA-carboxylase
(acc)

LSC accD(9)

(16) C-type cytochrome
synthesis (ccs)

SSC ccsA

(17) Translational
initiation factor (inf)

LSC infA

(18) Hypothetical
chloroplast reading
frames (ycf)

LSC ycf2(9), 3**, 4

IRa & IRb ycf1(9)

(ψ ) Putative pseudogenes. *Gene containing one intron. **Gene containing two
introns.

as Supplementary Material. Primer pair sequences for PCR
amplification are provided for the top five markers with suitable
Sanger sequencing size (maximum ∼900 bp) in Table 4.

Phylogenetic inferences from the top 5 and top 10 markers
concatenated yield similar topologies compared with the
plastome tree, supporting three tribes (bs = 100) and Opuntieae
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FIGURE 2 | Plastid genome structure and gene order in Opuntia quimilo compared with purslane (Portulaca oleracea). Purslane has the canonical order typical of
most angiosperms. For simplicity, the circular map has been linearized. Green line highlights the trnMCAU-rbcL synapomorphic inversion of Cactaceae, which in
O. quimilo also includes the trnVUAC gene. Regions I, IV, V, VI, and VII are colinear in both plastomes. Region II is colinear but is translocated in the O. quimilo
plastome, while region III is inverted and translocated. Region V comprise the genes that are typically in the IR region but are translocated to the large single copy in
O. quimilo. Genes highlighted in orange are those typically found in the SSC but transferred to the IR region in O. quimilo. Orange dashed line indicate the double
inversion on the ycf1-rpl32 genes, placing ycf1 gene adjacent to rpl32. Black triangles represent duplicated genes present in purslane but absent in O. quimilo; LSC,
large single-copy region; SSC, small single-copy region; IR, Inverted repeat.

as sister to (Tephrocacteae + Cylindropuntieae), although,
there were minor incongruences within Tephrocacteae and
Opuntieae (Figures 6B,C). Contrarily, phylogenetic inference
from the five markers, which had primers designed (< ∼900 bp)
revealed a conflicting topology, with Cylindropuntieae as sister to
(Tephrocacteae + Opuntieae) with high support (bs = 92), and all
three tribes with full support (bs = 100) (Figure 6D).

DISCUSSION

Insights From Chloroplast Genome
Assemblies in Opuntioideae and
Cactaceae
The first chloroplast genome of a member of subfamily
Opuntioideae and a species of Opuntia is here reported.
Although the bulk of its gene content is not far from canonical
angiosperm plastomes, it deviates in some cases from the typical
chloroplast genome structure, showing: (i) an expansion of the
LSC incorporating genes that are typically in the IRs; (ii) a
reduction of the SSC translocating some common genes of the
SSC into the IR region; and (iii) at least one massive translocation
with an inversion of a block of genes in the LSC (Figure 2).
Part of the content of the IRs in the O. quimilo plastome
remained remarkably constant, including all four rRNA and five
tRNA genes that are nearly universally reported in IRs of land
plants (Mower and Vickrey, 2018). The GC content observed in
the O. quimilo plastome is regular as expected based on other
chloroplast genomes, being an AT rich organelle, with differences
observed between coding/non-coding regions, where selection
may be acting to preserve GC content for amino acid coding
(Raubeson and Jansen, 2005; Downie and Jansen, 2015; Daniell
et al., 2016).

Successive expansion–contraction events or even multiple
contractions have been recurrently reported as one of the
main ways of developing structural changes across angiosperm
plastomes (Downie and Jansen, 2015; Daniell et al., 2016; Fonseca

and Lohmann, 2017; Weng et al., 2017; Mower and Vickrey,
2018) and may also be one way in which genes are translocated
to different regions of the genome, as suggested in adzuki bean
(Perry and Wolfe, 2002). The atypical reduction of the SSC
(∼4 kb), reported here for the O. quimilo plastome, has also
been noticed in Viviana marifolia (Francoaceae, Geraniales), and
a slightly similar reduced size for the SSC (∼6 kb) have been
inferred for the ancestral chloroplast genome of Geraniaceae
(Weng et al., 2014). A partial deletion of the SSC region has
also been reported in two hemiparasitic Taxillus (Loranthaceae)
species resulting in a ∼6 kb region with only two genes
(Li et al., 2017), and the smallest SSC hitherto reported is
for the hemiparasitic Pedicularis ishidoyana (Orobanchaceae),
with only 27 bp (Cho et al., 2018). A model to explain the
major rearrangements observed in the Lamprocapnos spectabilis
(Papaveraceae) plastome, involving at least six IR boundary shifts
and five inversions resulting in a SSC of just 1,645 bp with a
partial ndhF gene, was recently provided by Park et al. (2018). The
SSC contains most ndh genes, and previous studies have shown
that boundary shifts of the IR and SSC regions are correlated with
transformations of ndhF and ycf1 genes (Logacheva et al., 2014;
Kim et al., 2015; Li et al., 2017).

