
MINISTRY OF EDUCATION

FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

GRADUATE PROGRAM IN MECHANICAL ENGINEERING

MONTE CARLO SIMULATOR PROJECT FOR NEUTRON TRANSPORT WITH

CONTINUOUS ENERGY: SHIELDING, CRITICALITY AND SPECTRAL

ANGULAR NEUTRON FLUX ANALYSIS

by

Luiz Felipe Fracasso Chaves Barcellos

A Thesis for the degree of

Doctor in Engineering

Porto Alegre, March 15th, 2021



MONTE CARLO SIMULATOR PROJECT FOR NEUTRON TRANSPORT WITH

CONTINUOUS ENERGY: SHIELDING, CRITICALITY AND SPECTRAL

ANGULAR NEUTRON FLUX ANALYSIS

by

Luiz Felipe Fracasso Chaves Barcellos

Mestre

A Thesis submitted to the committee of the Graduate Program in Mechanical Engineering

(PROMEC), from the Engineering School of the Federal University of Rio Grande do Sul

(UFRGS), as part of the necessary requirements to obtain the degree of

Doctor in Engineering

Field of Study: Fenômenos de Transporte

Advisor: Prof. Dr. Bardo Ernst Josef Bodmann

Approved by:

Prof. Dr. Antônio Carlos Marques Alvim . . . . . . . . . . . . . . . . . . . . . .COOPE / UFRJ

Prof. Dr. Celso Marcelo Franklin Lapa . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEN / CNEN

Prof. Dr. Daniel Artur Pinheiro Palma . . . . . . . . . . . . . . . . . . . . . . .PPGIEN / CNEN

Prof. Dr. Rogério José Marczak . . . . . . . . . . . . . . . . . . . . . . . . . . .PROMEC / UFRGS

Prof. Dr. Fernando Marcelo Pereira

Coordinator of PROMEC

Porto Alegre, March 15th, 2021

ii



Dedico esta tese a meus pais, Henrique e Rosana, por todo o amor,

carinho e apoio ao longo dos anos.

Alea iacta est

Gaius Julius Caesar

iii



ACKNOWLEDGEMENTS

I thank my professors Bardo Ernst Josef Bodmann and Marco Túllio Menna

Barreto de Vilhena, not only for their teachings and counseling, but also for their fri-

endship.

I am grateful to my friend and colleague Daniel Gustavo Benvenutti for his help

with the finalization of this work.

I also thank all friends and family for all the companionship and support, specially

Henrique Macedo de Azevedo and Ana Paula Ost.

This author also thanks CAPES for the financial support.

iv



RESUMO

Esta tese relata o projeto desenvolvido durante o doutorado do autor. Isso engloba o

desenvolvimento de um software de simulação de Monte Carlo de licença aberta para o

transporte de nêutrons em materiais de núcleo de reatores. Esta ferramenta consiste em

um programa C ++ seguindo os paradigmas recentes em computação de alto desempenho,

e leva em consideração as dimensões físicas contínuas (posição, direção de movimento e

energia) do espaço de fase do transporte de nêutrons. Dois modelos de espalhamento são

implementados e discutidos. Estes são baseados na hipótese de alvo em repouso e no

modelo de gás livre, e a diferença entre os modelos é apresentada. Além disso, o fluxo de

nêutrons angular espectral simulado é testado como uma solução da equação de transporte

de Boltzmann nas suas sete dimensões. Neste trabalho, um cenário de blindagem, um

benchmark de criticidade do livro International Handbook of Evaluated Criticality Safety

Benchmark Experiments e duas simulações em meio multiplicativo, cada uma com um

modelo de espalhamento diferente, foram simulados para apresentar as capacidades do

software. O simulador mostra-se versátil nos diferentes tipos de resultados que podem

ser obtidos, e.g. fluxo de nêutrons, densidade de nêutrons, taxas de reação, criticidade,

entre outros. Por último, os fluxos espectrais de nêutrons são parametrizados (na faixa

de [10−14, 101]MeV ) e essas funções são verificadas como possíveis soluções da equação

de transporte de Boltzmann.

Palavras-chave: Transporte de Nêutrons; Método Monte Carlo; Modelos de Espalha-

mento; Fluxo Angular Espectral de Nêutrons; Equação de Transporte de Boltzmann.
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ABSTRACT

This thesis reports on the project developed during the author’s doctorate. This encom-

passes the development of an open license Monte Carlo simulation software for neutron

transport in reactor core materials. This tool consists of a C++ program following re-

cent paradigms of advanced power computing, and takes into account the continuous

physical dimensions (position, direction of motion and energy) of the neutron transport

phase space. Two scattering models are implemented and discussed. These are based on

the target at rest hypothesis and the free gas model, and the difference between models

is shown. Also, the simulated spectral angular neutron flux is tested as a solution of

the seven-dimensional Boltzmann transport equation. In this work a shielding scenario,

a criticality benchmark from the International Handbook of Evaluated Criticality Safety

Benchmark Experiments book, and two simulations in a multiplicative medium, each with

a different scattering model, were simulated in order to portray the software capabilities.

The simulator shows itself versatile in the different kind of results that can be obtained,

e.g. neutron flux, neutron density, reaction rates, criticality, among others. Lastly the

spectral neutron fluxes are parametrized (in the range of [10−14, 101]MeV ) and these

functions are verified as possible solutions of the Boltzmann transport equation.

Keywords: Neutron Transport; Monte Carlo Method; Scattering Models; Spectral An-

gular Neutron Flux; Boltzmann Transport Equation.
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1 INTRODUCTION

Nuclear reactor analysis is dependent on the knowledge of the spectral angular

neutron flux, given by the solution of the Boltzmann transport equation. This is an

equation defined on a seven-dimensional phase space (space, time, kinetic energy and

solid angle) and until today the determination of a solution is still a challenge. This

equation describes transport of neutral particles in the absence of electromagnetic fields,

i.e. it does not take into account any electrical charge of particles nor their magnetic

moments (spin).

One possible solving technique for such a problem is the Monte Carlo method.

One advantage of this approach is that it allows to solve the Boltzmann equation in all

seven dimensions by sampling in a continuous phase space. Sometimes, the information

about a given state of a single system is unknown (or not of interest), but, nevertheless,

the state of an ensemble of systems can be defined by probability concepts [Reif, 2009;

Tolman, 1979]. This is a great advantage when using the Monte Carlo method. Nuclear

interaction, e.g. fission, have intermediary states that are not yet well described, and

even if they were, the definition of these states would not be relevant for the majority

of simulations, but their resulting distributions are. Thus, when simulating a process for

great number of particles (systems), expectation values can be found from its ensemble.

The Monte Carlo method has a convergence characteristics that is proportional to

N−1/2, in which N is the number of simulated particles and this uncertainty is independent

of the number of dimensions, whereas numerical methods, such as diffusion theory based

and other discrete methods, result not only in the reduction of the seven-dimensional

phase space but also have an uncertainty that scales according to M−k/d, in which d is

the number of dimensions and M the number of discretization points [de Camargo, 2011].

The Monte Carlo simulator, which with its actual state is reported in this work, be-

gan its development with Dayana de Carmargo in de Camargo, 2011, and had subsequent

advancements in de Camargo et al., 2013, Barcellos et al., 2015, Chaves Barcellos, 2016,

Barcellos et al., 2017a, 2021. Some of the simulator features are presented in Barcellos

et al., 2017b, 2019, 2020, Chaves Barcellos et al., 2021. This work presents the latest and

completely revised and extended version of the program. The present code was written as

a multithread C++ program following recent paradigms of advanced power computing,
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and takes into account the continuous physical dimensions (position, direction of motion

and energy) of the neutron transport phase space.

The simulator does not use integrals over energy invervals, i.e. energy groups, but

is able to classify neutrons as part of probability distributions, in the present version one

for thermal neutrons, one for fission born neutrons, and another for neutrons in the slowing

down process. The first two distributions have known shape, but unknown population,

and the third a priori unknown shape and population. The program also interpolates

cross section data in order to crate compiled continuous functions.

This version may be included as a patch in GEANT [Agostinelli et al., 2003;

Collaboration, 2020b,a], and provide the simulation part that involves neutrons, while

interactions from ionizing particles are provided by the existent implementation of the

huge GEANT library. Differently from other Monte Carlo simulators, such as MCNP

[Team, 2003], the main objective of the present software is to find a function for the

neutron flux, and to assess whether the function is a candidate solution of the Boltzmann

transport equation.

One particular feature of the present implementation, in form of a physical Monte

Carlo, is that it is not designed for specific problems only, but allows to use the created

simulation data set for a variety of analysis from the same data. Thus the spectral angular

neutron flux, obtained from parametric inference, may be evaluated as a candidate for a

solution of the Boltzmann transport equation. More specifically, in this work, the spectral

neutron flux is parametrized in the range [10−14, 101]MeV and verified whether it solves

to a certain approximation a simplified version of the Boltzmann equation. This is a first

step towards a solution in the whole parametrized phase space.
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2 TRANSPORT EQUATION

The neutron transport equation, that is also know as Boltzmann equation, is the

equation that describes the behavior of the angular neutron flux, for instance, in a reactor.

Let φ(~r, ~Ω, E, t) be the angular neutron flux, defined in Equation 2.1 as the angular

neutron density times the speed of the neutrons.

φ(~r, ~Ω, E, t) ≡ v n(~r, ~Ω, E, t) (2.1)

in which v is the absolute value of the velocity vector of the neutron and n(~r, ~Ω, E, t)

is the angular neutron density, i.e. the density of neutrons at position ~r that travel in

the direction ~Ω (within the solid angle element d~Ω) with kinetic energy E (in the range

[E, E + dE]) at time t.

It is not the objective of this work to review the whole derivation of the transport

equation, this is already very well documented in several sources, such as Duderstadt and

Martin, 1979. The most important is the interpretation of the transport equation and the

knowledge of the meaning of each of its terms. The Boltzmann equation, as it appears in

Sekimoto, 2007, is given by Equation 2.2.

1

v

∂

∂t
φ(~r, ~Ω, E, t) + ~Ω · ∇φ(~r, ~Ω, E, t) + Σt(~r, E, t)φ(~r, ~Ω, E, t) = q(~r, ~Ω, E, t) (2.2)

in which Σt is the total macroscopic cross section and q(~r, ~Ω, E, t) represents a neutron

source term given by Equation 2.3.

q(~r, ~Ω, E, t) =

∫ ∞

0

dE ′
∫
4π

d~Ω′Σ(~r, E ′ → E, ~Ω′ → ~Ω)φ(~r, ~Ω′, E ′, t) + S(~r, ~Ω, E, t) (2.3)

in which S(~r, ~Ω, E, t) is called the external neutron source, i.e. it is a neutron source

independent of the angular neutron flux. The term Σ(~r, E ′ → E, ~Ω′ → ~Ω) includes all

neutron emission reactions, such as scattering, fission, and (n, 2n) reactions. It can then

be rewritten as presented in Equation 2.4.

Σ(~r, E ′ → E, ~Ω′ · ~Ω) =
∑
k

mk(E
′)Σk(~r, E

′)pk(E
′ → E, ~Ω′ · ~Ω) (2.4)
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in which Σ(~r, E ′ → E, ~Ω′ → ~Ω) was considered as a function of µ0 ≡ ~Ω′ · ~Ω, instead of the

two variables ~Ω′ and ~Ω, this is due to cylindrical symmetry along the axis aligned with

the incoming particle’s direction. Also in Equation 2.4 mk(E
′) represents the number of

secondary neutrons released by reaction k, e.g 1 for scattering, 2 for (n, 2n) reactions, and

ν for fission. Σk(~r, E
′) is the macroscopic cross section of interaction k. Finally the term

pk(E
′ → E, ~Ω′ · ~Ω)dEd~Ω represents the probability density that reaction k will release a

neutron of energy E in the range [E, E + dE] and direction ~Ω in the infinitesimal solid

angle d~Ω. In the case of fission pf (E
′ → E, ~Ω′ · ~Ω) is given by Equation 2.5.

pf (E
′ → E, ~Ω′ · ~Ω) = 1

4π
χf (E) (2.5)

in which χf (E) is given by Equation 3.12. In the case of scattering ps(E ′ → E, ~Ω′ → ~Ω, A)

depends on more details, since it depends also on the mass number A of the target nucleus,

and ~Ω′ is not independent of ~Ω, as will be shown on Chapter 4.

The remaining terms of Equation 2.2 can be labelled as in Equation 2.6, in order

to facilitate their description.

1

v

∂

∂t
φ(~r, ~Ω, E, t)︸ ︷︷ ︸

I

+ ~Ω · ∇φ(~r, ~Ω, E, t)︸ ︷︷ ︸
II

+Σt(~r, E, t)φ(~r, ~Ω, E, t)︸ ︷︷ ︸
III

= q(~r, ~Ω, E, t) (2.6)

Term I represents the variation in time of the neutron flux at position ~r, direction
~Ω in the solid angle d~Ω and kinetic energy E in the range [E, E + dE] at the instant t.

