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State-of-the-art 3-D Monte Carlo Device Simulation: from n-MOSFETs to n-FinFETs 

 

ABSTRACT 

 

A novel 3-D TCAD Monte Carlo n-type semiconductor device simulator is presented in this 

work. The first step to achieve such comprehensive simulator was to develop a n-type bulk-Si 

simulator to be used as the basis for the device simulator. A planar PMOS simulator was then 

fundamentally adapted to a planar NMOS device simulator by incorporating the n-type bulk-

Si characteristics and properly changing far-reaching aspects such as carrier dynamics, 

boundary conditions, scattering mechanisms and their occurrence rates, and band structure. 

Later, the NMOS device simulator was expanded to tridimensional FinFET structures, 

accounting for the changes in the device geometry and its impact in boundary checking, the 

materials on each region, new input variables, potential calculation, velocity and energy 

calculations, carrier and dopant positions on the new 3-D device, source, drain and gate 

contacts, and charge conservation. The simulator accounts for real-space treatment of carrier-

carrier and carrier-ion interactions. This allows the study of the impact of individual, localized 

charges and their impact on device variability, besides of avoiding the double-counting of the 

Coulomb forces which is traditionally attached to momentum-space modelling. In order to 

substantiate the obtained results, the bulk-Si characteristics were validated with experimental 

data, and the NMOS and n-FinFET behavior was analyzed and compared to the expected 

characteristics. The FinFET simulator was then used to obtain novel insights in the study of 

hot-carrier degradation, which is a major reliability concern on state-of-the-art transistors. The 

3-D particle-based simulator was also employed to evaluate ballistic transport under a carrier-

centric perspective in deeply scaled FinFETs, and it is now being used to study trap coupling 

in such devices. 

 

Keywords: 3-D TCAD particle-based simulation. Monte Carlo. FinFET. MOSFET. 

Reliability. Variability. 

  



Simulação 3-D Monte Carlo de Dispositivos: de n-MOSFETs a n-FinFETs  

 

RESUMO 

 

Um simulador 3-D TCAD Monte Carlo de dispositivos semicondutores inédito é apresentado 

nesse trabalho. Primeiramente, desenvolveu-se um simulador de substrato de silício tipo n, 

usado como base para o simulador de dispositivos. Um simulador planar PMOS foi então 

substancialmente adaptado para simular dispositivos NMOS através da incorporação das 

características do silício tipo n e de mudanças necessárias em aspectos como dinâmica de 

partículas, condições de fronteira, mecanismos de espalhamento e suas taxas de ocorrência e a 

estrutura de bandas do material. Posteriormente, o simulador NMOS foi expandido para 

estruturas FinFET tridimensionais, levando em consideração as mudanças na geometria do 

dispositivo e sua repercussão na checagem das fronteiras, nos materiais em cada região, novas 

variáveis de entrada, cálculo do potencial, velocidade e energia dos portadores, posições dos 

portadores e dos dopantes na nova estrutura 3D, contatos de fonte, dreno e porta e 

conservação de carga. O simulador conta com tratamento no espaço-real das interações 

portador-portador e portador-íon. Isso possibilita o estudo do impacto de cargas individuais e 

localizadas e seu impacto na variabilidade do dispositivo, além de evitar a dupla-contagem 

das forças de Coulomb que tradicionalmente são associadas à modelagem no espaço 

momento. A fim de substanciar os resultados obtidos, as características do substrato de silício 

foram validadas com dados experimentais, e o comportamento dos dispositivos NMOS e n-

FinFET foram analisados e comparados com as características esperadas. O simulador 

FinFET foi então usado para proporcionar novo entendimento do estudo de degradação por 

hot-carriers, que é um grande problema de confiabilidade em transistores modernos. O 

simulador 3-D de partículas foi também empregado para analisar o transporte balístico sob 

uma perspectiva centrada no portador em FinFETs, e está sendo utilizado agora para estudar 

acoplamento de armadilhas nesses dispositivos. 

 

Palavras-chave: Simulação 3-D TCAD baseada em partículas. Monte Carlo. FinFET. 

MOSFET. Confiabilidade. Variabilidade. 
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1 INTRODUCTION 

       

The constant reduction of semiconductor device dimensions gave rise to an increase in 

variability, leading to randomly distributed device parameters and circuit response; in parallel, 

device scaling has made the impact of charge trapping at localized states in the gate dielectric 

or at the Si/SiO2 interface grow significantly, turning it into a relevant reliability concern on 

modern technologies. It has become therefore mandatory to develop proper models and 

simulators that are able to accurately predict device electrical behavior and its fluctuations due 

to variability issues. Device simulation may enable the prediction of device behavior and 

dependence on different parameters without the need to manufacture the device and perform 

experiments, leading to reduction of manufacturing costs and to performance improvement in 

future technologies. In this regard, technology computer aided design (TCAD) tools can be 

very useful, allowing the user to access internal information of device parameters and 

structure, enabling the evaluation of different scenarios rapidly, decreasing design cycle time, 

giving insight for next trials on manufacture and shortening time to market. 

In order to address the market and academy needs, constant efforts have been made to 

implement fast and accurate device simulators. Generically, there are two main components 

of semiconductor device simulation that must be solved self-consistently with one another: 

transport equations and electromagnetic fields. 

The fields are driving forces for charge transport and arise from external sources, 

charge distribution or current densities. The electric and magnetic fields can be obtained from 

the solution of Maxwell's equations, but, in certain conditions, it is only necessary to evaluate 

the quasi-static electric field resulting from Poisson's equation, given by Equation 1, what 

significantly simplifies the calculations:  

𝜕2𝜓

𝜕𝑥²
+
𝜕2𝜓

𝜕𝑦²
+
𝜕2𝜓

𝜕𝑧²
= −

𝜌(𝑥, 𝑦, 𝑧)

𝜀𝑠
  , (1) 

in which 𝜓 is the electric potential, 𝜌 is the free charge density and 𝜀𝑠 is the material 

permittivity. 

The transport equations, alternatively, can have semi-classical or quantum approaches, 

being the latter more precise, but frequently prohibitively time-consuming. The semi-classical 

models have been traditionally used in device simulation and describe the charge transport via 

different solving approaches to the Boltzmann Transport Equation (BTE), employing 
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techniques like drift-diffusion, hydrodynamic equations and Monte Carlo method. The BTE is 

given by 

𝜕𝑓(𝒓, 𝒌, 𝑡)

𝜕𝑡
+
1

ℏ
∇𝐤E(𝐤) . ∇𝐫𝑓(𝒓, 𝒌, 𝑡) + 

𝑭

ℏ
∇𝐤𝑓(𝒓, 𝒌, 𝑡) =

𝜕𝑓(𝒓, 𝒌, 𝑡)

𝜕𝑡
|
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

 , (2) 

where ħ is the reduced Planck constant, 𝑓(𝒓, 𝒌, 𝑡) is the one-particle distribution function and 

the right-hand side is the rate of change of the distribution function due to random collisions 

(VASILESKA, 2016). 

Figure 1 shows different transport models, according to their degree of exactness and 

implementation difficulty, what characterizes a traditional trade-off.  

Figure 1 - Hierarchy of Transport Models 

 

Source: Elaborated by the author 

The Monte Carlo method has been extensively used for particle nonequilibrium 

transport calculation in semiconductor materials and devices in the past decades. It is a 

powerful tool to evaluate transport properties of carriers in both bulk semiconductor and 

device simulation. In a semiconductor, a large number of carriers interact mutually, 

characterizing an intricate many-body system. In order to simplify this analysis when this 

system can be considered an ensemble of independent carriers, the single-particle Monte 

Carlo technique can be applied to evaluate carrier transport more easily by using an 

approximate method that simulates this ensemble of carriers by tracking the trajectory of a 

single carrier undergoing successive scattering events. The ensemble Monte Carlo method, 

alternatively, simulates a synchronous ensemble of particles, simultaneous and successively 

calculating the motion of many carriers that represent the system of interest. While the single-

particle technique is used to simulate the steady-state behavior of a system, and is usually 

applied in homogeneous bulk semiconductors, the ensemble Monte Carlo simulation is 

appropriated for transient simulation of semiconductor devices. 
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 The semi-classical models may be invalid for ultrasmall devices in which quantum 

effects become performance determinant, so that the classical transport concepts are no longer 

applicable. Some of the effects that may become relevant in down-scaled devices regard the 

drift process, such as velocity overshoot, ballistic transport, hot-electron and hot-phonon 

effects, oxide polar optical phonons decreasing channel mobility, and some regard diffusion 

processes, like its anisotropy and hot-electron diffusion.  The environment also has a relevant 

impact in ultrasmall devices through low-level radiation effects, remote polar scattering, 

synergetic effects, parasitic and interconnect factors. Effects directly connected to the device 

size, like spatial quantization, bigger influence of device boundaries on performance and 

quantum resonances also must be taken into account. Generation-recombination noise, hot-

electron thermionic emissions, impact ionization effects, low-dimensional effects, quantum 

transport, interface physics modeling, long-range Coulomb potential, electron-phonon 

interactions with confined phonons, re-examine effective mass theory, statistical mechanics of 

the finite Fermi systems and nonlinear response theory are other important effects that 

influence down-scaled devices (VASILESKA, 2016). These are not the subject of this work, 

whose approach is semi-classical, meant to model channels down to 10 nm. 

 In this work, a bulk n-type silicon Monte Carlo simulator was developed and later 

expanded to a TCAD n-MOSFET simulator; the next and final step was to adapt it to a 3-D n-

FinFET simulator, allowing state-of-art device simulation. The developed device simulator 

allows, for example, the insertion of charge traps in the gate oxide in order to evaluate their 

impact on the device threshold voltage. This is a powerful tool that is not present on 

commercial simulation tools and can provide insight to device designers on how the real 

device characteristics deviate from the ideal behavior, without the need to manufacture and 

test the devices to obtain initial information on trap impact, which varies with the specific 

technology that is being used. The Monte Carlo device simulator described on this thesis was 

developed, therefore, aiming to cover topics and allow simulation of effects and phenomena 

that cannot be studied properly using typical TCAD tools, but are critical to modern device 

performance. 

 In the next chapters, the Monte Carlo technique will be discussed in detail and its 

application to device simulation will be presented. Chapter 2 introduces the Monte Carlo 

method for particle transport, explaining its logic and main steps. Chapter 3 details the main 

scattering mechanisms that take place in silicon and presents their scattering rates. The device 

simulator is introduced in Chapter 4, coupling particle transport to Poisson's equation. 
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Simulation results from bulk silicon Monte Carlo algorithm regarding carrier velocity and 

energy over time for different electric fields will be shown in Chapter 5. Chapters 6 and 7 

respectively show results obtained with the n-MOSFET and the n-FinFET device simulator 

for different aspects, such as current curves, electric potential distribution, electron density, 

and carrier velocity and energy over the channel length. Chapter 8 presents the main case 

studies that have already been performed using the 3-D TCAD device simulator. The 

conclusions and possible future work will be discussed in Chapter 9. 
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2 MONTE CARLO METHOD FOR TRANSPORT CALCULATION 

 

The Monte Carlo (MC) technique is a stochastic method to solve large and complex 

mathematical problems; in this thesis, the MC method is applied to simulate nonequilibrium 

particle dynamics in semiconductor materials. It is a semi-classical method for solving BTE, 

since particle motion is treated classically, and particle interactions are introduced through 

quantum-mechanical perturbation theory. The Monte Carlo algorithm consists of simulating 

free particle motions (free flights) terminated by random scattering events that repeatedly take 

place during the total observation time. The algorithm consists of randomly choosing the 

duration of the free flight and then selecting stochastically the scattering event that aborts the 

free motion and affects the final energy and momentum of the carrier. This procedure is 

constantly repeated, creating a free-flight/scattering loop that is interrupted only when the 

total simulation time is achieved. 

 

2.1 Single-Particle Monte Carlo Method 

 

 The single-particle Monte Carlo method applied to transport analysis consists in the 

simulation of a carrier in the momentum space. The simulation evaluates the drift of a particle 

(free flight) under constant electric field during a randomly generated time called flight time. 

The free flight is terminated by a scattering event that is due to, for example, impurities, 

phonons, or surface roughness. The sequence free flight/scattering is repeated until the 

simulation end time is reached. The duration of the free flight depends on the total scattering 

rate, which is the sum of the scattering rates of each individual source of scattering. Figure 2 

shows the flowchart for the bulk Monte Carlo method, showing the main simulation steps. 
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Figure 2 - Simplified Bulk Monte Carlo Flowchart 

 

Source: Elaborated by the author 

 

 The main steps involved in the Monte Carlo algorithm will be discussed next.  

 

2.1.1 Initial Condition 

 The particle positions in real space and k-space must be defined. The carrier initial 

condition is assumed to follow Boltzmann distribution, in which the carrier energy is given by 

E = −
3

2
 KBT ln(r1), (3) 

where 𝐾𝐵 is Boltzmann constant, T is the temperature and 𝑟1 is a random number lying 

uniformly between 0 and 1, excluding the limits. 

 The magnitude of the k vector is determined from Equation 3 by the E-k relation. The 

bands are often approximated as a parabola in terms of the relation between the energy and 

the wave vector, i.e., 𝐸 =
ħ2k2

2𝑚∗
. 

 The magnitude of the k vector is then explicit as  

𝑘 =
√2𝑚∗𝐸

ħ
 (4) 

for parabolic bands.  

 This approximation is accurate only for energies close to the valley energy minima, 

where the parabolic-like form is identified. For higher energies, the parabolic approximation 

becomes inaccurate, and then a more complex, nonparabolic model must be employed.  
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 The k.p perturbation theory (Costato, 1972) gives a nonparabolic equation in the form 

of Equation 5, that is itself valid as long as 
ħk2

2𝑚∗ ≪ 𝐸𝑔, being 𝐸𝑔 the energy gap between the 

valence and the conduction bands. 

 

𝐸(1 + 𝛼𝐸) =
ħk2

2𝑚∗
 (5) 

 The nonparabolicity factor 𝛼 is a material dependent constant, given by  

𝛼 =
1

𝐸𝑔
(1 −

𝑚𝑐

𝑚0
)
2

, (6) 

in which 𝑚𝑐 is the conductivity mass and 𝑚0 is electron rest mass. 

 For non-parabolic bands, k can be written as 

𝑘 =
√2𝑚∗𝐸(1 + 𝛼𝐸)

ħ
 (7) 

 When 
ħk2

2𝑚
 assumes values near the bandgap, the equations 5 and 6 lead to imprecise 

results, and a full-band calculation is required to model the semiconductor band structure. 