The Opuntia quimilo plastome reinforces some different
putative structural synapomorphies that have been reported
in Caryophyllales. The loss of the rpl2 intron, previously
suggested to be absent throughout the Centrospermae (Palmer
et al., 1988), is supported in our study and other newly
assembled plastomes in Caryophyllales (Yao et al., 2019). The
trnM-rbcL inversion is again recovered in the O. quimilo
plastome, although also involving the trnVUAC gene, as in
Cylindropuntia bigelovii (Majure et al., 2019), providing further
support for this inversion as a synapomorphy in the family.
Additionally, Sanderson et al. (2015) and Solórzano et al.
(2019), inspecting plastomes of Cactoideae, reported a gene
orientation of ycf2-trnLCAA-ycf1 in the SSC as a synapomorphy
of Cactoideae. Our results corroborate this observation, since
this feature is not present in the O. quimilo plastome,
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FIGURE 3 | Visualized alignment of the Opuntioideae chloroplast genome sequences (one IR stripped) with annotations using mVISTA. Each horizontal lane shows
the graph for the sequence pairwise identity with Opuntia quimilo as reference. The x-axis represents the base sequence of the alignment and the y-axis represents
the pairwise percent identity within 50–100%. Gray arrows represent the genes and their orientations. Dark-blue boxes represent exon regions; light-blue boxes
represent tRNA and rRNA regions; red boxes represent non-coding sequence (CNS) regions.
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FIGURE 4 | Nucleotide diversity graphs of the 17 Opuntioideae chloroplast genome sequences from the sliding windows analysis performed in DnaSP (windows
length: 800 bp, step size: 200 bp). The x-axis represents the base sequence of the alignment, and the y-axis represents the nucleotide diversity (π value). Each
variation hotspot for the chloroplast genome sequences of the Opuntioideae alignment is annotated on the graph.

FIGURE 5 | Maximum likelihood phylogenetic tree from RAxML analysis transformed in cladogram with the phylogram represented in small size with substitution rate
scaled. All nodes have total bootstrap values (bs = 100) with exception for those that are shown above the branch. Each tip is represented with the assembly map of
raw read coverages from Geneious mapper to the Opuntia quimilo chloroplast genome (one IR stripped, represented on the top with annotated genes). Red stars
represent low coverage mapping and putative losses associated with the ndh gene suite; green stars represent partial low coverages associated with putative
pseudogenization of ycf1, ycf2, and accD genes. Tribe Opuntieae is highlighted in orange, Tephrocacteae in green and Cylindropuntieae in yellow.

strengthening this gene order as a putative synapomorphy
for Cactoideae. On the other hand, the ycf1-rpl32-ndhF
orientation, reported in the Cylindropuntia bigelovii chloroplast
sequence (Majure et al., 2019), is recovered in the O. quimilo
plastome and is here suggested as a putative synapomorphy
for Opuntioideae.

Reference-guided assemblies and comparative analyses
revealed insights for plastome rearrangements across disparate
Opuntioideae. The differences of depth and coverage among
specific chloroplast genes suggest that gene presence or

structure may vary over species in Opuntioideae, as have
been observed in other Cactaceae, specifically Cactoideae
(Sanderson et al., 2015; Solórzano et al., 2019). The putative
independent losses of several ndh genes in all Cactoideae
plastomes assembled hitherto, such as the saguaro cactus
and several Mammillaria species, can be also inferred for
our Cactoideae outgroups sampled (Parodia magnifica and
Coryphantha macromeris; Figure 5, red stars). Likewise, some
members of Cylindropuntieae and Tephrocacteae (Micropuntia,
Cumulopuntia, Pterocactus, Maihueniopsis, and Tephrocactus)
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FIGURE 6 | Topological comparisons of different datasets based on ML analyses. (A) Plastome dataset topology, (B) top 10 marker dataset topology, (C) top five
marker dataset topology, and (D) five marker dataset topology for which primers were designed. The Cylindropuntieae sister to Tephrocacteae + Opuntieae topology
was recovered only in the five-marker primer dataset (D). Generic relationships are highly variable in Tephrocacteae among the datasets used. ∗bootstrap support.

