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Abstract

Stochastic field distortions caused by atmospheric turbulence are a fundamental limitation to the astrometric
accuracy of ground-based imaging. This distortion field is measurable at the locations of stars with accurate
positions provided by the Gaia DR2 catalog; we develop the use of Gaussian process regression (GPR) to
interpolate the distortion field to arbitrary locations in each exposure. We introduce an extension to standard GPR
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techniques that exploits the knowledge that the 2D distortion field is curl-free. Applied to several hundred 90 s
exposures from the Dark Energy Survey as a test bed, we find that the GPR correction reduces the variance of the
turbulent astrometric distortions≈12× , on average, with better performance in denser regions of the Gaia catalog.
The rms per-coordinate distortion in the riz bands is typically≈7 mas before any correction and≈2 mas after
application of the GPR model. The GPR astrometric corrections are validated by the observation that their use
reduces, from 10 to 5 mas rms, the residuals to an orbit fit to riz-band observations over 5 yr of the r= 18.5 trans-
Neptunian object Eris. We also propose a GPR method, not yet implemented, for simultaneously estimating the
turbulence fields and the 5D stellar solutions in a stack of overlapping exposures, which should yield further
turbulence reductions in future deep surveys.

Unified Astronomy Thesaurus concepts: Astrometry (80); Sky noise (1463); Astronomy data analysis (1858)

1. Introduction

Ground-based astrometric measurements are one of the
oldest human quantitative scientific endeavors. The accuracy of
astrometric data was limited by the resolution of human vision,
and subsequently by the angular resolution of telescopes. The
successful detection of stellar parallax in the mid-1800s
required understanding of stellar aberration and atmospheric
refraction, which can be ameliorated to a great extent by
differential measurements with respect to nearby more distant
stars and attention to observing techniques (e.g., transit
telescopes). In the modern era of subarcsecond seeing and
digital detectors, the error budget for relative astrometric
accuracy of unresolved sources within an exposure will usually
be dominated by three contributions:

1. Shot noise: stochastic errors in centroiding of the source
in pixel coordinates. This component is typically
σx≈ σPSF/ν, where σPSF is the rms width of the point-
spread function and ν is the signal-to-noise ratio (S/N) of
the detection.49

2. Solution accuracy: the static errors in the map from pixel
coordinates to (relative) sky coordinates, i.e., the
distortions in the optics and detector, and the static
refraction of the atmosphere, including chromatic distor-
tions from the atmosphere and optics.

3. Atmospheric turbulence: stochastic wander of the source
due to refraction by atmospheric density fluctuations.

The transfer of the relative astrometry of an image to absolute
sky coordinates is further limited by the accuracy of the
reference catalog used to make such a transfer (as well as the
contributions of items 1 and 3 to the exposure’s measurements
of the reference stars).

While specialized instruments can be designed to improve
solution accuracy, we demonstrated in Bernstein et al. (2017,
hereafter B17) that an astrometric solution with≈ 1 mas
accuracy is possible for a general-purpose wide-field imager,
the Dark Energy Camera (DECam; Flaugher et al. 2015) on the
4 m Blanco Telescope at Cerro Tololo Inter-American
Observatory (CTIO). This leaves shot noise (item 1) and
atmospheric turbulence (item 3) as the dominant sources of
astrometric noise, with the former dominant for faint sources
and the latter dominant for high-S/N point sources.

Astrometric science has been revolutionized by space
observatories, particularly the Hipparcos (Perryman et al.
1997) and Gaia DR2 (Gaia Collaboration et al. 2018) catalogs.
Space telescopes gain substantially in shot-noise errors if
diffraction-limited resolution yields low σPSF; their stability,

specialized instrumentation, and greatly reduced chromatic
effects improve solution accuracy; and, perhaps most impor-
tantly, they are free of atmospheric turbulence errors.
The advent of Gaia DR2 also revolutionizes the potential of

ground-based astrometry. Most obviously, the density of the
DR2 catalog (O(1) star per arcmin2) allows almost any ground-
based exposure of modest field of view (FOV) to be placed
onto the absolute reference frame of Gaia DR2, obliterating the
distinction between absolute and relative astrometry. Typical
position/parallax uncertainties in Gaia DR2 rise from≈0.02
mas at G= 13 mag to≈2 mas at the catalog limit of
G= 21 mag (Gaia Collaboration et al. 2018), 1–3 orders of
magnitude lower than previous astrometric catalogs approach-
ing similar sky density.
In this paper we demonstrate and quantify another important

benefit that Gaia DR2 bestows on ground-based astrometry: the
» ¢1 typical spacing between Gaia stars is well below the » ¢10
coherence length of atmospheric turbulence (B17), which
means that we can use Gaia as a reference to measure and
correct the majority of the power spectrum of astrometric
distortions imposed by atmospheric turbulence.
The idea of exploiting the finite correlation length of

atmospheric turbulence to reduce the error induced on target
stars’ positions has been discussed before. This has been of
particular interest in astrometric searches for exoplanets
(including use with adaptive optics and interferometers).
Lazorenko & Lazorenko (2004) propose a fairly complex
method to interpolate turbulence to a single target star from an
ensemble of nearby reference stars.50 This method was applied
to exposures from the 8 m Very Large Telescope, yielding
estimates of parallax accuracy of 0.04 mas for stars at
17–19 mag (Lazorenko et al. 2009) for exposures accumulating
to≈1800 s. (All models and data predict turbulence residuals to
decline with exposure time as T−1/2.)
We address in this work the application to wide-field

surveys, where we are interested in estimating positions for all
targets in the field, ideally to the photon-noise limit. The
characteristics of atmospheric turbulence were investigated
theoretically by Lindegren (1980) and empirically by Han &
Gatewood (1995) and Zacharias (1996), among others. B17
found statistics for turbulent distortions to be in rough
agreement with these earlier works and proposed the use of
Gaussian process regression (GPR) to transfer the turbulent
field from Gaia stars to targets of interest. If the turbulence
gives rise to a projected (2D) time-delay surface that can be
accurately described as a Gaussian random field, then GPR,
being the maximum likelihood (ML) estimator for a Gaussian

49 Throughout this paper, we will quote astrometric errors or image sizes as the
rms per axis on the sky.

50 The method of Lazorenko & Lazorenko (2004) may be equivalent to the
GPR solution in some limits; we have not investigated this carefully.
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process (GP), is also the minimum-variance unbiased
interpolator.

