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Abstract
In the present work, we will study the effect that the surface roughness of the sample 
has on the magnetic and thermodynamic properties in a mesoscopic superconduct-
ing meso-square under an external magnetic field in a zero-field cooling process. 
We will analyze the magnetization, superconducting electronic density, free Gibbs 
energy, specific heat and entropy as a function of the roughness of the sample in a 
superconducting two-band square taking a Josephson type inter-band coupling. We 
show that the magnetic and thermodynamic properties depend on the roughness per-
centage of its surface. Our investigation was carried out by numerically solving the 
two-band time-dependent Ginzburg–Landau equations.

Keywords  Rough · Superconductivity · Two bands · Calorimetrics

1  Introduction

It has been demonstrated that the topology of the surface modifies the properties 
of the mesoscopic superconductor [1]. A lot of works have been developed taking 
into account different types of topology and boundary conditions for the vortex state 
analysis [1–8]. Baelus et al. [9] investigated the influence of surface defects on the 
vortex penetration and expulsion in thin circular, square and rectangular samples, 
they found that due to the vortex–vortex repulsion and the vortex–defect interac-
tion, the vortex does not enter or leave the sample through the surface defect. The 
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effect of a triangular arrangement of punctual defects on vortex configuration in a 
thin circular mesoscopic sample was done [10], they found non-commensurate vor-
tex configurations due to the interplay between the vortex–vortex repulsion, the 
vortex–defect interaction and the interaction with the sample border. Numerical 
simulation of transport characteristic of a mesoscopic superconducting strip with 
randomly placed pinning centers and taking into account the Bean-Livingston bar-
rier at the edges in an external magnetic field was realized [11]. Experimental and 
theoretical studies show that at small magnetic fields, there is a discontinuity in heat 
capacity at critical temperature ( Tc ) as the bulk superconductors. The heat capacity 
jump at Tc exhibits modulation as a function of magnetic field associated with the 
known Little–Parks effect  [12–17]. In general, a superconductor is a diamagnetic 
material, but in some special cases and conditions, it can exhibit a paramagnetic 
Meissner effect (PME). Meyer et al. studied the PME in a small thin ringlike meso-
scopic superconductor, the region of PME is above the transition between states of 
the different angular moments and is well known, this phenomenon is a manifesta-
tion of the decreasing energy as the magnetic field is increasing [18]. Palacios et al. 
explain the PME as a result of the metastability of the vorticity [19]. For high vorti-
city states, the heat capacity presents a peak whose position with the change in the 
field is related to the paramagnetic Meiss effect and can lead to an observation of 
positive magnetization [12]. Huang et al. [20] studied the effects of vacancy cluster 
defect in the entropy, enthalpy, free energy and heat capacity of silicon crystals, they 
found that the heat capacity decreases as the vacancy cluster defect size increased. 
Analytic calculation and a model that describes the low-temperature heat capacity 
of in-homogeneous cuprates compounds was performed in a mesoscopic disordered 
s-wave superconductor and the results reproduce the features of the heat capacity 
for MgB2 [21–23]. Y. Kleeorin et al. proposed a method to measure the entropy of 
mesoscopic systems via thermoelectric transport, they proved analytically and dem-
onstrated numerically the applicability of their method  [24]. Although there are 
numerous works on the thermodynamic properties in mesoscopic superconductors, 
there are still few studies of these properties taking into account the surface defects. 
In this work, we study the calorimetric properties of mesoscopic superconducting 
squares with rough surfaces. This paper is organized as follows. The theoretical for-
malism is presented in Sect. 2. In Sect. 3, we show and discuss the results for heat 
capacity, magnetization, Gibbs free energy, entropy and vortex states in a supercon-
ducting sample with one and two bands with a surface rough and external magnetic 
field. Finally, in Sect. 4, we detail the main results, including a comparison between 
the thermodynamic signatures and magnetic properties in a one and two-band super-
conducting sample.

2 � Theoretical Formalism

In this work, we investigated the electronic and thermodynamics properties for a 
superconducting nano-square, in a zero-field cooling (ZFC) process, immersed in 
an external magnetic field H. In dimensionless units, the Gibbs energy functional 
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for a two-band superconducting sample taking a Josephson type inter-band coupling 
is [25–29](and references therein):

