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Abstract

High anomalous grades are very common in gold deposits, whose presence requires 
careful treatment to prevent overestimation of metal content. Mineral resource analysts 
have worked on the estimation of several gold deposits, and none of the classical methods 
were able to avoid manual interventions, such as cutting high grades for local estimation 
or using more information beyond the data for the variogram inference. The Field Para-
metric Geostatistics (FPG) is presented as an alternative for the application of linear krig-
ing methods to estimate highly skewed distributions, proposing a mathematical model 
which incorporates the grades and its representativeness into a new variable, reducing 
the influence of high grades without empirical manual interventions. In this article, the 
mathematical formulation of the FPG theory is presented, as well as its application in 
datasets with outliers and high skewed distributions: the Walker Lake dataset and the 
Amapari gold deposit. The results are compared to results obtained by the application 
of standard techniques, demonstrating that FPG is a feasible alternative to estimate local 
grades and local reserves for highly skewed variables.
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1. Introduction

High anomalous grades are very 
common in mineral deposits of precious 
metals, such as gold and platinum. The 
definition of outliers according to Barnett 
and Lewis (1984) is a datum which seems 
to be inconsistent with the remaining of 
the data set.

The presence of outlier grades, very 
common in gold mineralization, intro-
duces significant variability on statistical 
parameters and experimental semivar-
iogram calculation. A low number of 
outliers could be responsible for a metal 
content overestimation; in other words, 
a minimum alteration in the number of 
high grade samples can cause a huge dif-
ference between the estimated and mined 
reserves. Due to their effect on resource 
estimation, these values should be identi-

fied and carefully treated.
There is not a specific procedure 

universally accepted to deal with outliers. 
Mineral resource analysts have worked 
at several gold deposits and in all of them 
none of the mathematical methods were 
able to avoid manual interventions, such 
as cutting high grades for local estimation 
and using information beyond the data to 
infer the variograms (Machado et al., 2011; 
Machado, 2012).

The technique of capping applied 
to outliers as an attempt to reduce their 
importance during grade estimation is 
widespread over the mining industry, 
based on previous experiences or statisti-
cal parameters related to the cumulative 
distribution function. These methods are 
subjective and sometime not common 

sense.  Indicator Kriging (IK) (Journel, 
1982) was initially developed to estimate 
probability distributions, but indicator 
transformation is also an effective way 
of limiting the effect of very high values 
(Glacken and Blackney, 1998); however, 
it is difficult to define spatial continuity 
to indicators above the 95th percentile of 
data, due to few samples and sparse spa-
tial distribution. Costa (1997) presents 
robust kriging in a mathematical frame-
work to map and correct high values that 
are distinct from the remaining data.

Armony (2000; 2001; 2005) de-
veloped a theory based on mathematical 
methods to limit the influence of outliers, 
which explains and justifies the practice of 
resource analysts of lowering high grades: 
the Field Parametric Geostatistics (FPG).

2. The theory of field parametric geostatistics

Desirable properties that could be in-
ferred from datasets are related to continu-
ity and representativeness. The continuity 
and representativeness depends on grade 
variability and the portion represented 
by each sample. In kriging, continuity 

is obtained through the modeling of the 
experimental semivariogram, and it com-
monly gives the same representativeness to 
each sample, regardless of analyzed grades. 

A theory was developed, based on 
a variable transformation known as Field 

Parametric Geostatistics (FPG). The new 
variable assigns an area or volume of 
influence to each sample according to 
its grade – called extension (τ) – which 
incorporates the representativeness dur-
ing estimation using all the available 
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3. Case studies

The FPG technique is demon-
strated by its application on datasets 
with high-skewed distributions. The 
first is the Walker Lake dataset (Isaaks 

and Srivastava, 1989), where variables 
U and V are derived from a digital 
elevation model of the Walker Lake 
area, located in Nevada, USA. The 

second is the Amapari gold deposit, 
located in Amapá state, Brazil, where 
the domain of colluvia was chosen to 
develop this study.