Term II is the net flux between the neutron flux that arrives at point ~r with direction
~Ω in d~Ω and energy E in the range [E, E + dE] at the instant t, and the neutron flux

that leaves position ~r with direction ~Ω in d~Ω and energy E in the range [E, E + dE] at

time t, when term II is positive the balance of the angular flux is negative. Lastly, term

III represents the removal of neutrons from the angular flux due to any reaction of the

neutron with a target. In Equation 2.2 the position vector ~r is three-dimensional and the

direction vector ~Ω is bi-dimensional, resulting in a seven-dimensional equation. In some

representations, ~Ω and E are substituted by the three-dimensional velocity vector ~v.

It is possible to perceive that the neutron transport equation is, stating in a

simple manner, a neutron balance equation. Nevertheless, solving this nonlinear seven-

dimensional equation is still an open challenge and subject of current research activity.
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It is because of this difficulty that many numerical methods are used, where one of these

methods is making use of a physical Monte Carlo simulation. This method is chosen be-

cause it can easily cope with complex boundary and domain geometries, but, because of

its intrinsic stochastic nature, provides besides the mean also higher statistical moments.

A particular property of Monte Carlo convergence is that the uncertainty of a sampled

result decreases by the order of N−1/2 (with N the number of samples), and thus is inde-

pendent of the number of dimensions of the problem, which in particular is an advantage

for problems with higher dimensional variable spaces.

It is noteworthy that the physical Monte Carlo method is not used to solve directly

the transport equation, differently to a mathematical Monte Carlo implementation, but

instead it is used to simulate the microscopic phenomena that occur in a nuclear reactor

and which have their correspondence in the transport equation. The nonlinear term of

the double integral in Equation 2.3 arises from neutron emitting reactions, caused by the

neutron flux. Therefore, in order to facilitate the numerical integration, physical Monte

Carlo, i.e. simulation, is used to define reaction rates and neutron emission probabilities.

The results obtained from the stochastic method include the position, direction

of travel and kinetic energy of each particle, the neutron flux, the neutron angular flux,

among other physical quantities that may be obtained from the Monte Carlo simula-

tion. As a consequence, the simulated spectral angular flux in a parametric form may be

evaluated as a solution of the Boltzmann equation.

2.1 Simplifying Hypothesis of the Boltzmann Equation

Some simplifying hypothesis can be applied to Equation 2.2. This procedure will

be done here for later use. The considered hypothesis reflect a scenario of stationary

regime with isotropic neutron flux.

By considering a stationary regime and an isotropic flux, i.e. φ(~r, ~Ω, E, t) =

φ(~r, E, t), and by integrating both sides of Equation 2.2 by
∫
4π

• dΩ, the first two terms

on the left hand side vanish and Equation 2.2 is reduced to 2.7.

4π · Σt(~r, E, t)φ(~r, ~Ω, E, t) =

∫
4π

q(~r, ~Ω, E, t)dΩ (2.7)

By considering in Equation 2.4 only two reactions that emit neutrons, fission and

scattering, and by performing the integration in dΩ as shown in Equation 2.7, also by
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removing the external neutron source, one obtains∫
4π

q(~r, ~Ω, E, t)dΩ = 4π

∫ ∞

0

φ(~r, E ′, t)
∑
i

[
νΣi, f (~r, E

′)χf (E)

+ Σi, s(~r, E
′ )Pi, s(E

′ → E)
]
dE ′,

(2.8)

in which the probability pf (E ′ → E, ~Ω′ · ~Ω) of neutrons emitted by fission in an interval

dE in the vicinity of E is given by 2.5, and Pi, s(E ′ → E) is the probability for a neutron

with energy E ′ to cause an emission in the interval dE around E, after a scattering with

nuclide i.

This scattered energy probability will later be computed numerically, by sampling

the scattering procedure function for each nuclide. After these probabilities are found, the

integral in the right hand side of Equation 2.8 will be evaluated. This will be done by a

sub-routine for Monte Carlo integration. This differential scattering probability depends

on the collision model and is further discussed in section 4.1.5.3.

Furthermore, an interpolating function can be found for the simulated spectral

neutron flux. This function can then be used with Equation 2.7, to asses if it is a good

candidate for the spectral neutron flux. Note that the left hand side of this equation

represents the removal of neutrons from the neutron flux, whereas the right hand side

represents the neutrons emitted into the flux. By the balance between both sides, one

can assess how well the parametrized flux fits as a Boltzmann solution.
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3 INTERACTIONS OF NEUTRONS WITH MATTER

Neutrons interact with matter in two ways. Scattering reactions and absorption

reactions. Scattering reactions can occur with or without the formation of a compound

nucleus as an intermediate state, while absorption reactions require the formation of

the compound nucleus. Compound nucleus is defined by the intermediate state of the

reaction, in which the nucleus is represented by the combined mass of the neutron and

the nucleus. In reactions that involve a compound nucleus the neutron leaving the nucleus

is not necessarily the same that has started the reaction [Feshbach, 1992].

A scattering always results in a neutron leaving the struck atom. An absorption,

however, can result in different outcomes, such as the emission of gamma radiation (n, γ),

the ejection of an alpha particle (n, 4
2He

+2), the ejection of a proton (n, p), or fission

(n, f), among others [Glasstone and Sesonske, 1994]. Of these, (n, γ) and (n, f) are the

dominant reactions for thermal reactors, while the remainder are small or even spurious

reactions only.

In all reactions the following quantities must be conserved. a) Number of nucleons.

b) Number of electric charges. c) Energy. d) Momentum. e) Angular momentum.

3.1 Neutron Scattering

Scattering reactions of a neutron with a nuclide are the ones responsible for the

slowing down of neutrons in a thermal nuclear reactor, and thus of vital importance for

this type of reactors. These interactions can be classified as elastic or inelastic scattering

whether the kinetic energy is conserved in a reaction, or some part of the energy is

converted into excitation energy of the target nucleus.

Scattering interactions can occur in different manners. The two main ways are

resonant (or compound nucleus) scattering and potential scattering.

Resonant scattering occurs at higher energies in the vicinity of a resonance. In this

kind of scattering the neutron and the target nucleus form a compound nucleus and later

a neutron is expelled, leaving the nucleus in its ground state (elastic resonant scattering)

or in an excited state (inelastic resonant scattering).

Potential scattering can occur in the whole energy range relevant for nuclear reactor

neutrons and is attributed to peripheral scattering [Lamarsh, 1966; Reuss, 2008]. In this
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form of scattering the neutron is scattered by its interaction with the strong nuclear force

of the nucleus and both particles can be treated as in a classical particle collision due to

the short range of the nuclear force ( 1 fm or equivalently 10−15m). The larger part of the

slowing down of neutrons in a thermal reactor comes from elastic scattering [Glasstone

and Sesonske, 1994].

3.2 Elastic Scattering

Elastic scattering can be determined by considering it as a collision of classical

particles, in which the energy and momentum of the system composed by the two colliding

particles are conserved during the process. This implies that the participating nucleus is

in its ground state after scattering, and there is no posterior emission of γ radiation.

To find the energy of the neutron after an interaction, one needs to solve simul-

taneously the momentum and energy conservation equations, as these are the governing

equations for this situation. Different scattering models were created and compared with

respect to their computational efficiency and their validity in the stationary Boltzmann

equation evaluation.

In order to clarify the problem we introduce three different reference frames, the

laboratory Lab frame, the target frame, and the center of mass CM fame. The laboratory

frame is the one used to measure the neutron energy, to compute its tracking and generate

the problem geometry. The target frame is the system in which the target nucleus of a

reaction is at rest. And finally, the center of mass frame is used to compute the energy and

momentum conservation equations for the scattering reaction, it is also in this reference

system that the scattering angle is defined.

The general problem can be reduced to the two-dimensional scenario represented

by Figure 3.1 in the center of mass frame. In Figure 3.1, vCM,1 and v
′
CM,1 represent the

speed of the neutron respectively before and after the scattering, and vCM,2 and v
′
CM,2

represent the speed of the target nucleus before and the scattering, respectively. The

scattering angle in the CM frame is given by θ, and its distribution is a function of target

nucleus and energy.

In a general formulation, the kinetic energy of the neutron, measured in the center

of mass frame, after the scattering is given by Equation 3.1, this equation can be achieved

by applying energy and momentum conservation equations. In Equation 3.1 ECM,1 and
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θ

v
′

CM,1

NucleusNeutron

v
′

CM,2

Center of Mass

vCM,1
vCM,2

Figure 3.1 – Scattering in the center of mass system.

E
′
CM,1 are the neutron energy before and after collision, ECM,2 is the target nucleus energy

before the collision, and A is the target nucleus atomic mass. Note that the energy of the

particles is computed in the center of mass frame.

E
′

CM,1 =
(ECM,1 + ECM,2)A

A+ 1
(3.1)

In order to simplify the procedure, the hypothesis that the target is stationary in

the laboratory frame can be used if the following assumptions are considered to be true.

a) The nuclei are at rest relative to the neutron. b) The nuclei are not bound in a molecule

or a solid [Glasstone and Sesonske, 1994].

These hypothesis are valid for high energy neutrons. According to Sunny et al.,

2012 for epithermal neutron energies, i.e. from the order of a few eV to the order of

hundreds eV , the free gas model should be used in order to include the thermal motion of

the scattering targets. In the thermal range, i.e. up to a few eV , the scattering matrices

S(α, β) should be used to consider thermal motion and molecule binding effects. In this

work both the fixed target hypothesis and the free gas model are implemented. However,

the S(α, β) scattering matrices is not implemented and, therefore, the effects of molecular

binding energy are not accounted for.

For light nuclei and low collision energies the scattering in the CM frame is a

S-wave scattering, i.e. isotropic. However, as is shown by Lamarsh, 1966, as the target

nuclei grow heavier or the collision energies become higher, the differential scattering cross

section is no longer constant for all cos(θ), that means that the scattering is no longer
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ψ

v
′
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v
′

Lab,2

NucleusNeutron

vLab,1 vLab,2

Figure 3.2 – Collision in the laboratory system.

isotropic and other partial wave functions should be taken into account.

When the kinetic energy of a neutron is of the same order of magnitude of the

chemical binding energy of the atoms of the molecule involved in the collision (of the order

of eV ), the nuclide that plays a part in the scattering reaction is no longer considered

free, but the molecule as a whole participates in the reaction. Consequently, new effects

shall be taken into account such as new resonances due to collective modes, and inelastic

effects.

3.2.1 Fixed Target Hypothesis

Should the neutron be in the moderating region and have a kinetic energy higher

than the thermal region, i.e. of an order greater than eV , then the target nucleus can be

considered stationary in relation to the neutron in the laboratory system. This condition

already satisfies the prerequisite that the target nuclei are not bound in a molecule or a

solid, for the incident neutron energy is large compared to the energy of chemical binding

(also of the order of a few eV ) and the nuclei can be considered as free. In the further

the kinematic procedure for high energy neutrons is sketched.

A representation of this scenario is shown in Figure 3.2, in which the neutron

has vLab,1 as the magnitude of its velocity vector before the collision and v
′

Lab,1 after.

The nucleus has a speed of vLab,2 = 0 prior to the collision and v
′

Lab,2 afterwards. The

magnitude of the velocity vector of the center of mass of both particles in the Lab system

is given by vCM and it is constant, due to conservation of momentum.

With the target stationary, the speed of the center of mass of the system vCM is

given by
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Initial neutron direction

vCM

v
′

Lab,1v
′

CM,1

ψ
θ

Figure 3.3 – Transformation between laboratory and center of mass system.

vCM =
vLab,1
A+ 1

(3.2)

in which A is the mass number of target nucleus. Using Equation 3.2 and changing to

the center of mass reference frame, results in a speed vCM,1 for the neutron given by

vCM,1 =
AvLab,1
A+ 1

(3.3)

and a nucleus has a speed of

vCM,2 = vCM (3.4)

prior to the collision.

From Equations 3.3 and 3.4, it is possible to arrive at the solution presented in

Glasstone and Sesonske, 1994 and shown in Equation 3.5.

E
′

E
=
v

′2

Lab,1

v2Lab,1
=
A2 + 2Acos(θ) + 1

(A+ 1)2
(3.5)

in which E is the energy of the neutron in the Lab system before the collision, E ′ is the

energy of the neutron in the Lab system after the collision and θ is the scattering angle

measured in the CM system and that is in the plane that contains both vectors of incident

direction and scattered direction of the neutron.