 The components of the k vector are then written as 

𝑘𝑥 = 𝑘 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙
𝑘𝑦 = 𝑘 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙

𝑘𝑧 = 𝑘 𝑐𝑜𝑠𝜃
  , (8) 

where 𝜃 is the polar angle and 𝜙 the azimuthal angle given respectively by 

𝑐𝑜𝑠𝜃 = 1 − 2𝑟2

𝑠𝑖𝑛𝜃 = √1 − 𝑐𝑜𝑠2𝜃
 (9) 

and 

𝜙 = 2𝜋 𝑟3 (10) 

where 𝑟2 and 𝑟3 are random numbers uniformly distributed from 0 to 1. 

 

2.1.2 Free-Flight Time Generation 

 

 The total scattering rate 𝑊𝑇[𝑘(𝑡)] is the result of the sum of energy-dependent 

scattering rates, being therefore itself dependent on electron energy and written as 

𝑊𝑇[𝑘(𝑡)] =∑𝑊𝑖[𝑘(𝑡)]

𝑁

𝑖=1

 , (11) 
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where the subscript 𝑖 denotes a particular scattering mechanism, assuming values 𝑖 =

1, 2, … ,𝑁 for 𝑁 possible mechanisms. 

 In order to apply the Monte Carlo method, the probability that a carrier scatters after a 

free flight must be calculated. The probability that a particle has not scattered after a time t is 

given by 1 − ∫ 𝑊𝑇[𝑘(𝑡′)]𝑑𝑡′
t

0
; using the approximation 𝑙𝑛(1 + 𝑥) ≈ 𝑥 for small values of 𝑥, 

it can be expressed as 𝑒𝑥𝑝 {−∫ 𝑊𝑇[𝑘(𝑡′)]𝑑𝑡′
t

0
}. The probability per unit time 𝑃(𝑡) of an 

electron moving freely during a time t and then scattering in the time interval dt is given by  

𝑃(𝑡) = 𝑊𝑇[𝑘(𝑡)]𝑒𝑥𝑝 {−∫ 𝑊𝑇[𝑘(𝑡)]𝑑𝑡
t

0

}. (12) 

 Now, the free flight time 𝑡𝑟 that precedes the scattering events can be determined by 

evaluating 𝑡 for a certain P(t)/𝑊𝑇[𝑘(𝑡)] in Equation 12, given by a random number 𝑟 

uniformly distributed in the interval ]0,1[. The integral in Equation 12 cannot be solved 

analytically because of the complexity of 𝑊𝑇[𝑘(𝑡)]; if a fictitious scattering event is 

introduced in order to make the total scattering rate constant in time, this difficulty is 

overcome. This virtual scattering process is called self-scattering and it must have no impact 

in the k vector, being defined so that the electron state before and after the scattering event is 

the same. Although it means the same under a physical approach, it has tremendous 

advantages mathematically, since the self-scattering rate 𝑊𝑠𝑒𝑙𝑓[𝑘(𝑡)] is chosen so that the 

new total scattering rate Г becomes constant. Equation 13 shows the mathematical 

representation of Г and Equation 14 shows a slightly different representation of the self-

scattering rate. 

Г = 𝑊𝑇[𝑘(𝑡)] +𝑊𝑠𝑒𝑙𝑓[𝑘(𝑡)] (13) 

𝑊𝑠𝑒𝑙𝑓[𝑘(𝑡)] = Г −∑𝑊𝑖[𝑘(𝑡)]

𝑁

𝑖=1

 (14) 

 The value of Г is chosen to be larger than the largest original total scattering rate 

𝑊𝑇[𝑘(𝑡)]. 

 Since now the total scattering rate Г is constant, Equation 12 can be rewritten as 

P(t) = Г𝑒−Г𝑡 . (15) 

 Assuming that 𝑟 =
P(t)

Г
 is a uniformly distributed random number, the free flight time 

𝑡𝑟 can be expressed as 
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𝑡𝑟 = −
1

Г
ln 𝑟 . (16) 

 Having the free-flight time defined, the carrier will drift during 𝑡𝑟.   

 

2.1.3 Drift Process 

 

 Considering the carrier potential energy varies slowly as a function of position, the 

carrier drift motion can be treated semi-classically, and the carrier is regarded as a free 

particle with its effective mass. Since in the Monte Carlo method the electric field is assumed 

to be constant during the free-flight time, the wave vector change ∆𝐤 can be calculated from 

∆𝐤 =
q

ħ
𝐅 𝑡𝑟 . (17) 

 where 𝑞 is the carrier charge, ħ is the reduced Planck constant and 𝑭 is the electric field.  

 During the drift process, the carrier accelerates freely due to the electric field, and this 

process stops when it undergoes a random scattering event. 

 

2.1.4 Scattering Event  

 

 There are several random scattering events that may occur in semiconductors; for 

silicon, the main processes are acoustic phonon scattering, non-polar optical phonon 

scattering and Coulomb scattering.  

 There are two things concerning the scattering events that must be taken into account: 

type of scattering and carrier final state. 

 The selection of the scattering mechanism that terminates the free flight will be 

dependent on a uniformly distributed random number 𝑟2 which lies between 0 and Г, 

excluding the limits, which will be compared to the accumulated scattering rate up to a certain 

mechanism. Considering the scattering mechanisms are divided into [1,2,...,N] types, the 

accumulated scattering rate of the n-th mechanism includes the scattering rate of all previous 

mechanisms, i.e., 𝑊𝑛[𝑘(𝑡)] = ∑ 𝑊𝑖[𝑘(𝑡)]
𝑛
𝑖=1 . The randomly generated number 𝑟2 will then be 

confronted with 𝑊𝑛[𝑘(𝑡)]; the n-th scattering mechanism will be chosen when 𝑊𝑛−1[𝑘(𝑡)] <

𝑟2 ≤ 𝑊𝑛[𝑘(𝑡)], i.e., the selected scattering mechanism will be the first one to have an 

accumulated scattering rate bigger than 𝑟2. 
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 Since the calculation of 𝑊𝑛[𝑘(𝑡)] is time-consuming, it is appropriated to calculate the 

scattering rate of every scattering mechanism for the different quantized energy levels that 

will be used in the simulation. Instead of solving the integral equation every time a carrier 

undergoes a scattering event, what would make the simulation computational cost 

prohibitively high, all possible values are previously calculated and organized on a scattering 

table. Every time a collision happens, the scattering rate of each process is taken from the 

scattering table and compared to a random number as described previously. The scattering 

rate calculation will be introduced in the next section. 

 The particle energy and wave vector may change after the scattering event. If an 

acoustic phonon scattering happens, the energy remains the same as before the event, since it 

is considered an elastic process. If there is a non-polar optical phonon scattering, the energy 

of the particle changes by the phonon energy.  

 

2.1.5 Scattering Rates 

 In order to determine the rates that rule the scattering process, the needed 

mathematical tooling must be introduced.  

  The Schrödinger equation is used to determine the electronic states for a periodic 

potential 𝑉(𝒓) and is given by 

 

[−
ħ2

2𝑚0
∇2 + 𝑉(𝒓)]𝜓(𝒓) = 𝐸𝜓(𝒓), (18) 

in which ħ is Planck's constant divided by 2𝜋, 𝑚0 is the electron mass in free space, 𝛻2 is the 

Laplacian operator, 𝜓(𝒓) is the eigenfunction to be determined and 𝐸 is the energy 

eigenvalue. 

 The transition rate from an initial state k to a final state k' can be evaluated by using 

Fermi's Golden Rule, which is based on the solution of the time-dependent Schrödinger 

equation and on first-order, time-dependent perturbation theory. The scattering theory is 

based on the transition probability between two eigenstates that are the solutions of 

Schrödinger's equation for the perturbation potential 𝐻′ with the unperturbed Hamiltonian 

operator 𝐻0 (TOMIZAWA, 1993). The Schrödinger equation that must be solved is  

𝑖ħ
∂𝜓(𝒓, 𝑡)

∂t
= (𝐻0 + 𝜆𝐻

′)𝜓(𝒓, 𝑡). (19) 
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 The unperturbed Hamiltonian operator 𝐻0 is assumed to be solved as 𝐻0𝜓𝒌 = 𝐸𝒌𝜓𝒌. 

This work does not mean to provide a detailed mathematical derivation of the quantum 

mechanical phenomena that rules the scattering mechanisms, but interested readers can find 

the step-by-step solution in (TOMIZAWA, 1993); the solution of Equation 19 that gives rise 

to Fermi's Golden Rule will now be presented right away. 

 For the jth scattering mechanism, Fermi's Golden Rule is expressed as 

Г𝑗(𝒌, 𝒌
′) =

2π

ħ
 |𝑀𝑗(𝒌, 𝒌

′)|
2
𝛿(𝐸𝑘′ − 𝐸𝑘 ∓ ħω), (20) 

where Г𝑗(𝒌, 𝒌
′) and 𝑀𝑗(𝒌, 𝒌

′) are respectively the transition probability between initial state k 

and final state k' and the matrix element for the jth scattering mechanism, 𝐸𝑘 and 𝐸𝑘′ are the 

initial and final state energies of the carrier and ħω is the energy absorbed (upper sign) or 

emitted (lower sign) during the transition.  

 The matrix element of the perturbation potential between states k' and k is given by 

𝑀(𝒌, 𝒌′) =< 𝜓𝑘′|𝐻′|𝜓𝑘 >, and each scattering event leads to a different matrix element. It 

can also be written as 〈𝑚, 𝒌′|𝑉𝑗(𝒓)|𝑛, 𝒌〉 for transitions from state 𝒌 in band n to state 𝒌′ in 

band m, being 𝑉𝑗(𝒓) the scattering potential of the j-th process. 

 Analyzing Equation 20, it becomes clear that the expression for Г𝑗(𝒌, 𝒌
′) is different 

from zero only if the argument of the 𝛿-function equals zero. This can only be achieved if the 

final state energy differs from the initial state energy by the phonon energy ħω, what 

evidences the conservation of energy.  

 The total scattering rate for a certain scattering mechanism of a given initial state 𝒌 in 

band n is given by the sum of the individual scattering rates of all possible final states and 

bands, as shown in Equation 21.  

Г𝑗[𝑛, 𝒌] =
2π

ħ
 ∑|〈𝑚, 𝒌′|𝑉𝑗(𝒓)|𝑛, 𝒌〉|

2

𝑚,𝑘′

𝛿(𝐸𝑘′ − 𝐸𝑘 ∓ ħω) (21) 

 The main scattering events that are relevant for silicon and their occurrence rates will 

be presented in detail in Chapter 3. 

 

2.2 Ensemble Monte Carlo Method 

 

 The ensemble Monte Carlo (EMC) method consists on successively applying the 

single particle method to different carriers. Instead of following the motion of only one carrier 
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for successive time steps, the ensemble Monte Carlo method follows a large number of 

carriers during each time step, being the motion of each carrier computed individually and 

independently. Labeling the carriers present in the material from 1 to N, the method consists 

of observing the first carrier drift during a Δt, while it may or may not be scattered, then 

following the motion of the second observed carrier during this time window, repeating this 

procedure until all N particles have independently drifted during the time interval Δt. At every 

Δt, the position and momentum of each carrier must be reevaluated so that it can be used to 

define the motion of the particles during the next time window. The motion of each particle 

during the next Δt is then determined by the conditions fixed right before the beginning of the 

drift, i.e., the change in the carrier position during the motion in the time window is not 

considered, so that only the particle final position is considered and determines the conditions 

of the next drift period.   

 Figure 3 shows the drift of N particles during a 𝑡𝑠 time interval. The observation time 

window has a length Δt, and the blue symbols indicate when a scattering event took place. 

Note that it is possible to have none or multiple scatterings during a time interval; 

nonetheless, the particle drift keeps governed by the conditions defined at the beginning of Δt, 

i.e., regardless the collisions, there is always a time increment of Δt between two 

observations.  

 

Figure 3 - Description of an Ensemble MC method. There are N carriers in the ensemble, Δt is 

the observation time and the total simulation time is ts. Each blue symbol corresponds to a 

scattering event.  

 

Source: Adapted from Vasileska, 2016 
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 Following a carrier during a time window of length ∆𝑡, the time 𝑡𝑠𝑐𝑎𝑡 up to the next 

scattering event, which is defined as the free-flight time, is determined by a random number. 

There are two major possible scenarios that may happen then, concerning the comparison 

between the free-flight time and the observation time window: 

a) 𝑡𝑠𝑐𝑎𝑡 ≥ ∆𝑡: When 𝑡𝑠𝑐𝑎𝑡 is equal to or larger than the observation time window, the 

carrier will simply drift during ∆𝑡, and the new scattering time will be given by 

𝑡𝑠𝑐𝑎𝑡2 = 𝑡𝑠𝑐𝑎𝑡 − ∆𝑡. If 𝑡𝑠𝑐𝑎𝑡2 is still bigger than ∆𝑡, it means that, similarly to what 

happened on the first time interval of ∆𝑡, no scattering event will take place during the 

second observation window. The new free-flight time is determined again by doing 

𝑡𝑠𝑐𝑎𝑡3 = 𝑡𝑠𝑐𝑎𝑡2 − ∆𝑡, and the same procedure is repeated until the scattering time gets 

smaller than ∆𝑡. 

b) 𝑡𝑠𝑐𝑎𝑡 < ∆𝑡: When the free-flight time is smaller than the observation window, a 

scattering event will certainly take place before the end of the time interval ∆𝑡. The 

carrier will drift up to 𝑡𝑠𝑐𝑎𝑡, when it will be scattered and the new carrier energy will 

be evaluated. A new free-flight time 𝑡𝑠𝑐𝑎𝑡2 is then defined by generating a random 

number. If 𝑡𝑠𝑐𝑎𝑡2 < ∆𝑡 − 𝑡𝑠𝑐𝑎𝑡, it means the second scattering event will happen 

within this time window, after the particle has drifted during 𝑡𝑠𝑐𝑎𝑡2, and then once 

again a new free-flight time (𝑡𝑠𝑐𝑎𝑡3) must be randomly generated. If instead 𝑡𝑠𝑐𝑎𝑡2 >

∆𝑡 − 𝑡𝑠𝑐𝑎𝑡, the carrier will drift during the remnant time up to the end of the 

observation time window, when all the other carriers’ motion will be evaluated and the 

real- and momentum-space positions of the particles will be computed. Similarly to 

what was described in the previous scenario, a new free-flight time will be considered 

as  𝑡𝑠𝑐𝑎𝑡3 = 𝑡𝑠𝑐𝑎𝑡2 + 𝑡𝑠𝑐𝑎𝑡 − ∆𝑡, and it must be compared to ∆𝑡 to define it if falls back 

into the cases (a) or (b). 