Earlier explorations of extraction of precision photometry from
wide-field CCD imaging in targeted fields include Platais et al.
(2002), Anderson et al. (2006), and Bouy et al. (2013). Typically,
any time-dependent distortions such as atmospheric turbulence are
corrected through polynomial fits to per-exposure distortions over
the span of a single CCD (scales of order 10′). Anderson et al.
(2006) take the additional step of referencing each star to a locally
linear transformation determined from≈50 neighboring reference
stars, obtaining≈7 mas residuals in their 900 s exposures on the
2.2 m ESO telescope.

While this paper was under review, Lubow et al. (2021)
reported application of a similar method—local coordinate
systems defined by the 33 nearest Gaia DR2 stars—to the
catalogs of the PanSTARRS1 survey, attaining median 2D
differentials between PS1 and Gaia positions of≈ 5 mas with
exposure times of 30–45 s on the 1.8 m telescope for stars near
i= 17 mag. Some comparison to our results is made in
Section 7.

In this paper we pursue the application of GPR astrometric
interpolation to positional catalogs from exposures in the Dark
Energy Survey (DES; Diehl et al. 2014) and develop a method
that can be applied in “production mode” to the O(105)
exposures and O(109) detections of unresolved sources in that
survey. As reported by B17, the 90 s DES exposures exhibit
strongly anisotropic stochastic distortions with typical rms
amplitudes of 5–10 mas. This dominates the≈1 mas systematic
errors in the calibration of the DECam astrometric map. In this
work we will demonstrate that GPR from Gaia DR2 stars
succeeds in reducing the rms stochastic distortions to≈2 mas
per axis.

This greatly surpasses the requirement set for the Vera C.
Rubin Observatory of�10 mas rms relative astrometric
accuracy per axis.51 GPR turbulence reduction will allow the
Rubin Observatory Legacy Survey of Space and Time
(LSST)52 to push astrometric science further beyond the
capabilities of Gaia in many ways. The LSST will be able to
measure Gaia-quality stellar parallaxes/proper motions well
beyond Gaia’s faint limit, as well as improving on Gaia
accuracy for stars near its limit. LSST can also bring
milliarcsecond precision to the tracking of minor planets and
other transients.

In the next section we review the relevant aspects of
DES imaging and astrometric results from B17. Section 3
reviews standard GPRs. Astrometric interpolation differs from
standard cases in that the turbulent image displacement (u,v) is
observed to follow the expectation that it is curl-free. We show
how to extend the GPR formalism to exploit this known
relation between the u and v fields.

Section 4 derives the correlation function—or, in GPR
parlance, the “kernel”—that should result from wind-blown
von Karman turbulence at a single layer of the atmosphere.
Section 5 describes the numerical methods for choosing and
applying a kernel to the catalogs, and Section 6 gives
quantitative results of application of the curl-free GPR to a
test sample of several hundred DES exposures, including
validation by fitting an orbit to DES observations of the bright
trans-Neptunian object Eris. We conclude in Section 7.

In the Appendix, we derive an even more comprehensive use
of the GPR methodology, in which one can simultaneously
obtain the ML values for the distortion fields of a stack of
exposures and the 5D position/parallax/proper-motion solu-
tions of the stars contained within this stack. This method has
the potential for significant further reduction of turbulence
residuals, by effectively turning every star in the field with
(shot noise) (turbulence noise) into a reference star, not just
those with Gaia measures. For DES exposures, the density of
such stars does not exceed the density of Gaia stars, so the
benefit of this technique will not be large, and we have not
implemented this method on DES data. It should be of more
value to future surveys with larger telescopes.
Table 1 is a guide to the notation in this paper.

2. Summary of DES Data and Astrometry

2.1. DES Data and Astrometric Solution

The DECam science array consists of 62 distinct CCDs, each
2048× 4096 pixels at≈ 0 263 per pixel. The FOV approximates
a circle with≈1° radius. The analyses in this paper are done on
exposures taken as part of the “Wide” survey of DES, in which a
5000 deg2 section of the southern galactic cap is imaged 10 times
in each of the g, r, i, z, and Y filter bands, spread over six annual
August–February observing seasons. We will for the most part
ignore the Y-band exposures, which have substantially lower S/N
than griz and will not contribute significantly to overall astrometric
precision (but appear otherwise astrometrically well-behaved). The
griz exposures for the Wide survey are all 90 s in duration.
The results reported here make use of the “Y6A1” internal

release of the full Wide survey data. The individual exposures
are processed with the “FinalCut” pipeline very similar to the
earlier version described in Morganson et al. (2018). Pixel
coordinates for all sources are determined from the [XY]
WIN_IMAGE windowed centroid quantity measured by SEx-
tractor (Bertin & Arnouts 1996). We assign the ERRA-
WIN_IMAGE measurement as the σ of a circular Gaussian
measurement error on each unresolved source.
A mapping from pixel coordinates to sky coordinates is

derived using the methods described in B17, with some
improvements. The astrometry solution includes these terms:

1. A cubic polynomial spanning the whole FOV for each
exposure, which absorbs the static atmospheric refraction,
stellar aberration, and a pointing solution.

2. A zenith-oriented differential chromatic refraction term.
3. A polynomial per CCD per band per observing season,

which captures optical distortions.
4. A chromatic lateral color shift oriented radially.
5. * Short-timescale (weeks) affine shifts in the positions of

the CCDs in the focal plane.
6. The “tree ring” and “glowing edge” distortions arising

from stray electric fields in each CCD.
7. * An additional fixed map of distortions apparently due to

electric fields around the electrical cable connector.

Those items marked with an asterisk have been added to the
model since B17. Furthermore, the entire astrometric solution
is now registered to Gaia DR2 and allows for nonzero proper
motion and parallax for all stars in the DES footprint when
registering images internally and to Gaia. In B17 it was
demonstrated that any errors in the astrometric solution that
repeat over time are limited to1 mas rms.

51 See Table 18 of https://docushare.lsstcorp.org/docushare/dsweb/Get/
LPM-17.
52 https://www.lsst.org
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2.2. Nature of the Stochastic Distortions

Aside from the per-exposure cubic polynomial spanning the
full FOV, these baseline Y6A1 astrometric solutions do not
attempt to remove any of the stochastic distortions that would
arise from atmospheric turbulence or other effects varying on
timescales of single exposures. B17 described several properties
of the stochastic distortion patterns, which we summarize here.