The scattering angle θ is measured in the CM frame. Its relation with the scattering

angle ψ, measured in the Lab frame, is shown in Figure 3.3 and, for the target at rest

hypothesis, is given by Equation 3.6.

cos(ψ) =
Acos(θ) + 1√

A2 + 2Acos(θ) + 1
(3.6)
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in which ψ is the angle of scattering measured in the Lab system and that is in the plane

that contains both vectors of incident direction and scattered direction of the neutron. It

must be highlighted that this procedure is done in the plane of scattering, it is still neces-

sary to return to the three-dimensional space, to define the outgoing neutron direction.

Since the target nucleus velocity is represented by a null vector, there are infinite possible

scattering planes. The procedure to treat this is presented in Subsection 4.1.5.

A comment is in order here, it is possible to perceive that in Equation 3.5 the

neutron can only lose energy and thus only down-scattering is defined. This is in agree-

ment to our hypothesis that the neutron has far greater kinetic energy than the nucleus.

Nevertheless it is known that the neutron can gain energy in a scattering reaction if it

belongs to the thermal distribution. More specifically, this effect would only be apprecia-

ted with neutrons whose kinetic energy is of the same order of magnitude as the thermal

energy of the nuclei, i.e. of the order of eV .

Using only the hypothesis of target at rest introduces a bias towards decreasingly

smaller neutron energies. Note that by the model of Equation 3.5 a single scattering with a

proton is sufficient to bring, in a head-on collision, even a fast neutron almost to a halt. In

order to correct these inconsistencies, the present work distinguishes fission, intermediate

and thermal distributions, and modifies the treatment given to the neutron, based on the

distribution to which the neutron belongs. Thus it is considered that neutrons belonging

to the fission and intermediate distributions have high enough energies so that the target

at rest model can be used, and the neutrons of the thermal distribution have energies that

maintain the thermal spectrum, so that no interactions have to be calculated explicitly,

because the resulting spectrum is preserved and known.

3.2.2 Free Gas Model

In the free gas model, it is considered that the scattering target is not stationary,

but instead it does have a thermal motion. This implies that the the simplification of

Equation 3.5 is no longer valid, and Equation 3.1 must be used.

The scattering calculation for this model involves: a) Project the velocity vectors

from the Lab frame to the CM frame. b) Use Equation 3.1 to define a new energy for the

neutron in the CM frame. c) Find the outgoing neutron direction, by rotating it by θ in

the CM frame. d) Project the velocity vector back to the Lab frame.
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This model is not as straightforward as the fixed target model to define the outgoing

neutron energy, because it cannot simplify the matricial operations. It does, however,

present some advantages over the previous model, that includes the fact that it can define

a single plane of scattering for each reaction, and it does not need to reinstate energy to

the neutron in order to respect the thermal equilibrium distribution.

3.3 Inelastic Scattering

Inelastic scattering is a scattering reaction in which the nucleus is left at an excited

state after the collision. Therefore, part of the kinetic energy of the particles involved

in the interaction is transformed into excitation (internal) energy of the nucleus above

its ground state. This energy is later emitted by the nucleus as γ radiation in order to

return to its ground state. The γ-ray must be considered in order to solve momentum

and energy conservation equations.

Since inelastic scattering leaves the nucleus in an excited state, in order for it to

occur, the kinetic energy of participating particles must be, at least, equal to the energy of

this first excited state. This represents an energy threshold so that inelastic scattering can

be possible. For heavier nuclides this threshold can be quite small, of the order of 44 keV

for U-238, and becomes much higher for lighter atoms, about 6.42 MeV for oxygen, and

it does not even occur in hydrogen [Lamarsh, 1966; Glasstone and Sesonske, 1994]. For

this reason inelastic scattering is more prominent in heavier nuclei. Exceptions are the

magic nuclei, that behave as light nuclei.

Inelastic scattering does, however, occur at low energies (below a few eV ). But

this does not happen through the formation of a compound nucleus as the aforementioned

process, it also does not leave the nucleus in an excited state. This type of inelastic

scattering happens when the kinetic energy of the scattered neutron is so low that the

target atom is no longer considered as a free atom, but bound in a molecule or in a

solid. What takes place is then the interaction of the neutron with the quantum states of

vibrational and rotational motion of the molecule (or just vibrational for a solid state).

The neutron can then gain or lose energy with such interaction, as a result of a change in

these motion states.

The change in the energy of an inelastically scattered neutron by a point-like target

depends on the model. For the free gas model, the excitation energy must be accounted
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for in the momentum and energy conservation equations, with the rest of the procedure

remaining the same. For the fixed target model, it is given by Equation 3.7, and the

relation between the angles θ and ψ is given by Equation 3.8.

E
′

E
=
v

′2

CM,1

v2CM,1

=
γ2 + 2 γ cos(θ) + 1

(A+ 1)2
(3.7)

cos(ψ) =
γ cos(θ) + 1√

γ2 + 2 γ cos(θ) + 1
(3.8)

in which the γ parameter is given by Equation 3.9.

γ = A

√
1− A+ 1

A

Q

E
(3.9)

In Equation 3.9 Q is the excitation energy of target nucleus [Reuss, 2008]. Should

Q be equal to 0, γ is reduced to A.

If neutrons that suffer inelastic scattering have energies that are able to excite

only a few energy levels of the nucleus, the outgoing neutrons will have a spectrum that

shows distinct energy groups, one for each excitation level. However, if the neutrons have

energies that excite the higher and closely spaced energy levels the departing neutrons

will present a continuous spectrum, in addition to the discrete one [Lamarsh, 1966].

As presented in Lamarsh, 1966 this spectrum can be defined by Equation 3.10.

P (E → E
′
) =

E
′

T 2
e

E
′

T (3.10)

in which T is the nuclear temperature and is given approximately by Equation 3.11.

T = 3.2

√
E

A
(3.11)

in which T , E and E
′ are in MeV , A is the mass of target nucleus and the constant

3.2 is in MeV 1/2 a.m.u.. It must be remarked that Equation 3.11 is not a very good

approximation, specially for magic and near-magic nuclei. In future Monte Carlo imple-

mentation experimental data for inelastic scattering will be parametrized and included in

the nuclear reactions library. It is noteworthy that the inelastic scattering cross-section

represents only a small fraction of the total scattering cross-section, and thus may be

considered a small correction.
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3.4 Fission

In nuclear fission, a heavy nucleus splits into two lighter nuclei and releases energy,

since the sum of binding energies of both lighter nuclei is smaller than the binding energy

of the original nucleus. Although spontaneous fission can occur in a nuclear reactor, it

is a rare event and, therefore, only fission resultant from a neutron absorption will be

considered.

For fission to happen an energy threshold for the compound nucleus must be exce-

eded. This critical energy can be surpassed just by the binding energy of the last neutron,

in which case the nucleus is called fissile and it can be fissioned by neutrons of zero kinetic

energy. Should the compound nucleus critical energy be greater than the binding energy

added by the absorption of the neutron, the remaining energy must be provided by the

kinetic energy of the neutron, in which case the nucleus is called fissionable.

This difference of fissile and fissionable nuclei is shown in the cross sections for

these interactions. For fissionable nuclei the cross section is zero up to the difference

between the energy threshold and the binding energy of the last nucleon. In the case of

fissile nuclei the fission cross section exists for all energies, in fact, it grows towards lower

energies according to 1/
√
E and present resonances at higher energies.

Starting with a heavy nucleus, fission results in two lighter nuclei. The atomic

number is divided between these fission products, but hardly ever is the number of protons

equally divided, i.e. fission is asymmetric. These resulting nuclei are usually in an excited

state and will decay in an order of time greater than the time-scale of fission. The

distribution of fission products is dependent on both the nuclide that is being fissioned

and the neutron energy.

Fission is accompanied by the release of neutrons. The number of neutrons emitted

in each fission varies, and the mean depends on both the nuclide and the colliding neutron

energy. These neutrons are emitted in two different time-scales, and thus are called prompt

and delayed neutrons. Prompt neutrons are the ones emitted in a time-scale of 10−14s or

less [Glasstone and Sesonske, 1994]. These prompt neutrons represent more than 99% of

the neutrons emitted by fission reactions.

The prompt fission spectrum for fission of U-235 is given by Equation 3.12, this is

a probability distribution function for the energies of prompt neutrons. Similar data can

also be found for other fissionable nuclei, e.g. plutonium.
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χ(E) = 0.453 e−1.036MeV −1 E sinh
√
2.29MeV −1E (3.12)

here the energy E is given in units of MeV .

As stated before, fission products can stay in an excited state for a long time before

decaying. In their decay chains towards the stability line, these products can decay via

neutron emission. The order of time after a fission occurrence these neutrons are emitted is

of the order of seconds, a time-scale much greater than the time-scale of prompt neutrons.

Delayed neutrons represent less than 1% of neutrons originated by fission, e.g. 0.65% for

thermal fission of U-235.

It is common to group delayed neutrons according to their precursors nuclides,

i.e. the fission products that will eventually decay and give birth to a neutron. These

precursors have a half-life that can vary from about 55 s to the order of 10−1 s. Contrary

to prompt neutrons, that have a continuous distribution that spreads along several MeV

for their energy, delayed neutrons have much better defined energies that depend on their

precursor and are of the order of 10−1 MeV to 1MeV .

3.5 Radiative Capture

Radiative capture reactions are one possible outcome of the absorption reaction

that captures one neutron in a nucleus, and effectively removes it from the neutron flux.

After the formation of a compound nucleus, the increase in the nucleus internal energy due

to the neutron binding energy and kinetic energy is evenly divided amongst all nucleons

in such a way that the nucleus can stay at this excited state for a long amount of time

(in comparison to the time it takes to form a compound nucleus). After some time this

excited nucleus decays via emission of gamma-rays.

3.6 Other Interactions

Other interactions of neutrons with nuclides are possible, such as the (n, 2n) and

(n, 3n) reactions. These, however, have small cross sections when compared to afore-

mentioned reactions and can be disregarded in a first approach when treating thermal

reactors. The author of this thesis is aware that, for a full simulation of the reactor core

including actinides and fission products these reactions shall be included, specially if ki-
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netics aspects are of interest, and will be accounted for in a future work, but are neglected

in the present stage of the simulator development.
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4 SIMULATOR DEVELOPMENTS

The Monte Carlo simulator is composed of three distinct C++ programs. The

first of these is a program that receives a cross-section file, taken from the ENDF library,

and outputs sectionally continuous functions in C++ source code, built as to minimize

comparative operations (a better description of this procedure can be seen in A.1). The

second program is the one that computes the simulation and/or its data assessment, its

main functionality is explained in section 4.1. The final program aims to evaluate the

parametrization of the spectral neutron flux as a candidate solution to the Boltzmann

neutron transport equation, its computations and simplifications are described in section

2.1.

The simulator is continuous in all seven dimensions of the Boltzmann equation,

creating bins only during data assessment in order to reduce the size of the evaluated data,

and thus adequate the set of data to the plot resolution. Also, the underlying interaction

and tracking philosophy is similar to the GEANT paradigm and hence turns feasible an

insertion as a module in this simulation platform.

4.1 Monte Carlo Simulation

The C++ Monte Carlo simulator in development is written according to parallel

computation standards. Since the main information resulting from the simulation, and

used for data assessment, is the ensemble of neutron reactions, this task is straightforward.

The simulation is composed by the sum of various independent executions. Each of which

is executed in a separate thread, with a module managing when threads are available and

enchaining a new execution to it.

These executions start with a parcel of the total neutron histories to be simulated,

and it is limited to the total predefined number of Monte Carlo steps. For tallying

reasons linked to computer hardware constraints, these were segmented in intervals of a

given number of steps each, i.e. after a given number of steps the simulation reaches a

checkpoint, where it is halted and the respective data set is saved. The subsequent interval

then used this data as the initial condition for its following steps. This way, by increasing

the frequency of saving the data set maintains memory usage within an operational mode,

but in turn increases the time required for disk writing and reading operations. The size
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Figure 4.1 – Simulation flowchart with its principal instances.

of these segments can be tailored to optimize the execution time for a given hardware

configuration.

To better perform in the saving and loading of data, a particular data structure

was created. This structure was then used to write and read data to and from binary

files, an operation whose speed excels that of outputting and inputting formatted data.

It also results in smaller archive for the same amount of information. More details about

this procedure is given in appendix B.

A flowchart showing the main scheme of the aforementioned intervals is shown in

Figure 4.1. The beginning and end of each interval is marked by loading the neutrons

from previous steps and saving their information for the succeeding ones. If the interval

under consideration is the first one, then, by default, a purely fission population that is

homogeneously distributed inside the reactor domain is generated. However, any initial

scenario is possible, including using results from previous simulations.

Note that the chart in Figure 4.1 states that fission produced neutrons take prece-
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dence over the neutrons from previous intervals that are already loaded in the memory,

the reason for this is to prevent the growing of the buffer vector that stores fission infor-

mation, and thus prevent a higher memory usage. Neutrons are iterated from the initial

interval Monte Carlo step to the last, in which case this information is stored in RAM

until there are no more neutron histories to compute, thereupon this data is saved to disk.

