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Abstract
General Relativity (GR) has been successfully tested in Solar system scales. However, for
galactic scales, this theory has been poorly tested. Moreover, several galaxy data analysis
depend on the value of the Hubble constant (H0), which is currently under discussion.
In addition, over the decades, some tensions arose, and GR has not been able to solve
them. In this work we implement another test to GR in galactic scales, combining mass
measurements for an elliptical lens galaxy. These measurements can be obtained by stellar
kinematics and gravitational lensing, which are connected by a γPPN parameter, in the
Parametrized Post-Newtonian formalism. This parameter can be derived, in our context,
from the ratio of two different potentials: the Newtonian potential Φ, which acts in massive
and non-relativistic particles; and the curvature potential Ψ, related to the curvature of
space-time and more important to the motion of relativistic and massless particles. If GR
is assumed, γPPN = 1. This approach has been implemented by Collet et al. (2018) using a
system in which the lens galaxy is at zl = 0.035. In this work they find γPPN = 0.97± 0.09.
We apply the same methodology for the SDP.81 system in which the lens galaxy is at
zl = 0.299, and therefore is much more distant than the object studied by Collett et
al. We use data from three state-of-the-art observatories nowadays: ALMA, HST and
VLT/MUSE. Besides the test of GR, we are able to study the mass distribution of the
lens galaxy, and we found that about 45% of its mass within 1Re = 1.156′′ is due to the
presence of dark matter, which can be described by a Navarro-Frenk-White profile, in
accordance with previous studies using galaxies at similar redshift. However, the main
result is the inference of γPPN. We notice that our most likely model was deviating from
GR within 1σ, but with a very small statistical error, which shows that our inference is
dominated by systematic errors. Previous studies that tried to constrain γPPN had the
same problem. Using the expected systematics derived by these previous studies, we are
able to draw two possible scenarios. In the worst-case scenario, the systematic effects are
of the order of 25%, leaves us with γPPN = 1.0092 ± 0.0001(stat) ± 0.2523(sys), which
agrees with GR within 1σ. In the best-case scenario, the systematics are of the order of
9%, and the final inference γPPN = 1.0092± 0.0001(stat) ± 0.0908(sys), still in accordance
with the GR within 1σ.

Key words: Gravitational lensing. Galactic dynamics. General Relativity.





Resumo
A Relatividade Geral (RG) tem sido testada com sucesso em escalas do Sistema Solar. No
entanto, para escalas galácticas, esta teoria foi pouco testada. Além disso, várias análises
de dados de galáxias dependem do valor da constante de Hubble (H0), que está atualmente
em discussão. Contudo, ao longo das décadas, muitas questões não resolvidas surgiram, e
até o presente momento a RG não foi capaz de resolvê-las. Neste trabalho implementamos
outro teste para a RG em escalas galácticas, combinando medidas de massa para uma
galáxia elíptica que atua como lente gravitacional. Essas medidas podem ser obtidas por
cinemática estelar e lentes gravitacionais, e são conectadas por um parâmetro γPPN, no
formalismo Pós-Newtoniano Parametrizado. Este parâmetro, em nosso contexto, pode ser
obtido a partir da razão de dois potenciais diferentes: o potencial Newtoniano Φ, que atua
em partículas massivas e não relativísticas; e o potencial de curvatura Ψ, relacionado à
curvatura do espaço-tempo, e mais importante para o movimento de partículas relativísticas
e sem massa. Assumindo a RG, γPPN = 1. Essa abordagem foi implementada por Collett et
al. (2018) usando um sistema cuja galáxia lente está em zl = 0.035, no qual eles encontram
γPPN = 0.97± 0.09. Nós aplicamos essa mesma metodologia para o sistema SDP.81, no
qual a galáxia lente está em zl = 0.299 e, portanto, muito mais distante do que o objeto
estudado por Collett et al. Para isso, utilizamos dados provenientes de três instrumentos
dos melhores observatórios da atualidade: ALMA, HST e VLT/MUSE. Além do teste de
RG, fomos capazes de estudar a distribuição de massa da galáxia lente, e descobrimos
que cerca de 45% de sua massa dentro de 1Re = 1.156′′ é devido à presença de matéria
escura descrita por um perfil Navarro-Frenk-White, estando nossa estimativa de acordo
com estudos anteriores que utilizaram galáxias em redshift semelhante. No entanto, o
resultado principal é a inferência de γPPN. Percebemos que nosso modelo mais provável
indica um desvio da RG dentro de 1σ, mas com um erro estatístico muito pequeno, o que
mostra que nossa inferência é dominada por erros sistemáticos. Estudos anteriores que
restringiam γPPN com uma abordagem similar a nossa apresentam o mesmo problema.
Usando a sistemática derivada desses estudos anteriores, fomos capazes de desenhar dois
cenários possíveis. No pior cenário, os efeitos sistemáticos são da ordem de 25%, o que nos
deixa com γPPN = 1.0092 ± 0.0001(stat) ± 0.2523(sys), que concorda com a RG dentro
de 1σ. Já no melhor dos cenários, a sistemática é da ordem de 9% e a inferência final
γPPN = 1.0092± 0.0001(stat) ± 0.0908(sys) ainda permanece em acordo com a RG, dentro
de 1σ.

Palavras-chave: Lentes gravitacionais. Dinâmica galáctica. Relavitividade Geral.
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1 Introduction

From the fundamental interactions of the standard model of particle Physics
known to date (gravitational, electromagnetic, weak and strong interaction), gravitation
is the most common in our daily lives, and perhaps for this reason, the first to receive
a formal mathematical treatment still in the 17th century by Isaac Newton (1643-1797).
Probably, the idea of a gravitational behavior of the bodies could be assigned to Aristoteles
(385–323 a.C.), even in a primordial way, as shown in Fabris (2020). However, in terms of
modern science, the first approach to understand the gravity is Newton’s Law of Universal
Gravitation.

Roughly speaking, the Universal Gravitational Law could be stated as: Every
massive body attracts every other massive body in the Universe, with a force which is
directly proportional to product of its masses, and inversely proportional to the square
distance between them. Or in the mathematical language,

F = −GMm

r2 r̂, (1.1)

where G is the Universal Gravitational constant, M and m the masses of the massive
bodies, r the distance between them and r̂ a versor parallel to the line connecting the
bodies.

The Newtonian Mechanics proved to be successful for almost three centuries,
however with the advent of the Electromagnetic theory proposed by James Clerk Maxwell
(1831-1879) in the 19th century, the Newtonian theory started to show some conflicts
with the Electromagnetic theory, mainly related to the nature of light and to the Physics
described by different inertial observers.

For the discrepancy between Newtonian Mechanics and the arising Electromagnetic
theory, Albert Einstein (1879-1955) developed in 1905 his Theory of Special Relativity (SR;
Einstein 1905; Piattella 20201). The main goal of SR was to make the Physics completely
covariant in face of a change between inertial coordinate systems, i.e., different observers
in different inertial coordinate systems should describe the same physical phenomenon.

The SR brought solutions for many problems involving electromagnetism and
Newtonian mechanics, especially the ones which involved switching between inertial
coordinate systems. In the light of this new theory, new phenomena have emerged, such as
the time contraction, and the unification between space and time, now understood as a
unified entity, called space-time. However, SR left aside the phenomenon of gravity.
1 Einstein’s original paper, and Portuguese translate direct from the original in German, by Professor

Dr. Oliver F. Piattella.
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The next step given by Einstein was to extend SR to non-inertial coordinate
systems, so in 1915 Einstein published the Theory of General Relativity (GR; Einstein,
1915). One important discovery made by Einstein during this time was to realize the
equivalence between non-inertial references and local gravitational fields, which later was
known as the Weak Equivalence Principle.

From the perspective of GR, gravitational phenomenon is seen as a deformation
of the space-time where all the particles are immersed. From this point of view, the
gravitational field is interpreted as a deformation of the geometry of this space-time,
caused by the presence of mass or energy (represented by the energy-momentum tensor, in
the general case). For this reason, GR is called a geometric theory of gravity. Because of
this geometric description of gravity, John Wheeler (1911-2008) wrote: “Space-time tells
matter how to move; matter tells space-time how to curve”.

1.1 General Relativity and Alternatives

General Relativity has been tested in many ways (Baker; Psaltis; Skordis, 2015),
since it was published in 1915. Precise tests in the Solar System (Bertotti; Iess; Tortora,
2003), Milky Way (Hees et al., 2017), and even strong regimes like supermassive black
holes (Akiyama et al., 2019), show that GR is currently the most successful theory of
gravity so far (Will, 2014; Ferreira, 2019). All these tests (and many others) place GR in a
prominent and confident position. However, over the decades, some tensions arose, and
GR has not been able to solve them to date.

One of the tensions that remains open is the so-called Hubble tension (e.g., Riess,
2019; Freedman, 2020). There are no general consensus about the measurement of the
Hubble constant2 (H0) obtained from different observables. The discrepancy between
different measurements of H0, using measurements of the early Universe (e.g., Abbott et
al., 2018; Aghanim et al., 2020) and the more direct measurements from the late Universe
(e.g. Wong et al., 2019; Freedman et al., 2020; Riess et al., 2021) can be seen in Fig. 1.
Although this discrepancy is noticeable, it is necessary to say that it is non necessarily
an issue with GR, but instead could indicate a problem with our knowledge about the
current cosmological model.

Another point of discussion is the requirement to include a dark energy component
(Alcaniz, 2006; Mortonson; Weinberg; White, 2013) to explain the current expansion of
the Universe. Besides requiring the existence of such component, the current cosmological
model Λ-cold dark matter (ΛCDM), which is based in GR, also requires the existence of
dark matter, that was firstly inferred by Fritz Zwicky (1898-1974; Zwicky 1933; Andernach;

2 The present rate of the expansion of our Universe.
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Figure 1 – Tension present in different measurements of the Hubble constant. Late route
indicates the observables of the late (present) Universe, while early route
are related to observables of the young Universe. Each of the measurements
represents a different tracer or a different experiment. This figure was taken
from Riess (2019).

Zwicky 20173) from velocity dispersion of galaxies in Coma cluster, but not measured
directly.

Finally, GR is not compatible with the principles of Quantum Mechanics. An exam-
ple of this incompatibility is that from the point of view of Quantum theory, interactions
act locally through the exchange of well-defined “quanta”, while the gravitational field
described by GR is a continuous quantity in nature. Another interesting question is the
role of time in each theory, since for Quantum Mechanics time is treated as an independent
parameter through which states evolve, while for GR time is a dynamical coordinate in
space-time.4 It is important to highlight that to date, although several alternatives have
been proposed, none of them were successful to solve these inconveniences. For all the
reasons above mentioned, modified theories of gravity have been proposed to address these
tensions (Ishak, 2019).

The modified theories of gravity encompass a large range of models (Clifton
et al., 2012), with proposals ranging from modifying the gravity itself to models that
include quantum Physics or a different dark sector (other alternatives to dark matter and
dark energy) in the Universe. Nevertheless, some of these theories, like DGP braneworld

3 Original paper, and English Translation by H. Andernach.
4 A good overview of such inconveniences can be found at <https://en.wikipedia.org/wiki/Quantum_

gravity#Points_of_tension>. See also an interesting discussion at <https://physics.stackexchange.
com/questions/387/a-list-of-inconveniences-between-quantum-mechanics-and-general-relativity>.

https://en.wikipedia.org/wiki/Quantum_gravity##Points_of_tension
https://en.wikipedia.org/wiki/Quantum_gravity##Points_of_tension
https://physics.stackexchange.com/questions/387/a-list-of-inconveniences-between-quantum-mechanics-and-general-relativity
https://physics.stackexchange.com/questions/387/a-list-of-inconveniences-between-quantum-mechanics-and-general-relativity
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(Dvali; Gabadadze; Porrati, 2000) and f(R) (Multamäki; Vilja, 2006), may have the same
expansion history in large scale, which means that, for large distances, only measurements
of the scale factor, a(t), are not enough to distinguish GR from other theories of gravitation
(Allemandi et al., 2006; Multamäki; Vilja, 2006).

Fortunately, other tests have been proposed using different parameters and ranges of
applicability (Bertschinger, 2011; Baker; Psaltis; Skordis, 2014). Considering the Newtonian
limit and small scales, i.e., sub-horizon length scales where the Hubble Flow5 can be
considered near constant, a common approach is to use the Parametrized Post-Newtonian
(PPN) formalism (Will, 2014; Will, 2018), a well-known framework for testing weak-field
regime of gravity. In particular, the γ parameter of this parametrization has received a
lot of attention over the last decades (e.g., Bertotti; Iess; Tortora, 2003; Schwab; Bolton;
Rappaport, 2010; Cao et al., 2017).

On the other hand, when considering cosmological scales, i.e., horizon length scales
where the Hubble Flow is no more constant over the entire domain considered, tests
involving the linearized gravity (Carroll, 2004; Mo; van den Bosch; White, 2010) are more
common. In this work, we focus our attention on the gravitational slip parameter, which
is defined here by the ratio of two scalar potentials that appears in the linear perturbed
metric. In the next section we clarify some aspects of this choice, and present the connection
between the slip parameter and the γ parameter in the scope of this dissertation.

1.2 Gravitational Slip and Post-Newtonian Parameter

The PPN approach is based on an expansion of the Newtonian metric around small
quantities (ε ∼ v/c)6, where the terms of the expansion describe corrections to Newtonian
gravity. Besides that, the PPN parametrization also requires that the space-time for the
system should be asymptotically flat, and the matter described by a perfect fluid. Once
we assume a weak-field regime and an expansion around the Newtonian metric, we also
expect a Newtonian limit well defined.

As showed by Will (2018), ten terms arise from the PPN expansion, each of them
connected to a different correction in gravity, such that “they measure or indicate general
properties of metric theories of gravity” (see Table 2, pg.31 of Will, 2014). Under reasonable
considerations, many of these parameters can be left aside, however one of these parameters
has received a special attention from the scientific community, the γ parameter, hereafter
γPPN, which is associated to how responsive the curvature of space-time is to mass.

This particular parameter is interesting due to two main reasons. First, it appears
in the first order approximation of the PPN formalism. Second, and maybe more important,
5 The expansion rate of the Universe.
6 v is the velocity and c the speed of light.
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this parameter directly impacts the electromagnetic waves propagation, such that it is
possible to use electromagnetic radiation to impose constraints on it. Furthermore, when
assuming GR, γPPN = 1, although for alternative theories of gravity its value can be
different. Therefore, measurements of γPPN could indicate deviations from GR in scales
where we probe it, if its value is statistically different from the unit.

Indeed, the γPPN was successfully tested in different regimes already. Bertotti; Iess;
Tortora (2003), using the Cassini spacecraft mission and the Shapiro time delay, found a
value for γPPN = 1 + (2.1± 2.3)× 10−5, in agreement with GR. Using measurements of
velocity dispersion and gravitational lensing Schwab; Bolton; Rappaport (2010), found
γPPN = 1.01± 0.05 for a sample of 53 galaxies with redshifts in the range z ∼ 0.1− 0.3.
Following the same methodology, Cao et al. (2017) extends the sample size of Schwab;
Bolton; Rappaport (2010) to 80 lens galaxies in the redshift range z ∼ 0.08− 0.94, thereby
determining a value of γPPN = 0.995+0.037

−0.047. Both measurements are in agreement with GR,
although systematic uncertainties7 in lens modelling and velocity dispersion measurement
are dominant in this kind of study.

In the cosmological context, many tests of gravity are based on the linearized gravity
and growth of small perturbations (Mukhanov et al., 1992; Ferreira, 2019). Considering
only scalar perturbations, the conformal Newtonian gauge8 (Mukhanov et al., 1992; Ma;
Bertschinger, 1995) is a simple gauge choice for the linear metric perturbation. In this
case, the perturbation is characterized by two scalar potentials, Φ and Ψ, such that the
line element is given by

dS2 = −
(

1 + 2 Φ
c2

)
c2dt2 +

(
1− 2Ψ

c2

)
hijdx

idxj, (1.2)

where c is the speed of light, t is the time, hij is the three-metric tensor of constant
curvature space, and dxi are space coordinates.

The first potential Φ is nothing more than the classical Newtonian potential. It is
important to note that, for non-relativistic particles (v2/c2 << 1), dxi/dt is very small
and the spatial term of the metric is negligible, making the Newtonian potential more
important to the non-relativistic particles. On the other hand, the second potential Ψ
is more relevant to the motion of relativistic particles (v2/c2 ∼ 1), and because it is
associated with the spatial curvature of the metric, it is called curvature potential.

According to Mukhanov et al. (1992), the physical interpretation of the potentials
Φ and Ψ is quite simple: they measure the amplitude of the scalar perturbations in the
metric, given our gauge choice, i.e., the Newtonian gauge. A more phenomenological
interpretation is given by Simpson et al. (2012), which bases their interpretation of the

7 Around 25% for the second sample.
8 Sometimes called longitudinal gauge.
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potentials in the question: “is the strength of gravity the same on cosmological scales as it
is here on Earth?”. If the answer is no then, maybe, the motion of non-relativistic and
relativistic particles can be differentially modified due the presence of these two potentials.

In this scenario, we define the gravitational slip parameter as the ratio of the
potentials9

η = Ψ
Φ , (1.3)

which can be understood as an effective gravitational coupling between light and matter,
since the potentials, in principle, can act differently in both components. Although not
explicit in the expression (1.3), the gravitational slip parameter can be a function of
time and scale (Ma; Bertschinger, 1995; Bertschinger; Zukin, 2008), and also can assume
different values for different gravitational theories. For the standard GR, with a vanish
anisotropic stress tensor10, Φ = Ψ, such that the gravitational slip η = 1. So, a deviation
of this parameter from the unit could indicate a violation of the standard gravitational
model based on GR.

Due to the nature of the slip parameter, complementary measurements that are
sensible to the different potentials Ψ and Φ can be used to probe it. A straightforward
approach is using measurements involving only the classical dynamics (e.g. cluster dynamics,
stellar dynamics), which are sensible only to the Newtonian potential, associated with
measurements of massless particles (e.g. photons), which is sensible to the sum of the
potentials (Bertschinger, 2011). Based on this approach and using data from the galaxy
cluster MACS J1206.2-0847 at z = 0.44, Pizzuti et al. (2016) probed the slip parameter
using galaxy cluster dynamics and gravitational lensing phenomena, finding a value of
η(r200) = 1.01+0.31

−0.28, where r200 indicates that their inference was made for a fixed radius
of a sphere with mass 200 times the critical density of the Universe at that redshift. A
more recent test of the slip parameter was performed Collett et al. (2018; CT18), in
galaxy scale combining high-resolution lensing data with dynamical data from integral
field spectroscopy of the lens galaxy. With this test they imposed strong constraints on η
in galactic scales and low redshift (z = 0.035). The value of η = 0.97± 0.09 found in this
study is one of the most precise in the literature nowadays, and still in agreement with
GR.

Now, it is critical to say that, although the slip parameter and the PPN parameter
carry some similarity, they are not necessarily equal or even have the same constraints.
9 The definition of slip parameter can be a little bit confusing in the literature, but the idea behind all

of them is the same: the slip parameter measures a possible variation on the gravitational interaction
perceive by relativist and non-relativistic particles.

10 Here it is important to highlight that, even assuming GR, the unit of the slip parameter is reached only
if the anisotropic stress is negligible, which means that for the radiation era (where the anisotropic
stress is important) η could assume different values even within GR (Caldwell; Cooray; Melchiorri,
2007; Jain; Zhang, 2008).
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Note that the hypotheses behind the two approaches are different, such that the results
(or constraints) obtained for one of the parameters cannot be directly generalized for both.
In particular, the PPN parametrization requires: i) a constant γPPN; ii) a well-defined
Newtonian limit. However, neither of these conditions are needed for the η parameter,
defined through the line element (1.2), especially when we consider gravitational fields
on large scales, i.e., cosmological scales. A recent discussion which stress this difference is
done by Toniato; Rodrigues (2021), where the authors emphasize the differences between
the parameters and present a relevant generalization for this problem. Another interesting
approach, which aim at linking the standard PPN with the cosmological context, given by
the line element (1.2), is developed by Sanghai; Clifton (2017). In this work, the authors
claimed a new approach, called “parameterized post-Newtonian cosmology” (PPNC),
which is based on a set of parameters that are able to consistently model weak-fields and
cosmology.

Although not generally equal, under some assumptions, it is possible to compare
γPPN and η. To do so, in this work we fix the following assumptions:

i. The space-time metric is given by the line element (1.2), which is in the Newtonian
gauge and consider only scalar perturbations;

ii. There is a well-defined Newtonian limit, where the potentials Φ and Ψ still follow
the Poisson equation;

iii. The gravitational slip parameter is constant on the relevant scales being studied.

Under these considerations, the metric described by (1.2) becomes equivalent to the PPN
metric, and γPPN ≡ η, such that it is possible to find bounds for both parameters using the
same observable constraints. In fact, these assumptions are assumed in CT18, although
not all of them are explicitly mentioned.

Finally, since our assumption are more strongly correlated to the hypothesis of PPN
parametrization, in this work we will use the notation γPPN and the name Post-Newtonian
parameter to refer to parameter of interest. However, keep in mind that it is only possible
due to the considerations made.

1.3 Galaxy Dynamics
A way of quantifying the information about the gravitational potential of a given

galaxy is via dynamics of its stellar content. This dynamics, in turn, could be accessed
through modelling of the kinematic measurements.

For spiral galaxies, the kinematics of stars (or gas) in the disk can be considered
(most of the cases) as coherent, thus making it possible to fit a rotation curve for the stars
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(or gas) around the galactic center. These rotation curves allow us to measure the mass
of the galaxies within a certain radius (Sofue; Rubin, 2001) and, maybe more important,
the particular “flat shape” of such curves (Rubin; Ford, 1970) composes one of the first
evidences for the existence of dark matter (see Chapter 3 of Courteau et al., 2014).

On the other hand, in the majority of the elliptical galaxies the stellar motion is
dominated by dispersion. In this case, it is not possible to build a rotation curve model.
However, this disordered motion causes a broadening of the spectral lines observed in
the galaxy spectrum, allowing us to measure the velocity dispersion by only fitting the
broadening of these lines. Generally speaking, the motion of the stars shifts the spectral
line more to the red part of the spectrum if the stars are moving away from the observer,
and more to the blue part if the stars are moving towards the observer (the Doppler
effect). However, when the stellar motion is disordered (e.g. dispersion dominated), the
final spectrum observed is a combination of both effects, making the spectral line broad
as the velocity dispersion of the emitters increases. Lastly, assuming a Virial regime, it
is possible, from the velocity dispersion, to measure the dynamical mass of an elliptical
galaxy (Cappellari et al., 2006; Cappellari et al., 2013).

Many other properties of galaxies could be derived looking at their kinematics,
such as its dark matter content, and morphology. But since it is not our goal in this
dissertation, we refer the reader to the following reviews: Courteau et al. (2014), and
Cappellari (2016b).

To make possible the dynamical modelling of galaxies, spectroscopy observations
are needed, in order to obtain their spectral signatures. For a long time, only integrated
spectra were available, usually measured within a certain aperture radius, limiting the
possibility of decomposing different kinematic characteristics, especially for those galaxies
at higher redshift. The next step for the spectroscopical observation in astronomy was the
introduction of the long slit spectroscopy, which made possible to collect spectroscopic
data along a given axis, previously decided upon in the experimental setup. The long
slit spectroscopy was rapidly improved by the introduction of the multi-slit or multi-fiber
spectroscopy, which allows the observation of many targets at the same time. However, the
last breakthrough in instrumentation comes from the integral field spectroscopy (IFS)11,
which allowed to resolve spectrally and spatially thousands of galaxies in different redshift
and wavelength ranges.

The idea behind the IFS is to collect a spectrum in each pixel of an image giving
rise to what we call spaxel. Since each spaxel has its own spectrum and position in the
image, it is possible to build a data cube with two spatial dimensions and one spectral
dimension, which splits the light into different wavelengths (see Fig. 2).

11 Also known as integral field unit (IFU).



1.4. Gravitational Lensing 31

Figure 2 – Representation of MUSE integral field spectroscopy. We can see an image
of galaxy NGC 4650A along the two dimensional axes, while in the third
axis we see the variation in the wavelength. Image taken from: ESO/MUSE
consortium/R. Bacon/L. Calçada

As a complement, it is important to highlight that the stellar motion is described
only by the Newtonian potential Φ, and we left the details of the theory for Chapter 2.

1.4 Gravitational Lensing

In GR, the gravitational field is interpreted as a deformation of space-time. This
deformation is due to the presence of energy and mass. If two objects are aligned in the
line-of-sight, and the one in the foreground is very massive, the light coming from the
object behind it (in the background) can be deflected as the result of the deformation of
space-time. It means that, since space-time is curved by the presence of energy and matter,
the light rays approaching this region of influence will follow curved paths, as shown in
Fig. 3. This phenomenon is called gravitational lensing, where the foreground object is
called the lens and the background object is the source.

Due to this effect, the light coming from the source can appear in a different
position than the actual source. Moreover, in some cases, multiple and distorted images
can form (Suyu et al., 2013; Wong et al., 2016). If the lens is spherical, and it is perfectly
aligned with the source, the image of the source is distorted into an Einstein ring (see
Fig. 4). The radius of the Einstein ring can be expressed as a function of the mass of the
lens, the spatial curvature and the ratio of three angular diameter distances, to know: the
distances between the observer, lens and source.
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Figure 3 – Schematic representation of the gravitational lensing effect. Assuming an ob-
server on Earth, the Sun acts like a lens in the foreground, and the star is the
source in the background. In the presence of the Sun the space-time, represented
by the blue grid, becomes curved and the light follows the curved path shown
in continuum yellow. The dashed line shows the apparent position of the source
as seen by the observer. The deflection of light is strongly exaggerated as a
means to emphasize the effect. Image taken from Quora - What is gravitational
lensing? Is it different from normal lensing?

Finally, due to the relativistic nature of the photons that compose the light, the
gravitational lensing effect is sensible to the two different potentials, Φ and Ψ, described
in Section 1.2.

Figure 4 – Einstein ring in the lens galaxy LRG 3-757, also known as Horseshoe. Near the
center, more in red, we can see the lens galaxy itself, surrounded by a beautiful
gravitational arc, in blue. Image from Hubble Space Telescope, WFC3. Credit:
ESA/Hubble & NASA

Following Meneghetti (2016), and making use of the line element (eq. 1.2), it is
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relatively easy to find the deflection angle for a point mass object. After some considerations
(see Appendix A for demonstration), the deflection angle for a point mass is

α̃(ξ) = (1 + γPPN)2GM
c2

ξ̂

ξ
. (1.4)

In the GR framework, when γPPN = 1, this expression is equal to that found in the
literature

α̃(ξ) = 4GM
c2

ξ̂

ξ
. (1.5)

The formalism that describes the lensing phenomena will be present in Chapter 3.

1.5 When dynamics meets lensing
Combining lensing information with kinematical measurements is a good way

to break degeneracies in the parameter space of models describing the lens potential
(Koopmans, 2006; Chirivì et al., 2020), especially when the parameters are complementary12.
Besides that, several other parameters of the lens model can be tested, such as mass-to-light
ratio of the lens galaxy, dark matter density slope and kinematic anisotropy of the stellar
motion (Koopmans; Treu, 2003; Barnabè et al., 2012). Among them, the most important
to us, is the Post-Newtonian parameter, γPPN.

As previously stated, Post-Newtonian approach was already probed using gravita-
tional lensing (in particular the strong regime) and galaxy dynamics. However, these probes
contain some limitations. Using a sample of lenses, Cao et al. (2017) were able to probe
the γPPN in a redshift range covering 0.08 < zl < 0.94, and found a value in agreement
with GR. At the same time, the approach used is limited by a simple mass model and a
single kinematic measure (the integrated velocity dispersion along the line-of-sight). On
the other hand, CT18 using a nearby lens system (zl = 0.035) were able to constrain the
Post-Newtonian parameter with much more precision, due to the quality of the data (in
particular the spatially-resolved kinematic map available from IFS observations), and the
more sophisticated and self-consistent mass model used in their analysis.