To quantify the distortion fields, we first define (u,v) to be
the components of the difference between the DES-derived
R.A./decl. and the Gaia DR2 values. We will summarize the
distortion field with the two-point correlation function of this
error field, defined as

x = á ñx u u , 1uu i j( ) ( )

where i and j range over all stars separated by the vector x. The
virtue of this statistic is that the contribution from shot noise—
or any other form of noise that has negligible star-to-star
correlation—averages to zero. We can similarly define ξvv,
ξuv. Of particular interest is

x x xº ++ x x x . 2uu vv( ) ( ) ( ) ( )

As x→ 0, the value of ξuu yields the total rms variance in the u
direction caused by atmospheric turbulence (or other spatially
correlated errors).

The DES exposures are seen to have anisotropic errors, i.e.,
ξuu≠ ξvv and ξuv≠ 0. Figure 1 shows the distribution of major/
minor axes of the error ellipse implied by the zero-lag limits of
the ξ values. The modal major and minor axes are 7 and 5 mas,
respectively, with the means being higher. This is the
turbulence noise.
A further critical observation is that the stochastic distortion

field is curl-free, as seen in Figure 2. This implies that the
scalar ξ+(x) function is a complete description of the
vector turbulent distortions, if they arise from a GP, as
explained in the Appendix of BK17. As will be detailed
below, this function indicates a typical correlation length of
» ¢6 for the stochastic distortions (where ξ+ drops to half its
x= 0 value).

3. Curl-free, Anisotropic Gaussian Process Interpolation

3.1. Scalar Gaussian Process Review

The standard methodology for GPR follows from the
assumption that we are interested in the value of some
stochastic scalar u(x) over the field x (in our case, the positions
x= (x, y) of a star on a local projection of the sky). The
generation of u is considered a GP if and only if the distribution
of u at any collection of points x= {x1, x2,K,xN} can be

Table 1
Notation Used Throughout the Text

Symbol Meaning

A(x) Aperture function of the telescope
D Telescope diameter
d = D/h Angular size of the telescope diameter as projected at the turbulent layer
h Height of turbulence
J Bessel function of the first kind
K Covariance matrix of the GP
Kij = K(xi − xj; πK) Kernel function of the GP
Kt(Δx) 2 × 2 covariance function for stars i, j
Kf(Δx) Two-point correlation function of f
k = (kx, ky) Fourier inverse to Δx
k0 2πh/r0
(kP, k⊥) Components of k relative to parallactic direction of the turbulence
Ns Number of stars in a DES exposure
n = {n1, n2, K} Set of measurement shot noise for an exposure
Pf(k) Power spectrum of f
r0 Outer scale of turbulence
T Exposure time
U Merged vector of length 2Ns of both u and v points
u = (u, v) Displacements of stellar positions due to atmospheric turbulence
u*˜ Posterior predictive mean of the GP regressor
W(x) Line segment with length and direction wT
w Wind vector at the turbulence layer
x = (x, y) Position of stars on a local projection of the sky
Δx xi − xj for some stars i, j
z Zenith angle of the telescope
μ Mean of a GP, taken to be 0
ν S/N of a source detection
ξ0 Overall amplitude of the turbulence = (ξuu + ξvv)(x = 0)
ξuu, ξuv, ξvv Two-point correlation functions among the (u,v) components of displacement
ξ+ ξuu + ξvv
πK Hyperparameters for the kernel function
σ Stochastic errors in the centroiding of a source in pixel coordinates
σPSF rms width of the point-spread function
f(x) OPD along the line of sight
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described by a multivariate normal distribution53

mº ¼ ~ u Ku u u, , , , , 3N1 2{ } ( ) ( )

with a mean μ that we can usually take as zero and a
covariance matrix K≡ 〈uuT〉 with a known form Kij=K(xi, xj)
We will consider stationary (but potentially anisotropic) fields
with possible hyperparameters πK, for which we can place
Kij= K(xi− xj;πK).

If we consider the field to have known values u at training
points x, and we seek estimates uå at points xå, then we can
write the joint distribution as

~ 



 
u
u

K K
K K

0, . 4
T

⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

( ) ( )

Here we follow GP convention by setting = - x xK Kij i j( )
and = -  x xK K .ij i j( ) Conditioning this joint distribution on
the measured u yields the standard scalar GPR solution:

~ -- -    u u K K u K K K K, . 5T T1 1∣ ( ) ( )

Thus, the ML solution is the mean of this conditioned
distribution—the ML value of uå at any point is a linear
combination of the values at u, with coefficients determined by
the relative locations of the reference stars to the target

position. The presence of independent measurement noise
n= {n1, n2, K} on the training points can be incorporated by
considering the noise to be an addition to the kernel/covariance
matrix K that has zero correlation length, i.e., only appears on
the diagonal

d - + á ñx xK K n . 6ij i j ij i
2( ) ( )

The suitability of the chosen kernel to the training data is
quantified by the log marginal likelihood,

p p- = +-u x u K u Kp2 log , log 2 , 7K
T 1( ∣ ) ∣ ∣ ( )

where K is a function of the hyperparameters πK. The most
suitable kernel is chosen by maximizing this quantity over πK.
If the field is truly Gaussian, the resultant interpolator is then
optimal. The GPR does, however, yield a functional inter-
polator even if K is not precisely the covariance function of u,
or if u is not a Gaussian field.
Application of the standard GPR to ground-based astro-

metric data proceeds by using the sky positions of the stars as
the feature vectors xi and defining two distinct scalar fields (u,v)
as the differences between the observed x and y coordinates and
the true coordinates, = -x xu v, .i i i i

obs true( ) The training data
are those for which the Gaia DR2 motions are available (and
calculated at the observation epoch). Distinct GPRs are trained
for each component u and v in this simplest scheme.

3.2. Curl-free Vector Fields

A simple and applicable ray-optic model for the displace-
ments caused by atmospheric turbulence is that the centroid of
the stellar image moves by an apparent vector

f= =u xu v, , 8x( ) ( ) ( )

where f(x) is the optical path difference (OPD) along the line
of sight x, as convolved with the telescope aperture. If this
model holds instantaneously and the source photon arrival rate
is constant, then we can average both u and f over the duration
of the exposure and the equation will still hold. A special case
would be a single-screen “frozen” approximation: f(x, t) varies
with time as f(x− wt) for a wind vector w at the turbulent
layer. In this case, the time-averaged f is the convolution of the
instantaneous f with a line segment of wind motion during the
exposure. The results in this section will, however, be true for
any model of the time-averaged f.
As shown in B17, the two-point correlation functions of the

residual displacement fields u(x) are observed to be purely “E-
mode,” meaning that ∇ × u contains only white noise
consistent with the shot noise of stellar centroid measurements.
It is therefore likely that enforcing a curl-free turbulence field
will yield a more accurate GPR, since we can combine the data
from both fields u and v to solve for a single degree of
freedom f.
The curl-free GPR begins by assuming that f is a zero-mean

Gaussian field, in which case it can be fully characterized by its
power spectrum Pf(k) or its two-point correlation function
Kf(Δx), which we can relate via the Fourier transform

òD =f f
Dx k kK d P e . 9k xi2( ) ( ) ( )·

The relation (8) implies that the Fourier transforms of u and
f satisfy FT(u)= ikFT(f). This in turn implies that the

Figure 1. Distribution of the major and minor axes of the turbulence-induced
astrometric errors for the ≈80,000 exposures of the DES Y6A1 Wide survey.
The distributions are clipped at 3 mas since smaller values are unreliable in
these data.