 

 After the first carrier has drifted for ∆𝑡, the motion of all the other carriers in the 

system will be successively evaluated during this time window. Then, after all the particles 

have been individually considered, there must be a new evaluation of the particles motion 

during the next time interval ∆𝑡, which has as initial conditions the final positions of the 

carriers at the end of time window that has just passed. By taking into account a large number 

of carriers, it becomes possible to simulate the carrier-carrier scattering mechanism. 
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2.2.1 Velocity and Energy Calculations 

 The value of relevant quantities associated to the ensemble of particles, such as 

energy, velocity and valley occupation, which are computed at every time increment of ∆𝑡, 

are calculated as the average of the individual values of each particle. Since the observation of 

the particles takes place at fixed time-steps of length ∆𝑡, the value of these quantities are 

evaluated at every ∆𝑡. Taking the energy as an example, its mean value on the nth time-step 

can be calculated by Equation 22, in which 𝑁 is the total number of particles and 𝑖 assigns the 

particle in the ensemble. 

𝑒̅(𝑛∆𝑡) =
1

𝑁
∑𝑒𝑖(𝑛∆𝑡)

𝑁

𝑖=1

 (22) 

 

 It is important to note that the number of particles in the simulation defines the 

precision of the results, characterizing a tradeoff between computational effort and accuracy. 

The standard error (SE) of the simulation mean result diminishes as the number of particles 

(N) increases, what is evidenced by the expression 𝑆𝐸 = 𝑆𝐷
√𝑁
⁄ , where 𝑆𝐷 is the standard 

deviation. For the energy mean estimation, the standard deviation itself is given by 𝑆𝐷 =

√∑ (𝑒𝑖)
2𝑁

𝑖=1 −𝑁𝑒̅2

𝑁−1
. 
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3 SCATTERING MECHANISMS  

 

 When electrons are being transported in a semiconductor, they undergo scattering 

processes that change their trajectories. There are several scattering mechanisms that are 

present in different semiconductors like Si, GaAs and Ge, and the prevalence of each of them 

depends on the material properties. The main scattering processes that are modeled for 

semiconductor simulation are due to the carrier interaction with phonons, defects or with 

other carriers, and can be divided into: 

• acoustic phonon scattering; 

• non-polar optical phonon scattering; 

• polar optical phonon scattering; 

• piezoelectric scattering; 

• alloy disorder scattering; 

• ionized impurity scattering; 

• neutral impurity scattering; 

• electron-electron interactions; 

• impact ionization. 

 

Figure 4 shows the scattering mechanisms listed above divided into the categories of 

defect scattering, carrier-carrier scattering and lattice scattering.   

 

Figure 4 - Scattering mechanisms for semiconductors 

 

Source: Adapted from Vasileska (2016) 
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 Relevant scattering mechanisms for a silicon material system are: scattering due to 

intravalley acoustic and inter-valley non-polar optical phonons, surface roughness scattering, 

and Coulomb scattering. The electron-phonon scattering mechanisms are treated in 

momentum space. In particle-based device simulations, discussed later in the text, the 

Coulomb interactions, involving electron-ion and electron-electron interactions, are treated in 

real space using molecular dynamics approach. In silicon material system, two types of 

electron-phonon interactions are important: acoustic and non-polar optical phonon scattering. 

For the sake of completeness, their scattering rate equations will be discussed next, following 

the approach presented in Vasileska (2016). 

   

3.1 Phonon Scattering 

 The vibrations of the crystalline lattice disturb the purely periodic potential associated 

with the regular array of atoms constituting the crystal. The wave nature of the lattice 

vibrations are quantized as phonons, and their interaction with the carriers gives rise to the 

phonon scattering.  

 There are two possible phonon modes: acoustic and optical. When neighboring atoms 

oscillate in the same direction, the phonon belongs to the acoustic branch of the vibration 

spectra, and, if it interacts with a carrier, the acoustic phonon scattering process takes place. 

Since the neighboring atoms displace in the same direction, the changes in lattice spacing are 

produced by the differential displacement or strain. When neighboring atoms vibrate in the 

opposite directions, alternatively, the lattice spacing is changed directly, and this leads to the 

optical branch in the phonon spectra. If a carrier interacts with this phonon mode, optical 

phonon scattering takes place. 

 The displacement of an ion in the crystal from its equilibrium, zero temperature 

position leads to a variation in the crystal potential, and this deviation is phenomenologically 

modeled by a deformation potential. The vibrations in the crystal lattice produce an elastic 

strain, and its variation through the crystal changes the energy of the electronic states. In order 

to calculate the scattering rates that result from the electron-phonon interactions, the variation 

on the potential felt by an electron in the conduction band must be evaluated when an atom is 

displaced from its original position. 

 In compound semiconductors, the polar nature of bonds can lead to strong interaction; 

the dipole moment between atoms is perturbed by the phonon displacement of the lattice, 

resulting in polar carrier scattering caused by this electric field.  This kind of scattering 
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mechanism may be originated by both acoustic and optical phonons. The former is called 

piezoelectric scattering and the latter is referred as polar optical scattering, being a very 

relevant process in compound semiconductors. 

In the next sections, the most relevant scattering events that occur in silicon will be 

presented and their modelling on the momentum space will be introduced.  

 

3.1.1. Acoustic Phonon Scattering 

 For acoustic vibration modes, the unit cell is deformed by the differential displacement 

of the neighboring atoms. Equation 23 shows that the perturbation potential is given by the 

product of the deformation potential 𝛯𝑑 and the derivative of the lattice displacement 𝒖(𝒓, 𝑡), 

presented in Equation 24. 

𝐻′ = 𝛯𝑑  ∇. 𝒖(𝒓, 𝑡) (23) 

𝒖(𝒓, 𝑡) =∑(√
ℏ

2𝜌𝛺𝜔𝒒
)

𝐪

𝐞𝐪(𝑎𝐪 + 𝑎𝐪
+)𝑒𝑖𝐪.𝒓 (24) 

 Where 𝐪 = 𝐤′ − 𝐤 is the phonon wave vector, ℏ𝜔𝒒 is the phonon energy, 𝜌 is the solid 

density, 𝛺 is the volume of the crystal, 𝐞𝐪 is the unit polarization vector and 𝑎𝐪 and 𝑎𝐪
+ are 

the phonon creation and annihilation operators respectively. 

 The transition rate, i.e., the transition probability per unit time 𝑆(𝒌, 𝒌′) for intravalley 

acoustic phonon scattering can be calculated by solving Equation 23 for the lattice 

displacement given by equation 24. The interaction potential for acoustic phonons is then 

given by Equation 25. 

𝐻′ =∑𝑖𝑞𝛯𝑑 (√
ℏ

2𝜌𝛺𝜔𝒒
)

𝐪

(𝑎𝐪 + 𝑎𝐪
+)𝑒𝑖𝐪.𝒓 (25) 

 Equation 25 can be used to obtain the matrix element of the perturbation potential, and 

then it can be substituted into Fermi's golden rule to result in the transition rate shown in 

Equation 26. 

𝑆(𝒌, 𝒌′) =
𝜋 𝛯𝑑

2𝑞2

𝜌𝛺𝜔𝒒
(𝑛𝒒 +

1

2
 ∓ 
1

2
)𝛿(𝒌′ − 𝒌 ∓ 𝒒)𝛿(𝐸𝒌′ − 𝐸𝒌 ∓ ℏ𝜔𝒒) (26) 

where the two 𝛿-functions express the conservation of momentum and energy, the ∓ sign 

denotes the absorption and emission processes and 𝑛𝒒 is the number of acoustic phonons in a 

state q, described with the Bose-Einstein distribution function shown in Equation 27. 
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𝑛𝒒  = 1 (𝑒
ℏ𝜔𝒒
𝐾𝐵𝑇𝐿 − 1⁄ ) (27) 

 At room temperature, the acoustic phonon energy ℏ𝜔𝒒 is significantly smaller than 

𝐾𝐵𝑇𝐿, so the acoustic phonon scattering can be approximated as elastic. On this case, the 

equipartition is applicable and 𝑛𝒒 can be expressed as 𝑛𝒒 ≈
𝐾𝐵𝑇𝐿

ℏ𝜔𝒒
⁄ , where 𝑇𝐿 is the lattice 

temperature.  

 Using these approximations, Equation 26 can be rewritten as 

𝑆(𝒌, 𝒌′) =
𝜋 𝛯𝑑

2𝐾𝐵𝑇𝐿
ℏ𝜌𝑣𝑠2𝛺

𝑘

𝑞𝐸
𝛿 (

𝑞

2𝑘
± 𝑐𝑜𝑠𝜃′), (28) 

where 𝜃′ is the polar angle between 𝒌 and 𝒒 and 𝑣𝑠 = √
𝑐𝐿

𝜌
= 

𝜔𝒒

𝑞
 is the velocity of sound in 

the crystal. 

 Integrating Equation 28, the total intravalley acoustic phonon scattering rate out of 

state k is given by 

𝑊(𝐸) = (
2𝜋 𝛯𝑑

2 𝐾𝐵𝑇𝐿
ℏ𝜌𝑣𝑠2

)𝑁(𝐸), (29) 

in which 𝑁(𝐸) is half of the density of states (DOS) function.  

 Considering a parabolic band structure, 𝑁(𝐸) has the form shown in Equation 30, 

where 𝑚𝑑
∗ = √𝑚𝑙𝑚𝑡

23
 is the DOS effective mass.  

𝑁(𝐸) = (
(2𝑚𝑑

∗ )
3
2√𝐸

4𝜋2ℏ3
) (30) 

 For normal device operation, however, the applied electric fields are large and the 

carriers acquire very high kinetic energy, making the parabolic approximation inaccurate. The 

nonparabolic band model is a better option then, and half the DOS function assumes the 

values expressed by 

𝑁(𝐸) = (
(2𝑚𝑑

∗ )
3
2√𝐸(1 + 𝛼𝐸)

4𝜋2ℏ3
) (1 + 2𝛼𝐸). (31) 

 Substituting Equation 31 into Equation 29, the elastic acoustic phonon scattering rate 

out of state k for nonparabolic bands equals to: 
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𝑊(𝐸) = (
2𝜋 𝛯𝑑

2 𝐾𝐵𝑇𝐿
ℏ𝜌𝑣𝑠2

)(
(2𝑚𝑑

∗ )
3
2√𝐸(1 + 𝛼𝐸)

4𝜋2ℏ3
)(1 + 2𝛼𝐸) (32) 

 

 

3.1.2. Non-polar Optical Phonon Scattering 

 In order to analyze the scattering caused by carrier interaction with non-polar optical 

phonons, it becomes necessary to introduce a parameter of optical displacement. The relative 

displacement of atoms in a unit cell may affect the electronic energy directly. Since 

neighboring atoms oscillate in opposite directions in the optical modes of vibration, the 

resulting perturbation potential, as shown in Equation 33, is a product of the intervalley 

deformation potential 𝑫𝑖𝑗 and the lattice optical displacement 𝒖(𝒓, 𝑡), which was itself given 

in Equation 24. 

𝐻′ = 𝑫𝑖𝑗  .  𝒖(𝒓, 𝑡) (33) 

 The intervalley deformation potential quantifies the scattering strength from the initial 

valley 𝑖 to the final valley 𝑗.  

 The transition rate for intervalley non-polar optical phonon scattering is then obtained 

using Fermi's golden rule as: 

𝑆(𝒌, 𝒌′) =
𝜋 𝐷𝑖𝑗

2  𝑍𝑗

𝜌𝜔𝑖𝑗𝛺
[𝑛(𝜔𝑖𝑗) +

1

2
 ∓ 
1

2
] 𝛿(𝐸𝑘′ − 𝐸𝑘 ∓ ℏ𝜔𝑖𝑗 + ∆𝐸𝑗𝑖) (34) 

where 𝐷𝑖𝑗 is the intervalley deformation potential, 𝑍𝑗 is the number of available final states for 

the carrier to scatter into,  𝑛(𝜔𝑖𝑗) is the phonon occupancy factor given by the Bose-Einstein 

distribution function shown in Equation 27, ℏ𝜔𝑖𝑗 is the energy of the non-polar optical 

phonon, 𝐸𝑘 is the electron energy and ∆𝐸𝑗𝑖 is the difference between the potential energies in 

the bottom of the valley j and the bottom of valley i.  

 Regarding the number of final states available for scattering (𝑍𝑗), the intervalley non-

polar acoustic phonon scattering may be divided in two categories, which are known as f-

process and g-process. This division is based on the material’s constant energy surfaces, as 

shown in Figure 5 for silicon. If the scattering forces the carrier to move to a valley that is 

located along the original axis where the carrier was located previously to the collision, the 

carrier is scattering in a longitudinal direction, characterizing a g-process. In this case, there is 

only one valley available as an option for the final state, what makes 𝑍𝑗 = 1. Otherwise, if the 
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carrier is scattered to a valley that is located in an axis different from the one where the initial 

valley is located, the carrier is scattered in a transverse direction. There are then four options 

as feasible final valleys after the scattering, making 𝑍𝑗 = 4  and defining a f-process. 

Figure 5 – Constant energy surfaces for silicon, showing the g-process (along the longitudinal 

direction) and f-process (along a transversal direction). Note that there is one possible final 

valley for a g-process and four possible final valleys for a f-process. 

 

Source: Elaborated by the author 

 The total scattering rate out of state k is obtained by integrating equation 34. For a 

parabolic band structure and using a zero-order approximation, the scattering rate is of the 

form 

𝑊(𝐸) =
𝜋 𝐷𝑖𝑗

2  𝑍𝑗

𝜌𝜔𝑖𝑗
[𝑛(𝜔𝑖𝑗) +

1

2
 ∓ 
1

2
] 𝑁(𝐸𝑘 ± ℏ𝜔𝑖𝑗 − ∆𝐸𝑗𝑖) (35) 

where 𝑍𝑗 = 1 for g-type process and 𝑍𝑗 = 4 for f-type process and the density of states 

𝑁(𝐸𝑘 ± ℏ𝜔𝑖𝑗 − ∆𝐸𝑗𝑖) follows Equation 30. 