3.1 Walker lake dataset: variables U and V
Analysis of cumulative frequency 

curves of U and V (Figures 1 and 2) 
show that there is no significant change 
in the angle of the curve, which means 

that all of the dataset can be treated 
as a single population of grades. Thus, 
FPG transformation will be performed 
to all data and the estimated values will 

be back transformed to the original 
population. The statistical parameters 
for U and V variables are presented in 
Table 1.

Count Mean

U 275 604.08

U (declustered) 275 555.00

V 470 435.30

V (declustered) 470 408.53
Table 1
Statistical parameters for U and V.

Figure 1
Cumulative frequency 
distribution of variable U.

Figure 2
Cumulative frequency
distribution of variable V.

information and reduces the influence of 
anomalous grades without subjectivity of 
manual interventions. Machado (2012) 
and Machado et. al (2012) presented de-
tails about the theory and its mathemati-
cal formulation.

It is recommended to apply the vari-

able transformation only to the high grade 
populations: in an earlier study, Armony 
(2000) verified that applying the transfor-
mation to the whole dataset would lead 
to underestimation. Detection of the limit 
between two populations can be done by 
searching for an inflexion point in the 

cumulative frequency curve, where the 
angle of the curve changes drastically. 
The knowledge of the nature of the data 
and, in the mineral frame, the knowledge 
of the genesis of the deposit can be very 
important and sometimes crucial to ef-
ficiently apply the FPG technique.
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The grade estimation was performed 
by Field Parametric Geostatistics (FPG) 
and its results are compared to other tra-
ditional techniques: ordinary kriging of 
the original values (OK), ordinary kriging 
after capping the extreme values (capping 

at p97 and at p90), and median indicator 
kriging with hyperbolic upper tail extrapo-
lations (E-type 1.5 and E-type 3.0) whose 
results were post processed with postik 
from GSLIB (Deutsch and Journel, 1998). 
The results were also compared against 

reference values derived from 78000 
known as the exhaustive dataset (Refer-
ence). The statistical parameters for U and 
V estimates are presented in Table 2 and 
the correlation coefficients are presented 
in Table 3.

Count Mean Count Mean

U (Reference) 3120 266.04 V (Reference) 3120 277.98

U (FPG) 3120 255.22 V (FPG) 3120 261.84

U (OK) 3120 522.33 V (OK) 3120 292.17

U (capping p97) 3120 477.00 V (capping p90) 3120 289.43

U (E-type 1.5) 3120 244.86 V (E-type 1.5) 3120 323.17

U (E-type 3.0) 3120 221.25 V (E-type 3.0) 3120 317.80

Table 2
Statistical parameters 

for the U and V estimates.

U (FPG) U (OK) U (capping p97) U (E-type 1.5) U (E-type 3.0)

U (Reference) 0.51 0.42 0.47 0.63 0.64

V (FPG) V (OK) V (capping p90) V (E-type 1.5) V (E-type 3.0)

V (Reference) 0.87 0.85 0.83 0.83 0.83Table 3
Correlation coefficients for U and V.

The results show that the global 
average of deposit was best approximated 
by FPG, especially for the U variable 
where other applications of kriging lead 
to overestimation. The difference on the 
average grade between FPG and the refer-
ence model is approximately 4%, while the 
difference produced on other estimations 
is up to 96%.

The influence of each method on 

the resources are also compared using 
grade versus tonnage curves for U and V 
estimates. In Figure 3 the ordinary krig-
ing of the original values and capping of 
the extreme values (U(OK) and U(capping 
p97)) provide similar curves, but these 
results depart from the reference model. 
Estimates using median indicator kriging 
(U(E-type 1,5) and U(E-type 3,0)) and us-
ing FPG technique provided similar curves 

and closer to the reference model; however 
the FPG estimate is more conservative after 
a cutoff grade of 200, compared to the 
reference model. In Figure 4, although the 
FPG estimates (V(FPG)) are more adher-
ent to the reference model considering the 
range from 0 to 400 cutoff grades, the 
curves provided by other methods do not 
present large discrepancies in relation to 
the reference model.