Figure 2. The divergence and curl of the astrometric residuals on exposure
#228645 (30 s, z band) are plotted on a common scale. The continuity of the
vector field across chip boundaries, the curl-free nature of the field, and the
streaky pattern of divergence suggest the hypothesis that these distortions arise
from wind-blown atmospheric turbulence. Reproduced from BK17.

53 Using the standard notation m C,( ) for a multivariate normal distribution
with mean μ and covariance matrix C.
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covariance matrix of the turbulence component of the
displacement field is

òD = f
Dx k kk kK d P e . 10k x

t
T i2( ) ( ) ( ) ( )·

Thus, any parametric model for Pf can be transformed into a
parametric 2× 2 covariance matrix function of Δx. (We retain
a scalar notation for this 2× 2 function Kt, reserving the matrix
symbol K for the matrix of covariances between different field
points.)

With this modification, we can recast the GPR to a merged
vector = ¼U u v u v u v, , , , , ,N N1 1 2 2 s s{ } of 2Ns scalar quantities.
As in the scalar GPR, we can define matrices K, Kå, Kåå

composed of 2× 2 blocks such that

d= - + á ñ

= -

= -

 

  

x x n n

x x

x x

K K

K K

K K . 11

i j t i j ij i i
T

i j t i j

i j t i j

,

,

,

( )
( )
( ) ( )

The measurement noise term in the first row is also a 2× 2
matrix, which in practice is very close to diagonal for DES data
but is substantially anisotropic for Gaia. After this change, the
standard GPR formulae (5) and (7) remain correct, with the
substitution u→U. If the Kt(Δx) function were diagonal, then
the GPR solution would separate into two distinct scalar GPRs.
But even an isotropic field f has off-diagonal terms in Kt, and
therefore this curl-free interpolant exploits information that two
distinct scalar GPRs cannot.

4. Model for Wind-blown Von Karman Turbulence

We desire a model for the correlation function K(x) between
the turbulent distortions at two locations separated by x. Since
the displacement (u,v) is 2D, there are three scalar correlation
functions of interest, Kuu, Kuv, Kvv. Considering first one
dimension of the deflection, u, we have from Equation (8) that
the deflection of a single photon passing through a time-delay
screen f at location x and time t will be fµ ¶

¶
xu t, .

x
( ) The

photons that arrive to form the image of a particular star arrive
at fixed t from a range of x described by the aperture function
of the telescope A(x), effectively convolving the instantaneous
OPD screen as f→ f⊗ A. Adopting the frozen-screen approx-
imation common in adaptive optics analyses, such that f(x,
t)= f(x−wt), means that the integration of photon arrival time
over the exposure duration T corresponds to a further
convolution of the phase screen by a line segment of length
and direction wT, which we will denote by the “wind function”
W(x). The apparent deflection, averaged over all arriving
photons for a star crossing the phase screen at location x,
becomes

fµ
¶
¶

= Ä Äu
x

t A Wx 0 . 12( ) [ ( ) ] ( )

The convolutions become multiplications in the Fourier
domain, and we can also recall that the correlation function
Kuu is the Fourier transform of the power spectrum Pu(k) of the

deflections, giving

òµ f
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x
x
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which reproduces Equation (10) by the inclusion of the
aperture and wind functions altering the instantaneous OPD
screen f. In this section we have treated x as being in distance
units and k in inverse distance. But we can equally well use
these equations with x representing the 2D angle subtended
about the telescope axis, which we shall do henceforth.
It now remains to choose models for Pf, A, and W. The

common model for the power spectrum of atmospheric
turbulence is the von Karman spectrum,

µ +f
-P k k k , 142

0
2 11 6( ) ( ) ( )

where k0 is the inverse of the outer scale of turbulence. More
precisely, our angular system, with turbulence at height h and
outer scale r0, produces k0= 2πh/r0. There is an additional
complication that when the zenith angle z of the observation is
nonzero, the (horizontal) turbulent layer is foreshortened along
the direction toward zenith. To include this effect, we should
break k into components (kP, k⊥) relative to the parallactic
direction and substitute

 + ^k k z kcos 152 2 2( ) ( )

in the argument of Pf.
For the telescope aperture we will adopt the simplest case of

a uniformly filled circular aperture, which yields

µkA
J kd

kd

2
, 162 1

2
⎡
⎣

⎤
⎦

∣ ˜ ( )∣ ( ) ( )

where J is the Bessel function of the first kind and d is the
angular size of the telescope diameter D as projected to the
turbulent layer, d=D/h.
The Fourier transform of the line segment window function

yields

µk k wW sinc 2 , 172 2∣ ˜ ( )∣ ( · ) ( )

where w is now taken to be the wind transport over the duration
of the exposure, as projected onto the angular coordinates of
the telescope.
Combining the previous five equations yields our model for

the astrometric correlation function K(x) for a single layer of
von Karman turbulence. There are two known parameters (the
zenith angle z and the parallactic angle defining kP) and five
free parameters: {ξ0, r0, d, wx, wy}, denoting the overall
amplitude of the turbulence, ξ0= (Kuu+ Kvv)(x= 0), the
(angular equivalents of) outer scale, telescope aperture, and
components of the wind vector. Of these parameters, the outer
scale r0 is the least important because it is typically larger than
the 4 m telescope diameter, and the aperture function damps the
power spectrum before the outer scale sets in.
The real-space 2D correlation functions for the von Karman

spectrum, the aperture, and the wind function can be done
analytically individually, but their convolution is not analytic.
One has the option of doing the convolution numerically, but
we opt instead to use the above equations to multiply the three
(analytic) Fourier domain functions and do the Fourier
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transform numerically using a fast Fourier transform. The
bottom panels of Figure 3 plot ξ+= Kuu+ Kvv for two variants
of the wind-blown von Karman model.