TABLE 3 | Summary statistics for the top 10 markers.

Bp Aligned (bp) Variable PIS Sites with gaps Tree distance Bootstrap (mean)

(1) accD (cpCDS) 1876 [1489–1927] 1953 966 586 616 10 88

(2) ycf1 (cpCDS) 1565 [1414–1615] 1650 958 429 456 8 76

(3) ndhD (cpCDS) 1421 [1410–1421] 1421 210 52 11 6 79

(4) trnKUUU (cpNCDS) 2570 [2564–2572] 2573 173 45 15 8 82

(5) psbE-rpl20 (cpIGS) 1731 [1714–1736] 1739 242 68 83 8 77

(6) petD (cpCDS) 1265 [1257–1272] 1274 69 27 27 8 75

(7) ccsA (cpCDS) 1008 [1007–1011] 1011 110 49 4 8 73

(8) clpP (cpCDS) 359 [356–362] 362 112 64 6 8 70

(9) rpoC2 (cpCDS) 4101 [4101–4101] 4101 165 47 0 8 69

(10) rpoC1 (cpCDS) 2468 [2467–2469] 2469 86 35 4 8 69

Markers are ranked by phylogenetic information based on a weighed mean of relative values of number of variable sites (weight = 1), mean bootstrap (weight = 2) and
distance to the full plastid tree (weight = 3).

also likely experienced independent losses of several genes of
the ndh suite in their chloroplast genomes, although this was
not so for tribe Opuntieae, where those genes were found to be
intact (Figure 5, red stars), indicating putative homoplasious
events. The putative loss of one of the inverted repeat regions
in Quiabentia must be further investigated through rigorous de
novo assemblies (Figure 5).

Loss of ndh genes or the ndh gene suite has been reported
in both gymnosperms (Wakasugi et al., 1994; McCoy et al.,
2008; Wu et al., 2009) and angiosperms, as well as some other
photosynthetic organisms. The loss of such genes is well-known
and is often associated with hemi- or holoparasitism where genes
necessary for photosynthesis are often unessential (e.g., Epifagus,
Orobanchaceae, De Pamphilis and Palmer, 1990; Santalales,
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TABLE 4 | Primer pair sequences for the identified top 5 highly informative markers across the 17 chloroplast genome sequences of Opuntioideae.

Marker Primer forward (5′–3′) Primer reverse (5′–3′) Ta (◦C) Expected product size (bp)

psbB/clpP ACCAAGGCAAACCCATGGAA TCCCCTTCTTACCAGCATCA 60 931

ycf4-cemA GTCCTATTTCCTGCGTGTACCA TGATAGAGAGATCCACCAGGGT 60 864

rps2 TTGAGATTCAGGAATAGTAACCGA GTGTATCAATGGCCAATCCGC 57 885

rbcL-atpB CAAAACAACAAGGTCTACTCGACA GGAAACCCCAGGACCAGAAG 60 830

petA ACGATTGATTGGACCATGCA TCGGACAATTGAACCTTCTCGA 60 965

Shin and Lee, 2018). However, a number of autotrophic plants
have also shown a similar trend with losses or pseudogenization
of ndh genes. For example, Lin et al. (2017) showed the repeated
loss of ndh genes across several different autotrophic orchid
species and suggested that those losses could have been a step
toward heterotrophy. Ruhlman et al. (2015) suggested that the
evolution and retention of the NDH (NADH dehydrogenase-
like) complex was associated with the transition of plants to
environmentally stressful environments, and that ndh gene loss
may be associated with a relaxed reliance on the complex based
on decreased environmental stressors (e.g., through reliance on
host species for resources in parasites).