Neutron born from fission continue from the next Monte Carlo step from which they were

created and are also stored for subsequent intervals if the fission happens at the last step.

The neutron class contains all information needed for the simulation of tracking

and interaction with matter. Not only that but it also contains the tags that characterize

the particle and allow for the proper tally of histograms in the data process part of the

data evaluation program. A scheme of the neutron class with its principal members is

shown in Figure 4.2.

Tags can be created according to the desired results. They do not influence the

running of the simulation, but are used for data processing. The user can introduce new

tags, as well as the methods for accounting them.

4.1.1 Distributions

One novel method used in this program is the division of the neutron population

according to three different probability distributions. Two of them have known shape, but

unknown population, these are the Maxwell-Boltzmann spectrum for thermal neutrons,

and the Watt spectrum for fission born neutrons. The third is an intermediate distribution

of a priori unknown shape and unknown normalization. It is noteworthy that these

distributions can coexist for a given energy, in such a way that stochastic criteria are used

to defined to which distribution a neutron belongs to.

4.1.2 Interaction Model

The program allows the user to choose the scattering model. This can the fixed

target model or the free gas model, as discussed in Section 3.2. In order to maintain

consistency, this also changes the way cross sections are calculated.

Due to the way cross sections are measured [Brown et al., 2018], they must be

measured in the target frame of reference. For the fixed target model, this implies that

both laboratory and target frames are the same. For the free gas model, the target has
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+ birth
+ step
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 +Direction
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 distribution
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+ double last_scattering
_before_thermal
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+ double chain
+ time
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 +time

Figure 4.2 – Members of the neutron class.
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a thermal motion and a transformation between the reference systems is required. Apart

from an additional matrix algebra, this results in the fact that, the free gas model does not

require a Doppler broadening correction, since it already accounts for the target thermal

motion. As opposed to the fixed target model, in which a correction is required to properly

evaluate the cross section at a temperature different from the one the measurement was

performed.

4.1.3 Program Initialization

Before the simulation can properly begin, the program needs to map the geometry

to the elements that compose each region, as well as their properties. It is by this pro-

cedure that the total macroscopic cross section along the neutron’s path of travel can be

found. It also allows for the definition of the target nuclide and the neutron interaction.

The program first constructs objects of the nuclide class. This class maps the

microscopic cross section functions of each isotope to its atomic mass and identifier.

Then by using the available nuclides, an object of the element class is constructed.

This class creates an element by selecting the element’s isotopes and attributing them an

isotopic abundance. If an element has more than one isotopic distribution, new objects

must be created to acknowledge this, e.g., enriched and depleted Uranium have different

proportions of 235U and 238U , so that one shall define one Uranium element per enrichment

value.

Now that elements are defined, the program initializes objects of the molecule class.

Here the molecule class maps the stoichiometric proportion of each element that composes

a given molecule.

Finally the objects of the region class are created. By definition, each region objects

correspond to an homogeneous mixture of molecules in a given volumetric proportion. The

region objects are then assigned to the different volumes of the problems geometry.

These classes have methods that allow for two main functionalities. The first is,

given the energy of a neutron in a certain region, compute the region’s total macroscopic

cross section. The second is, defining that the Monte Carlo step ends within the region,

to select the participating molecule, element, nuclide, and the neutronic reaction in a

stochastic manner.



23

4.1.4 Monte Carlo Step

All the seven parameters that are present in the Boltzmann transport equation

are considered, where the path that the neutron will travel is selected stochastically, and

the position of a reaction is determined. A comment is in order here, the tracking and

the interaction scheme was optimized in the sense that each Monte Carlo step has an

interaction, which increases computational efficiency, but at the cost of loosing a unique

relation between Monte Carlo step and corresponding time interval. Thus, a Monte

Carlo step may be related only to an average of a time interval distribution, that may

be reconstructed from the tallies. After the displacement of the neutron its position is

checked in order to evaluate whether it still remains in the reactor core volume or whether

it escaped, where in the later case the history of the neutron ends and a new neutron is

selected from the stack. Finally, the type of neutron interaction is selected. This is based

on both region and neutron energy, and the process is stochastic.

In the case of a radiative capture the procedure is the same as for escape, the

neutron’s history simply ends, and a new neutron is chosen from the stack. In case

that fission occurs, a number of newly generated neutrons is chosen randomly and their

positions are that of the fission reaction, which then are added to the stack. The history

of the fission inducing neutron is then ended. In the case of scattering (the details will

be shown later in this section) the energy and the direction angles are updated for the

next step. Should the step reach a checkpoint, as mentioned above the seven transport

variables are recorded and are used by the subsequent Monte Carlo cycle. The scheme of

a Monte Carlo step is presented in Figure 4.3.

In the Monte Carlo step flowchart there are several instances in which data is

saved, these represent the storage of information in buffers and not file access operations.

These buffers are only emptied at the save operation depicted in Figure 4.1. Therefore,

the loading and saving of files is done at the beginning and end of each interval, and file

operations inside a Monte Carlo step are kept to a minimum.

The position in which a reaction will occur at the end of a Monte Carlo Step de-

pends on the kinetic energy of the neutron, its position at the beginning of the step, the

direction of movement and the total macroscopic cross sections of the chemical composi-

tion of the reactor core material along the trajectory. The final position of the track will

then be determined by a stochastic selection for the length of the traveled path. To this
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Figure 4.3 – Monte Carlo step flowchart with its principal instances.

end a multiple S of the mean free path is generated by a random number, following a

standard procedure S = − ln(1−a) and a ∈ [0, 1]. Consequently the length of the path is

L = SΣ−1
t where Σt is the microscopic total cross section characteristic for the path. In

case a neutron crosses the reactors boundary the exit point is computed and the tracking

of this particle is terminated.

After the position of the interaction is defined, the target involved in the reaction is

chosen. The type of interaction is selected by the generation of three random numbers, the

first is to choose the molecule with which the neutron interacts. The molecule is chosen

based on the proportion of its total macroscopic cross-section to the sum of the total

macroscopic cross-section of all molecules. It is important to highlight that the uranium

dioxide molecules (UO2) are treated separately, according to the uranium isotope present

(235U and 238U).

Subsequently the nuclide in the molecule is chosen, this time by the proportion that

each nuclide’s total macroscopic cross-section contributes to the molecule’s total macros-

copic cross-section. And lastly the interaction is chosen by the ratio of each interaction

cross-section to the total one.
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Simulation/Regions
_Properties/Region.h

Molecule.h

Neutron.h

Element.h

Nuclide.h

Figure 4.4 – Include graph of the region class.

This procedure can be visualized by the graph of include files, in which the depen-

dency between the aforementioned classes is shown in Figure 4.4. There the dependency

between region, molecule, element and nuclide classes becomes clear, where the previous

always contains objects of the next. These objects are stored in maps and the classes

implement a method for the stochastic selection of one of these elements, based on the

macroscopic cross section of the respective molecule, element and nuclide, cascading down

from the the homogeneous mixture of a region, to a selected interaction with a given nu-

clide.

If the chosen reaction is fission two stochastic operations are in order. The first

one is to decide the number of neutrons born from fission, and the second is to define

their energies. In order to define the number of neutrons from fission a random number

ν is generated and will be equal to 2 or 3, the mean of this operation coinciding with

the expected value of ν̄ = 2.48 for fission induced by thermal neutrons in U-235. It is

noteworthy that the huge bulk of fission reactions releases either two or three neutrons,

so that, to a good approximation, only these two cases are taken into account. These

neutrons have energies roughly in the range between 100 MeV up to 101 MeV as given

by Equation 4.1. At the present state of developments no contributions due to delayed

neutrons are considered, this pertinent issue will be included in the next version of the

simulator.
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χ(E) = 0.453 e−1.036MeV −1 E sinh
√
2.29MeV −1E . (4.1)

In case of a fission the position of the reaction, the number of released neutrons as

well as information regarding the synchronization of the program are stored in a buffer.

The histories of neutrons produced by fission are computed before the ones of already

existing neutrons, this is done in order to free storage positions of the fission buffer, thus

reducing the usage of random access memory.

4.1.5 Scattering

In case of scattering, a new energy and a new direction in agreement with energy

and momentum conservation must be given to the neutron. A simplification of the pro-

gram is that it considers the scattering as elastic and isotropic in the center of mass

system. Strictly speaking, scattering is isotropic for low kinetic energies and small nu-

clei, however, as the collision energies become higher and/or target nuclei become larger,

anisotropy increases.

A necessary feature of scattering not implemented yet is due to to the fact that

approximately below 1 eV instead of a single free nuclide one has to consider whether the

atom is a constituent of a molecule or solid state, so that in the previous case molecular

degrees of freedom such as rotation and vibration shall be considered, whereas in a solid

state phonon degrees of freedom shall be taken into account. One used method to account

for the effects of bound atoms is to use the scattering matrix [Williams, 1966], a procedure

that is available in softwares like the MCNP6 and GEANT4 platform [Monk et al., 2017;

Tran et al., 2018].

As already discussed in the previous chapter, two models for scattering reactions

were implemented. They are the fixed target model, and the free gas model. The user must

select which of these models to use. In the next subsections the technical particularities

of the implementation of each model are discussed.

4.1.5.1 Fixed Target Model

This model treats down-scattering only, i.e. energy loss of neutrons in their in-

teractions with their respective targets. However, the closer neutrons approach thermal
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energies also up-scattering is important, due to the thermal motion of the target nuclei

which is no longer negligible in comparison to the neutron’s kinetic energy. As soon as

neutrons may be classified as thermal they are in equilibrium with the environment which

allows to simplify the tracking and interaction procedure. Equilibrium implies conser-

vation of the respective energy distribution, which from the microscopic point of view

means that neutrons in the average gain as much kinetic energy in collisions as much

as they loose, so that the only relevant stochastic quantity that shall be determined is

the reaction rate. According to Bell and Glasstone, 1970, for large well-moderated reac-

tors with homogeneous temperature, the Maxwell-Boltzmann distribution can be a good

approximation for the thermal neutron spectrum. This, however, is not the case for hete-

rogeneous reactors with large temperature gradients, in which a more detailed treatment

is required.

The procedure to determine whether a neutron belongs thermal distribution is

as follows. A random number between 0 and 1 is generated and by comparison to the

Maxwell-Boltzmann cumulative distribution for the equilibrium temperature. Should the

random number be grater than the cumulative distribution, then the neutron is considered

to be in thermal equilibrium with the moderator. Neutrons that are part of the thermal

population are assigned a new energy at each scattering, sampled from the Maxwell-

Boltzmann probability distribution. This procedure is depicted in Figure 4.5.

As stated in the previous chapter, using the target at rest model, implies in the

target having a null velocity vector in the Lab frame. This results in the existence of

infinite possible scattering planes. In order to solve this, the procedure to find the new

neutron direction after scattering is determined in a complete three dimensional fashion,

although the cylinder symmetry would allow a reduction into a plane. Let the unit vector
~Ωi be the direction of the incoming neutron with α ∈ [0, 2π] and β ∈ [−π/2, π/2] angles

with respect to the laboratory reference frame, see Equation 4.2. For convenience one

may construct one possible final direction ~Ω∗
f as the one defined in Equation 4.2 shown

in Figure 4.6.

~Ωi =


cos(α) cos(β)

sen (α) cos(β)

sen (β)

 , ~Ω∗
f =


cos(α) cos(β + ψ)

sen (α) cos(β + ψ)

sen (β + ψ)

 (4.2)
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Figure 4.5 – Fixed target scattering procedure flowchart.

Figure 4.6 – Sketch of the neutron scattering scheme.
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All remaining possible final vectors in agreement with cylinder symmetry may be

generalized with two auxiliary orthogonal vectors ~ΩP and ~ΩQ, that by construction are

symmetrical on either side of the scattering plane defined by ~Ωi and ~Ω∗
f . The vector

~ΩP + ~ΩQ lies then in the scattering plane, whereas ~ΩP − ~ΩQ is perpendicular to the latter.

The plane by ~ΩP and ~ΩQ is obtained by the solution of the system in Equation 4.3 and

defines the rotation plane that contains the circle with all possible outcomes for the final

direction ~Ωf of the neutron after scattering.


sen (ψ)√

2
(~ΩP − ~ΩQ) = ~Ωi × ~Ω∗

f

sen (ψ)√
2

(~ΩP + ~ΩQ) = ~Ω∗
f − cos(ψ) ~Ωi

(4.3)

Therefore, ~Ωf is given by

~Ωf = cos(ψ) ~Ωi + sen (ψ) (cos(Φ) ~ΩP + sen (Φ) ~ΩQ) (4.4)

in which Φ ∈ [0, 2π] is a random angle.