We note at this point that the real atmospheric turbulence is
unlikely to arise from a single von Karman screen. The
observed ξ+ functions have more structure than the von
Karman model, e.g., features at multiple position angles. The
turbulence may arise at multiple heights with varying wind
speed, for example. We will, however, proceed with this model
as a viable kernel, and remember that it is possible that other
kernels would perform better, and the most successful von
Karman parameters may not represent the physical conditions
of a single screen. Data from instruments monitoring atmo-
spheric turbulence are available at CTIO, but we do not expect
ab initio information on the turbulence parameters to provide a
more effective GP kernel than fitting and optimization to the
empirical information from Gaia stars’ residuals.

5. Numerical Methods

The curl-free GPR is implemented on the DES data on an
exposure-by-exposure basis, with the following procedure:

1. Data Retrieval: A Python program retrieves the Y6A1
DES single-epoch astrometric solutions for a single
exposure from DES data files, including estimates of
shot noise ni from the SExtractor quantity (ERRA-
WIN_WORLD). Corresponding Gaia five-parameter astro-
metry solutions, as well as their full covariance matrices,
are retrieved via the Python package ASTROQUERY.

2. Pre-processing: The retrieved Gaia 5D solution for
epoch J2015.5 for each star is reduced to a 2D position
(and uncertainty) at the time of the DES exposure. The
DES and Gaia catalogs are then matched with the
match_coordinates_sky routine from ASTROPY;
detections within 0 5 are matched. Gaia detections with

no DES match are discarded. Additionally, if more than
15,000 matches are found, 15,000 detections are
randomly chosen and the rest are discarded in order to
conserve memory in later steps. The program then
performs a gnomonic projection on both catalogs using
the center of the DES exposure as the projection axis. For
each matched star, the residual field u= xDES− xGaia is
formed, and a 2× 2 shot-noise uncertainty ni is created
from the sum of the DES and Gaia measurement errors.
In order to facilitate fivefold cross-validation later on, the
matched data are randomly distributed into five subsets,
A through E. At any one time, one subset will be the
validation set, and the other four will be the training set.
Additionally, the detections in the DES catalog that did
not have a match are designated as the prediction set.

3. Error Rescaling: In order to remove outliers, sigma-
clipping is performed to four standard deviations on the
residual values, ui. Additionally, any detections that have
shot-noise errors >250 mas2 are removed since they are
too noisy to be useful and/or are measurement artifacts.
For r-, i-, and z-band exposures there are few detections
with shot-noise errors this high, but this is an important
step for the g and Y bands. We also find that the shot-
noise errors from SExtractor are systematically
underestimated, particularly for detections with very
low shot noise. To give the kernel more accurate shot-
noise values, we replace the (ERRAWIN_WORLD) with
the rms of the residual field values for a group of 256
detections with similar estimated shot noise. The best-fit
third-degree polynomial as a function of astrometric
position in the FOV is subtracted from the residual field.
This is done to remove large-scale systematic errors from
instrument distortion (e.g., thermal expansion of the
telescope) and low-altitude “ground-layer” turbulence
that distorts large angular scales (see Section 6.2 of B17
for further details).

4. Fitting kernel to ξ+: In order to get an initial guess of the
kernel parameters, πK, ξ+(x) is calculated for the training
set. A Nelder–Mead optimizer varies πK to minimize the
residual sum of squares (RSS) between the observed ξ+
and the parametric von Karman ξ+ = (Kuu+ Kvv). For
this least-squares fitting, only ξ+(x) for < ¢x 5 is used.
With the resultant kernel parameters, we execute the curl-
free GPR on the ui. Using fivefold cross-validation, we
obtain a residual ui˜ for each matched star from the
difference of the raw ui and a GPR-estimated value that
has not been trained on that star. Another round of sigma-
clipping is then performed on the data, this time removing
all detections greater than four standard deviations from
the mean of u*˜ .

5. Optimization of kernel: Ideally the GPR kernel fitted
to the observed ξ+ function would be the optimal
interpolator, yielding the smallest rms errors in position
for the validation set. The rms errors can be measured
without shot-noise biases as the limit of ξ+(x) as
x→ 0. We define a figure of merit meant to approximate
this limit as

x xº á ñ ¢+ <x , 18x1.2 1. 2( ) ( )∣ ∣

where the average is pair weighted. In practice, the fitted
kernel is not optimal for ξ1.2, perhaps because the von
Karman kernel model does not fully describe the field, or

Figure 3. Each panel plots a measure or model of the astrometric error
correlation function ξ+(x). The top left panel shows the measured correlation
function for exposure 361582 (in i band), before any GPR subtraction. The
bottom left panel shows the single-screen wind-blown von Karman turbulence
model that is the best fit to these data for < ¢x 5 .∣ ∣ The bottom right panel
shows the von Karman model that the optimizer finds to minimize the ξ0 after
GPR subtraction. The top right panel shows the measured ξ+ after subtraction
of the GPR. Note that there is no noticeable remaining correlation at any x (at
this dynamic range) after the GPR correction is applied.
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perhaps because of non-Gaussianity and/or outliers in the
data. Regardless of the cause, we find that the figure of
merit ξ1.2 can be reduced by further optimization of the
von Karman parameters πK. Using the “fitted” kernel
parameters found in the previous step as an initial guess,
we use the L_BFGS_B gradient-descent method of the
scipy.optimize.minimize optimizer (Virtanen
et al. 2020) to minimize the ξ1.2 of the validation set.
This is the most computationally intensive part of the
process since the optimization requires many repeated
evaluations of the GPR. In order to reduce the number of
optimization steps, we first optimize over the parameters
d, wx, and wy and then fix these and optimize the
remaining parameters ξ0 and r0. The results πK we call
the “optimized” kernel parameters. We evaluate the GPR
and residuals using the optimized parameters. Again
using fivefold cross-validation and four standard devia-
tion sigma-clipping, we find u*˜ for all matched stars.
When we refer to “GPR-subtracted” data, it will by
default mean those corrected with the optimized para-
meters. In some of the further analyses we will explicitly
compare results with a GPR using the fitted parameters
from step 4 versus the optimized parameters from
this step.

6. Analysis: With u*˜ , we calculate statistics on how well the
model performs. All statistics omit the stars that have
been sigma-clipped.