Here �i, �i are phenomenological parameters and the last term describes the Joseph-
son coupling, respectively, �i,= �i0(1 − T∕Tci) in Eq.  (1). so, in Eqs.  (2) and (3), 
�(x, y) = (Tc(x, y) − T)∕(Tc1 − T) , Tc1 is the nominal critical temperature of the sam-
ple, and �(x, y) is a spacial random function that simulates the roughness of the sam-
ple. With � = 0 , we obtain the single-band system. In equilibrium, the free energy 
has a minimum with respect to �∗

i
 and � , which in London gauge ∇ ⋅ � = 0 , after 

the dimensionless form, gives:

we defined mr = m1∕m2 = 0.5 , Tr = T2∕T1 = 1.0 , �r = �10∕�20 = 1.0 , 
�r = �1�2 = 0.7 , 𝛾̃J = (𝛾𝜓20)∕(𝛼10∕𝜓10) . We express the temperature T in units of the 
critical temperature Tc1 , length in units of the coherence length �10 = ℏ∕

√
−2m1�10 , 

the order parameters in units of �i0 =
√
−�i0∕�i , � = 4.2 , simulating a MgB2 sam-

ple [30], we choose the zero-scalar potential gauge, � = 0 at all times. Finally, for 
convergence rule for time:

Time is in units of the Ginzburg–Landau characteristic time tGL = �ℏ
/
8kBTcu , 

and the vector potential � is scaled by Hc2(0)�(0) , where Hc2 is the bulk upper 
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critical field. Gibbs free energy G in G0 = H2
c
(0)ch∕4�e�2(0) units. The entropy 

S is calculated as S = �G∕�T  in units of S0 = �2(0)TC∕� , and the specific heat 
C = T(�S∕�T) in units of C0 = H2

c
(0)V∕8�Tc . We use Neumann boundary condi-

tions � ⋅ (i� + �)� = 0 . The size of the computational lattice is Nx × Ny , with 
dx = dy = 0.1� and Nx = Ny = 200 . TDGL equations are solved using the method of 
the link variables or Ψ − U method. In this scheme, the order parameter, the vector 
potential and the external magnetic field are arranged in a discrete lattice bound by 
the variables Ux and Uy . This method has the important characteristic of preserv-
ing the gauge invariance of Eqs. (2)–(4) does not change under the transformation 
�� = � exp(i�) , �′ = � + ∇� , 𝜙� = 𝜙 − 𝜒̇ [31–35] (and reference therein).

3 � Results and Discussion

In this section, we present the magnetization, heat capacity, vortex states in a super-
conducting mesoscopic square with surface roughness, both for a single and two-
band system. The sample scheme is presented in Fig. 1.

3.1 � Single‑Band Superconducting Sample, 
 = 0.

The magnetization −4�M(T) under fixed applied magnetic field H = 0.5 and 
H = 0.7 for R = 20%, 30%, 40%, 50% is shown in Fig. 2a, b. We observed that the 
magnetization decreases as the temperature increases, the magnetization decays in 
a same value Mc = 0.044 for H = 0.5 and Mc = 0.034 for H = 0.7 (called critical 
magnetization) to zero, independent of the surface roughness. In this critical mag-
netization, a first-order transition occurs from the superconducting phase to the nor-
mal state. It is observed in Fig. 2a, b that when the surface roughness becomes in-
homogeneous R ≠ 0 , the critical temperature that defines the superconducting phase 
decreases, thus there is an entry of vortex in the sample at lower T as R increases.

The heat capacity C(T) and magnetization with increasing temperature at a fixed 
external magnetic field H = 0.5 are shown in Fig. 3a, b, respectively. In Fig. 3a, we 
can see a peak of heat capacity at T = 0.45 , and when the temperature increases, a 
first-order transition from the superconductor state to the normal state is observed 
in both, i.e., heat capacity and magnetization, see Fig  3b. That peak of the heat 

Fig. 1   Schematic representa-
tion of the studied square with 
surface roughness, size L = 40�0 
(Color figure online)
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capacity is associated with the transition phase from a superconducting state to a 
normal state.

Now we study the effect on the heat capacity due to the variation of the sur-
face roughness for a single-band superconductor. In Fig. 4, the dependence of heat 
capacity with respect to temperature is shown for three different magnetic fields, 
initially at (a) H = 0.5 , (b) H = 0.694 and (c) H = 0.7 . In this Fig. 4, it is observed 
a maximum value of heat capacity for these three different cases and when the sur-
face roughness is incremented shows that this first-order transition occurs in more 
low temperature. The transition from a superconducting state to a normal state is 
due to the surface energy barrier is smaller, with which the entry of vortex into the 

Fig. 2   Magnetization as a 
function of temperature at a 
H = 0.5 and b H = 0.7 for 
R = 20%, 30%, 40%, 50% for 
a single-band superconductor. 
M

c
 is the critical manetization 

(Color figure online)
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superconductor sample is favored. In Fig. 5, the free Gibbs energy G is presented for 
(a) H = 0.5 and (b) H = 0.7 for R = 0%, 10%, 20%, 30%, 40%, 50% . It is important 
to observe that as the magnetic field increases under the same R, the free energy is 
minimized at a lower temperature, by means of a first-order phase transition. When 
R increases, it is appreciated that the energy is minimized more quickly. 