It is noteworthy, that in the literature the problem is treated typically in two di-

mensions only, because of the scattering inherent cylinder symmetry. The present method

makes use of a random angle in the center-of-mass system, but with three dimensional

vectors. In this procedure two auxiliary vectors are created, one in the scattering plane

(~ΩP + ~ΩQ) and one perpendicular to the latter (~ΩP − ~ΩQ) that define a plane orthogonal

to the incident direction. The usage of the sum and the difference for the auxiliary vectors

is due to the fact that two non-collinear vectors with equal length generate orthogonal

vectors by their sum and difference. These two vectors span the plane that allows to re-

present the cylinder symmetry and utilize a random angle that may rotate the scattering

plane into any other possible orientation compatible with the scattering kinematics.

4.1.5.2 Free Gas Model

In the free gas model, the target nucleus has a thermal motion given by the tempe-

rature of the medium. It is given a random energy, sampled from the Maxwell-Boltzmann

distribution, and a random direction taken from an isotropic distribution. Therefore,

this model involves the solving the energy and momentum conservation equations for the

collision of two particles moving in three-dimensional space.

A vector calculus approach was chosen to solve this problem. This was greatly
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Figure 4.7 – Free gas scattering procedure flowchart.

facilitated and optimized by the use of the Eigen library [Guennebaud, 2011, 2013]. This

is a C++ template library for linear algebra, that provides good performance with a

simple syntax.

The scattering procedure begins by calculating the plane of scattering, defined by

the cross product of the velocity vectors, and reducing the dimensionality of the problem

to a two-dimensional space. Then we proceed to find the velocity of the center of mass of

the system, so that we can transform the problem from the Lab frame to the CM frame.

At the CM we calculate the outgoing neutron energy by using Equation 3.1. The outgoing

direction, in the CM frame, is found by rotating the entire system by the scattering angle

θ. Finally we must return to the original three-dimensional Lab frame. This procedure is

depicted in Figure 4.7.

This procedure does not require further correction of the neutron energy, since the

thermal motion was applied to the target particle. It is possible to perceive that this

allows not only for a decrease of energy of the neutron in the Lab frame, but also for its

increase.

4.1.5.3 Difference between Models

In order to better evaluate the particularities of each scattering model, and thus,

provide a good basis for comparison between them, the simulation of the standalone
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scattering procedure was performed 106 times and incremented 100 × 100 logarithmic

energy bins. This resulted in the differential scattering probability, i.e. surface plots that

map an incoming neutron energy to a distribution of possible outgoing neutron energies.

The differential scattering probability for the target at rest model is shown in

Figures 4.8 and 4.9. And for the free gas model in Figures 4.10 and 4.11. For each model

the scattering of a neutron with both 238U (Figures 4.8 and 4.10) and 1H (Figures 4.9

and 4.11) was calculated.
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10−11

10−8

10−5

10−2

101

Initial energy [MeV ]

Final energy
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Figure 4.8 – Differential scattering probability with 238U in the target at rest model.

In Figures 4.8 and 4.9 it becomes clear the implementation of up-scattering effects

by the sampling of the Maxwell-Boltzmann distribution for thermal neutrons. This is

specially apparent in the constant distribution for the final energy the neutrons have in a

scattering reaction. In this model, even with a stochastic criteria to define the neutron as

part of the thermal population, there is a clear indicative of the region (around the initial

energy of 10−7MeV ) where the thermal effects become dominant.

In contrast, Figures 4.10 and 4.11 do not present a fixed distribution probability

for low energy neutrons, in fact, neutrons with low initial energies can still down-scatter,

something not possible in the target at rest model. It is also noteworthy that there is no

clear separation of the down-scattering dominated region from the region where thermal

effects are the predominant mechanism (this effect can be more easily identified in Figure
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Figure 4.9 – Differential scattering probability with 1H in the target at rest model.
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Figure 4.10 – Differential scattering probability with 238U in the free gas model.

4.10).

In spite of their differences, in both models, the difference between a scattering with

a light or heavy target is maintained. In both models the light Hydrogen nucleus can,

in a few scattering reactions, bring the neutron to thermal energies, while for a heavier

nucleus like Uranium, more scattering reactions are needed to slow down the neutron.
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Figure 4.11 – Differential scattering probability with 1H in the free gas model.

Another important topic is the computational statistics of each model. In Table

4.1 the mean computational time of a single scattering reaction is shown for each model.

Table 4.1 – Comparison of scattering models computational time.

Target at Rest Free gas
6.60µs 33.75µs

Although conceptually simpler than the fixed target model (and allowing for sim-

pler code), the free gas model, with its unique treatment of the whole energy spectrum,

needs for all scattering reactions to be solved using matrix algebra, independent of the

neutron energy. In fact, as is shown in Table 4.1, the free gas model computational time

exceeds the fixed target model computational time by a factor greater than 4. Note also,

that the free gas model also has a larger overhead in cross section computations.

4.2 Data Assessment

After the simulation is completed, the data assessment part is responsible for joi-

ning the information and computing the desired results. The results can be found by

accumulating data of interest along the histories of the simulated neutrons, and by filte-

ring the information of interest according to tags that are modified during the simulation.
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Simulation.h Histogram.h
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Figure 4.12 – Include graph of the data process functions.

Custom tags can be included, thus allowing the creation of new filters and, consequently,

visualize new results.

The data assessment is performed in the same parallel scheme as the simulation.

Its objective is to build both two- and three-dimensional histograms. These histograms

account for density, flux or integral number of neutrons distributed in any combination

of selected dimensions. The histograms are calculated independently for each execution

and then summed after all histograms are computed. Finally the data of each histogram

is stored in a text file to be read by gnuplot.

In Figure 4.12 the graph of files included by the data process function is shown.

This helps illustrate the classes required by this function.

In Figure 4.12, special attention is given to the histogram class. This is an abstract

base class that is inherited by its two- and three-dimensional specialized classes, see Figure

4.13. It also holds methods for data output, as well as the methods that actually compute

the histograms values. In these calculation a series of conditional functions are used,

in order to count or disregard the particles, based on wether their tags respect certain

conditions or not.
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histogram

+ std::string path
+ std::string name
+ double norm
+ bool normalized

+ histogram()
+ histogram(const std
::string Path, const
 std::string Name, double Norm)
+ virtual ~histogram()
+ virtual void Normalize()=0
+ virtual void TextOutput()=0

matrix_histogram

+ std::vector< double
 > abscissa
+ std::vector< double
 > ordinate
+ std::vector< std::vector
< double > > values

+ matrix_histogram()
+ matrix_histogram(const
 std::string Path, const
 std::string Name, std::
vector< double > Abscissa,
 std::vector< double > Ordinate,
 std::vector< std::vector< double
 > > Values, double Norm)
+ void Add(matrix_histogram
 another)
+ void Normalize()
+ void TextOutput()

vector_histogram

+ std::vector< double
 > abscissa
+ std::vector< double
 > values

+ vector_histogram()
+ vector_histogram(const
 std::string Path, const
 std::string Name, std::
vector< double > Abscissa,
 std::vector< double > Values,
 double Norm)
+ void Add(vector_histogram
 another)
+ void Normalize()
+ void TextOutput()

Figure 4.13 – Abstract histogram class inherited by its derived classes.
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5 RESULTS

In order to demonstrate the simulator capabilities, four simulations were perfor-

med. The first two are a shielding simulation and a criticality benchmark simulation, and

were published in Barcellos et al., 2019 and Chaves Barcellos et al., 2021, respectively.

The third and fourth simulations comprehend a general scenario of a multiplicative me-

dium, in order to compare both target at rest and free gas models, as well as using these

results to asses the solution of the Boltzmann transport equation.

It is important to highlight that, in all simulations, geometry, chemical composi-

tion, and initial neutron population were changed. However, the program does not heave

any kind of dedicated “shielding-mode” or “criticality-mode”, and no further changes were

required to run the different kinds of simulation, which are all genuine physical Monte

Carlo procedures.

5.1 Shielding Simulation

This shielding simulation was published in Barcellos et al., 2019, as part of this

thesis project, and its results are reproduced here. Its aim was to test the computation

of reaction rates and mean free path, in a non-multiplicative medium.

5.1.1 Simulated Problem

A shielding problem was chosen to test the simulator. This is a well documented

problem in literature, and an analytical solution can be approximated. These are time

independent problems in a non multiplicative medium.

The shielding material used is cement, both standard and heavyweight cement are

compared in these simulations. In Piotrowski et al., 2012 the atomic composition of both

standard and heavyweight cement mixture are presented. Based on these references the

atomic percentages of Table 5.1 were used in the simulations. For standard cement a

density of 2 g/cm3 and 2.6 g/cm3 for heavyweight cement was considered.

In the simulation a semi-infinite medium was considered using a single material

composed of an equivalent cement molecule in the proportions presented in Table 5.1,

alongside the free gas scattering assumption. A mono-energetic beam of 1MeV entering

orthogonally the semi-infinite medium was used.
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Table 5.1 – Atomic percentages of simulated cement mixtures.

Element Atomic Percentage
Standard Heavyweight

H 0.795% 0.622%
O 53.724% 31.758%
Al 1.57% 0.692%
Si 38.808% 2.96%
S 0.131% 10.666%

Ca 4.298% 3.904%
Fe 0.674% 4.124%
Ba 0.000% 45.274%

A second case was simulated in which the scattering reaction was turned-off. This

way only radiative capture occurred. Without the slowing down caused by the scattering,

the neutron flux remains mono-energetic, and the solution for the flux that leaves a semi-

infinite slab of non-multiplicative material of length L is given by

φL = φ0 e
−LΣc . (5.1)

Where φ0 is the neutron flux entering the semi-infite slab, φL is the neutron flux

leaving a slab of length L, and Σc is the radiative capture macroscopic cross-section of

the material for the energy of 1MeV .

5.1.2 Results

Each case was computed with 106 starting neutrons. Control volumes were then

introduced and the flux leaving each volume was used to create histograms. In order

to simulate different lengths for the slab, without the need for more than one execution,

neutron tags were used so that the sub-volumes only accounted for neutrons entering from

the side nearer to the source.

Figure 5.1 shows the number of counted neutrons by the slab length. It is no-

teworthy that the heavyweight cement acts as a neutron reflector for the simulated energy

range, this is due to barium having a considerable scattering cross-section and being a

heaviest nuclide of the two scenarios. After a few centimeters the effect of reflecting

the neutrons back to the source begins to diminish, and the down-scattering followed by

capture becomes dominant. This way, the counted neutrons in standard cement, with a
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Figure 5.1 – Counted neutrons by slab length.
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Figure 5.2 – Normalized neutron flux by slab length.

higher proportion of oxygen, becomes smaller.

In Figure 5.2 a similar effect can be seen for the neutron flux. However, this time

the effects are more prominent. This is due to the fact the standard cement has, in average

lighter nuclei, having thus a grater down-scattering capacity.

By switching off the scattering it is possible to compare the program result with the
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Figure 5.3 – Normalized neutron flux by slab length for standard cement in capture only

medium.
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Figure 5.4 – Normalized neutron flux by slab length for heavyweight cement in capture

only medium.

analytical solution in Equation 5.1. The comparison are shown for neutron flux in Figures

5.3 and 5.4. Even though this scenario does not represent a real case, it is important to

ascertain the effect of down-scattering in shielding material. Nevertheless, here only the
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radiative capture cross-sections for elements of the mixtures was considered, so that these

results provide the pure capture mean free path for the neutrons, which is required for

the comparison with Equation 5.1.

Table 5.2 – Computational statistics for 106 initial neutrons.

Standard Heavyweight
Simulation thread-time 1.40 1.76 [h · thread]

Data assessment thread-time 0.15 0.24 [h · thread]
Maximum RAM per thread 602.4 615.1 [MB/thread]

Stored simulation data 4.5 5.5 [GB]

Tables 5.2 and 5.3 show the computational statistics for all performed simulations.

The great time reduction between the simulation considering scattering in Table 5.2 and

the one with radiative capture only in Table 5.3 is plausible, for the simulator always

ends a Monte Carlo step with a reaction, therefore, without considering scattering, all 106

neutrons are captured within the first step.

Table 5.3 – Computational statistics for 106 initial neutrons without scattering.

Standard Heavyweight
Simulation thread-time 3 3 [min · thread]

Data assessment thread-time 1 1 [min · thread]
Maximum RAM per thread 289.5 287.8 [MB/thread]

Stored simulation data 0.4 0.4 [GB]

5.2 Criticality Simulation

This criticality simulation was published in Chaves Barcellos et al., 2021, as part

of this thesis project, and its results are reproduced here. Its aim was to compare the

result of a stationary problem to the results of other available Monte Carlo simulators.