In this work we propose to test GR using a gravitational lens system H-ATLAS
J090311.6+003906 (SDP.81; Negrello et al., 2014 ) at intermediate redshift (zl = 0.299),
using the same methodology found in CT18, although with some additional data coming
from interferometry for the lensing part of the analysis (better explained in Chapter 4).
We want to probe the γPPN parameter by modelling lensing and dynamical masses (the
two potentials described above) simultaneously in a self-consistent approach. In addition
12 One good example is when the lens mass profile is assumed to be a singular isothermal sphere,

characterized by a velocity dispersion, and we have the velocity dispersion information coming from
kinematical constraints.
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to that, we expect to be able to reconstruct the source image, and study other physical
properties of the lens galaxy, such as dark matter content and stellar velocity dispersion
distribution.

The dissertation structure is as follows: Chapter 2 presents galaxy dynamics theory,
whose central focus will be Jeans equations. Chapter 3 is an overall of the lensing theory,
focusing in the strong regime. In Chapter 4 we describe the system used in this work
and the data available, while Chapter 5 describes the numerical implementation of the
model. Finally, in Chapters 6 and 7 we present our results and summary, respectively.
Some appendices are attached to the end of this dissertation as a complement to the text.
Also, all the codes, scripts, softwares, and data are available (with some documentation
still under development) at <https://github.com/carlosRmelo/Master-Degree.git>.

Throughout this dissertation, the cosmological parameters assumed are: H0 = 67.7
Km s−1Mpc−1, ΩΛ = 0.6911, Ωm = 0.3089 (Ade et al., 2016).

https://github.com/carlosRmelo/Master-Degree.git
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2 Theory of Galactic Dynamics

In this Chapter we describe the Theory of Galactic Dynamics, and most of the
following results are based on Chapter 4 of Binney; Tremaine (2008) (hereafter BT08),
including the notation, for easy identification with the original. However, here we focus
in the relevant aspects to this work, but trying not to completely lose sight of formalism.
Some shortcuts can be found in Cappellari (2008, 2020), especially the connection between
the theory, observation, and modelling.

2.1 Collisionless Boltzmann Equation
For collisionless systems, like elliptical galaxies without interactions1, it is not

practical (or even possible) to describe the orbits of all the stars bounded to the system.
In this case, it is more appropriate to treat the question in a statistical way, i.e., finding
the probability to spot a star in a six-dimensional volume d3rd3v in the parameter space2,
also called phase space in this context, with a given position r and velocity (momentum)
v (p). In order to do that, we need a distribution function (DF), f(r,v, t), such that
f(r,v, t) d3rd3v is the probability to find a star in the range [r,v] and [r + dr,v + dv] in
the parameter space, given a time t. Assuming that every star has the same probability to
be found, and by the definition of the DF, we have

∫
d3rd3vf(r,v, t) = 1, (2.1)

where the integral is evaluated over all phase space.

Now, let ω = (r,v) be the usual coordinate system in the parameter space, and µ
a small volume in this space3. The probability to find a star in this volume is just

P =
∫

µ

d6ωf(ω). (2.2)

Now, consider a new set of arbitrary parameters W and its own DF, F (W ). If µ
is small enough, the DFs could be considered constant inside µ, so

P = f(ω)
∫
µ

d6ω = F (W )
∫
µ

d6W , (2.3)

1 Later we will discuss the validity limits for a system that can be considered collisionless.
2 r is a three-dimensional position vector and v is a three velocity vector.
3 In BT08 this small volume is denoted by ν, but here we choose to replace it by µ to avoid a possible

confusion with other quantity that we will define further.
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and if W are the canonical coordinates,
∫
µ

d6ω =
∫
µ

d6W , letting us with f(ω) = F (W )4.

Therefore, we conclude that the DF has the same value in an arbitrary volume
in the parameter space for any canonical coordinate system. For convenience, we choose
ω = (q,p) to be our canonical coordinates, where q are the generalized coordinates, and
p are the generalized momenta associated to q.

For those already familiar with Quantum Mechanics, the fact that the probability
was a conservative quantity is nothing new. For those who are not familiar, think about a
fluid that can change its position or state in time, but its total mass is still the same. We
cannot create or destroy the mass, only change it. Similarly, the probability of finding a star
in a given position in the parameter space can change with time, but the probability density
described by DF is conserved. In this case, the continuity equation for the probability
density is

∂f

∂t
+ ∂

∂ω
· (fω̇) = 0, (2.4)

where ∂
∂ω
≡∇ω, and the above dotted notation represents the derivative with respect to

time. In this expression, and most of the cases hereafter, we also relax the notation for
f = f(r,v, t).

Using Hamilton equations (Appendix D of BT08), where H is the Hamiltonian of
the system,

q̇ = ∂H

∂p
ṗ = −∂H

∂q
, (2.5)

we can replace ω̇ = (ṗ, q̇) in (2.4).

∂

∂ω
· (fω̇) = ∂

∂q
· (f q̇) + ∂

∂p
· (f ṗ)

= ∂

∂q
·
(
f
∂H

∂p

)
− ∂

∂p
·
(
f
∂H

∂q

)
= ∂f

∂q
· ∂H
∂p

+ f
∂2H

∂q∂p
− ∂f

∂p
· ∂H
∂q
− f ∂

2H

∂p∂q
. (2.6)

However, since H should be differentiable and smooth, the second-order partial derivatives
commute. Consequently,

∂

∂ω
· (fω̇) = q̇ · ∂f

∂q
+ ṗ∂f

∂p
, (2.7)

4 A more careful reader will notice that we have hidden the explicit temporal dependence in the last
passages. This was done not only to save notation, but also because such results must be valid for any
time t.
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where we use the Hamilton equations again. Replacing this equation in (2.4), we finally
get:

∂f(r,v, t)
∂t

+ q̇ · ∂f(r,v, t)
∂q

+ ṗ · ∂f(r,v, t)
∂p

= 0, (2.8)

which is a partial differential equation for the distribution function f in the phase space.
This equation is called collisionless Boltzmann equation.

Assuming an inertial Cartesian coordinate system, and a Hamiltonian in the form
H = v2/2 + Φ(r, t)5, where Φ ≡ Φ(r, t) is the Newtonian potential per unit of mass (see
footnote 5), the collisionless Boltzmann equation can be written as

∂f(r,v, t)
∂t

+ v · ∂f(r,v, t)
∂r

− ∂Φ
∂r
· ∂f(r,v, t)

∂v
= 0. (2.9)

Once we have the collisionless Boltzmann equation, we need to highlight its
limitations. The first one comes from the fact that we assume that the objects described
by the DF are conserved with time, although is not true in general. Stars are born and die
all the time in a galaxy, then for a more precise description of the system, equation (2.8)
should be corrected to

∂f

∂t
+ v · ∂f

∂r
− ∂Φ
∂r
· ∂f
∂v

= Brate −Drate, (2.10)

where Brate = B(r,v, t) is the birth rate of stars and Drate = D(r,v, t) is the death rate of
stars. In equation (2.8), the right side is set equal to zero, because we assume that the birth
and death rates compensate each other, or both are identical null. This approximation
is valid for a large range of applications, especially for elliptical galaxies, and the main
requirement is that the right side of equation (2.10) should be much smaller than the left
side. As shown in BT08, equation (4.16), this approximation is valid if

ε =
∣∣∣∣Brate −Drate

f/tcross

∣∣∣∣ << 1, (2.11)

where tcross is the crossing time, the time taken for a particular star to complete an entire
orbit. For those galaxies dominated by old stellar populations, the birth rate is negligible,
while the death rate is quite small, due to the relative long life of these stars6. Therefore,
for a long time (Gyr), many crossing times can elapse, and the approximation is valid.
5 This strange notation without mass is motivated by the fact that the gravitational energy of a

body is proportional to its mass. Then, is "common" to write the gravitational potential energy as
V (r, t) = mΦ(r, t), and define the total energy per unit mass as v2/2 + Φ(r, t) . In this notation, the
kinetic energy per unit mass is just v2/2, and sometimes referred as kinetic energy only, while Φ(r) is
the gravitational potential per unit mass, also called simply by gravitational energy.

6 See the discussion in BT08 Pgs. 278-279 and Chapter 5 of Binney; Merrifield (1998).
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The second limitation comes from the fact that our DF assumes no correlation
between the stars, i.e, our DF is separable, and the probability to find a star in a position
(r1,v1) does not change the probability to find another star in a different position (r2,v2).
However, since gravity is always acting in the stars, the position and velocity of a given
star can be affected by its neighbors. Fortunately, for Newtonian Mechanics, the gravity
force should decrease with the square distance from the source, see equation (1.1), turning
the contribution of individual stars much smaller than the contribution of the entire galaxy,
since the distances between stars are very large and its masses are considerably smaller
than the total mass of the galaxy. Because of that, the motion of the stars in the galaxy is
practically smooth, and we can consider it not affected by the neighbouring companions7.

2.1.1 From Theory to Observation

For our Galaxy, the Milky Way, sometimes it is possible to measure the position of
a given star and its velocity (Katz et al., 2018), but for the majority of the galaxies it is
not possible due to the distance and instrumental resolution, and again we need to use an
alternative way to obtain this information. Now we will introduce one alternative based
on the DF presented previously.

Since our DF is defined by solving8 equation (2.8), we can easily use it to obtain
the expected value for different physical parameters, like the total luminosity or total mass,
just multiplying f(r,v, t) d3rd3v by the correspondent physical quantity. For example,
using the definition of expected value9, the expected total luminosity can be obtained by

E[L] =
∫
Lf(r,v, t)d3rd3v, (2.12)

where the integral is over all the volume considered for the analysis, and L10 is the
luminosity of the stellar population in this volume.

Another important quantity to define is the probability per unit of volume, i.e.,
the probability to find a particular star at position r independent of its velocity. This is
expressed as follows,

ν(r, t) =
∫
f(r,v, t)d3v. (2.13)

Multiplying ν(r, t) by the total number of stars of a given population, we have the
number density of stars in the real space, n(r, t) = Nν(r, t). In the same way, multiplying
7 More information can be found at <http://astro.utoronto.ca/~bovy/AST1420/notes/notebooks/05.

-Equilibria-Spherical-Collisionless-Systems.html>.
8 We will get back to this topic in Chapter 5.
9 <https://en.wikipedia.org/wiki/Expected_value>
10 We left aside the functional dependence of L because its depend on the model adopted.

http://astro.utoronto.ca/~bovy/AST1420/notes/notebooks/05.-Equilibria-Spherical-Collisionless-Systems.html
http://astro.utoronto.ca/~bovy/AST1420/notes/notebooks/05.-Equilibria-Spherical-Collisionless-Systems.html
https://en.wikipedia.org/wiki/Expected_value
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(2.13) by the luminosity L gives us the three-dimensional luminosity density of a given
stellar population,

j(r, t) = Lν(r, t). (2.14)

Note that this definition is in agreement with the previous definition of expected value,
since it is enough to integrate the last equation in the volume d3r to obtain the expected
value of luminosity.

Therefore, assuming some model for the three-dimensional luminosity density, it is
possible to derive ν(r). This is a key factor that facilitates the connection between theory
and observation, and that will be addressed in Chapter 5, when we will talk about the
adopted models.

Using the DF we can also obtain information on the velocity of stars. Dividing
f(r,v, t) by ν(r, t), we get the velocity probability distribution for the stars in a given
position r,

Pr(v) = f(r,v, t)
ν(r, t) . (2.15)

For distant galaxies, this distribution can only be inferred from the line-of-sight
velocity distribution (LOSVD), which describes the velocity along the line-of-sight of stars
with velocity in the range [v,v+ dv]. From the observational perspective, the LOSVD can
be constrained by observations using spectroscopy, situation in which the velocity along
the line-of-sight can be measured by the width of spectral lines.

We can describe the fraction of the stars with velocity ranging from v to v + dv

using equations (2.13) and (2.15). So, let ŝ be a versor parallel to the line-of-sight fixed
in the galaxy center. For most of galaxies, the distance between the observer and any
point r in the observed galaxy is large enough, making possible to assume that all vectors
starting from the observer, to any point in the galaxy, is parallel to ŝ. Assuming that, we
can define,

r‖ ≡ ŝ · r, v‖ ≡ ŝ · v, (2.16)

as the components of r and v parallels to the line-of-sight, respectively. As a consequence,
the components in the sky plane are

r⊥ ≡ r − ŝ · r, v⊥ ≡ v − ŝ · v. (2.17)

With these definitions, we can write the density probability fraction of finding a
star in a position r⊥ in the sky plane and velocity v‖ along the line-of-sight as (BT08
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equation 4.23):

F (r⊥,v‖) =

∫
dr‖d

2v⊥f(r,v, t)∫
dr‖d3vf(r,v, t)

, (2.18)

where we use (2.13) and (2.15). To make the interpretation clearer, consider separately the
terms in this expression. First, the numerator gives us the probability density distribution
of finding a star located at a given point in the sky plane (note that we integrate over
all the possible values parallel to the line-of-sight) and with some velocity along the
line-of-sight (we integrate over all velocities in the sky plane). While, the denominator
gives the probability density distribution of finding a star at some point in the plane of the
sky, regardless of its velocity. Then, F (r⊥,v‖) is a fraction of the probability distribution,
which gives us the chance of finding a star located in the plane of the sky with some
velocity along the line-of-sight.

The LOSVD often is characterized by two main physical quantities: the mean
velocity along line-of-sight v‖(r⊥) and its velocity dispersion σ‖(r⊥)11. For the mean
velocity we have

v‖(r⊥) =
∫
dv‖v‖F (r⊥,v‖) =

∫
dr‖d

3v v‖ f(r,v, t)∫
dr‖d3v f(r,v, t)

=

∫
dr‖ ν(r, t) ŝ · v∫
dr‖ ν(r, t)

, (2.19)

where we define the mean velocity at the point r as

v(r) =
∫
d3v v Pr(v) = 1

ν(r, t)

∫
d3v v f(r,v, t). (2.20)

And finally, for velocity distribution σ‖(r⊥):

σ2
‖(r⊥) =

∫
dv‖

(
v‖ − v‖

)2
F (r⊥,v‖) =

∫
dr‖d

3v
(
ŝ · v − v‖

)2
f(r,v, t)∫

dr‖ ν(r, t)
. (2.21)

We take the opportunity to define the velocity dispersion tensor σ2
ij(r), which gives

us the scatter (or spread) of the velocity around the mean:
11 Here both quantities are scalars, since they are projection onto the sky plane.
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σ2
ij(r) = 1

ν(r, t)

∫
d3v (vi − vi) (vj − vj) f(r,v, t)

σ2
ij(r) = vi vj − vi vj, (2.22)

where the indices (i, j) can assume values (1, 2, 3), representing the coordinated system.
Also note that this tensor is symmetric in its indices, σ2

ij(r) = σ2
ji(r), therefore only six

components are independent.

2.2 Jeans Equations
In the last Section, we derive the Boltzmann equation in its colisioness form, and

also its relation with some observables, such as mean velocity dispersion and luminosity.
However, these connections, in certain ways, assume that we know the functional form for
DF. Since equation (2.8) is quite general, and f(r,v, t) is a function of seven variables,
a large range of solutions can be obtained. These limitations require us to adopt certain
assumptions and, in this Section, we will present an approach that tries to avoid such
complications, focusing in deriving the velocity moments without the need of solving the
Boltzmann equation for f .

During this Section, we will often use the Einstein summation convention for
repeated indices. Briefly, a repeated index in the same term represents a summation over
that index. Moreover, unless otherwise stated, all indices vary from (1, 2, 3) = (x, y, z) in
Cartesian coordinates.

We star integrating equation (2.9) over all the velocities,

∫
d3v

∂f

∂t
+
∫
d3v vi

∂f

∂ri
− ∂Φ
∂ri

∫
d3v

∂f

∂vi
= 0. (2.23)

Assuming that the velocity range over which we integrate does not depend on time, and
the positions ri an velocities vi are independent, we can re-write the above expression as

∂

∂t

∫
d3v f + ∂

∂ri

(∫
d3v vi f

)
− ∂Φ
∂ri

∫
d3v

∂f

∂vi
= 0

∂ν(r, t)
∂t

+ ∂

∂ri

(
ν(r, t)
ν(r, t)

∫
d3v vi f

)
− ∂Φ
∂ri

∫
d3v

∂f

∂vi
= 0

∂ν(r, t)
∂t

+ ∂

∂ri

 ν(r, t) 1
ν(r, t)

∫
d3v vi f︸ ︷︷ ︸

vi

− ∂Φ
∂ri

∫
d3v

∂f

∂vi
= 0

∂ν(r, t)
∂t

+ ∂

∂ri
( ν(r, t) vi)−

∂Φ
∂ri

∫
d3v

∂f

∂vi
= 0. (2.24)
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However, once there is no stars with velocities arbitrarily large, we expect that f(r,v, t)→ 0
when |v| → ∞. Then, applying the divergence theorem in the last term in equation (2.24)
it vanishes, resulting in

∂ν(r, t)
∂t

+ ∂ ( ν(r, t) vi)
∂ri

= 0. (2.25)

Now, we multiply (2.9) by vj, and integrate again over all the velocities

∂

∂t

∫
d3v vj f + ∂

∂ri

(∫
d3v vi vj f

)
− ∂Φ
∂ri

∫
d3v vj

∂f

∂vi
= 0. (2.26)

The last term can be replaced by,

∫
d3v vj

∂f

∂vi
=
�
�
�
�
��

0

vj f

∣∣∣∣∣
+∞

−∞

−
∫
d3v f

∂vj
∂vi

= −
∫
d3v f δij

= −δij ν(r, t). (2.27)

Where we have used the fact that the velocities are independents, ∂vj/∂vi = δji = δij , and
f → 0 when |v| → ∞. Coming back to equation (2.26),

∂

∂t

∫
d3v vj f︸ ︷︷ ︸
ν vj

+ ∂

∂ri


∫
d3v vi vj f︸ ︷︷ ︸
vivj ν(r,t)

− ∂Φ
∂ri

(−δijν) = 0

∂ (ν(r, t) vj)
∂t

+ ∂ ( ν(r, t) vivj)
∂ri

+ ν(r, t)∂Φ
∂rj

= 0. (2.28)

This expression can be written in a more useful form. For that, we multiply (2.25) by vj,
and we subtract the result from equation (2.28),
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∂ (ν vj)
∂t

+ ∂ ( ν vivj)
∂ri

+ ν
∂Φ
∂rj
− vj

[
∂ν

∂t
+ ∂ ( ν vi)

∂ri

]
= 0

�
�
�
�

vj
∂ (ν)
∂t

+ ν
∂ (vj)
∂t

+ ∂ ( ν vivj)
∂ri

+ ν
∂Φ
∂rj
−
�
�
�
�

vj
∂ (ν)
∂t
− vj

∂ ( ν vi)
∂ri

= 0

ν
∂ (vj)
∂t

+
∂
(
ν σ2

ij(r)
)

∂ri
+ ∂ ( ν vi vj)

∂ri
+ ν

∂Φ
∂rj
− vj

∂ ( ν vi)
∂ri

= 0

ν
∂ (vj)
∂t

+
∂
(
ν σ2

ij(r)
)

∂ri
+ (νvi)

∂ ( vj)
∂ri

+
��

�
��
�

vj
∂ ( ν vi)
∂ri

+

+ ν
∂Φ
∂rj
−
��

�
��
�

vj
∂ ( ν vi)
∂ri

= 0

ν(r, t)∂vj
∂t

+ (ν(r, t) vi)
∂vj
∂ri

= − ν(r, t)∂Φ
∂rj
−
∂
(
ν(r, t)σ2

ij(r)
)

∂ri
. (2.29)

Above we use the definition of the velocity dispersion tensor, equation (2.22).

The equations (2.25) and (2.29) are powerful equations, since they make the
connection between the DF and straightforward observables, like velocity and velocity
dispersion. These equations are the known Jeans Equations.

Nevertheless, even knowing the potential Φ(r) and the distribution ν(r, t), only
the Jeans equations are not enough, since they form a set of four equation12, but we have
nine unknown variables - three velocities components and six independent components of
the velocity dispersion tensor. Thus, we need to impose more assumptions about the form
of DF. For a detailed description about the possible choices, we recommend Section 4.8,
pg. 347 of BT08. Here we will present only the axisymmetric assumption, which will be
the framework used for our modelling.

2.2.1 Jeans Equations in an axisymmetric system

First of all, consider the Halmitonian H in cylindrical coordinates (R, φ, z), with
R =

√
x2 + y2 and φ = arctan

(
y
x

)
,

H = 1
2

(
p2
R +

p2
φ

R2 + p2
z

)
+ Φ. (2.30)

Now, we can re-write the Boltzmann equation (2.8) in these coordinates (BT08, eq. 4.12)

∂f

∂t
+ pR

∂f

∂R
+ pφ
R2

∂f

∂φ
+ pz

∂f

∂z
−
[
∂Φ
∂R
−
p2
φ

R3

]
∂f

∂pR
− ∂Φ
∂φ

∂f

∂pφ
− ∂Φ
∂z

∂f

∂pz
= 0. (2.31)

12 One from equation (2.25) and three for each velocity component in equation (2.29).
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And then we are ready to make our assumptions:

i. The system is steady state, i.e, there are no time dependency.

ii. The system has axial symmetry with respect to z axis. It implies that, ∂Φ/∂φ = 0
and ∂f/∂φ = 0.

iii. DF is a function of the Hamiltonian and angular momentum along the symmetry
axis alone, f = f(H,Lz). This constraint implies that crossed terms of velocity
dispersion tensor are identically null (BT08, eqs. 4.38).

Under these assumptions, we will show that is possible to obtain a complete set of equations
for all the velocities and velocity dispersion of interest.

Starting from the equation (2.31), following the assumptions, it is reduced to

pR
∂f

∂R
+ pz

∂f

∂z
−
[
∂Φ
∂R
−
p2
φ

R3

]
∂f

∂pR
− ∂Φ
∂z

∂f

∂pz
= 0. (2.32)

Now, we multiply this equation by pR, and then integrate over all the momenta∫
d3p p2

R

∂f

∂R
+
∫
d3p pRpz

∂f

∂z
− ∂Φ

∂R

∫
d3p pR

∂f

∂pR
+

+
∫
d3p pR

p2
φ

R3
∂f

∂pR
− ∂Φ
∂z

∫
d3p pR

∂f

∂pz
= 0. (2.33)

But, we can express the momenta in terms of the velocities13: pR = vR, pφ = Rvφ, pz = vz.
With this is mind, now we check each of the terms above.

For the first term:∫
d3p p2

R

∂f

∂R
= ∂

∂R

∫
dvRdvφdvz Rv

2
R f

= ∂

∂R

R
∫
d3v v2

R f︸ ︷︷ ︸
ν v2

R


= ∂

∂R

(
Rν v2

R

)
. (2.34)

For the second term:∫
d3p pRpz

∂f

∂z
= ∂

∂z

∫
d3v vR vz Rf

= ∂

∂z
(RνvR vz) . (2.35)

13 The lack of mass in this expressions is due to our choice of use energy per unit of mass instead of
energy.
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The third term:

∫
d3p pR

∂f

∂pR
=

by parts
�
�
�
���

0

pR f

∣∣∣∣∣
+∞

−∞

−
∫
d3p f

∂pR
∂pR

R

= −νR. (2.36)

The fourth term:

∫
d3p pR

p2
φ

R3
∂f

∂pR
=

by parts
�
�
�
�
�
��>

0
p2
φ pR f

R3

∣∣∣∣∣
+∞

−∞

−
∫
d3p

f

R3

∂(p2
φ pR)
∂pR

(2.37)

But

∂(p2
φ pR)
∂pR

=
�
�
�
�7

0
∂p2

φ

∂pR
pR + ∂pR

∂pR
p2
φ = p2

φ, (2.38)

so that, ∫
d3p pR

p2
φ

R3
∂f

∂pR
= −

∫
d3vR3v2

φ f

R3

= −ν v2
φ. (2.39)

The fifth term:

∫
d3p pR

∂f

∂pz
=

by parts
�
�
�
���

0

pR f

∣∣∣∣∣
+∞

−∞

−
∫
d3p f

�
�
��7

0
∂pR
∂pz

= 0. (2.40)

Merging all the above results in equation (2.33), then dividing it by R, we have:

∂(νv2
R)

∂R
+ ∂(νvR vz)

∂z
+ ν

[
v2
R − v2

φ

R
+ ∂Φ
∂R

]
= 0. (2.41)

Following the same procedures above, but multiplying (2.31) by pz or pφ we can
find:

1
R

∂(νvR vz)
∂R

+ ∂(νv2
z)

∂z
+ ν

∂Φ
∂z

= 0. (2.42)

1
R2

∂(R2 νvR vφ)
∂R

+ ∂(νvz vφ)
∂z

= 0. (2.43)
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The last three equations (2.41), (2.42), and (2.43) are quite general, since we do not
apply our condition (iii). Applying it, equation (2.43) turns trivially null, while equation
(2.42) results in a simple first order differential equation for v2

z ,

v2
z = 1

ν(R, z)

∫ ∞
z

dz′ ν(R, z′)∂Φ(R, z′)
dz′

. (2.44)

And then, if we know v2
R, perhaps under certain assumptions about the anisotropy

of the orbits, as we will do in Chapter 5, we can compute v2
φ using equation (2.41),

v2
φ = v2

R + R

ν

∂(ν(R, z) v2
R)

∂R
+R

∂Φ(R, z)
dR

. (2.45)

To summarize this Section, let us point out the most important results:

• Equation (2.8) is the collisionless Boltzmann equation, that describes the probability
density function (DF) to find a star in a given position r and some velocity v, at time
t, in the observed galaxy. From Boltzmann equation, we derive some connections
between the DF and observables, like the luminosity density (2.14), the mean velocity
(2.20), and the velocity dispersion (2.21).

• Finally, to be able to solve the Boltzmann equation without necessarily knowing the
DF, we derive the four Jeans equations (2.25) and (2.29), and under some assumptions
of axisymmetry of the system, we find more two equations, (2.44) and (2.45), that
define a complete set of equations (with the Jeans ones) that make possible to find
all the velocities (vR, vφ, vz), and its dispersions (σ2

RR, σ
2
φφ, σ

2
zz), through equations

(2.22).
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3 Gravitational Lens Theory

Throughout this Chapter we will focus our attention to the gravitational lens theory,
i.e., the change of the light paths in the presence of massive bodies. This phenomenon can
be addressed in two different ways, related to its intensity. One of them is called strong
regime (or strong lensing), which is characterized by large distortions of the source object,
large (de-)magnifications, and the possible formation of multiple images. This effect usually
is seen as arcs around galaxies and galaxy clusters, that act as deflectors. The other one is
called weak regime (or weak lensing), which also causes distortions and magnifications,
but with significantly less intensity. In this case, statistical analysis over a large sample of
deflected images are needed, once its effects are weaker. Fig. 5 shows both effects caused
by the galaxy cluster MACS J0416. We can see both the gravitational arcs around the
center of the cluster, and small magnifications and distortions of the background galaxies
across the entire field.

Figure 5 – Galaxy cluster MACS J0416. Image from Hubble Frontier Fields program.
Image taken from: NASA, ESA and M. Montes (University of New South
Wales)

For the purposes of this dissertation, here we briefly present the formalism for
the strong lens regime. More complete derivations can be found in Meneghetti (2016),
Schneider; Ehlers; Falco (1992), and FERREIRA (2008).
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3.1 Lens Equation
According to the description of gravity by GR, when a light ray passes near a

massive body, its path can be deflected by the curvature of space-time. When this curvature
is strong enough, this deflection could be in such way that the emitter will be seen in a
different position in the sky. This effect is known as the gravitational lensing.