Finally, in Fig.  6, we present the entropy in the superconducting system, 
where we observe the variation in the entropy, from the superconducting state to 
the normal state. In Fig. 6a, b, the entropy is presented for a single-band sample 

(a)

(b)

Fig. 3   a Heat capacity and b magnetization as function of temperature for a single-band superconductor 
with R = 0 at H = 0.5 (Color figure online)

(a)
(b)

(c)

Fig. 4   Heat capacity as function of temperature at a H = 0.5 , b H = 0.6945 and c H = 0.7 , for different 
R for a single-band sample (Color figure online)
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for R = 0%, 10%, 20%, 30%, 40%, 50% , at (a) H = 0.5 and (b) H = 0.7 . It is easy 
to see that as measured that the magnetic field and the surface roughness on the 
superconductor are increased, the entropy decides more quickly through a first-
order transition. Thus, the energy barrier decreases, and the localized loss of the 
normal state is favored, i.e., fluxoids in the superconducting sample.

Figure 7a shows the vortex configuration from Fig. 3. The points (1) and (2) 
show the multi-vortex state at T = 0.2 and T = 0.4 , respectively. The peak in the 
heat capacity near to the point (3), T ≈ 0.47 , is a giant vortex, and after this 
peak, the sample reaches the normal state quickly. In Fig. 7b, the vortex configu-
ration at H = 0.694 for several temperatures. It can be seen that at point (1), at 
T = 0.075 , the superconducting sample presents well-defined multi-vortex states, 
but when the temperature is increased, the superconductor evolves to a single 
giant-vortex state, as observed in points (3), at T = 0.175 and (4), at T = 0.2 . It is 
easy to see that the evolution of the vortex states in the superconducting sample 
is directly related to the heat capacity peaks.

Fig. 5   Gibbs free energy 
G in ZFC process, for 
R = 0%, 10%, 20%, 30%, 40%, 50% , 
at (a) H = 0.5 and (b) H = 0.7 
for a single-band superconduc-
tor (Color figure online)
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3.2 � Two‑Band Superconducting Sample, 
 = 0.01.

Once the different results for a single-band superconducting case have been pre-
sented and discussed, we now proceed to study the effect that surface rough-
ness has, on the different electronic and thermodynamic variables on a two-band 
superconducting system, we will study the coupling between bands by means of 
a Josephson type coupling. To do this, we will start with the magnetization with-
out surface roughness, i.e., isotropic and homogeneous. With this, in Fig. 8, we 
present the magnetization −4�M as a function of the temperature at H = 0.5 for 
R = 20%, 30%, 40%, 50% . As the R increases, the magnetization decays at higher 
temperatures. These transitions in the magnetization are signals of entry of vortex 
in the superconductor system, this expected behavior because the energy barrier 
at the boundary is lower and this is responsible for the vortex ingress occurs for 
lower temperatures.

Fig. 6   Entropy S as func-
tion of temperature for 
R = 0%, 10%, 20%, 30%, 40%, 50% , 
for a H = 0.5 and b H = 0.7 for 
a single-band superconductor 
(Color figure online)

(a)

(b)
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The magnetization −4�M as a function of the temperature for 
R = 10%, 20%, 30%, 40%, 50% , at H = 0.9 is shown in Fig. 9. It is easy to observe 
that as the roughness percentage increases, the superconductor/normal transitions 

(a)

(b)

Fig. 7   Vortex state for mono-band superconductor at R = 0 . a Vortex states at T = 0.2 (1), T = 0.4 
(2) and T = 0.47 (3) at magnetic field H = 0.5H

c2(0) . b Vortex states at T = 0.015 (1), T = 0.125 (2), 
T = 0.175 (3) and T = 0.2 (4) at H = 0.6945 (Color figure online)

Fig. 8   Magnetization 
−4�M as a function of 
temperature at H = 0.5 at 
R = 20%, 30%, 40%, 50% , for 
a two-band superconducting 
system (Color figure online)
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persist at higher temperatures, i.e., the critical temperature increases. Additionally, 
first and second-order transitions are observed at different intervals of temperature 
in the magnetization, which is indicative of the ingress of the vortex into the super-
conductor system.