5.2.1 Simulated Problem

An implementation that makes use of the created features is a criticality scenario

from the International Handbook of Evaluated Criticality Safety Benchmark Experiments

book [Pitts et al., 2018]. A Water-Reflected 91-Liter Sphere of Enriched Uranium Oxy-

fluoride Solution was chosen for this role due to its geometrical and chemical simplicity
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and the fact that this configuration is considered acceptable for use as a criticality safety

benchmark experiment [Pitts et al., 2018].

The experimental setup comprises three concentric spherical regions. The inner-

most region contains a solution of water and highly enriched uranium oxyfluoride, the

second is a metallic shell that encloses the mixture and is composed of 1100 aluminum,

and the third region is a water reflector pool that is assumed spherical. This assembly is

summarized in Table 5.4, in which the outer radius of each region is also indicated.

Table 5.4 – Assembly summary.

Region Material Outer radius
1 Water and uranium oxyfluoride solution 27.9244 cm
2 1100 aluminum 28.1244 cm
3 Water 43.1244 cm

The solution of the first region has a density of 1.0265 g/cm3 and the isotopic

weight fractions of uranium present in the UO2F2 molecule are given in Table 5.5. The

experiment records also report that the uranium oxyfluoride molecule has a molecular

weight of 305.1933 a.m.u., however, using natural isotopic abundance for oxygen and

fluor the computed molecular weight shall be 305.1843197 a.m.u., which was used in the

present simulation.

Table 5.5 – Uranium isotopic abundance.

Isotope Weight fraction
234U 0.0098
235U 0.9318
236U 0.0050
238U 0.0534

For the aluminum shell, the 1100 aluminum is described as having a density of

2.71 g/cm3. Its composition is given in Table 5.6, which defines the weight percentages of

its constituent elements.

Finally, the water reflector has a density of 0.99705 g/cm3. A global temperature of

298.15K is assumed for the three regions. Due to the fact that no information was given

about the neutron spectrum, the present simulation started with a pure fission spectrum

given by the Watt distribution
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Table 5.6 – 1100 aluminum composition.

Element Weight fraction
Al 0.9870
Si 0.0095
Cu 0.0020
Mn 0.0005
Zn 0.0010

χ(E) = 0.453 e−1.036MeV −1 E sinh
√
2.29MeV −1E. (5.2)

According to the experiment records the effective multiplication factor determined

was keff = 0.9999. Simulating the same setup with the codes ONEDANT (27-Group

ENDF/B-IV) and XSDRNPM (238-Group ENDF/B-V) an estimated uncertainty of the

benchmark is ∆keff = ±0.0058.

5.2.2 Results

The results obtained in this work were based on initially 105 neutrons. Two in-

dependent simulations with initially 7.5 × 104 and 5 × 104 neutrons were executed with

different random seeds in order to analyse the stability of the spectral flux as well as

the effective multiplication factor. The initial neutrons from fission were distributed uni-

formly inside the uranium oxyfluoride solution. The simulations segments were limited to

10000 Monte Carlo steps, during which 203 (105 initial neutrons), 202 (7.5 × 104 initial

neutrons), and 201 (5× 104 initial neutrons) neutron generations were identified. Due to

the spectral bias introduced by this initial population by fission neutrons, the first 750

Monte Carlo steps with its 5 neutron generations were ignored for the evaluation of the

results.

Recalling, that from one and the same simulation for each respective initial neutron

population all simulation data was stored, so that the spectral flux and keff could be

determined. The spectral and spatial distributions were shown only for the simulation

with the largest number of initial neutrons.
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5.2.2.1 Neutron Density and Neutron Flux

In addition to the information of the effective multiplication factor, the data saved

during simulation can be used, among others, to investigate the behaviour of the neutron

flux and neutron density. The neutron density by radial position is shown in Figure 5.5,

with dashed lines to define the radius of each region.
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Figure 5.5 – Neutron density by radial position.

Also the neutron flux by radial position is shown in Figure 5.6, again with dashed

lines to define the radius of each region. An interpolation of the spectral neutron flux by a

single continuous analytical function was performed and showed alongside the simulation

results.

It is noteworthy that both flux and density at the boundary of simulation are not

null. This is worth mentioning, since no assumption was made regarding the boundary

condition and, in fact, this result can be used to feed an analytical or semi-analytical ap-

proach usually based on a diffusion model, where typically assumptions for the boundary

are necessary in order to obtain an unique solution. These type of approaches also do not

treat energy as a continuous variable but rather integrate energy intervals into groups.

Thus, the constituting equation system needs the averaged cross sections, where the flux

solution is necessary, in principle, to get these values accurately.

The simulation provides the spectral neutron flux shown in Figure 5.7 which may
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Figure 5.6 – Neutron flux by radial position.

be used to define accurate values for the group calculations. In this figure the spectral

flux of each region is shown normalized by the spectral flux in the whole domain. The

escape spectral flux is also shown and, for the sake of comparison, it is also normalized

according to the integral of the spectral neutron flux.
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Figure 5.7 – Spectral neutron flux.
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5.2.2.2 Computational Statistics

The computational details of the simulation procedure is presented in Table 5.7.

In this table the simulation time comprehends only the time required to compute and

store the data in binary files, whereas the data assessment time is the computational time

to read these binary files and compute the desired histograms.

Table 5.7 – Computational details for 105 initial neutrons simulated for 104 Monte Carlo

steps.

Simulation thread-time 8.57 [h · thread]
Data assessment thread-time 1.05 [h · thread]
Maximum RAM per thread 52.6 [MB/thread]
Stored simulation data 228.8 [GB]

5.2.2.3 Effective Multiplication Factor

Identification of the neutrons that belong to a specific generation is necessary to

determine keff . The effective multiplication factor is computed by the ratio of the number

of neutrons born from fission in a given generation to the number of neutrons born from

fission in the previous one. In the present implementation the neutrons get a tag that

identifies the cycle they belong to. The effective multiplication factor determined from

simulation is shown in Figure 5.8 alongside the ratio of neutrons of each generation that

were still under tracking when the simulation was halted at step 10000 (in bars). Note that

these neutrons remain unaccounted until they finish their tracking in either an absorption

interaction, or an escape. Neutron generations are not synchronized during simulation,

and neutrons whose tracking is still being processed during simulation termination could

alter the computation of keff . Thus the generations of these neutrons cannot be used to

calculate keff since the number of fissions to be compared to the number of fissions in

the previous generation is no longer representative. The generations used to determine

keff as well as the incomplete cycles that no longer are taken into account are indicated

in Figure 5.8.

More specifically, the generations in the range from 5 to 127 were used to com-

pute the mean effective multiplication factor. The first generations were excluded due
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Figure 5.8 – Effective multiplication factor keff by generation and unaccounted part of

the simulation.

to the bias from the initial fission spectrum population. The latest generations were ex-

cluded for they were not entirely sampled and are due to the simulation termination.

The mean effective multiplication factor from the interval of 123 generations was cal-

culated to keff = 0.99732. The standard deviation of this sample was also computed

and is σKeff
= ±0.00419 of the same magnitude as the uncertainty of the benchmark

experiment.

In Figure 5.9 a detail for the keff in the generation interval [5, 127] is shown. The

figure also shows the mean keff in this interval with its 1σkeff and 3σkeff intervals, as

well as the result from the benchmark experiment keff = 0.9999. Note that the measured

value is within 1σkeff from the simulated average value.

The article on the benchmark experiment [Pitts et al., 2018] also contains statistics

with results obtained with other simulators. These tables are reproduced and summarized

in Table 5.8. The results for the keff of independent simulations initialized with 7.5×104,

and 5 × 104 fission neutrons are added to this table. Note that their mean effective

multiplication factors were computed in the generation intervals of [5, 116] and [5, 131],

respectively, following the same criterion as in the case of initially 105 neutrons. Table

5.8 also contains the relative difference (C − E)/E, in which C represents the calculated

value and E the experimental value, normalized by the experimental result of 0.9999.
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Figure 5.9 – Effective multiplication factor by generation and unaccounted part of the

generation.

Table 5.8 – Summary of results for the benchmark simulation.

Results keff ±∆keff Relative Difference
Benchmark1 0.9999± 0.0058 0± 0.58%
Present work (105 starting neutrons) 0.9973± 0.0042 −0.26%± 0.42%
Present work (7.5× 104 starting neutrons) 0.9980± 0.0043 −0.19%± 0.43%
Present work (5× 104 starting neutrons) 0.9981± 0.0053 −0.18%± 0.53%
KENO-Va (Hansen-Roach)1 1.0072± 0.0016 0.73%± 0.16%
KENO-Va (27-Group ENDF/B-IV)1 1.0013± 0.0012 0.14%± 0.12%
KENO-Va (299-Group ABBN-93)1 1.0011± 0.0002 0.12%± 0.02%
MCNP4 (Continuous-Energy ENDF/B-V)1 1.0037± 0.0005 0.38%± 0.05%
MCNP5 (ENDF/B-VI.8)1 1.0015± 0.0001 0.16%± 0.01%
MCNP5 (ENDF/B-VII β3)1 1.0009± 0.0001 0.10%± 0.01%
ONEDANT (27-Group ENDF/B-IV)1 1.0037 0.38%
XSDRNPM (238-Group ENDF/B-V)1 1.0023 0.24%
MONK7A (Continuous-Energy JEF2.2)1 1.0006± 0.0010 0.07%± 0.10%

It is noteworthy that, although the KENO as well as the MCNP simulations are

indicated with uncertainties of the order of magnitude smaller than the benchmark expe-

riment result or our simulations, the three results obtained with the KENO code have no

common interval on the one σ level and the same is true for the results simulated with

MCNP. By inspection of Table 5.8 one also observes that our simulations are the only
1Extracted from Pitts et al., 2018.
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ones with effective multiplication factors smaller than unity, all the other nine simulations

provide multiplication factors between 1.0006 and 1.00072 and in most cases unity is even

excluded by the indicated uncertainties.

Moreover, MCNP uses the power iteration method [Brown, 2005] to compute keff ,

and for the results presented in Table 5.8 2500 generations were run, each with 2000

neutrons, being the first 150 generations discarded [Pitts et al., 2018]. In comparison, the

results of this paper were attained by averaging the keff of 111, 121 and 126 generations,

in which the total neutron number varies, but encompasses the totality of the population.

5.3 Spectral Neutron Flux

In order to compare both fixed target and free gas models, a scenario of a homo-

geneous multiplicative medium was created. The simulation was run with 25000 starting

fission neutrons for a total of 3000 Monte Carlo steps. Two runs were performed, one

assuming the fixed target hypothesis, and the other using the free gas model.

The simulated scenario comprised of a 1m3 cube, containing a homogeneous mix-

ture of 72% volume water and 28% volume uranium dioxide. In which the uranium has

an enrichment of 0.895%.

In Figure 5.10 we can see the comparison between the spectral neutron flux of each

model. In this figure we perceive that the neutron flux of the fixed target model has a

tendency towards lower energies, in relation to the free gas model.
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Figure 5.10 – Neutron flux spectra of fixed target and free gas models.

5.3.1 Effective Multiplication Factor

These differences in neutron flux spectra result in a difference in the effective mul-

tiplication factor, i.e. the ratio between fissions induced by neutrons of a given generation

to the number of fissions caused by neutrons of the previous generation. This is shown in

Figure 5.11, with results for both models.
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Figure 5.11 – Effective multiplication factor by generation.

It is possible to note that for the later generations, the neutron multiplication

factor deviates from its previous behavior. This can be explained by the fact that these

later generations are not fully sampled. As the simulations are terminated at step 3000,

the neutrons of these later generations have their tracking stopped, and do not count for

either fission, capture, or escape.

5.3.2 Time Distributions

Due to the difference between neutron flux spectra, the correlation between Monte

Carlo step and time, is also changed. As stated before, a Monte Carlo step does not

correlate to a fixed time interval, but to a distribution. This relation between Monte

Carlo step and time can be seen in Figure 5.12 for the target at rest model, and in Figure

5.13 for the free gas model.
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Figure 5.12 – Monte Carlo step time distribution for the target at rest model.
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Figure 5.13 – Monte Carlo step time distribution for the free gas model.

In Figures 5.12 and 5.13 it can be seen that the mean step time presents a linear

correlation to the Monte Carlo step. The standard deviation, however, continuously

increases with the simulation steps. Also, the mean step time of the free gas model is

smaller than the one of the target at rest, what was expected due to the free gas model

presenting a higher mean energy.
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In order to find a recurrent regime, and thus be able to find a stationary neutron

flux, the evolution of the neutron flux in time must be evaluated. Two figures are shown

for each model, Figures 5.14 and 5.16 show the behavior of the spectral neutron flux along

all simulation period, while Figures 5.15 and 5.17 show the details of the first 10−3 s.
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Figure 5.14 – Spectral neutron flux time evolution for the target at rest model.
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Figure 5.15 – Detail of the spectral neutron flux time evolution for the target at rest

model.
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Figure 5.16 – Spectral neutron flux time evolution for the free gas model.
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Figure 5.17 – Detail of the spectral neutron flux time evolution for the free gas model.