Contrastingly, there are numerous reports of ndh loss or
pseudogenization in angiosperms associated with the presence
of CAM photosynthesis, which has evolved as a response to
water limited habitats (i.e., water stress), such as in desert or
other edaphically arid areas where cacti occur or also associated
with an epiphytic habit, for instance in orchids (Luo et al., 2014;
Givnish et al., 2015; Sanderson et al., 2015). Whether or not
the absence of those ndh genes in the chloroplast corresponds
to their integration into the nuclear genome often remains to
be determined, but there are some studies showing that those
genes likewise, have not been incorporated into the nucleus
(Lin et al., 2017) and thus are totally lost. Certain species of
Opuntioideae have been shown to be facultatively CAM species
(Winter et al., 2011), whereas other species appear to be obligate
CAM. Perhaps the putative loss or pseudogenization of ndh genes
across members of Opuntioideae coincides with the transition
to more water limited habitats and thus a stronger association
with obligate CAM photosynthesis. Although assumed that
most derived cacti (Cactoideae, Opuntioideae) are obligate
CAM, there are actually very little data to show photosynthetic
pathways across Cactaceae, and the retention of large leaves in
Opuntioideae bring into question this assumption (Majure et al.,
2019). Likewise, our knowledge of CAM photosynthesis is in a
state of flux, and it is clear that there are taxa that do not clearly
fit into basic photosynthetic pathways as traditionally defined
(Edwards, 2019). The putative connection with ndh gene loss and
CAM photosynthesis needs to be rigorously tested.

The major plastid regions marked by pseudogenization in
the Opuntia quimilo plastome (ycf1, ycf2, and accD) are visually
highlighted as non-conserved regions in reference-guided maps
(Figure 5, green stars), as in the mVista alignment across
Opuntioideae (Figure 3). These regions are also emphasized as
with hyper or moderate variability regarding nucleotide diversity
values (Figure 4). All genes here reported as pseudogenes
in the O. quimilo plastome (accD, ycf1, and ycf2) have also

been reported as pseudogenes in the Mammillaria plastomes
(Solórzano et al., 2019), while the accD was described as a
pseudogene in Carnegiea gigantea (Sanderson et al., 2015).
Pseudogenization of these genes has been repeatedly reported
across different angiosperm lineages, such as Malpighiales,
Campanulales, Ericales, Poales, Solanales, Geraniales, Santalales,
and Myrtales (Haberle et al., 2008; Fajardo et al., 2013; Harris
et al., 2013; Weng et al., 2014; Li et al., 2017; Machado et al., 2017;
Bedoya et al., 2019; Cui et al., 2019). Even though these genes have
been identified with essential functions beyond photosynthesis
and retained in the plastome of most embryophytes (Drescher
et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005; Kikuchi
et al., 2013; Parker et al., 2014; Dong et al., 2015), there are several
other plants where these genes are missing from the chloroplast
genome (Magee et al., 2010; Kim et al., 2014; Liu et al., 2016;
Graham et al., 2017). The pseudogenization or loss of the accD,
rpl22 and several genes of the ndh suite from the plastids has been
reported to be a consequence of them being transferred to the
nuclear genome (Jansen et al., 2011; Jansen and Ruhlman, 2012;
Sanderson et al., 2015; Liu et al., 2016; Cauz-Santos et al., 2017).
Plastid gene transfer to the nucleus remains to be examined in
O. quimilo and related Opuntioideae.