Looking at Fig. 6, and labeling: source as the emitter body, lens the massive
object responsible for the strong gravitational field that curves the space-time and the
observer the one who receives the bent light. In this figure, DLS, DL and DS are the
angular diameter distances between the lens and source, lens and observer, and source
and observer, respectively. Moreover, it is important to note that these distances depend
on the cosmology, so, in general, DLS 6= DL +DS.

Figure 6 – Illustration of lens configuration scheme. The dimensions in this cartoon are
extremely exaggerated to help visualisation.

Furthermore, in the majority of cases (except for the large scale structure), the lens
dimensions are much smaller than distances involved in the lensing phenomenon. When
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this is true, we can make use of the thin lens approximation. In this approximation,
we assume that the light ray bends in only one point in its path, i.e, only in the plane
that contains the lens object, the lens plane.

The lens plane is defined as a plane that crosses the lens center, and it is perpendic-
ular to the line-of-sight of the observer, the optical axis (bolded dotted line in Fig. 6). In
the same way, the source plane is the plane perpendicular to the line-of-sight that crosses
the center of the source object and contains it.

From Fig. 6, let the true two-dimensional position of the source be labeled by η
in the source plane, while the true two-dimensional angular position of the source be
β. Moreover, θ is the two-dimensional angular apparent position of light, and α̃ is the
deflected angle of the light ray coming from the source on the lens plane. For small angles
(ω << 1 rad) the Taylor approximation

tan(ω) = ω − ω3

3! +O5, (3.1)

is valid. Therefore, in first approximation, we can rewrite the angular position of the source
as η = βDS. Also, we define the impact parameter ξ as the position of the deflected light
in the lens plane, and we can write it as ξ = θDL.

Now, we can write the apparent source position (in the source plane) as the real
position in the source plane plus the additional position seen by the observer due to the
deflection caused by the massive body. Formally, this can be written as

η′ = η + α̃(ξ)DLS, (3.2)

where η′ = θDS is the apparent observed position of the source. Note that, the deflection
angle α̃ is a function of the impact parameter, once it depends on the position of the
deflected light ray in the image plane, also called image position.

Finally, replacing η′ and η in (3.2), and rearranging the terms, we obtain

β = θ − DLS

DS

α̃(DLθ). (3.3)

If we define the reduced deflection angle as

α(θ) ≡ DLS

DS

α̃(DLθ), (3.4)

we can rewrite the equation (3.3) in a simplified way:

β = θ −α(θ). (3.5)

This equation is called the lens equation, and its interpretation is quiet simple: the real
source position is equal to the observed image position minus the reduced deflection angle
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seen by the observer. If there is more than one solution for the lens equation above, the
source will be observed in different positions θ, that is, multiple images will be detected.

3.2 Lens Potential
From the thin lens approximation, we consider that light rays are curved only in

the lens plane. Therefore, it is reasonable to consider instead of the three-dimensional
mass density along the line-of-sight ρ(r), the projected mass density along the line-of-sight,
denoted by Σ(ξ), where ξ is a two-dimensional vector in the plane of sky or the impact
parameter in our case.

If we define our Cartesian coordinate system (x, y, z) with z-axis along the line-of-
sight, the projected mass density is easily calculated by

Σ(ξ) =
∫ DS

0
ρ(r)dz. (3.6)

In this definition, we are considering only the mass between the observer and the source.
However, as the density quickly drops to zero in the interval (0, DS), is common to replace
the integration limits to (−∞,+∞).

Now, consider the equation (1.5) for the deflection angle of a point mass,

α̃(ξ) = 4GM
c2

ξ̂

ξ
,

where ξ̂ is a versor in the lens plane which gives the direction of the impact parameter,
and ξ the distance of the bent light ray to the optical axis.

In the following, consider Fig. 7, where ξ′ is a two-dimensional vector in the lens
plane which gives the position of a mass element dM with respect to the lens center O,
and ξ is the impact parameter.

In this case the deflection, dα̃(ξ), caused by an infinitesimal mass element dM can
be expressed as:

dα̃(ξ) = 4G
c2

(ξ − ξ′)
|ξ − ξ′|2

dM, (3.7)

or in terms of the projected density (3.6),

dα̃(ξ) = 4G
c2

(ξ − ξ′)
|ξ − ξ′|2

Σ(ξ′)d2ξ′. (3.8)

As a result, the total deflection angle is just the integral over (3.8),

α̃(ξ) = 4G
c2

∫ (ξ − ξ′)
|ξ − ξ′|2

Σ(ξ′)d2ξ′, (3.9)
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Figure 7 – Arbitrary mass distribution for the lens object.

valid for any mass distribution. Sometimes it is useful to rewrite the last equation in terms
of θ. Using the relation ξ = θDL, we have

α(θ) = DLDLS

DS

4G
c2

∫ (θ − θ′)
|θ − θ′|2

Σ(DLθ
′)d2θ′, (3.10)

where we use the expression (3.4) for the reduced deflection angle on the left side. Defining

Σc ≡
c2

4πG
DS

DLDLS

, (3.11)

as a critical density, we rewrite α(θ) as

α(θ) = 1
πΣc

∫ (θ − θ′)
|θ − θ′|2

Σ(DLθ
′)d2θ′. (3.12)

However, equation (3.12) can be rewritten in a more elegant way if we define a new
dimensionless quantity, the convergence

κ(θ′) ≡ Σ(DLθ
′)

Σc

, (3.13)

which is the projected mass per unit of critical density.

The convergence is the important quantity to distinguish between the gravitational
lensing regimes. A mass distribution with κ ≥ 1 (Σ ≥ Σc) will act as a strong lens,
producing multiple images. On the other hand, when κ� 1 (Σ� Σc), we enter in the
regime of weak lensing.
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Now, assuming that the coordinates θ and θ′ are independent, and denoting the
gradient operator with relation to θ by ∇θ, we can write the following identity1

∇θ ln(|θ − θ′|) = (θ − θ′)
|θ − θ′|2

. (3.14)

So the reduced deflection angle (3.12) can be written as

α(θ) =∇θ

[
1
π

∫
κ(θ′) ln(|θ − θ′|)d2θ′

]
, (3.15)

where the exchange between the integral and the gradient is only possible because θ and
θ′ are independent. Finally, defining the lens potential function as

ψ(θ) = 1
π

∫
κ(θ′) ln(|θ − θ′|)d2θ′, (3.16)

we obtain a more compact and elegant form to the reduced deflection angle

α(θ) =∇θψ(θ), (3.17)

as the gradient of the lens potential ψ(θ).

However, the two-dimensional Dirac distribution function can be written as

δ(θ − θ′) = 1
2π∇θ

[
θ − θ′

|θ − θ′|2

]
, (3.18)

then, applying the Laplacian operator2 to the lens potential (3.16) we have

∇2
θψ(θ) = ∇θ ·∇θ

[
1
π

∫
κ(θ′) ln(|θ − θ′|)d2θ′

]
= ∇θ

[
1
π

∫
κ(θ′) θ − θ′

|θ − θ′|2
d2θ′

]
=

∫
κ(θ′)d2θ′2 1

2π∇θ

[
θ − θ′

|θ − θ′|2

]
= 2

∫
κ(θ′)δ(θ − θ′)d2θ′

= 2κ(θ), (3.19)

where we use the filtering property of the Dirac distribution. Also note that the expression
(3.19) is just a Poisson equation for the lens potential.

1 Actually this identity is valid for any non-null vector r̄ = r − r′ in a Euclidean space.
2 ∇2

θ ≡∇θ ·∇θ
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3.3 Mapping
Once we know how the light rays from the source are deflected by a lens object,

(3.12) or (3.17), we need to know how the source coordinates β = (β1, β2) are mapped into
the lens plane θ = (θ1, θ2). This mapping is the responsible for generating the distorted
and multiple images of the source in the lens plane, the most important effect of the
gravitational lensing phenomenon.

The position and the shape of the images formed after the deflection can be
determined solving the lens equation (3.5). Moreover, strictly speaking, the mapping is
a smooth, local and continuum injector application. However, in the lens theory this
mapping can be multi-valued, i.e, a point in the source plane can be mapped in more than
one position in the lens plane.

3.3.1 Jacobian Matrix and transformations between planes

To better understand the mapping of source into the lens plane (or opposite
mapping), consider two coordinate systems (x, y) and (u, v) and a set of smooth and
continuous functions φi at any point, such that:

x = φ1(u, v)

y = φ2(u, v)
(3.20)

Since the functions φi are smooth, they must be at least up to the first order
differentiable. So, the differentials in respect to (x, y) coordinates are dx =

(
∂φ1
∂u

)
du +

(
∂φ1
∂v

)
dv

dy =
(
∂φ2
∂u

)
du +

(
∂φ2
∂v

)
dv

(3.21)

Or, matricially [
dx

dy

]
=
[
∂φ1
∂u

∂φ1
∂v

∂φ2
∂u

∂φ2
∂v

][
du

dv

]
. (3.22)

Written in this way, it is clear that the equation (3.22) represents a change of
coordinate systems3. More precisely, it represents the mapping between coordinates (u, v)
and (x, y). The matrix that makes this transformation between the coordinate systems is
called Jacobian matrix, and it is denoted by J . Formally, the determinant of J represents
the deformation of a coordinate system into another (Malajovich, 2010, Theorem 10.11 or
Chapter 2.10 of Carroll, 2003),

dxdy = det(J)dudv, (3.23)
3 A linear transformation.
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where we define

J ≡ ∂(x, y)
∂(u, v) =

[
∂φ1
∂u

∂φ1
∂v

∂φ2
∂u

∂φ2
∂v
,

]
(3.24)

and det(J) is the determinant of J . For a more complete and rigorous discussion, we
strongly recommend Nakahara (2003) and O’Neill (1983).

Finally, before continuing to the transformations between the source plane and
image plane, we would like to highlight some aspects of these Jacobian transformations.
First, we require that the connection functions φi (the coordinated functions), should
be smooth and differentiable at any point, because we want to avoid discontinuities.
Second, such transformations are local, and not global, transformations, this is why we
desire coordinated functions differentiable at first order, at least. Third, as the functions
φi are smooth, they have a well-defined inverse φ−1

i . So, we can change from the (x, y)
coordinate system to (u, v) through φ−1

i (x, y), and the correspondent matrix is just the
inverse Jacobian matrix J−1. Lastly, this can be extended to higher dimensions without
loss of generality (check references cited above).

Now we will determine the matrix that performs the transformation between the
coordinates in the lens plane to the coordinates in the source plane, i.e., the matrix
transformation or the Jacobian transformation. In the lensing formalism, this matrix is
denoted by A. So, looking at the equation (3.5), we can write

 β1 = θ1 − α1

β2 = θ2 − α2

and A = ∂β

∂θ
= ∂(β1, β2)
∂(θ1, θ2) . (3.25)

Using the definition (3.24), we find

A =
[

1− ∂α1
∂θ1

−∂α1
∂θ2

−∂α2
∂θ1

1− ∂α2
∂θ2

]
, (3.26)

or,

A =
[

1 0
0 1

]
−

[
∂α1
∂θ1

∂α1
∂θ2

∂α2
∂θ1

∂α2
∂θ2

]
. (3.27)

In terms of matrix elements, the last expression can be placed in the following form

Aij = δij −
∂αi
∂θj

. (3.28)

However, by (3.17) αi = ∂ψ/∂θi, therefore

Aij = δij −
∂2ψ

∂θi∂θj
, (3.29)

where the partial derivatives can be commuted, if we assume θ1 and θ2 independent, and
ψ(θ) continuous and differentiable up to second order.
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Thus, if we know the deflection angle equation (3.12) or the lens potential (3.16),
we can easily find how each point of the image plane is mapped into the source plane using
equations (3.28) or (3.29), respectively. This mapping, of course, is strongly dependent
on the lens mass distribution, as we have discussed. If the Jacobian matrix (3.24) has
a non-zero determinant, it can be inverted, allowing us to write, in first approximation
(Bartelmann; Maturi, 2017),

δθ = A−1δβ =Mδβ, (3.30)

where we define the magnification tensor or magnification matrix,M ≡ A−1. In
other words, the above expression tells us how an infinitesimal vector on the source plane
(δβ) is mapped into the lens plane (δθ). The name ofM will be clear soon.

3.3.2 Distortion and Magnification

As we saw above, due to the lensing phenomenon the image of a source can appear
distorted or even multiplied in different positions to the observer. All this information is
related to the Jacobian matrix A, and its inverseM (Schneider; Ehlers; Falco, 1992).

However, the magnification effect, another important feature of gravitational
lensing is noteworthy. Defined as the modulus of the ratio of the flux image (in some
frequency) per unit of flux of source (in same frequency),

µ ≡

∣∣∣∣∣F (image)
ν

F
(source)
ν

∣∣∣∣∣ , (3.31)

the magnification can be better understood as follows: since the deflection of light changes
the path of the light beam without changing the number of photons emitted by the source
or their frequency, i.e., it is an achromatic and conservative effect, the specific intensity4

Iν , also called spectral brightness, remains the same for the source and the image. Once
the flux in a given frequency is the integral of specific intensity over the solid angle5,

Fν =
∫
IνdΩ, (3.32)

and considering Iν approximately constant for a small source in the sky, we can write the
flux as

Fν = Iν∆Ω. (3.33)

4 Energy per unity of solid angle per unity of time per unity of area per unity of frequency.
5 Here we are using Ω to denote the solid angle in the sky plane.



56 Chapter 3. Gravitational Lens Theory

Nevertheless, as I(image)
ν = I

(source)
ν , we have

µ =
∣∣∣∣∆Ω(image)

∆Ω(source)

∣∣∣∣ , (3.34)

where ∆Ω is the solid angle subtended by the object. It means that, if the solid angle
which the source is observed changes, the measured flux for this object is magnified (or
demagnified) by a factor µ. The magnification can also be interpreted as how much the
area (or brightness) of the image is greater/smaller than that of the source. Keeping this
in mind, and recalling the definition of solid angle, i.e,

dΩ = dA

r2 , (3.35)

where r is the angular diameter distance to the object, and A the area subtended by it in
the sky, the equation (3.34) can be placed, for an infinitesimal solid angle, in the form

µ =
∣∣∣∣ dA(image)

dA(source)
D2
S

D2
L

∣∣∣∣ =
∣∣∣∣ dξ1dξ2

dη1dη2

D2
S

D2
L

∣∣∣∣ . (3.36)

Here ξ = (ξ1, ξ2) are coordinates in the image plane, and η = (η1, η2) coordinates in the
source plane. Now, using the definitions from the beginning of the this Chapter, ξ = θDL

and η = βD−1
S , the last equation assumes the form

µ =
∣∣∣∣ dθ1dθ2

dβ1dβ2

∣∣∣∣ , (3.37)

which is, as seen before, the determinant of the magnification tensorM, thus explaining
its name too. In addition, the physical interpretation of the Jacobian matrix determinant
is clear, since it represents precisely the deformation of one coordinate system into another.
Finally, using the inverse matrix determinant rule, the magnification is expressed as

µ = |det(M)| =
∣∣det(A−1)

∣∣ = |det(A)|−1 . (3.38)

Mathematically speaking, we avoid the possibility of the determinant of Jacobian
matrix vanish, because we prefer continuous transformations. But, if we relax this require-
ment, there may be points where det(A) = 0. When this occurs, the magnification diverge
and formally tends to infinity6. These positions define a curve in the source plane called
caustics, which are not necessarily smooth and can present cusps. On the other hand,
critical curves are obtained by mapping the caustics to the lens plane through the lens
equation.

As a last comment in this Chapter, we need to notice that, sometimes we need
to include an additional contribution to the deflection angle to take in account some
6 Although physically this will never happen, since infinite magnifications do not occur in nature.
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Figure 8 – Example of an exaggerated external shear on the lensed source. Left panel shows
the source galaxy, the central panel the lensed source by a spherical isothermal
lens model and no shear, and the right panel the source galaxy lensed by the
same spherical isothermal lens model with an external shear with magnitude
equal to 0.15 and angle equal to 45◦ counterclockwise from x−axis. The black
and red lines are, respectively, the critical curve and caustic. The cross marks
the lens center, while the black dot is the source center in the source plane.
The scale bars are in arbitrary units.

contribution of neighboring masses (such as other galaxies or clusters near the lens galaxy),
or even any sub-structures along the line-of-sight (Keeton; Kochanek; Seljak, 1997). This
contribution is quantified by an external shear component, described by its magnitude
and angle. The angle represents the preferred direction of stretching of the image due to
external shear, while the magnitude is the strength of this stretching. Fig. 8 shows an
example comparing the distortion of a lensing source in the presence of an exaggerated
external shear and without an external shear. The black and red lines are, respectively,
the critical curve and caustic.

For more rigorous details about the lensing theory, see also Bartelmann (2010).





59

4 Data

In this Chapter we present the data used for our combined analysis of lensing and
dynamics in order to constraint γPPN, that will be described in Chapters 5 and 6.

For the combined analysis intended, we need at least two kinds of data: integral
field spectroscopy, for dynamical modelling, and photometric data, for lens and dynamical
modelling, since we use the luminosity distribution as a tracer of the stellar content
(see Chapter 5). The H-ATLAS J090311.6+003906 (SDP.81) system has both, with an
additional: this system also has high-resolution interferometric data obtained using a
very extended configuration, which leads to high-resolution angular imaging (in our case),
perfect for gravitational lens modelling.

SDP.81 system was first detected by Negrello et al. (2010), as a part of the Herschel
Astrophysical Terahertz Large Area Survey (H-ATLAS), as a candidate of submillimeter
source galaxy being lensed by an elliptical foreground galaxy in redshift zl = 0.299. In this
work, Negrello et al. also confirm the nature of the source galaxy in redshift z = 3.042
using measurements of CO emission lines obtained with the Green Bank Telescope.

This system has already been studied by several groups (Negrello et al., 2014;
Dye et al., 2014; Dye et al., 2015; Tamura et al., 2015; Rybak et al., 2015; Wong; Suyu;
Matsushita, 2015), however never with the goal proposed here in our project. Furthermore,
most of the cited works focus on the the reconstruction of the source galaxy and on
its properties1, not on the lens. Our methodology, on the other hand, allows us to infer
physical properties of the lens galaxy, as well as testing GR.

Our dataset is composed of: photometric data from Hubble Space Telescope (HST)2,
integral field spectroscopy data from the Multi Unit Spectroscopic Explorer (MUSE)3,
and interferometric data from Atacama Large Millimeter/Submillimeter Array (ALMA)4.
In the following we describe these datasets.

1 This is due to the unprecedented tens-of-parsec resolution of the submillimeter data available for this
system.

2 <https://www.nasa.gov/mission_pages/hubble/main/index.html>
3 <https://www.eso.org/sci/facilities/develop/instruments/muse.html>
4 <https://www.almaobservatory.org/en/home/>

 https://www.nasa.gov/mission_pages/hubble/main/index.html 
https://www.eso.org/sci/facilities/develop/instruments/muse.html
https://www.almaobservatory.org/en/home/
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4.1 HST data
The HST data were obtained with Wide Field Camera 3 (WFC3)5 in 2011 in two

different bands: F160W6 with 4417.62s of total integration time, and F110W7 with 711.74s
of total integration time. Both images are publicly available in the Hubble Legacy Archive8

(PropID: 12194, PI: Negrello). The data were reduced using the WFC3 standard pipeline
by the Barbara A. Mikulski Archive for Space Telescopes (MAST) team, and drizzled
following Gonzaga et al. (2012).

We choose to work with the deepest image F160W, which has a pixel scale of 0.09′′.
The point spread function (PSF) was obtained fitting a collection of unsaturated stars
in the field near the galaxy using the IRAF task DAOPHOT (Stetson, 1987). These
stars are combined to generate a effective PSF (ePSF; Anderson; King, 2000), i.e., an
empirical model describing how the light of the stars is spread in a particular pixel. The
ePSF for the HST data has an FWHM9 approximately equal to 0.108′′, which corresponds
to ∼ 495pc in the redshift of the lens galaxy. This ePSF will be later parametrized by a
sum of 2D-Gaussians (see Section 5.2), in order to be included in the modelling.

A cutout around the lens galaxy can be seen in Fig. 9. In this figure the gravitational
arcs are not clearly seen due to the emission of the foreground galaxy. In the top left side
we see the emission of a star.

Figure 9 – SDP.81 lens galaxy. Image from HST/WCF3-F160W. Axis are RA and DEC.
The gravitational arcs are not clearly seen in this image, because they are
embedded in the lens galaxy light. North is up and East is left.

In order reveal the emission of the background source in the Fig. 9, we need to
5 <https://www.stsci.edu/hst/instrumentation/wfc3>
6 <http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=HST/WFC3_IR.F160W>
7 <http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=HST/WFC3_IR.F110W>
8 <https://hla.stsci.edu/>
9 Full Width at Half Maximum.

https://www.stsci.edu/hst/instrumentation/wfc3
http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=HST/WFC3_IR.F160W
http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=HST/WFC3_IR.F110W
https://hla.stsci.edu/
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disentangle their emission from the emission of the lens galaxy, and a detailed description
of this procedure is done in Chapters 5 and 6. After modelling the lens galaxy light profile,
and subtracting it from the original image, we reveal the arcs of the SDP.81 system, as
seen in Fig. 10. In this figure we see the rest-frame optical emission of the background
source.

Figure 10 – SDP.81 gravitational arcs present in the HST/WFC3-F160W, after lens light
subtraction. North is up and East is left.

4.2 MUSE data
MUSE is a panoramic integral-field spectrograph on-board of the Very Large

Telescope (VLT) of the European Southern Observatory (ESO). As pointed out previously
(Section 1.3), IFUs are powerful instruments for astronomy, since they are able to extract
spectra in each pixel (named spaxel in IFU context) of an image, producing a final data
cube with two spatial and one spectral coordinates. Between the most prominents IFUs
today, MUSE stands out, due to the high quality of the data produced.

SDP.81 MUSE data were obtained from the ESO Science Archive Facility10 (ProgID:
294.B-5042, PI: Gavazzi, Raphael), and the observations occurred in 2015 as a part of
the program “MUSE spectroscopy of SDP.81, the highest resolution Sub-mm ALMA
gravitational lens: accurate mass profile & line of sight structure”, with 13600s of total
exposure time. The data cover the spectral range of 460 − 935nm, with mean spectral
Resolution (R) equal to 298911 and spectral scale of 1.25Å.

The field of view is 1.64′ × 1.64′ and the pixel scale is 0.2′′. A collapsed image
covering the spectral range of 480 − 800nm can be seen in Fig. 11. The PSF was built
following the same procedures of those used for the HST image. We use DAOPHOT task
10 <http://archive.eso.org/cms.html>
11 Which is roughly equivalent to a FWHM of 2.71Å in the galaxy frame.

http://archive.eso.org/cms.html
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to construct an ePSF (FWHM approximately equal to 0.421′′, corresponding to ∼ 1930pc
in the redshift of the lens galaxy) based on unsaturated stars near the galaxy, and once
again, this ePSF will be parametrized by the MGE method (see Section 5.2).

The MUSE data were reduced as a product of ESO Phase 3 archive12, following
the standard pipeline described in Weilbacher; Streicher; Palsa (2016). The final data
cube was submitted to the Zurich Atmosphere Purge code (ZAP; Soto et al., 2016), that
performs an enhancement of the MUSE data cube, removing telluric lines, that may have
been left in the previous reduction step.

Figure 11 – SDP.81 MUSE collapsed image in the spectral range of 480− 800nm. North is
up and East is left.

4.3 ALMA data
ALMA is one of most powerful interferometers operating in submillimeter (submm)

wavelengths, consisting of 64 antennas, of which 54 have 12m diameter, and 12 have 7m
diameter13, placed in Chajnantor plateau, Chile.

Working together, this array of antennas is able to measure the interference pattern
caused by the delay of the measurement of the signal received from an object between
two or more antennas separated by a baseline B. In other words, emission coming from
different positions of the same source in the sky arrives in different times at each antenna
of the array (Fig. 12). This delay in the signal received between each pair of antennas
causes an interference pattern, which is related to the source brightness and position in
the sky.

The interference pattern measured by the interferometer is located in the Fourier
space (u, v), also called uv−plane, where each pair of antenna represents a point in the
12 <http://archive.eso.org/cms/eso-data/phase3/ESO_reduced_data_products_description.pdf>
13 <https://www.eso.org/public/brazil/teles-instr/alma/antennas/>

http://archive.eso.org/cms/eso-data/phase3/ESO_reduced_data_products_description.pdf
https://www.eso.org/public/brazil/teles-instr/alma/antennas/
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Figure 12 – Representation of signal coming from the same source, but arriving in the an-
tennas at different position and time. After received by the antennas, the signal
is processed by a correlator. Image taken from: ALMA (ESO/NAOJ/NRAO).

uv−plane (called visibility). This sample of discrete and finite number in the Fourier domain
(each antenna pair) gives rise to the visibility function V (u, v) in the uv−plane, which is
the Fourier transform of the source surface brightness T (x, y) (see Van Cittert–Zernike
theorem14),

V (u, v) =
∫
T (x, y) exp−2πi(ux+vy) dxdy. (4.1)

By the inverse Fourier transform we obtain the surface brightness

T (x, y) =
∫
V (u, v) exp2πi(ux+vy) dudv. (4.2)

However, each pair of antennas only samples one point in the Fourier space, such
that an array cannot sampling all the Fourier domain, resulting in a imperfect image.
Fortunately, the Earth rotation makes possible different configurations of the array with
respect to the source position, sampling better the uv−plane, and improving the quality
of the final image.

Since not all Fourier domain is sampled, the image obtained by the inverse Fourier
transform (equation 4.2) is not the “true” image of the sky, but an image of the true
sky brightness distribution convolved with a dirty beam (also called synthesized beam).
This synthesized beam means that there are no information about the true sky brightness
14 <https://en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem>

https://en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem
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distribution on those specific angular scales. This image is also called dirty image. Never-
theless, dirty images can be improved applying deconvolution methods, whose intention is
to mitigate the incompleteness of sampling in the uv−plane. One of such techniques is
called “CLEAN”15, which results in an image of the true sky brightness convolved with an
clean beam, which is described by a two-dimensional Gaussian16, described by

f(x, y) = A exp
{
−
(

4 ln(2)
d2

1
(cos(θ)x+ sin(θ)y)2 + 4 ln(2)

d2
2

(− sin(θ)x+ cos(θ)y)2
)}

.

(4.3)
As stated in the documentation of CASA: “[...] A is the amplitude (usually set to unity)
and θ is the anti-clockwise angle from the x axis to the semi-major axis of the ellipse
described by f(x, y) in the xy−plane (x-axis and the semi-major axis should be coplanar).
The d1 and d2 are respectively the semi-major and semi-minor axis of this ellipse, which
is formed by the cross-section that lies parallel to the xy−plane, at a height so that d1 is
equal to the FWHM distance of the one dimensional Gaussian which lies on the plane
formed by the z axis and d1. Note that d1 ≥ d2 > 0, since d1 is the semi-major axis.” The
cleaned image is the proper image for scientific usage.

More information about interferometry data can be found through the courses
offers by Italian ALMA Regional Centre17. And for lens modelling using submm data,
and interferometry see the website of Dr. Mattia Negrello18. A good overview, with data
reduction, is given by Remijan, A. et al. (2015), as well.

SDP.81 data were obtained as part of Science Verification for the 2014 ALMA
Long Baseline Campaign, using the most extended configuration of ALMA to date. These
observations were taken in bands 4 (∼ 2mm), 6 (∼ 1.3mm) and 7 (∼ 1.0mm) using between
23 and 36 antennas, and they are publicly available at the ALMA Science Portal19. These
bands comprise both continuum emission and some emission lines of CO and H2O. The
data reduction and calibration were done following the pipeline provided by the ALMA
Science Portal20. These procedures were implemented using the Common Astronomy
Software Applications (CASA21; McMullin et al., 2007). All the detailed information about
observation, data reduction and imaging of SDP.81 is presented in Vlahakis et al. (2015).