6. Results for DES Exposures

We applied this procedure to 343 DES exposures (76, 70, 64,
72, and 61 from griz Y bands, respectively). The g-band
exposures exhibit very high outlier rates and ERRAWIN_-
WORLD inaccuracies for reasons that are not understood and
probably irrelevant to the turbulence estimation, so we will not
make further use of them in this paper. The low S/N of the Y-

band exposures makes them less interesting tests of turbulence
reduction, so most of our statistics will concentrate on
riz. Maps of the astrometric errors of Gaia stars before and
after application of the GPR correction are shown for a typical
exposure in Figure 4.
The average density of matches with Gaia (after sigma-

clipping) for the exposures analyzed is 0.95 arcmin−2, or 104

per 3 deg2 DES exposure. With the fivefold cross-validation,
there are an average of≈ 2000 stars in a validation subset. The
optimization of the kernel parameters using the L_BFGS_B
algorithm requires≈ 100 recalculations of the GPR on average,
which is the computational bottleneck of the procedure,
requiring several hours on a 12-core cluster node. Further
investigation of the optimization may yield substantial
speedups.
Our primary measure of success for this analysis is the

reduction of the ξ0= 〈u2+ v2〉 of the raw residual field after the
GPR model of the turbulence is subtracted. With a finite
number of validation stars, we cannot calculate ξ0(x= 0). To
measure the improvements due to GPR subtraction, we
approximate ξ0 with x < ¢+ x 0.5(∣ ∣ ), i.e., we average over all
validation−star pairs with separation< ¢0.5.54 Figure 5 plots the
raw ξ0 versus the GPR-subtracted ξ0 for riz Y exposures, with
the bottom panel replotting the quantity x 2 ,0 which gives the
rms astrometric error per axis. The bottom panel also shows the
relationship between rms and field density for riz Y exposures.
The average ξ0 of the raw residual field for all 206 riz-band
exposures was 125 mas2, or an rms astrometric error of 7.3 mas
per axis. The average ξ0 after the GPR model was subtracted
from the residual field was 11.9 mas2 or 2.3 mas rms. The
average reduction in ξ0 was a factor of 12. This is the principal
result of this work.

Figure 4. At left is a map of binned astrometric errors of stars in a typical DES exposure (#361582, i band) relative to their Gaia DR2 positions. At right are the results
after subtraction of corrections derived from the curl-free GPR method. Fivefold cross-validation is used such that no Gaia star is used to derive the GPR that is applied
to it. The reduction in amplitude and correlation length of the astrometric errors is apparent.

54 Note that this ξ0 estimator uses a smaller radius (0 5) than the ξ1.2 used
during kernel optimization. This is because Figure 6 shows that ξ(x) is already
dropping significantly at = ¢x 1.2∣ ∣ in the GPR-subtracted data.
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We also note that the kernel optimization of Step 5 reduces
ξ0 by a mean factor of≈1.6× for riz-band exposures (with a
wide range of variation), and it is possible that this optimization
could be improved.

Figure 6 plots ξ+(|x|) averaged over all riz exposures,
showing that (per expectations) the longer-range correlations
are completely eliminated by GPR subtraction. The

correlation length, R0, is defined as the angle such that
ξ+(R0)= 0.5ξ0. For the 206 riz-band exposures, the average
correlation length of the raw residual field was ¢5.7. The
average correlation length of the residual field after the GPR
model was subtracted was ¢1.3. As expected, the post-GPR
correlation length is similar to the mean distance between
Gaia stars used for training.

Figure 5. The top panel plots the values of x x» < ¢+ x 0.50 (∣ ∣ ) for the validation samples of every analyzed riz Y exposure before (x-axis) vs. after (y-axis) subtraction
of the GPR. The dotted lines mark constant factors of ξ0 reduction by the GPR subtraction. The bottom panel is similar except that it uses x 2 ,0 the rms turbulence
error per axis, instead of the total variance ξ0, on the axes. And the color scale in this case indicates the density of Gaia stars used in each exposure.
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The average von Karman kernel parameters for the riz
functions are in rough agreement with a physical model,
although it is clear from, e.g., Figure 3 that the single-screen
turbulence model is an incomplete description of the
astrometric correlation functions. The average aperture-dia-
meter parameter, d, was ¢2.5, which corresponds to the physical
4 m diameter D for a turbulence height of 5.5 km, which is of
similar magnitude to the typical height of dominant turbulence
(Beckers 1993). At this height the average angular outer-scale
parameter of r0= 1°.7 corresponds to 160 m, also physically
reasonable—though this parameter has a weak effect on the
kernel or GPR accuracy. The typical wind parameter amplitude
of = ¢w 3.5∣ ∣ corresponds to winds of just≈0.1 m s−1, which
seems lower than one would expect for tropospheric winds.

There are few clear trends in the values of the post-GPR ξ0 or
in the reduction factor gained by the GPR. From the bottom
panel of Figure 5 it is clear that the exposures taken in low-
density regions of the Gaia catalog have the lowest (worst)
reduction factors. This is to be expected, as density Gaia
training data can measure and remove the turbulence to higher
spatial frequencies. We also find, not surprisingly, that a lower
raw ξ0 correlates with a lower GPR-subtracted ξ0. Beyond this,
there are no obvious trends with filter band or other variables.
The sizes of ξ0 both before and after GPR subtraction are
highly variable over time, as one finds for related atmospheric
turbulence phenomena such as the seeing FWHM. These large
“weather” variations could be masking subtler trends with
wavelength, air mass, etc., that might emerge upon analysis of
a larger number of exposures.

6.1. Test on Eris Orbit

As a test of the GPR astrometric correction, we examine the
residuals of an orbit fit to the positions measured by DES for
the trans-Neptunian object Eris (Brown et al. 2005). Because
Eris moves≈1°.4 in both R.A. and decl. over the 5 yr span of
the DES observations, it is being informed by a continuously

changing set of Gaia stars, and thus the orbit residuals are a
good sampling of the accuracy of the GPR. A good orbit also
requires a correct absolute astrometric calibration, at least
across these few degrees.
Figure 7 plots the residuals to the 27 griz observations of

Eris in the DES Wide survey, compared to the best-fit orbit as
obtained using the algorithms of Bernstein & Khushalani
(2000). The error bars in the plot are the expected uncertainties
from the quadrature sum of the ERRAWIN_WORLD measure-
ment error and the ξ0-derived rms turbulence error. The
measured pixel positions for the Eris detections are converted
to R.A. and decl. using the full static astrometric model as
described above, including chromatic terms.
Restricting our consideration to the 19 riz exposures, the rms

residual to the best-fit orbit is 10.1 mas (per axis) using the raw
positions (no turbulence correction) but drops to 5.0 mas after
the GPR estimates are subtracted. The χ2 values and degrees of
freedom are 27.9 and 44.7/32 before and after GPR
subtraction, respectively. This demonstrates a clear improve-
ment in astrometric quality. The factor of 2 improvement in rms
is less than the 12 we might expect from the typical reduction
in ξ0, because Eris, at r= 18.5 mag, is not bright enough to be
in the fully turbulence-dominated regime for DES once the
GPR is applied: the shot-noise errors in its positions vary from
1.7 to 5.2 mas (with an rms value of 2.9 mas). Indeed, once the
GPR correction is applied, a star must be near the exposure
saturation limit in order to have shot noise well below the
turbulence noise.
These measurement accuracies are far better than is typically

obtained for minor planets from ground-based observations,
especially considering the short (90 s) exposure times. To give
a sense of scale, a typical trans-Neptunian object at 40 au
distance moves by 4 mas s−1, so shutter-timing corrections are
now larger than the≈2 mas astrometric turbulence error.