 Additionally, Ferry (1976) derived the first-order model shown in 

𝑊(𝐸) =
√2 𝑚∗

5
2 𝐷1

2

𝜋𝜌𝜔0ℏ5
 [𝑛(𝜔0)√𝐸 + ℏ𝜔0(2𝐸 + ℏ𝜔0)

+ (𝑛(𝜔0) + 1)√𝐸 − ℏ𝜔0√2𝐸 − ℏ𝜔0 𝑢0(𝐸 − ℏ𝜔0)] , 

(36) 

where 𝐷1 is the first-order deformation potential, 𝜔0 is the phonon radian frequency and 𝑢0 is 

the unit step function, defined by 𝑢0(𝑥) = {
0,    𝑥 < 0
1,    𝑥 ≥ 0

 . 

 For nonparabolic bands, alternatively, the zero-order approximation is given by 

Equation 37, in contrast to Equation 35 for parabolic bands. 
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𝑊(𝐸) =
𝜋 𝐷𝑖𝑗

2  𝑍𝑗

𝜌𝜔𝑖𝑗
[𝑛(𝜔𝑖𝑗) +

1

2
 ∓ 
1

2
] (
(2𝑚𝑑

∗ )
3
2√𝐸𝑓(1 + 𝛼𝐸𝑓)

4𝜋2ℏ3
)(1 + 2𝛼𝐸𝑓) (37) 

  In which 𝐸𝑓 = 𝐸𝑘 + ℏ𝜔𝑖𝑗 − ∆𝐸𝑗𝑖 for phonon absorption and 𝐸𝑓 = 𝐸𝑘 − ℏ𝜔𝑖𝑗 − ∆𝐸𝑗𝑖 

for phonon emission. The optical phonon energy ℏ𝜔𝑖𝑗 corresponds to the amount of energy 

the electron absorbs or emits when interacting with the phonon. For silicon, the energy 

difference ∆𝐸𝑗𝑖 is zero, since the six valleys are equivalent. 

 Since the optical phonon energy ℏ𝜔0 is comparable to the carriers average thermal 

energy at room temperature, optical phonon scattering is considered inelastic. This opposes to 

the acoustic phonon scattering, in which the phonon energy is much smaller than 𝐾𝐵𝑇, 

therefore leading to elastic scattering. 

 

 

3.1.3. Ionized Impurity Scattering 

 When a semiconductor is doped, the Coulomb potential of the ionized impurities may 

deflect electrons, resulting in the called Coulomb scattering. The rate at which this scattering 

process takes places is directly proportional to the doping density, and increases as the square 

power of the energy of the electron. 

 In vacuum, the electrostatic potential due to a point charge is coulombic; the presence 

of free carriers in the crystal leads to a screened potential, i.e., the mobile charge carriers lead 

to a damping of the electric field. Differing in the screened potential used in the model, the 

carrier scattering due to this screened potential has been modeled by the Conwell-Weisskopf 

and the Brooks-Herring approaches (TOMIZAWA, 1993) 

 In order to obtain the ionized impurity scattering rate, the screened potential in a n-

type semiconductor is derived. Being 𝑒 the electronic charge and 𝑍𝑒 the charge of the 

impurity atom, it is supposed that a positive charge 𝑍𝑒𝛿(𝑟) is introduced at the origin of the 

assumed coordinate system, what is indicated by 𝛿(𝑟). The introduction of a doping atom 

disturbs the charge neutrality in the vicinity of this point, increasing the electron density by  

𝛿𝑛 = 𝑛 − 𝑛0, where 𝑛0 is the equilibrium electron density. The solution of Poisson's equation 

in spherical coordinates leads to the electrostatic potential as shown in Equation 38, 

 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑉

𝑑𝑟
) = −

𝑒

𝜀𝑠
[𝑍𝛿(𝑟) − 𝛿𝑛] (38) 
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being 𝜀𝑠 the semiconductor dielectric constant and 𝑟 the distance from the origin. 

 Considering that 𝑛0 is sufficiently low so that it can be modelled by the classical 

distribution function, so that  𝛿𝑛 ≈  𝑉
𝑒𝑛0

𝑘𝐵𝑇
, and then using this relation to solve Equation 38, 

the screened Coulomb potential is obtained as the particular solution: 

𝑉(𝑟) =
𝑍𝑒

4𝜋𝜀𝑠𝑟
𝑒
−
𝑟
𝐿𝐷 (39) 

where 𝐿𝐷 is known as Debye length and is calculated by 𝐿𝐷 = √𝜀𝑠𝑉𝑇 𝑒𝑁𝐷⁄ , being 𝑉𝑇 the 

thermal voltage and  𝑁𝐷 the density of donors. 

 The perturbation potential used to obtain the scattering rate is then:  

𝐻′ =
𝑍𝑒2

4𝜋𝜀𝑠𝑟
𝑒
−
𝑟
𝐿𝐷 (40) 

 Using this expression to calculate the matrix element in Fermi's golden rule and 

considering that the number of ionized impurities per unit volume in the crystal space is given 

by 𝑛𝑖, the total scattering rate for nonparabolic bands is obtained as 

 

𝑊(𝑘) =
√2𝑍2𝑒4𝑛𝑖

𝜀𝑠2√𝑚𝑑
∗𝐸𝛽

 √𝐸(1 + 𝛼𝐸) 
1 + 2𝛼𝐸

1 + 4(
𝐸(1 + 𝛼𝐸)

𝐸𝛽
)
 

(41) 

where 𝐸𝛽 =
ℏ2

2𝑚𝑑
∗  𝐿𝐷

2 . 

 In the particle-based device simulator presented in this thesis, however, a real-space 

approach was implemented instead of the momentum-space modelling presented above. 

Chosen here to model Coulomb iterations, the P3M approach will be presented in Section 

4.1.9. 
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4 DEVICE SIMULATION 

 

 In Chapter 2, carrier transport in bulk semiconductors was evaluated by the numerical 

solution of the Boltzmann transport equations using the Monte Carlo method. In order to 

simulate a device, however, the electric field that drives the charge transport must be taken 

into account by the solution of Poisson's equation. Carrier transport and the driving fields are 

coupled in device simulation, and must be solved self-consistently. The electric field coming 

from the solution of Poisson's equation is responsible for the acceleration of the carriers that 

drift under the Monte Carlo phase, while the charge distribution itself defines the electric 

fields in Poisson's equation. 

 Over small time intervals, nonetheless, Poisson's equation may be decoupled from the 

BTE, simplifying the calculations. During this time interval, the carriers drift driven by the 

frozen electric field that resulted from the solution of Poisson's equation at the end of the 

previous time interval, and then the Monte Carlo calculations lead to the charge distribution 

that, at the end of this time interval, will define the Poisson's equation that provides the fields 

for the next ∆𝑡.  

 Besides the potential calculation obtained by the solution of Poisson's equation, there 

is something else that changes from bulk semiconductor simulation to device simulation: 

instead of being spread in a boundless region, the particles are restricted in a specific region 

defined by the device boundaries. These boundaries must be suitably defined into the code so 

that the particles may be reflected at the surface or may exit or enter the device through the 

terminals. 

 The structure of the Monte Carlo device simulation will be presented on the next 

section. 

 

4.1 Simulation Steps 

 Device simulation can be roughly divided in: 

• Initialization of material parameters, device structure and carriers energy, momentum 

and position; 

• Particle-mesh coupling; 

• Solution of Poisson's equation; 

• Interpolation of force to particle location. 

• Monte Carlo free-flight/scattering; 
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 Figure 6 shows the device simulation framework based on the ensemble Monte Carlo 

method. 

Figure 6 - Flowchart for device simulation based on the ensemble Monte Carlo method. 

 

Source: Elaborated by the author 

 

 As shown in Figure 6, Monte Carlo device simulation can be divided in three main 

parts: calculating particle dynamics with appropriate boundary conditions; verifying particles 

entrance or exit through the device terminals; potential calculation with opportune boundary 

conditions (TOMIZAWA, 1993). In the following sub-sections, the simulation steps will be 

presented in the order they are first called in the simulator code. 
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4.1.1 Material Parameters Initialization 

 The material parameters that are needed in the many equations that were presented in 

this work must be inserted in the simulation via an input file. Material parameters such as 

crystal density, velocity of sound in the crystal, dielectric constant and effective masses are 

then read by the code. 

  

4.1.2 Mesh size and Time-step 

 In order to allow stable Monte Carlo device simulation, the mesh size (𝛥𝑥, 𝛥𝑦 and/or 

𝛥𝑧) and the simulation time-step (𝛥𝑡) must be chosen appropriately, correlating to each other 

in connection with the numerical stability. While Poisson's equation is solved at every 𝛥𝑡, the 

particle dynamics ruled by the Monte Carlo algorithm takes place during this small time-step. 

 The mesh size defines the spatial resolution of the potential and is therefore 

determined by the charge variations. In order to be sensitive to these fluctuations, the mesh 

size must be smaller than the smallest wavelength of the charge variations, which is 

approximately equal to the Debye length (𝐿𝐷), expressed as 

𝐿𝐷 = √
𝜀𝑠 𝐾𝐵𝑇

𝑒2𝑛
, (42) 

being 𝜀𝑠 the material dielectric constant,  𝐾𝐵 the Boltzmann constant, T the carrier 

temperature, 𝑒 the magnitude of the electronic charge and 𝑛 the carrier density. The mesh size 

in the simulation must be chosen to be smaller than 𝐿𝐷, so that relevant information on the 

potential profile is not lost, but it cannot be too small so that it troubles the Poisson solver 

convergence. The mesh size can also be changed by the user accordingly to the device size - 

smaller devices can have a smaller grid, and larger devices can have proportionally bigger 

mesh size. 

 The largest stack of computational cost of a Monte Carlo 3D device simulator is the 

solution of Poisson's equation, being the Monte Carlo method itself a lot less time-consuming. 

The mesh size influences Poisson's equation solver directly, so that it must be chosen wisely. 

A strategy that may be employed in order to reduce computational cost is to use a non-

uniform mesh, which has a larger size where precision is not needed, like in the 

semiconductor substrate, leaving the smaller mesh size only for the regions that demand high 

simulation precision, as in the device conduction channel or in the specific region where a 

phenomenon is being studied. Even though it changes depending on the device characteristics, 

typical values for the mesh size may range around 2 nm. 
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 In order to be able to decouple Poisson's equation from BTE, the simulation time-step 

must be suitably small. From the viewpoint of stability criterion, this can be assured by 

making the time-step 𝛥𝑡 smaller than the inverse of the plasma frequency, i.e., 

𝛥𝑡 ≪
1

𝜔𝑝
 (43) 

where the plasma frequency 𝜔𝑝 is given by 

𝜔𝑝 = √
𝑒2𝑛

𝜀𝑠𝑚∗
 (44) 

being 𝑚∗ the effective mass of the carrier. If the modeled semiconductor has multiple valleys, 

the smallest effective mass that a carrier may experience must be taken into account in 

Equation 44. Although it changes depending on the device characteristics, typical values for 

the time step may range around 0.1 fs. 

 Even though the mesh-size and the time-step were defined separately, they must be 

self-consistent; this can be checked by evaluating the maximum distance the carriers can 

move during 𝛥𝑡, which is regarded as 𝑙𝑚𝑎𝑥 and is written as 

  

𝑙𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥  𝛥𝑡 , (45) 

in which 𝑣𝑚𝑎𝑥 is the maximum carrier velocity, approximated as the maximum group velocity 

of the carriers in the semiconductor. 

 The time-step must be chosen to be small enough to make 𝑙𝑚𝑎𝑥 smaller than the 

spatial mesh size estimated using equation 42. Since Poisson's equation is only solved at 

every 𝛥𝑡, the fields are updated only at these moments, and a too large time-step might lead to 

an unaccounted substantial change in the charge distribution. 

 

4.1.3 Device Structure Description  

 The device must be described in the simulator by defining the boundary conditions, 

which enter the simulation in the Monte Carlo particle dynamics and in the numerically 

solved Poisson's equation. All the design options are defined, such as the device type (such as 

MOSFET, MESFET, FinFET) and the optional addition of characteristics like high-k 

dieletric, that affect the semiconductor device operation. 

 Except for the four MOSFET terminals, the surfaces are defined by mirror boundary 

conditions. The boundaries are then assumed to perfectly reflect the particles that reach them, 
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reversing the velocity component normal to the surface when the carriers collide against the 

surface. The Neumann condition of zero electric field in the direction normal to the surface is 

then applied to Poisson's equation analysis. 

 The drain and source contacts are treated as particle reservoirs, and the carriers may 

enter or exit the device through these terminals. Regarding Poisson's equation, the contacts 

are considered Dirichlet boundaries where the bias voltages are applied. If a carrier crosses 

the device border in a contact, it is accounted for to calculate the current. 

 

4.1.4  Metal Grain Granularity 

Since metal grain granularity (MGG) is a relevant source of variability in FinFETs 

(WANG, 2011; NAGY, 2017; SUDARSANAN, 2019), it is mandatory to include its effects 

in the simulator.  

The MGG modelling approach which was used in the code is the one presented in 

(VARDHAN, 2017). First, the grains and their characteristics must be defined. The average 

grain size (Ag) is defined according to the metal gate material, ranging from 5 to 20 nm. The 

expected number of grains (E[Ng]) is calculated for each metal gate plane as the ratio between 

the surface area (SA) and the average grain size, i.e., E[Ng] = SA/Ag. The number of grains is 

drawn from a Poisson distribution. The position of each grain is randomly selected from a 

uniform distribution in the 2-D plane of the metal gate. For each grain, the work function 

(WF) is randomly selected according to the WF values and their occurrence probabilities 

depending on the metal gate material. Lastly, the grains must be assigned to the grid, in order 

to define the WF value on each mesh cell. For each grid node in the gate, the distance to each 

grain in the plane is calculated, and the WF value from the closer grain is assigned to the 

node. The process is repeated for each metal gate surface.  

 

4.1.5 Dopant Distribution 

 The doping atoms are randomly placed in the appropriate regions of the device. The 

expected number of dopants that would belong to a certain region is calculated by its volume 

and doping density. The actual number of doping atoms in each region is then randomly 

picked from a Poisson distribution whose mean is the number previously calculated from the 

volume and doping density. 
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4.1.6 Carrier Initialization 

 Opposing to what happens in the bulk Monte Carlo method, the initial number of 

carriers and their location is not arbitrary, being the former defined so that initial charge 

neutrality is assured in the device by balancing the dopant ions, and the latter is defined by the 

equilibrium solution of Poisson equation. Similarly to the bulk Monte Carlo method, 

however, the energy and the momentum of each carrier are obtained respectively by the 

Boltzmann distribution and the generation of a random k-vector that matches the energy 

condition, as discussed in Section 2.1.1.  