Figure 3
Grade vs tonnage curves for U estimates.
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Figure 4
Grades vs tonnage curves for V estimates.

3.2 Amapari Gold Deposit
Analyzing the cumulative frequency 

curve for gold grades from Amapari dataset 
shows that there are evidences of two popu-
lations, which could be separated by the in-
flexion point around 5 ppm (Figures 5). The 
population of low grades was estimated 

using ordinary kriging of the original val-
ues; the population of high grades had its 
values transformed by the FPG technique 
before estimation by ordinary kriging, and 
the results were back transformed to the 
original grade distribution. The probability 

of each block to belong to a high grade or 
low grade population was estimated using 
indicator kriging, and these proportions 
were used to combine the estimation of 
each population to assign the final grade 
to the blocks.

Figure 5
Shape of the cumulative 
frequency of gold grades in 
the Amapari deposit (two populations).

A division of colluvia domain into 
northern and southern portions was 

performed (Figure 6), whose statistics are 
presented in Table 4.

Figure 6
Location map of Au samples from Amapari 
gold deposit: (a) northern portion and (b) 
southern portion of the deposit. The color 
scale is presented from 0 ppm to 5 ppm 
due to the highly skewed population.

(a) (b)

Region Count Mean Region Count Mean

Au, ppm North 1730 1.47 South 4127 1.50

Au (declustered), ppm North 1730 0.90 South 4127 0.97 Table 4
Descriptive statistics for Au.
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At the Amapari gold deposit, the 
grade estimation was also performed by 
Field Parametric Geostatistics (FPG) and 
its results were compared to ordinary 
kriging of the original values (OK), or-

dinary kriging after capping the extreme 
values from datasets (capping p95 and 
capping p98) above the 95th and the 98th 
percentile of the distribution (Au = 5.03 
ppm and Au = 9.20 ppm, respectively), 

and median indicator kriging with hyper-
bolic upper tail extrapolations (E-type 
1.5 and E-type 4.0). The statistical pa-
rameters for Au estimates are presented 
in Table 5.

Region Count Mean Region Count Mean

Au (FPG), ppm North 155488 0.59 South 226619 0.62

Au (OK), ppm North 155488 0.68 South 226619 0.88

Au (capping p98), ppm North 155488 0.65 South 226619 0.77

Au (capping p95), ppm North 155488 0.63 South 226619 0.71

Au (E-type 1.5) North 155488 0.75 South 226619 0.86

Au (E-type 4.0) North 155488 0.66 South 226619 0.70
Table 5

Descriptive statistics for Au estimates.

The average grade of FPG estimates 
is more conservative than the average esti-
mated by other methods, both in the north-
ern and southern portion of the colluvia 
deposit. This is assigned to a more effective 
control of outliers on the FPG estimates.

Grade versus tonnage curves for Au 
estimates were generated to compare the 
estimated models to the curve obtained by 
samples after a change of support (affine 
correction). Figures 7 and 8 show that the 
use of capping or median indicator kriging 

to control the effect of extreme values was 
not effective, given that their curves are 
coincident to ordinary kriging of raw data. 
The application of FPG provided better 
results, reducing the influence of outliers 
during estimation.

Figure 7
Grade vs tonnage curves 

for Au estimates in the northern portion.

Figure 8
Grade vs tonnage curves 

for Au estimates in the southern portion.

4. Conclusions

Field Parametric Geostatistics can 
be considered a robust alternative for 
grade estimation, reducing the impact 
of outliers without the subjectiviness 

of choosing restriction parameters. 
The effects were demonstrated through 
good results obtained on U estimates in 
comparison to the reference model, and 

the effective control of high grades of Au 
compared to the classical approach used 
in the mining industry.
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