In this work we perform the modelling directly in the image plane, instead of the
uv-plane. We choose to work with the image generated by the continuum band 7, which
includes the ∼ 250µm rest-frame emission, and has original pixel scale of 0.005′′ (Amazing,
15 <https://www.cv.nrao.edu/~abridle/deconvol/node7.html>
16 For more details see Definition Synthesized Beam at CASA documentation in <https://casadocs.

readthedocs.io/en/stable/index.html>
17 <http://www.alma.inaf.it/index.php/Courses>
18 <http://www.mattianegrello.com/?page_id=2488>
19 <https://almascience.eso.org/>
20 <https://almascience.nrao.edu/processing/science-pipeline>
21 <https://casadocs.readthedocs.io/en/stable/index.html>

https://www.cv.nrao.edu/~abridle/deconvol/node7.html
https://casadocs.readthedocs.io/en/stable/index.html
https://casadocs.readthedocs.io/en/stable/index.html
http://www.alma.inaf.it/index.php/Courses
http://www.mattianegrello.com/?page_id=2488
https://almascience.eso.org/
https://almascience.nrao.edu/processing/science-pipeline
https://casadocs.readthedocs.io/en/stable/index.html
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isn’t it?). Fig. 13 shows the emission of the background source, its rest-frame submm
emission. Here, it is important to highlight that due to the wavelength observed by ALMA,
the lens light is not visible, and only the gravitational arcs from the background source
are captured. Such feature is perfect for lens modelling, since the contamination due to
the lens galaxy light is negligible.

Figure 13 – ALMA observations of SDP.81 system, where only the background emission
are visible, due to the spectral window of the observations (band 7 continuum).
The beam size is not visible because it is on the order of the pixel size.
Furthermore, the typical flux emission in the order of mJy. North is up and
East is left.

The choice for performing the lens modelling in the image plane was motivated by
two main reasons: first, modelling in the image plane allow us to mask and fit only the
regions where the emission of the lensed source is is detected. Second, this choice turns the
modelling more computationally efficient (we model thousands of pixels instead of millions
of visibilities) and improves the goodness of fit, since extended areas of background sky
are left aside. The main disadvantage of this choice is that we are modelling the Fourier
transform of the data, instead of the interferometric visibilities. As a consequence of the
procedure of obtaining an image from the visibilities (i.e. the Fourier transform), the image
pixels becomes correlated by the beam, which could biases the image plane modelling, if
the uncertainties do not take into account the covariance between the pixels. However,
due to the high coverage of the uv−plane in these ALMA data, the error associated to
the image plane is significantly reduced. As shown by Dye et al. (2015), the beam size for
the observations of SDP.81 is of the order of the pixel scale of the cleaned image, such
that the errors associated to the transformation of visibilities to the image are negligible.

In addition, Dye et al. (2018) performs a comparison between modelling the cleaned
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image data and the visibility data directly. In this work they find minor differences in the
reconstructed source and lens model, when a semilinear inversion (see Section 5.4.1) is
applied. It is worth mentioning that in this work they model 6 galaxy-scale gravitational
lens systems using ALMA data with much lower angular resolution (due to ALMA
configuration and integration time, which resulted in a more sparse uv coverage) than the
data obtained for the SDP.81 system. According to this work, the authors conclude that
the differences in the modelling of the image data and the visibility data will become more
notable when the coverage of the uv−plane becomes more sparse.

For lens modelling purposes, we have binned the band 7 continuum image from
a pixel scale of 0.005′′ to a pixel scale of 0.02′′. This increases the modelling efficiency
and also reduces the covariance between the pixels. For the modelling (see Chapter 6) we
use the synthesized beam sizes as obtained by the ALMA team, with 0.0308′′ × 0.0235′′

(∼ 141pc × 108pc at the lens redshift) for the beam semi-major and semi-minor axes
respectively, and the position angle of 15◦. This synthesized beam also has been binned in
to the same pixel scale. We apply a small astrometric shift of 0.24′′ to align HST data to
the ALMA data. We determine this shift using the SDSS Photometric Catalogue (DR12)
Alam; et al. (2016) to match stars in the HST field. We notice that the shift applied in
HST data results in a good agreement with the lens center determined by the H-ATLAS
candidate lensed galaxies catalogue22 (Negrello et al., 2017). Then, to align the MUSE
data, we use the HST image23 as a reference, and perform an astrometric shift equal to
0.18′′ in the MUSE data.

In Fig. 14 we show the near-infrared emission of the lensed source at z = 3.04
observed with HST F160W and ALMA band 7 continuum contours overlaid. As it is
immediately seen in the figure, there is a distinct offset between the submm emission
(white contours, tracing the dust) and the rest-frame optical emission (mainly tracing the
stars). An additional structure is observed to the north of the HST image, as well as a
much larger extent of the F160W emission of the western gravitational arc towards the
south. Such offset and extended near-infrared emission were also reported in Dye et al.
(2015), where the authors conclude, after the lens modelling reconstruction, that the most
plausible scenario to explain these observations is that the background source consists of
two objects which are merging. The authors also argue that this galaxy merger scenario is
supported by the reconstruction of the source kinematics (from the CO emission), which
reveals a rotating disc of gas and dust in a state of collapse.

For completeness, in Fig. 14 we also show the MUSE data as dashed yellow contours
overlaid.

Now, in the next Chapter we will present the numerical methods used in this

22 <https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/MNRAS/465/3558>
23 Already aligned with ALMA data.

https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/MNRAS/465/3558
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Figure 14 – Overlaid contours of MUSE (dashed yellow), and ALMA (white) in HST
F160W imaging. North is up and East is left.

dissertation. The objective is to present the models and strategies used to solve both,
the Jeans equations that describes the kinematics (Chapter 2), and the lens equation
(Chapter 3) that describes the light deflection. Chapter 5 also describes the statistical
method we use to combine gravitational lensing and galaxy dynamics in order to infer the
most probable value for γPPN given the data presented in this Chapter.
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5 Numerical Methods

In this Chapter we describe the numerical methods and implementations developed
to constrain γPPN using a galaxy that acts as a gravitational lens at zl = 0.299. All
softwares and packages used are open source, as well as the scripts we developed, that
can be accessed at <https://github.com/carlosRmelo/Master-Degree.git>. We belive that
a free and open science is the best way to build a more robust and transparent Science,
and also a way to promote equity and social justice, providing equal access to information,
research and data. So, always consider making your research public.

As best practice, we organize all the software and packages used in Appendix B,
including the installation method, version, website and any other considerations that we
deem necessary.

5.1 Integral Field Kinematics

In this Section we describe the method we use to recover the LOSVD through the
galaxy observed spectra. For this, we use the publicly available Penalized Pixel-Fitting
(pPXF1; Cappellari; Emsellem, 2004) method, implemented in Python by Cappellari
(2016a). For a complete discussion about the method, its implementation, limitations, and
tests, we refer to the original aforementioned papers.

The idea behind pPXF is to recover the LOSVD parametrized by a Gauss-Hermite
polynomial in the pixel space. There are a lot of benefits in choosing the pixel space instead
of Fourier space, among them we highlight the capability to mask bad pixels more easily,
and the possibility to simultaneously fit the stellar/gas kinematics and stellar population.

Assuming that a galaxy can be formed only by its stellar populations2, the observed
spectrum at a given position in the sky would be the sum (luminosity-weighted) of
individual stellar spectra convoluted with their LOSVD. This makes the recovery of
LOSVD a deconvolution problem of the galaxy spectrum. pPXF tries to do that by
making a model spectrum Gmod(x) of the galaxy, through the convolution of standard
template spectra T (x) and the parametrized LOSVD. Here, both galaxy and template
spectra are rebinned in wavelength to a linear scale x = ln(λ), where λ is the wavelength.
The model can also take into account multiplicative or additive polynomials. The model

1 <https://www-astro.physics.ox.ac.uk/~mxc/software/#ppxf>
2 More accurate results can be accessed including the contributions of the gas and the emission of the

sky in the model spectrum, as we will see next.

https://github.com/carlosRmelo/Master-Degree.git
https://www-astro.physics.ox.ac.uk/~mxc/software/#ppxf
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spectrum can be described as follows (eq. 11 in Cappellari, 2016a)

Gmod(x) =
N∑
n=1

wn

{
[Tn(x) ∗ Ln(cx)]

K∑
k=1

akPk(x)
}

+
L∑
l=1

blPl(x) +
J∑
j=1

cjSj(x), (5.1)

where Ln(cx) are the LOSVDs, which may vary depending on the N template adopted3,
Tn(x) are a set templates4, Pk and Pl are multiplicative or additive orthogonal polynomials
of degree k and l respectively (with ak and bl its coefficients), Sj(x) are a set of sky
templates, ∗ denotes convolution, and finally wn and cj are the luminosity-weighted
coefficients. Additive polynomials can be included to avoid mismatch between the galaxy
spectrum and the templates adopted, while multiplicative polynomials can correct spectral
calibration, and make the fit insensitive to reddening by dust. In this expression, K, L
and J depend on the number of templates used, and the degree of polynomials (additive
or multiplicative) adopted, which are defined by the user.

The LOSVD in pPXF, for both the stellar and gas components, is parametrized
by a Gauss-Hermite5 polynomial in the form

L(v) = exp (−0.5 y2)
σ
√

2π

[
1 +

M∑
m=3

hmHm(y)
]
, (5.2)

where y = (v − V )/σ, v is the line-of-sight velocity, V the mean velocity, and σ the
velocity dispersion. Also, Hm are the Hermite polynomials6, with M being the order of
the momenta.

The best fit for the galaxy spectrum model Gmod(x), eq. (5.1), can be found
minimizing the χ2, which measures the agreement between the model and the observed
galaxy spectrum, over the set of I spectral good pixels

χ2 =
I∑
i=0

[
Gmod(xi)−G(xi)

∆G(xi)

]2

, (5.3)

where G(x) is the observed galaxy spectrum, and ∆G(xi) the 1σ uncertainty in each pixel
where the galaxy spectrum was measured. This minimization is a non-linear least-squares
optimization problem for the parameters [V, σ, h3, ..., hM ]7, and this minimization is what
pPXF does efficiently!
3 For example, we can choose to use different LOSVDs for stars and gas components.
4 These templates can be formed by stellar templates, galaxy templates, single stellar population models

or combinations of them.
5 This parametrization was introduced by van der Marel; Franx (1993) and Gerhard (1993) as a way to

“naturally” measure asymmetric (h3) and symmetric (h4) deviations from a Gaussian profile.
6 <https://mathworld.wolfram.com/HermitePolynomial.html>
7 And possibly other parameters of the equation 5.1, when included during the fit.

https://mathworld.wolfram.com/HermitePolynomial.html
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Another important feature in pPXF is that the algorithm penalizes non-Gaussian
solution. This is motivated by the fact that the LOSVD of galaxies is generally well
reproduced by a Gaussian (Bender; Saglia; Gerhard, 1994; Dekel et al., 2005). To allow
that, the χ2 in eq. (5.3) should be modified to

χ2
p = χ2 + αP , (5.4)

where P is a penalty function, which penalizes non-Gaussian solutions based on the
deviation of the LOSVD from a Gaussian shape, while α is an adjustable penalty, which
depends on the data quality. The discussion about the form of P can be found in Cappellari;
Emsellem (2004), Section 3.3, and the discussion about the non-linear fitting procedure in
Cappellari (2016a), Section 3.4. An important note is that the procedure also takes into
account the line spread function8 of the instrument, i.e., the ability of the instrument to
resolve two neighboring spectral lines.

An example of fit using pPXF can be seen in Fig. 15. To illustrate this method
we used the NGC4636 galaxy spectrum obtained from the Sloan Digital Sky Survey
(SDSS) during data release 12. The spectrum is available at <http://dr12.sdss3.org/>.
For this fitting we use a subset9 of the Single Stellar Population library by Vazdekis
et al. (2010), also called MILES models, with 4 moments [V, σ, h3, h4], and an additive
polynomial of degree 12. This example is available at pPXF documentation under the
name ppxf_example_kinematics_sdss.py. The best fit parameters and the reduced
χ2
DOF (the χ2 per degree of freedom) are shown in the top left of the Figure, where the

systemic velocity was not subtracted.

Figure 15 – pPXF fitting of NGC4636 galaxy spectrum from SDSS.

8 A version of the point spread function, but in the spectroscopic context.
9 This subset is provided jointly with the pPXF code.

http://dr12.sdss3.org/
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5.2 Multi-Gaussian Expansion Formalism

Now we describe the Multi-Gaussian Expansion (MGE; Emsellem; Monnet; Bacon,
1994; Cappellari, 2002) approach, which will be used for describing the mass model used
in both dynamical and lensing modelling. A more detailed description can be found in the
above cited papers.

This approach consists in a feasible and robust form of parametrizing the galaxy
surface brightness (assuming that it is monotonically decreasing), in such a way that we
can use it as the tracer of mass and luminosity. Another advantage of this method is its
capability to capture deviations of the isophotes from ellipses, making possible the modeling
of multi-component objects such as lenticulars and spirals. With this parametrization, we
are able to describe the surface mass density used to compute the lens deflection angle (eq.
3.6), and the luminosity density used as a tracer in dynamical modelling (eq. 2.14). More
important, this parametrization ensures a self-consistent mass profile for both models.

This method was used in a vast range of applications, including dynamical modelling
(Cappellari et al., 2007), gravitational lensing (van de Ven et al., 2010), and measurement
of the mass of supermassive black holes (Cappellari et al., 2010).

Assuming that I(x′, y′) is the projected surface brightness, we can parametrize it
as a sum of 2D-Gaussians as follows:

I(x′, y′) =
N∑
j=1

Lj
2πσ2

j q
′
j

exp
[
− 1

2πσ2
j

(
x′j

2 +
y′j

2

q′j
2

)]
, (5.5)

where (x′,y′,z′) is a projected coordinate system centered in the galaxy center with z′

along the line-of-sight, and N is the total number of Gaussians adopted10. Each Gaussian
component has a total luminosity Lj, an observed projected axial ratio 0 ≤ q′j ≤ 1, and
dispersion σj along the semi-major axis, which is assumed to be aligned with x′-coordinate.

To obtain the intrinsic three-dimensional luminosity density ν(r)11 it is necessary
to deproject the luminosity surface density above, eq. (5.5). However, even if we knew
the real inclination angle i (which is not true in general), the deprojection is not unique,
except in the cases where the galaxy is edge-on (i = 90◦). Fortunately, the deprojection
becomes unique once a model is adopted. Following Cappellari (2002), and assuming an

10 The number of Gaussians adopted is defined on-the-fly during the fit procedure, see the discussion in
Cappellari, (2002), Sections 3.3 and 3.4.

11 In Chapter 2, equation (2.14), we had used the notation j(r) for the three-dimensional luminosity
density, however it is common in the literature to merge the term L with ν(r), and treat ν(r) as the
three-dimensional luminosity density. Even considering this a bad practice, we will adopt this notation
hereafter as a way to maintain consistency with the available literature. We took the opportunity to
remind that the system is considered a steady state, so there is no time dependency, and we left the t
notation aside.
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oblate axisymmetric model, the intrinsic luminosity density can be written, in cylindrical
coordinates (R, φ, z) as

ν(R, z) =
N∑
j=1

Lj

(
√

2π σj)3 qj
exp

[
− 1

2πσ2
j

(
R2 + z2

q2
j

)]
, (5.6)

where Lj and σj are the same as in (5.5), and qj is the deprojected three-dimensional
intrinsic axial ratio, related with the projected axial ratio by

q2
j =

q′j
2 − cos2 i

sin2 i
. (5.7)

The luminosity density can be easily converted to mass density, just assuming
a mass-to-light ratio (M/L), and multiplying eq. (5.6) by it. In general, the M/L may
change across the galaxy, such that to model such variation within the MGE framework
one can consider that each Gaussian component will have its own mass-to-light ratio. For
this reason, we can assume one M/L per Gaussian component as in the form

Υj = Mj/Lj, (5.8)
Mj = Υj Lj, (5.9)

where Mj is the mass of the jth Gaussian component with Lj luminosity12. Nevertheless,
many works (e.g. Cappellari et al., 2013; Cappellari et al., 2009; Williams; Bureau;
Cappellari, 2009) show a good agreement with an assumption of an constant M/L, i.e.
Υj = Υ. Then, assuming a “multicomponent” M/L, leads us to a mass density profile
given by

ρ(R, z) =
N∑
j=1

Mj

(2π)3/2σ3
j qj

exp
[
− 1

2πσ2
j

(
R2 + z2

q2
j

)]
. (5.10)

Once we have obtained the mass density profile (5.10), the gravitational potential
can be derived from the Homoeoid Theorem for densities stratified on similar concen-
tric ellipsoids (see Binney; Tremaine (2008) equation 2.140)13. In the MGE case, the
gravitational potential can be written as

Φ(R, z) = −G
√

2
π

N∑
j

Mj

σj
Φ̃j(R, z), (5.11)

where G is the gravitational constant and Φ̃j(R, z) is given by

Φ̃j(R, z) =
∫ 1

0

dτ√
1− ζ2

j τ
2

exp
[
− τ 2

2σ2
j

(
R2 + z2

1− ζ2
j τ

2

)]
, (5.12)

12 In the end, for a more robust approach, such values can be constrained by stellar population models
and will depend on the color gradients across the considered galaxy.

13 See also Chandrasekhar (1969) for the proof.
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with ζ2
j = 1− q2

j .

Besides the parametrization of surface brightness profile, the flexibility of MGE
method also makes possible the parametrization of a vast range of decreasing one-
dimensional functions (power-laws are the best candidates). For example, a function
with a prominent peak can be approximated by a sum of Gaussians with higher amplitude
and small dispersion, while smooth functions can be approximated by a sum of Gaussians
with larger dispersion. An example is shown in Fig. 16, where we fit the function y = 100

(1+x)4

using the MGE technique. For this fitting, a set of 16 Gaussians was used, each of them
represented by a different color. The sum of all Gaussians results in the blue bold line that
fits the original function, in orange, with high accuracy as shown in the residuals. This
example can be found at MgeFit documentation as mge_fit_example.py.

Figure 16 – Fitting of a power-law function using the MGE parametrization. For this
parametrization, a set of 16 Gaussians are used, represented by different colors.
The sum of all Gaussians (bold blue) fits very well the original function (in
orange), as shows the residuals in the bottom panel. The x coordinate are
logarithmically spaced, therefore the function are logarithmically sampled, as
a requirement of MgeFit routine.

This capability of parametrizing function allows us to include other contributions
in the mass density profile beyond those tracked by luminosity, like a dark matter content
or an supermassive black hole (SMBH). We are able to do that because, in principle, we
can parametrize a one-dimensional mass profile and then, assuming some axial ratio for
each Gaussian in the parametrization, build a projected mass density, such as given by eq.
(5.5) when it is multiplied by a mass-to-light ratio.

The MGE parametrization is one of the most crucial parts of what comes next. So, in
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order to perform this parametrization, we use the Python version of MgeFit14 software
implemented by Cappellari (2002), to decompose the projected luminosity density of
galaxies. We follow closely the procedure described in the paper, therefore, we recommend
the reading of the related paper for more information on how the algorithm works. Here
we just emphasize that the algorithm starts performing the fitting along one-dimensional
sectors from the major-axis to the minor-axis (that covers the entire galaxy) logarithmically
spaced in elliptical radii m′2 = x′2 + y′2/q′2, where q′ is a representative axial ratio of the
galaxy isophotes. Then a non-linear least-squares minimization is performed to ensure
that the best parameters of eq. (5.5) are found. The algorithm also takes into account the
PSF of the galaxy image.

To perform the conversion from the Gaussian parameters fitted by the MgeFit
procedure to physical quantities, we follow the standard definitions presented in the
documentation. Briefly, the MgeFit method returns three vectors of values Tcj, σpix

j , and
qObs
j with length equal to the number of Gaussians used in the parametrization. Tcj is

the total counts of the jth Gaussian component, σpix
j is the associated dispersion of the

Gaussian in pixel units, and qObs
j is the projected axial ratio, q′j.

The total central counts Tcj of each Gaussian can be converted to the corresponding
central peak surface brightness C0

j (in counts per pixels−1) using

C0
j = Tcj

2π(σpix
j )2qObs

j

. (5.13)

To convert the central surface brightness C0
j in counts per pixels−1 into to a central

surface brightness µj(X) in mag per arcsec−2, we apply the standard photometry equation,

µj(X) = ZX + 5 log (SCALE) + 2.5 log (EXPTIME)− 2.5 logC0
j − AX , (5.14)

where X is the notation for the photometric band, ZX is the photometric zeropoint in
band X, SCALE is the scale plate, EXPTIME is the exposure time of the image, and AX
is the extinction in the X band. Thus, µj(X) is the central surface brightness in band X,
measured in magnitudes per arcsec−2, for the jth Gaussian.

Finally, the central surface brightness µj(X), can be converted to the central surface
density Ij in L�pc2 through

Ij =
(

64800
π

)2

100.4(M�,X−µj(X)), (5.15)

where M�,X is the absolute solar magnitude in the band X, and L� is the solar luminosity.
We have already anticipated the fact that these are the proper units used by the JAM
14 <https://pypi.org/project/mgefit/>

https://pypi.org/project/mgefit/
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modelling that will be presented in the next Section. The conversion of σpix
j from pixels to

arcsec is much more simple, just multiply it by the SCALE value.

An useful physical quantity to define here is the total luminosity per Gaussian

Lj = 2πIjσ2
j q
′
j, (5.16)

where the galaxy distance is needed to convert σj, originally given in arcsec, to pc.

5.3 Jeans Anisotropic Modelling

Here we describe the Jeans Anisotropic Modelling (JAM; Cappellari, 2008; Cap-
pellari, 2020), method used for describing the kinematics of real galaxies using the Jeans
equations. We start recalling the two equations, (2.44) and (2.45), for the second velocity
moment derived in Section 2.2.1,

v2
z = 1

ν(R, z)

∫ ∞
z

dz′ ν(R, z′)∂Φ(R, z′)
dz′

, (5.17)

v2
φ = v2

R + R

ν

∂(ν(R, z) v2
R)

∂R
+R

∂Φ(R, z)
dR

. (5.18)

Before applying the MGE formalism in this context, we need to make another
assumption about the anisotropy of the velocity dispersion components, i.e., about the
alignment of the velocity ellipsoid (the orbits followed by the stars when we assume an
axisymmetric system). We already assumed an axisymmetric system, which led us to
conclude that vR vz = 0. Now, if we assume a constant flattening of the orbits in the
meridional plane, we can write v2

R = bv2
z , where b is the anisotropy. Under this assumption,

equation (5.18) can be solved uniquely, once we know v2
z and Φ(R, z)

v2
φ = b

[
R

ν

∂(ν(R, z) v2
z)

∂R
+ v2

z

]
+R

∂Φ(R, z)
dR

. (5.19)

Lastly, to make the comparison between the theory and observations, these intrinsic
quantities, such as velocity dispersion defined above, should be integrated along the line-of-
sight. A caveat in this procedure is that, in general, we do not know the galaxy inclination
i, therefore the coordinate system (x, y, z) intrinsic to the galaxy does not necessarily have
the z-axis along the line-of-sight.

Hence, we define a sky coordinate system (x′, y′, z′) with z′ along the line-of-sight,
and x′ parallel to the projected semi-major axis of the galaxy. If the inclination i is the
angle between the axis z and z′, which implies i = 90◦ when the galaxy is edge-on, the
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transformations between the velocities written in these two coordinate systems is given by
(Malajovich, 2010; Cappellari, 2020)

vx′v′y
vz′

 = S ·

vxvy
vz

 with S =

1 0 0
0 cos i − sin i
0 sin i cos i

 . (5.20)

However, we need to change the Cartesian coordinates (x, y, z) to cylindrical coordi-
nates before, to maintain consistency with the coordinate system where the dispersions are
written. Again, this is done by applying another transformation from (x, y, z) to (R, φ, z).
coordinate system. The velocities are transformed according to

vxvy
vz

 = Tcyl ·

vRvφ
vz

 with Tcyl =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , (5.21)

where R2 = x2 +y2 and φ = arctan (y/x) is the angle15 in the xy−plane measured counter-
clockwise from x-axis. Since both transformations, S and Tcly, are linear transformations,
we can define a super-transformation ST ≡ S · Tcyl, that maps (R, φ, z) into (x′, y′, z′).
Then, the velocity components are

vx′vy′
vz′

 = ST ·

vRvφ
vz

 with ST =

 cosφ − sinφ 0
sinφ cos i cosφ cos i − sin i
sinφ sin i cosφ sin i cos i

 . (5.22)

Therefore, the velocity along the line-of-sight vz′ is

vz′ = (vR sinφ+ vφ cosφ) sin i+ vz cos i, (5.23)

in the general case. But, what we observe is the projected second velocity moment
luminosity-weighted, i.e, I(x′, y′)v2

los ≡ I(x′, y′)v2
z′ , where I(x′, y′) is the projected surface

brightness. According to (2.20), we can compute this quantity as follows,

I(x′, y′)v2
los =

∫ +∞

−∞

(∫
d3vf v2

z′

)
dz′, (5.24)

where f is the DF and the integral over z′ is the projection along the line-of-sight. We can
simplify this expression writing
15 Once again, is a bad practice use φ as coordinate and angle, but following the literature we will do

that, but keep in mind this differentiation.
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∫
d3vf v2

z′ = sin2 φ sin2 i

∫
d3vf v2

R + 2 sinφ sin2 i cosφ
��

�
��

��*
0∫

d3vf vRvφ +

+ sin2 i cos2 φ

∫
d3vf v2

φ + cos2 i

∫
d3vf v2

z +

+2 cos i sin i sinφ
��

�
��

��*
0∫

d3vf vRvz + 2 cos i sin i cosφ
�
��

�
��
�*0∫

d3vf vRvφ

= sin2 φ sin2 i (νv2
R) + cos2 φ sin2 i (νv2

φ) + cos2 i(νv2
z), (5.25)

where the crossed term are null (see condition (iii) in Section 2.2.1). Combining this result
with the previous one, we have:

v2
los = 1

I(x′, y′)

∫ +∞

−∞

{
ν
[
sin2 i

(
sin2 φ v2

R + cos2 φ v2
φ

)
+ cos2 i v2

z

]}
dz′. (5.26)

The second moment v2
los given by eq. (5.26) is a good approximation for the

observed quantity V 2
rms = V 2 + σ2, also known the as root mean square velocity, where V

is the observed mean stellar velocity and σ is the velocity dispersion. Finally, under the
considerations made, we are able to model the velocity distribution along the line-of-sight,
given a potential Φ, an inclination i and an anisotropy b.

The anisotropy and the inclination are two parameters where previous knowledge
is sparse, and more robust techniques such as a non-linear search, are needed. We will
return to this topic in later, when we will discuss the statistical method used for sampling
all the unknown parameters. On the other hand, the gravitational potential can be tracked
using the stellar luminosity, as we shown using the MGE method, equation (5.11). To do
that, all we need is to assume a mass-to-light ratio, constant or even one per Gaussian
component in the MGE parametrization.

Introducing the MGE formalism to solve the Jeans equations, results in a projected
velocity dispersion along the line-of-sight given by (Cappellari (2008), eq. 28)

v2
los(x′, y′) = 4π3/2G

I(x′, y′)

∫ 1

0

{
N∑
k=1

M∑
j=1

ν0kqjρ0ju
2

× σ2
kq

2
k(cos2 i+ bk sin2 i) +Djkx′2 sin2 i

(1− Cjk)
√

(Ajk + Bjk cos2 i)[1− (1− q2
j )u2]

× exp
(
−Ajk

[
x′2 + (Ajk + Bjk)y′2

Ajk + Bjk cos2 i

])}
du, (5.27)
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where ν0k = ν(0, 0), ρ0j = ρ(0, 0) and

Ajk = 1
2

(
u2

σ2
j

+ 1
σ2
k

)
(5.28)

Bjk = 1
2

(
1− q2

k

σ2
kq

2
k

+
(1− q2

j )u4

σ2
j [1− (1− q2

j )u2]

)
(5.29)

Cjk = 1− q2
j −

σ2
kq

2
k

σ2
j

(5.30)

Djk = 1− bkq2
k −

[
(1− bk)Cjk + (1− q2

j )bk
]
u2. (5.31)

Once there is no reason16 to treat the gravitational potential as formed only by
the stellar component, the Gaussians describing the potential and the luminosity are
not necessarily equal. Thus, in the above expressions, the index k are related to the
stellar content (i.e. luminosity) described by N Gaussians, and the index j is related to
components of potential, described by M Gaussians (that could assigned to the stellar
content or something else, like dark matter). Besides that, we let the constant anisotropy bk
be different for each luminous component k. In time, this luminosity-weighted anisotropy,
is commonly parametrized as

βz = 1− v2
z

v2
R

= 1−
∑

k[νv2
z ]k∑

k bk[νv2
z ]k
, (5.32)

where [νv2
z ]k is a Gaussian component of the luminosity-weighted velocity dispersion, and

the summation is over all the luminous Gaussians.