In Figures 5.14 and 5.16 it is possible to perceive that the neutron flux spectrum

remains constant, within a small statistical oscillation, for the vast majority of steps. In

Figures 5.15 and 5.17 the rapid transient of the first 10−3 s is shown. Here it is clear that

there is a change in the shape of the neutron flux. This shows the evolution of a purely

fission population that follows the Watt spectrum to one that has attained stationarity.
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5.3.3 Population by Distribution

Another result that allows to visualize how the three probability distributions relate

to each other is the normalized number of neutrons in each distribution. Figures 5.18 and

5.19 show the normalized population of each distribution and how they add up to the

total neutron population, for the fixed target model and free gas model, respectively.

It is noteworthy that there is no fixed energy value between the distributions,

but a stochastic criteria that allows their superposition. This classification criteria can

be applied to both scattering models, however, since for the free gas model it does not

change the treatment of the neutron during tracking and interaction computation (as

performed in the fixed target model), this classification is not used in any calculation of

the simulator.
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Figure 5.18 – Spectral neutron distribution and the contribution of each population for

the target at rest model.
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Figure 5.19 – Spectral neutron distribution and the contribution of each population for

the free gas model.

5.4 Boltzmann Equation Evaluation

Both neutron flux spectra with their respective interpolating functions are presen-

ted in Figures 5.20 and 5.21. Each interpolating function is composed of seven rational

functions of the type
a

1 + (x−b
c
)2
,

in which x is the independent variable and a, b and c are the fitting coefficients, and the

interpolation is performed in the log-log scale.
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Figure 5.20 – Spectral neutron flux and interpolating function for the target at rest

model.
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Figure 5.21 – Spectral neutron flux and interpolating function for the free gas model.

With the interpolating functions for the neutron flux spectra, it is possible to assess

if they are good solution candidates of Equation 2.8. In this assessment the differential

scattering probability Pi, s(E
′ → E) is computed numerically, as is shown in Figures 4.8



57

to 4.11.

A comparison between right and left hand sides of this equation is presented in

Figures 5.22 and 5.23, for the target at rest and free gas models, respectively. In these

figures the left hand side of Equation 2.8 is shown in blue and represents the removal of

neutrons from the flux, while the right hand side represents the emissions of neutrons into

the flux and is shown in red.
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Figure 5.22 – Evaluation of a possible Boltzmann solution for the target at rest model.
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Figure 5.23 – Evaluation of a possible Boltzmann solution for the free gas model.

Due to the fact that physical Monte Carlo simulation uses simplifications, the

pertinent question arises whether to use a fixed target or a free gas approach. In order

to validate the quality of the aforementioned philosophies the found distributions were

fed into the Boltzmann transport equation. By inspection of Figures 5.22 and 5.23 one

observes smaller deviations in the higher energy regions for both models, whereas in the

lower energy region, the fixed target model shows a profound discrepancy in the neutron

balance. Thus, the free gas model approach, so far, is clearly the better option for neutron

transport simulations.
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6 CONCLUSIONS AND FUTURE WORK

The presented results showcase the developed program. They show that the Monte

Carlo simulator configures a valid tool in the evaluation of the neutron population in a

given medium. It shows itself versatile in the different kind of results that can be obtained,

e.g. neutron flux, neutron density, reaction rates, criticality, among others. Even tough

the simulator is continuous in all seven parameters of the phase space, it allows for the

accumulation in the desired axes, integrating out desired dimensions, as was done in the

results with time, space, azimuthal and/or polar angles.

A shielding scenario, a criticality scenario, and two simulations in a multiplicative

medium, each with a different scattering model, were simulated. Several types of results

were obtained from these simulations, among these are results for neutron density, effective

multiplication factor, Monte Carlo step time distribution, spectral neutron flux, and last,

but not least, the assessment of the fitness of the spectral neutron flux to the Boltzmann

transport equation solution.

In the shielding simulation. Two different cement mixtures were used in the pro-

cess, and two scenarios were computed, one for the problem including scattering and radi-

ative capture, and one idealized scenario in which only radiative capture was considered.

The idealized scenario had a simple analytical solution, which showed good agreement

with the stochastic data.

The criticality simulation consisted of a benchmark from the International Hand-

book of Evaluated Criticality Safety Benchmark Experiments book. Here the results

for effective multiplication factor was compared to other simulators, and showed good

agreement to the measured results, being the only simulator that correctly resulted in a

subcritical scenario. The neutron flux and neutron density by radial position were shown

also shown, as well as the presentation of the spectral neutron flux for the inner regions

and leakage. These results are of paramount relevance for they allow to use the simulation

to find boundary conditions for analytical and semi-analytical methods.

Finally two simulations of a multiplicative medium are done with two different

scattering models. For each model the spectral neutron flux, effective multiplication

factor, and time distributions for the Monte Carlo step are shown. Also, the division of

the neutron population in three separate distributions, that is performed by the simulator,
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is presented. Lastly the spectral neutron fluxes are interpolated and these functions are

verified as possible solutions of the Boltzmann transport equation.

As the balance between both sides of the Boltzmann transport equation shows,

there are differences that arise from the simplifications of the chosen scattering models.

These make necessary the use of more complete models, such as the use of angular dis-

tributions, parametrized from experimental data. Such upgrades to the code are already

under development, and the use of object oriented programming makes these changes

easy to implement, since there is no alteration in functionality, but only the expansion of

interaction libraries.

The work developed in this thesis represents a milestone of a larger project. The

simulator had its origin in de Camargo, 2011, but it was during the author’s master degree

and subsequent doctorate that the program was rewritten in modern C++ according

to the latest parallelization paradigms of power computing. In these six years three

conference papers, two book chapters and two articles were published [Barcellos et al.,

2015, 2017a,b, 2019, 2020, 2021; Chaves Barcellos et al., 2021].

The project has further improvements already in progress. Some of these include

the parametrization and further consideration of transient behaviours, molecular and so-

lid state conditioned cross sections, the implementation thermal scattering with molecules

and phonons, local temperature effects, delayed neutrons, among others. Since, physical

aspects are implemented separately from computational ones, the program structure al-

lows for reasonably easy maintenance and upgrades, according to new computational

developments and physical insights.

Finally, the release of this code with an open license is planned. This will allow in

the future integrating the developed code as a physics patch of GEANT. The author rea-

sons, that with the satisfactory results that were obtained and the program’s release, the

open source nature and international collaboration will accelerate its future developments.



61

BIBLIOGRAPHICAL REFERENCES

Agostinelli, S., Allison, J., Amako, K. a., Apostolakis, J., Araujo, H., Arce, P.,
Asai, M., Axen, D., Banerjee, S., Barrand, G., et al. Geant4a simulation toolkit, Nu-
clear instruments and methods in physics research section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 506(3), p. 250–303,
2003.

Barcellos, L. F. F., Bodmann, B. E., Leite, S. Q. B., and de Vilhena, M. T.
A Monte Carlo Simulation of a Simplified Reactor by Decomposition of the
Neutron Spectrum into Fission, Intermediate and Thermal Distributions. In
International Nuclear Atlantic Conference 2015, 2015.

Barcellos, L. F. F., Bodmann, B. E., Leite, S. Q. B., and de Vilhena, M. T.
A Continuous Energy Neutron Transport Monte Carlo Simulator Project:
Decomposition of the Neutron Energy Spectrum by Target Nuclei Tagging. In
International Nuclear Atlantic Conference 2017, 2017a.

Barcellos, L. F. F., Bodmann, B. E., Leite, S. Q. B., and de Vilhena, M. T. On
a Continuous Monte Carlo Simulator Project: Neutron Shielding Simulation.
In International Nuclear Atlantic Conference 2019, 2019.

Barcellos, L. F. F. C., Bodmann, B. E. J., de Vilhena, M. T. M. B., et al. A Conti-
nuous Energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the
Neutron Energy Spectrum by Target Nuclei Tagging, Brazilian Journal of Radiation
Sciences, vol. 8(3B), 2021.

Barcellos, L. F. F. C., Bodmann, B. E. J., Leite, S. Q. B., and Vilhena, M. T., On
a Continuous Energy Monte Carlo Simulator for Neutron Transport: Optimi-
sation with Fission, Intermediate and Thermal Distributions, p. 1–10. Springer
International Publishing, Cham, 2017b.

Barcellos, L. F. F. C., Bodmann, B. E. J., and Vilhena, M. T., On a Parametric
Representation of the Angular Neutron Flux in the Energy Range from 1 eV
to 10 MeV, chapter 3, p. 45 – 59. Springer Nature Switzerland AG, 2020.

Bell, G. and Glasstone, S. Nuclear Reactor Theory. Van Nostrand Reinhold
Company, 1970.

Brown, D., Chadwick, M., Capote, R., Kahler, A., Trkov, A., Herman, M., Son-
zogni, A., Danon, Y., Carlson, A., Dunn, M., Smith, D., Hale, G., Arbanas, G., Arcilla,
R., Bates, C., Beck, B., Becker, B., Brown, F., Casperson, R., Conlin, J., Cullen, D.,
Descalle, M.-A., Firestone, R., Gaines, T., Guber, K., Hawari, A., Holmes, J., Johnson,
T., Kawano, T., Kiedrowski, B., Koning, A., Kopecky, S., Leal, L., Lestone, J., Lubitz,
C., Damián, J. M., Mattoon, C., McCutchan, E., Mughabghab, S., Navratil, P., Neu-
decker, D., Nobre, G., Noguere, G., Paris, M., Pigni, M., Plompen, A., Pritychenko,
B., Pronyaev, V., Roubtsov, D., Rochman, D., Romano, P., Schillebeeckx, P., Simakov,
S., Sin, M., Sirakov, I., Sleaford, B., Sobes, V., Soukhovitskii, E., Stetcu, I., Talou, P.,
Thompson, I., van der Marck, S., Welser-Sherrill, L., Wiarda, D., White, M., Wormald,



62

J., Wright, R., Zerkle, M., erovnik, G., and Zhu, Y. ENDF/B-VIII.0: The 8th Major
Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New
Standards and Thermal Scattering Data, Nuclear Data Sheets, vol. 148, p. 1 – 142,
2018.

Brown, F. Fundamentals of Monte Carlo Particle Transport, 2005.

Chaves Barcellos, L. F., Bodmann, B. E., and Vilhena, M. T. On a comparison
of a neutron Monte Carlo transport simulation to a criticality benchmark experiment,
Progress in Nuclear Energy, vol. 134, p. 103652, 2021.

Chaves Barcellos, L. F. F. On a continuous energy Monte Carlo simulator
for neutron interactions in reactor core material considering up-scattering
effects in the thermal energy region. Master’s thesis, Universidade Federal do Rio
Grande do Sul, 2016.

Collaboration, G. Book For Application Developers, 2020a.

Collaboration, G. Geant4 Users Guide for Toolkit Developers, 2020b.

de Camargo, D. Q. Um Modelo Estocástico de Simulação Neutrônica Con-
siderando o Espectro e Propriedades Nucleares com Dependência Contínua de
Energia. PhD thesis, Universidade Federal do Rio Grande do Sul, 2011.

de Camargo, D. Q., Bodmann, B. E., de Vilhena, M. T., de Queiroz Bogado Leite,
S., and Alvim, A. C. M. A stochastic model for neutrons simulation considering the
spectrum and nuclear properties with continuous dependence of energy, Progress in
Nuclear Energy, vol. 69, p. 59 – 63, 2013.

Duderstadt, J. and Martin, W. Transport Theory. Wiley-Interscience Publica-
tions. Books on Demand, 1979.

Feshbach, H. Theoretical Nuclear Physics, Nuclear Reactions. John Wiley
& Sons, 1992.

Glasstone, S. and Sesonske, A. Nuclear reactor engineering: Reactor design
basics. Volume One. Chapman and Hall, New York, NY (United States), 1994.

Guennebaud, G. An overview of Eigen, 2011.

Guennebaud, G. Eigen: a c++ linear algebra library, 2013.

Lamarsh, J. Introduction to nuclear reactor theory. Addison-Wesley series
in nuclear engineering. Addison-Wesley Pub. Co., 1966.

Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-dimensionally Equi-
distributed Uniform Pseudo-random Number Generator, ACM Trans. Model. Com-
put. Simul., vol. 8(1), p. 3–30, 1998.

Monk, S., Shippen, B., Colling, B., Cheneler, D., Hamrashdi, H. A., and Alton,
T. A comparison of MCNP6-1.0 and GEANT 4-10.1 when evaluating the neutron output
of a complex real world nuclear environment: The thermal neutron facility at the Tri
Universities Meson facility, Nuclear Instruments and Methods in Physics Research



63

Section B: Beam Interactions with Materials and Atoms, vol. 399, p. 48 – 61,
2017.