7. Summary and Prospects

We have demonstrated that GPs are highly effective for
interpolating the stochastic astrometric distortions from a set of
known spatial points (Gaia stars) to arbitrary locations in the
focal plane. For DES images in riz bands, we achieve an
average reduction of a factor≈12 in the total astrometric
variance ξ0 ascribable to turbulence. As expected, the GPR is
very successful at modeling (and removing) distortion modes at
wavelengths longer than the typical » ¢1 spacing between Gaia
DR2 stars, and the GPR-subtracted astrometric errors have a
correlation length of» ¢1 . This achievement is assisted by a new
variant of GPR that makes use of the known curl-free nature of
the 2D distortion field.
For these 90 s images, this reduces the rms turbulence error

to≈2 mas in each axis, at which point it is subdominant to shot
noise in the object centroid for any source with S/N 200,
which requires>40,000 photoelectrons to be acquired. There is
now thus only a≈1 mag range of stellar brightness in which the
astrometry is dominated by turbulence noise but the stars are
not saturating the CCD, so in practical terms the atmospheric
turbulence noise has been nearly eliminated.
It is likely that some further improvement is possible by

improving the optimization of the von Karman parameters, or
by choosing a better form for the kernel. It is already clear from
Figure 3 that the observed ξ+(x) function has qualitative
aspects not reproduced by the von Karman model, such as
different major axes at different scales, which could result from

Figure 6. The points plot the mean azimuthally averaged ξ+(|x|) for 206 riz-
band exposures. The curves apply a Savitsky−Golay smoothing to the (noisy)
measured points separation from 5″ to 1°. 5. From top to bottom, the curves
show the correlated astrometric errors before any GPR subtraction (“Raw”),
after subtracting a GPR using the best-fit von Karman turbulence parameters
(“Fitted model”), and after subtracting a GPR using an “optimized” kernel
chosen to minimize ξ0 = ξ+(x → 0). The astrometric variance is greatly
reduced from the raw level of ξ0 = 119 mas2 to 19.5 and 12.0 mas2 by the
fitted and optimized kernels, respectively. The average correlation length of the
astrometric errors (defined as the point where ξ+ drops to ξ0/2) is reduced from
5 7 to ¢1.2 by GPR subtraction.
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multiple layers of turbulence. Such behavior has been observed
in data from the Canada–France–Hawaii Telescope, and it is
worth investigating whether using the measured ξ+ directly,
rather than a model fit, is generically better (P. F. Leget, private
communication). We have not developed this yet, because of
the possibility that a noisy measured ξ+ could lead to non-
positive-definite covariance matrices.

Lubow et al. (2021) have applied a somewhat simpler
approach to removing astrometric errors from the PS1 catalogs
by referencing each object to the mean of the nearest 33 Gaia
DR2 stars detected in the PS1 images. This would be
equivalent to GPR with a flat-top circular kernel of radius
equal to the distance of the 33rd-nearest star (reported as» ¢1 at
median). The GPR method can be expected to perform better
through a weighting of the Gaia reference stars that is
optimized for the spectrum of the distortions and the
measurement noise of individual references. On the other
hand, the GPR is computationally slower since it uses the full
set of Gaia references to derive and apply these optimized
weights. A direct performance comparison between the two
results is not possible given the different telescopes and
observing conditions of the surveys, and because Lubow et al.
(2021) do not separate turbulence errors from shot noise in their
statistics. We do see from their Figure 9, however, that for
bright stars (i≈ 17 mag), where shot-noise contributions
should be low, their correction reduces median 2D astrometric
residuals by about a factor 2, whereas we obtain » ´12 3.5
reduction in turbulence noise, perhaps as a result of the more
optimal interpolation.

Dramatic improvement may be possible by creating a denser
training set than Gaia DR2 provides. Future releases of Gaia
will help in this regard. But a more powerful means to

bootstrap a denser training sample is outlined in the Appendix:
when we require that non-Gaia stars’ motion over time fits the
standard parallax/proper-motion model, their 5D solutions
become increasingly constrained with more observing epochs,
and the exposure-by-exposure residuals to these 5D solutions
become useful for constraining the turbulence patterns of
individual exposures. The Appendix gives the mathematical
solution for a feasible scheme to solve for the 5D solutions and
the turbulence interpolation for all exposures in a region of sky
simultaneously. We will test this in future work. The
astrometric system, i.e., the absolute coordinates, proper
motion, and parallax zero-points, will remain tied to Gaia,
and here again ground-based results will benefit from future
Gaia releases.
With the joint turbulence/proper-motion solution, essentially

every star with per-exposure shot-noise level lower than the
turbulence noise becomes an additional reference point for the
turbulence solution. While DES has few stars fainter than the
Gaia limit that satisfy this condition, LSST will have many. We
thus expect this to be a valuable technique for the survey.
Note that both shot-noise errors and turbulence residuals are

expected to decrease as the inverse square root of exposure
time T. Thus, for a given observatory and filter band, the
magnitude dividing turbulence-dominated from shot-noise-
dominated astrometry is independent of T. The GPR technique
shifts that magnitude brightward by about 2.5 mag. For longer
DECam exposures, both limits drop, and astrometry could
become limited by sub-milliarcsecond errors in the static
astrometric model, including errors in chromatic corrections
arising from inaccurate knowledge of the source spectra.
This GPR technique should be directly applicable to the