Several regions highlighted as hyper or moderately variable
regarding the nucleotide diversity values across Opuntioideae
chloroplast sequences (i.e., accD, ycf1, clpP, petD, rpl32, and ccsA)
have been reported to be putatively under positive selection
in some lineages, such as Brassicaceae, Bignoniaceae, Rutaceae,
Orchidaceae, Geraniaceae, and Poaceae (Carbonell-Caballero
et al., 2015; Hu et al., 2015; Weng et al., 2016; Park et al., 2017;
Dong et al., 2018; Piot et al., 2018; Ruhlman and Jansen, 2018;
Thode and Lohmann, 2019). Positive selection may come into
play in response to environmental changes (Piot et al., 2018). For
example, the accD gene, which encodes the β-carboxyl transferase
subunit of acetyl-CoA carboxylase, is an essential and required
component for plant leaf development (Kode et al., 2005), and it
is suggested to have played a pivotal role in the adaptive evolution
of orchids (Dong et al., 2018). The signatures of positive selection
in the accD gene observed in Brassicaceae and Campanulaceae
have also indicated that this gene may have been repeatedly
involved in the adaption to specific ecological niches during the
radiation of eudicotyledonous plants (Rousseau-Gueutin et al.,
2013; Hu et al., 2015). Considering the harsh environment
that cacti occupy, their fitness already expressed in its peculiar
morphology and physiology, further studies should be carried out
to investigate the putative relation of chloroplast rearrangement –
such as pseudogenization, loss of genes, translocation and
inversion – with ecological features.
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Phylogenetic Relationship of
Opuntioideae Tribes
The plastome phylogeny of Opuntioideae strongly resolves
three major and well-supported clades, the tribes Opuntieae
(O), Tephrocacteae (T) and Cylindropuntieae (C) (Figure 6A).
Three previously described tribes (Austrocylindropuntieae,
Pterocacteae, and Pereskiopsideae) (Doweld, 1999; Wallace and
Dickie, 2002), mainly representing lineages of a single genus, are
nested within these more broadly circumscribed tribes, and thus
have no real practical taxonomic use (Hunt, 2011).

In our phylogenomic analyses, Opuntieae was sister to
a Tephrocacteae/Cylindropuntieae clade, as in Majure et al.
(2019), who also used plastome data but with a reduced taxon
sampling in Opuntieae and Tephrocacteae. This same topology
[O + (T + C)] was further uncovered with high support using
our top 10 and 5 phylogenetic informative markers concatenated
(Figures 6B,C). On the other hand, Walker et al. (2018)
and Wang et al. (2019), using transcriptome data, revealed
Cylindropuntieae as sister to an Opuntieae/Tephrocacteae clade
[C + (O + T)] yet with very limited taxon sampling. Likewise, this
alternate topology [C + (O + T)] was recovered in our study when
exploring our five markers concatenated, which have primer-
pairs designed (Figure 6D), i.e., those best ranked markers
with suitable size for PCR amplification (< ∼900 bp) (see
further discussion in the next section). Hernández-Hernández
et al. (2011, 2014), as well as Bárcenas et al. (2011), although
recovering the same three tribes sampling few genera, did not
resolve the relationships among them, while Nyffeler (2002) did
not have sufficient taxon sampling to infer relationships within
Opuntioideae. Thus, this recalcitrant relationship between the
three tribes must be further investigated using more genealogies,
such as nuclear, plastome and mitochondrial datasets.

Griffith and Porter (2009) previously tackled relationships
within Opuntioideae using DNA sequence data with a
comprehensive sampling, yet based only on nrITS and trnL-
trnF data. Our results partially recovered their topology, with
a “flat-stemmed” and a “terete-stemmed” clade, moderately
equivalent to our Opuntieae and Cylindropuntieae tribes,
respectively. However, many members of Tephrocacteae
recovered here were nested within their “terete-stemmed” clade,
such as Austrocylindropuntia, Cumulopuntia and Tephrocactus.
Likewise, the Griffith and Porter (2009) topology revealed a
grade of two clades (Pterocactus and Maihueniopsis), which were
sister to the rest of Opuntioideae but that was not recovered
in our study. However, as our study is still based on one
sample per genus, future studies including a wider sampling
should be carried out across the subfamily to further test
the relationships here recovered and are currently underway
(Majure et al., in preparation).

Tribe Opuntieae is the most diverse and widespread clade
among Opuntioideae, consisting of seven accepted genera
and around 230 species (Majure and Puente, 2014; Guerrero
et al., 2019). Consolea Lem., an endemic tree-like cactus
of the Caribbean Islands and neighboring areas (Majure
et al., submitted), is sister to the rest of Opuntieae, which
consists of two subclades: (i) one comprising Brasiliopuntia

(K. Schum.) A. Berger + Tacinga Britton & Rose; and the
other comprising (ii) Opuntia (L.) Mill. + [Miqueliopuntia
Friè ex F. Ritter + (Salmonopuntia P.V. Heath + Tunilla
D.R. Hunt & Iliff.)]. Previous analyses did not resolve
this position for Consolea, mostly based on the lack of
data/data type (Griffith and Porter, 2009) and/or outgroup
taxon sampling (Majure et al., 2012; Majure and Puente,
2014). Likewise, the sister relationship of Opuntia with the
(Salmonopuntia + Tunilla) + Miqueliopuntia clade had not been
recovered in previous analyses (Majure et al., 2012).