Piotrowski, T., Tefelski, D. B., Polański, A., and Skubalski, J. Monte Carlo simu-
lations for optimization of neutron shielding concrete, Central European Journal of
Engineering, vol. 2(2), p. 296–303, 2012.

Pitts, M., Rahnema, F., Williamson, T., et al. Water-reflected 91-liter sphere
of enriched uranium oxyfluoride solution, HEU-SOL-THERM-012. In Interna-
tional Handbook of Evaluated Criticality Safety Benchmark Experiments. [DVD]/NEA
7329, OECD Nuclear Energy Agency, Paris, 2018.

Reif, F. Fundamentals of statistical and thermal physics. Waveland Press,
2009.

Reuss, P. Neutron Physics. Nuclear engineering. EDP Sciences, 2008.

Sekimoto, H. Nuclear Reactor Theory, Tokyo Institute of Technology Press,
Tokyo, vol. 11, 2007.

Sunny, E., Brown, F., Kiedrowski, B., and Martin, W. Temperature effects of
resonance scattering for epithermal neutrons in MCNP, International Conference on
the Physics of Reactors 2012, PHYSOR 2012: Advances in Reactor Physics,
vol. 1, p. 803–811, 2012.

Team, X.-. M. C. MCNP: A general Monte Carlo N-Particle transport
code, version 5, 2003.

Tolman, R. C. The principles of statistical mechanics. Courier Corporation,
1979.

Tran, H., Marchix, A., Letourneau, A., Darpentigny, J., Menelle, A., Ott, F.,
Schwindling, J., and Chauvin, N. Comparison of the thermal neutron scattering treatment
in MCNP6 and GEANT4 codes, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 893, p. 84 – 94, 2018.

Williams, M. The Slowing Down and Thermalization of Neutrons. North-
Holland, 1966.



64

APPENDIX A – Additional Program Information

A.1 Cross-Section Source Code

The program that builds the cross-section source code files operates by reading

the values for the cross-section taken from ENDF/B-VIII.0 data Brown et al. [2018], and

performing the linear interpolation of points. The program, however, aims to minimize

the number of comparison operations required to find the function that is valid for a given

neutron energy.

This can be done by recursively dividing the data in k intervals, repeating this

operation for l recursions. Therefore, the maximum number of comparisons made to find

the energy interval of the worst case scenario is given by

(k − 1) l +
N

kl
− 1,

in which k is the division number, l is the number this operation is recursively applied,

and N is the total number of data points. The −1 factors account for the fact that only

the if statements are comparative operations, but not the final else clause. By using this

procedure it is possible to assure that, for the case of capture in 238U , which has more

than 210000 data points, a linear interpolating function can be correctly found in fewer

than 30 comparisons.

A.2 Sampling from the Maxwell-Boltzmann Distribution

In order to sample energies from the Maxwell-Boltzmann distribution effectively,

the cumulative distribution function was inverted numerically. This was done by sampling

the cumulative distribution function for a selected temperature in 10001 equally spaced

points in the range 0 eV to 1 eV , inverting the coordinates of these points and performing

linear interpolation in all 104 intervals. It is important to mention that, even though the

distribution that is defined in a semi-infinite interval is being linearly interpolated in a

closed interval, the value of the integral of the Maxwell-Boltzmann probability distribution

function, for a typical coolant temperature of 568 K, between the limits 1 eV and +∞ is

smaller than 10−8. Therefore, the integral between 0 eV and 1 eV can be approximated

to be unit, and all meaningful information is contained in this interval.
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A.3 Random Number Generator

The chosen pseudo-random number generating algorithm was the Mersene Twister

engine, originally developed by Makoto Matsumoto and Takuji Nishimura. The period

is 219937 − 1 and in the compiler generation C++11 it is included as an engine of the

<random> library. Details of the algorithm may be found in reference Matsumoto and

Nishimura [1998].
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APPENDIX B – Data Structure

A custom data structure was created to increase the performance of saving and

loading the simulated data. In this structure the saved data is divided according to the

neutron interaction and the interval of Monte Carlo steps. This is done by creating a

container object for the data of a neutron interaction in a given interval. This container

is a member of either the InputMatrix or OutputMatrix template classes. Note that these

classes do not hold data in matrices of fixed dimensions, but in vectors of vectors, where

the internal vectors can have different sizes. Also OutputMatrix objects, as the name

implies, have exclusively output operations and are used for the simulation phase of the

program, whereas InputMatrix objects have exclusively input operations and are used for

data assessment.

During a simulation OutputMatrix objects store the values of the Neutron objects

for every reaction and for every monte Carlo step in the interval. At the end of the

interval these values are saved as binary files, for future use. This operation consists of

first reducing the size of the DataMatrix member, this is the container that holds the

data for and OutputMatrix object, and then writing the output. Since container classes,

like std::vector, cannot be directly reinterpreted as binary, the class uses the following

BinaryOutput function to output a header that defines the construction of the DataMatrix,

and then all neutron data serialized.

void BinaryOutput ( const std : : s t r i n g f i l ename ){

std : : o f s tream F i l e ;

Reduce ( ) ; \\ Operation to reduce DataMatrix s i z e .

unsigned int i ;

unsigned int number_of_lines ;

s td : : vec to r <unsigned int> columns_per_line ( DataMatrix . s i z e ( ) ) ;

number_of_lines = DataMatrix . s i z e ( ) ;

for ( i = 0 ; i < DataMatrix . s i z e ( ) ; i++ ) {

columns_per_line [ i ] = DataMatrix [ i ] . s i z e ( ) ;

}
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F i l e . open ( f i l ename , std : : i o s : : b inary ) ;

i f ( ! F i l e . good ( ) ) {

std : : cout << " Warning : BAD FILE − "

<< f i l ename << std : : endl ;

}

F i l e . wr i t e ( reinterpret_cast <const char∗> ( &number_of_lines )

, s izeof ( unsigned int )

) ;

F i l e . wr i t e ( reinterpret_cast <const char∗> ( &columns_per_line [ 0 ] )

, columns_per_line . s i z e ( ) ∗ s izeof ( unsigned int )

) ;

for ( i = 0 ; i < DataMatrix . s i z e ( ) ; i++ ){

F i l e . wr i t e ( reinterpret_cast <const char∗> ( &DataMatrix [ i ] [ 0 ] )

, DataMatrix [ i ] . s i z e ( ) ∗ s izeof ( data_type )

) ;

}

F i l e . c l o s e ( ) ;

}

When data needs to be input in the program, mainly during data assessment,

InputMatrix objects are used. They reconstruct the DataMatrix member that was saved

by the OutputMatrix class. This is done by reinterpreting the binary data with the

following member function BinaryInput. Note that this function uses the information in

the file header to reconstruct the DataMatrix container, and then read the serialized data.

void BinaryInput ( const std : : s t r i n g f i l ename ){

unsigned int i ;

unsigned int number_of_lines ;

s td : : vec to r <unsigned int> columns_per_line ( DataMatrix . s i z e ( ) ) ;

F i l e . open ( f i l ename , std : : i o s : : b inary ) ;

i f ( ! F i l e . good ( ) ) {

std : : cout << " Warning : BAD FILE − "
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<< f i l ename << std : : endl ;

}

F i l e . read ( reinterpret_cast <char∗> ( &number_of_lines )

, s izeof ( unsigned int )

) ;

columns_per_line . r e s i z e ( number_of_lines ) ;

DataMatrix . r e s i z e ( number_of_lines ) ;

F i l e . read ( reinterpret_cast <char∗> ( &columns_per_line [ 0 ] )

, columns_per_line . s i z e ( ) ∗ s izeof ( unsigned int )

) ;

for ( i = 0 ; i < DataMatrix . s i z e ( ) ; i++ ) {

DataMatrix [ i ] . r e s i z e ( columns_per_line [ i ] ) ;

}

for ( i = 0 ; i < DataMatrix . s i z e ( ) ; i++ ) {

F i l e . read ( reinterpret_cast <char∗> ( &DataMatrix [ i ] [ 0 ] )

, DataMatrix [ i ] . s i z e ( ) ∗ s izeof ( data_type )

) ;

}

F i l e . c l o s e ( ) ;

}
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APPENDIX C – Thread Pool

Two template classes were created, to provide a thread pool functionality. This

relies in reserving a fixed number of threads to perform a certain number of jobs, and

each time a thread finishes a job, it picks a new one, without having to synchronize with

other working threads. Synchronization to the original calling thread happens when all

computation is finished.

These classes allow for the computation of a function a given number of times,

with a given number of arguments. They are initialized with a vector of f_args objects, a

pointer to a function that will be repeatedly computed (each time with one of the f_args

objects), and the number of reserved threads for this operation.

Two different pool classes were created, to consider the particularities of functions

that have a return value, and the functions that are of the void type. Their main diffe-

rences is the fact that the return_pool class posses a getter method, to retrieve a vector

of f_return objects, and that this return vector is attuned to the arguments vector, so

that each result object can be traced to an arguments object.

The complete source code of both classes is presented in this chapter. Note that

they both use the following template function.

template <typename R> bool i s_ready ( std : : future <R> const& f ) {

return f . wait_for ( std : : chrono : : seconds (0 )

) == std : : fu ture_status : : ready ;

}

C.1 Void Pool

template <typename f_args> class void_pool {

private :

typedef void ( ∗ f_po inter ) ( f_args ) ;

f_po inter m_func ;

std : : vec to r <f_args> m_args ;



70

int m_cores ;

int m_execs ;

bool m_runFunc( f_args arg , int exec ) {

m_func( arg ) ;

return true ;

}

public :

void_pool ( std : : vec to r <f_args> arguments

, int co r e s

, f_po inter func

) {

m_args = arguments ;

m_cores = co r e s ;

m_execs = arguments . s i z e ( ) ;

m_func = func ;

}

virtual ~void_pool ( ) {} ;

void Run( ) {

int completed_execs = 0 ;

int ava i l ab l e_co r e s = m_cores ;

int running_exec = 0 ;

bool wait_return ;

std : : vec to r < std : : f u tu r e <bool> > f u t u r e s ;
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while ( completed_execs < m_execs ) {

wait_return = true ;

i f ( ( running_exec < m_execs ) && ( ava i l ab l e_co r e s > 0) ) {

f u t u r e s . push_back ( std : : async ( &void_pool : : m_runFunc

, this

, m_args [ running_exec ]

, running_exec

)

) ;

running_exec++;

ava i l ab l e_core s −−;

}

else {

while ( wait_return ) {

for ( int exec = 0 ; exec < f u t u r e s . s i z e ( ) ; exec++ ) {

i f ( is_ready ( f u t u r e s [ exec ] ) ) {

i f ( f u t u r e s [ exec ] . get ( ) ){

completed_execs++;

ava i l ab l e_co r e s++;

f u t u r e s . e r a s e ( f u t u r e s . begin ( ) + exec ) ;

wait_return = fa l se ;

}

}

}

}

}

}

}

} ;
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C.2 Return Pool

template <typename f_return , typename f_args> class return_pool {

private :

typedef f_return ( ∗ f_po inter ) ( f_args ) ;

s td : : vec to r <f_return> m_returns ;

f_po inter m_func ;

std : : vec to r <f_args> m_args ;

int m_cores ;

int m_execs ;

bool m_runFunc( f_args args , int exec ) {

m_returns [ exec ] = m_func( args ) ;

return true ;

}

public :

return_pool ( std : : vec to r <f_args> arguments

, int co r e s

, f_po inter func

) {

m_args = arguments ;

m_cores = co r e s ;

m_execs = arguments . s i z e ( ) ;

m_func = func ;

m_returns . r e s i z e ( arguments . s i z e ( ) ) ;

}
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~return_pool ( ) {} ;

void Run( ) {

int completed_execs = 0 ;

int ava i l ab l e_co r e s = m_cores ;

int running_exec = 0 ;

bool wait_return ;

std : : vec to r < std : : f u tu r e <bool> > f u t u r e s ;

while ( completed_execs < m_execs ) {

wait_return = true ;

i f ( ( running_exec < m_execs ) && ( ava i l ab l e_co r e s > 0) ) {

f u t u r e s . push_back ( std : : async ( &return_pool : : m_runFunc

, this

, m_args [ running_exec ]

, running_exec

)

) ;

running_exec++;

ava i l ab l e_core s −−;

}

else {

while ( wait_return ) {

for ( int exec = 0 ; exec < f u t u r e s . s i z e ( ) ; exec++ ) {

i f ( is_ready ( f u t u r e s [ exec ] ) ) {

i f ( f u t u r e s [ exec ] . get ( ) ) {

completed_execs++;
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ava i l ab l e_co r e s++;

f u t u r e s . e r a s e ( f u t u r e s . begin ( ) + exec ) ;

wait_return = fa l se ;

}

}

}

}

}

}

}

std : : vec to r <f_return> Returns ( ) {

return m_returns ;

}

} ;
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