LSST data. The Rubin Observatory’s 8.5 m diameter primary

Figure 7. Residuals of the observed R.A./decl. positions from GPR-corrected DES measurements of the trans-Neptunian object Eris to the best-fitting orbit are
plotted. The observations span 5 yr, with the relative times marked below each point pair. The rms error of the riz-band observations is 5 mas, as marked by the shaded
region, consistent with the estimated shot noise plus residual turbulence ξ0. The rms residual was 10 mas before the GPR correction was made, demonstrating the
success of the GPR method.
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mirror is larger than the Blanco’s 4 m primary, which will
lower the expected level of ξ+ in similar atmospheric
conditions, but the shorter total exposure time (30 s) of nominal
LSST visits will increase the per-exposure ξ+, so we might
expect values similar to those we find for DES. Rubin’s greater
aperture means, however, that shot noise is lower than for DES,
which means that more stars—including many beyond Gaia’s
magnitude limit—will be in the turbulence-dominated regime
and thus benefit from the GPR subtraction. This should allow
LSST data to substantially surpass the initial requirements and
goals for its astrometric performance and subsequent science.
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Appendix
Simultaneous Inference of Turbulence and 5D Stellar

Parameters

The positions of isolated stars on the sky are expected to
follow the standard five-parameter model:

v= + -m m m^x x x xt . A1i i i
E

i
true 0 ( )

= mM s . A2i ( )

Here tμ and mx̂E are the date of exposure μ and the projection of
the barycentric observatory position onto the line of sight for
the exposure. The five parameters for star i are the position,
proper motion, and parallax v=s x y x y, , , , .i i i i i i

0 0{ }  The goal
of this section is to develop a method for extracting s= {s1, s2,
K} from the observed positions mxi

obs of each star in each
exposure.55 The data model is

= +m m mx M s u . A3i i i
obs ( )

We will always assume that xobs has been mapped from pixel
coordinates to sky coordinates using the best available static
instrument model, and u is a stochastic, zero-mean error term
that includes curl-free atmospheric turbulence, shot noise, and
any errors in the instrumental model.
The method of Section 3.2 gives a straightforward procedure

by which a GPR trained on the Gaia star images in exposure μ
yields an estimator muiˆ for each individual image of a non-
Gaia star. One could then fit the set of observed -m mx ui i

obs ˆ to
the model (A3) to estimate si. It is the case, however, that as
more exposures are taken and the si becomes better known, this
star can begin to inform the training of the GPR for each
exposure, improving the estimator û for other stars in its
vicinity, and in turn improving their 5D solutions. We therefore
explore the possibility of an estimator for s that considers the
data from all exposures simultaneously.
To do so, we continue the assumption that the displacement

field uμ is the sum of a turbulence contribution, which is the

55 A given star need not be observed in all exposures.
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gradient of a Gaussian random field with known power
spectrum, and a shot-noise contribution, which does not
correlate between stellar observations. We further assume that
there is no correlation of either component between distinct
exposures—and each exposure can have its own correlation
function Kμ, determined by hyperparameter optimization on the
Gaia stars, as described above.

In this case the probability of the observations is a
multivariate Gaussian that separates between exposures:

p= 

´ - - -

m m m

m m m m m

-

-

x s K

x M s K x M s

p 2

exp
1

2
, A4T

obs 1 2

obs 1 obs⎡
⎣

⎤
⎦

({ }∣ ) ∣ ∣

( ) ( ) ( )

where we have used the data model in Equation (A3) and
defined

d= - +m m m m mx xK K n . A5ij i j i ij, ( ) ( )

Also, mx
obs is the concatenation of all the observed positions on

exposure μ.
Bayes’s theorem, assuming independent Gaussian priors on

each star’s parameters, gives

µ ´m m s x x s s Kp p , . A6
i

i
p

i
pobs obs( ∣{ }) ({ }∣ ) ( ) ( )

The prior can include Gaia measurements of the star’s si, if
available. It is also advisable to place a weak prior on the
parallax for non-Gaia stars to avoid numerical instabilities for
stars that have been observed at the same limited range of dates
each year. The observing cadence of DES is not designed for
parallax measurements and can produce such degeneracies.

By substituting Equation (A4) into this equation and
concatenating the stellar parameters and their priors into
sp= {s1, s2, K} and =K Kdiag ,p

i
p({ }) we obtain the log

posterior for the stellar parameters:

- =

+ - -
m

-

s x s K

s s K s s

p2 log , , const

A7

p
p

p T
p

p

obs

1

( ∣{ } ) ( )

( ) ( ) ( )

+ - -m m m m m
-x M s K x M s A8Tobs 1 obs( ) ( ) ( )

 ~m s x s K s C, , , , A9p
p s

obs∣{ } (ˆ ) ( )

å= +
m

m m m
- -

-

C K M K M , A10s p
T1 1

1
⎡

⎣
⎢

⎤

⎦
⎥ ( )

å= +
m

m m m
-s C K s M K x . A11s p

p T1 obs⎡

⎣
⎢

⎤

⎦
⎥ˆ ( )

The last line gives the maximum-posterior estimate of all the
stars’ 5D properties. This joint solution is computationally
feasible; GPRs are rate limited by Cholesky matrix factoriza-
tions. If there are Ns stars appearing in Ne exposures, then each
of the Kμ are 2Ns× 2Ns square, so the sum inside the brackets
of Equation (A10) requires O N N8 e s

3( ) operations. The ŝ vector
has 5Ns elements, so the factorization needed to obtain it in
Equation (A11) requires O N125 s

3( ) operations, which in most
cases (Ne> 15) is lower than the cost of the per-exposure
inversions.

It is clearly infeasible to execute the solution in one shot over
the full DES survey, with Ns∼ 108 and Ne∼ 105. There is little

lost, however, in dividing the survey into regions and solving
each independently. Each region’s solution is informed by stars
within a few atmospheric correlation lengths of its targeted
boundaries, which should be included in the solution. But more
distant stellar measures do not improve the target region and
need not be included. Thus, the computation is best managed
by dividing the survey into≈1° regions, with Ns∼ 105,
Ne∼ 102.
The computational cost of the wholistic solution can be

compared to the cost of optimizing the hyperparameters of Kμ

for each exposure. The optimizer must reinvert the ´ N2 G
2( )

matrix many times to maximize the log marginal likelihood,
with NG being the number of Gaia stars in the full exposure,
whereas the wholistic solution requires a single ´ N2 s

2( )
inversion, where Ns is the total number of stars of interest in the
region. In most cases the wholistic solution will take
comparable or less time than completing the per-exposure
kernel tuning.
The only distinction between Gaia detections and DES-only

stars in Equation (A11) is that the former have stronger priors.
The solution uses all of the stars to constrain the turbulence
field. In practice, one will also want to interpolate the
turbulence field to the locations of sources in individual
exposures that do not have 5D solutions (e.g., minor planets
and other transients). As with a simple GPR, it is straightfor-
ward to perform this interpolation, and the computational cost
is much lower than for the Cholesky inversion of Cs.
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