Based on our plastome analysis, Cylindropuntieae and
Tephrocacteae are sister tribes, comprised of five and six
genera, respectively (Figure 6A). Cylindropuntieae are primarily
represented by genera that occur in the western North American
desert regions [Cylindropuntia (Engelm.) F.M. Knuth, Grusonia
F. Rchb. & K. Schum. and Micropuntia Daston], which formed
a well-supported subclade, but they also contain two genera
that are found in tropical dry forest of Mexico/Northern
Central America (Pereskiopsis Britton & Rose) and Tropical
Dry Forest and Chaco of South America (Quiabentia Britton &
Rose). Tribe Pereskiopsideae (Doweld, 1999), previous described
to only accommodate the leafy Pereskiopsis, is nested within
Cylindropuntieae and is redundant, and thus unnecessary.
Deeper relationships within Cylindropuntieae were recently
untangled using a phylogenomic approach and dense sampling,
revealing biogeographic patterns as well as characters evolution
(Majure et al., 2019). Our plastome phylogeny here revealed
an identical phylogenetic pattern among genera (Figure 6A) of
Majure et al. (2019), and equivalent to Bárcenas (2016).

Tephrocacteae is a South American clade adapted to diverse
climatic conditions over a wide area of the southern Andes and
adjacent lowlands (Ritz et al., 2012; Guerrero et al., 2019; Las
Peñas et al., 2019). The tribe includes morphologically diverse
species from geophytes and cushion-plants to dwarf shrubs,
shrubs or small trees (Anderson, 2001); and probably geophytes
and cushion-forming species evolved several times from shrubby-
like precursors (Ritz et al., 2012). Tribes Austrocylindropuntieae
and Pterocacteae (Wallace and Dickie, 2002) were described
to circumscribe Austrocylindropuntia + Cumulopuntia and
Pterocactus, respectively, and both are nested within the
Tephrocacteae as amplified by Hunt (2011). So, as shown
here, their use is mostly redundant. Although our plastome
data recovered Maihueniopsis and Tephrocactus as sister to
Pterocactus + (Austrocylindropuntia + Cumulopuntia), the
phylogenetic topology among genera of the tribe are highly
variable when using different datasets (Figures 6A–D). It is
probable that increased taxon sampling may ameliorate this
topological variability, as we still lack whole plastome data for the
monospecific genus Punotia. Greater taxon and data sampling
will be necessary to fully test these relationships.

Phylogenetically Informative Regions
Our plastome survey for phylogenetically informative markers
revealed a list of potentially highly informative plastid markers
for Sanger-based phylogenetic studies in Opuntioideae
(Supplementary Table S3). The top 10 markers in our cpCDS
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dataset are: accD, ycf1, ndhD, petD, ccsA, clpP, rpoC1, rpoC2,
including just one intron (the trnK intron comprising the matK
gene – trnK/matK) and one intergenic spacer (psbE-rpl20)
(Table 3). However, two of the better ranked markers (accD
and ycf1) are putative pseudogenes and must be treated apart
from traditional protein coding genes. The impact and utility
of pseudogenes as markers for phylogenetic inferences must be
further investigated (see below).

From the top 10 markers ranked in our list, just one
(trnK/matK) has been used in more than one phylogenetic study
in cacti (Nyffeler, 2002; Edwards et al., 2005; Korotkova et al.,
2010; Arakaki et al., 2011; Bárcenas et al., 2011; Demaio et al.,
2011; Hernández-Hernández et al., 2011, 2014; Ritz et al., 2012;
Bárcenas, 2016; Vargas-Luna et al., 2018); while Majure et al.
(2012) and Franck et al. (2013) used partial sequences of the
ycf1 gene. The other top 10 markers have been previously used
under phylogenomic approaches in cacti (Arakaki et al., 2011;
Majure et al., 2019).