To compute the v2
los in a robust and efficient way, we use the publicly available Jeans

Anisotropic Modelling (JAM17; Cappellari 2008), that uses the MGE parametrization
for the stellar mass profile (from the galaxy surface brightness distribution) and for the
dark matter mass profile (see Section 5.4.5) and computes the predicted velocity second
moment18, under the assumptions discussed here. For an overview of the method, including
the spherical solution of Jeans equations, see Cappellari (2020).

5.4 Lens Modelling
In this Section we will discuss the lens modelling, which involves the source

reconstruction and the modelling of the lens mass. To solve both problems at the same
time, we introduce the semilinear inversion method (SLI; Warren; Dye, 2003). The idea
behind the method (and the reason for its name “semilinear”) is that: once the mass profile
16 Since the standard paradigm allows dark matter.
17 Sometimes refer as Jampy, which is the Python implementation of the code.
18 Once more, convolving the model with the appropriate PSF associated with the IFU used.
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is known, the source reconstruction is nothing more than an inversion matrix problem
that can be solved very efficiently. Unfortunately, searching the mass profile parameters is
still non-linear.

5.4.1 Semilinear Inversion Method

The SLI method assumes a pixelated source-plane and a parametrized lens mass
model. Then, for a fixed mass model, the method performs a ray tracing using the lens
equation (3.5), such that the lensed counts of the source plane pixels provides the best fit
to the observed image. This procedure accounts for the PSF. The goodness of this fit is
quantified by a merit function, G, which should be minimized in order to find the counts
in the source plane pixels that better reproduce the counts in the observed image.

Let the source pixels be labeled by i = 1, 2, ..., I, without any restriction on how
the source plane is tessellated, and let the corresponding ray traced image pixel be labeled
by j = 1, 2, ...,J . The method assumes that each observed image pixel has a flux dj

and statistical uncertainty σj, this means that the method considers each pixel as an
independent pixel, which is appropriated for CCD data.

Given a lens model, each jth pixel of the lensed image can be mapped on each
source pixel i, producing the source pixel surface brightness vector s. This mapping is done
by a matrix fij, such that the observed jth pixel image can be computed as

∑
i sifij. The

matrix fij accounts both the lens equation (3.5) and PSF. Finally, the ray traced jth pixel
can be compared with j observed image pixel that has a flux value dj and uncertainty
σj. Thus, the problem becomes to minimize the merit function G, in such a way that the
vector s is the one that best reproduces the observed data. Assuming a χ2 statistic, this
can be place as

G = χ2 =
J∑
j=1

(∑I
i=1 sifij − dj

σj

)2

. (5.33)

Minimizing this expression with respect to each of the si terms, yield a set of I equations
in the following form

1
2
∂G

∂si
= 0 =

J∑
j=1

(
fij
∑I

k=1 skfkj − fijdj
σj

)
. (5.34)

The term 1/2 is a mathematical trick, that will become clear soon.

We can rewrite this expression in matrix notation. To that, note that the summation
over j can be placed inside the summation over k, then
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J∑
j=1

(
fij
∑I

i=k skfkj − fijdj
σj

)
=

I∑
k=1

sk

∑J
j=1 fijfkj

σj︸ ︷︷ ︸
Fik

−
J∑
j=1

fijdj
σj︸ ︷︷ ︸

Di

=
I∑
k=1

skFik −Di, (5.35)

and we write

sF = D, (5.36)

where F is a symmetric I × I matrix, and D and s are column matrices of length I. So,
the solution sbest that minimizes the merit function is easily obtained just inverting the
last equation, i.e.,

sbest = F−1D. (5.37)

This procedure eliminates the requirement of searching for source parameters during the
lens modelling, at the same time ensures that the global minimum is determined, given a
lens model.

The errors in the source reconstruction can be accessed in a simple form (ignoring
errors introduced by lens parameters), if we are able to compute the covariance matrix.
But first, note that the Hessian matrix of our problem is given by

1
2

∂2G

∂si ∂sk
=

J∑
j=1

∂

∂sk

(
fij
∑I

m=1 smfmj − fijdj
σj

)

=
J∑
j=1

∑I
m=1 fijfmj
σj �

�
��7
δmk

∂sk
∂sm

−
J∑
j=1��

��
�
��
�*0

∂

∂sk

(
fijdj
σj

)

=
J∑
j=1

fijfkj
σj

= Fik, (5.38)

so the matrix F is one-half times19 the Hessian matrix of our merit function G.

Now, if the variables of the problem can be considered Gaussian random variables
(which is our case), the Hessian matrix, evaluated in its maximum, is equal to the inverse
of the covariance matrix C (Yuen, 2010), which lead us with

C = F−1, (5.39)

and the errors in the source reconstruction are the diagonal terms of C.
19 Here is the reason of the trick used before.
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5.4.2 Semilinear Inversion Method with Regularization

To mitigate noisy and possible nonphysical solutions of the source reconstruction,
a different merit function can be designed, adding to the χ2 a regularization term GL,

G = χ2 + λGL (5.40)

where λ is a scalar constant, referred to as the regularization weight, which quantifies the
level of the regularization.

This regularization term GL acts like a prior, heavily penalizing reconstructed
sources which are less smooth. In order to preserve the linearity of the original merit
function, the most straightforward form for the regularization term is a linear combination
of terms sisk,

GL =
∑
i,k

aiksisk, (5.41)

where aij are scalars.

Once the penalty terms are linear, the same analysis applied for the unregularized
solution (Section 5.4.1) can be applied here. So, the regularized solution for the source
pixels that minimizes the merit function (5.40) is

sbest = [F + λH ]−1D, (5.42)

where H is called regularization matrix, with elements given by

Hik = 1
2
∂2GL

∂si∂sk
. (5.43)

Again, the standard errors of the reconstructed source pixels are given by the
diagonal terms of the covariance matrix C, which is just

C = [F + λH ]−1 , (5.44)

as we see before.

There are three main forms for the regularization GL in the literature (Warren;
Dye, 2003), named: zeroth-order, gradient and curvature (also known as zero, constant
and planar, respectively). The zeroth order is given by

GL =
I∑
i

s2
i . (5.45)
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The simplest form for the gradient is

GL =
∑
x,y

(sx,y − sx+1,y)2 +
∑
x,y

(sx,y − sx,y+1)2 , (5.46)

that takes into account the difference between the neighboring pixels. This form of
regularization ensures an additional step, the translation for the index i to the indices x, y.

In the same way, the simplest curvature regularization is

GL =
∑
x,y

[sx,y − 0.5(sx+1,y + sx−1,y)]2 +
∑
x,y

[sx,y − 0.5(sx,y+1 + sx,y−1)]2 . (5.47)

5.4.3 Semilinear Inversion Method and a Bayes contribution

Suyu et al. (2006) introduced a Bayesian approach in the SLI methodology, which
allows comparison between different models (give the lens parameters, source pixelization
and regularization) in a confident way20. This approach aimed to find the most probable
solution using the information coming from the data and the regularization scheme adopted,
at the same time. For the lens problem, this approach tries to maximize the ε, defined by

−2 ln ε =
J∑
j=1

(∑I
i=1 sifij − dj

σj

)2

+ ln [det(F + λH)]− ln [det(λH)]

+ λsTHs+
J∑
j=1

ln (2πσ2
j ). (5.48)

Equation (5.48) is able to quantify the goodness of the fit in many levels (Dye et
al., 2008; Nightingale; Dye, 2015). One of them is quantifying the quality of the image
reconstruction, which is related to the first term (i.e. the χ2). Once the source reconstruction
is a linear problem (a linear inversion), it is, in principle, possible to perfectly reconstruct
the observed image, regardless of the image noise or the accuracy of the lens model. The
regularization is necessary just to avoid these possible problems. Then, a “good” solution
is achieved by equation (5.48), which assumes that the image data contain independent
Gaussian noise in each image pixel (CCD data), therefore the best solution is the one
whose the χ2

DOF ∼ 121. Solutions which χ2
DOF < 1 are penalized for being overly complex,

whereas those with a χ2
DOF > 1 are penalized for not invoking a more complex source

model, when the data supports it. This Bayesian approach quantifies the principle of
Occam’s razor22. Furthermore, for both circumstances, these penalties lead to a reduction
20 This comparison is a good metric to be used if we want to rank different models in terms of goodness

of the fit.
21 It means that, the residuals between model and data are consistent with a Gaussian distribution as

well.
22 <https://en.wikipedia.org/wiki/Occam%27s_razor>

https://en.wikipedia.org/wiki/Occam%27s_razor
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in ln ε, improving the fit. Another level of inference present in equation (5.48) is related
to the terms two, three and four, which contains the regularization matrix H. These
terms are responsible for smooth source reconstruction, favouring simpler and less complex
sources.

5.4.4 AutoLens

To perform the lens modelling using all the SLI methodology (including the Bayesian
approach) presented in the last subsections, we use the open-source software AutoLens:
Automated Modelling of a Strong Lens’s Light, Mass and Source, by Nightingale; Dye;
Massey (2018).

AutoLens is an entirely automated code for modelling and analysis of galaxy-scale
strong gravitational lenses. With AutoLens, we are able to simultaneously model the
lens galaxy light, lens galaxy mass profile, and reconstruct the source galaxy assuming a
pixelated source or even a parametric model. AutoLens goes beyond the methodology
present here, and allows the reconstruction of the source using an adaptive pixel-grid
(Nightingale; Dye, 2015), and others regularization schemes.

As stated above, the SLI methodology finds the best source reconstruction given a
lens mass profile, but the best mass profile is still unknown, and we need to find it. The
most common approach is to assume a parametric mass model for the lens, and then do a
non-linear search in the mass parameter space to find the best parameters (or the most
probable ones). This non-linear search can be done using different techniques, such as
sampling methods using Markov Chain Monte Carlo (MCMC), or even through optimizers
which seek to find the best model regardless of the errors. Once again, AutoLens shows
its completeness by providing a large set of lens mass models, and many different non-linear
searchers23.

An additional issue found in galaxy-galaxy strong lensing context, and solved by
AutoLens, is the emission of the lens galaxy light. Normally, when using photometric
data the lensed source are embedded in the lens galaxy light, so in order to reveal these
arcs, we need to subtract the lens light. Again, the most common approach is to assume a
parametric lens light model, find the best (or more probable) parameters, and subtract
the lens light model to the original data. To do that, AutoLens offers different lens light
profiles, allowing the lens light modelling and subtraction before modelling lens mass.

All these facilities are described and very well documented through lectures provided
as Jupyter notebooks, at PyAutolens24 readthedocs. We strongly recommend these

23 A tutorial about the different techniques implemented in AutoLens can be find at <https://pyautolens.
readthedocs.io/en/latest/howtolens/chapter_optional.html>.

24 The Python implementation of AutoLens. See <https://pyautolens.readthedocs.io/en/latest/index.
html>

https://pyautolens.readthedocs.io/en/latest/howtolens/chapter_optional.html
https://pyautolens.readthedocs.io/en/latest/howtolens/chapter_optional.html
https://pyautolens.readthedocs.io/en/latest/index.html
https://pyautolens.readthedocs.io/en/latest/index.html
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lectures, as they cover from theory to practical modelling, using simulated and real data.

Unfortunately, AutoLens does not provide the MGE parametrization as an
alternative to light or mass profile. For this reason, it is necessary that we implement
the MGE mass profile and the deflection angle associated in the context of AutoLens
framework.

In technical terms, we create a new Python class describing the deflection angle
produced by a MGE mass distribution. This new MGE mass class is then passed to
AutoLens, that performs the semilinear inversion, i.e., given the mass model (MGE and
its parameters), the pixelated grid source, and the regularization constant, AutoLens does
the source reconstruction, computes the errors associated to it, reconstructs the observed
image (the model image), and computes our goodness function ln ε, which quantifies the
quality of the fit.

To our goals, the non-linear step of sampling the lens parameters is made externally
to AutoLens, because we want to perform a combined analysis, searching for the most
probable parameters that describe the lens mass profile and the dynamical model at the
same time. In the following we describe the mass model used, and in the Section 5.6 we
describe the sampling method.

5.4.5 AutoLens and mass models

As commented above, for AutoLens to perform the lens modelling, we need to
setup the mass model to be used, and an important feature of the lens equation (eq. 3.12) is
that it is linear in the mass term. It means that, it is possible to use different mass models,
which generates different deflection angles, and the final deflection angle, at a given point,
associated with the sum of the masses is just the sum of the individual deflection angles
at that point. This is important because we can assume that the total mass responsible
for bending the light path has two distinct origins: the stellar content and the dark matter
content. And, AutoLens allows us to include as many mass components we want.

To describe the stellar mass content, we implement and use the mass profile obtained
by the parametrization of the surface brightness distribution using the MGE approach,
equation (5.10)25. The reduced deflection angle associated with this mass profile is derived

25 The projected mass profile can be obtained integrating this equation along the line-of-sight (z′-axis),
and you will found that the projected mass density is just the projected surface brightness (5.5)
multiplied by the mass-to-light ratio (5.8). Just remember that we need to rotate the coordinate system
(x, y, z) to the (x′, y′, z′), with x′ along the semi-major axis, before the projection.
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in Appendix C, and given by

αx′(x′, y′) = 1
πD2

LΣc

∫ 1

0
udu

∑
j

Mj

σ2
j

x′

(1− η2u2)1/2 exp
[
−−u

2

2σ2
j

(
x′2 + y′2

1− η2u2

)]
(5.49)

αy′(x′, y′) = 1
πD2

LΣc

∫ 1

0
udu

∑
j

Mj

σ2
j

y′

(1− η2u2)3/2 exp
[
−−u

2

2σ2
j

(
x′2 + y′2

1− η2u2

)]
,

(5.50)
where αx′ and αy′ are the components of the deflection parallel to x′ and y′, respectively,
DL is the angular diameter distance to the lens in Mpc, η2 = 1− q′j2, Mj is the total mass
of the jth Gaussian, and Σc is the critical surface density. Other constants are the same
as defined in (5.5). In both expressions, x′, y′, and σj are given in radians, as well as the
deflection angles.

To obtain the above deflection angle the same assumptions for the MGE formalism
were made, i.e., we assume that the projected mass density is parametrized by a sum of
elliptical concentric Gaussians, centered at the galaxy center (0,0), and semi-major axis
parallel to the x′-axis. We recall that these assumptions are important, because we need
to guarantee that the image we want to model accomplish these requirements.

For the dark matter content, we choose to parametrize it using the well-known
Navarro-Frenk-White (NFW) mass density profile (Navarro; Frenk; White, 1997),

ρ(r) = ρs
(r/rs)(1 + r/rs)2 = κsΣc

r(1 + r/rs)2 , (5.51)

where ρs is the characteristic density, rs is the scale radius, and κs = ρsrs
Σc .

This profile was primarily obtained from dark matter N-body simulations in the
90s from Navarro, Frenk and White and since then has been used, with its generalization
(ZHAO, 1996), for a large range of applications (e.g., Williams; Bureau; Cappellari, 2009;
Wyithe; Turner; Spergel, 2001;Nitschai; Cappellari; Neumayer, 2020)

Usually, this profile is characterized by the two constants ρs and rs, often parametrized
by (Dúmet-Montoya, 2012)

ρs = ∆ρref

3
c3

∆[
ln (1 + c∆)− c∆

1+c∆
,
] (5.52)

and

rs = r∆

c∆
= 1
c∆

(
3M∆

4π∆ρref

)1/3

(5.53)
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where ρref is a reference density, r∆ is the radius that encircles a region with density ∆
times greater the reference density, M∆ is the mass encompassed in r∆, and c∆ is the halo
concentration parameter, defined as

c∆ = r∆

rs
. (5.54)

This choice of re-parametrization gets clearer when we look at the mass enclosed
within radius r

M(r) =
∫ r

0
4πr′ρ(r′)dr′ = 4πρsr3

c3
∆

[
ln (1 + c∆)− c∆

1 + c∆

]
, (5.55)

where we note that the mass M diverges when r →∞. For that reason, a common approach
is to define a reference density ρref

26, and a “cluster radius” r∆ as stated above.

The main problem with this approach is that halo mass can evolve with time, which
turns these parameters dependent on the mass range, cosmology and redshift (Diemer;
More; Kravtsov, 2013; Wyithe; Turner; Spergel, 2001). To avoid such dependencies, we
choose to let free the parameters rs and κs in the analysis and modelling that we do in
Chapter 6.

Now, coming back to the density profile (5.51), the projected mass density can
be obtained integrating this equation along the line-of-slight (Wright; Brainerd, 2000),
resulting in

ΣNFW(R′) = 2rsρsF (R′), (5.56)

where

F (R′) =


1

R′2−1

(
1− 1√

R′2−1 arctan (
√
R′2 − 1)

)
, if R′ > 1,

1/3, if R′ = 1,
1

R′2−1

(
1− 1√

1−R′2arctanh(
√

1−R′2)
)
, if R′ < 1.

(5.57)

and R′ = ξ/rs =
√
x′2 + y′2/rs is a dimensionless radius in the sky plane.

This implies a deflection angle of (Golse; Kneib, 2002; Bartelmann, 1996)

α(R′) = 4κs
g(R′)
R′

, (5.58)

26 Often associated to the critical density of the Universe (Wright; Brainerd, 2000)
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where

g(R′) =


ln(R′2 ) + 1√

R′2−1arctan
(√

R′2 − 1
)

if R′ > 1,

1 + ln(1
2) if R′ = 1,

ln(R′2 ) + 1√
1−R′2arctanh

(√
1−R′2

)
if R′ < 1.

(5.59)

A more realistic model should take into account the possible ellipticity and the
orientation of the mass profile, adding two more parameters to the model, the ellipticity
itself and a position angle. However, the construction of the elliptical lens models is quite
complicated, normally resulting in non-analytical and computationally expensive deflection
angles.

Two main approaches in the literature were developed to treat this problem related
to elliptical lens models. The more robust one (and more computationally expensive)
consists in just change the radius ξ =

√
x′2 + y′2 to an elliptical version Ξ =

√
x′2 + y′2/q′2

in the projected mass density, and then calculate the deflection angle using this new
elliptical mass profile27. This approach gives rise to the so-called elliptical NFW (eNFW)
profile. Besides that, the model can then be arbitrarily rotated by the desired position
angle.

AutoLens contains an implementation of the eNFW mass model, which takes
into account the position angle of the mass profile, the ellipticity, and the other parameters
of the NFW profile.

The second approach is called pseudo-elliptical lens models, because the introduction
of the ellipticity occurs not in the mass profile, but instead in the lens potential ψ. The
great advantage of this class of models is that, if the spherical version of the deflection
angle is analytical, then the elliptical one will be too!

However, the pseudo-elliptical models have some domains of validity, and should
be used with care. Since this discussion is beyond the scope of this dissertation, and we
opt to use the “true” elliptical approach described above (the eNFW profile), we refer the
readers to Dúmet-Montoya (2012) and Dúmet-Montoya; Caminha; Makler (2012) for a
better explanation on the validity of the models.

After all this, to build a model that takes into account both, stellar and dark
matter content, is straightforward. We just need to sum the contributions coming from the
equations (5.49), (5.50) and (5.59)28 for each (x′, y′) position where we want to compute
the model.

27 This is exactly the same case of MGE lens mass model (see Appendix C), where the deflection angles
are not analytical.

28 Or its elliptical version.
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5.4.6 Deflection angle and the connection with PPN approach

Until now, in this Section, we do not consider how the PPN approach changes
things. We already have discussed how the lensing phenomena is sensible to the potential
Ψ (see Sections 1.2 and 1.4), and how the γPPN appears in the equations (Appendix A).
But it is not clear how we actually probe this parameter. We will make this clear now.

Suppose that the deflection angle for our model, which can take into account
different mass contributions, is labelled by αGR. The subscript GR is to remember that
this deflection angle is computed assuming GR, i.e, γPPN = 1. Now, assuming that a
possible deviation to GR can be accessed by the PPN approach, the deflection angle will
be αPPN, and it is related with the GR prediction by

αPPN = (1 + γPPN)
2 αGR. (5.60)

Thus, if GR is correct29, γPPN = 1, and αPPN = αGR.

In terms of modelling, we will sample the γPPN simultaneously with the others
parameters of the combined model, in order to find the most likely model that reproduces
our gravitational lensing and kinematics data.

5.5 Self-consistent mass modelling
In the last Section, we discuss the lens modelling and, in particular, the mass

content adopted, including contribution of stellar mass and dark matter. As discussed,
taking into account these two different contributions is “easy” for the lens modelling. Once
the deflection angle is linear with respect to mass, the contribution coming from different
mass profiles can be added directly.

The problem that arises now is how to include the same mass profiles for both
models (dynamical and lensing), in a self-consistent way, in order to constrain it by fitting
simultaneously the lensing and kinematical data. In other words, we have to include the
contribution of dark matter described by the NFW profile, which was already discussed in
the lensing context, to the framework of the dynamical modelling presented in Section 5.3.
The answer was given in Section 5.2: Parametrizing the NFW mass density profile using
the MGE approach!

We can transform the one-dimensional fit of the NFW profile performed by the
MGE algorithm into a projected mass density assuming a given ellipticity (or axial ratio).
Then, the gravitational potential Φ, used during the JAM modelling (see Section 5.3),
will consist of a sum of 2D-Gaussians representing the contributions from the stellar and
dark matter contents.
29 In the sense of best theory today.
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This solution, in principle, can also be used for the lens modelling. Instead of use
the contribution coming from two different deflection angles (one coming from the stellar
content, parametrized by the MGE method, and another coming from the NFW mass
model directly), we can use only the MGE parametrization of both mass profiles, and
compute the deflection angle only through equations (5.49) and (5.50), with the summation
up to N +M , where N is the number of Gaussians used to constrain the stellar content,
and M the number of Gaussian used to parametrize the dark matter profile.

The latter approach ensures the self-consistency of the mass model, and is the heart
of the methodology used in this dissertation, because in this way we are probing the two
potentials, Ψ and Φ, at the same time and using the same mass model to describe them.

Sadly, using parametrized versions of both mass profiles results in a lot of Gaussians,
increasing drastically the computational time needed to calculate the deflection angle
provided by the MGE method. Even optimizing the numerical computation of the integrals
of equations (5.49) and (5.50), we need to evaluate them at thousands of points30, and for
a thousands (or even more!) models, since we will sample the parameters in a statistical
way. Therefore, we need to improve this calculation, and at the same time, guarantee that
the same mass models are being used for lens and dynamical modelling.

Our solution was to use the eNFW profile implemented in AutoLens for the lensing
modelling, and use its MGE parametrized version only for the dynamical modelling. This
strategy ensures that we will be using the same mass model for both modelling techniques,
and improves significantly the processing time required to compute the deflection angle,
since the integral involved in the eNFW profile is less expensive to compute numerically
than that provided by the MGE method, and the AutoLens is optimized for this kind of
calculation.

We take care to look at the error associated with the MGE parametrization of the
eNFW profile and how it impacts the deflection angle. After different tests we conclude
that the error associated to this parametrization in the deflection angle is of the order
of 0.04%. Such small error in the deflection angle shows that using the eNFW profile in
detriment of its parametrized version does not represent a major impact on the final result,
such that we feel safe to use the MGE parametrized version of the dark matter profile in
the dynamic model and its analytical version31 in the lens model.

As an example, Fig. 17 shows the MGE parametrization of the one dimensional
NFW profile. For this example, we considered κs = 1.00, and rs = 52708.168pc.

In Fig. 18 we show a comparison between the deflection angle generated by the

30 Especially if we consider the ALMA resolution for the lensing data.
31 Here we are using analytical in the sense of the original profile, not its MGE parametrization. However,

we recall that the deflection angle of an eNFW profile is not analytical and demands numerical
calculations.
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Figure 17 – MGE parametrization of the one-dimensional NFW mass profile for κs = 1.00,
and rs = 52708.168pc. A set of 40 Gaussians has been used. Upper panel
shows in different colors the Gaussians, in bolded blue the reconstructed NFW
profile from MGE parametrization, and in orange (under the bolded blue) the
original profile. Lower panel shows the percentage residuals.

MGE parametrization (given by equations 5.49 and 5.50) and the deflection angle generated
by the original eNFW profile. To compare, we generate a uniform grid with 80x80 pixels,
and pixel scale equal to 0.09′′. Then, we calculate for each point (x′, y′), the deflection angle
using the eNFW lens mass model (as implemented in AutoLens), and the parametrization
above. We set the axial ratio equal to q′ = 0.85, and the position angle of the lens mass
PAM = 0◦. The plot shows the deflection angle (α′x or α′y) as a function of the angular
position, x′ or y′. Since the same x′ (or y′) is associated to more than one y′ (or x′), we
can see many vertical lines in the plots of the deflection angle in one of the coordinates,
formed by many deflections associated to the same point, but this effect is only due to the
fact that each panel of Fig. 18 are showing “projections” along x′- or y′-axis.
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(a) Deflection angle in y′ direction as a function of y′ position, for every possible x′.

(b) Deflection angle in x′ direction as a function of x′ position, for every possible y′.

Figure 18 – Comparison of the deflection angle calculated assuming the MGE parametriza-
tion of an eNFW profile (red dots), and the deflection calculated directly
from the eNFW profile (blue dots). Due to the small difference, the dots are
superposed. The almost horizontal line in each plot is the absolute difference,
while the bottom panel of each plot shows the relative errors, in percentage
(green dots). For more details, see the text.
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5.6 Mixing everything with dynesty

Finally, we are able to present the statistical method to sample the unknown
parameters of our combined model. Discussing all the nuances of statistical modelling is
beyond the scope of this work, so we will only present an overview of the method adopted
and how we use it.

The reader interested in knowing more about statistical methods applied to As-
tronomy can learn more through Feigelson; Babu (2012). And an excellent explanation
of Markov Chain Monte Carlo (MCMC) methods are found in Hogg; Foreman-Mackey
(2017).

5.6.1 An introduction to Bayesian inference faster than light

Bayesian inference is a well-known approach to estimate the distribution of a set
of possible parameters, given a model, that consistently reproduces the data. Much of
modern Astronomy is based on this approach (Aghanim et al., 2020; Nelson; Ford; Payne,
2014; Kipper et al., 2016; Di Valentino, 2021).

In this context, the Bayesian inference is a way to estimate the posterior probability
P (Θ|D,M ) of a set of parameters Θ for a given model M conditioned on some data D.
This information can be accessed through the Bayes Rule

P (Θ|D,M ) = P (D|Θ,M )P (Θ|M )
P (D|M ) , (5.61)

where P (D|Θ,M) is the likelihood of the model given the parameters, P (Θ|M) is the
prior over the parameters, which quantifies our initial knowledge about them, and

P (D|M ) =
∫
VΘ

P (D|Θ,M)P (Θ|M)dΘ (5.62)

is the evidence (or marginal likelihood) for the data, given the model. The integral is over
the entire parameter volume space VΘ, i.e, over all possible parameter combinations. The
evidence allows different model assumptions to be compared through the ratios of evidence
values known as Bayes factor32.