 

4.1.7 Monte Carlo Routine 

 The Monte Carlo method is applied as discussed in Chapter 2, following a free-flight 

and scattering loop. The difference now is that the semiconductor is no longer physically 

unlimited, so that the device boundaries must be respected.  The boundaries must be checked 

at each step so that no carrier enters the oxide or leaves the device through its borders.    

 

4.1.8 Balance of Drain and Source Contacts 

 It is important to check if drain and source contacts are balanced, i.e., if the same 

number of charges that enter one contact leave the other, maintaining charge conservation. At 

each step, electrons may be included to balance the number of dopants on the cells on the 

vicinities of the contacts. The particles are deleted when they leave the contacts naturally. The 

charge balance is evaluated in the group of cells near each contact as a whole, not cell by cell.  

 

4.1.9 Particle-Mesh Coupling 

 While Poisson's Equation is solved on specific grid points, the Ensemble Monte Carlo 

method evaluates particle motion under continuous space coordinates. In order to make both 

components compatible, a particle-mesh (PM) coupling method is needed for both particle 

assignment to a mesh point and force interpolation. The PM coupling is compound of the 

assignment of the particle to the mesh, Poisson's equation solution on the mesh, calculation of 

the mesh-defined forces, and interpolation to define the forces on the particle. 

 In order to assign the charges along the corners of the mesh cell, there are three main 

particle-mesh methods, shown in Figure 7: nearest-grid-point (NGP), nearest-element-center 

(NEC) and cloud-in-cell (CIC). 
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Figure 7- Representation of Different Particle-Mesh Methods 

 

Source: Elaborated by the author 

 

 In the NGP method, the charge is assigned to the nearest grid point. It is the simplest 

PM method, but it leads to a noisy charge distribution, what can affect numerical stability. 

The NEC method considers that the charge is equally distributed in the four grid points that 

limit the cell. The CIC method leads to the most precise alternative, since the charge 

distribution to each corner is made proportionally to its distance from it.  

 

4.1.10. Particle-particle-particle-mesh (P3M) Algorithm 

 In order to properly simulate particle dynamics, all the relevant scattering mechanisms 

must be taken into account, including carrier-carrier and carrier-ion interactions. The 

scattering rates used in the Monte Carlo algorithm are typically calculated in k-space; in the 

past, it was common to model Coulomb interaction that way, using the Brooks-Herring 

approach, but it led to double counting of the force, as well as frequently other problems like 

faster thermalization of the carriers at the drain end of the device, disregard of multi-ion 

contributions to the scattering potential and of dynamical perturbations to the Coulomb fields 

resulting from carrier movement. There was also need of knowledge of the noisy and time-

varying local distribution function, so that the scattering rates had to be constantly reevaluated 

during the simulation, what took away the convenience of the one-time calculated scattering 

tables (AHMED, 2005). Since the k-space analysis of Coulomb scattering leads to many 
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inconveniences, real-space molecular dynamics approaches for this scattering mechanism 

have been developed, such as the particle-particle-particle-mesh (P3M) coupling method 

(HOCKNEY; EASTWOOD, 1988), the fast multipole method (GREENGARD; ROKHLIN, 

1997) and the corrected Coulomb forces approach (GROSS; VASILESKA; FERRY, 1999), 

being the first method the one addressed in this work. 

 The particle-particle-particle-mesh algorithm is one of the three principal models of 

particle simulation, being a hybrid of the other two: the particle-particle (PP) model, that uses 

the force law to obtain the forces of interaction and the equations of motion to obtain the state 

of the system (particle positions and velocities) for a certain time, and the particle-mesh (PM) 

model, that treats the force as a field quantity approximated on a mesh - the charge is assigned 

to a mesh, where Poisson's equation is then solved, followed by the computation of the mesh-

defined potential and its interpolation to the actual particle positions. While the PP model is 

suitable for small systems with long-range forces or for large systems with only a few 

interparticle distances that result in nonzero forces of interaction, the PM method can have a 

significant reduction on computational costs, at the expense of loss of resolution in the 

potential and force fields, so that it is appropriate only for smoothly varying forces. The P3M 

method combines the advantages of the PP and PM models, allowing the simulation of large 

correlated systems with long-range (such as coulombic) forces (HOCKNEY; EASTWOOD, 

1988). 

 The basic idea of the P3M method is to split the interparticle forces into two 

components: a short range part, which is nonzero only for particle separations smaller than a 

certain cutoff radius and is computed by direct particle-particle pair force summation, and a 

long-range part, that varies smoothly and is calculated by the particle-mesh method. Equation 

46 shows that the total force on particle 𝑖 can be split in the direct forces of particles 𝑗 on 

particle 𝑖 in the short-range domain (SRD), corresponding to the first sum, and in the mesh 

forces of particle 𝑗 on particle 𝑖 in the global problem domain (GD), including the effect of 

material boundaries and boundary conditions on particle 𝑖, corresponding to the second sum 

(AHMED, 2005). 

𝑭𝒊 =
∑𝑭𝒊𝒋

𝒔𝒓

𝒋≠𝒊

𝑺𝑹𝑫

+
 ∑𝑭𝒊𝒋

𝒎

𝒋≠𝒊

𝑮𝑫

 (46) 

 Where 𝑭𝒊𝒋
𝒔𝒓

 is the short-range Coulomb force of particles 𝑗 on particle 𝑖 and 𝑭𝒊𝒋
𝒎

 is 

the long-range mesh force of particles 𝑗 on particle 𝑖. 
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 The short-range Coulomb force can be written as 

𝑭𝒊𝒋
𝒔𝒓  = 𝑭𝒊𝒋

𝒄𝒐𝒖𝒍 − 𝑹𝒊𝒋 (47) 

where 𝑭𝒊𝒋
𝒄𝒐𝒖𝒍

 is the force of particle 𝑗 on particle 𝑖, given by Coulomb's law,  

𝑭𝒊𝒋
𝒄𝒐𝒖𝒍 =

𝒒𝒊𝒒𝒋(𝒓𝒊 − 𝒓𝒋)

4𝜋𝜀|𝒓𝒊 − 𝒓𝒋|
3  , (48) 

where 𝑞𝑖 and 𝑞𝑗 are particle charges and  𝑟𝑖 and  𝑟𝑗 are particle positions. 

 The variable 𝑹𝒊𝒋 is a reference force that avoids double counting of the forces of the 

SRD and GD, being equal to the mesh force within the short-range domain and to the 

Coulomb force outside the short-range domain. The Coulomb force is kept restricted to the 

SRD, where the reference force goes smoothly to zero, and outside the short-range domain 

cutoff radius (𝒓𝒔𝒓), the force is kept equal to the mesh forces, so that the reference force 

corresponds to the point particle force law. 

 In order to integrate P3M with the EMC method to account for carrier-carrier and 

carrier-impurity interactions for uniform meshes, Wordelman and Ravaioli (2000) followed 

Hockney's approach and obtained the reference forces used on this work, shown in Equation 

49. 

𝑹𝒊𝒋(𝑟) =
𝒒𝒊𝒒𝒋

4𝜋𝜀
 𝑥  

𝑥 

{
  
 

  
 

1

35𝒓𝒔𝒓
2
(224𝜉 − 224𝜉3 + 70𝜉4 + 48𝜉5 − 21𝜉6)                                          0 ≤ 𝒓 ≤

𝒓𝒔𝒓
2⁄ .

1

35𝒓𝒔𝒓
2
(
12

𝜉2
− 224 + 896𝜉 − 840𝜉2 + 224𝜉3 + 70𝜉4 − 48𝜉5 + 7𝜉6)    

𝒓𝒔𝒓
2⁄ ≤ 𝒓 ≤ 𝒓𝒔𝒓

  
1

𝒓2
                                                                                                                                𝒓 > 𝒓𝒔𝒓. … . − −

 

(49) 

where 𝒓 is the interaction radius and 𝜉 = 2𝑟/𝑟𝑠𝑟. 

 

4.1.11. Poisson's Equation Solver 

 Monte Carlo device simulation requires the potential profile, which is obtained as the 

solution of Poisson equation, given by 

  

∇. (𝜀𝑠∇𝜓) = −𝜌 (50) 
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where 𝜓 is the electric potential, 𝜌 is the free charge density and 𝜀𝑠 is the material 

permittivity. The 3D case is solved using the strongly-implicit method (STONE, 1968), so 

that the potential distribution along the device is found. 

4.2 N-MOSFET Implementation Overview 

 The PMOS Monte Carlo device simulator previously developed by Camargo (2016) in 

collaboration with Prof. Dragica Vasileska’s group in Arizona State University (ASU) was 

used as the basic structure for the development of a NMOS device simulator. In order to adapt 

the code to n-channel MOSFETs, initially a n-type bulk-Si Monte Carlo code was 

implemented. The NMOS device simulator was then obtained by combining the basic bulk-Si 

properties to the proper boundary conditions and to the Poisson equation solution structure of 

the PMOS code. Using the theoretical framework presented in Chapters 2, 3 and 4, the 

adaptation of the original PMOS to a NMOS device simulator required several, far-reaching 

changes and/or insertions in the code, including: 

• Boundary conditions, such as electric potential on the source, drain, gate and back 

contacts and also on the silicon; 

• Electron initial and updated positions after each iteration; 

• Doping; 

• New modelling of the scattering mechanisms – random selection and new equation of 

the different scattering rates for each scattering mechanism 

• Scattering tables;  

• Charge distribution and conservation; 

• Band structure for n-type silicon; 

• Electron velocity calculation; 

• Momentum/energy relation; 

• Different valley velocity calculation; 

• All Monte Carlo loop with new effective masses and different material characteristics; 

• Initial electron distribution in three different valleys, both in space and regarding their 

initial energy. 

In general, those changes appear or echo in many different locations on the code and 

need to be changed in a self-consistent, cohesive manner. 
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4.3 N-FinFET Implementation Overview 

 The expansion from planar to tridimensional transistors leads to several changes and 

new needs on the code. First, the transistor geometry and the materials that constitute each 

region of the device were changed, impacting significantly the boundary conditions and 

therefore the numerical solution of the Poisson equation which, coupled with the BTE, 

compose the semiconductor device simulation. New variables were inserted and read to 

define dimensions, materials and transistor characteristics. 

 The alteration of the structure geometry affects many simulation blocks, which 

demand corrections and must be readapted. It is necessary, for instance, to adapt the 

subroutines regarding initial potential, doping, velocity, and energy calculation. The carrier 

positions at the beginning of the simulation, after the equilibrium condition (voltage different 

from zero applied only at the gate electrode), and at each iteration must be properly accounted 

for. 

 Regarding the definition of the materials on the 3-D device, the changes on the gate 

oxide and on the contacts may be highlighted. In order to simulate tridimensional charge 

transport, oxide was inserted on the sides of the MOS transistor, allowing the creation of 

lateral channels, which add to the traditional top channel of planar transistors. Aiming to 

simulate the behavior of devices which have high-k gate dielectrics, silicon oxide with 

equivalent thickness to the high-k material was used to isolate all channel regions from the 

gate metal.  

 The device contacts were adapted through the addition of source and drain contacts on 

the fin sides, creating the side channels. The gate contacts were altered from the original poly-

Si on planar device to metal gate on the 3-D transistor. In order to achieve that, the work 

function (𝑊𝑚) of the metal gate and the electron affinity (𝑋𝑠𝑐) were used to calculate the 

electric potential 𝜙(𝑖, 𝑗, 𝑘) on the contacts through a new equation to the gate contacts on the 

3-D space: 

𝜙(𝑖, 𝑗, 𝑘) =
𝑉𝑔

𝑉𝑡
+ 𝑑𝐸𝑐 +

𝑋𝑠𝑐
𝑉𝑡
−
𝑊𝑚
𝑉𝑡

 (51) 

 On which 𝑉𝑡 =
𝑘𝑇

𝑞⁄  is the thermal voltage, being k the Boltzmann constant, T the 

temperature and q the fundamental charge. 

 Moreover, changes were made on the subroutine that verifies if a carrier is crossing a 

border, i.e., leaving the silicon area. Typically, the boundaries act as mirrors; if, after a 
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simulation step, a carrier would be located outside silicon after the drift determined by the 

Monte Carlo section, it is reflected inside the semiconductor, with the same momentum 

magnitude, but in the opposite direction. When, alternatively, the carrier crosses the border in 

a contact region, its exit is accounted for and considered on the device current calculation. 

Finally, if a carrier crosses a frontier between the semiconductor and the gate oxide, it may 

undergo surface scattering or be reflected specularly, depending on the surface scattering rate. 

For a tridimensional device, the complexity of boundary checking increases substantially, due 

to the necessity of considering the different possibilities by which a carrier could leave the 

device in three dimensions, on the top and side channels. 

 The mesh on which the fields are calculated and the Poisson equation is solved also 

needed to be adapted to the tridimensional structure. The volume of each cell was 

correspondingly adapted to consider the new device boundaries, that introduce changes on 

size between the cells. 

 Additional alterations were performed on the charge conservation subroutine, which 

assures the charge neutrality on the vicinities of the contacts at each simulation step. Another 

relevant alteration was the inclusion of directional injection of carriers. 
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5 BULK SILICON MONTE CARLO SIMULATION RESULTS 

 The bulk ensemble Monte Carlo particle dynamics simulator was implemented and 

some simulations were performed in order to verify its correctness. Silicon was chosen as the 

semiconductor material, and it was modeled as a three valley semiconductor. In all the 

simulations, 20000 carriers were simulated, divided into 1000 possible energy levels, and 

temperature was set to 300 K. The electric field was applied in the [111] direction, being 

equally divided into the three coordinate components.  

 The scattering tables were obtained from the scattering rate equations shown in 

Chapter 3 and were implemented in the bulk simulator. The intravalley acoustic phonon 

scattering (Figure 8), intervalley zero-order g and f non-polar optical phonon scatterings 

(Figure 9) and Coulomb scattering were considered in the code. 

Figure 8 - Acoustic scattering rate for silicon. 

 

Source: Elaborated by the author 



47 

 

Figure 9 - Non-polar optical scattering rate for silicon.