Although the majority of the top 10 markers here reported
have not been used in phylogenetic studies of cacti, the
relationship of several other groups has been inferred with
some of these markers. For example, the accD gene, combined
with other plastid regions including rpoC1, was employed
for phylogenetic inference of Crocus (Iridaceae), Coptis
(Ranunculaceae) and Orchidaceae genera (Petersen et al., 2008;
Guo et al., 2012; He et al., 2014). However, accD intergenic
spacers, such as rbcL-accD and accD-psaI, have been much more
widely used across disparate groups (Barfuss et al., 2005; Miikeda
et al., 2006; Reginato et al., 2010; Sun et al., 2012; Michelangeli
et al., 2013). The ycf1 gene appears to be moderately used
(Gernandt et al., 2009; Guo et al., 2012; Majure et al., 2012;
Shi et al., 2013; Whitten et al., 2013; Dastpak et al., 2018), and
increasingly reported to be a useful marker in phylogenetic
inferences (Neubig et al., 2009; Neubig and Abbott, 2010; Dong
et al., 2012; Thomson et al., 2018), and the most promising
plastid DNA barcode of land plants (Dong et al., 2015). The
petD intron has been used (Löhne et al., 2007; Worberg et al.,
2007; Borsch et al., 2009; Scataglini et al., 2014), but in our
analysis the entire gene was used (exon + intron) showing
phylogenetic utility. The ccsA gene seems to be underexplored
as a phylogenetic marker (Marx et al., 2010; Peterson et al.,
2012) but was already suggested as convenient for phylogenetic
inferences (Logacheva et al., 2007). The rpoC1 and rpoC2 genes
have been occasionally used together as markers (Liston and
Wheeler, 1994; Kulshreshtha et al., 2004) or combined with other
markers (Downie et al., 2000; GPWS, 2001; Zhang et al., 2011;
Guo et al., 2012) yielding satisfactory results. The rpoC2 gene was
recently found as the best performing marker to recover, with
high levels of concordance, the “accepted tree” of the angiosperm
phylogeny (Walker et al., 2019). The ndhD gene seems to be
scarcely used for phylogenetic inference (Panero and Funk,
2002), while the intergenic spacer of psbE-rpl20 genes has never
been used individually to our knowledge.

Eight of the top 10 markers are more than 900 bp, indicating
that longer genes are superior for phylogenetic reconstruction,
as previous suggested by Walker et al. (2019), although they
may require internal primer designing for complete Sanger

sequencing. A list of the top 10 markers with less than 900 bp
is reported (Supplementary Table S4), and primer pair design
for the top five is provided in Table 4. Our phylogenetic
inference from the top five markers concatenated, which had
primers designed (Figure 6D) recovered a conflicting topology
compared with the plastome tree (Figure 6A). The topology with
Cylindropuntieae as sister to Tephrocacteae + Opuntieae has also
been recovered based on transcriptome data (Walker et al., 2018;
Wang et al., 2019). Curiously, we obtained this same topology,
although not strongly supported, using the top 10 marker
dataset concatenated, when stripping the two pseudogenes
accD and ycf1 (Supplementary Figure S3), suggesting that
functional constraints of these pseudogenes may influence the
underlying topology.

Our top five markers contained intergenic spacers, which
influence our alignment, wherein the incorporation of gaps is
necessary. Duvall et al. (2020) found that as gaps increased in
their alignment of plastomes across Poaceae, differing topologies
were increasingly supported. This may also play a role in
the incongruent topologies recovered in our analyses. Perhaps
a higher level of homoplasy across datasets including gaps
may reduce their suitability for resolving deep phylogenetic
relationships, however, those same regions (i.e., intergenic
spacers) are likely more appropriate for resolving species
relationships among closely-related species (Shaw et al., 2005).
Likewise, selective pressures on the genes in both our reduced 10
marker datasets, as well as in previously published transcriptome
data (Walker et al., 2018), may likewise influence topology.
Homoplasy in these reduced datasets may also be a factor leading
to conflicting topologies. More research should be focused on
the level of utility of specific gene regions (e.g., coding genes,
intergenic spacers) across clades.