To save notation and keep consistency with what comes next, we will use the same
notation as Speagle (2020). So, we rewrite the equation (5.61) as

P(ΘM ) = L(ΘM )π(ΘM )
ZM

, (5.63)

where P(ΘM ) ≡ P (D|Θ,M) is the posterior, L(ΘM ) ≡ P (D|Θ,M) is the likelihood,
π(ΘM ) ≡ P (Θ|M ) is the prior, and ZM ≡ P (D|M ) is the evidence. When the sub-index
32 <https://en.wikipedia.org/wiki/Bayes_factor>

https://en.wikipedia.org/wiki/Bayes_factor
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M is omitted, it means that we are only talking about a certain model, and not the
collection of models used to build the posterior.

For a large range of applicability, the posterior P(ΘM ) often does not have an
analytic form, and the only way to treat it is using numerical methods. One of the common
approaches to do that consist is trying to estimate the posterior distribution constructing
an algorithm that generate a set of samples {Θ1,Θ2,Θ3, ...,ΘN}, which we can use to
approximate the posterior as a weighted set of discrete points

P(Θ) ≈ P̂(Θ) =
∑N

i p(Θi)δ(Θi)∑N
i p(Θi)

, (5.64)

where p(Θi) is the importance weight associated with each Θi and δ(Θi) is the Dirac
delta function located at Θi.

In the literature there are a lot of algorithms that perform this kind of sampling.
Among them the most common are based on the MCMC methods, with well-known
implementations, such as emcee by Foreman-Mackey et al. (2013), and PyMC3 by
Salvatier; Wiecki; Fonnesbeck (2016). The MCMC-based method usually tries to generate
samples “proportional” to the posterior, such that pi = 1, and for that reason computing
the evidence (and therefore performing model comparison) is a hard task for them. In
addition to that, MCMC-based methods often are very sensitive33 to the initial position
where we start the exploration of the parameter space, tending to struggle when the
posterior is composed of widely-separated modes.

One alternative to those samplers, is the Nested Sampling algorithm, introduced
by Skilling (2006). Nested Sampling methods belong to a class of samplers that tries
to estimate the posterior and the evidence jointly, solving some of the issues present in
MCMC based methods.

According to Josh Speagle34, Nested sampler also “has a variety of appealing
statistical properties, which include:

• well-defined stopping criteria for terminating sampling,

• generating a sequence of independent samples,

• flexibility to sample from complex, multi-modal distributions,

• the ability to derive how statistical and sampling uncertainties impact results from a
single run, and

• being trivially parallelizable.”
33 In the sense of spending time to reach the convergence, since the all ideal MCMC-based method should

find the same solution if enough samples are generated.
34 <https://dynesty.readthedocs.io/en/latest/overview.html>

https://dynesty.readthedocs.io/en/latest/overview.html
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For all these reasons we choose to use it for sampling the parameters of the posterior
of our combined model. The next Section is dedicated to present the main ideas behind
the Nested Sampling algorithm.

However, before we continue, we need to point two more comments. First, sampling
algorithms are designed to sample things, not to find the best solution. The best solution
is spotted by optimizers, not samplers. Sampling algorithms tell us the most probable set
of parameters that reproduces the data, given a model and a prior.

Second, different sampling methods should be used for different strategies and
problems. “There is no One True Method to Rule Them All [...]”35. So as advice, we
suggest that, whenever possible, do tests with different methods, to ensure that the best
strategy is being followed.

5.6.2 Nested Sampling Method

The Nested Sampling method tries to sample not the posterior itself, but the
evidence Z, instead. This can be done generating samples in nested “shells” of increasing
likelihood, turning possible to estimate the evidence for complicated distributions. Then
the final set of samples can be combined with their associated importance weights pi to
generate the associated posterior.

For the Nested Sampling, the problem can be solved applying the following proce-
dure described in Speagle (2020):

1. “slicing the posterior into many simpler distributions,

2. sampling from each of those in turn, and

3. re-combining the results afterwards.”

The problem then is how to efficiently estimate the complex integral involving the
evidence Z

Z =
∫
VΘ

L(ΘM )π(ΘM )dΘ. (5.65)

This problem is solved by the Nested Sampling transforming the integral over all
the possible values of ΘM into a one-dimensional integral over the prior volume X of the
enclosed parameter space

Z =
∫
VΘ

L(Θ)π(Θ)dΘ =
∫ 1

0
L(X)dX. (5.66)

35 Speagle (2020)
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In this equation, L defines an iso-likelihood contour that corresponds to the boundary of
the volume X. The prior volume X, defined by

X(λ) =
∫
VΘ:L≥λ

π(ΘM )dΘ, (5.67)

represents the fraction of the prior where the likelihoodL(Θ) is greater than some threshold
λ. The integration limits are due to the fact that the prior is normalized, so X(λ = 0) = 1
and X(λ→∞) = 0.

A schematic representation of this “slicing” is shown in Fig. 19. The left plot shows
the iso-likelihood contours of a two-dimensional multi-modal (modes 4 and 5) likelihood
function L(Θ). The contours are represented by different colors, and enclose a different
fraction of the total prior volume. The right panel shows the likelihood as a function of the
prior volume X, that encloses some fraction of the total prior volume. In this situation,
the evidence is just the area under the curve, which is straightforward to evaluate.

Figure 19 – Representation of the “slicing” in the total prior volume. The left panel shows
the iso-likelihood contours represented by different colors, and enclosing a
different fraction of the total prior volume. The right panel shows the likelihood
as a function of the prior volume X. The evidence is the area under the curve.
For more details, see the text. Image taken from Handley; Hobson; Lasenby
(2015).

Once a final set of samples {Θ1,Θ2,Θ3, ...,ΘN} are drawn, the one-dimensional
evidence integral can be evaluated by standard numerical techniques, e.g., a Riemann sum

Ẑ =
N∑
i

L(Θi)× (Xi −Xi−1) ≡
N∑
i

p̂(Θi), (5.68)
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where the hat notation is used to reminder that this is a noisy estimation, and p̂(Θi) is the
estimated importance weight. These values can also be used to approximate the posterior
(5.64):

P̂(Θ) =
∑N

i p̂(Θi)δ(Θi)∑N
i p̂(Θi)

. (5.69)

5.6.2.1 Sampling from the prior volume

As we see above, once we have the final set of samples, evaluating the evidence
(and through it the posterior) is a straightforward task. The problem then becomes how
to generate samples from the prior π(Θ) subject to the likelihood constraint λ. One
alternative is to just perform a simple sampling rejection algorithm, i.e., at a given
iteration i generate samples Θi+1 from the prior π(Θ) until L(Θi+1) ≥ L(Θi). However,
this procedure becomes very inefficient as the sampling goes on, and the prior volume X
compresses. Therefore, to improve the overall efficiency, Nested Sampling algorithm needs
a way to generate samples directly from the constrained prior

πλ(Θ) ≡

π(Θ)/X(λ), L(Θ) ≥ λ

0, L(Θ) < λ
(5.70)

Since the parameters we want to sample can assume a wide range of values, the
prior πλ(Θ) can vary drastically from one position to another, making it hard to sample
the parameters from the constrained prior. However, if the prior is a standard uniform
(flat prior) for all the dimensions, the density constrained and interior to λ is constant,
then the volume X is well behaved. Then, using an appropriate “prior transform” function
τ , we are able to map a set of parameters U with a uniform prior over the D-dimensional
unit cube to the physical parameters Θ of interest. Therefore, applying the transformation,
the initial problem is reduced to the much more simple problem of sampling uniformly the
transformed constrained prior

π′λ(U) ≡

1/X(λ), L(Θ) = τ(U) ≥ λ

0, L(Θ) = τ(U) < λ
(5.71)

To save notation, and avoid possible confusions, throughout the rest of the text we
will assume π(Θ) is a unit cube prior, unless otherwise specified.

5.6.2.2 Nested Sampling procedure

Now we have all the ground prepared to discuss the Nested Sampling procedure
more heuristically.
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Suppose that initially we have a prior volume X without any constraints. A set of
N samples {Θ1,Θ2,Θ3, ...,ΘN} is drawn from the initial unconstrained unit cube. Each
of these samples corresponds to a likelihood {L(Θ1),L(Θ2),L(Θ3), ...,L(ΘN)}.

At iteration i the algorithm selects the worst sample, i.e., the sample with the
lower likelihood Lmin

i value and highest prior volume, and store it. This sample is now
called dead point, and the remaining points are called live points. Now, the dead point is
replaced by a new point Θ′, drawn by the constrained prior πλ, such that Li+1(Θ′) ≥ λ.

By construction, Nested Sampling algorithm ensures that Li+1(Θ′) ≥ Lmin
i , and

Xi+1 ≤ Xi. Finally, repeatedly sampling in this way, we are able to find the most probable
regions where the parameters reproduce the data more confidently.

Figure 20 illustrates this procedure for a one dimensional case. Initially three
samples are drawn for the unconstrained prior volume X = [0, 1] (the bottom of the figure).
Then, the sample with the lowest likelihood is removed from the set of live points, and
added to the list of dead points. Then a new point is randomly drawn from the new prior
volume [0, X1] (step 1), and with the two survivors forms a new set of live points. Now we
repeat the procedure, removing the lowest sample of the current set of live points, and
replacing it by a new point drawn from the reduced range [0, X2] (step 2). At the end of
the algorithm, the procedure generates a set of eight samples, where three of them are live
points, and five are dead points. These points are used to evaluate the sum (5.68), and
estimate the evidence Ẑ.

Figure 20 – Nested Sampling for five steps with a collection of three points. At each inter-
action, the lowest sample is replaced by a new one, drawn for the constrained
prior volume (here called prior mass). Image taken from Skilling (2006).

5.6.2.3 Terminator Criterion

One of the advantages of Nested Sampling is the well-defined stop criterion, usually
not available for MCMC-based methods. We can choose to stop the sampling when the
remaining live and the dead points give us an integral that encompasses most of the
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posterior. At this point, adding more live points no longer contributes significantly to the
evidence, and we can stop the algorithm. Mathematically, this can be put as follows

∆ ln Ẑ ≡ ln (Ẑi + ∆Ẑi)− ln (Ẑi) < ε, (5.72)

where ∆Ẑi is the estimated remaining evidence, and ε determines the tolerance. The
remaining evidence at iteration i is usually estimated constructing a strict upper limit,
such as (see Speagle, 2020)

Ẑi ≤ Lmax
i X̂i, (5.73)

where Lmax
i is the maximum value of the likelihood at iteration i among the remain live

points inside the estimated prior volume X̂i.

5.6.2.4 Nested Sampling Errors

All the sampling methods are subject to an error associated with the fact that
we are approximating a continuous distribution by a set of discrete and finite number of
samples. This error usually is called “sampling noise”. However, we expect that this error
becomes negligible as the number of samples36 and interactions increase.

Unfortunately, Nested Sampling contains an additional source of error, associated
with the fact that the algorithm uses noisy estimators for the prior volume, X → X̂. This
error is translated to the evidence through the importance weight (eq. 5.68), raising an
“statistical noise”.

This discussion is far beyond the scope of this work, and we will not cover it here.
But it is important to highlight this issue, and make clear that the final inference of Nested
Sampling does take into account these two sources of errors. A fully discussion can be
found at Higson et al. (2018b), and for a quick overview, refer to Speagle (2020).

5.6.3 dynesty

To explore the parameter space of our model and sampling the posterior, we use
the public, open-source package dynesty (Speagle, 2020), a Python implementation
of the Nested Sampling algorithm. dynesty present a lot of facilities, including a vast
documentation37, and an adaptive version of the Nested Sampling, known as Dynamic
Nested Sampling (Higson et al., 2018a). In this dissertation we choose to work with the
classical version presented earlier, also called Static Nested Sampling.

dynesty offers a large range of options for how the prior volume should be
constrained, and how the new points should be proposed. The idea is to improve the
36 Live points in Nested Samples methods, and walkers in MCMC methods.
37 <https://dynesty.readthedocs.io/en/latest/#>

https://dynesty.readthedocs.io/en/latest/##
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efficiency using different strategies depending on the problem we are dealing with. The
former case is related to how the bounding distributions are constructed, and the second is
related to the sampling method used to propose the new live points inside that constrained
prior volume.

We will not discuss all the available options here and we limit ourselves only to
present the combination used in this work. For more details, see Sections 4.1 and 4.2 of
Speagle (2020), and the references therein.

5.6.3.1 Bounding Distribution

Exploring the entire unit cube can be very inefficient, especially in the cases
where the posterior is multi-modal and the algorithm can be stuck in a local minimum.
One alternative for such distributions is using a set of ellipsoids that can possibly be
overlapped. These ellipsoids are constructed from the remaining live points using an
interactive clustering scheme (Feroz et al., 2019).

Briefly, at the first iteration the entire collection of points are proposed uniformly
over the entire unit cube, then the lowest likelihood point is storage as dead point. Next,
the algorithm builds a bounding ellipsoid over the entire collection of the remaining live
points. dynesty uses a scaled version of the empirical variance matrix of the current live
points, centered at the empirical mean, to determine the size and shape of the ellipsoid
(Mukherjee; Parkinson; Liddle, 2006). The scale is such that the ellipsoid encompasses all
the available live points.

After constructing this ellipsoid, a K-means clustering with K= 2 is initialized at
the endpoints of the major axes. The live points then are assigned to one of the clusters,
and a new pair of bounding ellipsoids is constructed, one for each of the clusters. The
resulting two ellipsoids are accepted if the combined volume of them is substantially smaller.
This process continues recursively, until no decomposition is accepted. dynesty tries to
control the decomposition of the live points, being more conservative in the clustering
step, in order to avoid the “shredding the posterior into many tiny islands of isolated live
point clusters” (Speagle, 2020).

This particular kind of Bounding Distribution allows the exploration of the multi-
modal regions, without the issue of being stuck in a local minimum.

5.6.3.2 Sampling Proposal

Once we have determined the new constrained prior volume, we need to replace the
dead point (or dead points) by new ones, restrict to LΘ′ ≥ Lmin

i , where Θ′ is the proposal
sample.

One useful approach for sampling the new points restricted to the bounding
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distribution is to propose a new point by evolving a given live point Θk → Θ′. The most
straightforward approach is sampling the new point from the constrained prior using the
Metropolis-Hastings MCMC algorithm. The algorithm is as follows:

1. Drawn the new sample Θ′ from the proposal distribution Q(Θ′|Θk), centered in Θk;

2. Move to Θ′ with probability A = min
[
1, πλ(Θ′)

πλ(Θk)
Q(Θk|Θ′)
Q(Θ′|Θk)

]
. Otherwise, stay at Θk;

3. Repeat previous steps for Nwalks interactions.

This procedure is called random walk.

However, since the constrained priors are uniform by construction, the ratio of
the priors is always equal to one. And, if the proposal distribution is symmetric, i.e.,
Q(Θ′|Θk) = Q(Θk|Θ′), their ratio is equal to one either. Then, a new point is accepted
if it is within the current constrained prior that we are sampling from38, and rejected
otherwise.

For dynesty, the proposal distribution Q(Θ′|Θk) is a simple uniform distribution
associated to the ellipsoid centered on Θk and covariance Cb, where Cb is one of the
bounding distributions that encompasses Θk, randomly selected (when Θk belongs to
more than one bounding distributions).

5.6.3.3 Parallelization

Given the computationally expensive likelihood of our model, we are forced to
parallelize our script and adapt it to a high-performance computing (HPC) environment.
dynesty is easily parallelizable, and also uses several built-in functions that make the
adaptation friendly.

The principal advantage of the parallelization is to be able to compute individual
likelihood (for the same interaction) in independent cores at same time. The computing
time does not scale linearly with the number of cores, however using many cores in parallel
processing improves a lot the overall computing time, making this project possible.

To parallelize our script we use the open-source schwimmbad (Price-Whelan;
Foreman-Mackey, 2017) package, “that provides a uniform interface to parallel processing
pools and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib).” With
schwimmbad, we are able not just to spread the calculation of the live points through
multiple CPUs, but also over multiple nodes in a HPC environment.

38 Remember that we have a noisy estimation of the prior volume, so we need to take care and accept
only the samples with likelihood higher than the dead point discarded in the former iteration.
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A bottleneck in the parallelization process is that each interaction is limited by the
slowest-performing member of interaction. This occurs because we need to know all the
values of the likelihood at each interaction before determining the dead point.

Finally, with our code parallelized, and the data properly reduced, we are able to
perform the combined modelling! In the next Section, we provide a “Proof of Concept” of
our code, to make sure that it is able to explore the real data of the SDP.81 system. Then,
in the next Chapter we present the Results of our analysis.

Before we move on, we want to highlight that the majority of the tests performed
to get the best version of the script and the final run used for the Results of this work was
only possible thanks to the CHE39, SDumont40,41 and ADA-Lovelace42 clusters.

5.6.4 The Combined Statistical Model

In the last Section, we discuss all the numerical methods that are applied to our
data, and at the end we present the statistical framework we employ in order to infer the
most probable value of the parameters of our model, especially γPPN. However, to consider
the work complete, we need to present one last detail related to how our posterior was
defined. The posterior, in turns, is a way to summarize what we know about the problem
after the data has been observed and a model was proposed.

So, in order to define our posterior, we need to fix a model, and a metric, that
allows us to compare the model with the real observed data. This is what the likelihood
does in a Bayesian framework.

Since the lensing data are independent of the dynamical data, we can consider the
individual likelihoods of each model independently, such that we can produce a single
likelihood for the combined modelling multiplying the individual likelihoods, it means

LModel ≡ LLens × LDyn, (5.74)

where LLens is the likelihood of the lens model, quantified by ε, equation (5.48), and LDyn

is the likelihood of the dynamical model, quantified by a χ2 statistic between the observed
Vrms map and the JAM model, described in Section 5.3.

With this likelihood, and some priors over the parameters, we finally43 are ready
to sample the posterior!
39 CBPF
40 LNCC
41 The project was selected by a public call for the Standard allocation program, with 2073600 UA. More

information at <https://sdumont.lncc.br/alloc.php?pg=alloc#>. See also our abstract at <https:
//sdumont.lncc.br/projects_view.php?pg=projects&status=ongoing>, under the name “Testando a
Relatividade Geral em escala de galáxias”.

42 UFRGS
43 We swear!

https://sdumont.lncc.br/alloc.php?pg=alloc##
https://sdumont.lncc.br/projects_view.php?pg=projects&status=ongoing
https://sdumont.lncc.br/projects_view.php?pg=projects&status=ongoing
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Just to summarize, here we highlight the possible parameters that our model can
take into account:

• Υk: mass-to-light ratio44

• i: galaxy inclination

• βz: luminosity-weighted anisotropy45

• MSMBH: mass of a central supermassive black hole

• κs: scale parameter of the NFW dark matter mass model

• rs: the scale radius of the NFW dark matter mass model

• qDM: deprojected46 axial ratio of the dark matter halo

• shearmag: lens external shear magnitude

• shearφ: lens external shear angle, counterclockwise from the projected x-axis.

• γPPN: Parametrized Post-Newtonian parameter.

5.7 Proof of Concept
To prove our implementation and ideas, in this Section we provide a self-consistent

test using simulated kinematical and lensing data, for which we know the input parameters
of the model used to create such simulation. The main goal is, given some simulated data
(interpreted as the observed data), to sample the parameter space looking for the most
probable model that reproduces our simulated data.

In order to create the simulated data, we adopt the following procedure:

1. We parametrize a eNFW profile using MGE method, assuming: zl = 0.299, κs = 0.075,
qDM = 0.85 and rs = 18′′ ∼ 82500pc at the distance of the object at zl;

2. Simulate a Vrms map, using the real SDP.81 surface brightness MGE decomposition47,
assuming a constant Υ = 7.20M�/L�, and the dark matter profile above. We assume
a inclination of i = 90◦, βz = 0.0 constant, and the contribution of a supermassive
black hole with total mass MSMBH = 109M�, modeled as a Gaussian with dispersion
equal to 0.01′′ at the galaxy center. We assume a pixel scale for the kinematic map
equal to 0.2′′, same as the one of MUSE data used in this work;

44 Can be a constant value, or one per Gaussian component k (free or correlated).
45 Can be a constant value, or one per Gaussian component.
46 It means, the real axial ratio, not the projected in the plane of the sky.
47 More details see Chapter 6.
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3. The kinematic map was convolve with the MUSE PSF(See Section 4.2), and we add
a Gaussian noise (dispersion equal to 5% of the value) to each point of the map.
Figure 21 shows the final map, used as real data.

4. Using a grid with 100 × 100 pixels, and pixel scale of 0.1′′, we simulate a source
galaxy at zs = 4.100 using an Elliptical Sérsic light profile48 (see Figure 22).

5. We build a lens mass profile using the same mass model used for the kinematic map.
In addition, we set an external shear with shearmag = 0.01, and shearφ = 88◦. We
keep γPPN = 1.

6. Using the lens mass profile we ray-trace the emission of the source galaxy with the
lens equation to obtain the gravitational arcs in the lens plane. This image is then
convolved with a PSF with FWHM equal to 0.1′′, and added a constant noise of 0.1
counts in each pixel. The final image of the deflected source is shown in Figure 23.

Figure 21 – Simulated Vrms map used as the real data in our proof-of-concept test.

Figure 22 – Elliptical Sérsic source galaxy. The left panel shows the entire pixel grid used
for the simulation, and the right panel shows a zoom in the galaxy.

48 Since we are using the SLI method, the parameters of the source light profile are not of our main
interest. But, you can check the parameters used for the simulation it in our GitHub.
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Figure 23 – Emission of the deflected background galaxy in the lens plane. From top left
from bottom right we have: The deflected source, and in white a mask selecting
only the arcs. The noise map. Image of the PSF used. Signal-to-noise map
of the arcs. Inverse Noise Map. The potential χ2 map of the imaging, which
represents how much each pixel can contribute to the χ2 map, assuming the
model fails to fit it.

Now, using the methodology described in the last Sections, and the theoretical
framework presented in this dissertation, we will try to find the most probable model for
these simulated data. However, we need to make some disclaimers. First, our simulation
has the sole purpose of validating the method, and should not be seen as a systematic
test. Although, a systematic test using different simulations generated with different
model parameters would be desirable, the processing time required to run such test was
prohibitive, given the duration of this Masters project. Second, we introduce the error
and the PSF convolution in the final images, not through small perturbations on the real
parameters, so that we are not able to verify the real impact of this modification on the
real parameters used. That said, our evaluation metric here will be to look at the final
models and see how well they fit the input data.

In order to do that, we use dynesty to sample the parameter space, using the
configuration presented in Section 5.6. We set a number of live points equal to nlive = 100,
and the stop criteria equal to ∆ ln Ẑ < 0.01. The source-grid reconstruction is a rectangular
grid with 40× 40 pixels, and the regularization constant was fixed equal to 1.0.

To improve the computation time for the modelling, we fixed the dark matter
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scale radius rs during the sampling, so that our model has nine free parameters: (Υ, βz, i,
MSMBH, κs, qDM, shearmag, shearφ, γPPN).

Instead of sampling the inclination directly, we choose to sample it from equation
(5.7), in order to obtain a physical intrinsic axial ratio. This choice also avoids numerical
problems during the deprojection step in the JAM modelling. The inclination can be
inferred from the sampled axial ratio qinc, inverting (5.7)

i = arctan
(√

1− q′2min
q′2min − q2

inc

)
, (5.75)

where q′2min is the minimum value of the stellar projected axial ratio. In the same way, we
sampled the logarithm of the mass of the supermassive black hole, due to the order of
magnitude involved.

We also assume that the mass profile follows the light position angle, then our
elliptical mass profile (stellar + dark matter) has the same position angle of the light
profile, which is equal to zero, once we construct the profile using the MGE method, that
assumes the semi-major axis coincident with x′−axis.

Table 1 shows the priors adopted for this modelling. We assume flat (non-informative)
prior for all the parameters, considering the priors intervals as containing the typical
values for the parameters found in the literature as well as the input values used in the
simulation, except for the Post-Newtonian parameter, which we assume a Gaussian prior
centered in 1.0 (GR) and dispersion equal to 0.05. This assumption is based on the CT18’
result, and the belief of deviations of GR should be small.

Parameter Prior
Υ U(0.5, 15)
βz U(-3, 3)
qinc U(0.055, q′min)

logMSMBH U(7, 11)
κs U(0, 1)
qDM U(0.1, 1)

shearmag U(0, 0.1)
shearφ U(0◦, 179◦)
γPPN G(1.0, 0.05)

Table 1 – Priors of the simulated data. U(lower, upper) represents a non-informative prior,
with lower and maximum values accepted. G(mean, sigma) is a Gaussian prior,
with mean and dispersion values. All the values are in appropriated physical
units.

The results of the kinematical modelling can be seen in Fig. 24. The top left
panel shows the data, and the top right panel shows a symmetrized version of the data.
This symmetrized map helps the visual inspection, once our assumed model (JAM) is
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axisymmetric. The bottom left panel shows the most probable model inferred, and the
bottom right shows the normalized error. Excepting some outliers in the edges, the model
reproduces the data very well, with an error less than 10%.

Figure 24 – JAM modelling result of simulated data. Top left is the data, and top right
the symmetrized version of the data, to helps the visual inspection. Bottom
left is the model, and bottom right the normalized error.

Figure 25 shows the model of the gravitational arcs. On the upper panel we have
the data, the signal-to-noise map, and the most probable model. Note that these plots
show only the region used for the modelling, i.e., the region inside the mask (black contour)
where the data used for modelling the lens are located. The bottom panel shows, from
left to right, the residual map, the normalized residual map by the noise, and the χ2 map.
Once again, we can see that the most probable model fits the data very well.
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Figure 25 – Lens modelling results. Top panel from left to right we have: Data, signal-
to-noise map, and most probable model. Bottom panel shows: residual map
(left), normalized residual map (center), and χ2 map (right).

Finally, Fig. 26 shows the lens model, and the source reconstruction. The central
top panel shows the source reconstruction49, and the white dots are the positions where the
mask contours are traced in the source plane. The residual map is the difference between
the data and the reconstructed source, when the data is mapped in the source plane using
the most probable model. The regularization weight map shows that we use a constant
value for all pixels (which could be different, if we use other regularization schemes or
source pixelization methods, see Nightingale; Dye; Massey, 2018).

49 Compare this wonderful reconstruction with the simulated source Fig. 22, and keep in mind that we do
not make any assumptions about this surface brightness of morphology. Although this is a surprising
reconstruction, this is not the general case, especially when dealing with real data that is subject to
noise and systematics.
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Figure 26 – The top central panel shows the source reconstruction using the SLI method,
and the most probable model. More information, see the text.

After verifying the ability of our implementation to retrieve the most probable
model, we consider our code to be able to probe the parameters through real data, and
finally perform a real test of GR in a new, even particular, domain.
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6 Results

In this Chapter we present the results of the SDP.81 modelling, which include
the kinematical map (obtained fitting the IFU data with pPXF), the MGE lens light
decomposition used to trace the stellar content of the galaxy, and the simultaneous
reconstruction of the observed lensed arcs and resolved stellar kinematics using a single
self-consistent mass model, whose most probable parameters, including γPPN, are obtained
using dynesty

6.1 Kinematical analysis

To obtain the kinematical information used as constraints during JAM modelling,
we model the spectral data obtained with MUSE (Section 4.2) using the pPXF routine
(Section 5.1).

In order to improve the spectral modelling, we first select only the spectra with a
signal-to-noise (SNR) above 2.0. We measured this SNR as the ratio of the average signal
and the average noise in the wavelength range that we fit (5000− 7000Å in the galaxy
frame). A total of 290 spaxels were selected, and Fig. 27 shows the SNR map.

Figure 27 – MUSE SNR map of selected spaxels (SNR > 2.0). The SNR is the ratio of the
average signal and the average noise in the wavelength range that we want to
fit.

Then, to ensure a reliable stellar kinematics, we sum nearby spectra using the
adaptive spatial two-dimensional binning scheme (VorBin; Cappellari; Copin 2003) to
increase the SNR in each resulting Voronoi bin at a minimum of 25. The Voronoi binning
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scheme results in 17 goodbins, which can be seen in Fig. 28. The small dots in the lower
panel represent the older spaxels, and the red dots the new Voronoi bins.