 

Source: Elaborated by the author 

 

 The transient and steady state drift velocities of electrons and their energy over time 

were calculated using the simulator. Since a three-valley semiconductor model was used, the 

output files registered the velocity in x, y and z axis for the three valleys, i.e., 𝑣𝑥1, 𝑣𝑥2 and 𝑣𝑥3, 

𝑣𝑦1, 𝑣𝑦2 and 𝑣𝑦3, , 𝑣𝑧1, 𝑣𝑧2 and 𝑣𝑧3. Assuming the occupation of valleys labeled as 1, 2 and 3 

is given by 𝑛1, 𝑛2 and 𝑛3, the final velocity at x, y and z is pondered by the valley occupation 

and given by 

𝑣𝑎 =
𝑣𝑎1𝑛1+𝑣𝑎2𝑛2+𝑣𝑎3𝑛3

𝑛1 + 𝑛2 + 𝑛3
  , 𝑎 = 𝑥, 𝑦 𝑜𝑟 𝑧 . (52) 

 

 The magnitude of the velocity is then given by 

  

𝑣 = √𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2. (53) 

 The mean valley occupation is the same for the three valleys when the field is applied 

to the [111] direction, but it varies from valley to valley if the field is not applied equally 

between them. If the electric field magnitude is different at each coordinate, the valley 

occupation is proportional to the magnitude, i.e., stronger fields lead to higher valley 

occupation; if the field is applied in the [010] direction, for example, the valley occupation is 
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larger in the y direction. Considering the electron longitudinal mass (𝑚𝑙 = 0.91) is bigger 

than the transverse mass (𝑚𝑡 = 0.19), and knowing that the valleys are represented by 

ellipsoids aligned with the coordinate axis, as shown in Figure 5, and that the valleys labeled 

as 1, 2 and 3 have each their longitudinal axis along x, y and z, respectively, the electrons that 

are located in a valley whose longitudinal axis is aligned with the stronger field have a higher 

effective mass and then gain less velocity. A possible explanation for the unequal valley 

occupation for unequal field application is that the carriers that are located on the valleys 

aligned with the stronger field gain less energy due to the smaller velocity, and then take 

longer to suffer a scattering, staying in this valley for a longer time.  

 Figure 10 shows the drift velocity over time for different electric fields that range from 

5.5x104 V/m to 5.5x106 V/m. 

Figure 10 - Electron drift velocity over time 

 

Source: Elaborated by the author 

 

 From Figure 10, velocity overshoot is verified for sufficiently high electric fields, as expected. 

It also evinces the fact that higher electric fields lead to higher velocities. 

 The results for electron energy over time are presented in Figure 11. As expected, high electric 

fields lead to higher electron energy. 
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Figure 11 - Electron energy vs time 

 

Source: Elaborated by the author 

  

 The relation between the velocity and the electric field is shown in Figure 12, and the 

dependence of energy with the field is shown in Figure 13. 

Figure 12 - Velocity dependence on electric field 

 

Source: Elaborated by the author 
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Figure 13 - Energy dependence on electric field 

 

Source: Elaborated by the author 

 

 The carriers velocity and energy are in good agreement with the experimental data of 

Canalli (1975) and the simulation results of Jacoboni (1977). 
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6 N-MOSFET DEVICE SIMULATION RESULTS 

 The bulk silicon simulator was expanded to a device simulator that allows the 

simulation of n-type MOSFET. The device simulated is a planar silicon n-MOSFET, with 

doping densities of NA = ND = 1019  cm-3, device length of 72 nm, device depth and width of 

105 nm, oxide (SiO2) thickness of 1.2 nm, and source and drain junction depths of 15 nm. The 

simulation time step was of 0.1 fs. The gate contact is made of polysilicon, and the drain, 

source and bulk contacts are metallic. The device length is considered to be in the source-

drain direction, i.e., along the device channel length, the device depth is in the oxide-bulk 

direction and the device width is in the channel width direction. Simulation results at 300 K 

regarding different aspects, such as charge conservation, carriers velocity and energy, electric 

current, carrier density and electric potential, will be addressed in the next sections.  

6.1 Charge Conservation 

 In order to assure charge conservation, the number of electrons that enter the source 

contact must be equal to the number of electrons that leave the drain contact, assuming there 

are no gate and body currents. The number of carriers that passes through the source and drain 

contacts during a 3 ps simulation was verified, and the results are shown in Figure 14. 

Figure 14 - Charge flow through source and drain contacts 

 

Source: Elaborated by the author 



52 

 

 After reaching steady state, the source and drain curves are parallel, which means that 

the derivative of the cumulative charge in the source and drain contacts have the same 

absolute value, confirming the charge conservation. 

 

6.2 Carrier Velocity and Energy 

 The average carriers energy and average velocity on the axis along the device channel 

length direction were simulated for 𝑉𝐺 = 𝑉𝐷 = 1.1 𝑉, with source and bulk grounded, and the 

results are shown in Figures 15 and 16. The source region extends on the device length 

direction from 0 nm to 18 nm, with contacts from 0 nm to 12 nm, and the drain region goes 

from 54 nm to 72 nm, with contacts from 60 nm to 72 nm. The channel is in the region 

between 18 nm and 54 nm on the device length direction. In order to evaluate the variability, 

Figs. 15 and 16 show the behavior of 40 different devices in different colors, and the average 

is presented in black. 

 

Figure 15 - Dependence of carrier energy with position along the device length. 

 

Source: Elaborated by the author 

 

Figure 16 - Dependence of carrier velocity on direction along the device length 

with their position along this axis. 
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Source: Elaborated by the author 

 

 The energy and velocity curves follow the expected shape, with both quantities 

increasing along the channel, so that the carriers reach their maximum energy and maximum 

velocity in the channel region near the drain.  

6.3 Drain Current vs Gate and Drain Voltages  

 In order to verify that the current dependence on gate and drain voltages matches the 

traditional MOSFET current curves, the device was simulated for different bias conditions.  

 For the 𝐼𝐷 𝑥 𝑉𝐺  curve, shown in Figure 17, the drain voltage was set to 0.3 V and the 

source and bulk voltages to 0 V. 
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Figure 17 - Drain current vs gate voltage for VD = 0.3 V. 

 

Source: Elaborated by the author 

 The drain current vs drain voltage was simulated for VG = 1.1 V, to assure that the 

channel was already formed. The values are shown in Figure 18. 

Figure 18 - Drain current vs drain voltage for VG=1.1 V. 

 

Source: Elaborated by the author 

 Figure 18 shows current saturation for VD higher than approximately 1 V. 
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6.4 Electric Potential 

 The electric potential was plotted along the device length and device depth directions, 

as shown in Figure 19 and Figure 20, for equilibrium condition (VG = 1.1 V, VD = VS = VB = 

0 V) and after the 3 ps simulation (VG = VD = 1.1 V, VS = VB = 0 V) respectively. The cut on 

the W direction was made in the middle of the channel, i.e., W = 52.5 nm. The simulated 

mesh size of 3 nm was also used on the plots, and the dimensions are expressed in nm. 

Figure 19 - Electric potential along device length and depth for VG = 1.1 V, VD = VS = VB = 0 V. 

 

Source: Elaborated by the author 

Figure 20 - Electric potential along device length and depth after 3 ps simulation for VG = VD = 

1.1 V, VS = VB = 0 V. 
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Source: Elaborated by the author 

 It is possible to see in Figure 19 that, for the equilibrium condition, the source and 

drain contacts are at the same potential, and the central part of the device is at higher 

potential, due to the bias applied to the gate. After the voltage is applied to the drain contact, 

the drain potential rises accordingly, as shown in Figure 20.  

 The electric potential was also plotted as a function of the position in the direction of 

device width and length. Figure 21 displays the results for equilibrium condition, clearly 

showing the presence of fluctuations due to random dopants. 
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Figure 21 - Electric potential along device length and width for VG = 1.1 V, VD = VS = VB = 0 V. 

 

Source: Elaborated by the author 

 The results obtained after the application of drain voltage VD = 1.1 V are shown in 

Figure 22. 



58 

 

Figure 22 - Electric potential along device length and width after 3 ps simulation with VG = VD = 

1.1 V, VS = VB = 0 V. 

 

Source: Elaborated by the author 

 

6.5 Carrier Densities  

 The channel formation can be verified by plotting the electron density along the 

channel for the equilibrium condition. Figure 23 and Figure 24 show, respectively, the carrier 

density along the channel for different positions in the device depth and width directions, with 

VG = 1.1 V and VD = VS = VB = 0 V. Since the gate oxide is 1.2 nm thick, the channel 

interface is located at 1.2 nm in the device depth direction. The dimensions are expressed in 

nm. 
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Figure 23 - Electron density [m-3] along device length and depth for equilibrium condition. 

 

Source: Elaborated by the author 

 

Figure 24 - Electron density [m-3] along device length and width for equilibrium condition. 

 

Source: Elaborated by the author 
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 Figure 23 shows carrier accumulation on the channel interface with the oxide, creating 

a conductive channel between source and drain. 

 Figure 25 shows electron density distribution along the directions of device depth and 

length after the drain voltage of 1.1 V is applied and the device is simulated for 3 ps. Figure 

26, alternatively, shows carrier density for these conditions but along the directions of device 

width and length. In both figures, pinch-off effect is clearly seen near the drain end (around 

54 nm in device length direction), where the electron density becomes very low.  

Figure 25 - Electron density [m-3] along device length and depth after 3 ps simulation. 

 

Source: Elaborated by the author 
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Figure 26 - Electron density [m-3] along device length and width after 3 ps simulation. 

 

Source: Elaborated by the author 

7 N-FINFET DEVICE SIMULATOR RESULTS 

 Some relevant simulation results that validate the 3D FinFET simulator are presented 

next. A single-fin n-FinFET (Figure 27) with channel length Lch = 18 nm, Wfin = 8 nm and 

Hfin = 42 nm was simulated. The total device length (L) is 78 nm, which includes the source 

(0 – 30 nm), the channel (30 nm – 48 nm) and the drain (48 nm – 78 nm). The total device 

depth (D) is 57.2 nm. The total device width (W) is 10.4 nm, which includes the thickness of 

the gate dielectrics located in the interface with the side channels. The simulation time was 15 

ps. The simulations were performed with VG = VD = 0.9 V and VS = VB = 0 V, except when 

said differently. TiN was used as metal gate material, which has average grain size of 20 nm 

and work function of WF = 4.6 eV with 60% probability and WF = 4.4 eV with 40% 

probability (DADGOUR; ENDO; DE; BANERJEE, 2010). Surface roughness scattering is 

treated as being 15% diffusive and 85% specular (BUFLER; SMITH, 2013). 
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Figure 27 – Basic structure of the FinFET used in this work. The silicon area is presented in 

gray, the gate dielectric is shown in yellow, the metal gate is depicted in red, and the silicon oxide 

is shown in blue. 

 

Source: Elaborated by the author 

The device length is in the direction from source to drain, i.e., along the channel length 

(defined as L-direction). The device depth is defined as the oxide-substrate direction (D-

direction). The width of the device is aligned with the channel width (W-direction).  

The random placement of the dopants in a device is shown in Figure 28 for acceptors 

and donors doping concentration of NA = 5.1018 cm-3 and ND = 1019 cm-3 respectively. 

Figure 28 - Dopant atoms randomly distributed in the device. The acceptor atoms are 

represented with black circles, and the donors with blue circles. 

 

Source: Elaborated by the author 

 Metal grain granularity is depicted in Figure 29, which presents the electric potential 

on a side gate. Figure 29 clearly shows the presence of metal grains and illustrates the 

existence of regions with different work functions that lead to fluctuations on the gate 

potential. 
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Figure 29 - Electric potential distribution over one of the side gates of a FinFET, 

showing the presence of metal grains with different characteristics. The yellow cells 

(1.103 V) have a potential 0.2 V higher than the blue ones (0.903 V), due to the 

difference in the work function in those regions. 

 

Source: Elaborated by the author 

 Figure 30 (a) and (b) shows respectively the average carrier velocity and energy. It is 

possible to see that the energy peak is located near the drain end, as expected, and 

experimentally verified.  

Figure 30 - Velocity (a) and energy (b) of the ensemble of carriers in different devices. The black 

line represents the average values for a set of devices. 

 

(a) 

 

(b) 
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Source: Elaborated by the author 

The electric potential was plotted for different cut-planes in the length and the depth of 

the device, with the width position fixed at the center of the fin, i.e., equal to W/2. In Figure 

31, the simulation results for the electrostatic potential with VD = VS = VB = 0 V are shown. 

In Figure 32, the same plot is shown, but with the drain bias of VD = 0.9 V and VS = VB = 0 

V. The total simulation time is 15 ps. It is possible to see that the donor dopants are randomly 

distributed in the source and in the drain region and they significantly perturbate the potential. 

In the channel region (L = 30 nm – 48 nm, H = 1.2 nm – 43.2 nm and W = 1.2 nm – 9.2 nm), 

there are also significant variations of the electrostatic potential caused by the substrate 

dopants. 

Figure 31 . Electrostatic potential along the device length and depth with VD = VS = VB = 0 V and 

(a) VG = 0.1 V, and (b) VG = 0.9 V. 

 

(a) 

 

(b) 

Source: Elaborated by the author 
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With VD = VS = VB = 0 V, the source and drain contacts are at the same electrostatic 

potential, and the gate bias impact is clearly seen from Figures 31 (a) and (b). The case when 

voltage of 0.9 V is applied on the drain is shown in Figure 32.  

Figure 32 Electrostatic potential in the device as a function of its length and depth with VD = 0.9 

V, VS = VB = 0 V, and (a) VG = 0.1 V, and (b) VG = 0.9 V. 

 

(a) 

 

(b) 

Source: Elaborated by the author 

The electrostatic potential was also plotted as a function of the position in the direction 

of device width and length, with the position in the depth direction fixed as the top channel 

silicon/gate dielectric interface. Figure 33 displays the results for VG = 0.9 V, VD = VS = VB = 

0 V, and in Figure 34 the results obtained for VG = VD = 0.9 V and VS = VB = 0 V after the 15 

ps simulation are presented. 
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Figure 33 - Electrostatic potential along device length and width for equilibrium condition with 

VG = 0.9 V, VD = VS = VB = 0 V. 

 

Source: Elaborated by the author 

 

Figure 34 - Electrostatic potential in the device as a function of its width and depth with VG = VD 

= 0.9 V and VS = VB = 0 V. 

 

Source: Elaborated by the author 

Figure 35 shows electron density distribution of a device along the directions of its 

depth and length after the drain voltage of 0.9 V is applied and the device is simulated for 15 

ps.  

Figure 35 - Electron density [m-3] along device length and depth after 15ps simulation for a slice 

in the middle of the channel width (W/2). 
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Source: Elaborated by the author 

 Note that, since the plot in Figure 35 represents a 2-D slice taken from the middle of 

the fin width, the top channel carriers are captured in the figure as a high concentration near 

the oxide-silicon interface with depth of 1.2 nm. 