Chloroplast markers have been used for testing evolutionary
relationships among plants for the past 30 years (Gitzendanner
et al., 2018). While the assumption that these markers are
evolving as a single unit without recombination, routine analyses
have used concatenated data producing highly supported
phylogenies that have been underlying the current classification
of angiosperms (APG, 2016). However, as here reported,
no marker as a single unit (gene tree) recovered the same
topology of the plastome inference (concatenated tree), and
even within the top 10 markers listed, some showed high
values of discordance (Table 3, Supplementary Table S4, and
Supplementary Figures S1, S2). Such results discourage and
call attention to phylogenetic approaches based on one or few
markers. While the full chloroplast sequences showed to be the
most robust dataset to resolve relationships within Opuntioideae,
phylogenies from the top 10 and 5 markers concatenated
resolved many relationships with high bootstrap values and few
nodes with low support (Figures 6B,C). Although we cannot
test how effective these datasets would work in determining
closely related species relationships, based on our limited taxon
sampling here, it is significant that these smaller datasets resolve
relationships among these clades and genera that have not
been resolved previously using a similar number of loci (e.g.,
Hernández-Hernández et al., 2011). Thus, we would expect that
using these more highly variable loci, although few, should greatly
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increase resolution across many subclades in Cactaceae. We also
encourage their use across subclades within Cactoideae to test
their broader utility.

Recent studies have explored gene tree conflict in plastome-
inferred phylogenies and incongruence between gene trees and
species trees in plastid genes (Gonçalves et al., 2019; Walker
et al., 2019). Gonçalves et al. (2019) emphasized the importance
of considering variation in phylogenetic signal across plastid
genes and the exploration of plastome data to increase accuracy
of estimating relationships; they also revealed that phylogenies
inferred with multispecies coalescent (MSC) methods are
accurate with plastome matrices and should be considered
in future phylogenomic investigations. Walker et al. (2019)
highlighted that most plastid genes are largely uninformative
and are unlikely to misguide plant systematics. However, the
concatenating of plastid genes without some level of scrutiny
can mislead branch length estimation (Walker et al., 2019).
The causes of discordant topologies across gene trees from
chloroplast genome still needs to be better investigated. The
main explanations include systematic errors (e.g., poor modeling,
stochastic events) or more biologically meaningful processes,
such as heteroplasmic recombination that have been invoked to
explain discordance in disparate plant clades (Huang et al., 2001;
Marshall et al., 2001; Bouillé et al., 2011; Walker et al., 2019).

CONCLUSION

Chloroplast genomes have long been considered conserved
among land plants, but recent generation of 1000s of plastomes
through NGS has illuminated that this is not always the case.
Cactaceae are no exception to variation that has been observed
in other clades. Previous plastomes of cacti have shown to
have lost one copy of the inverted repeat regions and several
genes of the ndh gene suite, as well as to possess divergent
inverted repeat regions and the smallest chloroplast genome
known for an obligately photosynthetic angiosperm. We showed
that the Opuntia quimilo plastome also presents deviations of
canonical angiosperm plastomes with an expansion of the LSC
incorporating genes that are typically in the IRs, a reduction
of the SSC translocating some common genes of the SSC
into the IR region, and one massive translocation with an
inversion of a block of genes in the LSC. Strikingly different
from other cacti, two copies of the inverted repeat region were
recovered in the Opuntia quimilo plastome. Our reference-guided
assemblies across Opuntioideae allowed us to infer putative
independent losses of some ndh genes across disparate taxa
of the subfamily. We did not find synapomorphic plastome
features within Opuntioideae clades, thus, we hypothesize
that putative rearrangements across the subfamily are from
homoplasious events. Further analyses should be carried out
to address how ecological drivers and morphological traits of
cacti may be related with positive selection of genes and the
common rearrangements in chloroplast genomes that have been
reported in the family. Phylogenetic analyses of chloroplast
genome sequences strongly support Opuntioideae and its three
tribes: Opuntieae, Cylindropuntieae, and Tephrocacteae. As

computational and budget limitations are still a bottleneck
to deal with high throughput data, especially in developing
countries, a list of highly informative plastid markers is
presented for future use, and several top ranked markers
have not been used in phylogenetic studies of cacti. However,
conflicting topologies were recovered among major clades
when exploring different assemblies of markers, revealing
that gene tree discordance among markers must be carefully
considered while inferring phylogenies in this remarkable group
of plants, especially considering the occurrence of putative
pseudogenes. Even so, topological incongruences may actually
signal deeper phylogenetic patterns underlying biologically
relevant evolutionary history and should be further explored
using both nuclear and plastome datasets.
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