Figure 28 – Map of Voronoi bins. Each color in the upper panel represents one of the 17
Voronoi bins with SRN ∼ 25. In the lower panel we see a SNR radial profile
of the spaxels/bins. Small dots are the older spaxels, and the red dots are the
co-added Voronoi bins.

Each of the remaining Voronoi bins is modelled using pPXF as a combination of
a select set1 of templates from the Indo-US stellar library2 (Valdes et al., 2004) in the
optical region 3460− 9464Å. We choose to use the Indo-US templates due to its spectral
resolution of FWHM= 1.35Å, which is appropriate for the modelling of spectra at the
redshift of our galaxy.

For each Voronoi bin we fit the two first moments of the Gauss-Hermite polynomials
[V, σV ], with the inclusion of an additive polynomial of order 4 (Section 5.1). Besides that,
we mask possible emissions lines, and two regions where the variance in the data was very
prominent. We perform our modelling in the observer rest-frame, which means that we
bring the galaxy spectra to the rest-frame before the fitting.

As an example of the spectral fitting procedure3, in Fig. 29 we show the result
for the central bin. The observed spectrum is shown in black, and the model in red. The
residuals are green diamonds, and the gray vertical lines are the masked parts, while the
bold blue lines are the masked lines. In light blue we see the variance in each pixel of the
spectrum. The best-fit velocity and velocity dispersion are V = 141km/s, σV = 246km/s
respectfully, with χ2

DOF = 1.085. The spectra are in the observer rest-frame.

To measure the uncertainty in the fitting parameters (velocity and velocity disper-
sion), we use a bootstrapping approach. In a few words, we perform a first fit, called best
1 This set of templates are available at <https://github.com/remingtonsexton/BADASS3>.
2 <https://www.noao.edu/cflib/>
3 Other examples of model fitting can be accessed in our GitHub.

https://github.com/remingtonsexton/BADASS3
https://www.noao.edu/cflib/
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Figure 29 – Model of central spectrum obtained using pPXF, in the observer rest-frame.
Observed data are in black, model in red, gray vertical lines are masked regions,
and the residual are shown in green. The best fit parameters are V = 141km/s
and σV = 246km/s. In the bottom right we see the reduced χ2. For details of
the spectral fitting, see the text.

fit, and compute the residuals for each pixel. Now, from each pixel in the best fit spectrum,
use its value as a center of a Gaussian distribution, and the residual associated with this
pixel as the dispersion of this Gaussian. This ensures a new value for each pixel in the
spectrum, drawn from the Gaussian distribution. Following this procedure for all the pixels
we generate a new full range spectrum. We fit this new spectrum with pPXF (setting the
bias flag equal to zero) and save the outputs [V, σV ]. We repeat this procedure generating
200 new spectra and measurements of V and σV . After that, we plot the distributions
for velocity and velocity dispersion (see Fig. 30), and compute the 1σ of each as the
uncertainty associated to the measurement4.

After fitting all the 17 Voronoi bins, we construct the Vrms map, which is the root
mean square velocity5 calculated for each Voronoi bin. For that, we subtract the central
velocity, i.e., the velocity of the central bin, from each of Voronoi bin velocities, in order
to obtain the real velocity with respect to the galaxy center. We do not see any evidence
of rotation. This Vrms map is shown in Fig. 31.

4 This strategy is very similar to other bootstrapping approaches used by the community. In particular,
our approach is based on two main codes. One by Jonathan Cohn (<https://github.com/jhcohn/
ppxf/blob/master/ppxf_nifs_kinematics_witherr.py>), and the other by Remington Oliver Sexton
(<https://github.com/remingtonsexton/BADASS3/blob/master/badass3_v7_7_6.py>). We thank
all the community for making their research publicly available.

5 V 2
rms = V 2 + σ2

V

https://github.com/jhcohn/ppxf/blob/master/ppxf_nifs_kinematics_witherr.py
https://github.com/jhcohn/ppxf/blob/master/ppxf_nifs_kinematics_witherr.py
https://github.com/remingtonsexton/BADASS3/blob/master/badass3_v7_7_6.py
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Figure 30 – Bootstrapping realization for the central spectrum of SDP.81 lens. The shaded
areas shows the 1σ, 2σ and 3σ deviations. Left panel shows the results for
the velocity, and the right panel the results for the velocity dispersion. Black
dotted line shows the original best fit, i.e., the fit associated to the best fit
(see text), the blue dotted line shows the median of the distribution, and the
blue continuum line the mean. The vertical axis is the of occurrence of each
bin normalized by the total of iterations.

We use the following error propagation to estimate the uncertainties in the Vrms

σrms =
√

(V × 1σvel)2 + (σV × 1σdisp)2

Vrms
, (6.1)

where σrms is the uncertainty in the root mean square velocity, 1σvel is the 1σ uncertainty
in the velocity, and σdisp the 1σ uncertainty in the velocity dispersion.

Figure 31 – Resulting Vrms map of SDP.81 lens galaxy. North is up and East is left.

We notice that two bins, which are close to each other near the border of the galaxy
(the two pixels in the South of Fig. 31), present very discrepant values for Vrms. We believe
that these discrepant values (much higher and much lower) are being caused either by
some contamination of the lensed source (whose emission is more intense in that region,
as can be seen in Fig. 14) and/or by the low SNR at the edge of the galaxy.
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Figure 32 – Final kinematical maps of SDP.81 lens galaxy after remove possible contam-
inated spaxels. The blank areas are the removed spaxels. The scale bar as
the same as Fig. 31. Top left shows the velocity map, top right the velocity
dispersion map, and in bottom the Vrms map.

In order to minimize the possible contamination of the lensed source, we identify
the emission peaks of the arcs in the HST image (Fig. 10), and after overlaying it to the
MUSE emission, we remove the spaxels of the MUSE which correspond to those pixels.
After removing the spaxels with possible contamination, we perform all the steps described
above, however using only the remaining spaxels where we believe the emission of the
source is negligible. The new kinematic maps can be seen in Fig. 32, where the blank areas
indicate the removed spaxels. The scale bar is the same as Fig. 31, to make the comparison
possible. We can see a small improvement in those pixels with discrepant values, and for
this reason we choose to work with this final map towards the rest of the dissertation.

6.2 MGE Models

For modelling the stellar content in both dynamical and lensing analysis as well as
for the modelling of the dark matter content in the dynamical analysis, we will use the
MGE approach, as described in Section 5.2.

For the stellar content, we parametrize the surface brightness profile of the HST
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F160W image. However, before parametrizing it, we parametrize the HST ePSF using
a sum of 2D circular Gaussians, such that we can take it into account during the MGE
parametrization of the galaxy surface brightness. A set of three Gaussians are needed to
model the ePSF (see Section 4.1) and Table 5 shows its components.

Total Counts σ [arcsec]
1.10 0.06
5.87 0.15
3.33 0.27

Table 2 – MGE parametrization of HST ePSF. For PSFs, the method assumes circular
Gaussians with the same center.

Now, to perform the MGE parametrization of the lens galaxy light, we followed
the next steps:

1. We use the find_galaxy procedure available at MgeFit package to determine
the galaxy center, its position angle6, and the ellipticity. As a result, we find a position
angle equal to PA = 11.9◦, and a ellipticity of ε = 0.150.

2. Then we use the latter information as an input of the sectors_photometry
procedure of MgeFit, which is responsible for performing the photometry of the galaxy
image along sectors equally spaced in angle. During this step we have masked the star in
the North of the HST F160W image.

3. Finally, we apply the mge_fit_sectors_regularized procedure of MgeFit
package for each of the above photometric sectors. This is the actual MGE fitting procedure.
In this step the parametrized PSF is taken into account.

These three steps are summarized in Fig. 33.

6 Measured counterclockwise from North.
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Figure 33 – Summary of MGE fitting procedure. Top left shows the find_my_galaxy
step. Top right panel is the photometric sectors where the MGE fit occurs.
The bottom panels show a few examples of the MGE fit along some of the
sectors linearly spaced in angles between the major (0◦) and the minor (90◦)
axis and their corresponding errors.

The best fit obtained with MGE, and the residuals are shown in Fig. 34.

Figure 34 – MGE model of lens galaxy SDP.81. From left to right: image data, best MGE
model, residual normalized by the maximum value. In the right panel we
clearly see the emission of the background lensed source. North is up and East
is left in all panels.

However, this is not our final MGE model used for the combined modelling. To
mitigate possible contamination due to the emission of the lensed source in the lens surface
brightness profile fitted, we exclude the lensed arcs from the original image to separate



118 Chapter 6. Results

the lens light from the background lensed galaxy emission. For that we interpolate7 the
image in the regions where the lensed arcs were excluded (right panel of Fig. 34), in order
to obtain a lens image “without” the source emission.

Then, we perform the same steps described earlier in the interpolated image, to
finally obtain the MGE model used in the rest of the analysis. This fit results in a set of 9
concentric Gaussians and co-aligned at a position angle of 11.9◦ (counterclockwise from
North), and components given by Table 3. Figure 35 shows the isophotes as observed with
HST overlaid by the MGE model, contours are in steps of 0.5 mag/arcsec2. The yellow
circle at North is the masked star. The right panel is a zoom-in in the galaxy center.

Total Counts σpix qObs

128.56 0.51 0.72
261.32 1.47 0.62
198.36 2.93 0.82
406.64 6.16 1.00
149.08 7.69 0.47
501.57 11.89 1.00
239.36 16.44 0.57
607.56 29.46 0.61
590.38 29.46 1.00

Table 3 – MGE parametrization of HST F160W image of SDP.81. First column is the
total counts for each Gaussian component, second column is the dispersion in
pixel units, and the third column is the observed axial ratio of each Gaussian.

Figure 35 – HST F160W isophotes (black lines) overlaid by the final MGE model (red
lines). The contours are in steps of 0.5 mag/arcsec2. The right panel shows a
zoom in the galaxy center. The yellow circle up to North is the masked star.
North is up and East is left.

7 We use the Scipy.interpolate.griddata routine for a cubic interpolation.
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Using equations (5.13), (5.14) and (5.15), we transform the total counts of each
Gaussian (Table 3) into a surface intensity I in solar luminosity per parsec square. We
assume a Vega zeropoint8 in band F160W equal to ZVega

F160W = 24.662 mag, and an absolute
solar magnitude equal to MVega

�,F160W = 3.37 (Willmer, 2018). Table 4 shows the Gaussian
inputs used during JAM modelling.

I [L�/pc2] σ [arcsec] qObs

17964.30 0.05 0.72
5062.47 0.13 0.62
728.03 0.26 0.82
277.24 0.55 1.00
139.13 0.69 0.47
91.66 1.07 1.00
40.06 1.48 0.57
29.55 2.65 0.61
17.58 2.65 1.00

Table 4 – Gaussians components used as input for the JAM modelling of SDP.81 lens
galaxy.

We take the opportunity to present the MGE parametrization of the MUSE ePSF
(see Section 4.2). We follow the same procedure used for the HST ePSF parametrization,
assuming a set of circular and concentric Gaussians. Again, this is useful because we can
introduce this parametrized ePSF in the JAM modelling. Table 5 shows the components
of the parametrized MUSE ePSF.

Total Counts σ [arcsec]
0.10 0.24
0.53 0.42
0.37 0.82

Table 5 – MGE parametrization of MUSE ePSF.

6.3 Preparing the data and setting the simultaneous modelling
Finally, after the long discussion and presentation made in the previous Chapters,

we are ready to test the GR using the data from the SDP.81 system. Therefore, we need
to make the final adjustments to the data and prepare the model that will be sampled.

The first adjustment of the data, and also the first assumption about the model,
is that we assume that the lens mass center coincides with the lens luminous center
determined in the last Section. So, we first find the coordinates (RA, DEC) of the center
8 <https://www.stsci.edu/hst/instrumentation/wfc3/data-analysis/photometric-calibration/

ir-photometric-calibration>

https://www.stsci.edu/hst/instrumentation/wfc3/data-analysis/photometric-calibration/ir-photometric-calibration
https://www.stsci.edu/hst/instrumentation/wfc3/data-analysis/photometric-calibration/ir-photometric-calibration
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Figure 36 – Centered and rotate data used for modelling. Left panel shows the emission
of the source galaxy seen by ALMA, while the right panel is the Vrms map
linearly interpolated for visualization.

determined by the find_my_galaxy routine, and then we use this coordinates to center
the image of the emission of the background galaxy observed by ALMA. This also assumes
that the dark matter halo has the same center.

The second adjustment is a requirement of the Jampy9 package. It assumes that
the x′-axis coincides with the galaxy projected major axis. So to fulfill this requirement, we
rotate our kinematical and gravitational arcs data by the position angle determined earlier,
such that the semi-major axis of the galaxy coincides with the x′−axis. This rotation was
made keeping the center fixed10.

An image with these transformation already applied can be seen in Fig. 36. We
mask the ALMA data to model only the position where the emission from the background
galaxy is clearly seen. In addition, the ALMA data have already been binned in 4 × 4
pixels, as explained in the Section 4.3.

With these two datasets we want to find the most probable model which is able to
reproduce both data simultaneously. It means to use dynesty to sample the parameter
space and find the most probable values of the parameters of the single self-consistent
mass model that reproduces both lensing and kinematical data.

To make our model more realistic, and at the same time practicable, we use a
mass-to-light ratio modulated by a Gaussian function11, which allow us to set a different
mass-to-light ratioΥj for each component of the MGE parametrization based on its
dispersion. This Gaussian-modulate mass-to-light ratio has three parameters: the central
stellar mass-to-light ratio Υ0, a gradient parameter δ that describes the smoothness of
the Gaussian, and a “lower” υ0 parameter, which is the ratio between the central and the

9 The Python implementation of JAM method.
10 Since the MGE PSFs for MUSE and HST are circular, we do not need to rotate it, however the dirty

beam of ALMA was rotated by the same angle.
11 This approach was implemented by Hongyu Li at his GitHub page <https://github.com/HongyuLi2016/

JAM>.

https://github.com/HongyuLi2016/JAM
https://github.com/HongyuLi2016/JAM
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outermost mass-to-light ratio. Mathematically, we have

Υj = Υ0

[
υ0 + (1− υ0)e−0.5(σj δ)2

]
, (6.2)

where σj is the dispersion associated to the MGE component. There are two main
advantages in this approach. One, we reduce the number of parameters related to the
mass-to-light ratio from nine (one per MGE component) to three. Two, this ensures
that the total baryonic mass-to-light profile is monotonically decreasing, consistent with
observations of real galaxies.

Still in order to make our model more realistic and yet computationally possible,
we allow the anisotropy of the system be described by a set of eight βiz, i.e, one anisotropy
parameter for each Gaussian component in the MGE parametrization, excepting the two
central Gaussians, which we fix to have the same β1,2

z . We do that because the two central
Gaussians have dispersions smaller than the MUSE pixel scale. Moreover, this choice
reduces the number of parameters in our model. It is important to highlight that the
individual anisotropies do not have any physical interpretation, and are not associated with
different stellar populations. Assuming different anisotropies is just a way to parametrize
the real anisotropy profile, such that the physical interpretation comes from the anisotropic
profile β(R), where R is the distance from the galactic center.

The dark matter component assumed is an eNFW profile with three free parameters:
κs, rs, and qDM (see Section 5.4.5). It means that, at each iteration during the sampling, we
fit the eNFW profile described by these parameters using the MGE method, and include
it in the dynamical modelling. For the lens modelling, we include the analytical version
of the eNFW profile, with the same parameters values. We are assuming that the dark
matter halo has the same center of the lens galaxy, and has the same orientation, but we
allow the axis ratio qDM to vary. Our model also includes a central supermassive black
hole at the center of the lens, modelled as a point mass.

For the lensed source reconstruction, we use a pixelated source grid with 40× 40
pixels, and we keep the regularization constant (Section 5.4) fixed at λ = 2.00.

The model has other four parameters, two associated to a possible external shear
(see Chapter 3) in the lens model (shearmag, shearφ), the inclination i that we chose to
sampling from the equation (5.75), and the γPPN parameter itself.

In summary, our model has nineteen parameters: three associated to the mass-to-
light ratio, eight associated to the anisotropy profile, three describing the dark matter
halo, one describing the mass of the supermassive black hole, one related to the inclination
of the galaxy, two describing the external shear, and the Post-Newtonian parameter.
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6.4 Most probable model and Results
We use dynesty (see Section 5.6) to sample the posterior probability of our model

fit to the data, exploring a parameter space with nineteen dimensions: three describing the
M/L, eight for the stellar anisotropy, one for the galaxy inclination, one for the mass of
the supermassive black hole, three describing the dark matter profile, two for the external
shear, and the γPPN. We use a multi-ellipsoid bounding distribution with a sampling
proposal set to be a random walk and perform Nwalks = 15 walks. We use a set of 400 live
points to explore the parameter space until the terminator criterion, set as ∆ ln Ẑ < 0.1,
is reached.

We set our prior knowledge about the parameters to be quantified by non-
informative priors (flat priors), excepting the γPPN which is quantified by a Gaussian
distribution around the GR. For the flat priors, we use more conservative boundaries based
on values for early-type galaxies found in the literature. On the other hand, for the γPPN ,
we choose a Gaussian prior centered in GR (γPPN = 1.00) and dispersion equal to 0.05.
This narrow distribution for the Post-Newtonian parameter is based on the value found
by CT18, which has this order of uncertainty. The model priors are listed in Table 6. A
total of 274712 likelihoods were evaluated during the sampling.

The most probable parameters of our model are summarized in Table 7 with their
statistical uncertainties (1σ confidence limit). The most probable lens model and the
residuals are seen in Fig. 37, and the the most probable dynamical model in Fig. 38. In Fig.
39 we show the source reconstruction assuming the most probable model for the lensed
arcs.

Parameter Prior
Υ0 U(0.5, 15)
υ0 U(0, 1.0)
δ U(0.1, 2.0)
βiz U(-3.0, 3.0)
qinc U(0.0550, 0.4688)

logMSMBH U(7.0, 11.0)
κs U(0, 2.0)
rs U(2.0, 50.0)
qDM U(0.1, 1.0)

shearmag U(0, 0.1)
shearφ U(0◦, 179◦)
γPPN G(1.0, 0.05)

Table 6 – Priors of the model. U(lower, upper) represents a non-informative prior, with
lower and maximum values accepted. G(mean, sigma) is a Gaussian prior, with
mean and dispersion values. Υ0 is in solar mass per solar luminosity, δ is in
arcsec−1, logMSMBH is in logarithmic solar mass, rs in arcsec, and shearφ is in
degrees. All other parameters are dimensionless.
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Parameter Most Probable Value Description
Υ0 3.45420.0028

−0.0017 Central Mass-to-Light ratio [L�/M�]

υ0 0.08950.0010
−0.0008 Lower value for the Mass-to-Light ratio

δ 1.45500.0025
−0.0025 Smoothness of the Mass-to-Light profile [arcsec−1]

β1,2
z 0.24970.0018

−0.0014 Anisotropy for MGE components 1 and 2

β3
z 1.68350.0020

−0.0020 Anisotropy for MGE component 2

β4
z 0.53990.0015

−0.0019 Anisotropy for MGE component 3

β5
z −0.34480.0037

−0.0049 Anisotropy for MGE component 4

β6
z −1.83700.0037

−0.0022 Anisotropy for MGE component 5

β7
z 0.02560.0047

−0.0057 Anisotropy for MGE component 6

β8
z 0.01330.0027

−0.0028 Anisotropy for MGE component 7

β9
z 0.51500.0011

−0.0014 Anisotropy for MGE component 8

qinc 0.30450.0006
−0.0005 Deprojected axial ratio

logMSMBH 7.53920.0027
−0.0034

Logarithmic mass of
supermassive black hole [M�]

κs 0.27240.0001
−0.0002 Scale factor of dark matter halo

rs 4.49370.0041
−0.0053 Scale radius of dark matter halo [arcsec−1]

qDM 0.90020.0003
−0.0002 Axial ratio of dark matter halo

shearmag 0.08710.0000
−0.0001 Shear magnitude

shearφ 0.88320.0022
−0.0020

Shear angle
counterclockwise from x′−axis [degree]

γPPN 1.00920.0001
−0.0001 Post-Newtonian Parameter

Table 7 – Newer Results: The inferred median and 68% confidence intervals (1σ) for the
most probable model, assuming a baryonic and dark matter content.



124 Chapter 6. Results

Figure 37 – Most probable lens model. Top row shows the image data (left) and the
reconstructed model (right) assuming our most probable parameters. Bottom
row shows the residual map (left) and the χ2 map (right).
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Figure 38 – Most probable kinematical map obtained from the dynamical modelling.
In the top row are the Vrms map obtained from the observation (left) and
its symmetrized version (right) to help with the visual inspection. In the
bottom we see Vrms map obtained from the most probable dynamical model
(left) and the residuals (right). All figures are linearly interpolated for better
visualization.
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Figure 39 – Source reconstruction assuming a rectangular grid with 40× 40 pixels, and
the most probable model (Table 7).

The two-dimensional posterior distribution (the corner plots) for all the parameters
can be seen in the Appendix D. Here, in Fig. 40, to save amount of space, we plot only
the distribution for some selected parameters.
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Figure 40 – Two dimensional marginalized posterior for some of the parameters of the
combined analysis. The contours are 10%, 40%, 65%, and 85% quantiles,
respectively. The dashed lines are 1σ credible interval.
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6.5 Some Final Considerations about the Modelling and Results

The SDP.81 modelling performed contains a considerable amount of information,
which requires a deeper analysis in order to derive any confident conclusion. Unfortunately,
we do not have the time to carry out such analysis at this point, so we will limit ourselves to
the discussion of the more direct implications of our model and will make some cautionary
notes about the results obtained in the last Section.

The most straightforward comment is about the quality of the models. Looking at
the residuals in Figures 37 and 38, we can see that our model simultaneously reproduces
the lensing and kinematical data, except for a particular bin in the dynamical model. In
Section 6.1 we have already pointed this particular issue in the kinematic map, and now
we reinforce the necessity to make a deeper analysis into what could be causing such effect.
On the other hand, the lens model seems to reproduce the data with high accuracy, and
therefore can be considered an excellent result.

Unfortunately, the comparison between our mass model and other models previously
presented in the literature (e.g., Dye et al., 2014; Rybak et al., 2015) using the same data
for the lensing model, is difficult to do. This is because the majority of those works are
interested in the source galaxy, not in the lens, and more critically, different authors have
assumed different mass profiles for the lens (not all with a clear physical interpretation),
making a fair comparison difficult.

In this sense, and considering the high quality data used in this work, we consider
our lens mass profile the most complex and detailed for this system to date, allowing us to
infer the distribution of stellar and dark matter, as well as the black hole mass. It is also
worth mentioning that such level of complexity and detail was only possible due to the
inclusion of the spatially-resolved stellar kinematic data to the analysis, which was not
considered in previous studies of the SDP.81 system.

Less impressive is the source reconstruction, shown in Fig. 39. Even with the source
reconstruction being a sub-product of our analysis, we expected a better source recon-
struction due to the quality of the ALMA data and the excellent lens model. Comparing
our source reconstruction with the analysis made by Tamura et al. (2015), we see a similar
morphology distribution of the source galaxy (an extent morphology)12, however we cannot
see the distinct features as been shown by Dye et al. (2015) and Rybak et al. (2015). Once
our lens modelling looks good enough, the main problem here could be addressed to the
regularization constant or the source grid resolution chosen. We want to point that some
works make use of an adaptive grid (Dye et al., 2015; Rybak et al., 2015), however due to
the high computational cost to implement such methods in the context of this dissertation,
we leave that for future work.

12 Remember that our system are rotated by the PA angle of 11.9◦.
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For the most probable model parameters we can compute the total mass of the
lens galaxy. For that, we use analytic expression derived by Mitzkus; Cappellari; Walcher
(2017) to calculate the mass of an axisymmetric MGE decomposition within a sphere of a
given radius13.

Assuming an Einstein Ring of 1.56′′ (Dye et al., 2014), the total mass (stellar +
black hole + dark matter) inside a sphere with this radius is 2.265× 1011M�, where the
dark matter represents ∼ 54% of this mass.

To make a fairer comparison with other works, we also compute the mass inside the
half-light radius Re = 1.156′′, estimated following the procedure described14 in Cappellari
et al. (2013). We found a total mass of 1.650× 1011M�, with a fraction of dark matter
equal to 45%. This fraction of dark matter marginally agrees with lensing studies using
lens galaxies at similar redshift and effective radius (see Figure 6 of Sonnenfeld et al.). We
also notice that the external shear is small, such that the contribution of the SDP.81 lens
galaxy is dominant in the lens modelling.

Finally, we can discuss the elephant in the room. Our model is excluding GR
within 1σ!! However, the uncertainties provided by the Bayesian inference are statistical
uncertainties, and a careful attention to them quickly reveals that our estimates are
underestimated, and we need to estimate the systematics involved in the analysis. Indeed
we already expect that, since the inference on γPPN is dominated by systematic effects
(e.g., Cao et al., 2017; CT18).

Estimating the systematics involved in our analysis is not an easy task, once we need
to take into account different mass models, stellar templates used to obtain the kinematical
constraints for the dynamical modelling, the impact of the cosmological parameters, the
assumptions of the orbits of the stars, and so on. This not only requires a lot of time to
analyze, but also more computational power. Unfortunately, both are beyond what could
be done during the two-year duration of the Masters, so we leave this analysis for a future
work.

As a compromise, we expect our inference to have a systematic error between the
one obtained by Cao et al. (2017) and the inference made by CT18. It means that, we
expect an upper limit about of ∼ 25% and a lower limit about of∼ 9% of systematic effects
in our inference.

The worst-case scenario leaves us with γPPN = 1.0092± 0.0001(stat) ± 0.2523(sys),
which is in agreement with GR, inside 1σ. In the best-case scenario, the final inferred
γPPN = 1.0092± 0.0001(stat) ± 0.0908(sys), still in accordance with the GR, within 1σ
confidence limit. It is important to remember that we assume that γPPN is constant across
the relevant length scale of SDP.81 lens galaxy, and a well defined Newtonian limit exist.
13 This can be done using the Jampy routine mge_radial_mass.
14 And implemented in Jampy package as mge_half_light_isophote.
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This means that our result is valid for the galactic scale within the Einstein Ring (∼ 7.150
kpc), where we perform our measurements.

We end this Section emphasizing the necessity for studies that seek to better
understand what are the sources of systematic errors and how they impact the inference
of the Post-Newtonian parameter, and also how the assumptions made could change our
inference. Shedding light on this knowledge can help us better understand the limits of
where we are testing Einstein’ theory.
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7 Summary & Perspectives

Since its foundation, General Relativity has been tested in different regimes and
scales. And to this day, GR has proved to be the best theory of gravitation we have, even
though some problems such as the Hubble Tension and the incompatibility with Quantum
Mechanics are still unsolvable.

In this work we extend the limits of tests of GR to galaxy scales and intermediate
redshift. For that, we use the SDP.81 system at redshift zl = 0.299, and high-resolution
data coming from the best observatories/instruments: ALMA, VLT/MUSE, HST/WFC3.
This test was performed in a limit where we consider the Post-Newtonian approach valid
under some assumptions, in such a way that we were able to simultaneously model the
gravitational lens phenomenon and the lens galaxy dynamics. Such simultaneous modelling
allow us to infer the Post-Newtonian parameter.

In order to perform this analysis, in Chapter 2 we presented the fundamentals of
galaxy dynamics, starting from the distribution function that describes the motion of the
stars in a steady-state system, until the Jeans Equations for an axisymmetric system. We
emphasized that this phenomenon is described only by the Newtonian potential. We also
make some connections between theory and observations.

In Chapter 3, we introduce the gravitational lens formalism, which describes the
deflection of light due to gravitational fields. This phenomenon is a direct consequence
of GR, and therefore it can be sensitive to both the classical Newtonian potential and a
possible potential due to space-time curvature.