Figure 36 shows carrier density also in the directions of device length and depth and 

for the same simulation conditions, but with the position on the width direction defined as the 

interface between one of the side channels and the gate dielectric. It is possible, therefore, to 

capture the behavior of the side channel as well. In both Figures 35 and 36, pinch-off effect is 

clearly seen near the drain end (around 48 nm in the device length direction), where the 

electron density becomes very low. 

Figure 36 - Electron density [m-3] along device length and depth after 15ps simulation for a slice 

that captures one of the side channels. 

 

Source: Elaborated by the author 
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The behavior of the drain current of the n-FinFET is shown in Figure 37 as the ID -VG 

curve, and in Figure 38 as ID -VD curve. These results correspond to well established values 

for MOS transistors. 

Figure 37 - ID -VG curve for different devices, depicting the variability between devices with the 

same parameters. 

 

Source: Elaborated by the author  

 

Figure 38 - ID -VD curve for different devices with the same parameters as in Figure 37. 

 

Source: Elaborated by the author 
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8 CASE STUDIES  

 Since it allows state-of-the-art FinFET simulation, the 3-D Monte Carlo Device 

simulator has already been used to study different aspects regarding charge transport and 

reliability concerns in FinFETs. The simulator unique real-space carrier-carrier and carrier-ion 

treatment allowed its usage to study ballistic transport in a novel carrier-centric perspective, 

and the results were presented in the paper “Evaluating the Ballistic Transport in nFinFETs: a 

Carrier Centric Perspective” (FURTADO; CAMARGO; VASILESKA; WIRTH, 2021a). The 

simulator was also used to study hot-carrier degradation in FinFETs, extracting breakthrough 

information related to its link to percolation paths and to the trap impact distribution along the 

channel. This is only possible because, different to the simulators typically employed in HCD 

model studies, the simulator which was developed considers the individual random position 

of the charge dopants and the carriers, without relying on densities anyhow. This study 

resulted in a paper entitled “Correlation of HCD and percolation paths in FinFETs: study of 

RDF and MGG impacts through 3-D Particle-Based Simulation” (FURTADO; CAMARGO; 

VASILESKA; WIRTH, 2021b). The simulator is currently being used in undergoing studies 

regarding trap coupling. The novel 3-D particle-based simulator itself was described in a 

paper called “3-D TCAD Monte Carlo Device Simulator: State-of-the-art FinFET Simulation” 

(FURTADO; CAMARGO; VASILESKA; WIRTH, 2021c), accepted for publication on 

Journal of Integrated Circuits and Systems. This manuscript accounts for the main theoretical 

details and the most relevant device performance/characteristics which were described in this 

thesis (© 2021 Journal of Integrated Circuits and Systems). 

 

8.1 Ballistic Transport in FinFETs  

The contents of the paper “Evaluating the Ballistic Transport in nFinFETs: a Carrier 

Centric Perspective” (FURTADO; CAMARGO; VASILESKA; WIRTH, 2021a), submitted 

to IEEE Transactions on Nanotechnology and currently under review, will be presented next. 

As transistors’ dimensions become comparable to the mean-free path of the carriers in 

the material, modern FinFETs are expected to have a large number of carriers that cross the 

channel ballistically. Therefore, an increasing number of carriers do not undergo any 

scattering event in the channel (besides for the carrier-carrier interactions), so that ballistic 

transport may govern carrier dynamics. It is, therefore, mandatory to understand how close to 
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the ballistic limit are state-of-the-art FinFETs and to understand the ballistic transport 

properties of the same. 

It is well known that TCAD simulators are a powerful tool used to evaluate transport 

in modern FinFETs. Furthermore, Monte Carlo (MC) device simulators are believed to be a 

very effective tool to evaluate ballistic transport in semiconductor devices within the 

semiclassical limits (ELTHAKEB; ELHAMID; ISMAIL, 2015). At least down to gate length 

of LG = 10 nm, Monte Carlo device simulators are known to be an adequate tool to study 

charge transport in nanoscale devices (PALESTRI et al, 2005). Several studies exist regarding 

modeling and simulation of ballistic transport in semiconductor devices (AKIS et al., 2009; 

BAYKAN; THOMPSON; NISHIDA, 2012; CURATOLA; FIORI; IANNACCONE, 2004; 

KHAN; MAMALUY; VASILESKA, 2007; KIM; LUNDSTROM, 2008, RAHMAN et al., 

2003) using different methods.  Monte Carlo based device simulators are consistently used to 

study ballistic transport in deeply scaled devices. Besides the ballisticity ratio (GNANI et al., 

2009), previous studies cover topics such as drift velocity along the channel (ELTHAKEB; 

ELHAMID; ISMAIL, 2015; BUFLER et al., 2017), inversion charge and potential energy 

profiles along the device (PALESTRI et al, 2004), and the role of scattering in different parts 

of the device (PALESTRI et al, 2005). 

Considering the above, the 3D-TCAD Monte Carlo device simulator presented is this 

thesis is used in this study to study ballistic transport in deeply scaled n-FinFETs. This work 

differs from previous studies as it reaches beyond the traditional metrics as the ballisticity 

ratio, looking at specific carrier’s statistics to achieve a better understanding of the transport 

in FinFETs. This is one of the main advantages of the Monte Carlo device simulation 

technique over other simulation methods, since it allows access to individual carrier’s 

characteristics such as their energy and position at any time instant. However, a carrier centric 

perspective on ballistic transport using MC device simulation has yet not been explored; in 

this regard, this study aims to provide a new perspective to the ballistic transport effects. 

Aspects, such as the importance of phonon and surface roughness scattering (individual and 

combined) and the percentage of carriers that cross the channel ballistically, are thus, 

exploited here. Valuable information about the carriers' transit time, their relation to ballistic 

transport, the energy distribution functions of ballistic and non-ballistic carriers, and the role 

of e-e interaction on the shape of this distribution is also presented. For completeness, the 

studies were performed on devices with different channel lengths to show the impact of 

scaling concerning ballistic transport. A significant advantage of this work compared to 
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previous works is that the ballisticity is investigated in the context of discrete impurities 

treated in real-space, as well as metal grain granularity, what can significantly impact the 

results due to changes on the percolation paths. 

This study is organized as follows. In section 8.1.1, the information on the device 

structures used in this study is given, and details about different aspects of ballistic transport, 

such as ballisticity ratio, percentage of ballistic carriers, energy distribution of the ballistic 

carriers and its relationship with electron-electron and electron-phonon interactions are 

provided. The results of the simulations and in-depth discussions regarding the findings are 

presented in Section 8.1.2. Finally, in section 8.1.3 the key points regarding ballistic transport 

in nano FinFETs are summarized.  

 

8.1.1. Methodology 

The devices used in this study are nFinFETs with channel length Lch varying from 14 

nm to 30 nm, channel width W = 8 nm, fin height Hfin = 42 nm, source and drain random 

doping ND = 1019 cm-3, gate dielectric with equivalent oxide thickness of tox = 1.2 nm and 

TiN as metal gate with an average grain size of 22 nm and a work function of 4.6 eV with 

60% probability or 4.4 eV with 40% probability (DADGOUR et al., 2010), depending on 

MGG. The applied voltages were VG = VD = 1 V and VS = VB = 0 V. In Sections 8.1.2 (A) 

and (B), the simulation time was 30 ps and 60 Monte Carlo seeds were used. For the other 

sections, where a larger dataset was required, the simulation time was 100 ps and 70 Monte 

Carlo seeds were used in the analysis (more than one million carriers were used in the 

statistical analysis).  

Only the electrons that entered the channel from the source and made it to the drain 

end of the channel were reported in all the studies presented here. Even though they naturally 

happen in the entire device during the simulation, the scattering events were counted only 

inside the channel, and the scattering counts were set or reset to 0 when the carrier reached the 

source region. The energy was measured at the moment the carriers reached the drain 

electrode, after crossing the channel. 

The methodology used in the analysis of the vast amount of data generated is as 

follows. First, the ballisticity ratio (BR) is discussed. Even though this metric is commonly 

seen in the literature, the results deviate considerably in different papers, because the BR is 

strongly dependent upon the device geometry and characteristics as well as with the bias 
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(AKIS et al., 2009). Next, the impact of channel length scaling on the number of scattering 

events that each carrier undergoes is studied. In this context, individual contributions of 

phonon and surface roughness scattering are evaluated. The time the carriers took to cross the 

channel was measured, here also referred to as the transit time (ttr), both for electrons that did 

and did not suffer scattering events in the channel, to obtain the transit time distribution. 

Finally, the electrons’ energy distribution under different conditions are analyzed. First, it is 

verified how the electrons’ energy distributes grouped by the time the electrons took to cross 

the channel (for both 14 nm and 30 nm devices).  Then, these distributions are compared to 

the ones obtained with the short-range (SR) e-e interactions turned off, aiming to study their 

impact. It is important to point out that the long-range e-e interactions are still present due to 

each electron’s impact on the Poisson equation solution via the particle-mesh coupling. 

 

8.1.2. Results and Discussions 

A. Ballisticity Ratio 

The ballisticity ratio (𝐵𝑅 =
𝐼𝑜𝑛

𝐼𝑏𝑎𝑙𝑙
) is the ratio between the on-current (𝐼𝑜𝑛), which 

naturally includes scattering events, and the current with the scattering mechanisms turned off 

inside the channel (𝐼𝑏𝑎𝑙𝑙).  

Figure 39 - (a) Drain current with (Ion) and without (Iball) scattering, (b) percentage of carriers 

which suffer zero scattering events (ballistic carriers) for different channel lengths and (c) the 

ballisticity ratio compared to other similar works from the literature, being [1] (ELTHAKEB; 

ELHAMID; ISMAIL, 2015), [2] (PALESTRI et al., 2005), [10] (BUFLER et al. 2017) and [11]  

(PALESTRI et al., 2004). 

          

                   (a)                    (b) 
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(c) 

Source: Elaborated by the author 

Figure 39 (a) shows that the current without scattering remains approximately constant 

with the change of the channel length, and the current with the scattering mechanisms turned 

on decreases as channel length increases, as expected. This means that the BR, which is the 

ratio of these two quantities, must decrease for larger channel lengths, as shown in Figure 

39(c). The results obtained are consistent with the literature (ELTHAKEB; ELHAMID; 

ISAMAIL, 2015; PALESTRI et al., 2005; BUFLER et al., 2017; PALESTRI et al., 2004). 

Note that, in order to obtain the results showed in Figure 39(c), some works only change the 

gate length (BUFLER et al., 2017), keeping all other device and operation parameters the 

same, as was done in our simulations, while others also scaled other geometry and bias 

parameters following technology-node specifications (ELTHAKEB; ELHAMID; ISAMAIL, 

2015). The percentage of ballistic carriers, i.e., the portion of carriers that drifts through the 

channel without undergoing any scattering event is shown in Figure 39(b). Note that the 

ballisticity ratio and the percentage of ballistic carriers have different meanings and 

significantly different values. While the BR ranges from 82.4% for the 14 nm device, it drops 

down to 62.6% for the 30 nm nFinFET, and the percentage of ballistic carriers changes from 

46.7% to 21.3%, respectively.  

 

B. Scattering Statistics 

Each carrier was tracked during the MC simulation, and every scattering event was 

annotated. The histograms in Figure 40 depict the distribution of the number of scattering 

events experienced by a single carrier as it crossed the channel. For better visualization, the 

histograms are normalized. Figures 40 (a), (b) and (c) depict the histograms for FinFETs with 
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gate lengths of 14 nm, 22 nm, and 30 nm, respectively. When comparing these results, it is 

possible to notice a similar distribution, but with an increase in its mean and standard 

deviation, as a function of the gate length. One should also pay attention to the count zero, 

which groups the carriers that crossed the channel without any scattering event. An increase 

in the carriers' probability as the channel shrinks (from 21.3% for the 30 nm channel length 

device to 46.7% for the 14 nm one) is observed. 

Figure 40 - Histogram of the number of scattering events a single carrier experienced while 

crossing the channel in devices with channel lengths of (a) 14 nm, (b) 22 nm and (c) 30 nm. The 

histograms are normalized by the number of carriers evaluated to show the probability as a 

function of the scattering events count. 

 

(a) 

 

(b) 

 

(c) 

Source: Elaborated by the author 

In this study, the importance of only phonon and surface roughness scattering on the 

transport characteristics of nano FinFET is also verified. The e-i interactions are not presented 

here as they are less relevant for intrinsic channels and excluding the impact of unintentional 

dopants. The main graphs in Figure 41(a-c) show the bivariate histograms of the count of 
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surface and phonon scattering events, represented as a heatmap. The sub-plots above show the 

histogram of the scattering event counts per carrier for each mechanism. As in Figure 40, the 

sub-plots in Figure 41 are normalized so that the bin's heigh indicates the probability for a 

particular count to happen. 

Figure 41 - The main plot shows the bivariate histograms of the scattering events a single carrier 

experienced while crossing the channel in devices with channel lengths of (a) 14 nm, (b) 22 nm 

and (c) 30 nm. The sub-plots show the normalized histogram for particular scattering 

mechanism (either phonon scattering or surface roughness scattering). 

 

(a)                                                   (b)                                                    (c) 

Source: Elaborated by the author 

In Figure 41, one can see that, despite a reduction in the occurrence of both scattering 

mechanisms as the device length scales, the surface roughness scattering count reduces at a 

higher rate when compared to the phonon scattering. This trend is observed both in the main 

graphic and in the sub-plots. The surface roughness scattering reduction is directly related to 

the reduction of the channel length, as with a shorter channel, there are naturally fewer 

carrier-surface interactions. The scaling also affects phonon scattering, but it is not as 

pronounced as the carriers' average energy does not scale proportionally (the bias is the same 

for all devices considered in the study).  

It is important to notice that the impact of the scattering mechanisms is device and bias 

dependent. The elevated gate voltage used in these simulations increases the current’ density 

close to the Si/SiO2 interface (BROWN et al., 2013), leading to a higher impact of the surface 

roughness scattering. The fin dimensions will also play an important role in the surface 

roughness scattering count. The impact of phonon scattering near the source region will 

depend on the source resistance and the carriers’ energy there. A higher drain bias leads to 

high energy carriers, with a scattering rate due to ionized impurities significantly diminished. 
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Nevertheless, the methodology presented here allows the device engineer to clearly see the 

impact of each mechanism on carriers’ transport. 