In Fig.  10, we show the heat capacity C(T) as a function of temperature for 
R = 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0% at H = 0.9 . This superconducting square is 
composed of two interacting bands with the main band [27, 28] that interact between 
them through the Josephson type coupling. Narrow and well-defined heat capacity 
peaks are observed at specific temperatures, which is a reflection of first-order tran-
sitions in the superconductor. From the thermodynamic point of view, it is shown 
that the heat capacity increases with the entry of the vortex, thus establishing an 
addition of an enormous amount of energy, to generate an important change in tem-
perature in the superconducting sample.

In Fig. 11, we present Gibbs free energy, for a two-bands superconducting sys-
tem, at H = 0.5 and R = 0%, 20%, 30%, 40%, 50% . It is observed that as the surface 
roughness percentage of the superconductor is increased, the critical temperature 
decreases, in this way the income of vortex states in the superconducting sample.

In Fig. 12, we plot the entropy S as a function of the temperature at H = 0.5 and 
R = 50%, 40%, 30%, 20%, 0% , for two-band superconducting system. It is easy to 
see that as the surface roughness percentage is increased, a phase transition from 
the mixed state to a normal state at lower temperatures, which favors the income of 
vortex states in the superconducting sample.

In Fig. 13, we present the vortex state for the superconductor of two band at (a) 
H = 0.5 , (b) H = 0.9 and (c) H = 1, 1 at T = 0.1, 0.2, 0.3, 0.4 and R = 0 . The vortex 
state is plotted for each of the bands, we observe that at low temperatures (increasing 
H), the vortex configuration is different from the one presented in Fig. 7. However, 
we observe a loss in the vortex inversion symmetry �(�) ≠ �(−�) for high tempera-
tures, this is indicative of the generation of a giant vortex, the result of the superpo-
sition of the centers of different vortex in the same position, in which the repulsion 

Fig. 9   Magnetization 
−4�M as a function of 
temperature at H = 0.9 , for 
R = 10%, 20%, 30%, 40%, 50% , 
for a two-band superconducting 
system (Color figure online)
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interaction between them is opaque, given by very short-range action, interaction 
possible only in multi-band systems.

In Fig.  14, we present the vortex state for a two-band superconduct-
ing sample with (a) R = 10% , (b) R = 20% , (c) R = 30% and d) R = 40% , at 
T = 0.5, 0.6, 0.7, 0.8 and H = 0.5 , in a two-bands system. It is easy to observe 
that as R increases, the system favors the stability of the superconducting states 
in each of the bands. Besides, when the temperature continues to increase, it 
is observed that there is instability in the superconducting state, which is only 
affected by the loss of the superconducting state in the center of the sample, 
this state of equilibrium occurs when all the vortex enters, and since roughness 
is a random variable on the surface of the sample, it makes the entry of vortex 

Fig. 10   Heat capacity C(T) at H = 0.9 , for R = 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0% , for a two-band super-
conductor (Color figure online)
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Fig. 11   Gibbs free energy 
G as function of tempera-
ture for a two-band super-
conductor at H = 0.5 and 
R = 0%, 20%, 30%, 40%, 50% 
(Color figure online)

Fig. 12   Entropy S as function of temperature for R = 50%, 40%, 30%, 20%, 0% at H = 0.5 (Color figure 
online)
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anomalous and the possibility of the creation of the giant vortex in the center of 
the sample is reinforced.

4 � Conclusions

As summary, we have studied thermodynamic and magnetic properties such as heat 
capacity, Gibbs free energy, entropy in a single-band mesoscopic superconductor 
with roughness on its square surface through the ZFC process. Subsequently, we 
have extended the study to a two-band mesoscopic superconducting square with 
a irregular surface, in which have observed vortex states at several H and T. It is 

(a)

(b)

(b)

Fig. 13   Vortex states in a square superconductor at a H = 0.5 , b H = 0.9 and c H = 1, 1 at 
T = 0.1, 0.2, 0.3, 0.4 and R = 0 for a two-band system (Color figure online)
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(a)

(b)

(c)

(d)

Fig. 14   Vortex states with a R = 10% , b R = 20% , c R = 30% m and d R = 40% , at T = 0.5, 0.6, 0.7, 0.8 
and H = 0.5 , in a two-band system (Color figure online)
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observed that in both a single-band and two-band superconductor, increasing T 
and H causes an instability and saturation of the superconducting state. Also, we 
observed that when the imperfections on the superconductor surface increase, the 
Tc increases too. Besides, the vortex states can be controlled through a cooperative 
variation between H and T. Finally, we propose that the surface roughness of the 
superconductor can be varied by using doping that will cause localized imperfec-
tions in certain regions of the superconductor. This theory may be used for the study 
of multi-band superconductivity in nickelates and iron-based composts [36–39].
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