Chapter 4 is dedicated to the data used in this dissertation. We present some
details about the instruments, and about the quality of the data we have. Although our
deflected source (ALMA) and lens photometry (HST) data are great in terms of angular
resolution, the IFU related data (MUSE) is not of such high quality, largely due to the
redshift of the observed lens galaxy.

In Chapter 5 we spent a lot of time presenting all the numerical methods used in
this work, which can be considered the central key of our modelling. We go through the
methods for modelling the spectral information (pPXF) and obtain kinematic maps, the
methods used for describe the lens mass model and the gravitational potential (MGE),
the dynamical modelling (JAM), the semilinear inversion method used for lens modelling
(AutoLens), and finally how we combine all the information in a self-consistent model,
that can be study using a Bayesian framework (dynesty). We still provide a Proof of
Concept as the way to validate our method.
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This brings us to Chapter 6, where we finally present the results for our most
probable model. Our combined analysis allowed us not only to test GR, but also to (briefly)
study the mass profile of the lens galaxy. Our most likely model predicts a dark matter
fraction of ∼ 45% of the total mass within an effective radius, which is in agreement
with previous studies of galaxies of the same mass and redshift. The reconstructed source
presented similar morphology to that found in other studies of the same system using
the same ALMA data, and the small differences in the reconstruction of the source can
be related to differences in the source plane gridding and regularization parameter used
for the lens reconstruction. The kinematical map derived from the most probable model
showed a considerable agreement with the data, except for a small region in the lens galaxy,
which coincides with the location of the more intense emission of the background source.
As for the lens model, the agreement with the data is surprising.

The inference on the Post-Newtonian parameter showed to be tricky, once the
most probable model γPPN = 1.0092± 0.0001 is deviating from GR within 1σ confidence
limit. However, this inference is dominated by systematic errors, as has been reported
in other works with a similar nature. Unfortunately, it was not possible to extend our
analysis to the point of estimating the systematic uncertainties present in this work. So,
as a compromise, we consider two possible scenarios based on previous studies.

The worst scenario considers that systematic errors are in the order of 25% (Cao et
al., 2017), which would lead us to γPPN = 1.0092±0.0001(stat) ± 0.2523(sys), in agreement
with GR, inside 1σ confidence limit. For the best scenario, the systematic error is on the
order of 9% (Collett et al., 2018), such that γPPN = 1.0092± 0.0001(stat) ± 0.0908(sys)
at 1σ confidence limit, consistent with the prediction of one from GR. In other words,
General Relativity has passed another test.

Modelling the SDP.81 system, we were able to study many features of the system,
ranging from its dark matter content to its kinematics, ending perhaps in the most relevant
information for this work, the inference of γPPN at intermediate redshift. To our knowledge,
this is the more complex and detailed mass modelling performed for this lens system.
However a lot of work still can be done.

The most important is to refine the inference in terms of the systematic uncertainties
and exploration of the space parameter. This requires testing different mass models (e.g.
the impact of different dark matter profiles, change the assumptions on mass-to-light ratio),
testing different stellar templates in the kinematical analysis, a better understanding of the
kinematic maps once we have two bins in which the spectra are possibly contaminated by
the lensed galaxy emission, and quantifying the impact of the cosmological model assumed.
In principle all of these can be done, but more time is needed.

A secondary goal is to refine the source reconstruction, searching for better choices
of regularization coefficient and source grid resolution. It would also be interesting to study
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how reconstruction can be better (or worse) using an adaptive grid.

Lastly, there is a lot of information present in this model, such that a deeper
analysis of it can bring much more astrophysical information about the lens galaxy at
zl = 0.299. For example, we can use the information on the Υ (mass-to-light ratio) profile
to investigate the Initial Mass Function (IMF) of the lens galaxy. We can also study the
IMF from stellar population modelling of the MUSE data.

We end this work remembering that large data surveys are to come and with
instruments with ever better resolutions. This paves the way for us to continue testing GR
in even more extreme situations, and hopefully, in the future, we will better understand
the tensions surrounding it.
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APPENDIX A – Point mass deflection angle
in PPN approach

Following Meneghetti (2016) (hereafter, MG16) we want to show some insights
for the calculation of the point mass deflection angle using the line element (1.2) under
the assumption made in the Section 1.2, just to remember: i) The space-time metric is
given by the line element (1.2), which is in the Newtonian gauge and consider only scalar
perturbations; ii) There is a well-defined Newtonian limit, where the potentials Φ and Ψ
still follow the Poisson equation; iii) The gravitational slip parameter is constant on the
relevant scales being studied. For a more rigorous derivation of the deflection angle, see
also Schneider; Ehlers; Falco (1992).

Starting by the line element (1.2), consider a null space-time interval, i.e, dS2 = 0.
In Cartesian coordinates and flat space (remember, we are considering the weak field
approximation) we have:

(1 + 2 Φ
c2 )c2dt2 = (1− 2Ψ

c2 )dr2, (A.1)

were we denote dr = dxdydz. So, the speed of light in the gravitational field is

c′ ≡ dr

dt
= c

√
(1 + 2Φ/c2)
(1− 2Ψ/c2) . (A.2)

By construction, we have assumed that Φ/c2 and Ψ/c2 are much smaller than one,
so we can expand (A.2) in terms of Taylor series,

√
1 + 2Φ/c2 = 1 + 1

2
2Φ
c2 +O2(Φ/c2),

1√
1− 2Ψ/c2

= 1 + 1
2

2Ψ
c2 +O2(Ψ/c2),√

(1 + 2Φ/c2)
(1− 2Ψ/c2) =

[
1 + Φ/c2 +O2(Φ/c2)

] [
1 + Ψ/c2 +O2(Ψ/c2)

]
= 1 + (Φ + Ψ)

c2 +O2 ≈ 1 + (Φ + Ψ)
c2 . (A.3)

Thus, the refraction index eq. (1.20) of MG16 is just,

n = c/c′ = 1
1 + (Φ + Ψ)/c2 ≈ 1− Φ + Ψ

c2 . (A.4)
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Comparing this expression with the one found in MG16 (eq. 1.20), we can see that the
refraction index in PPN is modified only by the Ψ potential, and when Ψ = Φ (GR
case), we recovery the standard one. Now, assuming the parametrization γPPN = Ψ/Φ, we
rewrite the refraction index above in terms of γPPN,

n = 1− (1 + γPPN) Φ
c2 . (A.5)

And, if γPPN is constant, we can just replace 2Φ→ (1 + γPPN)Φ in MG16 equations, where
Φ still the Newtonian potential. Therefore, the deflection of a light ray coming from the
+ẑ direction and passing through the lens in |z| = 0, with impact parameter ξ, is given by

α̃(ξ) = (1 + γPPN)
c2

∫ +∞

−∞
∇⊥Φdz, (A.6)

where ∇⊥ is the gradient perpendicular to the light path. This equation is the same as
(1.36) in MG16, when GR is assumed and γPPN = 1.

For completeness, consider a lens formed by a point mass. Its gravitational potential
is

Φ(r) = −GM
r
, (A.7)

with r =
√
x2 + y2 + z2 and M the total mass. If the light is traveling parallel to z-axis,

the modulus of the impact parameter is |ξ| =
√
x2 + y2 ≡ ξ, and the potential can be

written as
Φ(r) = − GM√

ξ2 + z2
.

On the other hand,

∇⊥Φ =
[
∇xΦ(x, y, z)
∇yΦ(x, y, z)

]
= GM

r3

[
x

y

]
,

α̃(ξ) = (1 + γPPN)GM
c2

[
x

y

]∫ +∞

−∞

1
(ξ2 + z2)3/2dz. (A.8)

This integral can be solved applying a trigonometric transformation (z = ξ tan θ)1. The
final result is just

α̃(ξ) = (1 + γPPN)2GM
ξ2c2

[
x

y

]
= (1 + γPPN)2GM

c2
ξ̂

ξ
, (A.9)

where we define the versor ξ̂ = ξ/ξ, perpendicular to the light ray.
1 Or using the computer algebra software you like more.
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Once again, if we assume GR, the last equation is reduced to the deflection angle
derived by Einstein in 1915,

α̃(ξ) = 4GM
c2

ξ̂

ξ
, (A.10)

and confirmed in 1920 by Dyson; Eddington; Davidson (1920).
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APPENDIX B – List of softwares and
packages

All the scripts and data used in this work can be accessed through the link
<https://github.com/carlosRmelo/Master-Degree.git>. Some documentation is still under
developmente, but most of the scripts contains comments and Jupyter Notebooks1 (which
come with a ‘.ipynb’ suffix) guiding the reader. Comments, suggestions and doubts are
always welcome, so feel free to send an email to carlos.melo@ufrgs.br.

The scripts were written mostly for the Python Programming Language2, using
the Python version 3.7.6. They are also tested with Python version 3.6.3, and no bugs are
found. The Operational system where the scripts were developed is Ubuntu 20.04.2 LTS
(Focal Fossa)3, with architecture x86_64.

We also emphasize that whenever possible we try to make our plots more accessible,
using the CMasher color library, that tries to make colormaps more accessible, and
informative to color-vision deficiency (CVD; color blindness) people.

The table bellow shows the principal Python packages used in this work. The
first column is the package name, second column is the version of package used in our
implementation, third column the installation method, and finally the fourth column is
the related paper. Some of these packages have their own dependencies, that may not be
listed in this table. We strongly recommend the reader check the documentation of the
packages for more information, and even for tutorials and “how to use” protocols.

1 <https://jupyter.org/>
2 <https://www.python.org/>
3 <https://releases.ubuntu.com/20.04/>

https://github.com/carlosRmelo/Master-Degree.git
mailto:carlos.melo@ufrgs.br
https://jupyter.org/
https://www.python.org/
https://releases.ubuntu.com/20.04/
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Python Packages List
Package Version Installation method Related paper

Astropy 4.1 pip Price-Whelan et al., 2018
CMasher 1.6.2 pip van der Velden, 2020
dynesty 1.1 pip Speagle, 2020
JamPy 6.1.2 pip Cappellari, 2008

Matplotlib 3.3.3 pip Hunter, 2007
MgeFit 5.0.13 pip Cappellari, 2002
MPDAF 3.4 pip Piqueras et al., 2017
Numba 0.50.1 pip Lam; Pitrou; Seibert, 2015
NumPy 1.18.5 pip Harris et al., 2020

PlotBin 3.1.3 pip ——
pPXF 7.2.1 pip Cappellari, 2016a

PyAutoLens 1.1.4 pip Nightingale et al., 2021
PyRAF 2.1.15 Astroconda Channel4 Science Software Branch at STScI, 2012

schwimmbad 0.3.1 pip Price-Whelan; Foreman-Mackey, 2017

SciPy 1.5.2 pip Virtanen et al., 2020
VorBin 3.1.4 pip Cappellari; Copin, 2003

4 The instalation follows this tutorial: <https://youtu.be/3EXJRdH2mSM>

https://youtu.be/3EXJRdH2mSM
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APPENDIX C – MGE and Lensing
Formalism

According to MGE formalism (Section 5.2), the projected surface brightness for a
galaxy can be written as

I(x′, y′) =
N∑
j=1

Lj
2πσ2

j q
′
j

exp
[
− 1

2πσ2
j

(
x′j

2 +
y′j

2

q′j
2

)]
. (C.1)

This parametrization assumes that all Gaussians are concentric and centered in the
galaxy center, whose position coincides with the origin of the coordinate system. We can
easily convert this superficial brightness distribution into a superficial mass distribution
multiplying it by a mass-to-light ratio

Υj = Mj/Lj. (C.2)

Thus, we define the surface mass density as

Σ(x′, y′) =
N∑
j=1

Mj

2πσ2
j q
′
j

exp
[
− 1

2πσ2
j

(
x′j

2 +
y′j

2

q′j
2

)]
(C.3)

Once the gravitational lensing phenomenon is sensible to the projected mass along
the line-of-sight, the expression (C.3) is appropriate to compute the deflection angle (3.12).
However, instead of computing the deflection angle directly from the projected mass,
we prefer (for the MGE case) to do that through the lens potential ψ(x′, y′). From the
gravitational lensing theory, the deflection angle is related to the lens potential by (eq.
3.17),

α =∇ψ(x′, y′), (C.4)

where α is the reduced deflection angle, ∇ is the gradient operator in two dimensions
written in coordinates of the sky plane, and ψ(x′, y′) is the lens potential. The lens potential
can be obtained from the Poisson equation (3.19),

∇2ψ(x′, y′) = 2κ(x′, y′), (C.5)

where κ(x′, y′) is the convergence, or the projected mass density per unit of critical density,
eq. (3.13).

To calculate the deflection angle, we consider that the projected mass density is
given by (C.3), and from it we derive the lens potential using (C.5).
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We start pointing out that the distribution (C.3) is given by a set of concentric
ellipses, in a such a way that we can use the Homoeoid Theorem (Binney; Tremaine 2008,
equation 2.140). The theorem states that, if a mass distribution is in the form

ρ = ρ(m2), m2 = a1
∑
i

xi
a2
i

, (C.6)

then the gravitational potential associated is

Φ(r) = −πG
[
a2a3

a1

] ∫ ∞
0

[Γ(∞)− Γ(m(τ))]
[(τ + a2

1)(τ + a2
2)(τ + a2

3)]1/2
dτ, (C.7)

where

Γ(m(τ)) =
∫ m2(τ)

0
ρ(m2)dm2, m2(τ) = a1

∑
i

xi
a2
i + τ

. (C.8)

In these expressions, m2 defines an elliptical concentric coordinate, the index i varies from
(1, 2, 3) = (x, y, z)1, and the coefficients ai are the semi-axis of the ellipsoid formed by
the coordinate m2. Beside that, the parameter τ ≥ 0 labels the concentric surfaces of the
ellipsoid.

This theorem assumes that the Poisson equation is in the classical form ∇2Φ(r) =
4πGρ(m2). For this reason, we re-write the equation (C.5) as

∇2ψ = 2Σ(x′, y′)
Σc

= 24πG
c2

DLDLS

DS

Σ(x′, y′)

= 4πG
[

2
c2
DLDLS

DS

Σ(x′, y′)
]

= 4πGΣ̂(x′, y′), (C.9)

where we define
Σ̂(x′, y′) = 2

c2
DLDLS

DS

Σ(x′, y′). (C.10)

Therefore, we will use the equations (C.7) and (C.8) with Φ replaced by ψ, and ρ replaced
by Σ̂.

Finally we can use the equation (C.7) to compute the lens potential ψ(x′, y′). We
define the coordinate

m2
j = x′2 + y′2

q′j
2 , (C.11)

so, the projected mass profile is

Σ̂(x′, y′) = Σ̂(m2) = 2
c2
DLDLS

DS

∑
j

Mj

2πσ2
j q
′
j

exp
[
− 1

2πσ2
j

m2
j

]
. (C.12)

1 It is important to note that the theorem still valid for different dimensions, without losing the generality.
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In addition, each Gaussian component is independent, which turns possible to treat
only one j component and in the end to sum over all j. So, we define

Σ̂j(x′, y′) = Aj exp
[
− 1

2πσ2
j

m2
j

]
, (C.13)

with
Aj ≡

2
c2
DLDLS

DS

Mj

2πσ2
j q
′
j

. (C.14)

We start by calculating the term Γ(∞). Using equation (C.8), we get

Γj(∞) =
∫ ∞

0
Σ̂j(x′, y′)dm2

j = 2Aj
∫ ∞

0
mj exp

[
− 1

2σ2
j

m2
j

]
dmj, (C.15)

which is a simple Gaussian integration, whose result is

Γj(∞) = −2Ajσ2
j exp

[
− 1

2σ2
j

m2
j

]∣∣∣∣∣
∞

0

Γj(∞) = 2Ajσ2
j . (C.16)

Similarly,

Γj(mj(τ)) = −2Ajσ2
j exp

[
− 1

2σ2
j

m′j
2
]∣∣∣∣∣
mj(τ)

0

Γj(mj(τ)) = −2Ajσ2
j

(
exp

[
− 1

2σ2
j

m2
j(τ)

]
− 1
)
. (C.17)

Thus,

Γj(∞)− Γj(mj(τ)) = 2Ajσ2
j exp

[
− 1

2σ2
j

m2
j(τ)

]
. (C.18)

Identifying a1 = 1 and a2 = q′j in equation (C.11), the potential (C.7), here the
two-dimensional lens potential, can be placed as

ψj(x′, y′) = −πGq′j

∫
∞

0

2Ajσ2
j exp

[
− 1

2σ2
j

(
x′2

τ+1 + y′2

τ+q′j

)]
[
(τ + 1)(τ + q′j

2)
]1/2 dτ.

ψj(x′, y′) = −2πGq′jσ2
jAj

∫
∞

0

exp
[
−m2

j(τ)/(2σ2
j )
][

(τ + 1)(τ + q′j
2)
]1/2dτ. (C.19)

Now, we do the substitution

u2 = 1
1 + τ

→ 2u du = − 1
(1 + τ)2dτ, (C.20)
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which when τ → 0, u→ 1, and τ →∞, u→ 0. This substitution also allows to write

du = −1
2u(1 + τ)2dτ → dτ = −2

u3 du, (C.21)

as well as,

τ = 1− u2

u2 , and q′j
2 + τ =

1− (1− q′j2)u2

u2 . (C.22)

Therefore,

(1 + τ)(q′j2 + τ) = 1
u2

1− (1− q′j2)u2

u2

1[
(1 + τ)(q′j2 + τ)

]1/2 = u2[
1− (1− q′j2)u2

]1/2 . (C.23)

On the other hand, the coordinate m2
j(τ) is

m2
j(τ) = x′2

1 + τ
+ y′2

q′j
2 + τ

m2
j(τ) = u2

[
x′2 + y′2

1− (1− q′j2)u2

]
, (C.24)

where we use equations (C.20) and (C.22). Using the above expression and (C.23), we can
rewrite (C.19) as

ψj(x′, y′) = −2πGq′jσ2
jAj

∫
0

1

exp
[
−−u2

2σ2
j

(
x′2 + y′2

1−(1−q′j2)u2

)]
[
1− (1− q′j2)u2

]1/2
u−2

(
− 2
u3

)
du.

ψj(x′, y′) = −4πGq′jσ2
jAj

∫
1

0

f ′j(u)
u

du, (C.25)

where we define the function f ′j(u) as being

f ′j(u) ≡ exp
[
−−u

2

2σ2
j

(
x′2 + y′2

1− η2u2

)]
1

(1− η2u2)1/2 , (C.26)

with η2 = 1− q′j2.
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Now, let us take a look ate the constant factor in (C.25).

4πGq′jσ2
jAj = 4�π G��q

′
j �
�σ2
j
�2
c2
DLDLS

DS

Mj

��2π
�
�σ2
j �
�q′j

= 4GMj

c2
DLDLS

DS

×
(

Σc

Σc

)
︸ ︷︷ ︸

multiply by one

=
���

���
���:

1
π

(
4G
c2

)(
c2

4πG

)
�
�
�
��DLDLS

DS

Mj

Σc �
�
�
��DS

DLDLS

= Mj

πΣc

. (C.27)

And finally, the lens potential, component j is given by

ψj(x′, y′) = −Mj

πΣc

∫ 1

0

f ′j(u)
u

du. (C.28)

The reduced deflection angle (C.4), now is given by

αx′(x′, y′) =
∑
j

∂ψj(x′, y′)
∂x′

, (C.29)

αy′(x′, y′) =
∑
j

∂ψj(x′, y′)
∂y′

, (C.30)

where the summation is over all the Gaussians that describe the projected mass density
profile, which generates the lens potential, and α(x′, y′) = (αx′ , αy′).

Also, as the variable u is independent of (x′, y′), we can change the order of the
integral and derivative in (C.29), such that

∂ψj
∂x′

= ∂

∂x′

[
−Mj

πΣc

∫ 1

0

f ′j(u)
u

du

]
= −Mj

πΣc

[∫ 1

0

∂f ′j(u)
∂x′

du

u

]
, (C.31)

But,

∂f ′j(u)
∂x′

= 1
(1− η2u2)1/2

−u2

2σ2
j

2x′ exp
[
−−u

2

2σ2
j

(
x′2 + y′2

1− η2u2

)]
∂f ′j(u)
∂x′

= −u
2 x′

σ2
j

f ′j(u). (C.32)

Therefore,
∂ψj
∂x′

= −Mj x
′

πσ2
jΣc

∫ 1

0
u f ′j(u)du. (C.33)



162 APPENDIX C. MGE and Lensing Formalism

Proceeding in a similar way for the derivative with respect to y′, we get

∂ψj
∂y′

= − Mj y
′

πσ2
jΣc

∫ 1

0

u f ′j(u)
(1− η2u2)du. (C.34)

Thus, the reduced deflection angle is written in its final form as

αx′(x′, y′) = 1
πΣc

∫ 1

0
udu

∑
j

Mj

σ2
j

x′

(1− η2u2)1/2 exp
[
−−u

2

2σ2
j

(
x′2 + y′2

1− η2u2

)]
, (C.35)

αy′(x′, y′) = 1
πΣc

∫ 1

0
udu

∑
j

Mj

σ2
j

y′

(1− η2u2)3/2 exp
[
−−u

2

2σ2
j

(
x′2 + y′2

1− η2u2

)]
. (C.36)

These two equations are the same as derived by van de Ven et al. (2010). Also these two
integral can be solved by well-known numerical Gaussian quadrature.

C.1 A note about units
Units of measure are very important, so let us give them some attention now.

Assuming that the angular diameter distance is given in megaparsec (Mpc), and
labelling it as D, we can convert an angular measurement in arcsec (L[′′]) to parsec (L[pc]),
multiplying it by a constant factor pc = Dπ

0.648
2, such that

L[pc] = pc× L[′′] = Dπ

0.648L[′′]. (C.37)

Then, a measure in parsec can be transformed in a measure in arcsec just inverting the
above equation

L[′′] = 0.648
Dπ

L[pc]. (C.38)

On the other hand, a measure in arcsec (L[′′]) can be transformed in a measure in
radians (L[rad]), applying the conversion

L[rad] = π

180× 3600L[′′] → L[′′] = 180× 3600
π

L[rad]. (C.39)

This lead us with,

L[pc] = Dπ

0.648
180× 3600

π
L[rad] = 106DL[rad], (C.40)

2 The factor 0.648 comes from the conversion of degress to arcsec, and takes in account the order of
magnitude M = 106.
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where we use (C.37) and (C.39). Therefore, to obtain a measure in units of radians, we
need to multiply the corresponding value, in parsecs, by 1

106D
.

Now suppose that the critical surface density is given in units of solar masses
per megaparsec square, i.e., [Σc] = M�/(Mpc2). Applying conversion (C.40) to its length
dimension, we have

Mpc2 = 1012pc2 × 1
(106D)2︸ ︷︷ ︸

conversionfactor

= rad2 1
D2 . (C.41)

So,
M�

Mpc2 = M�
(rad/D)2 = M�

rad2D
2. (C.42)

And the critical surface density can be expressed in units of solar masses per radian square,
just multiplying the correspond value in solar masses per megaparsec square by the square
of luminosity distance in parsec

Σc[
M�

rad2 ] = Σc[
M�

Mpc2 ]D2[pc]. (C.43)

Using this units for the critical surface density, we are able to use x′, y′ and σj in radians
too, and the correspondent reduced deflection angle also is given in radian units.
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APPENDIX D – Two dimensional posterior
distribution

Figure 41 shows the two-dimensional posterior distribution for the most probable
model. The shaded areas are, respectively, 10%, 40%, 65%, and 85% quantiles. The dashed
lines are 1σ credible interval.
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Figure 41 – Two dimensional posterior distributions for the parameters of most probable
model of SDP.81.
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APPENDIX E – Press Release: Testando a
Relatividade Geral em Escala de Galáxias

Se você é um terráqueo e já foi criança algum dia, então com certeza já sentiu os
efeitos da gravidade na própria pele. O interessante talvez seja notar que é essa mesma
gravidade a responsável por você cair de uma árvore em direção ao chão e por manter o
planeta Terra em órbita do Sol.

Atualmente, a melhor teoria capaz de explicar o fenômeno da gravidade é a
Relatividade Geral, teoria fundada por Einstein no começo do século XX. Essa teoria
passa a ver a gravidade não mais como uma força que atraía todos os corpos com massa,
mas sim como uma deformação do próprio espaço-tempo (leia-se deformação do próprio
Universo) causada por corpos que possuem massa e energia. Essa deformação do próprio
Universo é o que sentimos por gravidade. E mais, qualquer partícula (fosse uma pessoa,
um planeta ou a própria luz) que se movesse nesse espaço-tempo curvado deveria se mover
seguindo essas curvas. O exemplo mais famoso deste efeito são as lentes gravitacionais,
que ocorrem quando dois corpos estão alinhados na linha de visão de um observador,
e o corpo mais próximo é muito massivo. Devido a grande massa do corpo próximo ao
observador, o espaço-tempo será curvado de tal maneira que a luz emitida pelo corpo mais
distante poderá ser vista pelo observador, embora ela apareça de maneira distorcida. Nesse
contexto, o objetivo massivo causador da distorção é chamado de lente gravitacional, e o
objeto mais distante é chamado de fonte.

A Figura 1 pode ajudar a entender esse fenômeno. Se entre você e esse simpático
cachorrinho à esquerda houvesse um corpo muito massivo, digamos uma galáxia inteira,
pela teoria do Newton você não seria capaz de observar o cachorrinho ao fundo, pois
sua visão seria bloqueada pela galáxia. Porém, pela Teoria da Relatividade Geral, essa
galáxia muito massiva curvaria o caminho que a luz deve percorrer, de tal maneira que
você conseguiria ver o cachorrinho, embora de uma maneira bem estranha, como mostra o
painel da direita.

Contudo, mesmo sendo a melhor explicação para o fenômeno de gravitação que
conhecemos na atualidade, a Relatividade Geral possui alguns problemas com os quais
não consegue lidar. Em particular, ela não é capaz de explicar algumas observações feitas
sem precisar incluir novos elementos (como matéria e energia escura) nunca observados
diretamente. Por essa, e outras razões, é necessário que continuemos testando a Relatividade
Geral em novas escalas e ambientes.

E é justamente isso o que foi feito no projeto do mestrando em Astrofísica realizado
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Figura 1: Efeito de lentes gravitacionais em um cachorrinho. Fonte: Dr. Mattia Negrello
website

no Instituto de Física da UFRGS, Carlos Roberto. Em seu trabalho, ele estende um
teste da teoria desenvolvida por Einstein para novas distâncias, procurando entender se a
Relatividade Geral continua sendo válida, mesmo quando nos distanciamos (e muito) da
nossa vizinhança galáctica.

Nesse teste, ele usa uma abordagem já estabelecida por outros autores, que consiste
em usar o fenômeno de lentes gravitacionais em combinação com a descrição do movimento
das estrelas da galáxia que está agindo como lente gravitacional. Isto é, observando o
movimento das estrelas e a distorção causada por sua massa, somos capazes de verificar a
validade da teoria einsteiniana.

No projeto, o mestrando Carlos utilizou o sistema conhecido como SDP.81 (Figura
2), cujo galáxia lente está a aproximadamente 5 bilhões de anos luz de distância, e que
possuía todos os dados necessários para esse tipo de análise, incluindo dados adicionais
de alta resolução. A análise preliminar dos resultados obtidos mostraram que mais uma
vez a Relatividade Geral continua em sua posição de destaque como a teoria que melhor
descreve o fenômeno da gravitação, pois mais uma vez ele se mostrou bem sucedida no
teste que foi realizado.
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Figura 2: Imagem do sistema SDP.81. À esquerda está uma imagem capturada pelo
telescópio espacial Hubble da galáxia que age como lente gravitacional, deformando o
espaço-tempo. Já à direita, vemos a imagem distorcida da galáxia fonte, capturada pelo
interferômetro ALMA. Devido aos diferentes comprimento de onda em que operam os
instrumentos, a galáxia que age como lente não é vista na imagem da direita.
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