 

C. Transit time 

Figure 42 shows the probability distribution of the transit time (ttr) in 14 nm and 30 nm 

devices, considering all carriers that drifted through the channel (Figure 42(a)) and filtering 

only the electrons that traveled ballistically (Figure 42(b)). Note that Figure 42 depicts the 

Probability Density Function (PDF) of log(Ttr). The approximated distributions presented here 

were obtained as the Kernel Density Estimation (KDE) of over one million carriers that 

crossed the device. From the results presented in Figure 42(a), it is evident that the average 

transit time for the carriers in the 30 nm device is larger and has a larger tail of the 

distribution. In this device, it takes a longer time for the carriers to cross the channel since the 

channel is longer. The results presented in this figure also illustrate the fact that the number of 

ballistic or quasi-ballistic carriers is concentrated in the short transit times for both devices, 

while the non-ballistic ones dominate for larger transit times. Another interesting fact this 

figure illustrates is that there are also non-ballistic carriers as fast as the ballistic ones. These 

non-ballistic fast carriers are the ones that, despite suffering scattering events, had their new 

momentum (after scattering) in the same direction as the electric field, thus not slowing down. 

Figure 42 - Distribution of the transit time in 14 and 30 nm gate length devices. Case (a) 

considers all carriers that crossed the channel, and case (b) considers only the carriers that had 

no scattering in the channel. 

 

(a) 
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(b) 

Source: Elaborated by the author 

 

D. Energy Statistics 

Analyzing the PDF of the energy of the carriers at the entrance and at the exit of the 

channel, presented in Figure 43, it is possible to see that, as the time the carriers spent in the 

channel increases, the average energy of the electron gets smaller, but the standard deviation 

gets larger, thus resulting in a wider distribution function. The energy at the moment the 

electrons enter the channel (~0.2 eV) is due to the relatively high source resistance, so the 

carriers are already being subject to a significant electric field before entering the channel. 

Comparing Figure 43(a) and Figure 43(b), it is possible to see that both, small and large 

devices, show roughly the same behavior. The number of carriers which meet the ttr < 50 fs 

criteria gets significantly smaller in the larger device. However, since the carriers naturally 

take longer to cross the channel, and the carriers' average energy with ttr < 50 fs gets larger, 

only the fastest (least energy loss) electrons enter the count for the 30 nm device. The 

distribution for ttr > 100 fs is even more shifted to lower energies for the 30 nm device, which 

is a consequence of having a large amount of much slower (ttr > 200 fs) carriers. The 

widening and the shift of these distributions with the increase of ttr is attributed to the phonon 

and surface roughness scattering mechanisms.  
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Figure 43 - Distribution of the electrons’ energy at three different moments (entrance in the 

channel, exit of the channel with ttr < 50 fs and exit of the channel with ttr > 100 fs), for (a) 14 nm 

device and (b) 30 nm device. 

 

(a) 

 

(b) 

Source: Elaborated by the author 

 

Figure 44 - Distribution of the electrons’ energy for transit times in three different time windows 

for (a) 14 nm and (b) 30 nm devices. 
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(a) 

 

(b) 

Source: Elaborated by the author 

Figure 44 presents the distribution (KDE) of the carriers’ energy at the moment of exit 

from the channel. The distributions are made for electrons with different transit times in three 

windows, the ones considered fast, the ones considered slow and the ones in between. Due to 

the different channel lengths of the devices, the limits of these windows differ from (a), 

relative to the 14 nm channel length device, to (b), relative to the 30 nm one. A careful look at 

these KDEs shows that the longer an electron stays in the channel, the smaller the average 

energy and the wider is the distribution. The average energy of the fast electrons (ttr < 70 fs) is 

1 eV, as would be expected from having VD = 1 V. The widening of the distributions occurs 

due to the thermalization of the carriers’ energy caused by the scattering mechanisms and the 

e-e interactions. The thermalization due to phonon scattering is in the order of magnitude of 

the pico-seconds, while due to carrier-carrier interaction may vary from femto-seconds to 

pico-seconds depending on the carrier concentration (OTHONOS, 1998). Thus, in these small 

devices, where the transit time is a fraction of pico-seconds, one can notice that in the 14 nm 

device the widening is much smaller than in the large one, where the shape of the distribution 

begins to change noticeably. Alterations like this in the carriers’ energy distribution are of 

particular interest for Hot Carrier Injection (HCI) studies as modeled in (BINA et al., 2012), 

particularly due to carrier-carrier interactions in which a few electrons might gain large 

energies. It can also be observed in this figure that in short devices, where the transit time of 

electrons is smaller than 0.1 ps, the hot electrons created by e-e interactions are rare, 

indicating a possible impact on the HCI effect. 

 

E. Short-range electron-electron interaction impact 

Figure 45 - Distributions of carriers’ energy with and without short-range e-e interactions for 14 

nm channel length device with transit time smaller than 25 fs (a), between 25 fs and 100 fs (c) 
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and larger than 100 fs (e), and for 30 nm channel length devices with transit time smaller than 

70 fs (b), between 70 fs and 200 fs (d) and larger than 200 fs (f). 

 

(a)                              (b) 

 

    (c)                 (d) 

 

     (e)                (f) 

Source: Elaborated by the author 

Table 1 – Mean and Standard Deviation of the Distributions in Figure 45(a),(c),(e) 

14 nm 

         µ (eV) σ (eV) 

 ttr < 25 fs 0.992 0.131 
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With SR e-e 

interaction 

25 fs < ttr < 100 fs 0.943 0.149 

ttr > 100 fs 0.914 0.179 

 

Without SR e-e 

interaction 

ttr < 25 fs 0.995 0.126 

25 fs < ttr < 100 fs 0.947 0.143 

ttr > 100 fs 0.916 0.172 

 

 

Table 2 - Mean and Standard Deviation of the Distributions in Figure 45(b),(d),(f) 

30 nm 

         µ (eV) σ (eV) 

 

With SR e-e 

interaction 

ttr < 70 fs 1.003 0.155 

70 fs < ttr < 200 fs 0.952 0.175 

ttr > 200 fs 0.923 0.202 

 

Without SR e-e 

interaction 

ttr < 70 fs 1.006 0.148 

70 fs < ttr < 200 fs 0.955 0.168 

ttr > 200 fs 0.925 0.196 

 

The 3D Monte Carlo device simulator used in this study evaluates the e-e interactions 

through two different mechanisms, the long-range interactions, that are generated by each 

electron’s contribution to the electrons’ density, which is used in the Poisson solver, and the 

SR interactions, that are evaluated in the real-space. Figure 45 shows the impact of the short-

range e-e interactions on the carriers' energy for the 14 nm channel length FinFET. Case (a) 

depicts the energy distribution of the carriers with a transit time lower than 25 fs, considering 

and not taking into account the SR e-e interactions. One can see that the SR e-e interactions 

had some effect on the shape of the distribution function with an increase in the standard 

deviation. The mean of the distribution had a negligible decrease of 0.3%, which is expected 

as the energy gained by one electron is lost by another. Figure 45 (c) and (e) present the same 

analysis, but filtering carriers with transit time between 25 fs and 100 fs, and larger than 100 

fs, respectively. In Figure 45(c) and (e), a more significant widening of the distribution can be 

observed in the simulation that considers the SR e-e interaction related to the one that does 

not (in particular at higher energy). A close look at Figure 45 (a), (c) and (e) suggests an 

increase in the widening of the distribution there shown, which the authors credit to a longer 

transit time, which leads to a higher impact of the e-e interaction mechanisms. Such widening 

seems to become less significant as the transit time increases. Figure 45(b), (d) and (f) present 

the same analysis, however for a 30 nm channel length device. In the large device, one cannot 

notice an increase in the widening of the distribution due to short-range e-e interactions as 
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even the carriers in the fastest window stay a long time in the channel. As the transit time 

increases, the SR e-e interaction becomes less noticeable in the range captured by this figure, 

despite of still being detected in the distributions’ standard deviation. This result indicates the 

importance of considering the SR interactions when simulating deeply scaled devices, with 

carrier’s transit time in the same order of magnitude as the characteristic carrier-carrier 

scattering time. For a better analysis, Tables I and II show the average and the standard 

deviation values of the distributions of Figure 45. 

 

8.1.3. Ballistic Transport in n-FinFETs Conclusions  

This study provided detailed information on ballistic transport in state-of-the-art 

FinFETs, in order to properly understand the underlying scattering mechanisms' relevance. 

For this purpose, the 3D-TCAD Monte Carlo device simulator introduced in this thesis was 

used, which is adequate to study electron-electron interactions and the role of different 

scattering mechanisms on charge carrier transport. 

By examining the ballisticity ratio and the percentage of carriers that cross the channel 

ballistically, it becomes clear that modern FinFETs have not yet reached the ballistic limit. 

Therefore, there is still room for progress with different devices that may go in the direction 

of the ballistic limit. The fraction of ballistic carriers in the devices studied is significant, 

reaching almost 50% for the simulated 14 nm n-FinFETs. This compromises the concept of 

carriers' mobility in deeply scaled devices, as ballistic transport dominates. Monte Carlo 

device simulators are perfectly fit to simulate devices in such situations, since the simulator is 

in no way dependent on mobility as a parameter. 

Furthermore, a detailed study of the role of phonon scattering and surface roughness 

scattering showed how their contributions evolve as channel length is scaled down. The 

surface roughness scattering event counts reduce at a higher rate than phonon scattering count 

as channel length decreases. For shorter channel lengths, phonon scattering is expected to 

dominate over interface roughness.  

As channel length scales down, the distribution of the time the carriers take to cross 

the channel has a smaller average and a lighter tail for higher times, suggesting the increasing 

contribution of ballistic transport. If carriers stay longer in the channel, the average energy of 

the electrons gets smaller, but the standard deviation increases, so that a wider set of energies 

are present. 
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A thorough study of carrier dynamics, including the evolution of the carriers' energy 

distribution, was also presented in this study. When comparing ballistic and non-ballistic 

carriers, ballistic carriers show a higher average energy, but a longer tail at higher energy is 

seen for non-ballistic carriers. This is a relevant result, for instance, in the context of HCI. 

Lastly, short-range electron-electron interactions' impact in the carriers’ dynamics was 

presented, showing the increasing importance of a proper treatment of such mechanism as the 

ballistic transport becomes more present in state-of-the-art devices. 

 

 

  



84 

 

9 CONCLUSIONS  

 

 The ensemble Monte Carlo algorithm has been used as a numerical method to simulate 

particle transport in silicon. The Monte Carlo method is based on the generation of random 

walks that simulate the stochastic motion of carriers followed by scattering events that change 

their energy and momentum. The process of generating random free-flights is used to evaluate 

integral equations, so that the Monte Carlo technique has been widely used for semiconductor 

device simulation over the past decades, providing a semi-classical solution to the Boltzmann 

transport equation. 

 Semiconductor device simulation requires the self-consistent solution of the transport 

and the field equations. While the particle dynamics is emulated by solving BTE using Monte 

Carlo technique as discussed above, the electric fields are obtained by numerically solving 

Poisson's equation. The device simulation is basically composed of the initialization of 

material parameters, device structure and carrier distribution, Monte Carlo random 

walk/scattering, solution of Poisson's equation, and interpolation of force to particle location. 

During this process, the boundaries and the contacts are constantly checked, so that no carrier 

leaves the device unaccounted for. 

 The bulk Monte Carlo method was used to simulate particle dynamics in silicon. For 

every discrete energy level, the scattering tables define the scattering rate of all scattering 

processes that may take place, such as intravalley acoustic and intervalley non-polar optical 

phonon scatterings and coulomb scattering. The choice of which scattering event will take 

place is based on the generation of a random number and its comparison with the scattering 

table. The use of the bulk silicon Monte Carlo electron simulator has provided good modeling 

of events such as velocity overshoot, and the carrier velocity and energy dependences over 

electric field closely match the literature data.  

 A n-MOSFET 3D device simulator was implemented and produces good qualitative 

results. Contrary to the bulk silicon simulator, which is suitable for direct comparison of the 

results obtained with the developed simulator and experimental/simulation results present in 

the literature, it is rather difficult to quantitatively compare the results obtained with the 

device simulator to other published results. The coincidence of the results will only happen if 

one has access to all fabrication details of the studied devices, which are typically not fully 

disclosed by the foundries. Besides for that, regarding commercial TCAD tools, the models 

employed in the simulators are usually drift-diffusion, for long channel devices, or 

hydrodynamic, for short-channel devices, which have inherent different results and are 
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usually less accurate models. Regarding the studies performed on the n-MOSFET 3D device 

simulator developed in this thesis, the charge conservation on the device was verified by 

confirming that the derivative of the cumulative charge in the source and drain contacts have 

the same absolute value. The behavior of electron velocity and energy along the channel 

matches the expected results, with both quantities reaching their peak values near the drain 

end. The drain current vs gate voltage and drain current vs drain voltage curves also exhibited 

the usual n-MOSFET characteristics. The electric potential was plotted for different positions 

on the directions of device length, width and depth, as well as the carrier densities, showing 

good agreement with the expected tendencies. 

Finally, the state-of-the-art n-FinFET 3D device simulator that was developed 

provides established results for the device transfer and output characteristics. Similarly to the 

n-MOSFET device, electron’s velocity and energy along the channel matches the usual 

tendencies. The drain current versus gate or drain voltages curves presented the expected n-

FinFET characteristics. The electrostatic potential was also plotted for different cross-sections 

in the directions of device length, width and depth. Both the electrostatic potentials and the 

carrier densities showed good agreement with the expected tendencies, corroborating that the 

3-D particle-based device simulator presented in this work is adequate to simulate modern 

FinFETs. 

The 3-D TCAD Monte Carlo simulator was employed to provide a thorough study of 

ballistic transport in modern FinFETs and investigate the scattering mechanisms’ relevance. It 

was verified that, as channel length decreases, surface roughness scattering event counts 

reduce at a higher rate than phonon scattering count, so that phonon scattering is expected to 

dominate over interface roughness for shorter channel lengths. The quantification of the 

ballisticity ratio and the percentage of carriers that cross the channel ballistically showed that 

modern FinFETs have not yet reached the ballistic limit. The fraction of ballistic carriers in 

the studied devices is significant, however, reaching almost 50% for the simulated 14 nm n-

FinFETs. Analyzing the distribution of the energy of the carriers grouped by the time they 

take to cross the channel, it was verified that, if carriers stay longer in the channel, the average 

energy of the electrons gets smaller, but the standard deviation increases, so that a wider set of 

energies is present. Carriers that cross the channel ballistically present a higher average 

energy, but non-ballistic carriers show a longer tail at higher energy. Finally, when the impact 

of short-range electron-electron interaction in the carriers’ dynamics of FinFETs was 

evaluated, the importance of a proper treatment of such mechanism became clear, as the 

ballistic transport becomes more relevant in state-of-the-art devices. 
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